## Transmission and Coding of Information

José Luis Ruiz
July 2018
Departament de Matemàtiques
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya
jose.luis.ruiz@upc.edu

## Introduction

## Mathematical Theory of Information

The mathematical theory of information begins in 1948 with Claude Shannon's seminal paper "A Mathematical Theory of Communication". For Shannon:

The fundamental problem of communication is that of reproducing at one point exactly or approximately a message selected at another point.

Shannon gives a mathematical definition of information and studies how to transmit a message through a communication channel efficiently and reliably.

## Error-Correcting Codes: A Brief History

In 1950, Richard Hamming, at Bell's Laboratories, constructs an error-correcting code for the first time. The Hamming code can correct up to one error.

In 1954, Reed and Muller introduced a family of error-correcting codes capable to correct an arbitrary number of errors. They have been used in Mariner missions from 1969 to 1977.

From 1958 to 1960, BCH and Reed-Solomon codes were discovered. They have been used for space missions and in CDs and DVDs since then.

## Communication Channels

## Simple model of communication channel

System consisting of three parts:

- a source of information,
- a physical channel, and
- a receiver or sink.


## Issues to consider

- Low capacity of the channel.
- Security or the espionage problem.
- Errors in the messages caused by noise in the channel.


## Communication Channels



## Low Capacity of the Channel

## Source coding

Data compression: substitute the data source with a compressed version of it.

## Main methods in data compression

- Lossless compression: statistical, arithmetical or dictionary techniques. Used for text, executables, etc.
- Lossy compression: jpeg, fractal compression. Used for graphics, video, music, etc.


## Source Coding: Shannon's First Theorem

## Information and redundancy

A message is composed of information and redundancy, and both can be measured.

## Source coding

Source coding is the process of taking the redundancy out of a message produced by an information source.

## Theorem

A message can compressed until only information remains, and no more.

Roughly, the information contained in a message is the number of bits we get with the best compressor.

## Source Coding: Example of Statistical Compression

Alphabet: $A=\{a, b, c, d, e\}$.
Message: $M=a a a b c c e d a b d b \in A^{*}$ has length 12.
Frequencies of letters appearing in $M$ :

$$
p(a)=\frac{1}{3}, \quad p(b)=\frac{1}{4}, \quad p(c)=p(d)=\frac{1}{6}, \quad p(e)=\frac{1}{12}
$$

With a fixed-length ASCII-like binary encoding we need 36 bits to encode $M$ :

$$
a \rightarrow 000, \quad b \rightarrow 001, \quad c \rightarrow 010, \quad d \rightarrow 011, \quad e \rightarrow 100 .
$$

## Source Coding: Example (continued)

Variable-length encoding: we associate a binary word with each letter such that the most frequent letters have shorter words. For example,

$$
a \rightarrow 00, \quad b \rightarrow 01, \quad c \rightarrow 10, \quad d \rightarrow 110, \quad e \rightarrow 111
$$

Now, we only need 27 bits to encode $M$.

## Remark

- $\mathcal{C}=\{00,01,10,110,111\}$ is a code: there is no ambiguity in the messages we can form with the words in $\mathcal{C}$.
- This is an example of a Huffman encoding.


## Errors in the Channel: Channel Encoding

## Channel encoding

- To recover all or most of the original message we add some redundancy to it.
- This process is called channel encoding.


## Error detection \& error correction

- Error Detection: parity check bit, cyclic redundancy codes (CRC), etc. Used only when retransmission is possible and cheap (disk reading, local network communication, etc).
- Error Correction: used when retransmitting the message is not possible or is too much expensive (CD-ROMs or DVD reading, satellite communication, etc)


## Channel Encoding: Shannon's Second Theorem

## Remark

- Intuitively, the greater the redundancy we add, the more likely is to recover the original information, but the lower the transmission rate will be.
- High reliability and low transmission rate seem incompatible objectives.


## Theorem

Both problems can be solved at the same time. That is, it is possible to correct as many errors as we want adding only a controlled redundancy.

## Example

## The Binary Memoryless Symmetric Channel

- A source of information emits two symbols $\{0,1\}$.
- We send these bits through a channel with error probability $p<1 / 2$. That is:

$$
p(0 \mid 1)=p(1 \mid 0)=p, \quad p(0 \mid 0)=p(1 \mid 1)=1-p .
$$

Conditional probabilities: $p(i \mid j)$ is the probability of receiving $j$ when $i$ has been sent.

## Example (cont.)

## Do nothing: send every bit as it is

- Decision scheme: accept every bit as it arrives.
- Probability of getting a bit of information incorrectly: p.

Use a repetition code: send every bit three times

- Decision scheme: majority decision.
- Probability of getting a bit of information incorrectly: $p^{3}+3 p^{2}(1-p)$.
- Cost: we have added a 66.6\% of redundancy and the transmission rate is three times bigger (e.g., it takes 3 times as long to send the same information).


## Example (cont.)

## Use a Hamming code

- Given four bits of information $x_{1} x_{2} x_{3} x_{4}$, compute:

$$
x_{5}=x_{2}+x_{3}+x_{4}, \quad x_{6}=x_{1}+x_{3}+x_{4}, \quad x_{7}=x_{1}+x_{2}+x_{4}
$$

(sums modulo 2) and send $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}$.

- The Hamming code consists of the binary vectors in $\{0,1\}^{7}$ that are solutions to this linear system.

This an example of a linear code.

## Example (cont.)

## Decision scheme for the Hamming code

- After receiving $y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7}$, compute the syndromes:

$$
\begin{aligned}
& s_{1}=y_{4}+y_{5}+y_{6}+y_{7}, \\
& s_{2}=y_{2}+y_{3}+y_{6}+y_{7}, \\
& s_{3}=y_{1}+y_{3}+y_{5}+y_{7}
\end{aligned}
$$

- If $s_{1} s_{2} s_{3}=000$, (we decide that) there is no error.
- Else, the error location is $S_{1} S_{2} S_{3(2)}$, representation of an integer to the base 2.


## Example (cont.)

## Example of decoding with the Hamming code

- If the information message is 0101, we send 0101010.
- Suppose we get 0101110 (error in the 5th position).
- The syndromes are $s_{1}=1, s_{2}=0, s_{3}=1$.
- Hence we decide there is an error in the position $101_{(2)}=5$.


## Some Properties of the Hamming Code

## Remark

- This Hamming code corrects up to 1 error in a word of length 7.
- Probability of a decision error: $1-(1-p)^{7}-7 p(1-p)^{6}$.
- Comparison: the probability of a decision error for every 4 information bits is of 0.00203 with the Hamming code, and is of 0.00259 with the repetition code of length 3 .


## Information and Entropy

## Intuitive Idea of Information

- The concept of information is tied to the concepts of probability and uncertainty.
- Information can be measured by the amount of uncertainty resolved.
- The uncertainty is described by means of the concept of probability.
- In fact, some messages are much likelier than others, and information implies surprise.


## Amount of Information = Amount of Uncertainty

The amount of information contained in an event can also be understood as the quantity of uncertainty:

- before an event happens we have uncertainty about the result;
- after an event happens we get information.

So the amount of information is equal to the amount of uncertainty resolved.

## Definition of Information

Let $(\Omega, p)$ be a finite probability space.

## Definition of information

If $A \subseteq \Omega$ is an event, the amount of information contained in A is:

$$
I(A)=\log _{2} \frac{1}{p(A)}
$$

- Information is measured in bits.
- The information function is decreasing and additive: if $A$ and $B$ are independent events, then $I(A \cap B)=I(A)+I(B)$. (The function $f(x)=\log (1 / x)$ is decreasing and additive: $f(x y)=f(x)+f(y)$.


## Examples

## A perfect coin

For a perfect coin: $p($ heads $)=p($ tails $)=1 / 2$. Hence, each event (heads or tails) contains 1 bit of information:

$$
\log _{2} \frac{1}{1 / 2}=\log _{2} 2=1
$$

In fact, this was the first use of the term bit, as a unit of information.

## A non-perfect coin

However, if $p$ (heads) $=1 / 4$ and $p($ tails $)=3 / 4$, then:

$$
I(\text { heads })=\log _{2} 4=2, \quad I(\text { tails })=\log _{2}(4 / 3)=0.415037
$$

## Entropy

Let $X$ be a random variable taking values $x_{1}, \ldots, x_{n}$.

## Definition of entropy

Define the entropy of $X$ as the average amount of information:

$$
H(X)=\sum_{i=1}^{n} p\left(X=x_{i}\right) \cdot I\left(X=x_{i}\right)=\sum_{i=1}^{n} p\left(x_{i}\right) \cdot \log \frac{1}{p\left(x_{i}\right)}
$$

Convention: $0 \cdot \infty=0$ (why?).

## Example

If $X$ is equally likely, then: $p\left(x_{i}\right)=1 / n$, and $H(X)=\log (n)$.

## Properties of the entropy

1. $H\left(p_{1}, \ldots, p_{n}\right)$ is continuous: a small change in the probabilities implies a small change in the entropy.
2. $H\left(p_{1}, \ldots, p_{n}\right)$ is symmetric: the entropy only depends on the probabilities, not on their order.
3. $H\left(p_{1}, \ldots, p_{n}\right) \geq 0$, and $H=0 \Longleftrightarrow \exists i, p_{i}=1$.
4. $H\left(p_{1}, \ldots, p_{n}, 0\right)=H\left(p_{1}, \ldots, p_{n}\right)$ : an impossible case doesn't contribute to the entropy.
5. $H(1 / n, \ldots, 1 / n)<H(1 /(n+1), \ldots, 1 /(n+1))$ : the entropy is greater for an equally likely distribution with $n+1$ values than for one with $n$ values.
6. $H\left(p_{1}, \ldots, p_{n}\right) \leq H(1 / n, \ldots, 1 / n)$, and the equality holds iff $\forall i, p_{i}=1 / n$. For instance, there is more uncertainty in a perfect dice than in a loaded one.

## Joint Entropy

If $X, Y$ are random variables, $H(X, Y)$ denotes the entropy of the joint distribution and is called the joint entropy of the variables.

## Proposition

1. $H(X, Y) \leq H(X)+H(Y)$
2. $H(X, Y)=H(X)+H(Y)$ iff $X$ and $Y$ are independent variables.

## Remark

The joint entropy is the amount of information we get when we observe both variables at the same time.

## Conditioned Entropy

Let $X$ and $Y$ be random variables. Then $X \mid Y=y$ is a random variable whose entropy is:

$$
H(X \mid Y=y)=\sum_{i=1}^{n} p\left(x_{i} \mid y\right) \log \frac{1}{p\left(x_{i} \mid y\right)}
$$

## Conditioned entropy

The average of all these entropies is called the conditioned entropy (even though it is not a true entropy!):

$$
H(X \mid Y)=\sum_{j} p\left(y_{j}\right) H\left(X \mid Y=y_{j}\right)
$$

## Some Properties

## Proposition

1. $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$.
2. $H(X \mid Y) \leq H(X)$, and the equality holds iff $X$ and $Y$ are independent.

## Remark

$H(X \mid Y)$ measures the uncertainty that remains in $X$ after having observed $Y$.

## Mutual Information

## Mutual information

We define the mutual information of the random variables $X$ and $Y$ as:

$$
I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

## Proposition

$I(X, Y)=0$ iff $X$ and $Y$ are independent variables.

## Remark

$I(X, Y)=$ amount of information in $X$ minus the amount of information still in $X$ after knowing $Y$ (and conversely) $=$ amount of information that each variable contains about the other.

## Mnemonic Rule

Represent $H(X)$ as the set $U$ and $H(Y)$ as the set $V$. Then:

$$
\begin{aligned}
H(X, Y) & \longleftrightarrow U \cup V \\
H(X \mid Y) & \longleftrightarrow U-V \\
H(Y \mid X) & \longleftrightarrow V-U \\
I(X, Y) & \longleftrightarrow U \cap V .
\end{aligned}
$$

Codes

## Coding an alphabet into another one

- We want to send the information generated by an information source through a communication channel.
- The source emits symbols from an alphabet $B$, but the channel only accepts symbols from another alphabet $A$.
- Hence, we need a one-to-one mapping $f: B \rightarrow A^{*}$ that assigns to each symbol $b \in B$ a word $f(b) \in A^{*}$.
- Moreover, we need that any word of $A^{*}$ that is a concatenation of words of the image $\mathcal{C}=f(B)$ decomposes uniquely as such concatenation.
- A set $\mathcal{C}$ with a property like that is called a code.


## Alphabets. Concatenation

## Definition

An alphabet is a finite set $A=\left\{a_{1}, \ldots, a_{q}\right\}, q=|A|$.

- A word over $A$ is a finite sequence of symbols $x=a_{i_{1}} \cdots a_{i_{n}}$.
- $n=\ell(x)$ is the length of the word $x$.
- $\lambda$ is the empty word (has no symbol), $\ell(\lambda)=0$.
- $A^{*}=\{$ words of length $\geq 0\}, A^{n}=\left\{x \in A^{*} \mid \ell(x)=n\right\}$.

Concatenation
If $x=d_{1} \cdots d_{r}, y=e_{1} \cdots e_{s} \in A^{*}$ :

$$
x y:=d_{1} \cdots d_{r} e_{1} \cdots e_{S}
$$

We have: $\ell(x y)=\ell(x)+\ell(y)$.

## Factorizations, Prefixes and Codes

## Factorization

A factorization of a word $x \in A^{*}$ is an expression
$x=x_{1} x_{2} \cdots x_{k}$, where $x_{i} \in A^{*}$.

## Prefixes

Let $x, y \in A^{*}$. The word $x$ is a prefix of the word $y \Longleftrightarrow$
$\exists u \in A^{*}: y=x u$.
Codes
A subset $\mathcal{C} \subset A^{*}$ is a code if every message $M \in \mathcal{C}^{*}$ admits a unique factorization as a concatenation of words of $\mathcal{C}$ :

$$
\begin{gathered}
c_{1} c_{2} \cdots c_{r}=d_{1} d_{2} \cdots d_{s}, \quad c_{i}, d_{j} \in \mathcal{C} \\
\Downarrow \\
r=s, \quad \text { and } \quad c_{i}=d_{i}, \quad i=1, \ldots, r
\end{gathered}
$$

## Examples

## Examples of codes

1. The Morse code over the alphabet $\{\bullet,-$, space $\}$.
2. Block codes of length $n \geq 1$.
3. The repetition code of length $n$ over an alphabet $A$ :

$$
\operatorname{Rep}(n, A)=\{a \cdots a: a \in A\}
$$

## Example of a set that is not a code

$\mathcal{C}=\{a, c, a d, a b b, b a d$, deb, bbcde $\} \subset\{a, b, c, d, e\}^{*}$ is not a code: $a b b c d e b a d=a|b b c d e| b a d=a b b|c| \operatorname{deb} \mid a d$.

## Remark

Sardinas-Paterson algorithm decides whether a finite subset of $A^{*}$ is a code or not, giving an ambiguous message if not.

## Prefix Codes

## Definition

A subset $\mathcal{C} \subset A^{*}$ is a prefix subset if no word of $\mathcal{C}$ is a prefix of another one; that is: $u, v \in \mathcal{C} \Rightarrow u$ is not a prefix of $v$.

## Proposition

Every prefix set is a code.

## Remark

Such a code is called a prefix code or an instantaneous code for the decoding can be done in real-time.

## Example

The set $\{0,10,110,1110\}$ is a binary prefix code.

## Encodings

## Definition

An encoding of an alphabet $B$ over another alphabet $A$ is a one-to-one mapping $f: B \rightarrow A^{*}$ such that the image $f(B) \subset A^{*}$ is a code over $A$.

Equivalently, $f$ is an encoding iff the induced mapping:

$$
B^{*} \rightarrow A^{*}, \quad b_{1} b_{2} \cdots b_{r} \mapsto f\left(b_{1}\right) f\left(b_{2}\right) \cdots f\left(b_{r}\right)
$$

is one-to-one.

## Kraft's Inequality and Kraft-Macmillan Theorem

Kraft's Inequality
Let $\mathcal{C}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a $q$-ary code $(q=|A|)$. Then:

$$
\sum_{i=1}^{n} \frac{1}{q^{\ell\left(x_{i}\right)}} \leq 1
$$

## Kraft-Macmillan's Theorem

Let $q, n, \ell_{1}, \ldots, \ell_{n}$ be positive integers such that:

$$
\sum_{i=1}^{n} \frac{1}{q^{\ell_{i}}} \leq 1
$$

Then there exists a $q$-ary prefix code with $n$ words of lengths $\ell_{1}, \ldots, \ell_{n}$.

## Example

## Remark

Kraft's inequality can be used to show that a given set is not a code (but not to show that it is!).

## Example

For the set $\mathcal{C}=\{1,00,01,111,101\} \subseteq\{0,1\}^{*}$ we have:

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}>1
$$

so $\mathcal{C}$ is not a code. That $\mathcal{C}$ is not a code can also be proved by considering the ambiguous message 111.

## Reduction to Prefix Codes

## Corollary

If there exists a $q$-ary code composed of $n$ words with lengths $\ell_{1}, \ldots, \ell_{n}$, then there is another code with the same properties that is also a prefix code.

Therefore, there is no loss of generality if we always work with prefix or instantaneous codes, for if in a given situation we have a code that is not a prefix code, we can substitute it by another one that is so and has the same cardinality and word-lengths.

