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Synopsis 8 

Heat flow measured over the East Grampians batholith in the 1980s was found to be 9 

unexpectedly low and at odds with high radiogenic heat production within the outcropping 10 

granites and a very large volume of granite predicted from an interpretation of gravity data. 11 

Past climate variations perturb temperature gradients in the shallow sub-surface leading to 12 

erroneous estimates of heat flow. A reconstruction of the surface temperature history during 13 

the last glacial cycle has enabled a rigorous palaeoclimate correction to be applied to the heat 14 

flow that shows an increase of 25% over previously reported values; revised to 86 ± 7 mWm-15 
2. An interpretation of recent mapping reveals that the surface exposures of the East 16 

Grampians granites are the roof zones of a highly evolved magma system. Rock composition 17 

therefore is likely to become more mafic with depth and the heat production will decrease 18 

with depth. This petrological model can be reconciled with the gravity data if the shape of the 19 

batholith is tabular with deep seated feeder conduits. The increased heat flow value leads to 20 

revised predictions of sub-surface temperatures of 129 ºC at 5 km depth and 176 ºC at 7 km 21 

depth, increases of 40% and 49% respectively compared to previous estimates. These 22 

temperatures are at the lower end of those currently required for power generation with 23 

Engineered Geothermal Systems, but could potentially be exploited as a direct heat use 24 

resource in the Cairngorm region by targeting permeable fractures with deep boreholes. 25 

Introduction 26 

Engineered Geothermal Systems (EGS) are reservoirs that have been created to extract 27 

economical amounts of heat from low permeability and/or porosity geothermal resources 28 

(MIT 2006). In regions of the world with average continental heat flows, EGS is often 29 

associated with granites that have elevated concentrations of the naturally occurring 30 

radioelements of uranium (U), thorium (Th) and potassium (K). Where large volumes of such 31 

rocks occur, the radioactive decay of these elements produces heat anomalies at depth; these 32 

intrusions are therefore known as high-heat producing (HHP) granites. The geothermal 33 
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energy they contain can in theory be exploited by pumping cold water down a borehole into a 34 

zone of hot rocks where it is heated as it travels through fractures of an engineered reservoir 35 

to a second borehole, from which it is extracted. The heat is then transferred to a binary fluid 36 

(that has a lower boiling point than water) via a heat exchanger which then turns a turbine to 37 

generate electricity. The highest reported heat flow in the UK of ~130 mW m−2 was measured 38 

(Wheildon et al. 1981) in the Permian granite intrusions of Cornwall and Devon (surface 39 

expressions of the Cornubian batholith) and these intrusions have been extensively 40 

investigated as potential EGS reservoirs (e.g. Downing & Gray 1986a, b; Batchelor 1987; 41 

Richards et al. 1994). The potential for EGS in Scotland was assessed during the Geothermal 42 

Energy programme (Rollin 1982, 1984; Lee 1984; Webb & Brown 1984; Wheildon et al. 43 

1984; Lee et al. 1984, 1987). There are no major late Carboniferous to Permian granite 44 

intrusions in Scotland, and therefore no direct analogues of the south-west England 45 

intrusions. The East Grampians batholith (EGB) underlies an east-west trending zone 46 

extending inland from Aberdeen. Many large Siluro-Devonian granite intrusions crop out 47 

within this zone and, from geochemical determinations of U, Th and K a number were found 48 

to have the highest heat production (HP) values in the UK (Webb & Brown, 1984) (see Table 49 

1 and Figure 1). Subsequent heat flow measurements in shallow boreholes (~300 m deep) at 50 

Cairngorm, Mount Battock, Ballater and Bennachie of 70, 59, 71 and 76 mWm-2 respectively 51 

were much lower than anticipated from the heat production data (Wheildon et al. 1984) and 52 

were therefore disappointing. 53 

The East Grampians batholith is associated with an extensive Bouguer gravity anomaly low 54 

that has a minimum magnitude of -53 mGal (see Figure 2). Modelling of this gravity anomaly 55 

(Rollin 1984, 2009) suggested that the granite intrusions may extend to between 9 and 13 km 56 

depth as one large intrusive mass with an approximate volume of granite of 25000 km3. In 57 

order to reconcile the disparity between high heat production and low heat flow, Wheildon et 58 

al. (1984) modelled the heat flow at each of the heat flow boreholes. It was concluded that 59 

heat production must decline rapidly with depth within the granite and that the background 60 

regional heat flow must be relatively low. The rapid decrease in heat production was ascribed 61 

to strong vertical fractionation of the radiothermal elements; in other words, the 62 

concentrations of U, Th and K diminish rapidly with depth, so that the HHP character of the 63 

intrusions is just a near-surface feature. This interpretation was based, to a large extent, on a 64 

theoretical understanding of granite magma evolution, the geochemical data derived from 65 

samples from the relatively narrow vertical range spanned by the boreholes (~300 m) and 66 
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surface exposures (Webb & Brown 1984; Webb et al. 1985). The heat flow modelling 67 

therefore predicted a sub-surface temperature at 5 km depth of 92ºC. When considered 68 

against predicted temperatures of 182ºC at 5 km depth for parts of the Cornubian Batholith 69 

