
Transmission and Coding of Information

José Luis Ruiz
July 2018

Departament de Matemàtiques
Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya
jose.luis.ruiz@upc.edu

1/205

Introduction

Mathematical Theory of Information

The mathematical theory of information begins in 1948 with
Claude Shannon’s seminal paper “A Mathematical Theory of
Communication”. For Shannon:

The fundamental problem of communication is that
of reproducing at one point exactly or approximately
a message selected at another point.

Shannon gives a mathematical definition of information and
studies how to transmit a message through a communication
channel efficiently and reliably.

2/205

Error-Correcting Codes: A Brief History

In 1950, Richard Hamming, at Bell’s Laboratories, constructs an
error-correcting code for the first time. The Hamming code can
correct up to one error.

In 1954, Reed and Muller introduced a family of
error-correcting codes capable to correct an arbitrary number
of errors. They have been used in Mariner missions from 1969
to 1977.

From 1958 to 1960, BCH and Reed-Solomon codes were
discovered. They have been used for space missions and in
CDs and DVDs since then.

3/205

Communication Channels

Simple model of communication channel
System consisting of three parts:

• a source of information,
• a physical channel, and
• a receiver or sink.

Issues to consider

• Low capacity of the channel.
• Security or the espionage problem.
• Errors in the messages caused by noise in the channel.

4/205

Communication Channels

5/205

Low Capacity of the Channel

Source coding
Data compression: substitute the data source with a
compressed version of it.

Main methods in data compression

• Lossless compression: statistical, arithmetical or
dictionary techniques. Used for text, executables, etc.

• Lossy compression: jpeg, fractal compression. Used for
graphics, video, music, etc.

6/205

Source Coding: Shannon’s First Theorem

Information and redundancy
A message is composed of information and redundancy, and
both can be measured.

Source coding
Source coding is the process of taking the redundancy out of
a message produced by an information source.

Theorem
A message can compressed until only information remains,
and no more.

Roughly, the information contained in a message is the
number of bits we get with the best compressor.

7/205

Source Coding: Example of Statistical Compression

Alphabet: A = {a,b, c,d, e}.

Message: M = aaabccedabdb ∈ A∗ has length 12.

Frequencies of letters appearing in M:

p(a) = 1
3 , p(b) = 1

4 , p(c) = p(d) = 1
6 , p(e) = 1

12

With a fixed-length ASCII-like binary encoding we need 36 bits
to encode M:

a→ 000, b→ 001, c→ 010, d→ 011, e→ 100.

8/205

Source Coding: Example (continued)

Variable-length encoding: we associate a binary word with
each letter such that the most frequent letters have shorter
words. For example,

a→ 00, b→ 01, c→ 10, d→ 110, e→ 111.

Now, we only need 27 bits to encode M.

Remark

• C = {00, 01, 10, 110, 111} is a code: there is no ambiguity in
the messages we can form with the words in C.

• This is an example of a Huffman encoding.

9/205

Errors in the Channel: Channel Encoding

Channel encoding

• To recover all or most of the original message we add
some redundancy to it.

• This process is called channel encoding.

Error detection & error correction

• Error Detection: parity check bit, cyclic redundancy codes
(CRC), etc. Used only when retransmission is possible and
cheap (disk reading, local network communication, etc).

• Error Correction: used when retransmitting the message is
not possible or is too much expensive (CD-ROMs or DVD
reading, satellite communication, etc)

10/205

Channel Encoding: Shannon’s Second Theorem

Remark

• Intuitively, the greater the redundancy we add, the more
likely is to recover the original information, but the lower
the transmission rate will be.

• High reliability and low transmission rate seem
incompatible objectives.

Theorem
Both problems can be solved at the same time. That is, it is
possible to correct as many errors as we want adding only a
controlled redundancy.

11/205

Example

The Binary Memoryless Symmetric Channel

• A source of information emits two symbols {0, 1}.
• We send these bits through a channel with error
probability p < 1/2. That is:

p(0|1) = p(1|0) = p, p(0|0) = p(1|1) = 1− p.

Conditional probabilities: p(i|j) is the probability of
receiving j when i has been sent.

12/205

Example (cont.)

Do nothing: send every bit as it is

• Decision scheme: accept every bit as it arrives.
• Probability of getting a bit of information incorrectly: p.

Use a repetition code: send every bit three times

• Decision scheme: majority decision.
• Probability of getting a bit of information incorrectly:
p3 + 3p2(1− p).

• Cost: we have added a 66.6% of redundancy and the
transmission rate is three times bigger (e.g., it takes 3
times as long to send the same information).

13/205

Example (cont.)

Use a Hamming code

• Given four bits of information x1x2x3x4, compute:

x5 = x2 + x3 + x4, x6 = x1 + x3 + x4, x7 = x1 + x2 + x4

(sums modulo 2) and send x1x2x3x4x5x6x7.
• The Hamming code consists of the binary vectors in {0, 1}7

that are solutions to this linear system.

This an example of a linear code.

14/205

Example (cont.)

Decision scheme for the Hamming code

• After receiving y1y2y3y4y5y6y7, compute the syndromes:

s1 = y4 + y5 + y6 + y7,
s2 = y2 + y3 + y6 + y7,
s3 = y1 + y3 + y5 + y7

• If s1s2s3 = 000, (we decide that) there is no error.
• Else, the error location is s1s2s3(2), representation of an
integer to the base 2.

15/205

Example (cont.)

Example of decoding with the Hamming code

• If the information message is 0101, we send 0101 010.
• Suppose we get 0101110 (error in the 5th position).
• The syndromes are s1 = 1, s2 = 0, s3 = 1.
• Hence we decide there is an error in the position
101(2) = 5.

16/205

Some Properties of the Hamming Code

Remark

• This Hamming code corrects up to 1 error in a word of
length 7.

• Probability of a decision error: 1− (1− p)7 − 7p(1− p)6.
• Comparison: the probability of a decision error for every 4
information bits is of 0.00203 with the Hamming code, and
is of 0.00259 with the repetition code of length 3.

17/205

Information and Entropy

Intuitive Idea of Information

• The concept of information is tied to the concepts of
probability and uncertainty.

• Information can be measured by the amount of
uncertainty resolved.

• The uncertainty is described by means of the concept of
probability.

• In fact, some messages are much likelier than others, and
information implies surprise.

18/205

Amount of Information = Amount of Uncertainty

The amount of information contained in an event can also be
understood as the quantity of uncertainty:

• before an event happens we have uncertainty about the
result;

• after an event happens we get information.

So the amount of information is equal to the amount of
uncertainty resolved.

19/205

Definition of Information

Let (Ω,p) be a finite probability space.

Definition of information
If A ⊆ Ω is an event, the amount of information contained in
A is:

I(A) = log2
1

p(A) .

• Information is measured in bits.
• The information function is decreasing and additive: if A
and B are independent events, then I(A ∩ B) = I(A) + I(B).
(The function f(x) = log(1/x) is decreasing and additive:
f(xy) = f(x) + f(y).)

20/205

Examples

A perfect coin
For a perfect coin: p(heads) = p(tails) = 1/2. Hence, each
event (heads or tails) contains 1 bit of information:

log2
1
1/2 = log2 2 = 1.

In fact, this was the first use of the term bit, as a unit of
information.

A non-perfect coin
However, if p(heads) = 1/4 and p(tails) = 3/4, then:

I(heads) = log2 4 = 2, I(tails) = log2(4/3) = 0.415037

21/205

Entropy

Let X be a random variable taking values x1, . . . , xn.

Definition of entropy
Define the entropy of X as the average amount of information:

H(X) =
n∑
i=1

p(X = xi) · I(X = xi) =
n∑
i=1

p(xi) · log
1

p(xi)

Convention: 0 · ∞ = 0 (why?).

Example
If X is equally likely, then: p(xi) = 1/n, and H(X) = log(n).

22/205

Properties of the entropy

1. H(p1, . . . ,pn) is continuous: a small change in the probabilities
implies a small change in the entropy.

2. H(p1, . . . ,pn) is symmetric: the entropy only depends on the
probabilities, not on their order.

3. H(p1, . . . ,pn) ≥ 0, and H = 0 ⇐⇒ ∃i,pi = 1.
4. H(p1, . . . ,pn, 0) = H(p1, . . . ,pn): an impossible case doesn’t
contribute to the entropy.

5. H(1/n, . . . , 1/n) < H(1/(n+ 1), . . . , 1/(n+ 1)): the entropy is
greater for an equally likely distribution with n+ 1 values than
for one with n values.

6. H(p1, . . . ,pn) ≤ H(1/n, . . . , 1/n), and the equality holds iff
∀i,pi = 1/n. For instance, there is more uncertainty in a perfect
dice than in a loaded one.

23/205

Joint Entropy

If X, Y are random variables, H(X, Y) denotes the entropy of the
joint distribution and is called the joint entropy of the
variables.
Proposition

1. H(X, Y) ≤ H(X) + H(Y)
2. H(X, Y) = H(X)+H(Y) iff X and Y are independent variables.

Remark
The joint entropy is the amount of information we get when
we observe both variables at the same time.

24/205

Conditioned Entropy

Let X and Y be random variables. Then X | Y = y is a random
variable whose entropy is:

H(X | Y = y) =
n∑
i=1

p(xi | y) log
1

p(xi | y)
.

Conditioned entropy
The average of all these entropies is called the conditioned
entropy (even though it is not a true entropy!):

H(X | Y) =
∑
j
p(yj)H(X | Y = yj)

25/205

Some Properties

Proposition

1. H(X, Y) = H(X) + H(Y | X) = H(Y) + H(X | Y).
2. H(X | Y) ≤ H(X), and the equality holds iff X and Y are
independent.

Remark
H(X | Y) measures the uncertainty that remains in X after
having observed Y.

26/205

Mutual Information

Mutual information
We define the mutual information of the random variables X
and Y as:

I(X, Y) = H(X)− H(X | Y) = H(Y)− H(Y | X).

Proposition
I(X, Y) = 0 iff X and Y are independent variables.

Remark
I(X, Y) = amount of information in X minus the amount of
information still in X after knowing Y (and conversely) =
amount of information that each variable contains about the
other.

27/205

Mnemonic Rule

Represent H(X) as the set U and H(Y) as the set V. Then:

H(X, Y)←→ U ∪ V
H(X | Y)←→ U− V
H(Y | X)←→ V− U
I(X, Y)←→ U ∩ V.

28/205

Codes

Coding an alphabet into another one

• We want to send the information generated by an
information source through a communication channel.

• The source emits symbols from an alphabet B, but the
channel only accepts symbols from another alphabet A.

• Hence, we need a one-to-one mapping f : B→ A∗ that
assigns to each symbol b ∈ B a word f(b) ∈ A∗.

• Moreover, we need that any word of A∗ that is a
concatenation of words of the image C = f(B) decomposes
uniquely as such concatenation.

• A set C with a property like that is called a code.

29/205

Alphabets. Concatenation

Definition
An alphabet is a finite set A = {a1, . . . ,aq}, q = |A|.

• A word over A is a finite sequence of symbols x = ai1 · · ·ain .
• n = ℓ(x) is the length of the word x.
• λ is the empty word (has no symbol), ℓ(λ) = 0.
• A∗ = {words of length ≥ 0}, An = {x ∈ A∗ | ℓ(x) = n}.

Concatenation
If x = d1 · · ·dr, y = e1 · · · es ∈ A∗:

xy := d1 · · ·dre1 · · · es.

We have: ℓ(xy) = ℓ(x) + ℓ(y).

30/205

Factorizations, Prefixes and Codes

Factorization
A factorization of a word x ∈ A∗ is an expression
x = x1x2 · · · xk, where xi ∈ A∗.

Prefixes
Let x, y ∈ A∗. The word x is a prefix of the word y ⇐⇒
∃u ∈ A∗ : y = xu.

Codes
A subset C ⊂ A∗ is a code if every message M ∈ C∗ admits a
unique factorization as a concatenation of words of C:

c1c2 · · · cr = d1d2 · · ·ds, ci,dj ∈ C
⇓

r = s, and ci = di, i = 1, . . . , r
31/205

Examples

Examples of codes

1. The Morse code over the alphabet {•, − , space}.
2. Block codes of length n ≥ 1.
3. The repetition code of length n over an alphabet A:
Rep(n,A) = {a · · ·a : a ∈ A}.

Example of a set that is not a code
C = {a, c,ad,abb,bad,deb,bbcde} ⊂ {a,b, c,d, e}∗ is not a
code: abbcdebad = a|bbcde|bad = abb|c|deb|ad.

Remark
Sardinas–Paterson algorithm decides whether a finite subset
of A∗ is a code or not, giving an ambiguous message if not.