## Source Coding

## Discrete Memoryless Sources

## Definition

A Discrete Memoryless Information Source (DMIS) is a pair $S=(A, X)$ consisting of a finite alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and a finite probability distribution $X=\left\{p_{1}, \ldots, p_{n}\right\}$, where $p_{i}$ is the probability that $S$ emits the symbol $a_{i}: p_{i}=p\left(a_{i}\right)$.
'Memoryless' means that symbols are emitted independently of each other; that is:

$$
p\left(a_{i_{1}} \cdots a_{i_{k}}\right)=p\left(a_{i_{1}}\right) \cdots p\left(a_{i_{k}}\right)=p_{i_{1}} \cdots p_{i_{k}} .
$$

## Entropy of a source

The entropy $H(S)$ of a DMIS $S$ is the average amount of information given by $S$.

## Average Length of an Encoding

Let $S=(A, X)$ be a DMIS and $f: A \rightarrow B^{*}$ an encoding, $q=|B|$. Then $f(A)=\mathcal{C}=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq B^{*}$ is a code, where $x_{i}=f\left(a_{i}\right)$.

## Definition

- The average length of the encoding $f$ is:

$$
\tilde{\ell}_{f}(S)=\tilde{\ell}_{\mathcal{C}}(S)=\sum_{i=1}^{n} p\left(a_{i}\right) \ell\left(x_{i}\right) .
$$

- The minimum length of $S$ over $q$-ary alphabets is:

$$
\tilde{\ell}_{q}^{\min }(S)=\min _{f} \tilde{\ell}_{f}(S) .
$$

It only depends on $q$ and $S$. This minimum always exists.

## Huffman Encoding

## Definition

A Huffman encoding or an optimal encoding for a DMIS $S$ is a prefix code $\mathcal{C}$ whose length is equal to the minimum length of the source; that is:

$$
\tilde{\ell}_{\mathcal{C}}(S)=\tilde{\ell}_{q}^{\text {min }}(S) .
$$

If no confusion arises, we also call $\mathcal{C}=f(A)$ a Huffman code for the source (note that the words of $\mathcal{C}$ are implicitly ordered).

## Binary Huffman Encodings

## Proposition 1

Assume that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$. Then there is a Huffman code $\mathcal{C}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $\ell\left(x_{1}\right) \leq \ell\left(x_{2}\right) \leq \cdots \leq \ell\left(x_{n}\right)$.

## Proposition 2

Assume that $p_{1} \geq p_{2} \geq \cdots \geq p_{n}$. Then there is a Huffman code $\mathcal{C}=\left\{x_{1}, \ldots, x_{n}\right\}$ such that $x_{n-1}$ and $x_{n}$ differ only in the last symbol.

## Binary Huffman Encodings: Construction

## Huffman Algorithm

Let $S=(A, X)$ be DMIS with $n$ symbols and probabilities
$p_{1} \geq \cdots \geq p_{n}$. Consider the source $S^{\prime}$ with $n-1$ symbols and probabilities $p_{1}, \ldots, p_{n-2}, p_{n-1}+p_{n}$.

If $\mathcal{C}^{\prime}=\left\{x_{1}, \ldots, x_{n-1}\right\}$ is a Huffman code for $S^{\prime}$, then:

$$
\mathcal{C}=\left\{x_{1}, \ldots, x_{n-2}, x_{n-1} 0, x_{n-1} 1\right\}
$$

is a Huffman code for $S$.

## Example of Binary Huffman Algorithm

$$
A=\{a, b, c, d\}, p(a)=0.5, p(b)=0.3, p(c)=0.15, p(d)=0.05
$$


$\tilde{\ell}^{\text {min }}(S)=0.5 \cdot 1+0.3 \cdot 2+0.15 \cdot 3+0.05 \cdot 3=1.7$ bits/symbol.
Compare with $\mathrm{H}_{2}(\mathrm{~S})=1.64773$ (bits of information).

## Huffman Algorithm for Non-Binary Encodings

## Algorithm

- Construct a q-ary tree adding up in each step the q smallest probabilities, except in the first step.
- In the first step, add up the $q_{0}$ smallest probabilities, where $2 \leq q_{0} \leq q$ and $(q-1) \mid\left(n-q_{0}\right)$.

From these conditions it follows that:

1. the integer $q_{0}$ is unique;
2. in the following steps we always have $q$ probabilities to add up.

## Example of Non-Binary Huffman Algorithm

$$
A=\{a, b, c, d\}, p(a)=0.5, p(b)=0.3, p(c)=0.15, p(d)=0.05
$$


$\tilde{\ell}^{\text {min }}(S)=0.5 \cdot 1+0.3 \cdot 1+0.15 \cdot 2+0.05 \cdot 2=1.2$ ternary digits/symbol.

Compare with $\mathrm{H}_{3}(\mathrm{~S})=1.0396$.

## First Shannon Theorem for DMIS

Theorem
If $S$ is a discrete memoryless information source, then:

$$
H_{q}(S) \leq \tilde{\ell}_{q}^{\min }(S)<H_{q}(S)+1
$$

## Remarks

- $\mathrm{H}_{q}$ is the entropy computed with $\log _{q}$.
- This theorem says that a source cannot be compressed below its entropy (first inequality).


## Efficiency of an Encoding

In the light of Shannon's first theorem, we give the following definition.

## Definition

Given an encoding $A \rightarrow \mathcal{C} \subset B^{*}$ of a source $S=(A, X)$, we define its efficiency as:

$$
\operatorname{eff}(\mathcal{C})=\frac{H_{q}(S)}{\widetilde{\ell}_{\mathcal{C}}(S)}
$$

We have:

$$
0 \leq \operatorname{eff}(\mathcal{C}) \leq \frac{H_{q}(S)}{\widetilde{\ell_{q}^{\min }}(S)} \leq 1
$$

## Extensions of a Source

Sometimes it is useful to send the information symbols in packets of length $k$ instead of one at a time.
$k$-th extension of a source
The $k$-th extension of a source $S$ is:

$$
S^{k}=\left(A^{k}, X^{k}\right), \quad p\left(a_{i_{1}} \cdots a_{i_{k}}\right)=p\left(a_{i_{1}}\right) \cdots p\left(a_{i_{k}}\right)
$$

(recall that S is memoryless).

## Proposition

$$
H\left(S^{k}\right)=k H(S) .
$$

## Extensions in the limit

Consider all the extensions $S^{k}$ of a DMIS source $S, k \geq 1$.
If we apply the first Shannon theorem to each of them, we get:

$$
k H_{q}(S)=H_{q}\left(S^{k}\right) \leq \tilde{\ell}_{q}^{\min }\left(S^{k}\right)<H_{q}\left(S^{k}\right)+1=k H_{q}(S)+1
$$

Dividing by $k$ and taking limits as $k \rightarrow+\infty$, we get:

$$
\begin{gathered}
H_{q}(S) \leq \frac{\tilde{\ell}_{q}^{\min }\left(S^{k}\right)}{k}<H_{q}(S)+\frac{1}{k} \\
\lim _{k \rightarrow+\infty} \frac{\tilde{\ell}_{q}^{\min }\left(S^{k}\right)}{k}=H_{q}(S)
\end{gathered}
$$

This means that by using a suitable extension of $S$ we can approach the entropy of the original source as much as we like.

## Example of Extensions

$$
\begin{aligned}
& A=\{a, b, c, d\} \\
& p(a)=0.5, p(b)=0.3, p(c)=0.15, p(d)=0.05 \\
& H_{2}(S)=1.64773
\end{aligned}
$$

- Huffman code for $S: \tilde{\ell}_{2}^{\min }(S)=1.7$ bits $/$ symbol of $S$.
- Huffman code for $\mathrm{S}^{2}: \widetilde{\ell}_{2}^{\text {min }}\left(S^{2}\right)=3.3275$ bits $/$ symbol of $\mathrm{S}^{2}$. This represents 1.66375 bits/symbol of $S$.

Channel Coding

## Discrete memoryless Channels

## Definition

A discrete memoryless channel $K=(A, B, Q)$ consists of:

- an input alphabet $A=\left\{a_{1}, \ldots, a_{s}\right\}$,
- an output alphabet $B=\left\{b_{1}, \ldots, b_{t}\right\}$,
- a matrix of probabilities:

$$
Q=\left[\begin{array}{ccc}
p\left(b_{1} \mid a_{1}\right) & \ldots & p\left(b_{t} \mid a_{1}\right) \\
\vdots & & \vdots \\
p\left(b_{1} \mid a_{s}\right) & \ldots & p\left(b_{t} \mid a_{s}\right)
\end{array}\right], \quad \text { (channel matrix) }
$$

where $p\left(b_{j} \mid a_{i}\right)$ is the probability of receiving $b_{j}$ if $a_{i}$ was sent.

## Remarks and Examples

1. $Q$ is a stochastic matrix: each row is a probability distribution: $\sum_{j=1}^{t} p\left(b_{j} \mid a_{i}\right)=1$, for each $i$.
2. The binary symmetric channel (BSC): $A=B=\{0,1\}$, $0 \leq p<1 / 2$ and:

$$
Q=\left[\begin{array}{cc}
1-p & p \\
p & 1-p
\end{array}\right]
$$

$p=p(0 \mid 1)=p(1 \mid 0)$ is called the error probability.
3. The binary channel with erasure: $A=\{0,1\}, B=\{0,1, e\}$, and:

$$
Q=\left[\begin{array}{ccc}
1-\varepsilon & 0 & \varepsilon \\
0 & 1-\varepsilon & \varepsilon
\end{array}\right]
$$

## Types of Channels

Lossless: the output completely determines the input. Each column of $Q$ has, at most, one non-zero element.
Determinist: the input completely determines the output. Each row of $Q$ has, at most, one non-zero element (that must be a 1 ).
Noiseless: it is a lossless and determinist channel. We have $|A|=|B|$ and $Q$ is the identity matrix, except for a permutation of rows if necessary.
Useless: the input and the output are independent. All the rows of $Q$ are equal.
Symmetric: all the rows and columns of $Q$ contain the same numbers, except for permutations. For instance, the binary symmetric channel.

## Capacity of a Channel

Output distribution of a channel
The channel matrix $Q$ transforms an input distribution
$X=\left(p_{1}, \ldots, p_{s}\right)$ into an output distribution $Y=\left(q_{1}, \ldots, q_{t}\right)$ as:

$$
\left(p_{1}, \ldots, p_{s}\right) \cdot Q=\left(q_{1}, \ldots, q_{t}\right) .
$$

So: $a_{i}=\sum_{j=1}^{S} p_{j} \cdot p\left(b_{i} \mid a_{j}\right)$. We write: $Y=K(X)$.

- If we input a discrete memoryless source $S=(A, X)$, then we get an output source $T=(B, K(X))$.
- The joint distribution of $X$ and $Y=K(X)$ depends on both $X$ and $Q$.
- The mutual information $I(X, Y)$ is the amount of information about $X$ that goes through the channel.


## Capacity of a Channel

## Definition

The capacity of a channel $K$ is the maximum value of $I(X, Y)$ as the input distribution $\boldsymbol{X}$ varies. It is denoted as $\gamma(K)$.

- This maximum value always exists because $I(X, Y)$ is a continuous function of the variables $p_{1}, \ldots, p_{s}$ defined on a compact set.
- If $\gamma(K)=I(X, K(X))$, for a particular $X$, we say that the capacity is attained at $X$.
- $I(X, Y)=H(X)-H(X \mid Y) \leq H(X) \leq \log (s)$.
- The computation of $\gamma(K)$, for a general $K$, is a non-trivial problem of optimization.


## Some Computations

## Lossless channel

For any input distribution $X$, we have $H(X \mid Y)=0$. So:

$$
I(X, Y)=H(X)-H(X \mid Y)=H(X)
$$

and the maximum value is $\log (s)$, where $s$ is the number of inputs. Hence:

$$
\gamma(K)=\log (s)
$$

Moreover, the capacity is attained at an equally likely input distribution.

## Some Computations

## Determinist channel

For any input distribution $X$, we have $H(Y \mid X)=0$. So if $X$ is the distribution which the capacity is attained at, then:

$$
\gamma(K)=\max _{X}(H(Y)-H(Y \mid X))=\max _{X} H(Y) \leq \log (t)
$$

where $t$ is the number of outputs.

- If there exists an input $X$ that gives an equally likely output $Y$, then $\gamma(K)=\log (t)$.
- In the general case, we cannot say more.


## Some Computations

## Noiseless channel

This is a lossless channel, so we have $\gamma(K)=\log (s)$, where $s$ is the number of inputs.

The capacity is attained at an equally likely input.

## Useless channel

We have $H(X)=H(X \mid Y)$, because $X$ and $Y$ are independent. Hence $\gamma(K)=0$.

## Capacity of a Symmetric Channel

## Theorem

Let $K=(A, B, Q)$ be a symmetric channel. Let $\alpha_{1}, \ldots, \alpha_{S}$ be the values of any row of $Q$. Then:

$$
\gamma(K)=\log (s)-H\left(\alpha_{1}, \ldots, \alpha_{s}\right) .
$$

In particular, the capacity of the binary symmetric channel with error probability $p$ is:

$$
1-H(p, 1-p)=1+p \log (p)+(1-p) \log (1-p) .
$$

## Channel Coding

Let $S$ be a DMIS and let $K$ be a binary symmetric channel with error probability $p<1 / 2$.

## Channel encodings

A channel encoding for $S$ consists of:

1. a bijective mapping cod: $A_{S} \rightarrow \mathcal{C} \subseteq\{0,1\}^{n}$, the encoding mapping;
2. a decoding mapping dec: $\{0,1\}^{n} \rightarrow \mathcal{C} \cup\{?\}$

- The decoding mapping is also called a decision scheme or a decoding scheme.
- A decision scheme may be only defined in a subset of $\{0,1\}^{n}$. If so, it is called an incomplete decision scheme.


## Maximum Likelihood Schemes (MLS)

Let $f:\{0,1\}^{n} \rightarrow \mathcal{C} \cup\{?\}$ be a decision scheme. Let $x \in\{0,1\}^{n}$ be the received word.

- If $f(x) \in \mathcal{C}$, then we decide that $f(x)$ is the word sent.
- If $f(x)=$ ?, then we announce that a decoding error has occurred.


## Aim of the decoding process

To maximize the probability that $f(x)$ be the word sent.

## Definition

A decision scheme $f$ is called a maximum likelihood scheme if $p$ (we get $x \mid f(x)$ was sent $)=\max _{c \in \mathcal{C}} p$ (we get $x \mid$ we sent $c$ ).
$f(x) \in \mathcal{C}$ satisfies that for no other word of $\mathcal{C}$ is more likely to have received $x$.

## MLS: Heuristic

We have:

$$
p(\text { error in } k \text { fixed positions })=p^{k}(1-p)^{n-k} \text {. }
$$

Therefore, if $c \in \mathcal{C}$ differs from $x \in\{0,1\}^{n}$ in $k$ positions then:

$$
p(\text { we get } x \mid \text { we sent } c)=p^{k}(1-p)^{n-k} .
$$

But: $p<1 / 2 \Rightarrow 1-p>p$, so $p^{k}(1-p)^{n-k}$ is big for $n-k$ big and $k$ small.

## Theorem

For a BSC, the maximum likelihood scheme consists of finding the codeword with the minimum number of differences with the word received.

This kind of decoding is called proximity decoding.

## Transmission Rate of a Code

Let $\mathcal{C} \subset A^{n}$ be a block code of length $n$. Let $M=|\mathcal{C}|$ the number of codewords and $q=|A|$ the number of symbols.

## Definition

We define the transmission rate of $\mathcal{C}$ as:

$$
R(\mathcal{C})=\frac{\log _{q}(M)}{n}, \quad 0<R(\mathcal{C})<1
$$

It is a measure of efficiency of $\mathcal{C}$.

- Aim: to maximize both the probability of correct decoding and the efficiency of a code, at the same time.
- Shannon's second theorem basically states that we can get both results if we take $R$ less than the channel capacity.


## Shannon's Second Theorem for Binary Symmetric Channels

## Theorem

Let $K$ be a BSC with probability error $p<1 / 2$. Let $R<\gamma(K)$. Then for every $\varepsilon>0$ there exists a length $n_{\varepsilon}$ and a code $\mathcal{C} \subset\{0,1\}^{n_{\varepsilon}}$ such that $R(\mathcal{C}) \geq R$ and the probability of error decoding is $<\varepsilon$.

## Remark

The proof is not constructive, so we know such codes exist but we don't know how to construct them.

## Example

If $p=0.001$, then $\gamma=1+p \log (p)+(1-p) \log (1-p)=0.919$.
So we can transmit with a transmission rate of the $90 \%$ and error probability less than any prefixed $\varepsilon>0$.

## Block Codes

## Block Codes

## Definition

A block code of length $n$ over an alphabet $A$ is a nonempty subset of $A^{n}$. Block codes are prefix codes.

## Examples

- Trivial codes: $|\mathcal{C}|=1$ and $A^{n}$ (total code).
- Repetition codes: $\operatorname{Rep}(n, A)$.
- The even binary code: $\mathcal{C} \subseteq\{0,1\}^{n}$ consisting of the words with an even number of 1 's. It can be described as:

$$
\mathcal{C}=\left\{x_{1} \cdots x_{n} \mid x_{1}+\cdots+x_{n}=0\right\} .
$$

We have $|\mathcal{C}|=2^{n-1}$.