(Downing & Gray 1986a) the East Grampians were judged as geothermally unprospective. 70 

It is known that past climate change can perturb sub-surface temperature gradients from 71 

which heat flow is calculated (e.g. Benfield 1939; Birch 1948; Crain 1968; Jessop 1971; Beck 72 

1977). In Britain, warming since the last glaciation would result in a positive correction to 73 

heat flow which Younger et al. (2012) and Westaway & Younger (2013) suggested to be of 74 

the order of ~20 mW m−2. Corrections to heat flow for palaeoclimate were not originally 75 

applied to the East Grampians heat flow boreholes (Downing & Gray 1986a). The reason 76 

stated was that it was unnecessary for comparative regional studies, although this would then 77 

preclude using heat flow for predicting temperatures at depth. Westaway & Younger (2013) 78 

have recently published a climate corrected heat flow value for the Ballater borehole of 89.5 79 

mWm-2, a 26% increase over the original value.  Hence, it is quite likely that a lack of 80 

consideration of palaeoclimate has resulted in an underestimate of heat flow, and by 81 

implication geothermal potential, of the East Grampians. 82 

This paper presents a rigorous palaeoclimate correction to East Grampians heat flow and, 83 

with more recent petrological data on the intrusions, considers the implications for the 84 

geothermal resource. 85 

The East Grampians heat flow boreholes 86 

As part of the UK Geothermal Energy Programme (Downing & Gray 1986a) heat flow 87 

boreholes were drilled into the Cairngorm, Mount Battock, Ballater and Bennachie intrusions. 88 

The Monadhliath intrusion, which is also of HHP character, was not included due to poor 89 

accessibility. In each case a single vertical borehole was sunk to around 300 metres and core 90 

was recovered in three short (<7 metre) sections at approximately 100, 200 and 300 metres 91 

(amounting to ~5% of the total drilled depth). HP values for surface samples were affected by 92 

uranium mobility in the surface and near-surface environment, so a second set of ‘preferred’ 93 

HP values were calculated from unweathered rock recovered in core discs and chippings. The 94 

four intrusions consist of granite sensu stricto with subordinate proportions of coarser 95 

(pegmatitic) and finer (microgranitic and aplitic) granitic rock. Variations in grain-size and in 96 

the degree to which phenocrysts of feldspar are developed are characteristic features of all the 97 

intrusions, and this textural heterogeneity is the main basis for recognising and mapping 98 
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internal divisions. Zones of hydrothermally altered rock, which probably formed shortly after 99 

emplacement, are common. The passage of hot water through these zones has produced a 100 

range of secondary minerals (notably hematite, epidote and chlorite), quartz veining and 101 

joints, which act to locally weaken the rock mechanically, lower its overall thermal 102 

conductivity and raise its permeability. 103 

Downhole temperatures were measured with a thermistor probe suspended on a cable that 104 

was calibrated against a platinum resistance thermometer and was capable of measuring in-105 

hole temperatures to ± 0.01ºC. Due to the transient disturbance of downhole temperatures by 106 

the drilling, borehole temperatures were monitored for several months until no change was 107 

observed before an equilibrium temperature log was run. Thermal conductivities of recovered 108 

borehole samples were measured with the divided bar technique using discs cut from the 109 

cored sections and chippings for the rest of the boreholes. Samples were flooded with water 110 

under vacuum and subjected to axial stress up to 7 MPa in the divided bar in order to simulate 111 

natural conditions (Wheildon et al. 1984). 112 

Calculation of heat flow 113 

There are a number of techniques for calculating heat flow. The heat flow Qd at depth d is 114 

given by 115 

𝑄𝑑 =  𝜆𝑑 × �
𝛿𝑇
𝛿𝑧
�
𝑑

(1) 

where (δT/δz)d is the temperature gradient over the interval of thermal conductivity λd. A 116 

technique that combines all the observations from the borehole is the step-integrated heat 117 

flow equation of Bullard (1939). The relationship between the thermal resistance R and the 118 

temperature T is linear for conductive, steady-state vertical heat flow with no internal heat 119 

production, i.e. 120 

𝑇𝑧 =  𝑇𝑜 +  𝑄��
Δ𝑧𝑖
𝜆𝑖
�

𝑖

 (2) 

Where R = ∑ �Δ𝑧𝑖
𝜆𝑖
�𝑖 , λi is the thermal conductivity of the ith layer of thickness ∆zi, To is the 121 

mean ground surface temperature and Q is the heat flow. Wheildon et al. (1984) used 122 

equation (2) when calculating the original heat flow values for the East Grampians intrusions. 123 

Errors can be introduced when using the step integrated heat flow equation if any sections of 124 

the borehole are subjected to convective heat transport; an indication of this is shown by 125 



5 
 

irregular temperature gradients. Hence, for this study, heat flow in each borehole has been re-126 

calculated using equation (1) over several 20-30 m thick intervals, at or below 100 m, that are 127 

associated with uniform temperature gradients. The quoted, uncorrected, heat flow for each 128 

borehole is the average of the interval measurements and these new values are shown in 129 