32/205

Prefix Codes

Definition
A subset C ⊂ A∗ is a prefix subset if no word of C is a prefix of
another one; that is: u, v ∈ C ⇒ u is not a prefix of v.

Proposition
Every prefix set is a code.

Remark
Such a code is called a prefix code or an instantaneous code
for the decoding can be done in real-time.

Example
The set {0, 10, 110, 1110} is a binary prefix code.

33/205

Encodings

Definition
An encoding of an alphabet B over another alphabet A is a
one-to-one mapping f : B→ A∗ such that the image f(B) ⊂ A∗

is a code over A.

Equivalently, f is an encoding iff the induced mapping:

B∗ → A∗, b1b2 · · ·br 7→ f(b1)f(b2) · · · f(br)

is one-to-one.

34/205

Kraft’s Inequality and Kraft–Macmillan Theorem

Kraft’s Inequality
Let C = {x1, . . . , xn} be a q-ary code (q = |A|). Then:

n∑
i=1

1
qℓ(xi)

≤ 1.

Kraft-Macmillan’s Theorem
Let q,n, ℓ1, . . . , ℓn be positive integers such that:

n∑
i=1

1
qℓi ≤ 1.

Then there exists a q-ary prefix code with n words of lengths
ℓ1, . . . , ℓn.

35/205

Example

Remark
Kraft’s inequality can be used to show that a given set is not
a code (but not to show that it is!).

Example
For the set C = {1, 00, 01, 111, 101} ⊆ {0, 1}∗ we have:

1
2 +

1
22 +

1
22 +

1
23 +

1
23 > 1,

so C is not a code. That C is not a code can also be proved by
considering the ambiguous message 111.

36/205

Reduction to Prefix Codes

Corollary
If there exists a q-ary code composed of n words with lengths
ℓ1, . . . , ℓn, then there is another code with the same
properties that is also a prefix code.

Therefore, there is no loss of generality if we always work with
prefix or instantaneous codes, for if in a given situation we
have a code that is not a prefix code, we can substitute it by
another one that is so and has the same cardinality and
word-lengths.

37/205

Source Coding

Discrete Memoryless Sources

Definition
A Discrete Memoryless Information Source (DMIS) is a pair
S = (A, X) consisting of a finite alphabet A = {a1, . . . ,an} and
a finite probability distribution X = {p1, . . . ,pn}, where pi is
the probability that S emits the symbol ai: pi = p(ai).

‘Memoryless’ means that symbols are emitted independently
of each other; that is:

p(ai1 · · ·aik) = p(ai1) · · ·p(aik) = pi1 · · ·pik .

Entropy of a source
The entropy H(S) of a DMIS S is the average amount of
information given by S.

38/205

Average Length of an Encoding

Let S = (A, X) be a DMIS and f : A→ B∗ an encoding, q = |B|.
Then f(A) = C = {x1, . . . , xn} ⊆ B∗ is a code, where xi = f(ai).

Definition

• The average length of the encoding f is:

ℓ̃f(S) = ℓ̃C(S) =
n∑
i=1

p(ai)ℓ(xi).

• The minimum length of S over q-ary alphabets is:

ℓ̃minq (S) = min
f

ℓ̃f(S).

It only depends on q and S. This minimum always exists.

39/205

Huffman Encoding

Definition
A Huffman encoding or an optimal encoding for a DMIS S is a
prefix code C whose length is equal to the minimum length
of the source; that is:

ℓ̃C(S) = ℓ̃minq (S).

If no confusion arises, we also call C = f(A) a Huffman code for
the source (note that the words of C are implicitly ordered).

40/205

Binary Huffman Encodings

Proposition 1
Assume that p1 ≥ p2 ≥ · · · ≥ pn. Then there is a Huffman
code C = {x1, x2, . . . , xn} such that ℓ(x1) ≤ ℓ(x2) ≤ · · · ≤ ℓ(xn).

Proposition 2
Assume that p1 ≥ p2 ≥ · · · ≥ pn. Then there is a Huffman
code C = {x1, . . . , xn} such that xn−1 and xn differ only in the
last symbol.

41/205

Binary Huffman Encodings: Construction

Huffman Algorithm
Let S = (A, X) be DMIS with n symbols and probabilities
p1 ≥ · · · ≥ pn. Consider the source S′ with n− 1 symbols and
probabilities p1, . . . ,pn−2,pn−1 + pn.

If C′ = {x1, . . . , xn−1} is a Huffman code for S′, then:

C = {x1, . . . , xn−2, xn−10, xn−11}

is a Huffman code for S.

42/205

Example of Binary Huffman Algorithm

A = {a,b, c,d}, p(a) = 0.5,p(b) = 0.3,p(c) = 0.15,p(d) = 0.05

ℓ̃min(S) = 0.5 · 1+ 0.3 · 2+ 0.15 · 3+ 0.05 · 3 = 1.7 bits/symbol.

Compare with H2(S) = 1.64773 (bits of information).

43/205

Huffman Algorithm for Non-Binary Encodings

Algorithm

• Construct a q-ary tree adding up in each step the q
smallest probabilities, except in the first step.

• In the first step, add up the q0 smallest probabilities,
where 2 ≤ q0 ≤ q and (q− 1) | (n− q0).

From these conditions it follows that:

1. the integer q0 is unique;
2. in the following steps we always have q probabilities to
add up.

44/205

Example of Non-Binary Huffman Algorithm

A = {a,b, c,d}, p(a) = 0.5,p(b) = 0.3,p(c) = 0.15,p(d) = 0.05

ℓ̃min(S) = 0.5 · 1+ 0.3 · 1+ 0.15 · 2+ 0.05 · 2 = 1.2 ternary
digits/symbol.

Compare with H3(S) = 1.0396.

45/205

First Shannon Theorem for DMIS

Theorem
If S is a discrete memoryless information source, then:

Hq(S) ≤ ℓ̃minq (S) < Hq(S) + 1.

Remarks

• Hq is the entropy computed with logq.
• This theorem says that a source cannot be compressed
below its entropy (first inequality).

46/205

Efficiency of an Encoding

In the light of Shannon’s first theorem, we give the following
definition.
Definition
Given an encoding A→ C ⊂ B∗ of a source S = (A, X), we
define its efficiency as:

eff(C) = Hq(S)
ℓ̃C(S)

.

We have:
0 ≤ eff(C) ≤ Hq(S)

ℓ̃minq (S)
≤ 1.

47/205

Extensions of a Source

Sometimes it is useful to send the information symbols in
packets of length k instead of one at a time.

k-th extension of a source
The k-th extension of a source S is:

Sk = (Ak, Xk), p(ai1 · · ·aik) = p(ai1) · · ·p(aik)

(recall that S is memoryless).

Proposition
H(Sk) = kH(S).

48/205

Extensions in the limit

Consider all the extensions Sk of a DMIS source S, k ≥ 1.

If we apply the first Shannon theorem to each of them, we get:

kHq(S) = Hq(Sk) ≤ ℓ̃minq (Sk) < Hq(Sk) + 1 = kHq(S) + 1.

Dividing by k and taking limits as k→ +∞, we get:

Hq(S) ≤
ℓ̃minq (Sk)

k < Hq(S) +
1
k

lim
k→+∞

ℓ̃minq (Sk)
k = Hq(S)

This means that by using a suitable extension of S we can
approach the entropy of the original source as much as we like.

49/205

Example of Extensions

A = {a,b, c,d}
p(a) = 0.5,p(b) = 0.3,p(c) = 0.15,p(d) = 0.05
H2(S) = 1.64773

• Huffman code for S: ℓ̃min2 (S) = 1.7 bits/symbol of S.
• Huffman code for S2: ℓ̃min2 (S2) = 3.3275 bits/symbol of S2.
This represents 1.66375 bits/symbol of S.

50/205

Channel Coding

Discrete memoryless Channels

Definition
A discrete memoryless channel K = (A,B,Q) consists of:

• an input alphabet A = {a1, . . . ,as},
• an output alphabet B = {b1, . . . ,bt},
• a matrix of probabilities:

Q =

p(b1 | a1) . . . p(bt | a1)
...

...
p(b1 | as) . . . p(bt | as)

 , (channel matrix)

where p(bj | ai) is the probability of receiving bj if ai was
sent.

51/205

Remarks and Examples

1. Q is a stochastic matrix: each row is a probability
distribution:

∑t
j=1 p(bj | ai) = 1, for each i.

2. The binary symmetric channel (BSC): A = B = {0, 1},
0 ≤ p < 1/2 and:

Q =

[
1− p p
p 1− p

]

p = p(0|1) = p(1|0) is called the error probability.
3. The binary channel with erasure: A = {0, 1}, B = {0, 1, e},
and:

Q =

[
1− ε 0 ε

0 1− ε ε

]

52/205

Types of Channels

Lossless: the output completely determines the input. Each
column of Q has, at most, one non-zero element.

Determinist: the input completely determines the output.
Each row of Q has, at most, one non-zero element
(that must be a 1).

Noiseless: it is a lossless and determinist channel. We have
|A| = |B| and Q is the identity matrix, except for a
permutation of rows if necessary.

Useless: the input and the output are independent. All the
rows of Q are equal.

Symmetric: all the rows and columns of Q contain the same
numbers, except for permutations. For instance,
the binary symmetric channel.

53/205

Capacity of a Channel

Output distribution of a channel
The channel matrix Q transforms an input distribution
X = (p1, . . . ,ps) into an output distribution Y = (q1, . . . ,qt) as:

(p1, . . . ,ps) · Q = (q1, . . . ,qt).

So: qi =
∑s

j=1 pj · p(bi | aj). We write: Y = K(X).

• If we input a discrete memoryless source S = (A, X), then
we get an output source T = (B, K(X)).

• The joint distribution of X and Y = K(X) depends on both X
and Q.

• The mutual information I(X, Y) is the amount of
information about X that goes through the channel.

54/205

Capacity of a Channel

Definition
The capacity of a channel K is the maximum value of I(X, Y)
as the input distribution X varies. It is denoted as γ(K).

• This maximum value always exists because I(X, Y) is a
continuous function of the variables p1, . . . ,ps defined on
a compact set.

• If γ(K) = I(X, K(X)), for a particular X, we say that the
capacity is attained at X.

• I(X, Y) = H(X)− H(X | Y) ≤ H(X) ≤ log(s).
• The computation of γ(K), for a general K, is a non-trivial
problem of optimization.

55/205

Some Computations

Lossless channel
For any input distribution X, we have H(X | Y) = 0. So:

I(X, Y) = H(X)− H(X | Y) = H(X)

and the maximum value is log(s), where s is the number of
inputs. Hence:

γ(K) = log(s)

Moreover, the capacity is attained at an equally likely input
distribution.

56/205

Some Computations

Determinist channel
For any input distribution X, we have H(Y | X) = 0. So if X is
the distribution which the capacity is attained at, then:

γ(K) = max
X

(H(Y)− H(Y | X)) = max
X
H(Y) ≤ log(t),

where t is the number of outputs.

• If there exists an input X that gives an equally likely
output Y, then γ(K) = log(t).

• In the general case, we cannot say more.

57/205

Some Computations

Noiseless channel
This is a lossless channel, so we have γ(K) = log(s), where s
is the number of inputs.

The capacity is attained at an equally likely input.

Useless channel
We have H(X) = H(X | Y), because X and Y are independent.
Hence γ(K) = 0.

58/205

Capacity of a Symmetric Channel

Theorem
Let K = (A,B,Q) be a symmetric channel. Let α1, . . . , αs be
the values of any row of Q. Then:

γ(K) = log(s)− H(α1, . . . , αs).

In particular, the capacity of the binary symmetric channel
with error probability p is:

1− H(p, 1− p) = 1+ p log(p) + (1− p) log(1− p).

59/205

Channel Coding

Let S be a DMIS and let K be a binary symmetric channel with
error probability p < 1/2.

Channel encodings
A channel encoding for S consists of:

1. a bijective mapping cod : AS → C ⊆ {0, 1}n, the encoding
mapping;

2. a decoding mapping dec : {0, 1}n → C ∪ {?}

• The decoding mapping is also called a decision scheme or
a decoding scheme.

• A decision scheme may be only defined in a subset of
{0, 1}n. If so, it is called an incomplete decision scheme.

60/205

Maximum Likelihood Schemes (MLS)

Let f : {0, 1}n → C ∪ {?} be a decision scheme. Let x ∈ {0, 1}n

be the received word.

• If f(x) ∈ C, then we decide that f(x) is the word sent.
• If f(x) = ?, then we announce that a decoding error has
occurred.

Aim of the decoding process
To maximize the probability that f(x) be the word sent.