## Example: a Hamming Code

The binary Hamming code of length 7: it is the set of words $x_{1} \ldots x_{7} \in\{0,1\}^{7}$ such that:

$$
\begin{aligned}
& x_{4}+x_{5}+x_{6}+x_{7}=0 \\
& x_{2}+x_{3}+x_{6}+x_{7}=0 \\
& x_{1}+x_{3}+x_{5}+x_{7}=0
\end{aligned}
$$

(arithmetic mod 2).
There are 16 codewords.

## Hamming Distance

## Definition

The Hamming distance between two words $x, y \in A^{n}$ is:

$$
d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right| \quad \text { (number of differences) }
$$

where $x=x_{1} \ldots x_{n}, y=y_{1} \ldots y_{n}$.
If $S \subset A^{n}$ and $x \in A^{n}: d(x, S)=\min \{d(x, y) \mid y \in S\}$.

## Proposition

$d: A^{n} \times A^{n} \rightarrow \mathbb{N}$ is a distance function; that is:

1. $d(x, y) \geq 0$, and $d(x, y)=0 \Longleftrightarrow x=y$;
2. $d(x, y)=d(y, x)$;
3. $d(x, z) \leq d(x, y)+d(y, z)$

## Balls in $A^{n}$

The concept of Hamming distance allows us to think geometrically in $A^{n}$ as if we were in the Euclidean space.

## Definition

For $x \in A^{n}$ and $r \in \mathbb{N}$, the ball of center $x$ and radius $r$ is:

$$
B_{r}(x)=\left\{y \in A^{n} \mid d(y, x) \leq r\right\} .
$$

## Remark

- $B_{r}(x)$ contains all the words that differ from $x$ in at most $r$ positions.
- If we send the word $x$ and $r$ or fewer errors occur, then we get a word of $B_{r}(x)$.
- $\left|B_{r}(x)\right|=\sum_{i=0}^{r}\binom{n}{i}(q-1)^{i}$.


## Minimum Distance of a Code

## Defintion

The minimum distance $d(\mathcal{C})$ of a block code $\mathcal{C}$ is:

$$
d(\mathcal{C})=\min \{d(x, y) \mid x, y \in \mathcal{C}, x \neq y\} .
$$

- It is the least number of differences between two distinct codewords.
- It is the most important parameter of the code (and the most difficult to find).
- A good code has to have many words, a big minimum distance (so that its codewords differ a lot among them), and short length.


## Parameters of a Code

## The type of a code

A q-ary code has type or parameters $(n, M, d)_{q}$ if it has length $n, M$ words and minimum distance $d$.

## Examples

- $d\left(A^{n}\right)=1$.
- $d(\operatorname{Rep}(n))=n$.
- The minimum distance of the binary even code is 2.
- The minimum distance of the binary Hamming code of length 7 is 3.


## Other Parameters

- The tangency radius $\rho$ is the greatest radius such that the balls with centers in the codewords and radius $\rho$ are pairwise disjoint.
- The information rate $R=k / n$ tells us the rate of information symbols per codeword.
- The redundancy $n-k$. It is also called the number of parity check symbols.
- The redundancy rate $1-R=(n-k) / n$.


## Tangency Radius

The tangency radius of a code $\mathcal{C}$ is:

$$
\rho=\rho(\mathcal{C})=\max \left\{r \geq 0 \mid B_{r}(x) \cap B_{r}(y)=\emptyset, \forall x, y \in \mathcal{C}, x \neq y\right\} .
$$

- If we send a word $x$ and the channel introduces at most $\rho$ errors, then we get a word $y \in B_{\rho}(x)$.
- So if we look for the closest codeword to $y$ at distance $\leq \rho$, we get a unique answer: $x$.
- We say $\mathcal{C}$ can correct up to $\rho$ errors.


## Theorem

The tangency radius is given by: $\rho=\left\lfloor\frac{d-1}{2}\right\rfloor$.

## Main Problem of Coding Theory

## Optimal codes

A code $\mathcal{C}$ of type $(n, M, d)_{q}$ is optimal if $M$ is the largest cardinality among codes of length $n$ and minimum distance $d$.

- We write $A_{q}(n, d)$ for the cardinality of an optimal $(n, M, d)_{q}$ code.
- $A_{q}(n, d)$ is difficult to compute. In many cases only lower and upper bounds are known.

For instance, for $q=2$ :

| $d \downarrow / n \rightarrow$ | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 8 | 16 | 20 | 40 | $72-79$ | $144-158$ |
| 5 | 2 | 2 | 2 | 4 | 6 | 12 | 24 |

## Hamming Bound and Gilbert-Varshamov Bound

Hamming bound or the sphere packing bound

$$
A_{q}(n, d) \leq \frac{q^{n}}{\sum_{i=0}^{\rho}\binom{n}{i}(q-1)^{i}}
$$

where $\rho=\lfloor(d-1) / 2\rfloor$ is the tangency radius.
Gilbert-Varshamov bound

$$
A_{q}(n, d) \geq \frac{q^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}}
$$

## Perfect Codes

## Definition

A code is perfect if it is optimal and fulfills the Hamming bound.

- That is, $\mathcal{C}$ is perfect iff $|\mathcal{C}|=\frac{q^{n}}{\sum_{i=0}^{\rho}\binom{n}{i}(q-1)^{2}}$.
- In other words, there is no word outside the (pairwise disjoint) balls of radius $\rho$ centered in the codewords.


## Trivial perfect codes

The binary repetition code $\operatorname{Rep}_{2}(n)$ of odd length $n$, the total code over any alphabet and the codes of cardinality 1 are perfect codes. These are called the trivial perfect codes.

## Other Perfect Codes

## Hamming codes

Let $q=p^{r}$ be a power of a prime $p, r \geq 1$. Then the only non-trivial perfect $q$-ary codes are those codes whose parameters are $\left(n=\left(q^{s}-1\right) /(q-1), q^{n-s}, 3\right)_{q}$. For instance, the Hamming codes are the only linear and perfect codes with these parameters.

## Golay codes

These are the codes $G_{23}$, with parameters $\left(23,2^{12}, 7\right)_{2}$, and $G_{11}$, with parameters $\left(11,3^{6}, 5\right)_{3}$. (Check that these parameters satisfy the Hamming bound.)

## Equivalence of Codes

## Definition

Two codes over the same alphabet $A$ are equivalent if one of them can be obtained from the other performing a finite sequence of the following two operations:

1. apply a permutation of $A$ to all the codewords in a fixed position:

$$
x_{1} \ldots x_{i} \ldots x_{n} \mapsto x_{1} \ldots \sigma\left(x_{i}\right) \ldots x_{n}, \quad \sigma \in S_{A}
$$

2. apply a permutation of the positions in all the codewords:

$$
x_{1} \ldots x_{n} \mapsto x_{\pi(1)} \ldots x_{\pi(n)}, \quad \pi \in S_{n}
$$

## Proposition

Equivalent codes have the same parameters.

## Detection of Errors

## Let $\mathcal{C}$ be a code of type $(n, M, d)_{q}$.

## Error detection

We say that $\mathcal{C}$ is able to detect $s$ errors if $B_{s}(u) \cap \mathcal{C}=\{u\}$, for any $u \in \mathcal{C}$.

- That is, there is no word of $\mathcal{C}-\{u\}$ at distance $\leq s$ from $u$.
- However, there could exist more than one codeword at distance $\leq s$ from a given word $x \in A^{n}$.
- In this case $x \notin \mathcal{C}$ and we don't know how to correct $x$.


## Correction of Errors

Let $\mathcal{C}$ be a code of type $(n, M, d)_{q}$.

## Error correction

We say that $\mathcal{C}$ is able to correct $t$ errors if for any $u, v \in \mathcal{C}$, $u \neq v$, and any $x \in B_{t}(u)$ we have $d(x, u)<d(x, v)$.

That is, all the words of $B_{t}(u)$ have the codeword $u$ as the closest codeword.

## Simultaneous Detection and Correction

Let $\mathcal{C}$ be a code of type $(n, M, d)_{q}$.

## Definition

We say that $\mathcal{C}$ is able to detect $s$ errors and correct $t$ errors simultaneously if for any $u, v \in \mathcal{C}, u \neq v$, and any $x \in A^{n}$ we have:

$$
d(x, u) \leq s \Rightarrow d(x, v)>t .
$$

That is, if $v \in \mathcal{C}$ is the closest codeword to $x \in A^{n}$ (it is unique), then $x$ differs from the remainder codewords at least in $s+1$ positions.

## Criterion for Detection and Correction

## Theorem

1. $\mathcal{C}$ can detect $s$ errors $\Longleftrightarrow s \leq d-1$.
2. $\mathcal{C}$ can correct $t$ errors $\Longleftrightarrow t \leq\lfloor(d-1) / 2\rfloor \Longleftrightarrow 2 t \leq d-1$.
3. $\mathcal{C}$ can detect $s$ errors and correct $t$ errors simultaneously $\Longleftrightarrow s+t<d$.

## Examples

- A code with $d=3$ can be used to detect up to 2 errors or to correct 1 error, but cannot be used to do both things simultaneously.
- A code with $d=4$ can be used to detect up to 3 errors or to correct 1 error or to detect 2 errors and correct 1 at the same time.


## Algorithm for Correction: Sketch

- Input: $x \in A^{n}$, the word received.
- Main step: look for the closest codeword $u \in \mathcal{C}$ to $x$.
- If $d(x, u) \leq t$, correct $x$ to $u$.
- If $d(x, u)>t$, announce that at least $t$ symbols are incorrect.

The most difficult step in this algorithm is to look for the closest codeword. This is the point which we will focus on.

Finite Fields

## What Do We Need Finite Fields For?

- Codes over alphabets with an algebraic structure are easier to deal with. E.g., $\{0,1\}=\mathbb{Z}_{2}$.
- Even with a binary channel, it could be convenient to perform the computations in a finite field. For instance, we can put a field structure on $\{00,01,10,11\}$ and treat binary strings of length 2 as symbols.
- Many algorithms for binary codes make extensive use of large fields containing $\mathbb{Z}_{2}$.
- For burst error-correcting purposes we consider single bytes as elements of a finite field of 256 elements.


## Definition of Field

A field is a set $\mathbb{K}$ with two operations (+, .) satisfying the following properties.

## Axioms for the sum

S1) Associative: $a+(b+c)=(a+b)+c$.
S2) Commutative: $a+b=b+a$.
S3) Existence of a neutral element: there is an element $0 \in \mathbb{K}$ such that $a+0=a$, for all $a \in \mathbb{K}$.
S4) Existence of inverses: for all $a \in \mathbb{K}$ there is an $a^{\prime} \in \mathbb{K}$ such that $a+a^{\prime}=0$.

## Definition of Field

## Axioms for the product

P1) Associative: $a(b c)=(a b) c$.
P2) Commutative: $a b=b a$.
P3) Existence of a neutral element: there is an element $1 \in \mathbb{K}$ such that $a \cdot 1=a$, for all $a \in \mathbb{K}$.
P4) Existence of inverses: for all $a \in \mathbb{K}-\{0\}$ there is an $\bar{a} \in \mathbb{K}$ such that $a \cdot \bar{a}=1$.

## Distributive law

Both operations are related by the distributive law:

$$
a(b+c)=a b+a c .
$$

## Some Remarks

## Remarks

- A ring is a set with two operations satisfying all the above properties except maybe P4 (the existence of inverses with respect to the product).
- The inverse element of $a$ with respect to the sum is $-a$. So that $a+(-a)=0$.
- The inverse element $\bar{a}$ of $a \neq 0$ with respect to the product is denoted by $a^{-1}=1 / a$. So that $a \cdot \frac{1}{a}=1$.
- Therefore a field is a set where we can add, subtract, multiply and divide (by a nonzero element).
- If $\mathbb{K}$ is a field and $a \cdot b=0$ in $\mathbb{K}$, then $a=0$ or $b=0$.


## Examples of Fields and Rings

- The set of integers $\mathbb{Z}$ is a ring but not a field (e.g., 2 has no multiplicative inverse).
- The set of rational numbers $\mathbb{Q}$ is a field.
- Other familiar fields: $\mathbb{R}, \mathbb{C}$. Recall:

$$
\mathbb{C}=\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}
$$

- If $\mathbb{K}$ is a field, then the set of polynomials with coefficients in $\mathbb{K}$ in an indeterminate $X$

$$
\mathbb{K}[X]=\left\{a_{0}+a_{1} X+\cdots+a_{n} X^{n} \mid n \in \mathbb{N}, a_{i} \in \mathbb{K}\right\}
$$

is a ring but not a field (e.g., $X$ has no multiplicative inverse).

## Characteristic of a Finite Field

## Proposition

Let $\mathbb{F}$ be a finite field. Then there exists a prime number $p$ such that $1+\cdots p+1=0$ in $\mathbb{F}$. This prime $p$ is called the characteristic of $\mathbb{F}$ and is denoted by $p=\operatorname{char}(\mathbb{F})$.

## Proof.

Consider the sums $r_{\mathbb{F}}:=1+\cdots{ }^{r}+1, r \in \mathbb{N}$. As $\mathbb{F}$ is finite, there exist $r, s$ such that $r_{\mathbb{F}}=s_{\mathbb{F}}$. That is $p_{\mathbb{F}}=0$, for some $p \in \mathbb{N}$. But then $p$ must be a prime number, because $\mathbb{F}$ is a field. $\quad \square$

As a consequence, if char $\mathbb{F}=p$ then $0,1,2, \cdots,(p-1) \in \mathbb{F}$ and the arithmetic of this subset is just the arithmetic modulo $p$.

## The Finite Field $\mathbb{Z}_{p}$

- In fact, the set $\mathbb{Z}_{p}=\{0,1, \cdots, p-1\}$ with the sum and product modulo $p$ is a finite field. Recall that

$$
k \in \mathbb{Z} \text { has an inverse } \bmod p \Longleftrightarrow \operatorname{gcd}(k, p)=1
$$

Thus any element $k \in \mathbb{Z}_{p}-\{0\}$ has a multiplicative inverse in $\mathbb{Z}_{p}$.

- Any field $\mathbb{F}$ of characteristic $p$ has the finite field $\mathbb{Z}_{p}$ as a subset (we say that $\mathbb{Z}_{p}$ is a subfield of $\mathbb{F}$ or that $\mathbb{F}$ is a field extension of $\mathbb{Z}_{p}$ ).

Are there more finite fields besides the fields $\mathbb{Z}_{p}$ ?

## An Example of a Finite Field with 4 Elements

- Start with $\mathbb{R}$ and the irreducible polynomial $x^{2}+1$. Invent a root for it: $i^{2}=-1$, and consider expressions like $a+b i$, with $a, b \in \mathbb{R}$. The sum and product of expressions like these are defined as if they were polynomials. We get a new field: $\mathbb{C}$, and $\mathbb{R} \subset \mathbb{C}$.
- Start with $\mathbb{Z}_{2}$ and the irreducible polynomial $x^{2}+x+1$. Invent a root for it: $\alpha^{2}=\alpha+1$, and consider expressions like $a+b \alpha$, where $a, b \in \mathbb{Z}_{2}$. The sum and product of expressions like these are defined as if they were polynomials. We get a new field: $\mathbb{F}_{4}$, and $\mathbb{Z}_{2} \subset \mathbb{F}_{4}$.

$$
\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}=\alpha+1\right\}
$$

## How to Build a Field: $\mathbb{C}$

The usual process of defining $\mathbb{C}$ from $\mathbb{R}$ consists of inventing a root $i$ for the irreducible polynomial $X^{2}+1$ and then
$\mathbb{C}=\left\{a+b i \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$. The arithmetic in $\mathbb{C}$ is defined using the polynomial arithmetic:

$$
\begin{gathered}
(a+b X)+(c+d X)=(a+c)+(b+b) X \\
(a+b X) \cdot(c+d X)=a c+(a d+b c) X+b d X^{2}
\end{gathered}
$$

and then we pretend that ' $x^{2}=-1$ '. If we do congruences in $\mathbb{R}[X]$ modulo $X^{2}+1$, then $X^{2}+1 \equiv 0\left(\bmod X^{2}+1\right)$.

## How to Build a Field: $\mathbb{F}_{4}$

- Let's begin with $\mathbb{F}_{2}=\{0,1\}$ and an irreducible polynomial of degree 2 with coefficients in $\mathbb{F}_{2}: X^{2}+X+1$ is the only one!
- Invent a root $\alpha$ for it, so $\alpha^{2}=\alpha+1$.
- Then define $\mathbb{F}_{4}=\left\{a+b \alpha \mid a, b \in \mathbb{F}_{2}\right\}=\{0=00,1=$ $01, \alpha=10,1+\alpha=11\}$.
- Finally the sum and the product in $\mathbb{F}_{4}$ are defined using the arithmetic of $\mathbb{F}_{2}[X]$ modulo $X^{2}+X+1$.


## How to Build a Field: General Case

In general, we can start with a field $\mathbb{K}$ and perform the same sequence of actions:

- pick up an irreducible polynomial $f(X) \in \mathbb{K}[X]$ of degree $n$;
- invent a root for it $\alpha$; that is, we require that $f(\alpha)=0$;
- define $\mathbb{L}$ as the set of polynomial expressions in $\alpha$ of degree $\leq n-1$;
- the arithmetic in $\mathbb{L}$ is defined through the arithmetic of polynomials and using the substitution rule $f(\alpha)=0$.


