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Abstract

Edge computing is a distributed computing paradigm that shifts the computa-

tion capabilities close to the data sources. This new paradigm, coupled with the

use of parallel embedded processor architectures, is becoming a very promising solu-

tion for time-sensitive distributed applications used in Internet of Things and large

Cyber-Physical Systems (e.g., those used in smart cities) to alleviate the pressure on

centralized solutions. However, the distribution and heterogeneity nature of the edge

computing complicates the response-time analysis on these type of applications. This

thesis addresses this challenge by proposing a new Directed Acyclic Graph (DAG)-task

based system model to characterize: (1) the distribution nature of applications exe-

cuted on the edge; and (2) the heterogeneous computation and network communica-

tion capabilities of edge computing platforms. Based on this system model, this work

presents �ve di�erent scheduling strategies: four sub-optimal but tractable heuristics

and an optimal but costly approach based on a mixed integer linear programming

(MILP), that minimize the overall response time of distributed time-sensitive applica-

tions. To address both issues, and as a proof of concept, we use COMPSs, a framework

composed of a task-based programming model and a runtime used to program and

e�ciently distribute time-sensitive applications across the compute continuum. How-

ever, COMPSs is agnostic of time-sensitive applications, hence in this work we extend

it to consider the dynamic scheduling based on the proposed scheduling strategies.

Our results show that our scheduling heuristics outperform current scheduling solu-

tions, while providing an average and upper-bound execution time comparable to the

optimal one provided by the MILP allocation approach.
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Chapter 1

Introduction

1.1 Motivation

The digitalization process undergone in multiple application domains is challenging

the development of Internet of the Things (IoT) and large cyber-physical systems

(CPS) with a variety of requirements. Among these requirements, high-performance

and real-time guarantees are two important ones: the former refers to the capability

of processing a considerable number of data sources retrieving and sending informa-

tion collected about their surroundings; while the latter refers to the requirement of

operating within a given time budget to accomplish certain functionalities. Smart

cities are a prominent example that is facing these two requirements. The advent of

connected and autonomous cars, featuring advanced functionalities based on knowl-

edge coming from the city, imposes the need of accomplishing high-performance and

real-time requirements.

Edge computing [1] is a new computing paradigm that e�ectively addresses these

two challenges. On one side, it shifts the computation as close as possible to where

the data is originated, allowing to manage the increasing number of data sources

and alleviating the pressure on centralized solutions. Moreover, the use of powerful

parallel embedded processor architectures at the edge side (e.g., NVIDIA Jetson AGX

[2], Xilinx Versal [3], Kalray MPPA [4]) can also help alleviating this pressure due

to their huge computing capabilities, while providing lower network costs and more

energy e�cient solutions. On the other side, recent works have demonstrated that the

parallel programming models used to program these edge devices, e.g., CUDA [5, 6]

and OpenMP [7, 8], can provide the real-time guarantees needed on the �nal resource.
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Chapter 1. Introduction

Distributed systems play an immense role in edge computing, as the latter is

distributed by nature. Distributed systems not only support the shifting of both the

computation and storage closer to the origin introduced by edge computing, but also

contributing with reliability, e�ciency and scalability. Moreover, the vast amount of

geographically-distributed data produced by edge devices needs to be processed in

a distributed manner as centralized systems became a bottleneck for data analytics.

Hence, distributed systems also help alleviating the processing of Big Data analytics

providing a high-quality aggregate performance.

Despite the clear bene�ts of edge computing and distributed systems, the develop-

ment of time-sensitive applications remains challenging mainly for two reasons. First,

the edge computing environment composed of heterogeneous interconnected edge de-

vices, a.k.a. the compute continuum, complicates the development and deployment of

these applications. Second, due to the distribution and heterogeneous nature of the

compute continuum, the response time analysis of such applications is fairly complex.

In this thesis we aim to address these two challenges.

To do so, and as a proof of concept, we use COMPSs, a framework composed

of a task-based programming model and a runtime [9, 10], used to program and e�-

ciently distribute time-sensitive applications across the compute continuum. However,

COMPSs is agnostic of time-sensitive applications, not supporting any response time

analysis. In this work, we extend the COMPSs framework to consider a dynamic

scheduling based on di�erent scheduling heuristics that we also present in this work.

1.2 Contributions

The contributions presented in this thesis are the following:

1. We �rst propose a novel task based system model to describe the execution and

timing behavior of time-sensitive distributed applications on edge computing

environments. It consists of two components: a Digraph compute continuum

model that characterizes the edge computing resources and the communication

links between them; and a Directed Acyclic Graph (DAG) task model that cap-

tures the parallel and distributed nature of applications, when executing on the

2



Chapter 1. Introduction

compute continuum. Our DAG based model is an extension of the DAG task

model widely used for scheduling analysis in shared-memory processors [11].

2. Secondly, based on the proposed system model, we present an optimal but costly

mixed integer linear programming (MILP) scheduling strategy, and four di�erent

sub-optimal but tractable scheduling heuristics. Our scheduling strategies have a

common twofold objective: (1) to minimize the overall execution time and (2) to

provide an upper bound response time of time-sensitive distributed applications.

3. Finally, we also enhanced the Comp Superscalar (COMPSs) framework, devel-

oped at Barcelona Supercomputing Center, to provide a dynamic scheduling

based on the proposed scheduling heuristics. This allows, not only to provide

timing guarantees to COMPSs applications, but also to reduce the average ex-

ecution time of applications, as we demonstrate in the evaluation.

1.3 Publications and Impact

The contributions presented in this thesis are currently being used in two di�erent

European Projects: CLASS [12] and ELASTIC [13], in which the di�erent alloca-

tion strategies implemented in the COMPSs framework are used to provide real-time

guarantees to the time-sensitive distributed applications executed throughout the edge

compute continuum. Moreover, the application developed and used in the evaluation

chapter for object detection and tracking are been used in the use-case of the CLASS

project.

The work performed for this thesis has also been submitted to the International

Conference on Computer Aided Design (ICCAD) 2020 and it is currently pending on

the noti�cation of acceptance. Part of this work was also presented in the ACACES

Summer School Poster Session 2019 [14] and in the 6th BSC Severo Ochoa Doctoral

Symposium in 2019 [15].

1.4 Structure of the Thesis

The rest of the document is organized as follows. Chapter 2 presents the state of the

art regarding distributed time-sensitive applications executed on distributed real-time

3



Chapter 1. Introduction

systems and timing analysis techniques applied to provide timing requirements. Chap-

ter 3 introduces COMPSs, the framework considered to evaluate this work. Chapter 4

introduces the system model that we consider to support the analysis and execution of

time-sensitive applications on edge computing (Contribution 1 in Section 1.2). Chap-

ter 5 presents our MILP and scheduling heuristic strategies developed (Contribution

2 in Section 1.2). Chapter 6 presents the enhancements performed in the current

COMPSs framework (Contribution 3 in Section 1.2). Chapter 7 provides the evalua-

tion and results of the aforementioned scheduling strategies. Finally, Chapter 8 draws

conclusions and presents future work.

4



Chapter 2

State of the Art

This chapter presents the state of the art regarding distributed time-sensitive appli-

cations and the characteristics of the environments in which they execute. Moreover,

the di�erent challenges present in these systems are tackled.

2.1 Timing Guarantees for Time-Sensitive Applications

A system de�ned as a real-time system is the one that operates under any timing

constraint [16]. On these systems, and by inference for the time-sensitive applications

running in them, timing guarantees are of high importance as the context in which

they operate are generally critical environments. In these environments, for the result

to be valid it not only needs to be correct but it also needs to be provided within a

certain time window, namely a deadline [17].

Time-sensitive applications are assigned this global end-to-end deadline in order to

be valid, which is usually used as a metric indicator for the Quality of Service (QoS)

of the application speci�ed in the Service Level Agreement (SLA) [18, 19].

Car navigation, smart cities or industrial automation are clear examples of time-

sensitive applications in which missing the end-to-end deadline might lead to a catas-

trophic failure of the system or endanger people lives.

Generally, time-sensitive applications take advantage of being executed in applica-

tion speci�c integrated circuits (ASIC) or, more recently, general-purpose processors

such as graphics processing units (GPUs) or along with re-con�gurable fabrics such

as �eld programmable gate arrays (FPGAs). Moreover, the appearance of powerful

5



Chapter 2. State of the Art

and parallel embedded processor architectures such as NVIDIA Jetson AGX [2], Xil-

inx Versal [3] or Kalray MPPA [4] can be used to meet the performance and timing

requirements of these applications.

2.1.1 Timing Analysis

Time-sensitive applications are generally de�ned as a set of tasks, that is, asyn-

chronous concurrent functions executed by the computing resources composing the

system. This is critical for achieving the timing constraints needed by these appli-

cations as deadlines can be assigned at a task level, hence allowing to better predict

their behavior.

In order to assess whether a deadline will be met or missed, the concept of worst

case execution time (WCET) is also introduced. WCET can be estimated either by

using timing models of the system or by collecting measurements and adding a safety

margin over the highest execution time observed, which is a highly common industrial

practice that relies on software pro�ling reinforced by the use of safety margins [20].

The timing analysis of these particular tasks composing time-sensitive applica-

tions is performed by estimating the WCET of each task. Given the WCET obtained

for each of them, a scheduling is obtained by using any of the many scheduling algo-

rithms on real-time systems such that their execution is completed before the deadline

provided by the scheduling.

The precedence constraints between these tasks are represented by a Directed

Acyclic Graph (DAG), which allows to analyze their schedulability and to derive

a (worst-case) response time analysis of parallel applications. The DAG allows to

represent all the tasks composing an application, in which each node represents task)

annotated with its WCET, and the edges between two nodes represent the precedence

constraints and/or data transfers among them.

2.1.2 Shared-Memory Parallel Programming

The majority of the real-time systems are designed as parallel concurrent processing

systems, which allows for the system to easily react to events. The scheduling of

concurrent activities is critical for achieving real-time constraints. Hence, a program-

ming model that exploits the massively parallel recent architectures is needed, such as

6
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parallel programming, which allows to e�ectively process vast amounts of data simul-

taneously. OpenMP [21] and NVIDIA CUDA [22] parallel programming models used

to program real-time devices have demonstrated that can provide real-time guarantees

on the �nal resources [7, 8, 5, 23, 6].