Definition
A decision scheme f is called a maximum likelihood scheme
if p(we get x | f(x) was sent) = maxc∈C p(we get x | we sent c).

f(x) ∈ C satisfies that for no other word of C is more likely to
have received x. 61/205

MLS: Heuristic

We have:
p(error in k fixed positions) = pk(1− p)n−k.

Therefore, if c ∈ C differs from x ∈ {0, 1}n in k positions then:
p(we get x | we sent c) = pk(1− p)n−k.

But: p < 1/2⇒ 1− p > p, so pk(1− p)n−k is big for n− k big
and k small.
Theorem
For a BSC, the maximum likelihood scheme consists of
finding the codeword with the minimum number of
differences with the word received.

This kind of decoding is called proximity decoding.

62/205

Transmission Rate of a Code

Let C ⊂ An be a block code of length n. Let M = |C| the number
of codewords and q = |A| the number of symbols.

Definition
We define the transmission rate of C as:

R(C) =
logq(M)

n , 0 < R(C) < 1.

It is a measure of efficiency of C.

• Aim: to maximize both the probability of correct decoding
and the efficiency of a code, at the same time.

• Shannon’s second theorem basically states that we can
get both results if we take R less than the channel
capacity.

63/205

Shannon’s Second Theorem for Binary Symmetric Channels

Theorem
Let K be a BSC with probability error p < 1/2. Let R < γ(K).
Then for every ε > 0 there exists a length nε and a code
C ⊂ {0, 1}nε such that R(C) ≥ R and the probability of error
decoding is < ε.

Remark
The proof is not constructive, so we know such codes exist
but we don’t know how to construct them.

Example
If p = 0.001, then γ = 1+ p log(p) + (1− p) log(1− p) = 0.919.
So we can transmit with a transmission rate of the 90% and
error probability less than any prefixed ε > 0.

64/205

Block Codes

Block Codes

Definition
A block code of length n over an alphabet A is a nonempty
subset of An. Block codes are prefix codes.

Examples

• Trivial codes: |C| = 1 and An (total code).
• Repetition codes: Rep(n,A).
• The even binary code: C ⊆ {0, 1}n consisting of the words
with an even number of 1’s. It can be described as:

C = {x1 · · · xn | x1 + · · ·+ xn = 0}.

We have |C| = 2n−1.

65/205

Example: a Hamming Code

The binary Hamming code of length 7: it is the set of words
x1 . . . x7 ∈ {0, 1}7 such that:

x4 + x5 + x6 + x7 = 0
x2 + x3 + x6 + x7 = 0
x1 + x3 + x5 + x7 = 0

(arithmetic mod 2).

There are 16 codewords.

66/205

Hamming Distance

Definition
The Hamming distance between two words x, y ∈ An is:

d(x, y) = |{i | xi ̸= yi}| (number of differences)

where x = x1 . . . xn, y = y1 . . . yn.

If S ⊂ An and x ∈ An: d(x, S) = min{d(x, y) | y ∈ S}.

Proposition
d : An × An → N is a distance function; that is:

1. d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y;
2. d(x, y) = d(y, x);
3. d(x, z) ≤ d(x, y) + d(y, z)

67/205

Balls in An

The concept of Hamming distance allows us to think
geometrically in An as if we were in the Euclidean space.
Definition
For x ∈ An and r ∈ N, the ball of center x and radius r is:

Br(x) = {y ∈ An | d(y, x) ≤ r}.

Remark

• Br(x) contains all the words that differ from x in at most r
positions.

• If we send the word x and r or fewer errors occur, then we
get a word of Br(x).

• |Br(x)| =
∑r

i=0
(n
i
)
(q− 1)i.

68/205

Minimum Distance of a Code

Defintion
The minimum distance d(C) of a block code C is:

d(C) = min{d(x, y) | x, y ∈ C, x ̸= y}.

• It is the least number of differences between two distinct
codewords.

• It is the most important parameter of the code (and the
most difficult to find).

• A good code has to have many words, a big minimum
distance (so that its codewords differ a lot among them),
and short length.

69/205

Parameters of a Code

The type of a code
A q-ary code has type or parameters (n,M,d)q if it has length
n, M words and minimum distance d.

Examples

• d(An) = 1.
• d(Rep(n)) = n.
• The minimum distance of the binary even code is 2.
• The minimum distance of the binary Hamming code of
length 7 is 3.

70/205

Other Parameters

• The tangency radius ρ is the greatest radius such that the
balls with centers in the codewords and radius ρ are
pairwise disjoint.

• The information rate R = k/n tells us the rate of
information symbols per codeword.

• The redundancy n− k. It is also called the number of
parity check symbols.

• The redundancy rate 1− R = (n− k)/n.

71/205

Tangency Radius

The tangency radius of a code C is:

ρ = ρ(C) = max{r ≥ 0 | Br(x) ∩ Br(y) = ∅, ∀x, y ∈ C, x ̸= y}.

• If we send a word x and the channel introduces at most ρ
errors, then we get a word y ∈ Bρ(x).

• So if we look for the closest codeword to y at distance ≤ ρ,
we get a unique answer: x.

• We say C can correct up to ρ errors.

Theorem

The tangency radius is given by: ρ =

⌊
d− 1
2

⌋
.

72/205

Main Problem of Coding Theory

Optimal codes
A code C of type (n,M,d)q is optimal if M is the largest
cardinality among codes of length n and minimum
distance d.

• We write Aq(n,d) for the cardinality of an optimal
(n,M,d)q code.

• Aq(n,d) is difficult to compute. In many cases only lower
and upper bounds are known.

For instance, for q = 2:

d ↓/n→ 5 6 7 8 9 10 11
3 4 8 16 20 40 72–79 144–158
5 2 2 2 4 6 12 24

73/205

Hamming Bound and Gilbert-Varshamov Bound

Hamming bound or the sphere packing bound

Aq(n,d) ≤
qn∑ρ

i=0
(n
i
)
(q− 1)i

where ρ = ⌊(d− 1)/2⌋ is the tangency radius.

Gilbert-Varshamov bound

Aq(n,d) ≥
qn∑d−1

i=0
(n
i
)
(q− 1)i

74/205

Perfect Codes

Definition
A code is perfect if it is optimal and fulfills the Hamming
bound.

• That is, C is perfect iff |C| = qn∑ρ
i=0 (

n
i)(q−1)i

.

• In other words, there is no word outside the (pairwise
disjoint) balls of radius ρ centered in the codewords.

Trivial perfect codes
The binary repetition code Rep2(n) of odd length n, the total
code over any alphabet and the codes of cardinality 1 are
perfect codes. These are called the trivial perfect codes.

75/205

Other Perfect Codes

Hamming codes
Let q = pr be a power of a prime p, r ≥ 1. Then the only
non-trivial perfect q-ary codes are those codes whose
parameters are (n = (qs − 1)/(q− 1),qn−s, 3)q. For instance,
the Hamming codes are the only linear and perfect codes
with these parameters.

Golay codes
These are the codes G23, with parameters (23, 212, 7)2, and G11,
with parameters (11, 36, 5)3. (Check that these parameters
satisfy the Hamming bound.)

76/205

Equivalence of Codes

Definition
Two codes over the same alphabet A are equivalent if one of
them can be obtained from the other performing a finite
sequence of the following two operations:

1. apply a permutation of A to all the codewords in a fixed
position:

x1 . . . xi . . . xn 7→ x1 . . . σ(xi) . . . xn, σ ∈ SA

2. apply a permutation of the positions in all the codewords:

x1 . . . xn 7→ xπ(1) . . . xπ(n), π ∈ Sn

Proposition
Equivalent codes have the same parameters.

77/205

Detection of Errors

Let C be a code of type (n,M,d)q.

Error detection
We say that C is able to detect s errors if Bs(u) ∩ C = {u}, for
any u ∈ C.

• That is, there is no word of C − {u} at distance ≤ s from u.
• However, there could exist more than one codeword at
distance ≤ s from a given word x ∈ An.

• In this case x /∈ C and we don’t know how to correct x.

78/205

Correction of Errors

Let C be a code of type (n,M,d)q.

Error correction
We say that C is able to correct t errors if for any u, v ∈ C,
u ̸= v, and any x ∈ Bt(u) we have d(x,u) < d(x, v).

That is, all the words of Bt(u) have the codeword u as the
closest codeword.

79/205

Simultaneous Detection and Correction

Let C be a code of type (n,M,d)q.

Definition
We say that C is able to detect s errors and correct t errors
simultaneously if for any u, v ∈ C, u ̸= v, and any x ∈ An we
have:

d(x,u) ≤ s⇒ d(x, v) > t.

That is, if v ∈ C is the closest codeword to x ∈ An (it is unique),
then x differs from the remainder codewords at least in s+ 1
positions.

80/205

Criterion for Detection and Correction

Theorem

1. C can detect s errors ⇐⇒ s ≤ d− 1.
2. C can correct t errors ⇐⇒ t ≤ ⌊(d− 1)/2⌋ ⇐⇒ 2t ≤ d− 1.
3. C can detect s errors and correct t errors simultaneously
⇐⇒ s+ t < d.

Examples

• A code with d = 3 can be used to detect up to 2 errors or
to correct 1 error, but cannot be used to do both things
simultaneously.

• A code with d = 4 can be used to detect up to 3 errors or
to correct 1 error or to detect 2 errors and correct 1 at the
same time.

81/205

Algorithm for Correction: Sketch

• Input: x ∈ An, the word received.
• Main step: look for the closest codeword u ∈ C to x.
• If d(x,u) ≤ t, correct x to u.
• If d(x,u) > t, announce that at least t symbols are
incorrect.

The most difficult step in this algorithm is to look for the
closest codeword. This is the point which we will focus on.

82/205

Finite Fields

What Do We Need Finite Fields For?

• Codes over alphabets with an algebraic structure are
easier to deal with. E.g., {0, 1} = Z2.

• Even with a binary channel, it could be convenient to
perform the computations in a finite field. For instance,
we can put a field structure on {00, 01, 10, 11} and treat
binary strings of length 2 as symbols.

• Many algorithms for binary codes make extensive use of
large fields containing Z2.

• For burst error-correcting purposes we consider single
bytes as elements of a finite field of 256 elements.

83/205

Definition of Field

A field is a set K with two operations (+, ·) satisfying the
following properties.

Axioms for the sum

S1) Associative: a+ (b+ c) = (a+ b) + c.
S2) Commutative: a+ b = b+ a.
S3) Existence of a neutral element: there is an element 0 ∈ K

such that a+ 0 = a, for all a ∈ K.
S4) Existence of inverses: for all a ∈ K there is an a′ ∈ K such

that a+ a′ = 0.

84/205

Definition of Field

Axioms for the product

P1) Associative: a(bc) = (ab)c.
P2) Commutative: ab = ba.
P3) Existence of a neutral element: there is an element 1 ∈ K

such that a · 1 = a, for all a ∈ K.
P4) Existence of inverses: for all a ∈ K− {0} there is an a ∈ K

such that a · a = 1.

Distributive law
Both operations are related by the distributive law:

a(b+ c) = ab+ ac.

85/205

Some Remarks

Remarks

• A ring is a set with two operations satisfying all the above
properties except maybe P4 (the existence of inverses
with respect to the product).

• The inverse element of a with respect to the sum is −a. So
that a+ (−a) = 0.

• The inverse element a of a ̸= 0 with respect to the product
is denoted by a−1 = 1/a. So that a · 1a = 1.

• Therefore a field is a set where we can add, subtract,
multiply and divide (by a nonzero element).

• If K is a field and a · b = 0 in K, then a = 0 or b = 0.

86/205

Examples of Fields and Rings

• The set of integers Z is a ring but not a field (e.g., 2 has no
multiplicative inverse).

• The set of rational numbers Q is a field.
• Other familiar fields: R, C. Recall:

C = {a+ bi | a,b ∈ R, i2 = −1}

• If K is a field, then the set of polynomials with coefficients
in K in an indeterminate X

K[X] = {a0 + a1X+ · · ·+ anXn | n ∈ N,ai ∈ K}

is a ring but not a field (e.g., X has no multiplicative
inverse).

87/205

Characteristic of a Finite Field

Proposition
Let F be a finite field. Then there exists a prime number p
such that 1+ · · ·p + 1 = 0 in F. This prime p is called the
characteristic of F and is denoted by p = char(F).

Proof.
Consider the sums rF := 1+ · · ·r + 1, r ∈ N. As F is finite, there
exist r, s such that rF = sF. That is pF = 0, for some p ∈ N.
But then p must be a prime number, because F is a field.

As a consequence, if charF = p then 0, 1, 2, · · · , (p− 1) ∈ F and
the arithmetic of this subset is just the arithmetic modulo p.