## Working Description of $\mathbb{F}_{p^{n}}$

- Fix an irreducible polynomial of degree $n$ over $\mathbb{F}_{p}[X]$ :

$$
f(X)=X^{n}+f_{n-1} X^{n-1}+\cdots+f_{0}
$$

- Do congruences mod $f(X)$ and set $\alpha=\bar{X}$.
- As $\overline{f(X)}=f(\bar{X})=f(\alpha)=0, \alpha$ is a new root of $f(X)$.
- The elements of the new field $\mathbb{F}_{p^{n}}$ can be described as polynomials expressions in $\alpha$ up to degree $n-1$ :

$$
a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}
$$

where $a_{i} \in \mathbb{F}_{p}$.

- Addition and multiplication of such expressions is done as polynomials and taking into account the substitution rule $f(\alpha)=0$.


## Order of an Element

Let $\mathbb{F}_{q}$ be a finite field ( $q$ is a power of a prime).

## Multiplicative order

Define the order of a non-zero element $\beta \in \mathbb{F}_{q}$ as the least integer $t \geq 1$ such that $\beta^{t}=1$. We write $\operatorname{ord}(\beta)$ for this integer.

## Proposition

1. If $\beta^{r}=1$, then $\operatorname{ord}(\beta) \mid r$.
2. For all $\beta \neq 0, \beta^{q-1}=1$.
3. For all $\beta \neq 0$, $\operatorname{ord}(\beta) \mid q-1$.
4. We have: $\operatorname{ord}\left(\beta^{k}\right)=\frac{\operatorname{ord}(\beta)}{\operatorname{gccd}(R, \operatorname{ord}(\beta))}$.
5. There exists an element $\beta$ whose order is $q-1$.

## Primitive Elements

## Definition

An element $\beta \in \mathbb{F}_{q}-\{0\}$ is called a primitive element if its order is $q-1$.

If $\beta$ is a primitive element, then every nonzero element of $\mathbb{F}_{q}$ can be written as a power of $\beta$ : $\mathbb{F}_{q}=\left\{0,1, \beta, \beta^{2}, \ldots, \beta^{q-2}\right\}$ and $\beta^{i} \beta^{j}=\beta^{i+j}(\bmod q-1)$, because $\beta^{q-1}=1$.

## Remark

When using the polynomial representation, addition is easy and multiplication is hard. But if we use the representation of elements as powers of a primitive element, then multiplication is easy, but addition is hard.

## Primitive Polynomials

## Definition

An irreducible polynomial $f(X) \in \mathbb{F}_{p}[X]$ is called a primitive polynomial if $\alpha=\bar{X}$ is a primitive element in the finite field it defines $\mathbb{F}_{q}=\mathbb{F}_{p}[X] / f(X)$.

## Example

- $x^{4}+x+1$ is primitive polynomial.
- $x^{4}+x^{3}+x^{2}+x+1$ is not a primitive polynomial. In this case, it is more difficult to find a primitive element.


## Discrete Logarithms and Zech's Logarithms

Let $\beta \in \mathbb{F}_{q}$ be a primitive element.

## Discrete logarithm

If $\gamma \in \mathbb{F}_{q}^{*}$, then there is an integer i such that $\gamma=\beta^{i}$. We call this integer $i$ the discrete logarithm of $\gamma$ with respect to $\beta$ : $i=\log _{\beta}(\gamma)$. It is defined $\bmod q-1$.

## Zech's logarithm

If $\beta^{m} \neq-1$, we define the Zech's logarithm of $m$ as the integer $Z(m) \bmod q-1$ such that:

$$
1+\beta^{m}=\beta^{Z(m)} .
$$

## Discrete Logarithms and Zech's Logarithms

- When lots of computations have to be done in a finite field it is very useful to construct the field table.
- This table contains a correspondence between the polynomial expressions in terms of $\alpha$ and the powers of a primitive element $\beta$.
- We can save a lot of work if $\alpha$ is already a primitive element.
- In most cases it is also useful to have the Zech logarithms of the field elements.
- Using Zech's logarithms, we have $\beta^{m}+\beta^{n}=\beta^{m+Z(n-m)}$.


## Example

$\mathbb{F}_{8}=\mathbb{F}_{2}[X] /\left(X^{3}+X+1\right)$.
$\alpha=\bar{X}$ is a primitive element.

| $p(\alpha)$ | $\alpha^{i}$ | $\alpha^{Z(i)}$ | $p(\alpha)$ | $\alpha^{i}$ | $\alpha^{Z(i)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | - | $\alpha^{2}+\alpha$ | $\alpha^{4}$ | $\alpha^{5}$ |
| $\alpha$ | $\alpha$ | $\alpha^{3}$ | $\alpha^{2}+\alpha+1$ | $\alpha^{5}$ | $\alpha^{4}$ |
| $\alpha^{2}$ | $\alpha^{2}$ | $\alpha^{6}$ | $\alpha^{2}+1$ | $\alpha^{6}$ | $\alpha^{2}$ |
| $\alpha+1$ | $\alpha^{3}$ | $\alpha$ |  |  |  |

Linear Codes

## Linear Codes

Fix a finite field $\mathbb{F}_{q}\left(q=p^{m}, p\right.$ a prime number): this will be the alphabet. ( $p=2$ in applications.) We will denote by 0 the all-zeros vector and by 1 the all-ones vector:

$$
0=00 \cdots^{n} 0, \quad 1=11 \cdots \cdots^{n} .
$$

## Definition

A linear code of length $n$ over $\mathbb{F}_{q}$ is a linear subspace $\mathcal{C} \subseteq \mathbb{F}_{q}^{n}$. This means:

1. $x, y \in \mathcal{C} \Rightarrow x+y \in \mathcal{C}$,
2. $x \in \mathcal{C}, \lambda \in \mathbb{F}_{q} \Rightarrow \lambda x \in \mathcal{C}$.

In the binary case, this second condition is always fulfilled.

## How to Give a Linear Code

## Parameters

Parameters of a linear code: $[n, k, d]_{q}$, where $n$ is the length, $k=\operatorname{dim}(\mathcal{C})$ is the dimension and $d$ is the minimum distance. Therefore: $|\mathcal{C}|=q^{k}$.

## Generating matrix

Matrix whose rows are a basis of the linear code. It has $k$ rows and rank $k$.

## Parity-check matrix

Matrix associated with a homogeneous linear system of equations whose solutions are the codewords. It has $n-k$ rows and rank $n-k$.

## Weight and Minimum Distance

## Weight of a word

Define the weight $|x|$ of a word $x \in \mathbb{F}_{q}^{n}$ as the number of non-zero coordinates; that is $|x|=d(x, 0)$.

## Remark

1. $d(x, y)=|x-y|$, if $x, y \in \mathbb{F}_{q}^{n}$.
2. If $\mathcal{C}$ is a linear code, then $d(\mathcal{C})=\min \{|x| \mid x \in \mathcal{C}, x \neq 0\}$.

## Generating matrix

A generating matrix for $\mathcal{C}$ of dimension $k$ is a matrix whose $k$ rows are the vectors of a basis. A linear code admits many different generating matrices.

## Examples

1. Two possible generating matrices for the binary even code $\mathcal{C}=\{000,011,101,110\}:$

$$
G_{1}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \quad G_{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

2. The repetition $\operatorname{codedep}_{q}(n)$ is generated by the codeword 1.

$$
G=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]
$$

## Encoding Mapping

Let $\mathcal{C}$ be a $[n, k]_{q}$-linear code with generating matrix $G$.

## Encoding mapping

The encoding mapping associated to $G$ is:

$$
\begin{aligned}
\mathrm{enc}_{G} & : \mathbb{F}_{q}^{k} \\
a_{1} a_{2} \ldots a_{k} \subseteq \mathbb{F}_{q}^{n} & \mapsto\left(a_{1}, a_{2}, \ldots, a_{k}\right) \cdot G=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{C}
\end{aligned}
$$

$e{ }^{e n} C_{G}$ depends on $G$ : if we change the generating matrix, then the encoding mapping is different, though the code does not change.

## Example

- The binary even code of length 3 admits the following two different encoding mappings:

$$
\begin{array}{ll}
\text { with } G_{1}: & a_{1} a_{2} \mapsto\left(a_{1}, a_{2}\right) G_{1}=\left(a_{1}, a_{2}, a_{1}+a_{2}\right) \\
\text { with } G_{2}: & a_{1} a_{2} \mapsto\left(a_{1}, a_{2}\right) G_{2}=\left(a_{1}, a_{1}+a_{2}, a_{2}\right)
\end{array}
$$

- We observe that using $G_{1}$ the information bits $a_{1}$ and $a_{2}$ are at the beginning of the codeword, so it is easier to extract them in the decoding process.
- When the information symbols are at the beginning of the codeword the encoding is called systematic.


## Systematic Encodings

## Definition

A linear code $\mathcal{C}$ is systematic if it admits a systematic encoding; that is, an encoding with a generating matrix of the shape $G=\left(I_{k} \mid A\right)$, where $I_{k}$ is the $k \times k$ identity matrix.

Thus a systematic encoding has the form:

$$
a_{1} a_{2} \ldots a_{k} \mapsto\left(a_{1}, a_{2}, \ldots, a_{k}\right)\left(I_{k} \mid A\right)=\left(a_{1}, a_{2} \ldots, a_{k}, \ldots\right)
$$

## Proposition

Every linear code is equivalent to a systematic code.

## Parity-Check Matrix

A $[n, k]_{q}$ linear code can be defined as the set of solutions of an homogeneous linear system of rank $n-k$. The associated matrix to such a system is called a parity-check matrix (or simply a check matrix) for the code. It is usually denoted by H . Thus:

$$
x_{1} x_{2} \ldots x_{n} \in \mathcal{C} \Longleftrightarrow H \cdot x^{t}=0^{t},
$$

where $A^{t}$ denotes the transpose of a matrix $A$.
We will always assume that the linear system has the exact number of independent equations, so $H$ has $n-k$ independent rows.

## Generating and Parity-Check Matrices of Systematic Codes

## Theorem

Let $\mathcal{C}$ be a $[n, k]_{q}$ linear code with generator matrix $G$ and parity-check matrix H .

1. $H \cdot G^{t}=0$.
2. If $G=\left(I_{k} \mid A\right)$ is systematic, then $H=\left(-A^{t} \mid I_{n-k}\right)$ is a parity-check matrix.

A parity-check matrix of the form ( $-A^{t} \mid I_{n-k}$ ) is said to be in standard form.

## Examples

- Let $\mathcal{C}$ the even binary code of length 3. Then:

$$
G=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \quad H=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
$$

- The repetition code $\operatorname{Rep}_{q}(n)$ can be defined by the equations $x_{i}=x_{n}, i=1,2 \ldots, n-1$, so a parity-check matrix is:

$$
H=\left[\begin{array}{ccc} 
& \vdots & -1 \\
I_{n-1} & \vdots & \vdots \\
& \vdots & -1
\end{array}\right]
$$

## Example: Extending a Code by a Parity Bit

Let $\mathcal{C}$ be a linear code with parity-check matrix $H$. Let $\hat{\mathcal{C}}$ the code obtained from $\mathcal{C}$ adding a parity bit:

$$
\hat{\mathcal{C}}=\left\{x_{1} \ldots x_{n} x_{n+1} \mid x_{1} \ldots x_{n} \in \mathcal{C}, \sum_{i=1}^{n+1} x_{i}=0\right\} .
$$

Then a parity-check matrix for $\hat{\mathcal{C}}$ is:

$$
\hat{H}=\left[\begin{array}{cccc} 
& & & 0 \\
& H & & \vdots \\
& & & 0 \\
1 & \ldots & 1 & 1
\end{array}\right]
$$

## Fundamental Property of the Parity-Check Matrix

A fundamental property of the parity-check matrix is that the minimum distance of the code can be read from $H$ itself (though in practice it is not so easy!).

## Theorem

Let $H$ be the parity-check matrix of a linear code $\mathcal{C}$ of type $[n, k, d]_{q}$. Then $d(\mathcal{C})=d$ if, and only if, the following two conditions hold:

- H has d linearly dependent (l.d.) columns, and
- every set of $d-1$ columns is linearly independent (L.i.).


## Hamming Codes

Let's apply the theorem for $d=3$.
$\cdot d=3 \Longleftrightarrow H$ has 3 l.d. columns but every set of 2 columns is l.i.

- We have to construct a matrix $H$ where no column is a multiple of any other and with 3 l.d. columns.
- A Hamming code is a code with a parity-check matrix satisfying this property and as many columns as possible.


## Theorem

The maximum number of nonzero vectors of $\mathbb{F}_{q}^{r}$ such that no one is a multiple of any other is:

$$
\frac{q^{r}-1}{q-1}=q^{r-1}+\cdots+q+1 .
$$

## Hamming Codes

## Parameters of a Hamming code

The parameters of a Hamming code are:

$$
n=\frac{q^{r}-1}{q-1}, \quad k=n-r, \quad d=3
$$

$r$ is called the codimension of the Hamming code.

## Hamming Codes: Standard Form

Let $\beta \in \mathbb{F}_{q}^{*}$ be a primitive element.

- We define an linear order in $\mathbb{F}_{q}$ with respect to $\beta$ as:

$$
0<1<\beta<\beta^{2}<\cdots<\beta^{q-2}
$$

- This order determines a lexicographic order in the linear space $\mathbb{F}_{q}^{r}$.
- Pick up from each set $\{\lambda v \mid \lambda \neq 0\}$ the unique vector whose first non-zero coordinate is 1 and write all these vectors in lexicographic order.
- The resulting matrix is called a parity-check matrix in standard form. We denote by $\operatorname{Ham}_{q}(r)$ this Hamming code of codimension $r$.


## Hamming Codes: Examples

- $\operatorname{Ham}_{2}(2): H=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
- $\operatorname{Ham}_{2}(3): H=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$.
- $\operatorname{Ham}_{4}(2): \mathbb{F}_{4}=\mathbb{F}_{2}[X] /\left(X^{2}+X+1\right), \alpha=\bar{X}$.

$$
H=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & \alpha & \alpha^{2}
\end{array}\right]
$$

- $\operatorname{Ham}_{9}(2): \mathbb{F}_{9}=\mathbb{Z}_{3}[X] /\left(X^{2}-X+2\right), \alpha^{2}=\alpha+1$ is primitive. We have $r=2$, so $n=10, k=8$. We get a $[10,8,3]_{9}$-code.

$$
H=\left[\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & \alpha & \alpha^{2} & \alpha^{3} & \alpha^{4} & \alpha^{5} & \alpha^{6} & \alpha^{7}
\end{array}\right]
$$

## Decoding Linear Codes

Let $\mathcal{C}$ be a linear code of type $[n, k, d]_{q}$ with parity-check matrix $H$.

## Syndrome of a word

Define the syndrome of a word $y \in \mathbb{F}_{q}^{n}$ as the word $s(y)$ of length $n-k$ such that $s(y)^{t}=H y^{t}$.

## Remark

The codewords are precisely those words with syndrome equal to the zero vector:

$$
\mathcal{C}=\left\{x \in \mathbb{F}_{q}^{n} \mid s(x)=0\right\} .
$$

## Syndromes and Error Patterns

## Error pattern

Assume that we send $x \in \mathcal{C}$ and the channel introduces the error $e$. Hence we receive the word $y=x+e$. The vector $e$ is called the error pattern.

## Properties

- $s(y)=s(x+e)=s(e)$.
- If the error pattern $e$ has weight 1 , then the $s(y)$ is a multiple of the $i$-th column of $H$.
- In general, if e has weight $r$, then the $s(y)$ is a linear combination of $r$ columns of $H$ (corresponding to the nonzero positions of the error pattern $e$ ).


## Cosets of a Code

## Coset associated to a syndrome

Recall that the parity-check matrix $H$ has maximal rank.

- For any vector $s \in \mathbb{F}_{q}^{n-k}$ (a possible syndrome), the linear system $H y^{t}=s^{t}$ is always compatible.
- The solutions of $\mathrm{Hy}^{t}=s^{t}$ consist of the words $y \in \mathbb{F}_{q}^{n}$ that have syndromes.
- We define the coset associated with the syndrome s to be the set of solutions to $H y^{t}=s^{t}$.


## Proposition

The coset associated with $s$ is $y_{0}+\mathcal{C}=\left\{y_{0}+x \mid x \in \mathcal{C}\right\}$, where $y_{0}$ is any word with syndrome $s\left(y_{0}\right)=s$.

## Properties of Cosets

1. Two vectors define the same coset iff they have the same syndrome:

$$
y+\mathcal{C}=z+\mathcal{C} \Longleftrightarrow s(y)=s(z)
$$

2. The difference of two vectors belonging to the same coset is a codeword. Reciprocally: if the difference of two vectors is a codeword, then they belong to the same coset:

$$
y+\mathcal{C}=z+\mathcal{C} \Longleftrightarrow y-z \in \mathcal{C}
$$

3. Either two cosets are disjoint or they are the same (that is, if two cosets have a non-empty intersection, then they are equal):

$$
(y+\mathcal{C}) \cap(z+\mathcal{C})=\emptyset \quad \text { or } \quad y+\mathcal{C}=z+\mathcal{C}
$$

## Leaders of a Coset

## Definition

A leader of a coset $y+\mathcal{C}$ is a word $\ell$ of minimal weight. We write $\ell(s(y))$, because in fact it depends on the syndrome of $y$, and not directly on $y$.