However, the use of parallel programming models increases the complexity of the

timing analysis and schedulability of time-sensitive applications executed in real-time

systems due to the fact that the tasks of the application are executed on heterogeneous

systems, providing di�erent WCET for the same task based on where it is executed

[5, 23]. Moreover, unless parallel programming is not managed carefully, it can also

introduce overhead, thus a�ecting the �nal real-time performance [24].

The DAG task model was introduced with the appearance of shared memory

processors and multi-core processors under di�erent scheduling algorithms [11, 25, 26]

to better express the parallelism o�ered by these architectures, thus allowing a further

exploitation of parallelism within work�ows. The use of DAGs has also enabled multi-

core processors to schedule periodic parallel tasks with implicit deadlines [11].

Recently with the introduction of heterogeneous architectures due to the increas-

ing demands of modern cyber-physical embedded systems, it is a common trend to

combine high-performance multi-core CPU hosts with a certain number of application-

speci�c accelerators. The DAG model evolved as it needed to take into account dif-

ferent implementations of each task on heterogeneous platforms [27]. Furthermore,

the use of the DAG model allowed to improve the impact of the response time upper-

bound by o�oading computation to those accelerators, providing a more accurate

response time upper-bound [28].

As systems evolved from single-core to multi-core, and in time to heterogeneous

and distributed real-time systems, the DAG task model becomes more complex due

to the fact that distributed systems are heterogeneous by nature, and so, the WCET

annotated for each node is transformed into a WCET for each implementation of that

node in each device that is able to execute it. Regarding the edges composing the

DAG, they need to provide information on the amount of data exchanged between

nodes (or tasks), as in distributed systems there exists the need to characterize the

data transfers and communication between the underlying devices composing them.

7
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Figure 2.1: Time-sensitive DAG task example. Nodes are labeled
with their corresponding WCET.

Figure 2.2: Scheduling of DAG from Figure 2.1 scheduled in a 3-core
system.

2.1.3 Example

Figure 2.1 depicts an example of a DAG characterizing a parallel time-sensitive ap-

plication, composed by 9 tasks each labeled with their corresponding WCET, and 12

edges representing the precedence constraints among them.

Considering a real-time multi-core system of three cores, we schedule the DAG

from Figure 2.1, thus obtaining the scheduling shown in Figure 2.2.

2.2 Distributed Systems

In the context of smart cities and industrial automation, a vast amount of Internet of

Things (IoT) and Cyber-Physical Systems (CPS) devices with real-time requirements

for the time-sensitive applications are needed which need to be distributed in order to

cover the maximum amount of area. These distributed systems are heterogeneous by

nature due to the fact that are composed by an immense amount of di�erent devices

8
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and hence challenging any centralized solution, hence also providing reliability to

avoid system failures. Moreover, the vast amount of geographically-distributed data

collected by the di�erent devices needs to be processed in a distributed manner [29]

in order to improve the e�ciency in the data analytics process and to achieve their

timing requirements.

Apache Spark [30], a cluster computing framework for real-time large-scale data

processing, has been widely considered as it provides an e�cient solution to parallelize

and distribute the computation of Big Data analytics among the distributed system

[29, 31].

However, real-time distributed systems introduce a new challenge: deadline as-

signment. This problem refers to the process of assigning local deadlines to each of

the real-time tasks composing a distributed application, with the objective of being

able to meet a global end-to-end deadline, which is tightly related with the QoS as-

signed to the time-sensitive distributed applications. Deadline assignment became a

challenge due to the fact that an increasing number of work�ows are concurrently run-

ning on a distributed system even though several algorithms to approach the deadline

assignment problem have been presented [18, 19, 32].

Vehicular systems and automotive systems are also an example of heterogeneous

distributed real-time systems. In these scenarios, the scheduling not only of real-time

tasks composing the distributed application is critical, but also the communications

that take place between the devices composing the distributed system should be taken

into account [33]. In order to model those systems and to provide an optimal schedul-

ing, integer linear programming (ILP) is widely considered [34]. ILP formulations

allow to solve the allocation problems of parallel and distributed functions providing

an optimal but costly solution, while it can also be tuned in order to assign dead-

lines and activation times to tasks such that tasks partitioned onto di�erent virtual

processors can be analyzed separately [35].

Even though ILP provides the optimal solution, it comes as a high processing cost

in terms of time. Hence, much literature exists regarding heuristic approaches and

scheduling algorithms that provide task allocation and scheduling [36, 37, 38].

From the High-Performance Computing (HPC) domain, task based schedulers

have been widely proposed for distributed environments. The representation of the

9
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work�ow as a DAG, coupled together with scheduling algorithms that bene�t from

the information provided by the DAG itself, allow to improve the performance of

distributed systems [39, 40].

2.3 Edge Computing

Edge computing [1] is a new distributed computing paradigm that shifts the com-

putation as close as possible to where the data is originated, allowing to manage

the increasing number of data sources and alleviating the pressure on centralized so-

lutions, which makes him a perfect candidate for contexts such as the smart cities

and industrial automation. Moreover, the use of powerful parallel embedded proces-

sor architectures at the edge side (e.g., NVIDIA Jetson AGX [2], Xilinx Versal [3],

Kalray MPPA [4]) can also help alleviating this pressure due to their huge computing

capabilities, while providing lower network costs and more energy e�cient solutions.

However, the challenges from distributed systems described in Section 2.2 also

apply in edge computing. Furthermore, the compute continuum composed by hetero-

geneous devices increases the complexity of both the development and deployment of

the time-sensitive applications. This also complicates the response time analysis of

such applications as network connections need to be considered [36, 37, 38].

10



Chapter 3

Background: the COMPSs

Framework

This chapter presents background information on task-based programming models

and DAG representation. In particular, we present COMPSs [9, 10, 41], a task-based

programming model and runtime framework, used in the high-performance computing

(HPC) domain for the development of parallel applications and their execution over

distributed infrastructures, such as clusters, clouds and containerized platforms. In

this work, without loss of generality, COMPSs has been selected and adapted for the

implementation and performance evaluation of the proposed scheduling techniques

for time-sensitive distributed applications over edge computing platforms. However,

it should be stressed that the proposed solutions are not limited to the COMPSs

environment, but can be generally tested with any suitable task-based programming

model.

3.1 Overview

The main objective of the COMPSs framework is to facilitate the parallelization and

execution of sequential source codes (written in C/C++, Python or Java) in dis-

tributed computing environments. The application is agnostic of the underlying dis-

tributed infrastructure, i.e., they do not include any detail that could tie them to

a particular platform, boosting portability among diverse infrastructures. Clearly,

this is a very convenient property in heterogeneous environments such as the edge

computing paradigm.

11
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1 @task (returns = numpy . ndarray )
2 def get_frame ( ) :
3 return get_next_frame_from_video ( )

5 @task ( frame = IN , returns = l i s t )
6 def get_objects_from_frame ( frame ) :
7 return yolo . de t e c t ( frame )

9 @task ( l i s t_ob j e c t s = IN , returns = l i s t )
10 def t r a cke r ( l i s t_ob j e c t s ) :
11 return t r a cke r . t rack ( l i s t_ob j e c t s )

13 @task ( l i s t_ob j e c t s = IN , frame = IN)
14 def co l l ect_and_disp lay ( l i s t_ob j e c t s ,

frame ) :
15 for obj in l i s t_ob j e c t s :
16 d i sp l ay ( obj , frame )

18### Main function ###

19 while ( t rue ) :
20 frame = get_frame ( )
21 l i s t_ob j= get_objects_from_frame ( frame )
22 for i in range (0 , 2) :
23 l i s t_ob j [ i ] = tracker ( l i s t_ob j )
24 collect_and_display ( l i s t_ob j , frame )

Figure 3.1: Object detection and tracking (ODT) COMPSs example.

The COMPSs framework is composed of a task-based programming model which

aims to ease the development of parallel applications, and a runtime system that

exploits the inherent parallelism of applications, de�ned in the following sections.

3.2 Task-based Programming Model

The COMPSs programmer is responsible of identifying the portions of code, named

COMPSs tasks, that can be distributed, by simply annotating the sequential source

code. Data dependencies and their directionality (i.e.,in, out or inout) must be also

identi�ed. Upon them, the runtime determines the order in which COMPSs tasks are

executed and also the data transfers across the distributed system. A COMPSs task

with an in or inout data dependency cannot start its execution until the COMPSs

task with an out or inout dependency over the same data element is completed.

Figure 3.1 shows an example of a COMPSs application for object detection and

tracking (ODT) written in Python (PyCOMPSs [41]). COMPSs tasks are identi�ed

with a standard Python decorator @task, at lines 1, 4, 7, and 10. The returns

argument speci�es the data type of the value returned by the function (if any). The

12
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IN de�nes the input data directionality of parameters. The main code starts at line

15, where a loop iterates while detecting and tracking objects from an input video,

e.g., from a street camera of the city. Each iteration operates over a video frame, �rst

getting it using the COMPSs task at line 1. Then, the object detection is computed

using YOLO [42], a well-know real-time object detection system (COMPSs task at line

4). At line 18, the application processes in parallel di�erent detected objects to track

them (COMPSs task at line 7). Finally, the updated list of tracked objects, list_obj,

is merged and objects detected and tracked are displayed at line 20 (COMPSs task

at line 10).

3.3 Runtime System: DAG and Task Scheduler

The available computing resources composing the compute continuum are identi�ed

in the XML con�guration �les resources.xml and project.xml by the COMPSs

programmer. Each computing resource represents a COMPSs worker, which is the

runtime entity in charge of executing the COMPSs tasks. The resources.xml �le

serves as a list of all con�gured and available workers in the environment, whereas the

project.xml represents the subset of resources to be used for one speci�c application.

COMPSs is based on the master-workers paradigm, in which the COMPSs master

is the component in charge of executing the main code of the application through

means of the runcompss command line interface. Moreover, it is also the compo-

nent in charge of detecting the COMPSs tasks at runtime, scheduling and spawning

them asynchronously to the de�ned set of distributed and interconnected comput-

ing resources that execute them in parallel (as soon as all its data dependencies are

honored). The data elements marked as in and inout are transferred to the com-

pute resource in which the task will execute. This data transfers are identi�ed in the

COMPSs framework by tags, which represent the di�erent input/output parameters

that tasks either receive or produce, respectively. These tags allow to avoid unneces-

sary transfers if the aforementioned parameters are already available in a particular

worker, that is, if the parameter has been previously transferred due to another task

executed in the same worker requesting the same parameter. The tags representing

the di�erent transfers are updated accordingly in case the task updates the value

13
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𝑣2 𝑣4

𝑣3

𝑣5

𝑣6𝑣1

get_frame()

get_objects_from_frame()

tracker()

collect_and_display()

Figure 3.2: DAG representing the application of Figure 3.1.

of the parameters received, thus facilitating the master to manage whenever a given

worker already contains the transfer required by the task it will execute.