88/205

The Finite Field Zp

• In fact, the set Zp = {0, 1, · · · ,p− 1} with the sum and
product modulo p is a finite field. Recall that

k ∈ Z has an inverse mod p ⇐⇒ gcd(k,p) = 1

Thus any element k ∈ Zp − {0} has a multiplicative
inverse in Zp.

• Any field F of characteristic p has the finite field Zp as a
subset (we say that Zp is a subfield of F or that F is a field
extension of Zp).

Are there more finite fields besides the fields Zp?

89/205

An Example of a Finite Field with 4 Elements

• Start with R and the irreducible polynomial x2 + 1. Invent
a root for it: i2 = −1, and consider expressions like a+ bi,
with a,b ∈ R. The sum and product of expressions like
these are defined as if they were polynomials. We get a
new field: C, and R ⊂ C.

• Start with Z2 and the irreducible polynomial x2 + x+ 1.
Invent a root for it: α2 = α+ 1, and consider expressions
like a+ bα, where a,b ∈ Z2. The sum and product of
expressions like these are defined as if they were
polynomials. We get a new field: F4, and Z2 ⊂ F4.

F4 = {0, 1, α, α2 = α+ 1}.

90/205

How to Build a Field: C

The usual process of defining C from R consists of inventing a
root i for the irreducible polynomial X2 + 1 and then
C = {a+ bi | a,b ∈ R, i2 = −1}. The arithmetic in C is defined
using the polynomial arithmetic:

(a+ bX) + (c+ dX) = (a+ c) + (b+ b)X
(a+ bX) · (c+ dX) = ac+ (ad+ bc)X+ bdX2

and then we pretend that ‘X2 = −1’. If we do congruences in
R[X] modulo X2 + 1, then X2 + 1 ≡ 0 (mod X2 + 1).

91/205

How to Build a Field: F4

• Let’s begin with F2 = {0, 1} and an irreducible polynomial
of degree 2 with coefficients in F2: X2 + X+ 1 is the only
one!

• Invent a root α for it, so α2 = α+ 1.
• Then define F4 = {a+ bα | a,b ∈ F2} = {0 = 00, 1 =
01, α = 10, 1+ α = 11}.

• Finally the sum and the product in F4 are defined using
the arithmetic of F2[X] modulo X2 + X+ 1.

92/205

How to Build a Field: General Case

In general, we can start with a field K and perform the same
sequence of actions:

• pick up an irreducible polynomial f(X) ∈ K[X] of degree n;
• invent a root for it α; that is, we require that f(α) = 0;
• define L as the set of polynomial expressions in α of
degree ≤ n− 1;

• the arithmetic in L is defined through the arithmetic of
polynomials and using the substitution rule f(α) = 0.

93/205

Working Description of Fpn

• Fix an irreducible polynomial of degree n over Fp[X]:
f(X) = Xn + fn−1Xn−1 + · · ·+ f0.

• Do congruences mod f(X) and set α = X.
• As f(X) = f(X) = f(α) = 0, α is a new root of f(X).
• The elements of the new field Fpn can be described as
polynomials expressions in α up to degree n− 1:

an−1αn−1 + · · ·+ a1α+ a0,

where ai ∈ Fp.
• Addition and multiplication of such expressions is done
as polynomials and taking into account the substitution
rule f(α) = 0.

94/205

Order of an Element

Let Fq be a finite field (q is a power of a prime).

Multiplicative order
Define the order of a non-zero element β ∈ Fq as the least
integer t ≥ 1 such that βt = 1. We write ord(β) for this integer.

Proposition

1. If βr = 1, then ord(β) | r.
2. For all β ̸= 0, βq−1 = 1.
3. For all β ̸= 0, ord(β) | q− 1.
4. We have: ord(βk) = ord(β)

gcd(k,ord(β)) .
5. There exists an element β whose order is q− 1.

95/205

Primitive Elements

Definition
An element β ∈ Fq − {0} is called a primitive element if its
order is q− 1.

If β is a primitive element, then every nonzero element of Fq
can be written as a power of β: Fq = {0, 1, β, β2, . . . , βq−2} and
βiβj = βi+j (mod q−1), because βq−1 = 1.

Remark
When using the polynomial representation, addition is easy
and multiplication is hard. But if we use the representation
of elements as powers of a primitive element, then
multiplication is easy, but addition is hard.

96/205

Primitive Polynomials

Definition
An irreducible polynomial f(X) ∈ Fp[X] is called a primitive
polynomial if α = X is a primitive element in the finite field it
defines Fq = Fp[X]/f(X).

Example

• X4 + x+ 1 is primitive polynomial.
• X4 + X3 + x2 + X+ 1 is not a primitive polynomial. In this
case, it is more difficult to find a primitive element.

97/205

Discrete Logarithms and Zech’s Logarithms

Let β ∈ Fq be a primitive element.

Discrete logarithm
If γ ∈ F∗

q, then there is an integer i such that γ = βi. We call
this integer i the discrete logarithm of γ with respect to β:
i = logβ(γ). It is defined mod q− 1.

Zech’s logarithm
If βm ̸= −1, we define the Zech’s logarithm of m as the
integer Z(m) mod q− 1 such that:

1+ βm = βZ(m).

98/205

Discrete Logarithms and Zech’s Logarithms

• When lots of computations have to be done in a finite
field it is very useful to construct the field table.

• This table contains a correspondence between the
polynomial expressions in terms of α and the powers of a
primitive element β.

• We can save a lot of work if α is already a primitive
element.

• In most cases it is also useful to have the Zech logarithms
of the field elements.

• Using Zech’s logarithms, we have βm + βn = βm+Z(n−m).

99/205

Example

F8 = F2[X]/(X3 + X+ 1).
α = X is a primitive element.

p(α) αi αZ(i) p(α) αi αZ(i)

1 1 – α2 + α α4 α5

α α α3 α2 + α+ 1 α5 α4

α2 α2 α6 α2 + 1 α6 α2

α+ 1 α3 α

100/205

Linear Codes

Linear Codes

Fix a finite field Fq (q = pm, p a prime number): this will be the
alphabet. (p = 2 in applications.) We will denote by 0 the
all-zeros vector and by 1 the all-ones vector:

0 = 00 · · ·n 0, 1 = 11 · · ·n 1.

Definition
A linear code of length n over Fq is a linear subspace C ⊆ Fnq.
This means:

1. x, y ∈ C ⇒ x+ y ∈ C,
2. x ∈ C, λ ∈ Fq ⇒ λx ∈ C.

In the binary case, this second condition is always fulfilled.

101/205

How to Give a Linear Code

Parameters
Parameters of a linear code: [n, k,d]q, where n is the length,
k = dim(C) is the dimension and d is the minimum distance.
Therefore: |C| = qk.

Generating matrix
Matrix whose rows are a basis of the linear code. It has k
rows and rank k.

Parity-check matrix
Matrix associated with a homogeneous linear system of
equations whose solutions are the codewords. It has n− k
rows and rank n− k.

102/205

Weight and Minimum Distance

Weight of a word
Define the weight |x| of a word x ∈ Fnq as the number of
non-zero coordinates; that is |x| = d(x, 0).

Remark

1. d(x, y) = |x− y|, if x, y ∈ Fnq.
2. If C is a linear code, then d(C) = min{|x| | x ∈ C, x ̸= 0}.

103/205

Generating matrix

A generating matrix for C of dimension k is a matrix whose k
rows are the vectors of a basis. A linear code admits many
different generating matrices.
Examples

1. Two possible generating matrices for the binary even code
C = {000, 011, 101, 110}:

G1 =
[
1 0 1
0 1 1

]
, G2 =

[
1 1 0
0 1 1

]

2. The repetition code Repq(n) is generated by the codeword
1.

G =
[
1 1 . . . 1

]
104/205

Encoding Mapping

Let C be a [n, k]q-linear code with generating matrix G.

Encoding mapping
The encoding mapping associated to G is:

encG : Fkq → C ⊆ Fnq
a1a2 . . .ak 7→ (a1,a2, . . . ,ak) · G = (x1, x2, . . . , xn) ∈ C

encG depends on G: if we change the generating matrix, then
the encoding mapping is different, though the code does not
change.

105/205

Example

• The binary even code of length 3 admits the following two
different encoding mappings:

with G1: a1a2 7→ (a1,a2)G1 = (a1,a2,a1 + a2)
with G2: a1a2 7→ (a1,a2)G2 = (a1,a1 + a2,a2)

• We observe that using G1 the information bits a1 and a2
are at the beginning of the codeword, so it is easier to
extract them in the decoding process.

• When the information symbols are at the beginning of the
codeword the encoding is called systematic.

106/205

Systematic Encodings

Definition
A linear code C is systematic if it admits a systematic
encoding; that is, an encoding with a generating matrix of the
shape G = (Ik | A), where Ik is the k× k identity matrix.

Thus a systematic encoding has the form:

a1a2 . . .ak 7→ (a1,a2, . . . ,ak)(Ik | A) = (a1,a2 . . . ,ak, . . .)

Proposition
Every linear code is equivalent to a systematic code.

107/205

Parity-Check Matrix

A [n, k]q linear code can be defined as the set of solutions of
an homogeneous linear system of rank n− k. The associated
matrix to such a system is called a parity-check matrix (or
simply a check matrix) for the code. It is usually denoted by H.
Thus:

x1x2 . . . xn ∈ C ⇐⇒ H · xt = 0t,

where At denotes the transpose of a matrix A.

We will always assume that the linear system has the exact
number of independent equations, so H has n− k
independent rows.

108/205

Generating and Parity-Check Matrices of Systematic Codes

Theorem
Let C be a [n, k]q linear code with generator matrix G and
parity-check matrix H.

1. H · Gt = 0.
2. If G = (Ik | A) is systematic, then H = (−At | In−k) is a
parity-check matrix.

A parity-check matrix of the form (−At | In−k) is said to be in
standard form.

109/205

Examples

• Let C the even binary code of length 3. Then:

G =

[
1 0 1
0 1 1

]
, H =

[
1 1 1

]
• The repetition code Repq(n) can be defined by the
equations xi = xn, i = 1, 2 . . . ,n− 1, so a parity-check
matrix is:

H =


... −1

In−1
...

...
... −1



110/205

Example: Extending a Code by a Parity Bit

Let C be a linear code with parity-check matrix H. Let Ĉ the
code obtained from C adding a parity bit:

Ĉ =
{
x1 . . . xnxn+1 | x1 . . . xn ∈ C,

∑n+1
i=1 xi = 0

}
.

Then a parity-check matrix for Ĉ is:

Ĥ =


0

H
...
0

1 . . . 1 1



111/205

Fundamental Property of the Parity-Check Matrix

A fundamental property of the parity-check matrix is that the
minimum distance of the code can be read from H itself
(though in practice it is not so easy!).

Theorem
Let H be the parity-check matrix of a linear code C of type
[n, k,d]q. Then d(C) = d if, and only if, the following two
conditions hold:

• H has d linearly dependent (l.d.) columns, and
• every set of d− 1 columns is linearly independent (l.i.).

112/205

Hamming Codes

Let’s apply the theorem for d = 3.

• d = 3 ⇐⇒ H has 3 l.d. columns but every set of 2
columns is l.i.

• We have to construct a matrix H where no column is a
multiple of any other and with 3 l.d. columns.

• A Hamming code is a code with a parity-check matrix
satisfying this property and as many columns as possible.

Theorem
The maximum number of nonzero vectors of Frq such that no
one is a multiple of any other is:

qr − 1
q− 1 = qr−1 + · · ·+ q+ 1.

113/205

Hamming Codes

Parameters of a Hamming code
The parameters of a Hamming code are:

n =
qr − 1
q− 1 , k = n− r, d = 3.

r is called the codimension of the Hamming code.

114/205

Hamming Codes: Standard Form

Let β ∈ F∗
q be a primitive element.

• We define an linear order in Fq with respect to β as:

0 < 1 < β < β2 < · · · < βq−2.

• This order determines a lexicographic order in the linear
space Frq.

• Pick up from each set {λv | λ ̸= 0} the unique vector
whose first non-zero coordinate is 1 and write all these
vectors in lexicographic order.

• The resulting matrix is called a parity-check matrix in
standard form. We denote by Hamq(r) this Hamming code
of codimension r.

115/205

Hamming Codes: Examples

• Ham2(2): H =

[
0 1 1
1 0 1

]
.

• Ham2(3): H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

.
• Ham4(2): F4 = F2[X]/(X2 + X+ 1), α = X.

H =

[
0 1 1 1 1
1 0 1 α α2

]
• Ham9(2): F9 = Z3[X]/(X2 − X+ 2), α2 = α+ 1 is primitive.
We have r = 2, so n = 10, k = 8. We get a [10, 8, 3]9-code.