## Properties

If $\ell \in y+\mathcal{C}$ is a leader, then:

- $y-\ell$ is the closest codeword to $y$.
- Hence, in a proximity decoding algorithm, we decode y as $y-\ell$.
- If $|\ell| \leq\lfloor(d-1) / 2\rfloor$, then $\ell$ is the unique leader of the coset.


## Decoding Algorithm for Linear Codes (Error-Correcting)

## Preprocessing

1. List all possible syndromes: all vectors of $\mathbb{F}_{q}^{n-k}$.
2. For each syndrome $s$, compute a leader $\ell(s)$ in the coset of words with syndrome $s: \ell(s)$ is a solution of $\mathrm{Hy}^{t}=s^{t}$ with minimum weight.

## Algorithm

Assume we get $y \in \mathbb{F}_{q}^{n}$ from the channel.

1. Compute the syndrome $s=s(y)$.
2. Decode yas y - $\ell(s)$.

## Some Remarks

- The preprocessing is only useful when we have to decode lots of words.
- A leader with weight $\leq \rho$ is unique in its coset.
- If we only list those leaders that are unique (that is, with weight $\leq \rho$ ), then the decoding is incomplete. In this case, the algorithm doesn't decide how to process a word with more errors than the error-correcting capability of the code.


## An Example of Decoding

Let $\mathcal{C}$ be a $[4,2,2]_{2}$-code with:

$$
G=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], \quad H=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

| syndrome | 00 | 11 | 01 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| leader | 0000 | 1000 | 0100 | 0010 |

- $\rho=0$, so $\mathcal{C}$ cannot be used for error-correcting.
- Leaders of weight 1 are not unique in general.
- The decoding of $y=1111$ is done as:

$$
s=s(y)=(0,1), \quad y-\ell(01)=1111-0100=1011
$$

But if 0001 is chosen as a leader for the syndrome 01, then $y$ is corrected as 1110 instead.

## An Example of Incomplete Decoding

Consider the $[5,2,3]_{2}$-code with check matrix:

$$
H=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

A table of syndrome-leader for an incomplete decoding is (we list only those leaders whose weight is $\leq 1$ ):

| syndrome | 000 | 110 | 011 | 100 | 010 | 001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| leader | 00000 | 10000 | 01000 | 00100 | 00010 | 00001 |

- $y=10011: s=s(y)=y H^{t}=101$ is not on the table. So the algorithm doesn't decide.
- $y=11111: s(y)=010$ and $y$ is decoded as $y-\ell(010)=11111-00010=11101$.


## Decoding Hamming Codes

Let $\mathcal{H}$ be a Hamming code in standard form.

- Hamming codes are perfect, so a complete decoding algorithm is possible.
- Assume we get $y=x+e$, where $x \in \mathcal{H}$ and $|e| \leq 1$.
- Compute $s(y)=s(e)$. If $s(y)=0$, then assume that no error has ocurred.
- Assume $s(y) \neq 0$. Let $\lambda$ be the first non-zero coordinate in $s(y)$. As $\mathcal{H}$ is in standard form, $\lambda^{-1} s(y)$ is a column of $H$, say the $i$-th column.
- The leader corresponding to this syndrome is $\lambda \cdot e_{i}$, that has all zeros except for the $i$-th coordinate that is $\lambda$. Hence y is decoded as:

$$
y-\left(0, \ldots, \lambda^{i)}, \ldots, 0\right)
$$

## Decoding Hamming Codes: Algorithm

1. Compute the syndrome $s(y)$ of the word received $y$.
2. If $s(y)=0$, we assume that there is no error.
3. If $s(y) \neq 0$, then $s(y)=\lambda H_{i}$, where $H_{i}$ is the $i$-th column of $H$. The we announce that an error in the position $i$ has occurred of magnitude $\lambda$ and we decode $y$ as:

$$
y-\left(0, \ldots, \lambda^{i}, \ldots, 0\right) .
$$

## Decoding Hamming Codes: Binary Case

In the binary case, the columns of H are the representations of integers from 1 to $n=2^{r}-1$ to the base 2 (this is the imposed lexicographic order). Then we can substitute step 3 in the previous algorithm by:
3. If $s(y) \neq 0$, then $s(y)$ is the representation of the error position to the base 2 .

## Extended Binary Hamming Codes

Let $\mathcal{H}=\operatorname{Ham}_{2}(r)$ be the binary Hamming code of codimension r. Let $\hat{\mathcal{H}}$ be the code obtained from $\mathcal{H}$ by adding a parity bit:

$$
\hat{\mathcal{H}}=\left\{x_{1} \ldots x_{n} x_{n+1} \mid x_{1} \ldots x_{n} \in \mathcal{H}, \sum_{i=1}^{n+1} x_{i}=0\right\}
$$

As $d(\mathcal{H})=3$ is odd, we know that $d(\hat{\mathcal{H}})=4$. So $\hat{\mathcal{H}}$ can be used to simultaneously correct 1 error and detect 2 errors.

Let's see an algorithm for doing so.

## Algorithm

Assume we receive the word $y$. Compute the syndrome $s(y)=\left(s_{1}, \ldots, s_{r}, s_{r+1}\right)$. Observe that $\left(s_{1}, \ldots, s_{r}\right)$ can be computed using the parity-check matrix $H$ of $\mathcal{H}$.

1. If $s(y)=0$, announce no error.
2. If $s(y) \neq 0$ but $s_{r+1}=1$ and $\left(s_{1}, \ldots, s_{r}\right) \neq 0$, announce there is 1 error in the position given by $\left(s_{1} s_{2} \ldots s_{r}\right)_{(2)}$.
3. If $s(y) \neq 0$ but $s_{r+1}=1$ and $\left(s_{1}, \ldots, s_{r}\right)=0$, announce there is 1 error in the last position.
4. If $s(y) \neq 0$ but $s_{r+1}=0$ and $\left(s_{1}, \ldots, s_{r}\right) \neq 0$, announce 2 errors and ask for retransmission.

## The ISBN-10 Code

Let $\mathcal{C}$ be the linear code over $\mathbb{Z}_{11}$ of length 10 defined by the equation:

$$
x_{1}+2 x_{2}+3 x_{3}+\cdots+10 x_{10}=0
$$

(we represent 10 by the letter $X$ ).
The International Standard Book Number (ISBN) code $\mathcal{I}$ is the subcode of $\mathcal{C}$ whose words have no $X$ in the first 9 positions.

## Proposition

Let $x \in \mathcal{I}$ and $y \in \mathbb{Z}_{11}^{10}$.

1. If $d(x, y)=1$, then $s(y) \neq 0$ and if we know either the error location or the error magnitude, we can correct the error.
2. If $y$ differs from $x$ in the transposition of two digits, then $s(y) \neq 0$ and we can detect this error.

## The DNI Code

Let $\mathcal{C}$ be the linear code over $\mathbb{Z}_{23}$ of length 8 given by the equation:

$$
x_{-1}+\sum_{i=0}^{7} 10^{i} x_{i}=0
$$

That is:

$$
x_{-1}=x_{14}+x_{7}+6 x_{6}+19 x_{5}+18 x_{4}+11 x_{3}+8 x_{2}+10 x_{1}+x_{0} .
$$

The DNI code $\mathcal{D}$ is the subcode of $\mathcal{C}$ whose words $x_{-1} x_{0} \ldots x_{7}$ satisfy $x_{i} \in\{0,1, \cdots, 9\}$, for $0 \leq i \leq 7$. Moreover, we substitute $x_{-1}$ by a letter according to the following table:

| $0-T$ | $1-\mathrm{R}$ | $2-\mathrm{W}$ | $3-\mathrm{A}$ | $4-\mathrm{G}$ | $5-\mathrm{M}$ | $6-\mathrm{Y}$ | $7-\mathrm{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8-\mathrm{P}$ | $9-\mathrm{D}$ | $10-\mathrm{X}$ | $11-\mathrm{B}$ | $12-\mathrm{N}$ | $13-\mathrm{J}$ | $14-\mathrm{Z}$ | $15-\mathrm{S}$ |
| $16-\mathrm{Q}$ | $17-\mathrm{V}$ | $18-\mathrm{H}$ | $19-\mathrm{L}$ | $20-\mathrm{C}$ | $21-\mathrm{K}$ | $22-\mathrm{E}$ |  |

## The DNI Code (cont.)

## Proposition

Let $x \in \mathcal{D}$ and $y \in \mathbb{Z}_{23}^{9}$.

1. If $d(x, y)=1$, then $s(y) \neq 0$ and if we know either the error location or the error magnitude, we can correct the error.
2. If $y$ differs from $x$ in the transposition of two digits, then $s(y) \neq 0$ and we can detect this error.

## Another Look at Hamming Codes

- Recall that the columns of the check matrix H of the Hamming code $\mathrm{Ham}_{2}(r)$ are the non-zero binary words of length $r, r \geq 2$.
- Consider a primitive element $\alpha \in \mathbb{F}_{2^{r}}$. The elements of $\mathbb{F}_{2^{r}}^{*}$ can be written as non-zero binary words of length $r$ and also as powers of $\alpha$.
- So H can be written in a simplified form as:

$$
H=\left[\begin{array}{lllll}
1 & \alpha & \alpha^{2} & \ldots & \alpha^{n-1}
\end{array}\right], \quad\left(n=2^{r}-1\right)
$$

where $\alpha^{i}$ has to be substituted by the corresponding binary string (the coefficients of the polynomial expression in $\alpha$ ).

## Binary words as polynomials

- From now on, we'll identify binary words length $n$ with polynomials up to degree $n-1$ :
$a=a_{0} a_{1} \ldots a_{n-1} \in \mathbb{F}_{2}^{n} \leftrightarrow a(t)=a_{0}+a_{1} t+\cdots+a_{n-1} t^{n-1} \in \mathbb{F}_{2}[t]_{n}$
where $\mathbb{F}_{2}[t]_{n}=\{a(t) \mid \operatorname{deg}(a(t))<n\}$.
- In this setting, $a=a_{0} a_{1} \ldots a_{n-1} \in \mathbb{F}_{2}^{n}$ belongs to $\operatorname{Ham}_{2}(r)$ iff

$$
H \cdot a^{t}=a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}=0 .
$$

- That is: $a(t) \in \operatorname{Ham}_{2}(r) \Longleftrightarrow a(\alpha)=0$.
- But if $a(\alpha)=0$, then $a\left(\alpha^{2}\right)=0$.
- What happens if we also impose that $a\left(\alpha^{3}\right)=0$ ?


## A BCH Code that Corrects 2 Errors

BCH = Bose-Chaudhuri-Hocquenhe

- Let $\mathcal{B}$ be the binary code of length 15 defined by:

$$
\mathcal{B}=\left\{a(t)=a_{0}+a_{1} t+\cdots+a_{14} t^{14} \mid a(\alpha)=a\left(\alpha^{3}\right)=0\right\}
$$

where $\alpha \in \mathbb{F}_{16}$ is a primitive element.

- A parity-check matrix in simplified form is given by:

$$
K=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{14} \\
1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{12}
\end{array}\right]
$$

(the second row is the cube of the first row).

- We'll see that $d \geq 5$, so $\mathcal{B}$ can correct at least 2 errors.


## The Finite Field $\mathbb{F}_{16}$

$\mathbb{F}_{16}=\mathbb{F}_{2}[X] /\left(x^{4}+x+1\right), \alpha=\bar{X}$ is primitive.
Write $a_{3} a_{2} a_{1} a_{0}=a_{3} \alpha^{3}+a_{2} \alpha^{2}+a_{1} \alpha+a_{0}$.

| 0000 | 0 | 1011 | $\alpha^{7}$ |
| :---: | :---: | :---: | :---: |
| 0001 | 1 | 0101 | $\alpha^{8}$ |
| 0010 | $\alpha$ | 1010 | $\alpha^{9}$ |
| 0100 | $\alpha^{2}$ | 0111 | $\alpha^{10}$ |
| 1000 | $\alpha^{3}$ | 1110 | $\alpha^{11}$ |
| 0011 | $\alpha^{4}$ | 1111 | $\alpha^{12}$ |
| 0110 | $\alpha^{5}$ | 1101 | $\alpha^{13}$ |
| 1100 | $\alpha^{6}$ | 1001 | $\alpha^{14}$ |

## Strategy for Decoding

Let $y \in \mathbb{F}_{2}^{15}$ be the word received and write its syndrome as
$s(y)=\left(s_{1}, s_{2}\right)$, where $s_{i} \in \mathbb{F}_{16}$.

1. If there is no error, then $\left(s_{1}, s_{2}\right)=(0,0)$.
2. If there is just 1 error in the position $i$, then the syndrome is the column $i$ of $K$ :

$$
\left(s_{1}, s_{2}\right)=\left(\alpha^{i}, \alpha^{3 i}\right) .
$$

In this case $s_{2}=s_{1}^{3}$.
3. If there are 2 errors in the positions $i$ and $j$, then the syndrome is the sum of the columns $i$ and $j$ of $K$ :

$$
\left(s_{1}, s_{2}\right)=\left(\alpha^{i}, \alpha^{3 i}\right)+\left(\alpha^{j}, \alpha^{3 j}\right)
$$

Hence, the strategy is: find out whether the syndrome is equal to a column ( $s_{2}=s_{1}^{3}$ ) or to a sum of two columns of $K$.

## Strategy for Decoding

Assume there are two errors (then $s_{1} \neq 0$ ). Let $a=\alpha^{i}$ and $b=\alpha^{j}$. Assume $\left(s_{1}, s_{2}\right)=\left(a, a^{3}\right)+\left(b, b^{3}\right)=\left(a+b, a^{3}+b^{3}\right)$. We have to solve the non-linear system:

$$
a+b=s_{1}, \quad a^{3}+b^{3}=s_{2} .
$$

Use $(a+b)^{3}=a^{3}+a^{2} b+a b^{2}+b^{3}=\left(a^{3}+b^{3}\right)+a b(a+b)$, so we have $s_{1}^{3}=s_{2}+a b s_{1}$ and we can compute $a b$ from $s_{1}$ and $s_{2}$ :

$$
a b=\frac{s_{1}^{3}-s_{2}}{s_{1}}
$$

But now we know $a+b=s_{1}$ and $a b=\left(s_{1}^{3}-s_{2}\right) / s_{1}$ and $a, b$ are the solutions to the quadratic equation:

$$
T^{2}-(a+b) T+a b=0
$$

## A Decoding Algorithm for $\mathcal{B}$

1. If $\left(s_{1}, s_{2}\right)=(0,0)$ : no error.
2. If $s(y) \neq 0$ and $s_{1}^{3}=s_{2}$, then there is 1 error in the position $i=\log _{\alpha}\left(s_{1}\right)$.
3. If $s(y) \neq 0$ and $s_{1}^{3} \neq s_{2}$, then we try to solve the quadratic equation

$$
T^{2}+s_{1} T+\left(s_{1}^{3}+s_{2}\right) / s_{1}=0
$$

If $\alpha^{i}$ and $\alpha^{j}$ are the solutions, then there are 2 errors in the positions $i$ and $j$.
4. If the above quadratic equation has no solutions, then the channel has introduced 3 or more errors.

## Examples of Decoding: No Error

We receive $y=111111111111111=\sum_{i=0}^{14} t^{i}$. Compute the syndrome:

$$
K y^{t}=\left[\begin{array}{l}
y(\alpha) \\
y\left(\alpha^{3}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

because:
$y(\alpha)=\sum_{i=0}^{14} \alpha^{i}=\frac{\alpha^{15}-1}{\alpha-1}=0, \quad y\left(\alpha^{3}\right)=\sum_{i=0}^{14}\left(\alpha^{3}\right)^{i}=\frac{\alpha^{30}-1}{\alpha^{3}-1}=0$
Hence $y \in \mathcal{B}$ and there is no error.

## Examples of Decoding: 1 Error

We receive

$$
\begin{aligned}
y & =100111001100001 \\
& =1+t^{3}+t^{4}+t^{5}+t^{8}+t^{9}+t^{14}
\end{aligned}
$$

Compute the syndrome:

$$
s_{1}=y(\alpha)=\alpha^{9}, \quad s_{2}=y\left(\alpha^{3}\right)=\alpha^{12}
$$

Now $s_{1}^{3}=\left(\alpha^{9}\right)^{3}=\alpha^{27}=\alpha^{12}=s_{2}$, so there is 1 error in the position 9.

Hence we decode y as 100111001000001.

## Examples of Decoding: 2 Errors

We receive

$$
\begin{aligned}
y & =111111111001111 \\
& =1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{11}+t^{12}+t^{13}+t^{14}
\end{aligned}
$$

Compute the syndrome:

$$
s_{1}=y(\alpha)=\alpha^{13}, \quad s_{2}=y\left(\alpha^{3}\right)=\alpha^{11}
$$

Now: $s_{1}^{3}=\alpha^{9} \neq s_{2}$, so there are $\geq 2$ errors. We solve the quadratic equation:

$$
T^{2}+\mathrm{s}_{1} T+\left(\mathrm{s}_{1}^{3}+\mathrm{s}_{2}\right) / \mathrm{s}_{1}=T^{2}+\alpha^{13} T+\alpha^{4}=0 .
$$

The solutions are $T=\alpha^{9}$ and $T=\alpha^{10}$. So the errors are in the positions 9 and 10 and we decode y as 111111111111111.