The task-based programming model of COMPSs is supported by its runtime sys-

tem, which manages several aspects of the application execution. For this, the runtime

maintains the internal representation of the parallelism of the COMPSs application

as a DAG. Each node corresponds to a COMPSs task and edges represent data de-

pendencies. As an example, Figure 3.2 shows the DAG representation of one iteration

of the COMPSs work�ow presented in Figure 3.1. Each instantiated COMPSs task is

represented by a di�erent node, with colors identifying the di�erent task functionali-

ties.

Based on this DAG, the runtime can automatically detect data dependencies be-

tween COMPSs tasks. As soon as a task becomes ready, the COMPSs scheduler is

then in charge of o�oading its execution onto one of the available computing resources

and transferring the input parameters before starting the execution. Concretely, upon

receiving a dependency-free task, denoted as a ready task, the COMPSs task sched-

uler selects a resource to host its execution taking into account several parameters:

(1) capabilities and status of the set of available resources, and (2) constraints of the

invoked task.

Algorithm 1 shows a simple overview of the COMPSs scheduler to distribute and

execute tasks. The way COMPSs tasks and resources to allocate them are selected, by

functions Get_Ready_Task and Get_Resource, respectively, determine the di�erent

scheduling strategies that can be implemented. When an available resource is selected,

the input parameters are transferred if the worker selected has not received them

yet (Transfer_Data) and the task can initiate the execution (Execute_Task). Note

that the data transfer between dependent COMPSs tasks does not start until the

descendant one is scheduled and assigned to a computing resource to host its execution,

14
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Algorithm 1 Pseudo code of a distributed tasks scheduler.

1: function schedule_tasks
2: while Not_Empty(ready_queue) do
3: task ← Get_Ready_Task(ready_queue)
4: resource← Get_Resource()
5: Transfer_Data(task, resource)
6: Execute_Task(task, resource)
7: end while
8: end function

thus limiting the overlapping of communication with computation.

COMPSs already provides di�erent schedulers to be used based on the family of

schedulers that consider only ready tasks:

• First In, First Out (FIFO): a very simple scheduler that selects ready tasks

based on the order of entrance in the ready queue, that is, a task that �rst is

the one with the highest priority.

• Last In, First Out (LIFO): scheduler that selects ready tasks based on order of

arrival, however the last task entering in the ready queue is the one with highest

priority.

Both schedulers select the next task to execute on the Get_Ready_Task(ready_queue)

method based on the priority given by the order of entrance to the ready tasks, as

explained above. Furthermore, both schedulers use the First Idle approach to select

the resource to host the execution of the previously selected tasks in Get_Resource(),

which selects the �rst available computing resource.

3.4 Advancing the Scheduling Capabilities of COMPSs

Despite the expressiveness of the task-based programming model to develop dis-

tributed applications, and the capabilities of the runtime to be independent of the

available infrastructure, COMPSs is agnostic of time-sensitive applications as it does

not take further advantage of the DAG constructed neither includes relevant informa-

tion required in order to provide an upper-bound response time of the applications

being executed.

We enhance the scheduling capabilities of COMPSs to e�ectively address this

issue by providing new scheduling algorithms in COMPSs (see Chapter 6) based on
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the system model (see Chapter 4) and the scheduling strategies proposed in this thesis

(see Chapter 5).

16



Chapter 4

System Model

This chapter presents a novel system model to support the analysis and execution of

time-sensitive applications on edge computing. The proposed model consists of two

components: (1) a Digraph compute continuum model, representing the heterogeneous

computing edge devices and the communication network that connects them, and (2)

a DAG task model, describing the parallel structure of the time-sensitive distributed

applications.

4.1 The Digraph Compute Continuum Model

The compute continuum is represented as a Digraph (directed graph)Gcc = (V cc, Ecc),

being V cc = {p1, p2, . . . pM} the set of nodes and Ecc ⊆ V cc × V cc the set of edges.

Each node pi ∈ V cc represents a computing resource, being |V cc| = M the total

number of resources. Each edge (pk, pl) ∈ Ecc corresponds to the communication

link between two computing resources, pk and pl. In order to properly characterize

the communication time, each communication link (pk, pl) is represented with the

transport bandwidth bwk,l, the maximum frame sizemfsk,l, and the size of the headers

included in the frames hk,l. If two resources pk and pl are not connected, then bwk,l,

mfsk,l and hk,l are equal to −1. Also bwk,k =∞, mfsk,k = 0 and hk,k = 0 represent

that there are no data transfers if two tasks are allocated to the same computing

resource pk.

17
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4.2 The DAG Task Model

Our task model is based on the DAG task system model used to express parallel

workloads and analyze their schedulability in shared memory architectures [11]. A

time-sensitive distributed application is represented as a DAG G = (V,E), being

V = {v1, v2, . . . vN} the set of nodes and E ⊆ V × V the set of edges. A node vi ∈ V

represents a distributed task corresponding to a unit of computation (i.e., a COMPSs

task in our case) in the compute continuum, being |V | = N the total number of dis-

tributed tasks. A task vi is characterized by a set of execution time upper bounds

{Ci1 , Ci2 , .., CiM }, each corresponding to the potential task execution in a given com-

puting resource pk, 1 ≤ k ≤ M . If a task vi cannot be executed in pk, due to either

an incompatibility or a design decision, then Ci,k = −1. It should be noted that a

task may not only have di�erent Ci's, but also di�erent implementations, to allow its

execution in edge devices with di�erent processor architectures. The COMPSs frame-

work fully supports this feature by means of the COMPSs @implements decorator,

which allows the de�nition of multiple implementations of the same task, e.g., using

CUDA, OpenMP, or a simply sequential implementation, etc. Tasks, exploiting or not

parallelism, are executed in a dedicated computing resource (given by the scheduling

strategy) in isolation.

An edge (vi, vj) ∈ E represents a data dependency between tasks vi and vj : if

(vi, vj) ∈ E then node vi must complete before node vj can begin its execution.

Moreover, (vi, vj) ∈ E is characterized by the total size of the data associated to

the dependency, denoted by zi,j , and the identi�er of the data element, denoted by

zidi,j , which are non-null strings in the case that j requires the transfer from i, "0"

otherwise. If vj executes in a computing resource di�erent than vi and the same

computing resource has not yet received a data element tagged with the same zidi,j ,

then this data must be transmitted through the communication network, i.e., zi,j

represents the payload.

Without loss of generality, the DAG is assumed to have exactly one source node

vsource, i.e., a node with no incoming edges, and one sink node vsink, i.e., a node with

no outgoing edges. If this is not the case, a dummy source/sink node can be added to

the DAG, with Csource,k = 0, and Csink,k = 0,∀pk ∈ V cc, and with zero data transfer
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sizes to/from all the original source/sink nodes.

4.3 Network Communications

In the edge computing paradigm, the data transfer time is a key factor due to its

potentially high impact on the timing behavior of the application. Equation 4.1

estimates the data transfer time due to the payload among two dependent tasks vi

and vj :

T transf
i,j =


(⌈

zi,j
mfsk,l

⌉
× hk,l + zi,j

)
× 1

bwk,l
, if k 6= l

0, otherwise

(4.1)

where zi,j is the payload; and bwk,l, mfsk,l, and hk,l characterize the communication

link that connects the pk and pl computing resources where vi and vj are executed.

Notice that, if two computing resources pk and pl are not connected, bwk,l = −1, then

tasks vi and vj , such that (vi, vj) ∈ E, cannot be executed in pk and pl, respectively.

This is controlled by the scheduling strategies (see Section 5). Also if vi and vj ,

are executed in the same computing resource pk, bwk,k = ∞, and then T transf
i,j = 0.

Furthermore, if there exists another task vt such that zidi,j = zidi,t and vt executes

before than vj , then T transf
i,j = 0 as well meaning that vt already requested the same

parameter, thus it is already presented in the computing resource pl.

4.4 Rede�ning Volume and Workload Concepts

In the classical DAG-based system model targeting shared memory architectures, the

volume of a DAG task, denoted as vol(G), is de�ned as the sum of the worst-case

execution time (WCET) Ci, of all the nodes of G. This value corresponds to the

worst case response time of the DAG task on a dedicated single-core platform [7]. In

our system model, this de�nition is not valid anymore since the response time of an

application depends on the scheduling decisions: (1) the execution time Ci,k of each

node vi may be di�erent for each computing resource pk; and (2) the data transfer

times T transf
j,i depend on the communication link existing between the computing

resources where vj and vi are executed.
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Therefore, the scheduling of nodes to computing resources has to be known to

compute the volume of a DAG in our system model. To do so, we de�ne Yi,k,∀vi ∈

V,∀pk ∈ V cc as the static scheduling function of nodes vi to computing resources pk:

Yi,k =


1, if the node vi is allocated to the

resource pk = pl

0, ∀pk ∈ V cc, k 6= l

(4.2)

Notice that ∀vi ∈ V,∃!pk ∈ V cc(Yi,k = 1) � uniqueness property.

Since there two factors impacting on the response time of an application, i.e., the

actual execution time on the computing nodes and the data transfer times, we de�ne

two di�erent volumes:

De�nition 1. The computation volume of the DAG G = (V,E) executed on the

Digraph compute continuum Gcc = (V cc, Ecc), is the sum of the Ci,k of each node

vi ∈ V , when Yi,k = 1 for a given computing resource pk ∈ V cc:

volcomp(G,Gcc, Y ) =

N∑
i=1

(
M∑
k=1

Ci,k · Yi,k

)
(4.3)

De�nition 2. The communication volume of a DAG G = (V,E) executed on a Di-

graph compute continuum Gcc = (V cc, Ecc), is the sum of the data transfer times

T transf
i,j for each (vi, vj) ∈ E, when Yi,k = 1 and Yj,l = 1 for the computing resources

pk, pl ∈ V cc:

volcomm(G,Gcc, Y ) =
∑

∀(vi,vj)∈E

T transf
i,j =

=
∑

∀(vi,vj)∈E

( ⌈
zi,j
mfs

⌉
· h+ zi,j∑M

k=1

∑M
l=1 bwk,l · Yi,k · Yj,l

) (4.4)

The computation and communication volumes are combined to compute the work-

load of a distributed application.