H =

[
0 1 1 1 1 1 1 1 1 1
1 0 1 α α2 α3 α4 α5 α6 α7

]
116/205

Decoding Linear Codes

Let C be a linear code of type [n, k,d]q with parity-check
matrix H.
Syndrome of a word
Define the syndrome of a word y ∈ Fnq as the word s(y) of
length n− k such that s(y)t = Hyt.

Remark
The codewords are precisely those words with syndrome
equal to the zero vector:

C = {x ∈ Fnq | s(x) = 0}.

117/205

Syndromes and Error Patterns

Error pattern
Assume that we send x ∈ C and the channel introduces the
error e. Hence we receive the word y = x+ e. The vector e is
called the error pattern.

Properties

• s(y) = s(x+ e) = s(e).
• If the error pattern e has weight 1, then the s(y) is a
multiple of the i-th column of H.

• In general, if e has weight r, then the s(y) is a linear
combination of r columns of H (corresponding to the
nonzero positions of the error pattern e).

118/205

Cosets of a Code

Coset associated to a syndrome
Recall that the parity-check matrix H has maximal rank.

• For any vector s ∈ Fn−kq (a possible syndrome), the linear
system Hyt = st is always compatible.

• The solutions of Hyt = st consist of the words y ∈ Fnq that
have syndrome s.

• We define the coset associated with the syndrome s to be
the set of solutions to Hyt = st.

Proposition
The coset associated with s is y0 + C = {y0 + x | x ∈ C}, where
y0 is any word with syndrome s(y0) = s.

119/205

Properties of Cosets

1. Two vectors define the same coset iff they have the same
syndrome:

y+ C = z+ C ⇐⇒ s(y) = s(z).

2. The difference of two vectors belonging to the same coset
is a codeword. Reciprocally: if the difference of two
vectors is a codeword, then they belong to the same coset:

y+ C = z+ C ⇐⇒ y− z ∈ C.

3. Either two cosets are disjoint or they are the same (that is,
if two cosets have a non-empty intersection, then they are
equal):

(y+ C) ∩ (z+ C) = ∅ or y+ C = z+ C.

120/205

Leaders of a Coset

Definition
A leader of a coset y+ C is a word ℓ of minimal weight. We
write ℓ(s(y)), because in fact it depends on the syndrome of
y, and not directly on y.

Properties
If ℓ ∈ y+ C is a leader, then:

• y− ℓ is the closest codeword to y.
• Hence, in a proximity decoding algorithm, we decode y as
y− ℓ.

• If |ℓ| ≤ ⌊(d− 1)/2⌋, then ℓ is the unique leader of the coset.

121/205

Decoding Algorithm for Linear Codes (Error-Correcting)

Preprocessing

1. List all possible syndromes: all vectors of Fn−kq .
2. For each syndrome s, compute a leader ℓ(s) in the coset of
words with syndrome s: ℓ(s) is a solution of Hyt = st with
minimum weight.

Algorithm
Assume we get y ∈ Fnq from the channel.

1. Compute the syndrome s = s(y).
2. Decode y as y− ℓ(s).

122/205

Some Remarks

• The preprocessing is only useful when we have to decode
lots of words.

• A leader with weight ≤ ρ is unique in its coset.
• If we only list those leaders that are unique (that is, with
weight ≤ ρ), then the decoding is incomplete. In this case,
the algorithm doesn’t decide how to process a word with
more errors than the error-correcting capability of the
code.

123/205

An Example of Decoding

Let C be a [4, 2, 2]2-code with:

G =

[
1 0 1 1
0 1 0 1

]
, H =

[
1 0 1 0
1 1 0 1

]

syndrome 00 11 01 10
leader 0000 1000 0100 0010

• ρ = 0, so C cannot be used for error-correcting.
• Leaders of weight 1 are not unique in general.
• The decoding of y = 1111 is done as:

s = s(y) = (0, 1), y− ℓ(01) = 1111− 0100 = 1011.

But if 0001 is chosen as a leader for the syndrome 01, then
y is corrected as 1110 instead.

124/205

An Example of Incomplete Decoding

Consider the [5, 2, 3]2-code with check matrix:

H =

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1


A table of syndrome-leader for an incomplete decoding is (we
list only those leaders whose weight is ≤ 1):

syndrome 000 110 011 100 010 001
leader 00000 10000 01000 00100 00010 00001

• y = 10011: s = s(y) = yHt = 101 is not on the table. So the
algorithm doesn’t decide.

• y = 11111: s(y) = 010 and y is decoded as
y− ℓ(010) = 11111− 00010 = 11101.

125/205

Decoding Hamming Codes

Let H be a Hamming code in standard form.

• Hamming codes are perfect, so a complete decoding
algorithm is possible.

• Assume we get y = x+ e, where x ∈ H and |e| ≤ 1.
• Compute s(y) = s(e). If s(y) = 0, then assume that no
error has ocurred.

• Assume s(y) ̸= 0. Let λ be the first non-zero coordinate in
s(y). As H is in standard form, λ−1s(y) is a column of H,
say the i-th column.

• The leader corresponding to this syndrome is λ · ei, that
has all zeros except for the i-th coordinate that is λ.
Hence y is decoded as:

y− (0, . . . , λi), . . . , 0)
126/205

Decoding Hamming Codes: Algorithm

1. Compute the syndrome s(y) of the word received y.
2. If s(y) = 0, we assume that there is no error.
3. If s(y) ̸= 0, then s(y) = λHi, where Hi is the i-th column of
H. The we announce that an error in the position i has
occurred of magnitude λ and we decode y as:

y− (0, . . . , λi), . . . , 0).

127/205

Decoding Hamming Codes: Binary Case

In the binary case, the columns of H are the representations of
integers from 1 to n = 2r − 1 to the base 2 (this is the imposed
lexicographic order). Then we can substitute step 3 in the
previous algorithm by:

3. If s(y) ̸= 0, then s(y) is the representation of the error
position to the base 2.

128/205

Extended Binary Hamming Codes

Let H = Ham2(r) be the binary Hamming code of codimension
r. Let Ĥ be the code obtained from H by adding a parity bit:

Ĥ =
{
x1 . . . xnxn+1 | x1 . . . xn ∈ H,

∑n+1
i=1 xi = 0

}
As d(H) = 3 is odd, we know that d(Ĥ) = 4. So Ĥ can be used
to simultaneously correct 1 error and detect 2 errors.

Let’s see an algorithm for doing so.

129/205

Algorithm

Assume we receive the word y. Compute the syndrome
s(y) = (s1, . . . , sr, sr+1). Observe that (s1, . . . , sr) can be
computed using the parity-check matrix H of H.

1. If s(y) = 0, announce no error.
2. If s(y) ̸= 0 but sr+1 = 1 and (s1, . . . , sr) ̸= 0, announce
there is 1 error in the position given by (s1s2 . . . sr)(2).

3. If s(y) ̸= 0 but sr+1 = 1 and (s1, . . . , sr) = 0, announce
there is 1 error in the last position.

4. If s(y) ̸= 0 but sr+1 = 0 and (s1, . . . , sr) ̸= 0, announce 2
errors and ask for retransmission.

130/205

The ISBN-10 Code

Let C be the linear code over Z11 of length 10 defined by the
equation:

x1 + 2x2 + 3x3 + · · ·+ 10x10 = 0
(we represent 10 by the letter X).

The International Standard Book Number (ISBN) code I is the
subcode of C whose words have no X in the first 9 positions.
Proposition
Let x ∈ I and y ∈ Z1011 .

1. If d(x, y) = 1, then s(y) ̸= 0 and if we know either the error
location or the error magnitude, we can correct the error.

2. If y differs from x in the transposition of two digits, then
s(y) ̸= 0 and we can detect this error.

131/205

The DNI Code

Let C be the linear code over Z23 of length 8 given by the
equation:

x−1 +
7∑
i=0

10ixi = 0.

That is:

x−1 = x14 + x7 + 6x6 + 19x5 + 18x4 + 11x3 + 8x2 + 10x1 + x0.

The DNI code D is the subcode of C whose words x−1x0 . . . x7
satisfy xi ∈ {0, 1, · · · , 9}, for 0 ≤ i ≤ 7. Moreover, we substitute
x−1 by a letter according to the following table:

0–T 1–R 2–W 3–A 4–G 5–M 6–Y 7–F
8–P 9–D 10–X 11–B 12–N 13–J 14–Z 15–S
16–Q 17–V 18–H 19–L 20–C 21–K 22–E

132/205

The DNI Code (cont.)

Proposition
Let x ∈ D and y ∈ Z923.

1. If d(x, y) = 1, then s(y) ̸= 0 and if we know either the error
location or the error magnitude, we can correct the error.

2. If y differs from x in the transposition of two digits, then
s(y) ̸= 0 and we can detect this error.

133/205

Another Look at Hamming Codes

• Recall that the columns of the check matrix H of the
Hamming code Ham2(r) are the non-zero binary words of
length r, r ≥ 2.

• Consider a primitive element α ∈ F2r . The elements of F∗
2r

can be written as non-zero binary words of length r and
also as powers of α.

• So H can be written in a simplified form as:

H =
[
1 α α2 . . . αn−1

]
, (n = 2r − 1)

where αi has to be substituted by the corresponding
binary string (the coefficients of the polynomial
expression in α).

134/205

Binary words as polynomials

• From now on, we’ll identify binary words length n with
polynomials up to degree n− 1:

a = a0a1 . . .an−1 ∈ Fn2 ↔ a(t) = a0+a1t+· · ·+an−1tn−1 ∈ F2[t]n

where F2[t]n = {a(t)|deg(a(t)) < n}.
• In this setting, a = a0a1 . . .an−1 ∈ Fn2 belongs to Ham2(r) iff

H · at = a0 + a1α+ · · ·+ an−1αn−1 = 0.

• That is: a(t) ∈ Ham2(r) ⇐⇒ a(α) = 0.
• But if a(α) = 0, then a(α2) = 0.
• What happens if we also impose that a(α3) = 0?

135/205

A BCH Code that Corrects 2 Errors

BCH = Bose—Chaudhuri—Hocquenhe

• Let B be the binary code of length 15 defined by:

B = {a(t) = a0 + a1t+ · · ·+ a14t14 | a(α) = a(α3) = 0}

where α ∈ F16 is a primitive element.
• A parity-check matrix in simplified form is given by:

K =

[
1 α α2 · · · α14

1 α3 α6 · · · α12

]

(the second row is the cube of the first row).
• We’ll see that d ≥ 5, so B can correct at least 2 errors.

136/205

The Finite Field F16

F16 = F2[X]/(x4 + x+ 1), α = X is primitive.

Write a3a2a1a0 = a3α3 + a2α2 + a1α+ a0.

0000 0 1011 α7

0001 1 0101 α8

0010 α 1010 α9

0100 α2 0111 α10

1000 α3 1110 α11

0011 α4 1111 α12

0110 α5 1101 α13

1100 α6 1001 α14

137/205

Strategy for Decoding

Let y ∈ F152 be the word received and write its syndrome as
s(y) = (s1, s2), where si ∈ F16.

1. If there is no error, then (s1, s2) = (0, 0).
2. If there is just 1 error in the position i, then the syndrome
is the column i of K:

(s1, s2) = (αi, α3i).

In this case s2 = s31 .
3. If there are 2 errors in the positions i and j, then the
syndrome is the sum of the columns i and j of K:

(s1, s2) = (αi, α3i) + (αj, α3j)

Hence, the strategy is: find out whether the syndrome is equal
to a column (s2 = s31) or to a sum of two columns of K.

138/205

Strategy for Decoding

Assume there are two errors (then s1 ̸= 0). Let a = αi and
b = αj. Assume (s1, s2) = (a,a3) + (b,b3) = (a+ b,a3 + b3). We
have to solve the non-linear system:

a+ b = s1, a3 + b3 = s2.

Use (a+ b)3 = a3 + a2b+ ab2 + b3 = (a3 + b3) + ab(a+ b), so
we have s31 = s2 + abs1 and we can compute ab from s1 and s2:

ab =
s31 − s2
s1

But now we know a+ b = s1 and ab = (s31 − s2)/s1 and a,b are
the solutions to the quadratic equation:

T2 − (a+ b)T+ ab = 0.

139/205

A Decoding Algorithm for B

1. If (s1, s2) = (0, 0): no error.
2. If s(y) ̸= 0 and s31 = s2, then there is 1 error in the position
i = logα(s1).

3. If s(y) ̸= 0 and s31 ̸= s2, then we try to solve the quadratic
equation

T2 + s1T+ (s31 + s2)/s1 = 0.

If αi and αj are the solutions, then there are 2 errors in the
positions i and j.