## Examples of Decoding: $\geq 3$ Errors

We receive

$$
\begin{aligned}
y & =101111111001111 \\
& =1+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{11}+t^{12}+t^{13}+t^{14}
\end{aligned}
$$

Compute the syndrome:

$$
s_{1}=y(\alpha)=\alpha^{12}, \quad s_{2}=y\left(\alpha^{3}\right)=\alpha^{5}
$$

Now: $s_{1}^{3}=\alpha^{6} \neq s_{2}$, so there are $\geq 2$ errors. We try to solve the quadratic equation:

$$
T^{2}+s_{1} T+\left(s_{1}^{3}+s_{2}\right) / s_{1}=T^{2}+\alpha^{12} T+\alpha^{12}=0
$$

This equation has no solution in $\mathbb{F}_{16}$, so the channel has introduced $\geq 3$ errors.

Cyclic Codes

## Cyclic Codes: Introduction

Cyclic codes form an important class of linear codes.

- Encoders and decoders for cyclic codes can be implemented using linear shift registers.
- Well-known families of codes such as BCH codes or Reed-Solomon codes are cyclic codes.
- Lower bounds for the minimum distance can be easily computed in many cases.
- They are commonly used for detection purposes in contexts such as Ethernet communication protocol, where they are known as CRC: cyclic redundancy codes.


## Cyclic Codes

## Definition

A linear code $\mathcal{C}$ over $\mathbb{F}_{q}$ is cyclic if it satisfies:

$$
c_{0} c_{1} \ldots c_{n-1} \in \mathcal{C} \Rightarrow c_{n-1} c_{0} \ldots c_{n-2} \in \mathcal{C}
$$

## Remarks

- We identify the vector space $\mathbb{F}_{q}^{n}$ with $\mathbb{F}_{q}[x]_{n}$ :

$$
c=c_{0} c_{1} \ldots c_{n-1} \leftrightarrow c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

- Multiplication by $x$ shifts the symbols one position to the right:

$$
\begin{aligned}
x \cdot c(x) & =x\left(c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}\right) \\
& =c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1}+c_{n-1} x^{n}
\end{aligned}
$$

## Cyclic Codes

## Remarks

- If we had " $x^{n}=1$ ", then $x c(x)=c_{n-1}+c_{0} x+\cdots+c_{n-2} x^{n-2}$, and the condition for a code to be cyclic would be:

$$
c(x) \in \mathcal{C} \Rightarrow x c(x) \in \mathcal{C}
$$

- Thus we need to do congruences $\bmod x^{n}-1$.
- Hence, a linear code $\mathcal{C}$ is cyclic if:

$$
c(x) \in \mathcal{C} \Rightarrow x c(x) \bmod \left(x^{n}-1\right) \in \mathcal{C}
$$

- So when we interpret codewords of a cyclic code as polynomials, we must perform the operations mod $x^{n}-1$.


## Cyclic Codes: Properties

## Proposition

Let $\mathcal{C}$ be a cyclic code of length $n$ over $\mathbb{F}_{q}$.

1. If $c(x) \in \mathcal{C}$ and $p(x) \in \mathbb{F}_{q}[x]$, then $p(x) c(x) \in \mathcal{C}$.
2. There exists a unique polynomial $g(x) \in \mathcal{C}$ of degree $r<n$ such that $\mathcal{C}=\left\{p(x) g(x) \mid p(x) \in \mathbb{F}_{q}[x]\right\}$. $g(x)$ is the polynomial of least degree of $\mathcal{C}$.
3. $g(x)$ is a divisor of $x^{n}-1$.
4. $\mathcal{C}$ has dimension $k=n-\operatorname{deg}(g)=n-r$.

## Definition

$g(x)$ is called the generating polynomial of $\mathcal{C}$ and $h(x)=\left(x^{n}-1\right) / g(x)$ is called the parity-check polynomial.

## Cyclic Codes: Properties

## Remarks

- As $g(x) \mid\left(x^{n}-1\right)$, there are as many cyclic codes of length $n$ as $2^{m}$, where $m$ is the number of irreducible factors of $x^{n}-1 \in \mathbb{F}_{q}[x]$.
- The codewords have the following shape $(r=\operatorname{deg}(g))$ :

$$
c(x)=\left(p_{0}+p_{1} x+\cdots+p_{n-r-1} x^{n-r-1}\right) g(x) .
$$

- The information symbols are $p_{0} p_{1} \ldots p_{n-r-1}$, so the previous equality can be seen as an encoding mapping for $\mathcal{C}$ (but not a systematic one).
- $c(x) \in \mathcal{C} \Longleftrightarrow c(x) h(x)=0\left(\bmod x^{n}-1\right)$.


## Generating and Parity-Check Matrices

Let $\mathcal{C}$ be a cyclic code with generating and parity-check polynomials:

$$
\begin{aligned}
& g(x)=g_{0}+g_{1} x+\cdots+g_{n-k} x^{n-k} \\
& h(x)=h_{0}+h_{1} x+\cdots+h_{k} x^{k}
\end{aligned}
$$

From $g$ and $h$ we can write a generating matrix and $a$ parity-check matrix for $\mathcal{C}$ :

$$
\begin{aligned}
& \cdot G=\left[\begin{array}{ccccccc}
g_{0} & g_{1} & \ldots & g_{n-k} & 0 & \ldots & 0 \\
0 & \ldots & 0 & g_{0} & g_{1} & \ldots & g_{n-k}
\end{array}\right] \\
& \cdot H=\left[\begin{array}{llllll}
h_{k} & h_{k-1} & \ldots & h_{0} & 0 & \ldots \\
& & & \ldots & & \\
0 & \ldots & 0 & h_{k} & h_{k-1} & \ldots \\
h_{k}
\end{array}\right]
\end{aligned}
$$

## Cyclic Codes: Encoding Mappings

## A non-systematic encoding

If $g(x)$ is the generator polynomial, then:

$$
p(x)=p_{0}+p_{1} x+\cdots+p_{k-1} x^{k-1} \mapsto p(x) g(x)
$$

is a non-systematic encoding mapping.

## A systematic encoding

1. Multiply $p(x)$ by $x^{n-k}$.
2. Divide $x^{n-k} p(x)$ by $g(x): x^{n-k} p(x)=g(x) q(x)+r(x)$, where $\operatorname{deg}(r)<\operatorname{deg}(g)$.
3. Encode $p(x)$ as $x^{n-k} p(x)-r(x)$ :

$$
x^{n-k} p(x)-r(x)=\left(-r_{0},-r_{1}, \ldots,-r_{n-k-1}, p_{0}, p_{1}, \ldots, p_{k-1}\right) .
$$

## Example

In $\mathbb{F}_{2}[x]: x^{7}-1=\left(1+x+x^{3}\right)\left(1+x+x^{2}+x^{4}\right)$.
Let $\mathcal{C}$ be the cyclic code of length 7 with $g(x)=1+x+x^{3}$ and $h(x)=1+x+x^{2}+x^{4}$.
$p(x)=1+x^{3}$ can be encoded as follows:

- non-systematic encoding:

$$
\begin{aligned}
1+x^{3} & \mapsto\left(1+x^{3}\right) g(x)=1+x+x^{4}+x^{6} \\
1001 & \mapsto 11001010 .
\end{aligned}
$$

- systematic encoding:

1. $\left(1+x^{3}\right) x^{3}=x^{3}+x^{6}$;
2. $x^{6}+x^{3}=g(x)\left(x+x^{3}\right)+\left(x+x^{2}\right)$;
3. and finally: $1+x^{3} \mapsto\left(x+x^{2}\right)+\left(x^{3}+x^{6}\right)=0111001$

## Cyclic Redundancy Code: CRC

- When a cyclic code is used for error-detecting is called a cyclic redundancy code or a CRC.
- All generator polynomials have the form $(1+x) \bar{g}(x)$, so a CRC contains the even binary code (all codewords have an even number of ones - prove it!).
- CRC are used in:
- popular error-detecting signatures,
- checksums,
- TCP-IP,
- disk interfaces, network software and hardware, program loaders, backup software, revision-control systems, etc


## CRC: Properties

## Remarks

- The number $k$ of information symbols can change from one data packet to another one. But the number of parity-check bits is always the same: the degree of $g(x)$.
- For example, in the Ethernet protocol, $32=n-k$. In this protocol, the length of the data packet $k$ can varied from 512 to 12144 bits.
- Minimum distance $d$ in function of the code length $n$ :

| $n$ | $90-123$ | $124-203$ | $204-300$ | $301-3006$ | $3007-12144$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $d$ | 8 | 7 | 6 | 5 | 4 |

## Some Standard CRC

| CRC-4 | $x^{4}+x^{3}+x^{2}+x+1$ |
| :--- | :--- |
| CRC-7 | $x^{7}+x^{6}+x^{4}+1$ |
| CRC-8 | $x^{8}+x^{7}+x^{6}+x^{4}+x^{2}+1$ |
| CRC-8 (GSM) | $x^{8}+x^{7}+x^{4}+x^{3}+x+1$ |
| CRC-12 | $x^{12}+x^{11}+x^{3}+x^{2}+x+1$ |
| CRC-16 (ANSI) | $x^{16}+x^{15}+x^{2}+1$ |
| CRC-16 (CCITT) | $x^{16}+x^{12}+x^{5}+1$ |
| CRC-16 (SDLC) | $x^{16}+x^{15}+x^{13}+x^{7}+x^{4}+x^{2}+x+1$ |
| CRC-24 | $x^{24}+x^{23}+x^{14}+x^{12}+x^{8}+1$ |
| CRC-24 (GSM 3rd gen.) | $x^{24}+x^{23}+x^{6}+x^{5}+x+1$ |
| CRC-32 (Ethernet) | $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}$ |
|  | $+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$ |

## Example: CRC-16 CCITT

- The recommended 16-bit CRC by the CCITT (International Communication Standards) has generator polynomial:

$$
g(x)=x^{16}+x^{12}+x^{5}+1=0 \times 11021
$$

- A message is considered as a long binary string and then as a binary polynomial $m(x)$.
- The CRC-16 of $m(x)$ is the remainder of the division of $m(x)$ by $0 \times 11021$.
- For example: the ASCII string corresponding to 'DOG' is 011001000110111101100111 or the binary polynomial
$x^{22}+x^{21}+x^{18}+x^{14}+x^{13}+x^{11}+x^{10}+x^{9}+x^{8}+x^{6}+x^{5}+x^{2}+x+1$.
Its CRC -16 is $x^{14}+x^{9}+x^{8}+x^{6}+x^{2}+1=0 \times 8389$.


## Example: CRC-16 CCITT

- To compute the CRC-16 of a message $m(x)$, we read a bit at a time and compute the new CRC from the last CRC computed.
- If $m(x)=g(x) q(x)+r(x)$, with $\operatorname{deg}(r) \leq 15$, and $b$ is the last bit read, then the new message is $m(x) x+b$ and:

$$
\begin{aligned}
m(x) x+b & =g(x) q(x) x+r(x) x+b \\
& \equiv r(x) x+b \quad(\bmod g(x))
\end{aligned}
$$

- That is, the CRC-16 of the new message is the same as the CRC-16 of $r(x) x+b$. So we shift the old CRC-16 one position to the left and then make a XOR with $b$.


## Example: CRC-16 CCITT

This is what the following C function does.
short BitwiseCRC16 (int bit, short crc) \{
long longcrc = crc ;
longcrc = (longcrc << 1)^bit ; /* next bit */
if (longcrc \& 0x10000)
longcrc ^= $0 \times 11021$; /* reduce */
return longcrc ;
\}

## Cyclic Codes: Meggitt's Decoding

## Remarks

- As cyclic codes are linear, we can use the general algorithm of syndromes and leaders for decoding them.
- If a word $y$ has an error in position $i$, then applying $n-1-i$ cyclic shifts to $y$ we can put that error in position $n-1$.
- So it is enough to construct the table of syndromes-leaders for those leaders of weight $\leq \rho$ (incomplete decoding) that have an error in the last position.
- Meggitt's algorithm is based on this observation.


## Cyclic Codes: Syndromes

Let $\mathcal{C}$ be a binary cyclic code of length $n$ with generating polynomial $g(x)$.

## Definition

The syndrome $s(y)$ a word $y(x) \in \mathbb{F}_{2}[x]_{n}$ is the remainder of the division of $y(x)$ by $g(x)$.

## Theorem

If $y^{(i)}(x)$ is $i$-th cyclic shift of $y(x)$, then:

$$
s\left(y^{(i)}(x)\right)=s\left(x^{i} s(y(x))\right)
$$

That is, if we apply a cyclic shift to $y(x)$, the syndrome of the new word is obtained multiplying $s(y)$ by $x$ and reducing the result $\bmod g(x)$.

## Meggitt's Algorithm

## Preprocessing

Compute the list $L$ of leaders of degree $n-1$ and weight $t \leq \rho$ together with their syndromes.

## Algorithm

Let $s(x)=s(y(x))$ be the syndrome of the word received $y(x)$.

1. If $s(x)=0$ : no error.
2. $i=n-1$.

While $i \geq 0$ do:
if $s(x) \in L$ : correct position $i$
$s(x):=s(x s(x))$
$i=i-1$

## Meggitt's Algorithm: Example

- $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$ generates a cyclic code with $n=15, k=7$ and $d=5(\rho=2)$.
- The list L contains the leaders of degree 14 and weight $\leq 2$; that is, the leaders of the form $x^{14}$ and $x^{i}+x^{14}$, with $0 \leq i \leq 13$.

| $\ell(x)$ | $s(x)$ | $\ell(x)$ | $s(x)$ |
| :---: | :--- | :---: | :--- |
|  | $x^{7}+x^{6}+x^{5}+x^{3}$ | $x^{7}+x^{14}$ | $x^{6}+x^{5}+x^{3}$ |
| $x^{14}$ | $x^{14}$ | $x^{7}+x^{6}+x^{5}+x^{3}+1$ | $x^{8}+x^{14}$ |
| $x^{5}+x^{4}+x^{3}+1$ |  |  |  |
| $x+x^{14}$ | $x^{7}+x^{6}+x^{5}+x^{3}+x$ | $x^{9}+x^{14}$ | $x^{7}+x^{4}+x^{3}+x+1$ |
| $x^{2}+x^{14}$ | $x^{7}+x^{6}+x^{5}+x^{3}+x^{2}$ | $x^{10}+x^{14}$ | $x^{3}+x^{2}+1$ |
| $x^{3}+x^{14}$ | $x^{7}+x^{6}+x^{5}$ | $x^{11}+x^{14}$ | $x^{7}+x^{6}+x^{5}+x^{4}+x^{2}+1$ |
| $x^{4}+x^{14}$ | $x^{7}+x^{6}+x^{5}+x^{4}+x^{3}$ | $x^{12}+x^{14}$ | $x^{7}+x^{6}+x^{4}+x$ |
| $x^{5}+x^{14}$ | $x^{7}+x^{6}+x^{3}$ | $x^{13}+x^{14}$ | $x^{7}+x^{4}+x^{3}+x^{2}$ |
| $x^{6}+x^{14}$ | $x^{7}+x^{5}+x^{3}$ |  |  |

## Meggitt's Algorithm: Example

- Let us apply the algorithm to:

$$
\begin{aligned}
& y(x)=1+x^{2}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+x^{10}+x^{14} \\
& s(y)=1+x^{3}+x^{6} \notin L
\end{aligned}
$$

| $i$ | $s(x)$ |
| :---: | :---: |
| 14 | $x^{6}+x^{3}+1$ |
| 13 | $x^{7}+x^{4}+x$ |
| 12 | $x^{7}+x^{6}+x^{5}+x^{4}+x^{2}+1 \in L \quad(*)$ |
| $\ldots$ | $\ldots$ |
| 9 | $x^{7}+x^{6}+x^{5}+x^{3}+x^{2} \in L$ |
| $\ldots$ | $\ldots$ |

- There are two errors in positions 9 and 12. Corrected word: $1+x^{2}+x^{5}+x^{6}+x^{7}+x^{8}+x^{10}+x^{12}+x^{14}$.
- If we look at the leader corresponding to the step (*), we catch the second error!


## Roots of Unity

## Definition

The roots of the polynomial $x^{n}-1$ in some finite field $\mathbb{F}_{2 m}$ are called the roots of unity.

## Properties

- If $n$ is odd, there are exactly $n$ distinct roots of unity.
- There exists a root of unity $\omega$ such that all roots of unity are $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
- $\omega$ is called a primitive root of unity.


## Factoring $x^{n}-1$

Strategy for factoring $x^{n}-1$ : look for the smallest $\mathbb{F}_{2 m}$ that contains all the roots of unity.

- If $\omega \in \mathbb{F}_{2^{m}}$ is a primitive root of unity, then

$$
n=\operatorname{ord}(\omega) \mid\left(2^{m}-1\right) .
$$

- Take $m \geq 1$ as the least integer such that $2^{m} \equiv 1(\bmod n)$. $m$ is called the order of $2 \bmod n$.
- Let $\alpha \in \mathbb{F}_{2^{m}}$ be a primitive element (so of order $2^{m}-1$ ).
- If $r=\left(2^{m}-1\right) / n$, then the order of $\omega=\alpha^{r}$ is $n$.
- We can factor $x^{n}-1$ as:

$$
\begin{array}{ll}
x^{n}-1=(x-1)(x-\omega) \cdots\left(x-\omega^{n-1}\right), & \\
\text { over } \mathbb{F}_{2^{m}}[x] \\
x^{n}-1=f_{1}(x) f_{2}(x) \cdots f_{5}(x), & \\
\text { over } \mathbb{F}_{2}[x]
\end{array}
$$

## Cyclotomic Classes mod $n$

## Proposition

Let $p(x) \in \mathbb{F}_{2}[x]$ and assume that $p(\beta)=0$, where $\beta \in \mathbb{F}_{2}$.
Then $p\left(\beta^{2}\right)=0, p\left(\beta^{4}\right)=0$, and so on.