De�nition 3. The workload W (G,Gcc, Y ) is the worst case execution time upper-

bound of the DAG task G = (V,E) executed on the Digraph compute continuum Gcc =

(V cc, Ecc), when considering the static scheduling strategy given by Y :

W (G,Gcc, Y ) = volcomp(G,Gcc, Y ) + volcomm(G,Gcc, Y ) (4.5)
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Figure 4.1: Compute Continuum model example and values.

4.5 Putting it all Together: a Real Example

Figure 4.1 shows an example of our Digraph compute continuum model, composed of

four interconnected edge computing resources: two GPUs p1 and p2 , a multi-core

p3, and a Raspberry Pi p4. The values that characterize the communication links

correspond to Ethernet IEEE 802.3 [43] and WiFi IEEE 802.11ac [44] connections.

The values for the non-existing link between the Raspberry Pi and the GPUs p2 are

< −1,−1,−1 >.

The tables in Figure 4.2 provide the DAG task model values for the object detec-

tion and tracking application represented in Figure 3.2, when executed in the compute

continuum of Figure 4.1. Concretely, the values provided are Ci,k, ∀vi ∈ V,∀pk in mil-

liseconds, and the payload zi,j ,∀(vi, vj) ∈ E in Bytes. Notice that, for instance, the

task obtaining the video frame can only be executed in one GPU, where the video

streaming is processed.

For this system, an optimal scheduling minimizing the response time is Y1,1 =

Y2,2 = Y3,1 = Y4,2 = Y5,1 = Y6,3 = 1 (corresponding to underlined values in the

Ci,k table of Figure 4.2). The Raspberry Pi is not used due to the high execution

times, e.g., C2,4 = 1814 ms (vs. C2,3 = 140 ms), or the incompatibility of executing

tasks there, e.g., C5,4 = −1. The most time consuming data transfers correspond

to the frame transmission, i.e., z1,2 and z1,6, being the rest almost negligible with

respect to the tasks execution times. As an example, the transfer time of payload

z1,2 between nodes v1 and v2, sent via an Ethernet connection between p1 and p2
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Execution time Ci,k (ms)

v1 711 -1 -1 -1

v2 256 160 140 1814

v3 186 211 -1 -1

v4 196 176 -1 -1

v5 189 229 -1 -1

v6 133 187 97 778

Edge Payload zi,j
(Bytes)

v1 v2 5932739

v1 v6 5932739

v2 v3 416

v2 v4 416

v2 v5 416

v3 v6 2175

v4 v6 2175

v5 v6 2175

Figure 4.2: DAG task model values of the DAG in Figure 3.2.

is T transf
1,2 =

(⌈
5932739
1500

⌉
× 40 + 5932739

)
(bytes) × 1

822(Mbps) = 59.28 ms. Overall,

volcomp = 1520.71 ms, volcomm = 580.62 ms and W = 2101.33 ms. and the response

time upper bound for one iteration of the object detection and tracking application

equals to 1406.700 ms.
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Task Scheduling Strategies

In this chapter we present our �ve di�erent scheduling strategies based on the system

model presented in Chapter 4: an optimal scheduling strategy based on mixed integer

linear programming (MILP), and four novel tasks scheduling heuristics. The proposed

scheduling strategies handle the computation and communication factors of a dis-

tributed application G = (V,E) executed on a compute continuum Gcc = (V cc, Ecc),

with the objective of minimizing the overall end-to-end response time. On one hand,

the MILP-based strategy optimizes the allocation of nodes vi ∈ V to those edge com-

puting resources pk ∈ V cc in which the execution time upper bound Ci,k and the

data transfers time T transf
i,j among resources are minimized. On the other hand, the

heuristics prioritize the selection of nodes and resources with a similar objective, but

making local decisions to speed up the scheduling process.

5.1 MILP-based Optimal Task Scheduling

Given a time-sensitive distributed application G = (V,E), and a set of interconnected

edge computing nodes Gcc = (V cc, Ecc), the objective function of the MILP is to

minimize the time interval between the starting time of the source node vsource ∈ E

and the completion time of the sink node vsink ∈ E.

Input parameters. The input parameters considered in the MILP are the follow-

ing:

1. succi,j ∈ (0, 1), 1 ≤ i ≤ N, 1 ≤ j ≤ N , a binary variable representing the edges

in E. It equals to 1 if (vi, vj) ∈ E, 0 otherwise.
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2. zi,j ∈ R, zi,j ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ N , the data transfer size of edges

(vi, vj) ∈ E.

3. zidi,j are strings, 1 ≤ i ≤ N, 1 ≤ j ≤ N , representing the data transfer identi�ers

of edges (vi, vj) ∈ E.

4. source, the index of vsource ∈ V .

5. sink, the index of vsink ∈ V .

6. ibwk,l =
1

bwk,l
, 1 ≤ k ≤ M, 1 ≤ l ≤ M , the inverse of the transport bandwidth

bwk,l of the communication link (pk, pl) ∈ Ecc. Notice that, ibwk,k = 0, ∀bwk,k =

∞, and ibwk,l = −1 if bwk,l = −1.

7. mfs ∈ R, the maximum frame size1.

8. h ∈ R, the size of the headers2.

9. Ci,k ∈ R, 1 ≤ i ≤ N, 1 ≤ k ≤ M , the execution time upper bound of vi ∈ V

when executing in the edge computing resource pk ∈ V cc; Ci,k = −1 if vi cannot

execute in pk.

Problem variables. The decision variables considered in the MILP are:

1. Yi,k ∈ (0, 1), ∀vi ∈ V,∀pk ∈ V cc, a binary variable to represent the optimal

allocation function. It equals to 1 if task vi executes on pk, 0 otherwise (see

Section 4.4).

2. ti ∈ R, ti ≥ 0,∀vi ∈ V , the starting time of vi.

3. ai,j ∈ (0, 1), ∀vi, vj ∈ V , an auxiliary binary variable that equals 1 if vi is

executed before vj , 0 otherwise.

4. dupi,j ∈ (0, 1),∀vi, vj ∈ V , a binary variable that is used to represent whether

a transfer for a speci�c parameter has to be done or not. It equals to 1 if there

exists a task vj executed in the same resource as vk ∈ V such that succi,j ==

succi,k == 1 and both vj and vk receive the same output parameter from vi,

and tj ≤ tk, 0 otherwise.
1Given the time complexity of MILP, when di�erent communication technologies are involved,

the worst case is considered, i.e., mfs = min(mfsk,l), ∀(pk, pl) ∈ Ecc.
2Similarly to mfs, we consider h = max(hk,l),∀(pk, pl) ∈ Ecc.
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Initial assumption. vsource starts the execution at time instant 0: tsource = 0.

Constrains. The constrains are the following ones:

1. Each task vi ∈ V can be executed only by a single computing resource pk ∈ V cc:

M∑
k=1

Yi,k = 1, ∀vi ∈ V

2. Each task vi ∈ V can execute in a computing resource pk ∈ V cc if there exists

implementation, i.e., if Ci,k 6= −1 :

M∑
k=1

Ci,k · Yi,k ≥ 0,∀vi ∈ V

3. The starting time of a successor task vj ∈ V is greater or equal than the comple-

tion time of all its predecessor tasks vi ∈ V plus the corresponding data transfer

time given by T transf
i,j (see Equation 4.1)3:

succi,j ·
(
ti +

( M∑
k=1

Ci,k · Yi,k
)
+

+
((⌈ zi,j

mfs

⌉
· h+ zi,j

)
·

M∑
k=1

M∑
l=1

ibwk,l · Yi,k · Yj,l
))
≤ tj , ∀vi ∈ V,∀vj ∈ V

4. The execution of tasks within the same computing resource cannot overlap, i.e.,

if two tasks vi and vj are executed in pk ∈ V cc then, either vi �nishes before the

vj starts, or vice versa:

Yi,k = 1∧Yj,k = 1⇒ (ti +Ci,k ≤ tj ∨ tj +Cj,k ≤ ti),∀vi ∈ V,∀vj ∈ V,∀pk ∈ V cc

5. Two dependent tasks (vi, vj) ∈ E (succi,j = 1) cannot be allocated in computing

resources pk and pl, respectively, if they are not connected (i.e., if ibwk,l = −1):

succi,j · Yi,k · Yj,l · ibwk, l ≥ 0,∀vi ∈ V,∀vj ∈ V,∀pk ∈ V cc, ∀pl ∈ V cc

3Notice that the inverse of the bandwidth (ibwk,l) is used because the MILP implementations
does not support dividing by a decision variable (i.e., Yi,k and Yj,l).

25



Chapter 5. Task Scheduling Strategies

6. For each task vi that only has one direct descendant vj such that (vi, vj) ∈ E

(succi,j = 1) and the data transfer identi�er is not null (zidi,j ! = ”0”), the data

transfer needs to be accounted:

dupi,j == 1 if
N∑
k=1

(zidi,k! = ”0”) == 1,∀vi ∈ V,∀vj ∈ V

7. Given three tasks vi, vj and vl such that (vi, vj) ∈ E (succi,j = 1) and (vi, vk) ∈

E (succi,l = 1), that both vj and vl receive the same input parameter from vi

identi�ed by the same non-null tag (zidi,j = zidi,l) and both tasks are executed

by the same computing resource pk ∈ V cc, the data transfer has to be accounted

only the �rst time this transfer takes place:

dupi,j ≤ 2− Yj,k · Yl,k − (tj ≥ tl),

dupi,k ≥ Yj,k · Yl,k + (tj ≥ tl)− 1

Constrains (4) and (7) include the quadratic function of a decision variable, mak-

ing the problem non linear, and constrain (5) includes logical functions and and or,

to facilitate the explanation. Well know techniques are applied to linearize these

constrains [45, 46].

Objective function. The objective function aims to minimize the execution time

upper bound of the distributed application. It is equivalent to minimize the starting

time plus execution time upper bound of vsink. The MILP objective function also

represents a valid response time upper bound of the real-time distributed work�ow:

Rub = min
(
tsink +

M∑
k=1

Csink,k · Ysink,k
)

(5.1)

5.2 Task Scheduling Heuristics

Given the time complexity of the MILP strategy (see Section 7), we propose four

heuristics that have been inspired on existing approaches aiming to minimize the end-

to-end response time of parallel applications for shared memory processor architectures
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[8, 47, 48]. The four proposed schemes take into account two sets of priority rules,

described in the following two subsections.