4. If the above quadratic equation has no solutions, then the
channel has introduced 3 or more errors.

140/205

Examples of Decoding: No Error

We receive y = 11111 11111 11111 =
∑14

i=0 ti. Compute the
syndrome:

Kyt =
[
y(α)
y(α3)

]
=

[
0
0

]
because:

y(α) =
14∑
i=0

αi =
α15 − 1
α− 1 = 0, y(α3) =

14∑
i=0

(α3)i =
α30 − 1
α3 − 1 = 0

Hence y ∈ B and there is no error.

141/205

Examples of Decoding: 1 Error

We receive

y = 10011 10011 00001
= 1+ t3 + t4 + t5 + t8 + t9 + t14

Compute the syndrome:

s1 = y(α) = α9, s2 = y(α3) = α12

Now s31 = (α9)3 = α27 = α12 = s2, so there is 1 error in the
position 9.

Hence we decode y as 10011 10010 00001.

142/205

Examples of Decoding: 2 Errors

We receive

y = 11111 11110 01111
= 1+ t+ t2 + t3 + t4 + t5 + t6 + t7 + t8 + t11 + t12 + t13 + t14

Compute the syndrome:

s1 = y(α) = α13, s2 = y(α3) = α11

Now: s31 = α9 ̸= s2, so there are ≥ 2 errors. We solve the
quadratic equation:

T2 + s1T+ (s31 + s2)/s1 = T2 + α13T+ α4 = 0.

The solutions are T = α9 and T = α10. So the errors are in the
positions 9 and 10 and we decode y as 11111 11111 11111.

143/205

Examples of Decoding: ≥ 3 Errors

We receive

y = 10111 11110 01111
= 1+ t2 + t3 + t4 + t5 + t6 + t7 + t8 + t11 + t12 + t13 + t14

Compute the syndrome:

s1 = y(α) = α12, s2 = y(α3) = α5

Now: s31 = α6 ̸= s2, so there are ≥ 2 errors. We try to solve the
quadratic equation:

T2 + s1T+ (s31 + s2)/s1 = T2 + α12T+ α12 = 0.

This equation has no solution in F16, so the channel has
introduced ≥ 3 errors.

144/205

Cyclic Codes

Cyclic Codes: Introduction

Cyclic codes form an important class of linear codes.

• Encoders and decoders for cyclic codes can be
implemented using linear shift registers.

• Well-known families of codes such as BCH codes or
Reed-Solomon codes are cyclic codes.

• Lower bounds for the minimum distance can be easily
computed in many cases.

• They are commonly used for detection purposes in
contexts such as Ethernet communication protocol, where
they are known as CRC: cyclic redundancy codes.

145/205

Cyclic Codes

Definition
A linear code C over Fq is cyclic if it satisfies:

c0c1 . . . cn−1 ∈ C ⇒ cn−1c0 . . . cn−2 ∈ C.

Remarks

• We identify the vector space Fnq with Fq[x]n:

c = c0c1 . . . cn−1 ↔ c(x) = c0 + c1x+ · · ·+ cn−1xn−1

• Multiplication by x shifts the symbols one position to the
right:

x · c(x) = x(c0 + c1x+ · · ·+ cn−1xn−1)
= c0x+ c1x2 + · · ·+ cn−2xn−1 + cn−1xn

146/205

Cyclic Codes

Remarks

• If we had “xn = 1”, then xc(x) = cn−1 + c0x+ · · ·+ cn−2xn−2,
and the condition for a code to be cyclic would be:

c(x) ∈ C ⇒ xc(x) ∈ C.

• Thus we need to do congruences mod xn − 1.
• Hence, a linear code C is cyclic if:

c(x) ∈ C ⇒ xc(x) mod (xn − 1) ∈ C.

• So when we interpret codewords of a cyclic code as
polynomials, we must perform the operations mod xn − 1.

147/205

Cyclic Codes: Properties

Proposition
Let C be a cyclic code of length n over Fq.

1. If c(x) ∈ C and p(x) ∈ Fq[x], then p(x)c(x) ∈ C.
2. There exists a unique polynomial g(x) ∈ C of degree r < n
such that C = {p(x)g(x) | p(x) ∈ Fq[x]}. g(x) is the
polynomial of least degree of C.

3. g(x) is a divisor of xn − 1.
4. C has dimension k = n− deg(g) = n− r.

Definition
g(x) is called the generating polynomial of C and
h(x) = (xn − 1)/g(x) is called the parity-check polynomial.

148/205

Cyclic Codes: Properties

Remarks

• As g(x) | (xn − 1), there are as many cyclic codes of length
n as 2m, where m is the number of irreducible factors of
xn − 1 ∈ Fq[x].

• The codewords have the following shape (r = deg(g)):

c(x) = (p0 + p1x+ · · ·+ pn−r−1xn−r−1)g(x).

• The information symbols are p0p1 . . .pn−r−1, so the
previous equality can be seen as an encoding mapping for
C (but not a systematic one).

• c(x) ∈ C ⇐⇒ c(x)h(x) = 0 (mod xn − 1).

149/205

Generating and Parity-Check Matrices

Let C be a cyclic code with generating and parity-check
polynomials:

g(x) = g0 + g1x+ · · ·+ gn−kxn−k

h(x) = h0 + h1x+ · · ·+ hkxk

From g and h we can write a generating matrix and a
parity-check matrix for C:

• G =

g0 g1 . . . gn−k 0 . . . 0
. . .

0 . . . 0 g0 g1 . . . gn−k


• H =

hk hk−1 . . . h0 0 . . . 0
. . .

0 . . . 0 hk hk−1 . . . h0


150/205

Cyclic Codes: Encoding Mappings

A non-systematic encoding
If g(x) is the generator polynomial, then:

p(x) = p0 + p1x+ · · ·+ pk−1xk−1 7→ p(x)g(x)

is a non-systematic encoding mapping.

A systematic encoding

1. Multiply p(x) by xn−k.
2. Divide xn−kp(x) by g(x): xn−kp(x) = g(x)q(x) + r(x), where
deg(r) < deg(g).

3. Encode p(x) as xn−kp(x)− r(x):

xn−kp(x)− r(x) = (−r0,−r1, . . . ,−rn−k−1,p0,p1, . . . ,pk−1).

151/205

Example

In F2[x]: x7 − 1 = (1+ x+ x3)(1+ x+ x2 + x4).

Let C be the cyclic code of length 7 with g(x) = 1+ x+ x3 and
h(x) = 1+ x+ x2 + x4.

p(x) = 1+ x3 can be encoded as follows:

• non-systematic encoding:
1+ x3 7→ (1+ x3)g(x) = 1+ x+ x4 + x6

1001 7→ 11001010.

• systematic encoding:
1. (1+ x3)x3 = x3 + x6;
2. x6 + x3 = g(x)(x+ x3) + (x+ x2);
3. and finally: 1+ x3 7→ (x+ x2) + (x3 + x6) = 0111001

152/205

Cyclic Redundancy Code: CRC

• When a cyclic code is used for error-detecting is called a
cyclic redundancy code or a CRC.

• All generator polynomials have the form (1+ x)g(x), so a
CRC contains the even binary code (all codewords have an
even number of ones — prove it!).

• CRC are used in:
• popular error-detecting signatures,
• checksums,
• TCP-IP,
• disk interfaces, network software and hardware, program
loaders, backup software, revision-control systems, etc

153/205

CRC: Properties

Remarks

• The number k of information symbols can change from
one data packet to another one. But the number of
parity-check bits is always the same: the degree of g(x).

• For example, in the Ethernet protocol, 32 = n− k. In this
protocol, the length of the data packet k can varied from
512 to 12144 bits.

• Minimum distance d in function of the code length n:
n 90–123 124–203 204–300 301–3006 3007–12144
d 8 7 6 5 4

154/205

Some Standard CRC

CRC-4 x4 + x3 + x2 + x+ 1
CRC-7 x7 + x6 + x4 + 1
CRC-8 x8 + x7 + x6 + x4 + x2 + 1
CRC-8 (GSM) x8 + x7 + x4 + x3 + x+ 1
CRC-12 x12 + x11 + x3 + x2 + x+ 1
CRC-16 (ANSI) x16 + x15 + x2 + 1
CRC-16 (CCITT) x16 + x12 + x5 + 1
CRC-16 (SDLC) x16 + x15 + x13 + x7 + x4 + x2 + x+ 1
CRC-24 x24 + x23 + x14 + x12 + x8 + 1
CRC-24 (GSM 3rd gen.) x24 + x23 + x6 + x5 + x+ 1
CRC-32 (Ethernet) x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

155/205

Example: CRC-16 CCITT

• The recommended 16-bit CRC by the CCITT (International
Communication Standards) has generator polynomial:

g(x) = x16 + x12 + x5 + 1 = 0x11021

• A message is considered as a long binary string and then
as a binary polynomial m(x).

• The CRC-16 of m(x) is the remainder of the division of
m(x) by 0x11021.

• For example: the ASCII string corresponding to ‘DOG’ is
0110 0100 0110 1111 0110 0111 or the binary
polynomial
x22+x21+x18+x14+x13+x11+x10+x9+x8+x6+x5+x2+x+1.
Its CRC-16 is x14 + x9 + x8 + x6 + x2 + 1 = 0x8389.

156/205

Example: CRC-16 CCITT

• To compute the CRC-16 of a message m(x), we read a bit at
a time and compute the new CRC from the last CRC
computed.

• If m(x) = g(x)q(x) + r(x), with deg(r) ≤ 15, and b is the last
bit read, then the new message is m(x)x+ b and:

m(x)x+ b = g(x)q(x)x+ r(x)x+ b
≡ r(x)x+ b (mod g(x))

• That is, the CRC-16 of the new message is the same as the
CRC-16 of r(x)x+ b. So we shift the old CRC-16 one
position to the left and then make a xor with b.

157/205

Example: CRC-16 CCITT

This is what the following C function does.

short BitwiseCRC16 (int bit, short crc) {
long longcrc = crc ;
longcrc = (longcrc << 1)^bit ; /* next bit */
if (longcrc & 0x10000)
longcrc ^= 0x11021 ; /* reduce */

return longcrc ;
}

158/205

Cyclic Codes: Meggitt’s Decoding

Remarks

• As cyclic codes are linear, we can use the general
algorithm of syndromes and leaders for decoding them.

• If a word y has an error in position i, then applying n− 1− i
cyclic shifts to y we can put that error in position n− 1.

• So it is enough to construct the table of
syndromes-leaders for those leaders of weight ≤ ρ

(incomplete decoding) that have an error in the last
position.

• Meggitt’s algorithm is based on this observation.

159/205

Cyclic Codes: Syndromes

Let C be a binary cyclic code of length n with generating
polynomial g(x).

Definition
The syndrome s(y) a word y(x) ∈ F2[x]n is the remainder of
the division of y(x) by g(x).

Theorem
If y(i)(x) is i-th cyclic shift of y(x), then:

s(y(i)(x)) = s(xis(y(x))).

That is, if we apply a cyclic shift to y(x), the syndrome of the
new word is obtained multiplying s(y) by x and reducing the
result mod g(x). 160/205

Meggitt’s Algorithm

Preprocessing
Compute the list L of leaders of degree n− 1 and weight t ≤ ρ

together with their syndromes.

Algorithm
Let s(x) = s(y(x)) be the syndrome of the word received y(x).

1. If s(x) = 0: no error.
2. i = n− 1.
While i ≥ 0 do:

if s(x) ∈ L: correct position i
s(x) := s(xs(x))
i = i− 1

161/205

Meggitt’s Algorithm: Example

• g(x) = 1+ x4 + x6 + x7 + x8 generates a cyclic code with
n = 15, k = 7 and d = 5 (ρ = 2).

• The list L contains the leaders of degree 14 and weight
≤ 2; that is, the leaders of the form x14 and xi + x14, with
0 ≤ i ≤ 13.

ℓ(x) s(x) ℓ(x) s(x)

x14 x7 + x6 + x5 + x3 x7 + x14 x6 + x5 + x3
1+ x14 x7 + x6 + x5 + x3 + 1 x8 + x14 x5 + x4 + x3 + 1
x+ x14 x7 + x6 + x5 + x3 + x x9 + x14 x7 + x4 + x3 + x+ 1
x2 + x14 x7 + x6 + x5 + x3 + x2 x10 + x14 x3 + x2 + 1
x3 + x14 x7 + x6 + x5 x11 + x14 x7 + x6 + x5 + x4 + x2 + 1
x4 + x14 x7 + x6 + x5 + x4 + x3 x12 + x14 x7 + x6 + x4 + x
x5 + x14 x7 + x6 + x3 x13 + x14 x7 + x4 + x3 + x2
x6 + x14 x7 + x5 + x3

162/205

Meggitt’s Algorithm: Example

• Let us apply the algorithm to:

y(x) = 1+ x2 + x5 + x6 + x7 + x8 + x9 + x10 + x14

s(y) = 1+ x3 + x6 /∈ L

i s(x)
14 x6 + x3 + 1
13 x7 + x4 + x
12 x7 + x6 + x5 + x4 + x2 + 1 ∈ L (*)
.