## Definition

The cyclotomic class of an integer $j \in \mathbb{Z}_{n}$ is the set:

$$
c_{j}=\left\{j, 2 j, 2^{2} j, \ldots, 2^{r-1} j\right\} \bmod n
$$

where $r$ is the least integer $\geq 1$ such that $2^{r} j \equiv j(\bmod n)$.

## Cyclotomic Classes mod $n$

## Remarks

- The cyclotomic classes mod $n$ form a partition of $\mathbb{Z}_{n}$.
- To compute the factors $f_{i}(x)$ we group the roots of unity whose exponents belong to the same cyclotomic class.
- There is an irreducible factor of $x^{n}-1$ over $\mathbb{F}_{2}[x]$ for each cyclotomic class mod $n$.


## Examples of Cyclotomic Classes

Cyclotomic classes mod 7 and irreducible factors of $x^{7}-1$
$C_{0}=\{0\}, C_{1}=\{1,2,4\}, C_{3}=\{3,6,5\}$.
Factors: one of degree 1 and two of degree 3 .
Cyclotomic classes mod 11 and irreducible factors of $x^{11}-1$
$C_{0}=\{0\}, C_{1}=\{1,2,4,8,5,10,9,7,3,6\}$
Factors: $x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ and $x-1$.

Cyclotomic classes mod 23 and irreducible factors of $x^{23}-1$
$C_{0}=\{0\}, C_{1}=\{1,2,4,8,16,9,18,13,3,6,12\}$,
$C_{5}=\{5,10,20,17,11,22,21,19,15,7,14\}$.
Factors: three factors of degrees 1, 11 and 11.

## Factorization of $x^{n}-1$ over $\mathbb{F}_{2}[x]$

Theorem
Then the irreducible factors of $x^{n}-1$ are the polynomials:

$$
f_{C}(x)=\prod_{j \in C}\left(x-\omega^{j}\right)
$$

where $C$ is a cyclotomic class mod $n$.

## Factorization of $x^{7}-1$ in $\mathbb{F}_{2}[x]$.

- Order of $2 \bmod 7$ is 3.
- Now: $r=\left(2^{3}-1\right) / 7=1$. Take $h(x)=1+x^{2}+x^{3}$ and then:

$$
\mathbb{F}_{8}=\mathbb{F}_{2}[x] / h(x), \quad \alpha=\bar{x}, \quad \omega=\alpha^{1}=\alpha
$$

- Finally:

$$
\begin{aligned}
& f_{C_{0}}=x-1 \\
& f_{C_{1}}=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{4}\right)=x^{3}+x^{2}+1 \\
& f_{C_{3}}=\left(x-\alpha^{3}\right)\left(x-\alpha^{5}\right)\left(x-\alpha^{6}\right)=x^{3}+x+1
\end{aligned}
$$

## Factorization of $x^{23}-1$ in $\mathbb{F}_{2}[x]$.

- Order of $2 \bmod 23$ is 11 .
- Now: $r=\left(2^{11}-1\right) / 23=89$. If $\alpha \in \mathbb{F}_{2^{11}}$ is a primitive element, then $\omega=\alpha^{89}$ is a 23th root of unity.
- Finally:

$$
\begin{aligned}
& f_{C_{0}}=x-1 \\
& f_{C_{1}}=\prod_{j \in C_{1}}\left(x-\omega^{j}\right)=x^{11}+x^{9}+x^{7}+x^{6}+x^{5}+x+1 \\
& f_{C_{5}}=\prod_{j \in C_{5}}\left(x-\omega^{j}\right)=x^{11}+x^{10}+x^{6}+x^{5}+x^{4}+x^{2}+1
\end{aligned}
$$

Binary BCH Codes

## Roots of a Cyclic Code

Let $\mathcal{C}$ be a binary cyclic code of odd length $n$ with generating polynomial $g(x) \mid\left(x^{n}-1\right)$.

- Let $\mathbb{F}_{2^{m}}$ be a finite field where $x^{n}-1$ decomposes ( $n \mid\left(2^{m}-1\right)$ ). Then:

$$
g(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{r}\right), \quad r=\operatorname{deg}(g)
$$

where $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}_{2^{m}}$ are $r$ distinct elements.

- Then the code $\mathcal{C}$ can be described as follows:

$$
c(x) \in \mathcal{C} \Longleftrightarrow c\left(\alpha_{i}\right)=0, \quad i=1, \ldots, r
$$

## Definition

The elements $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}_{2^{m}}$ are called the roots of $\mathcal{C}$ and $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ is called the root set of $\mathcal{C}$.

## Roots of a Cyclic Code

## Remark

- If $\omega$ is a root of unity, then the roots of a cyclic code can be written as $\alpha_{1}=\omega^{i_{1}}, \ldots, \alpha_{r}=\omega^{i_{r}}$
- Can we choose the exponents $i_{1}, \ldots, i_{r}$ such that $\mathcal{C}$ has good properties? This means: can we control the minimum distance by means of the exponents?


## Proposition

If there are $\delta-1$ consecutive powers of $\omega$ among the roots of
$\mathcal{C}$, then $d(\mathcal{C}) \geq \delta$.

## Definition

This parameter $\delta$ is called the designed distance of the code.

## BCH Codes

## Data to build a BCH code

- $n$ : an odd integer (the length).
- $m \geq 1$ : an integer such that $2^{m} \equiv 1(\bmod n)\left(\right.$ so that $x^{n}-1$ factors in $\mathbb{F}_{2^{m}}$ ).
- $\omega \in \mathbb{F}_{2^{m}}$ : a primitive root of unity: $\omega^{n}=1$.
- $\delta \geq 2$ : the designed distance.
- $\ell \geq 1$ : an offset.


## Definition

Define $\mathrm{BCH}_{\omega}(\delta, \ell)$ as the binary cyclic code of length $n$ whose root set is the smallest set containing the roots:

$$
\omega^{\ell}, \omega^{\ell+1}, \ldots, \omega^{\ell+\delta-2}
$$

## BCH Codes

## Strict and primitive BCH codes

- If $\ell=1$, the BCH code is called strict.
- If $n=2^{m}-1$ and $\omega=\alpha$ is a primitive element of $\mathbb{F}_{2^{m}}$, the BCH code is called primitive.
- For strict and primitive BCH codes, the data are: the length $n=2^{m}-1$, the designed distance $\delta, \omega=\alpha \in \mathbb{F}_{2^{m}}$ a primitive element.
- In this case the roots of the BCH code are at least $\alpha, \alpha^{2}, \ldots, \alpha^{\delta-2}$.
- The minimum distance is $d \geq \delta$.
- The dimension $k$ can be easily computed in every concrete case.


## Examples

Let $q=2, m=4, \alpha \in \mathbb{F}_{16}$ primitive. The cyclotomic classes mod 15 are $C_{1}=\{1,2,4,8\}, C_{3}=\{3,6,12,9\}, C_{5}=\{5,10\}$ and $C_{7}=\{7,14,13,11\}$.

- We have:

$$
\begin{aligned}
& \mathrm{BCH}(\delta=4)=\mathrm{BCH}(\delta=5) \Rightarrow d_{4}=d_{5} \geq 5 \\
& \mathrm{BCH}(\delta=6)=\mathrm{BCH}(\delta=7) \Rightarrow d_{6}=d_{7} \geq 7
\end{aligned}
$$

- The roots of $\mathrm{BCH}(5)$ are $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$. The cyclotomic classes involved are $C_{1}$ and $C_{3}$. Hence the generating polynomial is $g(x)=f_{C_{1}}(x) f_{C_{3}}(x)$ whose degree is $\left|C_{1}\right|+\left|C_{3}\right|=8$.
- Moreover, $c(x) \in \mathrm{BCH}(5)$ iff $c(\alpha)=c\left(\alpha^{3}\right)=0$ (a power from each cyclotomic class is enough).


## Decoding BCH Codes

Let $\mathcal{B}$ be a binary, strict and primitive BCH code of length $n$.

- Write the word received $y(x)$ as:

$$
y(x)=c(x)+e(x), \quad e(x)=\sum_{i=0}^{n-1} e_{i} x^{i}=\left(e_{0}, e_{1}, \ldots, e_{n-1}\right)
$$

where $c(x) \in \mathcal{B}$ and $e(x)$ is the error vector (or polynomial).

- Assume that $1 \leq|e|=t \leq \rho$. Write:

$$
e(x)=x^{i_{1}}+x^{i_{2}}+\cdots+x^{i_{t}}, \quad\left(i_{1}<i_{2}<\cdots<i_{t}\right) .
$$

## Error Location Polynomial

## Error locators and error location polynomial

Error locators: $\eta_{1}=\alpha^{i_{1}}, \eta_{2}=\alpha^{i_{2}}, \ldots, \eta_{t}=\alpha^{i_{t}}$.
Error location polynomial: $\ell(x)=\left(1-\eta_{1} x\right) \cdots\left(1-\eta_{t} x\right)$.

## Remark

The polynomial $\ell(x)$ has $t$ distinct roots, the inverses of the error locators $\eta_{j}$.
Hence: $\left.\operatorname{gcd}\left(\ell(x), \ell^{\prime}(x)\right)\right)=1$.

## The Key Equation

## Syndrome

We define the syndrome of the word $y(x)$ as the polynomial $s(x)=\sum_{i=0}^{\delta-2} s_{i} x^{i}$, where:

$$
s_{i}=e\left(\alpha^{i+1}\right)=y\left(\alpha^{i+1}\right) .
$$

## Key Equation

1. The polynomials $\ell(x)$ and $s(x)$ satisfy the key equation

$$
\ell(x) s(x) \equiv \ell^{\prime}(x) \quad\left(\bmod x^{\delta-1}\right) .
$$

2. If there is a polynomial $\ell(x)$ of degree $\leq t=\lfloor(\delta-1) / 2\rfloor$ and distinct roots satisfying this equation, then it is unique up to a factor of $\mathbb{F}_{2^{m}}$.

## Towards a Decoding Algorithm

## Remark

- Write the Key Equation as $a(x) x^{\delta-1}+\ell(x) s(x)=\ell^{\prime}(x)$, for some $a(x)$.
- A typical step of Euclid's algorithm produces $a_{k}(x), b_{k}(x)$ and $r_{k}(x)$ such that $a_{k}(x) x^{\delta-1}+b_{k}(x) s(x)=r_{k}(x)$.
- If we want $r_{k}(x)=\ell^{\prime}(x)$ and $b_{k}(x)=\ell(x)$, then we must have:

$$
\operatorname{deg} r_{k}(x)<\frac{\delta-1}{2}, \quad \operatorname{deg} b_{k}(x) \leq \frac{\delta-1}{2}
$$

and hence $\operatorname{deg} r_{k}(x)<(\delta-1) / 2$ and $\operatorname{deg} r_{k-1}(x) \geq(\delta-1) / 2$.

- We can set $\ell(x)=\frac{b_{k}(x)}{b_{k}(0)}$.


## Decoding Algorithm: Euclidean Algorithm

1. Compute the syndrome polynomial:

$$
s(x)=s_{0}+s_{1} x+\cdots+s_{\delta-2} x^{\delta-2}
$$

where $s_{i}=y\left(\alpha^{i+1}\right), i=0, \ldots, \delta-2$.
2. If $s(x)=0$, then there is no error.
3. Otherwise, apply Euclid's algorithm to $x^{\delta-1}$ and $s(x)$ until we get polynomials $r_{k}(x), a_{k}(x)$ and $b_{k}(x)$ such that:

$$
r_{k}(x)=a_{k}(x) x^{\delta-1}+b_{k}(x) s(x)
$$

and $\operatorname{deg} r_{k}(x)<(\delta-1) / 2$ and $\operatorname{deg} r_{k-1}(x) \geq(\delta-1) / 2$.
4. Let $\ell(x)=b_{k}(x) / b_{k}(0)$. This is the error locator polynomial.
5. Find its roots $\xi_{1}, \ldots, \xi_{t}$.
6. Then $\eta_{i}=\xi_{i}^{-1}$ are the error locators and $\log _{\alpha}\left(\eta_{i}\right)$ the error positions.

## Example of Decoding

## The code $\mathcal{B}$

$\mathcal{B}=\mathrm{BCH}(7)$ of length $15=2^{4}-1 . \mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$,
$\alpha \in \mathbb{F}_{16}$ is primitive. Then $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}$ are among the roots of $\mathcal{B}$. The cyclotomic classes of $2 \bmod 15$ that we need are $C_{1}=\{1,2,4,8\}, C_{3}=\{3,6,9,12\}$ and $C_{5}=\{5,10\}$. So $g(x)=f_{C_{1}}(x) f_{C_{3}}(x) f_{C_{5}}(x)$, its degree is 10 , and $k=\operatorname{dim} \mathcal{B}=5$.

Assume we receive the word:

$$
\begin{aligned}
y & =111011100000110 \\
& =1+x+x^{2}+x^{4}+x^{5}+x^{6}+x^{12}+x^{13}
\end{aligned}
$$

## Example of Decoding

Compute the syndrome polynomial:

$$
\begin{aligned}
& s_{0}=y(\alpha)=1+\alpha+\alpha^{2}+\alpha^{4}+\alpha^{5}+\alpha^{6}+\alpha^{12}+\alpha^{13}=\alpha^{6} \\
& s_{1}=y\left(\alpha^{2}\right)=y(\alpha)^{2}=\alpha^{12} \\
& s_{2}=y\left(\alpha^{3}\right)=1+\alpha^{3}+\alpha^{6}+\alpha^{12}+\alpha^{15}+\alpha^{18}+\alpha^{36}+\alpha^{39}=\alpha^{8} \\
& s_{3}=y\left(\alpha^{4}\right)=y(\alpha)^{4}=\alpha^{9} \\
& s_{4}=y\left(\alpha^{5}\right)=1+\alpha^{5}+\alpha^{10}+\alpha^{20}+\alpha^{25}+\alpha^{30}+\alpha^{60}+\alpha^{65}=\alpha^{10} \\
& s_{5}=y\left(\alpha^{6}\right)=y\left(\alpha^{3}\right)^{2}=\alpha
\end{aligned}
$$

That is: $s(x)=\alpha^{6}+\alpha^{12} x+\alpha^{8} x^{2}+\alpha^{9} x^{3}+\alpha^{10} x^{4}+\alpha x^{5}$.

## Example of Decoding

Apply Euclid's algorithm to $x^{6}$ and $s(x)$ until we get a remainder of degree less than $(\delta-1) / 2=3$.

$$
\begin{array}{rlrl}
r_{-1}(x) & =x^{6} & & \\
r_{0}(x) & =s(x) & q_{1}(x)=\alpha^{14} x+\alpha^{8} \\
r_{1}(x) & =\alpha^{13} x^{4}+\alpha^{12} x^{3}+\alpha^{6} x^{2}+\alpha^{14} & & q_{2}(x)=\alpha^{3} x+\alpha^{7} \\
r_{2}(x) & =\alpha^{4} x^{3}+\alpha^{3} x^{2}+\alpha^{7} x & & q_{3}(x)=\alpha^{9} x \\
r_{3}(x) & =\alpha^{11} x^{2}+\alpha^{14} & &
\end{array}
$$

## Example of Decoding

Now we compute the polynomials $b_{k}(x)$ :

$$
\begin{aligned}
b_{-1}(x) & =0 \\
b_{0}(x) & =1 \\
b_{1}(x) & =q_{1}(x)=\alpha^{14} x+\alpha^{8} \\
b_{2}(x) & =b_{0}(x)-b_{1}(x) q_{2}(x)=\alpha^{2} x^{2}+\alpha x \\
b_{3}(x) & =b_{1}(x)-b_{2}(x) q_{3}(x)=\alpha^{11} x^{3}+\alpha^{10} x^{2}+\alpha^{14} x+\alpha^{8}
\end{aligned}
$$

and $b_{3}(0)=\alpha^{8}$, so the error locator polynomial is:

$$
\ell(x)=\frac{b_{3}(x)}{b_{3}(0)}=\alpha^{3} x^{3}+\alpha^{2} x^{2}+\alpha^{6} x+1 .
$$

## Example of Decoding

Finally we find the roots of $\ell(x)$ :

$$
\begin{aligned}
\ell(1) & =\alpha^{3}+\alpha^{2}+\alpha^{6}+1=1 & \ell\left(\alpha^{3}\right)=\alpha^{12}+\alpha^{8}+\alpha^{9}+1=1 \\
\ell(\alpha) & =\alpha^{6}+\alpha^{4}+\alpha^{7}+1=\alpha^{8} & \ell\left(a^{4}\right)=1+\alpha^{10}+\alpha^{10}+1=0 \\
\ell\left(\alpha^{2}\right) & =\alpha^{9}+\alpha^{6}+\alpha^{8}+1=\alpha &
\end{aligned}
$$

So $\alpha^{4}$ is a root and $\eta_{1}=\alpha^{-4}=\alpha^{11}$ is an error locator.
Now we divide $\ell(x)$ by $x-\alpha^{4}$ and the quadratic equation we get has roots $\alpha^{10}$ and $\alpha^{13}$. So the other error locators are $\eta_{2}=\alpha^{-10}=\alpha^{5}$ and $\eta_{3}=\alpha^{-13}=\alpha^{2}$.
Conclusion: there are 3 errors at positions: 2, 5 and 11; and the most likely word sent is:

$$
y(x)-\left(x^{2}+x^{5}+x^{11}\right)=110010100001110 .
$$

## Reed-Solomon Codes

## Reed-Solomon (RS) Codes

- Introduced by Reed and Solomon in 1960.
- First efficient decoding algorithm by Berlekamp (1968) and Massey (1969)
- RS codes are special BCH codes, so also cyclic codes (and linear codes)
- These codes are Maximum Distance Separable (MDS) codes: $d$ is maximum for fixed $n$ and $k$ : $d=n-k+1$.
- RS codes are never binary codes: they are defined over some $\mathbb{F}_{2^{r}, r}>1$.
- Applications: used by NASA (from Voyager 1977) and the European Space Agency; CD-ROM, Audio Compact Disc, and DVD-ROM; Pay per view TV and TDT...