5.2.1 Heuristics Based on Successors

In the �rst two proposed heuristics, the internal structure of the DAG G prioritizes

the next ready task to be allocated. A task vi ∈ V is ready if all its direct predecessor

nodes vj ∈ V : (vj , vi) ∈ E have been completed.

• Largest Number of Successors in Next Level (LNSNL). This heuristic selects

the task vi with the largest number of direct successors, with the objective of

increasing the number of nodes that become ready when vi completes.

• Largest Number of Successors (LNS). This heuristic selects the task vi with the

largest number of successors, with the objective of prioritizing the execution of

those portions of the DAG with the highest number of nodes, and so potentially,

the largest impact on the execution time of the application.

Once vi is selected, the LNSNL and the LNS approaches apply a Best Fit (BF)

strategy to select the computing resource pk ∈ V cc where the completion time of vi is

minimized. The completion time is computed considering (1) the start time of vi, that

depends on the last idle time of each pk and the transfer times T transf
j,i ,∀(vj , vi) ∈ E,

and (2) the execution time Ci,k on each computing resource pk.

Algorithm 2 presents the pseudo source-code of the LNSNL and LNS scheduling

heuristics. The input parameters are the distributed application G and the compute

continuum Gcc models (line 1). The algorithm starts by initializing M , as the number

of available computing resources, and N , as the number of tasks. The ready queue Q

is initialized with the source node vsource of G (line 3) and the set of allocated tasks

A is initialized to empty (line 4). An array L of size M , initialized to 0, is used to

store the last idle time of each resource (line 5). For each node in G, the number of

successors that each heuristic will consider is computed (line 6): in case of LNS, all

(recursive) successors of each task are accounted, whereas in case of LNSNL, only the

direct successors are considered.

A loop iterates (between lines 7-25) until all nodes in G have been allocated. At

each iteration, a new ready task vi ∈ Q is selected (nextNode) based on the maximum
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Algorithm 2 LNS/LNSNL task scheduling heuristic

1: procedure LNS_LNSNL (G = (V,E), Gcc = (V cc, Ecc))
2: M ← |V cc|; N ← |V |
3: Q← {vsource} // Ready Queue
4: A← ∅ // Set of pairs (task, computing resource)
5: L[ ]← ARRAY(M, 0) // Last idle time of each computing resource
6: nSucc[ ]← ComputeSuccessors(E)
7: while ∼ Empty(Q) do
8: maxSucc← 0
9: for each vi ∈ Q do // Selects a ready task
10: if nSucc[i] ≥ maxSucc then
11: nextNode← vi
12: maxSucc← nSucc[i]
13: end if
14: end for
15: minCT ←∞
16: for each pk ∈ V cc do // Selects computing resource
17: time← CompletionTime(G,nextNode,Gcc, pk, L)
18: if minCT > time then
19: minCT = time
20: bestRes = pk
21: end if
22: end for
23: L[bestRes]← minCT + 1
24: Q← UpdateReadyQueue(Q,A,G, nextNode)
25: A← A ∪ {(nextNode, bestRes)}
26: end while
27: Rub = maxM

k=1 L[pk]
28: return Rub, A
29: end procedure

number of successors criterion (lines 9-14), which determines the priority rule that

distinguishes LNS and LNSNL. The selected node is then allocated to the resource

pk ∈ V cc that minimizes its completion time, named bestRes (lines 15-22). The

completion time is computed by the procedure CompletionTime considering the

last idle time of each resource L, the task execution times Ci,k on each resource, and

the transfer times T trans
j,i of the data required from nextNode predecessors. However,

T trans
j,i = 0 in the case in which the identi�er of the transfer zidi,j has already been

used in the same computing resource pk due to a prior task also requesting it, and

hence, it will already be present.

Once nextNode has been allocated to the resource bestRes, the last idle time of

that resource L[bestRes] is updated (line 23). The procedure UpdateReadyQueue

removes nextNode from the ready queue and inserts the successors without any pend-

ing predecessor (line 24). Moreover, the set of allocated tasks A is also updated (line

25). The response time upper bound Rub is computed by selecting the maximum of

the idle times for each resource in L (line 27).
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5.2.2 Heuristics Based on Processing Time

In the second set of heuristics, the minimum completion time of all ready tasks is �rst

computed. This pre-selects a computing resource pk ∈ V cc to execute each ready task.

Then, among all the ready tasks, the next task vi ∈ V to execute is selected based on:

• Shortest Processing Time (SPT). It selects the task vi with the shortest com-

pletion time, i.e., prioritizing the smallest nodes (in terms of Ci,k) in the fastest

computing resources.

• Longest Processing Time (LPT). It selects the task vi with the longest com-

pletion time, with the objective of prioritizing the biggest nodes in the fastest

computing resources.

Algorithm 3 SPT task scheduling heuristic

1: procedure SPT (G = (V,E), Gcc = (V cc, Ecc))
2: M ← |V cc|; N ← |V |; Q← {vsource}; A← ∅ ; L[ ]← ARRAY(M, 0)
3: while ∼ Empty(Q) do
4: minCT ← ARRAY(|Q|, 0); bestRes← ARRAY(|Q|, 0)
5: for each vi ∈ Q do // Selects a ready task
6: minCT [i]←∞
7: for each pk ∈ V cc do
8: time← CompletionTime(G, vi, G

cc, pk, L)
9: if minCT [i] > time then
10: minCT [i] = time; bestRes[i] = pk
11: end if
12: end for
13: end for
14: nextNode = minvi∈Q minCT [i]
15: L[bestRes[nextNode]]← minCT [nextNode] + 1
16: Q← UpdateQueue(Q,A,G, nextNode)
17: A← A ∪ {(nextNode, bestRes[nextNode])}
18: end while
19: Rub = maxM

k=1 L[pk]
20: return Rub, A
21: end procedure

Algorithm 3 shows the pseudo source-code of the SPT scheduling heuristic. The

line 2 is equivalent to Algorithm 2, and a loop (lines 3-18) similarly iterates until all

nodes in G have been allocated. At each iteration, an inner loop iterates (lines 5-13)

over the ready tasks vi ∈ Q, to compute the minimum completion time of vi on all the

compute resources pk ∈ V cc, and select the one that minimizes this time (loop between

lines 7-12). Among all the ready tasks, the one with the minimum completion time,

nextNode (line 14) is selected. Then, the last idle time of the computing resource

bestRes[nextNode] where nextNode executes is updated (line 15). The ready queue
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Q and the set of allocated tasks A are also updated accordingly (lines 16 and 17).

Finally, Rub is computed (line 19).

The LPT scheduling heuristic is equivalent to Algorithm 3, with the di�erence

that, instead of the minimum, the maximum of the minimum completion time of all

ready tasks is considered (line 14).

5.3 Bene�ts of Static Task Scheduling Strategies in Dis-

tributed Environments

The main motivation of the proposed static task scheduling approaches is the ability

to provide a response time upper bound for time-sensitive distributed applications.

Interestingly, as we show in the evaluation chapter, the use of such strategies also

bene�ts the average application response time. Common dynamic scheduling strate-

gies assign a task to a given computing resource as soon as the task becomes ready

and the resource becomes idle. Only at this point in time the destination resource is

known, and the data transfer of input data dependencies can be initiated. When the

transfer is completed, the new scheduled task can start its execution. In the proposed

static scheduling strategy instead, the data transfer can be initiated as soon as all the

predecessor tasks complete, because the destination resource in which successor tasks

execute is known a priori. As a result, the overlapping of computation and commu-

nication operations can be improved, so that the data input parameters of the new

scheduled task are already available at the destination computing resource when the

task becomes ready to execute.

However, the use of static task scheduling strategies in dynamic environments,

such as the edge computing one, may seem counter-intuitive. In edge computing

environments, the setup may vary in terms of available computing resources and

connectivity. As we explain in next subsection, the proposed heuristics allow to quickly

react to changes in the compute continuum model, and re-allocate the time-sensitive

distributed applications to the new compute continuum model. Section 7.3 presents

a simple experiment that shows the ability of dynamically re-con�guring the system.
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Figure 5.1: MILP task scheduling for the ODT application in 3.1.

5.4 Tasks Deadlines

Deadlines can be assigned to tasks by using any of the �ve scheduling approaches

presented in Sections 5.1 and 5.2 and taking advantage of the provided end times (or

start times) of the scheduling. These deadlines represent assigned points in time to

each task upon which that particular task should have �nished their execution.

Apart from the deadlines assigned to the tasks composing the time-sensitive ap-

plication, the deadline of the last task of the DAG, that is, the sink node can be used

to represent the global end-to-end deadline, the Rub, used to improve the QoS of these

applications.

The deadlines can be further used to de�ne policies based on a certain threshold of

deadlines misses, and upon the violation of this threshold a certain action is triggered

as presented in section 6.3.

5.5 Example

Taking the application described in 3.1, Figure 5.1 represents the actual scheduling

obtained by the MILP-based optimal task scheduling considering the compute con-

tinuum setup and the DAG task model values described in Figures 4.1 and 4.2.

The arrows in Figure 5.1 represent the data transfers between tasks, and each

Y-axis represents the computing resources in the compute continuum. Note that

from task v2 there is only one dashed arrow to task v3, and not to any of the other

descendants (neither v4 nor v5). That is because for v4 no transfer is needed due to

the fact that it is executing on the same resource as v2, whereas for task v5 no data
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Figure 5.2: LPT task scheduling for the ODT application in 3.1.

transfer is needed as the same parameter has already been transferred for task v3.

The Rub obtained is represented by the last node to execute (namely the sink node),

which in this case is 1406 milliseconds.

Figure 5.2 displays the task scheduling provided by the LPT heuristic for the same

application. However, if comparing the task scheduling obtained by the MILP with

the one provided by the LPT it can be seen that the scheduling decisions of the latter

for the three yellow tasks (v3, v4 and v5) is the inverse of the one provided by the

MILP. This decision is the one causing that the start of the execution of task v6 is

delayed, hence obtaining a di�erent Rub for both allocations, with a di�erence of 11

milliseconds more in the solution provided by LPT.

Both the scheduling decisions and the response time upper bound Rub obtained

for the rest of the scheduling strategies, that is LNS, LNSNL and SPT, are the same

as the ones provided by the MILP in 5.1.