9 x7 + x6 + x5 + x3 + x2 ∈ L
.

• There are two errors in positions 9 and 12. Corrected word:
1+ x2 + x5 + x6 + x7 + x8 + x10 + x12 + x14.

• If we look at the leader corresponding to the step (*), we
catch the second error! 163/205

Roots of Unity

Definition
The roots of the polynomial xn − 1 in some finite field F2m are
called the roots of unity.

Properties

• If n is odd, there are exactly n distinct roots of unity.
• There exists a root of unity ω such that all roots of unity
are 1, ω, ω2, . . . , ωn−1.

• ω is called a primitive root of unity.

164/205

Factoring xn − 1

Strategy for factoring xn − 1: look for the smallest F2m that
contains all the roots of unity.

• If ω ∈ F2m is a primitive root of unity, then
n = ord(ω) | (2m − 1).

• Take m ≥ 1 as the least integer such that 2m ≡ 1 (mod n).
m is called the order of 2 mod n.

• Let α ∈ F2m be a primitive element (so of order 2m − 1).
• If r = (2m − 1)/n, then the order of ω = αr is n.
• We can factor xn − 1 as:

xn − 1 = (x− 1)(x− ω) · · · (x− ωn−1), over F2m [x]
xn − 1 = f1(x)f2(x) · · · fs(x), over F2[x]

165/205

Cyclotomic Classes mod n

Proposition
Let p(x) ∈ F2[x] and assume that p(β) = 0, where β ∈ F2m .
Then p(β2) = 0, p(β4) = 0, and so on.

Definition
The cyclotomic class of an integer j ∈ Zn is the set:

Cj = {j, 2j, 22j, . . . , 2r−1j} mod n

where r is the least integer ≥ 1 such that 2rj ≡ j (mod n).

166/205

Cyclotomic Classes mod n

Remarks

• The cyclotomic classes mod n form a partition of Zn.
• To compute the factors fi(x) we group the roots of unity
whose exponents belong to the same cyclotomic class.

• There is an irreducible factor of xn − 1 over F2[x] for each
cyclotomic class mod n.

167/205

Examples of Cyclotomic Classes

Cyclotomic classes mod 7 and irreducible factors of x7 − 1
C0 = {0}, C1 = {1, 2, 4}, C3 = {3, 6, 5}.

Factors: one of degree 1 and two of degree 3.

Cyclotomic classes mod 11 and irreducible factors of x11 − 1
C0 = {0}, C1 = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

Factors: x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 and
x− 1.

Cyclotomic classes mod 23 and irreducible factors of x23 − 1
C0 = {0}, C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12},
C5 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.

Factors: three factors of degrees 1, 11 and 11.

168/205

Factorization of xn − 1 over F2[x]

Theorem
Then the irreducible factors of xn − 1 are the polynomials:

fC(x) =
∏
j∈C

(x− ωj),

where C is a cyclotomic class mod n.

169/205

Factorization of x7 − 1 in F2[x].

• Order of 2 mod 7 is 3.
• Now: r = (23 − 1)/7 = 1. Take h(x) = 1+ x2 + x3 and then:

F8 = F2[x]/h(x), α = x, ω = α1 = α.

• Finally:

fC0 = x− 1
fC1 = (x− α)(x− α2)(x− α4) = x3 + x2 + 1
fC3 = (x− α3)(x− α5)(x− α6) = x3 + x+ 1

170/205

Factorization of x23 − 1 in F2[x].

• Order of 2 mod 23 is 11.
• Now: r = (211 − 1)/23 = 89. If α ∈ F211 is a primitive
element, then ω = α89 is a 23th root of unity.

• Finally:

fC0 = x− 1

fC1 =
∏
j∈C1

(x− ωj) = x11 + x9 + x7 + x6 + x5 + x+ 1

fC5 =
∏
j∈C5

(x− ωj) = x11 + x10 + x6 + x5 + x4 + x2 + 1

171/205

Binary BCH Codes

Roots of a Cyclic Code

Let C be a binary cyclic code of odd length n with generating
polynomial g(x) | (xn − 1).

• Let F2m be a finite field where xn − 1 decomposes
(n | (2m − 1)). Then:

g(x) = (x− α1) · · · (x− αr), r = deg(g),

where α1, . . . , αr ∈ F2m are r distinct elements.
• Then the code C can be described as follows:

c(x) ∈ C ⇐⇒ c(αi) = 0, i = 1, . . . , r

Definition
The elements α1, . . . , αr ∈ F2m are called the roots of C and
{α1, . . . , αr} is called the root set of C.

172/205

Roots of a Cyclic Code

Remark

• If ω is a root of unity, then the roots of a cyclic code can
be written as α1 = ωi1 , . . . , αr = ωir

• Can we choose the exponents i1, . . . , ir such that C has
good properties? This means: can we control the
minimum distance by means of the exponents?

Proposition
If there are δ − 1 consecutive powers of ω among the roots of
C, then d(C) ≥ δ.

Definition
This parameter δ is called the designed distance of the code.

173/205

BCH Codes

Data to build a BCH code

• n: an odd integer (the length).
• m ≥ 1: an integer such that 2m ≡ 1 (mod n) (so that xn − 1
factors in F2m).

• ω ∈ F2m : a primitive root of unity: ωn = 1.
• δ ≥ 2: the designed distance.
• ℓ ≥ 1: an offset.

Definition
Define BCHω(δ, ℓ) as the binary cyclic code of length n whose
root set is the smallest set containing the roots:

ωℓ, ωℓ+1, . . . , ωℓ+δ−2.

174/205

BCH Codes

Strict and primitive BCH codes

• If ℓ = 1, the BCH code is called strict.
• If n = 2m − 1 and ω = α is a primitive element of F2m , the
BCH code is called primitive.

• For strict and primitive BCH codes, the data are: the
length n = 2m − 1, the designed distance δ, ω = α ∈ F2m a
primitive element.

• In this case the roots of the BCH code are at least
α, α2, . . . , αδ−2.

• The minimum distance is d ≥ δ.
• The dimension k can be easily computed in every
concrete case.

175/205

Examples

Let q = 2, m = 4, α ∈ F16 primitive. The cyclotomic classes mod
15 are C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10} and
C7 = {7, 14, 13, 11}.

• We have:
BCH(δ = 4) = BCH(δ = 5)⇒ d4 = d5 ≥ 5
BCH(δ = 6) = BCH(δ = 7)⇒ d6 = d7 ≥ 7

• The roots of BCH(5) are α, α2, α3, α4. The cyclotomic
classes involved are C1 and C3. Hence the generating
polynomial is g(x) = fC1(x)fC3(x) whose degree is
|C1|+ |C3| = 8.

• Moreover, c(x) ∈ BCH(5) iff c(α) = c(α3) = 0 (a power from
each cyclotomic class is enough).

176/205

Decoding BCH Codes

Let B be a binary, strict and primitive BCH code of length n.

• Write the word received y(x) as:

y(x) = c(x) + e(x), e(x) =
n−1∑
i=0

eixi = (e0, e1, . . . , en−1)

where c(x) ∈ B and e(x) is the error vector (or polynomial).
• Assume that 1 ≤ |e| = t ≤ ρ. Write:

e(x) = xi1 + xi2 + · · ·+ xit , (i1 < i2 < · · · < it).

177/205

Error Location Polynomial

Error locators and error location polynomial
Error locators: η1 = αi1 , η2 = αi2 , . . . , ηt = αit .
Error location polynomial: ℓ(x) = (1− η1x) · · · (1− ηtx).

Remark
The polynomial ℓ(x) has t distinct roots, the inverses of the
error locators ηj.
Hence: gcd(ℓ(x), ℓ′(x))) = 1.

178/205

The Key Equation

Syndrome
We define the syndrome of the word y(x) as the polynomial
s(x) =

∑δ−2
i=0 sixi, where:

si = e(αi+1) = y(αi+1).

Key Equation

1. The polynomials ℓ(x) and s(x) satisfy the key equation

ℓ(x)s(x) ≡ ℓ′(x) (mod xδ−1).

2. If there is a polynomial ℓ(x) of degree ≤ t = ⌊(δ − 1)/2⌋
and distinct roots satisfying this equation, then it is
unique up to a factor of F2m .

179/205

Towards a Decoding Algorithm

Remark

• Write the Key Equation as a(x)xδ−1 + ℓ(x)s(x) = ℓ′(x), for
some a(x).

• A typical step of Euclid’s algorithm produces ak(x), bk(x)
and rk(x) such that ak(x)xδ−1 + bk(x)s(x) = rk(x).

• If we want rk(x) = ℓ′(x) and bk(x) = ℓ(x), then we must
have:

deg rk(x) <
δ − 1
2 , degbk(x) ≤

δ − 1
2

and hence deg rk(x) < (δ− 1)/2 and deg rk−1(x) ≥ (δ− 1)/2.
• We can set ℓ(x) = bk(x)

bk(0) .

180/205

Decoding Algorithm: Euclidean Algorithm

1. Compute the syndrome polynomial:
s(x) = s0 + s1x+ · · ·+ sδ−2xδ−2,

where si = y(αi+1), i = 0, . . . , δ − 2.
2. If s(x) = 0, then there is no error.
3. Otherwise, apply Euclid’s algorithm to xδ−1 and s(x) until
we get polynomials rk(x), ak(x) and bk(x) such that:

rk(x) = ak(x)xδ−1 + bk(x)s(x)

and deg rk(x) < (δ − 1)/2 and deg rk−1(x) ≥ (δ − 1)/2.
4. Let ℓ(x) = bk(x)/bk(0). This is the error locator polynomial.
5. Find its roots ξ1, . . . , ξt.
6. Then ηi = ξ−1i are the error locators and logα(ηi) the error
positions.

181/205

Example of Decoding

The code B
B = BCH(7) of length 15 = 24 − 1. F16 = F2[x]/(x4 + x+ 1),
α ∈ F16 is primitive. Then α, α2, α3, α4, α5, α6 are among the
roots of B. The cyclotomic classes of 2 mod 15 that we need
are C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12} and C5 = {5, 10}. So
g(x) = fC1(x)fC3(x)fC5(x), its degree is 10, and k = dimB = 5.

Assume we receive the word:

y = 111011100000110
= 1+ x+ x2 + x4 + x5 + x6 + x12 + x13.

182/205

Example of Decoding

Compute the syndrome polynomial:

s0 = y(α) = 1+ α+ α2 + α4 + α5 + α6 + α12 + α13 = α6

s1 = y(α2) = y(α)2 = α12

s2 = y(α3) = 1+ α3 + α6 + α12 + α15 + α18 + α36 + α39 = α8

s3 = y(α4) = y(α)4 = α9

s4 = y(α5) = 1+ α5 + α10 + α20 + α25 + α30 + α60 + α65 = α10

s5 = y(α6) = y(α3)2 = α

That is: s(x) = α6 + α12x+ α8x2 + α9x3 + α10x4 + αx5.

183/205

Example of Decoding

Apply Euclid’s algorithm to x6 and s(x) until we get a
remainder of degree less than (δ − 1)/2 = 3.

r−1(x) = x6

r0(x) = s(x) q1(x) = α14x+ α8

r1(x) = α13x4 + α12x3 + α6x2 + α14 q2(x) = α3x+ α7

r2(x) = α4x3 + α3x2 + α7x q3(x) = α9x
r3(x) = α11x2 + α14

184/205

Example of Decoding

Now we compute the polynomials bk(x):

b−1(x) = 0
b0(x) = 1
b1(x) = q1(x) = α14x+ α8

b2(x) = b0(x)− b1(x)q2(x) = α2x2 + αx
b3(x) = b1(x)− b2(x)q3(x) = α11x3 + α10x2 + α14x+ α8

and b3(0) = α8, so the error locator polynomial is:

ℓ(x) = b3(x)
b3(0)

= α3x3 + α2x2 + α6x+ 1.

185/205

Example of Decoding

Finally we find the roots of ℓ(x):

ℓ(1) = α3 + α2 + α6 + 1 = 1 ℓ(α3) = α12 + α8 + α9 + 1 = 1
ℓ(α) = α6 + α4 + α7 + 1 = α8 ℓ(a4) = 1+ α10 + α10 + 1 = 0
ℓ(α2) = α9 + α6 + α8 + 1 = α

So α4 is a root and η1 = α−4 = α11 is an error locator.