## Finite Fourier Transform (FFT)

- $r \geq 2$ an integer, $q=2^{r}, n=q-1$.
- $\beta \in \mathbb{F}_{q}^{*}$ a primitive element: $\beta^{q-1}=\beta^{n}=1$. (Observe that $\beta^{-1}$ is also primitive.)
- $\mathbb{F}_{q}[x]_{n}=\left\{p(x) \in \mathbb{F}_{q}[x] \mid \operatorname{deg} p(x)<n\right\}$.


## The FFT of a polynomial

Define the mapping $\mathcal{F}_{\beta}: \mathbb{F}_{q}[x]_{n} \longrightarrow \mathbb{F}_{q}[x]_{n}$ as:

$$
\mathcal{F}_{\beta}(a(x))=\sum_{i=0}^{n-1} a\left(\beta^{i}\right) x^{i}
$$

The polynomial $A(x)=\mathcal{F}_{\beta}(a(x))$ is called the Finite Fourier Transform (FFT) of $a(x)$.

## Finite Fourier Transform (FFT)

Properties of the mapping $\mathcal{F}_{\beta}$

- $\mathcal{F}_{\beta}$ is a bijective linear mapping.
- The inverse mapping is:

$$
\mathcal{F}_{\beta^{-1}}(A(x))=\sum_{j=0}^{n-1} A\left(\beta^{-j}\right) x^{j}
$$

- $a(x)=\mathcal{F}_{\beta^{-1}}(A(x))$ is called the inverse FFT of $A(x)$.


## Reed-Solomon Codes

Let $k$ be an integer such that $1 \leq k \leq n$ and $d=n-k+1$.

## Definition

The RS code $\mathcal{R}=\mathcal{R}\left(2^{r}, d\right)$ is the set of polynomials of degree less than $n$ that are the FFT of polynomials of degree less than $k$ :

$$
\mathcal{R}=\left\{\mathcal{F}_{\beta}(a(x)): a(x) \in \mathbb{F}_{q}[x]_{k}\right\}
$$

## Remark

Hence, $A(x) \in \mathcal{R}$ if, and only if, its inverse FFT $\mathcal{F}_{\beta^{-1}}(A(x))$ has degree less than $k$. That is, if:

$$
A(\beta)=A\left(\beta^{2}\right)=\cdots=A\left(\beta^{d-1}\right)=0
$$

(Observe that $\beta^{-j}=\beta^{n-j}$, because $\beta^{n}=1$.)

## Reed-Solomon Codes

## Properties

- Parameters: $\mathcal{R}$ has length $n=q-1$, dimension $k$ and minimum distance $d=n-k+1$.
- Syndrome polynomial of $A(x)$ :

$$
s(x)=A(\beta)+A\left(\beta^{2}\right) x+\cdots+A\left(\beta^{d-1}\right) x^{d-2} .
$$

- Encoding: to encode a polynomial of degree less than $k$, we compute its FFT (non-systematic encoding!):

$$
a(x) \in \mathbb{F}_{q}[x]_{k} \mapsto A(x)=\sum_{i=0}^{n-1} a\left(\beta^{i}\right) x^{i} \in \mathbb{F}_{q}[x]_{n}
$$

## Reed-Solomon Codes

## Properties

- A Reed-Solomon code is a cyclic code:

$$
A(x) \in \mathcal{R} \Longleftrightarrow A(\beta)=\cdots=A\left(\beta^{d-1}\right)=0
$$

which is equivalent to $A(x)$ being a multiple of the generating polynomial:

$$
g(x)=(x-\beta) \cdots\left(x-\beta^{d-1}\right)
$$

- A Reed-Solomon code is BCH code over $\mathbb{F}_{q}$, with designed distance $d$, because its generating polynomial vanishes at $d-1=n-k$ consecutive powers of $\beta$, which is a root of unity.


## Example: $\mathcal{R}(16,9)$. Encoding

Let $\mathbb{F}_{16}=\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right) . \alpha=\bar{x} \in \mathbb{F}_{16}$ is a primitive element.
Consider the Reed-Solomon code $\mathcal{R}(16,9)$, with parameters:
$n=15, k=16-9=7, d=9$.
The word $m=\alpha^{6} 0 \alpha^{5} 1 \alpha 0 \alpha^{2}$, or as polynomial:

$$
m(x)=\alpha^{6}+\alpha^{5} x^{2}+x^{3}+\alpha x^{4}+\alpha^{2} x^{6}
$$

is encoded as its FFT $M(x)=\sum_{j=0}^{14} m\left(\alpha^{j}\right) x^{j}$ :

$$
\begin{aligned}
M(x)= & \alpha^{13}+\alpha^{6} x+\alpha^{14} x^{2}+\alpha^{4} x^{3}+\alpha^{2} x^{4}+\alpha^{2} x^{5}+\alpha x^{6}+\alpha^{4} x^{7}+ \\
& +\alpha^{2} x^{8}+\alpha^{4} x^{9}+\alpha^{12} x^{11}+\alpha^{4} x^{12}+\alpha^{10} x^{13}+\alpha^{9} x^{14}
\end{aligned}
$$

## Example: $\mathcal{R}(16,9)$. Decoding

Consider the word: $N=\alpha^{5} \alpha^{9} 0001 \alpha^{4} \alpha^{3} \alpha 000 \alpha^{13} \alpha \alpha^{8}$, or as polynomial:
$N(x)=\alpha^{5}+\alpha^{9} x+x^{5}+\alpha^{4} x^{6}+\alpha^{3} x^{7}+\alpha x^{8}+\alpha^{13} x^{12}+\alpha x^{13}+\alpha^{8} x^{14}$.

- First, compute the inverse FFT $n(x)=\sum_{j=0}^{14} N\left(\alpha^{-j}\right) x^{j}$ :

$$
\begin{aligned}
n(x)= & \alpha^{11}+\alpha x+\alpha^{4} x^{3}+\alpha^{13} x^{4}+\alpha^{12} x^{5}+\alpha^{8} x^{6}+\alpha x^{7}+\alpha^{14} x^{8}+ \\
& +\alpha^{4} x^{9}+\alpha^{14} x^{10}+\alpha^{11} x^{11}+\alpha^{6} x^{12}+\alpha^{8} x^{13}+\alpha^{3} x^{14}
\end{aligned}
$$

## Example: $\mathcal{R}(16,9)$. Decoding

- As $\operatorname{deg}(n(x)) \geq 8$, we know there have been errors.
- The syndromes are the last eight coefficients of $n(x)$ :

$$
\begin{array}{llll}
s_{0}=\alpha^{3}, & s_{1}=\alpha^{8}, & s_{2}=\alpha^{6}, & s_{3}=\alpha^{11}, \\
s_{4}=\alpha^{14}, & s_{5}=\alpha^{4}, & s_{6}=\alpha^{14}, & s_{7}=\alpha
\end{array}
$$

- Write the syndrome polynomial:

$$
s(x)=\alpha x^{7}+\alpha^{14} x^{6}+\alpha^{4} x^{5}+\alpha^{14} x^{4}+\alpha^{11} x^{3}+\alpha^{6} x^{2}+\alpha^{8} x+\alpha^{3}
$$

## Decoding Reed-Solomon Codes

## Setting

- We send $A(x) \in \mathcal{R}$ and we get $B(x)=A(x)+E(x)$, where $E(x)$ is the error introduced by the channel.
- Apply the inverse FFT to the equality $B(x)=A(x)+E(x)$ :

$$
b(x)=a(x)+e(x)
$$

where $\operatorname{deg} a(x) \leq k-1$, so we have that:

$$
e_{k}=b_{k}, \ldots, e_{n-1}=b_{n-1}
$$

- These are the coefficients of the syndrome polynomial.
- We only have to compute the coefficients $e_{j}$, for $j=0, \ldots, k-1$.


## Decoding Reed-Solomon Codes

## Error Locator and Evaluating Polynomials

- The error locator polynomial has degree $t$ (the number of errors) and vanishes at $\beta^{i}$ iff an error has happened at position $i$ :

$$
\sigma(x)=\prod_{i}\left(x-\beta^{i}\right)=\sigma_{0}+\sigma_{1} x+\cdots+\sigma_{t-1} x^{t-1}+x^{t}=x^{t} \ell\left(\frac{1}{x}\right)
$$

where $\ell(x)$ is the polynomial introduced for BCH codes.

- The evaluating polynomial is used to compute the magnitudes $\varepsilon_{i}$ of the errors:

$$
e v(x)=\sum_{i=1}^{t} \eta_{i} \varepsilon_{i} \prod_{j \neq i}\left(1-\eta_{j} x\right)
$$

## Decoding Reed-Solomon Codes

## Error locator and evaluating polynomials: properties

1. In the binary case: $\varepsilon_{i}=1$, for all $i$.
2. In the binary case: $e v(x)=\ell^{\prime}(x)$.
3. $\operatorname{deg} \ell(x)=t \geq 1, \operatorname{degev}(x)<t$.
4. $\operatorname{gcd}(\ell(x), e v(x))=1$.
5. Key Equation: $e v(x) \equiv \ell(x) s(x)\left(\bmod x^{d-1}\right)$.
6. We can find $\ell(x)$ (and $\sigma(x)$ ) applying the extended Euclidean algorithm to $x^{d-1}$ and $s(x)$.

## Decoding Reed-Solomon Codes

## A backward recurrence

- For RS codes, we solve a linear recurrence to find the unknown terms $e_{j}$, instead of finding the evaluating polynomial to compute the magnitudes of the errors.
- Set the initial conditions (already known):

$$
e_{n-1}=b_{n-1}, \ldots, e_{k}=b_{k}
$$

- Compute the remaining $e_{j}$ from the backward recurrence:

$$
e_{j}=\sigma_{t-1} e_{j+1}+\cdots+\sigma_{0} e_{j+t}
$$

if $j=k-1, k-2, \ldots, 0$, where the $\sigma_{i}$ are the coefficients of the error locator polynomial $\sigma(x)$.

## Example: $\mathcal{R}(16,9)$. Decoding

- Recall that the syndrome polynomial is:

$$
s(x)=\alpha x^{7}+\alpha^{14} x^{6}+\alpha^{4} x^{5}+\alpha^{14} x^{4}+\alpha^{11} x^{3}+\alpha^{6} x^{2}+\alpha^{8} x+\alpha^{3} .
$$

- We apply the extended euclidean algorithm to $x^{d-1}=x^{8}$ and $s(x)$ until we get a remainder of degree less than $(d-1) / 2=4$.

$$
\begin{array}{rlrl}
r_{-1} & =x^{8} & & \\
r_{0} & =s(x) & & q_{1}=\alpha^{14} x+\alpha^{11} \\
r_{1} & =\alpha^{5} x^{6}+\alpha^{12} x^{5}+\alpha^{14} x^{4}+\alpha^{4} x^{3}+\alpha^{4} x^{2}+\alpha x+1 & q_{2} & =\alpha^{11} x+\alpha \\
r_{2} & =\alpha^{14} x^{5}+\alpha^{14} x^{4}+\alpha^{14} x^{3}+\alpha^{8} x^{2}+\alpha^{12} x+\alpha^{9} & & q_{3}=\alpha^{6} x+1 \\
r_{3} & =\alpha^{5} x^{4}+\alpha^{4} x^{3}+\alpha^{11} x^{2}+\alpha^{6} x+\alpha^{7} & q_{4}=\alpha^{9} x+\alpha^{12} \\
r_{4} & =\alpha^{13} x^{3}+x^{2}+\alpha^{8} x+\alpha^{14} & &
\end{array}
$$

## Example: $\mathcal{R}(16,9)$. Decoding

- Now we compute the polynomial $b_{4}(x)$ :

$$
\begin{aligned}
& b_{2}=1+a_{1} q_{2}=\alpha^{10} x^{2}+\alpha^{2} x+\alpha^{6} \\
& b_{3}=b_{1}+b_{2} q_{3}=\alpha x^{3}+\alpha x^{2}+\alpha x+\alpha^{4} \\
& b_{4}=b_{2}+b_{3} q_{4}=\alpha^{10} x^{4}+\alpha^{9} x^{3}+\alpha^{13} x^{2}+\alpha^{2} x+\alpha^{11}
\end{aligned}
$$

So the number of errors is 4 .

- Now we know that:

$$
\begin{aligned}
& \ell(x)=\alpha^{-11} b_{4}(x)=\alpha^{14} x^{4}+\alpha^{13} x^{3}+\alpha^{2} x^{2}+\alpha^{6} x+1 \\
& \sigma(x)=x^{4} \ell\left(\frac{1}{x}\right)=\alpha^{14}+\alpha^{13} x+\alpha^{2} x^{3}+\alpha^{6} x^{3}+t^{4}
\end{aligned}
$$

That is: $\sigma_{0}=\alpha^{14}, \sigma_{1}=\alpha^{13}, \sigma_{2}=\alpha^{2}, \sigma_{3}=\alpha^{6}$.

- The zeros of $\sigma(x)$ are $\alpha^{3}, \alpha^{4}, \alpha^{9}, \alpha^{13}$. So the error positions are: $3,4,9,13$ (but this algorithm does not use this information).


## Example: $\mathcal{R}(16,9)$. Decoding

- Instead we solve the linear recurrence:

$$
\begin{aligned}
e_{j} & =\sigma_{3} e_{j+1}+\sigma_{2} e_{j+2}+\sigma_{1} e_{j+3}+\sigma_{0} e_{j+4} \\
& =\alpha^{6} e_{j+1}+\alpha^{2} e_{j+2}+\alpha^{13} e_{j+3}+\alpha^{14} e_{j+4}
\end{aligned}
$$

with the initial conditions:

$$
e_{7}=\alpha, \quad e_{8}=\alpha^{14}, \quad e_{9}=\alpha^{4}, \quad e_{10}=\alpha^{14}, \ldots
$$

- We get:

$$
\begin{array}{lll}
e_{6}=0, & e_{5}=\alpha^{12}, & e_{4}=\alpha^{6}, \\
e_{2}=0, & e_{1}=\alpha, & e_{0}=\alpha^{10},
\end{array}
$$

## Example: $\mathcal{R}(16,9)$. Decoding

- Hence the inverse FFT of the error vector is:

$$
e=\left(\alpha^{3}, \alpha, 0, \alpha^{10}, \alpha^{6}, \alpha^{12}, 0, \alpha, \alpha^{14}, \alpha^{4}, \alpha^{14}, \alpha^{11}, \alpha, \alpha^{8}, \alpha^{3}\right)
$$

- Finally, the information symbols are:

$$
n+e=\left(\alpha^{5}, 0,0, \alpha^{2}, 1,0, \alpha^{9}, 0, \ldots, 0\right)
$$

- We can check our computations by calculating the FFT of this last word. We have to get the word $N$ modified at positions 3, 4, 9, 13. Indeed, this FFT is:

$$
\alpha^{12} t^{13}+\alpha^{10} t^{9}+\alpha^{14} t^{4}+\alpha^{14} t^{3}
$$

## A decoding algorithm for RS codes

Input: the received word $B(x)$.
Output: the information symbols or $*$ (more than $\rho$ errors).

1. Compute the inverse FFT of $B(x)$ : $b(x)=\mathcal{F}_{\beta^{-1}}(B(x))$.
2. Set $e_{j}=b_{j}$, for $j=k, \ldots, n-1$. The syndrome polynomial of $B(x)$ is $s(x)=\sum_{i=0}^{d-2} b_{i+k} x^{i}$.
3. Apply the euclidean algorithm to $x^{d-1}$ and $s(x)$ to compute the error-locator polynomial $\ell(x)$ (of degree $t \leq \rho$, say).
4. If $\ell(0)=0$, then stop and return $*$; else continue.
5. If $\ell(x)$ does not have $t$ simple roots, then stop and return $*$; else continue.

## A decoding algorithm for RS codes

6. Compute the coefficients of the reciprocal polynomial of $\ell(x)$ :

$$
\sigma(x)=x^{t} \ell\left(\frac{1}{x}\right)=\sum_{i=0}^{t} \sigma_{i} x^{i}
$$

7. With the initial conditions computed in 2 , solve the linear recurrence:

$$
e_{j}=\sigma_{t-1} e_{j+1}+\cdots+\sigma_{0} e_{j+t}, \quad j=k-1, \ldots, 0
$$

8. Compute the polynomial $a(x)=b(x)+e(x)$.
9. If $\operatorname{deg} a(x) \geq k$, then stop and return $*$; else continue.
10. The information symbols are the coefficients of $a(x)$.