Taking Figure 5.1 and 5.2 as examples for the deadlines assigned to tasks men-

tioned in Section 5.4, task 1 should �nish its execution before the given end time

assigned by the scheduling strategies, that is, 711 milliseconds after the work�ow's

start. In the same sense, task 2 should �nish its execution in both strategies as

the deadline assigned to the task is 933 milliseconds, that is, its start time plus its

execution time (773 + 160 = 993 ms).
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A New Scheduling Component for

COMPSs

This chapter presents the modi�cations that have been applied in order to enhance the

current COMPSs framework to support the proposed scheduling approaches, thus en-

hancing the execution of distributed time-sensitive applications. Section 6.1 presents

the pro�ling mechanism for extracting both the application DAG and the Digraph

compute continuum; Section 6.2 details the actual modi�cations in the COMPSs

framework; Section 6.3 presents the component developed in order to monitor tasks

execution at runtime; and Section 6.4 presents how these modi�cations allow COMPSs

to react based on external events, such as connection/disconnection of computing re-

sources.

6.1 Analysis Phase

The �rst step is to provide an enhanced pro�ling mechanism in order to retrieve

both the application DAG and the compute continuum Digraph with the needed

information, as described in the system model (see Chapter 4).

Digraph Compute ContinuumModel. The pro�ling of the compute continuum

setup is performed in order to obtain the characterization of the communication links

between the di�erent computing resources. This pro�ling process includes:

1. The actual available connections existing among them and the real bandwidth

bw.
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1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 C l i en t connect ing to 192 . 168 . 50 . 102 , TCP port

5001
3 CP window s i z e : 85 .0 KByte ( d e f au l t )
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 [ 3 ] l o c a l 192 . 168 . 50 . 103 port 59150 connected

with 192 . 168 . 50 . 102 port 5001
6 [ ID ] I n t e r v a l Trans fe r Bandwidth
7 [ 3 ] 0.0− 9 .8 sec 1 .00 GBytes 822 Mbits/sec

Figure 6.1: iPerf output for Bandwidth retrieval of Ethernet IEEE
802.3.

2. The maximum frame size mfs according to the existing technology used in the

communication.

3. The header size h also based on to the existing technology used in the commu-

nication.

The available connections existing among them is represented by the bw matrix.

Given two resources pk and pl such that there exists no a communication link between

them, then bwk,l = −1. In the rest of the cases, the real bandwidth bw is gathered

by using iPerf [49], a tool for retrieving measurements of the maximum achievable

bandwidth on networks. iPerf requires two computing resources, one acting as a server

while the other as a client 1.

The bandwidth bw between for each communication link of the compute continuum

digraph is computed as the minimum observed bandwidth over a given number of

executions. To setup one of the resources as a server, the following command is used:

iperf -s, whereas the other resource uses the following command to connect to the

already running server: iperf -c $SERVER_IP, thus obtaining the real bandwidth as

shown in Figure 6.1.

Both mfs and h are already de�ned values based on the technology used. For

instance, for the Ethernet IEEE 802.3 [43] and the Wi� IEEE 802.11ac [44] standards,

these values are 40 and 72 bytes, respectively (as shown in Figure 4.1).

Similar to the computation times, a percentage network margin parameter is also

introduced in the communications time computation in order to safely guarantee the

timing requirements. Concretely, this margin is added to the data transfer time

1Given two computing resources pk and pl such that k 6= l and are connected, we consider that
bwk,l = bwl,k.
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T transf
i,j (see Equation 4.1), in case the data transfer is needed (because the two de-

pendent tasks execute in di�erent computing resources).

DAG Task Model. On the other hand, the information regarding the COMPSs

application, represented as a DAG, includes:

1. The structure of the DAG representing dependencies among tasks, i.e, the set

of edges E, or similarly, the adjacency matrix succi,j .

2. The execution time upper bound for each COMPSs task executed in all the

(supported) computing resources, Ci,k.

3. The identi�ers of the data dependencies zidi,j .

4. The payload of all data dependencies zi,j .

5. Source node source.

6. Sink node sink.

The structure of the DAG is already provided by COMPSs which dynamically

builds it at runtime. To retrieve this information another �ag is used in runcompss

which is the �graph (or -g). This �ag generates a dot �le [50] containing all the nodes

composing the application and the edges representing the dependencies among them.

By parsing this �le using a Bash script [51] that retrieves all the dependencies among

nodes and the identi�ers of these dependencies, we are able to generate both the adja-

cency matrix succi,j and tags identifying data transfers variables zidi,j . Furthermore,

both source and sink nodes are also retrieved from the dot �le. Figure 6.2 shows

the content of the dot �le extracted from COMPSs that represents the DAG of the

ODT application in 3.2, outlining the information used to obtain the adjacency matrix

succi,j and the data identi�ers matrix zidi,j .

The upper bound execution time Ci,k is gathered by executing all tasks com-

posing the application in the di�erent computing resources (if the implementation is

supported) while using all the logging and tracing functions provided by COMPSs.

This is achieved by using the �ags �debug (or -d) and �tracing (or -t) in the runcompss

command line interface. The former activates the logging function in a verbose mode,
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1 digraph {
2 subgraph dependence_graph {
3 1 [ . . . ] ;
4 1 -> 2 [ label="d1v1" ] ;
5 2 [ . . . ] ;
6 3 [ . . . ] ;
7 2 -> 3 [ label="d3v2" ] ;
8 4 [ . . . ] ;
9 2 -> 4 [ label="d3v2" ] ;
10 5 [ . . . ] ;
11 2 -> 5 [ label="d3v2" ] ;
12 6 [ . . . ] ;
13 1 -> 6 [ label="d1v1" ] ;
14 3 -> 6 [ label="d5v2" ] ;
15 4 -> 6 [ label="d7v2" ] ;
16 5 -> 6 [ label="d9v2" ] ;
17 }
18 subgraph legend {
19 key [ l a b e l=<
20 <tr><td a l i g n=" r i gh t ">get_frame</td></tr>
21 <tr><td a l i g n=" r i gh t ">get_objects_from_frame

</td></tr>
22 <tr><td a l i g n=" r i gh t ">tracker </td></tr>
23 <tr><td a l i g n=" r i gh t ">col lect_and_display </td

></tr>
24 </table>
25 >]
26 }
27 }

Figure 6.2: dot �le for the DAG of the ODT application in 3.2.

while the latter activates Extrae [52], a dynamic instrumentation package to trace

programs. The maximum observed execution time, over a given number of execu-

tions, for each task is then obtained by parsing the prv �les generated by Extrae. The

execution time upper bound of COMPSs tasks, Ci,k,∀vi ∈ V,∀pk ∈ V cc, is computed

as the maximum observed time plus a 50% of safety margin. This is a common indus-

trial practice that relies on software pro�ling reinforced by the use of safety margins

[20].

Figure 6.3 presents an extract of a prv �le generated by Extrae. In order to

retrieve the execution times of the tasks composing the application, we parse the �le by

obtaining the custom Extrae event generated by COMPSs, 8000002. This particular

event is used to indicate the start and end events of a given task, which can be obtained

by the last �eld in the prv line being the task 2 in the example. The other important

�eld is the time in which the event takes place, that is 6868968000 nanoseconds. The

last step is to retrieve the end time of the task which is also represented by the same

Extrae event, thus by subtracting them we obtain the observed time in this particular
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1 2 : 2 : 1 : 3 : 2 : 6868968000 :8000002 :2
2 2 : 2 : 1 : 3 : 2 : 7 0 34151000 : 8 0 00000 : 0
3 2 : 2 : 1 : 3 : 2 : 7029162000 :8000002 : 0

Figure 6.3: prv �le for retrieving the tasks execution times.

1 New output value generated d1v1 . IT with s i z e 5932739

Figure 6.4: Logging �le extract to retrieve the payload size produced
by task 1 from 4.2.

execution for task 2, which is 160 milliseconds as in Figure 5.1 and 5.2.

Finally, the size of the data items involved in the dependencies between tasks are

not accounted in the current COMPSs framework. Hence, we simply enhanced the

logging information to retrieve this data, thus being able to generate the zi,j variable.

If more than one item is involved, the Bash script that collects these results adds sizes

of the di�erent data elements as long as the parameters are not unique, that is, their

zid are di�erent as seen in Figure 6.4, which presents the logging �le used to retrieve

the size of the output produced by task 1 in Figure 4.2.

6.1.1 Example

Figure 6.5 shows the �le for the example for the Object Detection and Tracking (ODT)

application. The total number of tasks composing the application is described by

n, whereas m contains the number of computing resources. maxBw contains the

maximum observed bandwidth value and it is used in the MILP model to serialize the

Constrain 5.1.

6.2 Scheduling Strategies Implemented in COMPSs

The COMPSs framework has been enhanced in order to incorporate the di�erent task

scheduling strategies presented in Chapter 5.

6.2.1 MILP-based Optimal Task Scheduling

The MILP scheduling approach has been implemented with the IBM ILOG CPLEX

Optimization Studio [53]. To run the model with the input �le collected in the analysis
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1 n = 6 ;
2 source = 1 ;
3 s ink = 6 ;
4 succ = [
5 [ 0 1 0 0 0 1 ]
6 [ 0 0 1 1 1 0 ]
7 [ 0 0 0 0 0 1 ]
8 [ 0 0 0 0 0 1 ]
9 [ 0 0 0 0 0 1 ]
10 [ 0 0 0 0 0 0 ]
11 ] ;
12 z = [
13 [ 0 5 .932739 0 0 0 5 . 932739 ]
14 [ 0 0 .000416 .000416 .000416 0 ]
15 [ 0 0 0 0 0 . 002175 ]
16 [ 0 0 0 0 0 . 002175 ]
17 [ 0 0 0 0 0 . 002175 ]
18 [ 0 0 0 0 0 0 ]
19 ] ;
20 z id = [
21 [ "0" "d1v1" "0" "0" "0" "d1v1" ]
22 [ "0" "0" "d3v2" "d3v2" "d3v2" "0" ]
23 [ "0" "0" "0" "0" "0" "d5v2" ]
24 [ "0" "0" "0" "0" "0" "d7v2" ]
25 [ "0" "0" "0" "0" "0" "d9v2" ]
26 [ "0" "0" "0" "0" "0" "0" ]
27 ] ;
28 m = 4 ;
29 ibw = [
30 [ 0 822 94 822 ]
31 [822 0 94 −1]
32 [ 94 94 0 860 ]
33 [822 −1 860 0 ]
34 ] ;
35 maxBw = 822 ;
36 MFS = 1500 ;
37 H = 74 ;
38 C = [
39 [711 −1 −1 −1]
40 [ 256 . 130 160.243 140.258 1814 . 440 ]
41 [ 186 . 319 211.785 −1 −1]
42 [ 196 . 292 176.137 −1 −1]
43 [ 189 . 445 229.690 −1 −1]
44 [ 133 . 888 187.595 97 .274 778 . 488 ]
45 ] ;
46 networkMargin = 0 . 0 5 ;
47 h e u r i s t i c = {LNSNL, LNS, SPT, LPT} ;