Now we divide ℓ(x) by x− α4 and the quadratic equation we
get has roots α10 and α13. So the other error locators are
η2 = α−10 = α5 and η3 = α−13 = α2 .

Conclusion: there are 3 errors at positions: 2, 5 and 11; and the
most likely word sent is:

y(x)− (x2 + x5 + x11) = 110010100001110.
186/205

Reed-Solomon Codes

Reed-Solomon (RS) Codes

• Introduced by Reed and Solomon in 1960.
• First efficient decoding algorithm by Berlekamp (1968) and
Massey (1969)

• RS codes are special BCH codes, so also cyclic codes (and
linear codes)

• These codes are Maximum Distance Separable (MDS)
codes: d is maximum for fixed n and k: d = n− k+ 1.

• RS codes are never binary codes: they are defined over
some F2r , r > 1.

• Applications: used by NASA (from Voyager 1977) and the
European Space Agency; CD-ROM, Audio Compact Disc,
and DVD-ROM; Pay per view TV and TDT…

187/205

Finite Fourier Transform (FFT)

• r ≥ 2 an integer, q = 2r, n = q− 1.
• β ∈ F∗

q a primitive element: βq−1 = βn = 1. (Observe that
β−1 is also primitive.)

• Fq[x]n = {p(x) ∈ Fq[x] | deg p(x) < n}.

The FFT of a polynomial
Define the mapping Fβ : Fq[x]n −→ Fq[x]n as:

Fβ(a(x)) =
n−1∑
i=0

a(βi)xi

The polynomial A(x) = Fβ(a(x)) is called the Finite Fourier
Transform (FFT) of a(x).

188/205

Finite Fourier Transform (FFT)

Properties of the mapping Fβ

• Fβ is a bijective linear mapping.
• The inverse mapping is:

Fβ−1(A(x)) =
n−1∑
j=0

A(β−j)xj

• a(x) = Fβ−1(A(x)) is called the inverse FFT of A(x).

189/205

Reed-Solomon Codes

Let k be an integer such that 1 ≤ k ≤ n and d = n− k+ 1.
Definition
The RS code R = R(2r,d) is the set of polynomials of degree
less than n that are the FFT of polynomials of degree less
than k:

R = {Fβ(a(x)) : a(x) ∈ Fq[x]k}

Remark
Hence, A(x) ∈ R if, and only if, its inverse FFT Fβ−1(A(x)) has
degree less than k. That is, if:

A(β) = A(β2) = · · · = A(βd−1) = 0

(Observe that β−j = βn−j, because βn = 1.)
190/205

Reed-Solomon Codes

Properties

• Parameters: R has length n = q− 1, dimension k and
minimum distance d = n− k+ 1.

• Syndrome polynomial of A(x):

s(x) = A(β) + A(β2)x+ · · ·+ A(βd−1)xd−2.

• Encoding: to encode a polynomial of degree less than k,
we compute its FFT (non-systematic encoding!):

a(x) ∈ Fq[x]k 7→ A(x) =
n−1∑
i=0

a(βi)xi ∈ Fq[x]n.

191/205

Reed-Solomon Codes

Properties

• A Reed-Solomon code is a cyclic code:

A(x) ∈ R ⇐⇒ A(β) = · · · = A(βd−1) = 0

which is equivalent to A(x) being a multiple of the
generating polynomial:

g(x) = (x− β) · · · (x− βd−1).

• A Reed-Solomon code is BCH code over Fq, with designed
distance d, because its generating polynomial vanishes at
d− 1 = n− k consecutive powers of β, which is a root of
unity.

192/205

Example: R(16, 9). Encoding

Let F16 = F2[x]/(x4 + x+ 1). α = x ∈ F16 is a primitive element.
Consider the Reed-Solomon code R(16, 9), with parameters:
n = 15, k = 16− 9 = 7, d = 9.

The word m = α60α51α0α2, or as polynomial:

m(x) = α6 + α5x2 + x3 + αx4 + α2x6,

is encoded as its FFT M(x) =
∑14

j=0m(αj)xj:

M(x) = α13 + α6x+ α14x2 + α4x3 + α2x4 + α2x5 + αx6 + α4x7 +
+ α2x8 + α4x9 + α12x11 + α4x12 + α10x13 + α9x14

193/205

Example: R(16, 9). Decoding

Consider the word: N = α5α90001α4α3α000α13αα8, or as
polynomial:

N(x) = α5+α9x+ x5+α4x6+α3x7+αx8+α13x12+αx13+α8x14.

• First, compute the inverse FFT n(x) =
∑14

j=0 N(α−j)xj:

n(x) = α11 + αx+ α4x3 + α13x4 + α12x5 + α8x6 + αx7 + α14x8 +
+ α4x9 + α14x10 + α11x11 + α6x12 + α8x13 + α3x14

194/205

Example: R(16, 9). Decoding

• As deg(n(x)) ≥ 8, we know there have been errors.
• The syndromes are the last eight coefficients of n(x):

s0 = α3, s1 = α8, s2 = α6, s3 = α11,

s4 = α14, s5 = α4, s6 = α14, s7 = α

• Write the syndrome polynomial:

s(x) = αx7 + α14x6 + α4x5 + α14x4 + α11x3 + α6x2 + α8x+ α3

195/205

Decoding Reed-Solomon Codes

Setting

• We send A(x) ∈ R and we get B(x) = A(x) + E(x), where
E(x) is the error introduced by the channel.

• Apply the inverse FFT to the equality B(x) = A(x) + E(x):

b(x) = a(x) + e(x)

where dega(x) ≤ k− 1, so we have that:

ek = bk, . . . , en−1 = bn−1.

• These are the coefficients of the syndrome polynomial.
• We only have to compute the coefficients ej, for
j = 0, . . . , k− 1.

196/205

Decoding Reed-Solomon Codes

Error Locator and Evaluating Polynomials

• The error locator polynomial has degree t (the number of
errors) and vanishes at βi iff an error has happened at
position i:

σ(x) =
∏
i
(x− βi) = σ0+ σ1x+ · · ·+ σt−1xt−1+ xt = xtℓ

(
1
x

)
where ℓ(x) is the polynomial introduced for BCH codes.

• The evaluating polynomial is used to compute the
magnitudes εi of the errors:

ev(x) =
t∑
i=1

ηiεi
∏
j ̸=i

(1− ηjx)

197/205

Decoding Reed-Solomon Codes

Error locator and evaluating polynomials: properties

1. In the binary case: εi = 1, for all i.
2. In the binary case: ev(x) = ℓ′(x).
3. deg ℓ(x) = t ≥ 1, deg ev(x) < t.
4. gcd(ℓ(x), ev(x)) = 1.
5. Key Equation: ev(x) ≡ ℓ(x)s(x) (mod xd−1).
6. We can find ℓ(x) (and σ(x)) applying the extended
Euclidean algorithm to xd−1 and s(x).

198/205

Decoding Reed-Solomon Codes

A backward recurrence

• For RS codes, we solve a linear recurrence to find the
unknown terms ej, instead of finding the evaluating
polynomial to compute the magnitudes of the errors.

• Set the initial conditions (already known):

en−1 = bn−1, . . . , ek = bk.

• Compute the remaining ej from the backward recurrence:

ej = σt−1ej+1 + · · ·+ σ0ej+t

if j = k− 1, k− 2, . . . , 0, where the σi are the coefficients of
the error locator polynomial σ(x).

199/205

Example: R(16, 9). Decoding

• Recall that the syndrome polynomial is:

s(x) = αx7 + α14x6 + α4x5 + α14x4 + α11x3 + α6x2 + α8x+ α3.

• We apply the extended euclidean algorithm to xd−1 = x8
and s(x) until we get a remainder of degree less than
(d− 1)/2 = 4.

r−1 = x8

r0 = s(x) q1 = α14x+ α11

r1 = α5x6 + α12x5 + α14x4 + α4x3 + α4x2 + αx+ 1 q2 = α11x+ α

r2 = α14x5 + α14x4 + α14x3 + α8x2 + α12x+ α9 q3 = α6x+ 1

r3 = α5x4 + α4x3 + α11x2 + α6x+ α7 q4 = α9x+ α12

r4 = α13x3 + x2 + α8x+ α14

200/205

Example: R(16, 9). Decoding

• Now we compute the polynomial b4(x):
b2 = 1+ q1q2 = α10x2 + α2x+ α6

b3 = b1 + b2q3 = αx3 + αx2 + αx+ α4

b4 = b2 + b3q4 = α10x4 + α9x3 + α13x2 + α2x+ α11

So the number of errors is 4.
• Now we know that:

ℓ(x) = α−11b4(x) = α14x4 + α13x3 + α2x2 + α6x+ 1

σ(x) = x4ℓ
(
1
x

)
= α14 + α13x+ α2x3 + α6x3 + t4

That is: σ0 = α14, σ1 = α13, σ2 = α2, σ3 = α6.
• The zeros of σ(x) are α3, α4, α9, α13. So the error positions
are: 3, 4, 9, 13 (but this algorithm does not use this
information).

201/205

Example: R(16, 9). Decoding

• Instead we solve the linear recurrence:

ej = σ3ej+1 + σ2ej+2 + σ1ej+3 + σ0ej+4
= α6ej+1 + α2ej+2 + α13ej+3 + α14ej+4

with the initial conditions:

e7 = α, e8 = α14, e9 = α4, e10 = α14, . . .

• We get:

e6 = 0, e5 = α12, e4 = α6, e3 = α10,

e2 = 0, e1 = α, e0 = α3

202/205

Example: R(16, 9). Decoding

• Hence the inverse FFT of the error vector is:

e = (α3, α, 0, α10, α6, α12, 0, α, α14, α4, α14, α11, α, α8, α3).

• Finally, the information symbols are:

n+ e = (α5, 0, 0, α2, 1, 0, α9, 0, . . . , 0).

• We can check our computations by calculating the FFT of
this last word. We have to get the word N modified at
positions 3, 4, 9, 13. Indeed, this FFT is:

α12t13 + α10t9 + α14t4 + α14t3.

203/205

A decoding algorithm for RS codes

Input: the received word B(x).
Output: the information symbols or ∗ (more than ρ errors).

1. Compute the inverse FFT of B(x): b(x) = Fβ−1(B(x)).

2. Set ej = bj, for j = k, . . . ,n− 1. The syndrome polynomial of B(x)
is s(x) =

∑d−2
i=0 bi+kxi.

3. Apply the euclidean algorithm to xd−1 and s(x) to compute the
error-locator polynomial ℓ(x) (of degree t ≤ ρ, say).

4. If ℓ(0) = 0, then stop and return ∗; else continue.

5. If ℓ(x) does not have t simple roots, then stop and return ∗; else
continue.

204/205

A decoding algorithm for RS codes

6. Compute the coefficients of the reciprocal polynomial of ℓ(x):

σ(x) = xtℓ
(
1
x

)
=

t∑
i=0

σixi

7. With the initial conditions computed in 2, solve the linear
recurrence:

ej = σt−1ej+1 + · · ·+ σ0ej+t, j = k− 1, . . . , 0

8. Compute the polynomial a(x) = b(x) + e(x).

9. If dega(x) ≥ k, then stop and return ∗; else continue.

10. The information symbols are the coefficients of a(x).

205/205

	Introduction
	Information and Entropy
	Entropy
	Joint Entropy
	Conditioned Entropy
	Mutual Information

	Codes
	Idea
	Concepts on Alphabets

	Source Coding
	Discrete Memoryless Information Sources
	Huffman encodings
	First Shannon Theorem
	Extensions of a source

	Channel Coding
	Communication Channels
	Channel Capacity
	Channel Coding

	Block Codes
	Definition and examples
	Hamming distance
	Parameters of a code
	Bounds
	Perfect codes
	Equivalence of codes
	Detection and correction of errors

	Finite Fields
	Introduction
	Definitions and Examples
	Order of an element
	Primitive elements
	Discrete Logarithms and Zech's Logarithms

	Linear Codes
	Definitions
	Generating Matrix and Encodings
	Parity-Check Matrix
	Hamming Codes
	Decoding Linear Codes
	Decoding Hamming Codes
	Some Interesting Codes
	A BCH Code Correcting 2 Errors

	Cyclic Codes
	Definition and properties
	Cyclic Redundancy Codes: CRC
	Meggitt's algorithm
	Factorization of xn-1

	Binary BCH Codes
	Roots of a Cyclic Code
	Constructing BCH Codes
	Decoding BCH Codes
	The Euclidean Algorithm

	Reed-Solomon Codes
	Introduction
	The Finite Fourier Transform
	Reed-Solomon codes
	Decoding Reed-Solomon codes
	The Decoding Algorithm