Figure 6.5: Input �le generated by the pro�ling mechanism for ODT
application.

phase, the following command is used: oplrun optimal_mapping.mod input_file,

where optimal_mapping.mod is the model �le containing the MILP de�ned in Section

5.1. The MILP execution provides the scheduling obtained by showing the task-to-

resource mapping and the order of tasks execution in the computing resources, as

shown in Figure 6.6 obtained for the input �le depicted in Figure 6.5. This output is
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1 Task 1 (C = 711 .291) execute s on computing r e sou r c e 1
s t a r t i n g at 0

2 Task 2 (C = 160 .243) execute s on computing r e sou r c e 2
s t a r t i n g at 773.610330388

3 Task 3 (C = 186 .319) execute s on computing r e sou r c e 1
s t a r t i n g at 933.857976958

4 Task 4 (C = 176 .137) execute s on computing r e sou r c e 2
s t a r t i n g at 933.856976958

5 Task 5 (C = 189 .445) execute s on computing r e sou r c e 1
s t a r t i n g at 1120.176976958

6 Task 6 (C = 97 .274) execute s on computing r e sou r c e 3
s t a r t i n g at 1309.700195905

Figure 6.6: MILP output for the ODT application input in 6.5.

then parsed by another bash script and used in COMPSs to guide the allocation of

tasks to resources. However, in this case, the dynamic re-con�guration is not feasible

due to the time complexity of the MILP (see Section 7.4).

6.2.2 Task Scheduling Heuristics

A new scheduler has been developed, which is the component in COMPSs in charge

of receiving and dealing with the actual COMPSs tasks by allocating them to the

di�erent resources in the compute continuum accordingly to the selected scheduling

heuristic. This new scheduler is not related with the family of ready schedulers present

in COMPSs, whose behavior is depicted in 1, thus not only scheduling ready tasks.

runcompss already provides a �ag that allows to choose among the di�erent available

schedulers, allowing to select the new scheduler by adding

�scheduler="es.bsc.compss.scheduler.HeuristicScheduler". Moreover, this new sched-

uler component enhances the COMPSs runtime as it is able to anticipate (whenever

possible) the data transfers of two dependent COMPSs tasks allocated in di�erent

computing resources. This is achieved by the creation of a new class, TransferValue-

Action, that advances the transfer of the data element belonging to a predecessor task

to the computing resource selected to host the new task, whenever the predecessor �n-

ishes its execution, as described in Section 5.3. These heuristics require the input �le

presented in previous section with the information gathered in the pro�ling of both the

COMPSs application and the compute continuum in order to provide the sub-optimal

scheduling. To do so, we have used the runcompss �ag �scheduler_con�g_�le that

provides the path to the con�guration �le upon which the scheduler receives not only
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the location of the input �le, but also other information such as the heuristic schedul-

ing strategy to use.

Upon receiving the input �le and the desired task scheduling strategy, the scheduler

loads the content of the �le and triggers the computation of the selected heuristic,

which provides both a new task scheduling and the response time upper-bound Rub.

Moreover, this scheduling allows to obtain the start and end times in between the

tasks are supposed to execute, thus bene�ting the monitoring of deadlines of each

task

6.3 Task Monitoring

In a real-case scenario there are other situations which generates events that trigger

the re-computation of the task scheduling, for example, missing a certain amount of

deadlines assigned to tasks.

However, COMPSs does not take into account the timings required to measure

whether these assigned deadlines are met. In order to allow COMPSs to be aware of

these times we have also enhanced the already implemented COMPSs Task Monitor.

The Task Monitor includes methods that allow to gather at runtime the exact start and

end execution times of a given task. Furthermore, it enables the enhanced scheduler

to easily retrieve these timings given a speci�c task, thus allowing the scheduler to

compare if the current times violate the assigned deadlines.

This modi�cations allow to enhance the execution model even more, specially in

the case of the cloud in which scaling in (dynamically removing cloud resources) and

scaling out (dynamically adding resources) can be performed based on the amount

of these deadlines that are missed. For example, Prometheus [54], an open-source

systems monitoring and alerting toolkit, is used to publish the amount of deadlines

missed in a given COMPSs work�ow, which provides the cloud an easy retrieval of

these metrics to decide whenever to trigger the scale in or scale out policies in order

to guarantee a certain QoS. As new resources are dynamically added or removed, the

scheduling needs to be re-adapted to take them into account, described in the next

section.
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6.4 A Reactive Scheduler

The procedure that has been described so far refers to a pure static scheduling mech-

anism. First of all, the application and the compute continuum setup are analyzed

and modeled prior to the actual execution. Then, the scheduler receives this informa-

tion to compute the actual task-to-resource allocation and applies it in the COMPSs

execution.

However, the compute continuum setup can be updated at runtime when new

computing resources become up and running, or whenever a connection established

between resources disappears. These events trigger a re-computation of the scheduling

heuristic, which imposes a new response time upper bound Rub, and thus implying a

new scheduling, based on the new compute continuum setup.

The scheduler is informed through messages that contain the list of updated com-

puting resources detected by another COMPSs component whenever there is a change

in the resources in the compute continuum. Hence, the scheduler is able to react by

updating the pro�ling information at runtime based on the list of computing resources

received, and re-schedules the work�ow considering these changes. In the case of re-

moving a resource, the scheduler disables the information belonging to that one in

particular, and hence it is not considered when the re-scheduling is applied. On the

other hand, in the case of adding a resource the scheduler just enables the information

so it is considered again by the scheduling heuristic.
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Evaluation

In this chapter we evaluate the response time upper bound provided by the heuristics

and the MILP formulation, and also the average and maximum observed execution

times compared with the baseline COMPSs scheduling strategies.

7.1 Experimental Setup

The �ve proposed scheduling strategies considered in the evaluation are presented in

Chapter 5 and implemented in COMPSs as explained in Chapter 6, and the results

are compared with the dynamic scheduling strategies presented in the pseudo code

described in Algorithm 1.

7.1.1 Compute Continuum Con�guration

We considered four computing resources: a Raspberry Pi 3, featuring a 4-core ARMv7

Processor; a NVIDIA Jetson TX2 featuring a 4-core ARMv8 host processor and a

NVIDIA Pascal GPU with 256 NVIDIA CUDA cores; a NVIDIA Jetson AGX Xavier

featuring a 8-core ARMv8 host processor and a 512-Core Volta GPU; and a 4-core

Intel(R) i7-4600U processor. We evaluate two di�erent con�gurations for the com-

munications: (1) all resources connected through Ethernet IEEE 802.3 (labeled as

Ethernet), and (2) the NVIDIA GPUs connected through Ethernet, and the Intel

multi-core and Raspberry Pi through Wi� IEEE 802.11ac (labeled as Hybrid Ethernet

+ Wi�).

42



Chapter 7. Evaluation

7.1.2 Applications

For the evaluation of the proposed scheduling heuristics, seven well-known HPC ap-

plications are �rst considered:

1. Matrix Multiplication (Matmul) (56 nodes), a simple application for matrix mul-

tiplication.

2. Cholesky Factorization (38 nodes), commonly used for e�cient linear equation

solvers, Monte Carlo simulations, or kalman �lters acceleration (used in vehicle

navigation systems to track pedestrians or bicyclists [55]), it processes a ma-

trix of real �oating-point numbers using low-level functions from the LAPACK

library [56].

3. QR Factorization (36 nodes), that decomposes a matrix into a product of an

orthogonal and an upper triangular matrix.

4. Max Norm (13), a simple application that computes the maximum number in a

list of 16000 elements.

5. Principal Component Analysis (PCA) (26 nodes), applicable in machine learning

and data mining �elds among others, to reduce the number of variables in a

dataset.

6. Terasort (27 nodes), a popular application that sorts one terabyte of randomly

distributed data by also using the MapReduce procedure.

7. Map/Reduce Matrix Multiplication (M/R Matmul) (22 nodes), a matrix multi-

plication that is computed by applying the MapReduce procedure.

A real use case application for Object detection and tracking (ODT), described in

Figure 3.1, has also been considered. As input, a video of 2 minutes and 21 seconds

of duration is used, with a total number of 150 frames. To increase complexity, we

consider a DAG with 5 iterations (each processing a frame).

All applications are executed 50 times to compute the average and the maxi-

mum observed execution times. The execution time upper bound of COMPSs tasks,

Ci,k, ∀vi ∈ V,∀pk ∈ V cc, is computed as the maximum observed time plus a 50% of
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safety margin. This is a common industrial practice that relies on software pro�ling

reinforced by the use of safety margins [20]. Similarly, a 5% of safety margin is used

for the data transfer times. With respect to the payload zi,j ,∀(vi, vj) ∈ E, when it is

not a �xed value (e.g., if it depends on the number of detected objects), the maximum

observed payload is used as a safe upper bound.

7.2 Performance and Accuracy

This section presents the evaluation of the proposed scheduling strategies in terms of

the observed execution times (average and maximum) and the response time upper

bound.

7.2.1 Classical Applications

Figure 7.1 shows the boxplots for the classical HPC applications on the compute

continuum (Ethernet con�guration). It shows the distribution of the execution time

for the proposed scheduling strategies (MILP, LNSNL, LNS, LPT and SPT, and

for the baseline COMPSs scheduler (FIFO or LIFO) that performs best in terms of

average execution time. Moreover, the Rub provided by the scheduling strategies is

also depicted.

As shown, all the proposed strategies clearly outperform the baseline COMPSs

schedulers in terms of best, average and maximum observed execution times. The

reason is that the proposed algorithms improve scheduling by taking into account

the timing information of the system model. Moreover, as seen in Section 5.3, they

anticipate data transfers, enabling the overlap of computation and communication

tasks. In terms of average execution time, MILP is 55%, 76%, 37%, 67%, 26%, 45%

and 57%, faster than the baseline COMPSs scheduler for the Matrix Multiplication,

Cholesky, QR, Max Norm, PCA, Terasort and MapReduce Matrix Multiplication

applications, respectively. Similarly, the best heuristic for each application is faster

by 54% (SPT), 75% (LNSNL), 37% (LNS), 62% (LNSNL), 24% (LNSNL), 40% (LPT)

and 52% (SPT).

Interestingly, due to the static nature of our solutions, the execution time variation

of our scheduling strategies is much smaller than the baseline COMPSs schedulers,
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Response time upper bound Rub

(a) Matmul (b) Cholesky (c) QR Factorization

(d) Max Norm (e) PCA (f) Terasort

(g) M/R Matmul

Figure 7.1: Boxplot of the execution time of each COMPSs applica-
tions under di�erent scheduling strategies (Ethernet).

resulting in a more stable execution. This trend is clearly observed for all the appli-

cations.

If we now focus on the accuracy of the MILP solution and the scheduling heuristics,

the Rub for the MILP is 31%, 53%, 34%, 45%, 11%, 45% and 36% higher than the

maximum observed execution time for the di�erent HPC applications, respectively.

A similar trend is also observed in the best scheduling heuristics for each application,

being 35% (SPT), 26% (LNSNL), 31% (LNS), 38% (LNSNL), 17% (LNSNL), 34%

(LPT) and 24% (SPT) higher. This overestimation allows to safely provide timing

guarantees to the applications. In all the cases, the di�erence between Rub and the
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maximum observed execution time is smaller when the variability of the execution

time is higher; this is clearly observed if we compare the PCA (higher variability,

smaller di�erence) and the Cholesky (smaller variability, higher di�erence).

In terms of the Rub estimation, the MILP solution outperforms the scheduling

heuristics. The Rub provided by the best heuristic for each application results in an

increment of 4.33% (SPT), 6.84% (LNSNL), 1.74% (LNS), 8.78% (LNSNL), 6.38%

(LNSNL), 0.97% (LPT), and 1.64% (SPT) compared to the Rub obtained by MILP.

Notice that the MILP strategy does not provide the optimal result for the Matmul,

Merge/Reduce Matmul, QR and Terasort applications due to time restrictions, while

the heuristics provide a much faster solution (see discussion in Section 7.4).

It is worth mentioning that no heuristic clearly outperforms the others, as the

performance of each one depends on the application (e.g., the shape of the DAG or

the execution time of all tasks). A clear example is shown for the SPT strategy, which

is the best heuristic for the Matmul and M/R Matmul applications (and provides a

similar Rub as the MILP) but the worst by far for QR and Cholesky. The reason is

that in both the QR and the Cholesky applications a bad scheduling decision makes

a very long task to execute while the rest of resources are idle because all the shortest

tasks have been already executed, while in the rest of heuristics the long tasks are

executed in parallel with other tasks.

7.2.2 Object Detection and Tracking

Figure 7.2a shows the boxplots for the ODT application on the compute continuum

(Ethernet con�guration). Similar outcomes have been observed with respect to the

classical HPC applications. Firstly, our task scheduling strategies clearly outperform

the COMPSs baseline scheduler. In this case in which we have a more complex system,

the di�erences are even more evident. The best scheduling heuristic for this application

is LNS. Considering average execution times, MILP and LNS are 80.8% and 76.3%

faster than the LIFO COMPSs scheduler, respectively. This is extremely important

when considering applications with timing requirements, e.g., in the situation of an

alert when a pedestrian is detected. Furthermore, the execution time variation of our

scheduling strategies is again much smaller than the one achieved with the COMPSs

scheduler. The Rub of the LNS heuristic increments 10.8% w.r.t. to the MILP solution.
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Figure 7.2b shows an interesting comparison when executing the application on the

two di�erent compute continuum setups, i.e., Ethernet and Hybrid Ethernet + Wi�,

for the LNS strategy. Even though the execution for the Hybrid setup outperforms

the Ethernet setup (in terms of minimum observed and average execution times), the

variability introduced when using Wi� connections is much higher, leading to higher

values for the maximum observed time.

Overall, we conclude that the proposed scheduling strategies signi�cantly outper-

form the COMPSs baseline scheduling strategies. The scheduling heuristics provide

comparable results to the ones obtained with the optimal but costly MILP approach.

The selection of a heuristic depends on the actual setup of the system. Moreover,

due to the static nature of our scheduling strategies, the execution time variability of

distributed applications is signi�cantly reduced, resulting in a more stable execution

that also allows a dynamic recon�guration, as discussed in Section 7.3.

(a) Ethernet compute continuum
(b) LNS heuristic.

Figure 7.2: Object detection and tracking COMPSs application.
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Response time upper bound Rub COMPSs application execution time

Figure 7.3: Execution time (multiple iterations) and Rub of the ob-
ject detection and tracking, in a dynamic compute continuum environ-

ment (from 4 to 3 computing resources).

7.3 Reactive Scheduling: Static Allocation in Dynamic

Environments

As described in Section 5.3 and in Chapter 6, the proposed scheduling heuristics

allow to quickly react to changes in the compute continuum model, appropriately re-

allocating the tasks and providing a new response-time upper bound. This is demon-

strated in Figure 7.3, where the evolution of the execution time of 50 executions of the

object detection and tracking application is depicted. During the �rst 25 executions,

the Ethernet compute continuum con�guration described in Section 7.1.1 is consid-

ered. Then, we disconnect the Xavier GPUs, leaving only 3 available edge devices.

This forces the re-scheduling of tasks and a new Rub is provided at the 26th execution.

COMPSs MILP Best Heuristic

App N volcomm volcomp volcomm volcomp

MMul 56 6192.1182 10219.114 6539.6154 10219.114

Cho 38 1047.4992 3019.097 1222.0824 2930.571

QR 36 3102.5515 7210.551 4115.4598 12420.82

Max1 13 25.2588 1817.138 1.4789 2022.802

PCA 26 30.2914 3329.288 32.739 3413.293

Tera 26 3.0182 3899.114 3.4084 5617.271

M/RMul 22 1899.1662 3611.704 2115.0076 3724.256

ODT 32 3791.1277 4228.118 4751.2155 4469.456

Table 7.1: Number of nodesN , and communication and computation
volumes, volcomm and volcomp, for each application.

48



Chapter 7. Evaluation

Application MILP Best Heuristic

MMul 31692.60 1.90
Cho 133.2 0.31
QR 10966.8 1.36
Max1 1.2 0.22
PCA 34203.0 1.27
Tera 25800.5 0.44

M/RMul 26821.8 1.49
ODT 25803.0 0.44

Table 7.2: MILP and best scheduling heuristic execution times in
seconds.

Table 7.1 characterizes the six COMPSs applications by showing the number of

nodes N , and the communication and computation volumes in seconds (volcomm and

volcomp respectively). Concretely, the table computes the volumes for the MILP and

the best heuristics (SPT, SPT, LNSNL, LNSNL, LNSNL, LNS, SPT and LPT for

MMul, M/RMul, PCA, Max1, Cho, QR, ODT and Tera, respectively).

7.4 MILP Complexity

The execution time to solve the MILP formulation on a 4-core Intel(R) Xeon(TM)

CPU 5148 @ 2.33GHz processor is shown in seconds in table 7.2. Due to memory

limitations, only the following applications obtain the optimal solution: Cholesky,

Max Norm 1, PCA and ODT (the gap to explore the complete solutions space for the

rest is 24%, 18%, 3% and 14% for Matmul, Merge/Reduce Matmul, QR and Terasort

applications, respectively). The reasons for this is that it depends on the shape of the

DAG, taking into account both the number of nodes and edges. Moreover, for the

ODT application most of the combinations are limited due to the restrictions on the

implementations of where tasks can execute, which reduces a lot the search space.

The same table 7.2 also presents the execution time spent on the dynamic alloca-

tion of tasks implemented in COMPSs for the scheduling heuristic obtaining the best

average response time of each application. As it can be seen, the di�erences between

the MILP and the heuristics is enormous. Taking this into account and the di�erences

between the MILP and the heuristics solutions, it is more than reasonable to propose

the use of the task scheduling heuristics.
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Conclusions and Future Work

The advent of the new edge computing paradigm, coupled with advanced parallel

embedded processor architectures, provides an unprecedented level of computation to

e�ectively process large amounts of data coming from distributed data sources. This

new paradigm however, challenges the development and deployment of distributed

time-sensitive applications due to the heterogeneous nature of the devices composing

the compute continuum in edge computing, as well as the real-time analysis tech-

niques to guarantee the response time of distributed time-sensitive functionalities, as

requested in application domains such as smart cities and connected cars.

In this thesis we �rst propose the use of a task-based model to develop and exe-

cute distributed time-sensitive applications in edge computing domains. In particular,

we use the COMPSs framework and extend its scheduling component to target such

systems, as its current implementation is agnostic of time-sensitive applications exe-

cuted. A novel system model, based on the classical DAG-based scheduling model, is

proposed to characterize the applications. Also a Digraph model is used to character-

ize the compute continuum where both, the computation times and the data transfer

times under the edge computing paradigm, are considered. A set of task scheduling

strategies is proposed, based on an optimal solution provided by the MILP formulation

and on a set of sub-optimal but tractable heuristics. The purpose is to minimize the

execution time of the applications, while guaranteeing their timing requirements by

means of a response time upper-bound. Our scheduling strategies are evaluated using

a real framework, being the heuristics the preferred option due to the complexity of

the MILP. Moreover, a time-sensitive object detection and tracking application has

been developed in the context of this work, also being considered in the evaluation
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performed. Results also reveal that, we are not only able to provide timing guarantees,

but also to reduce the execution time of distributed time-sensitive applications.

Even though we provide a reactive scheduler which is able to detect changes in the

compute continuum at runtime, and hence re-compute the schedule to take into con-

sideration either the appearing resources or the disconnected ones, it still remains as

future work to further exploit the bene�t of using the proposed scheduling strategies,

as that will allow to de�ne policies for updating the compute continuum dynamically

based on the monitoring applied at a task level at runtime, detecting the amount

of deadlines missed in order to improve the QoS of the time-sensitive applications.

Moreover, other metrics apart from deadline misses could be used. In edge comput-

ing, the devices are generally constrained both due to energy and computing capa-

bilities limitations. Hence, by coupling new components able to monitor and provide

alerts whenever these metrics surpass a given threshold, will allow the scheduler to

react to these events by applying the de�ned policies and triggering a re-computation

accordingly.
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