Table 1. Two heat flow values are shown for Bennachie. This is because there is an increase 130 

in measured thermal conductivity in the depth interval 210-280 m that is not associated with a 131 

decrease in the temperature gradient. This implies that there may be an error in the thermal 132 

conductivities from the lower section of the borehole, although Wheildon et al. (1984) did not 133 

discuss these higher thermal conductivities. Hence for Bennachie one heat flow measurement 134 

is based on an analysis of the whole borehole (90-280 m), whilst a second is calculated from 135 

measurements in the upper section (90-200 m) of the borehole.  136 

Correction for palaeoclimate 137 

It is necessary to apply a correction for the effects of past climate variations as these will 138 

perturb temperature gradients in the ground from which heat flow is calculated. For 139 

simplified modelling purposes palaeoclimate can be considered as a series of one-off surface 140 

temperature changes that will affect sub-surface temperatures depending on the magnitude of 141 

the change in surface temperature and the time that has elapsed since the change. A surface 142 

temperature history for the Quaternary consists of a series of cyclical (e.g. glacial–interglacial 143 

cycles) to pseudo-cyclical (e.g. Dansgaard-Oeschger events) changes in temperature between 144 

warmer and colder conditions. Each cycle can last from a few hundred to several thousand 145 

years. The change in surface temperature will propagate into the ground, but the amplitude of 146 

the change will decrease exponentially with depth and there is a time lag between the 147 

temperature perturbation at the surface and at depth. The rate of the exponential decrease and 148 

the time lag are both dependent on the thermal diffusivity of the geological strata. 149 

Representing the surface temperature history as a series of step changes in temperature, 150 

Carslaw & Jaeger (1959) have shown that 151 

 𝑇𝜃 = 𝑇0 × erfc �𝑧/2√𝜅𝑡�  (3) 

 152 

where Tθ is the departure from original equilibrium temperature at depth z and time t after an 153 

instantaneous change in surface temperature of T0; κ is the average thermal diffusivity of the 154 

geological strata down to depth z and erfc(x) is the complementary error function. Noting that 155 

the change in surface temperature is the difference in temperature between successive steps, 156 

the effect of more than one temperature step is found by addition of all the steps, i.e. 157 
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 Tθ = ∑Tθi (4) 158 

Where Tθi is the temperature deviation due to the ith event (Beck 1977; Beardsmore & Cull 159 

2001). An account of the theory for palaeoclimate correction from first principles is given by 160 

Westaway & Younger (2013). This temperature deviation is subtracted from the measured 161 

temperature to generate the undisturbed temperature distribution in the ground from which a 162 

palaeoclimate corrected heat flow is calculated. 163 

Surface temperature history 164 

For the East Grampians region the magnitude of the climate correction to heat flow depends 165 

on the surface thermal history during the last glacial-interglacial cycle, considered to extend 166 

back to 126 kyr BP (thousand years before present) and in particular the extent of warming 167 

since the coldest period (often referred to as the Last Glacial Maximum or LGM, ~20 kyr 168 

BP). There are several proxies for past land surface temperature, which include fossil pollen 169 

and beetle assemblages, and although each has its uncertainties, multiple proxy data used 170 

together can provide reasonably robust reconstructions. Some generalised surface 171 

temperature histories have been published; Beck (1977) generated a thermal history for the 172 

northern hemisphere at three different latitudes and Westaway & Younger (2013) attempted a 173 

reconstruction for the southern and northern UK over the last 150 kyr based on a combination 174 

of climate proxy records including sea surface temperature (SST) and ice core temperature 175 

data. The approach here has been to produce a surface temperature history specific to the 176 

Cairngorms region, rather than to use a regionalised temperature history (c.f. Westaway & 177 

Younger 2013). We attempt to capture the localised advance and retreat of glacier ice and the 178 

temperature beneath the ice, which can vary rapidly over relatively short distances (Hall & 179 

Glasser 2003). This has been achieved by reconstructing the shape of the last glacial-180 

interglacial cycle temperature history for the UK from nearby mean annual air temperature 181 

(MAAT) reconstructions, scaling the curve for the Cairngorms latitude and modifying the 182 

surface temperature for periods of ice cover. This is detailed below. 183 

Time interval 0–12 kyr BP 184 

For this interval pollen records are available across Europe, including the UK, which have 185 

been quantitatively analysed by Davis et al. (2003). Based on this large dataset (500 sites), 186 

these authors produced MAAT records for six different regions of Europe. The ‘central west’ 187 

MAAT curve has been followed for the last 12 kyr (Figure 3), as this is the region in closest 188 

proximity to the UK. In this reconstruction the temperature anomaly (relative to present day 189 

temperature) for the Younger Dryas (11-12 kyr BP) is –4oC.  190 
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Time interval 12–22 kyr BP 191 

This important interval encompasses the LGM and the complicated, subsequent, deglaciation 192 

(transition from the LGM to the onset of the current, Holocene, interglacial). The most 193 

comprehensive analysis of the MAAT history for this interval is provided by the study of 194 

Shakun et al. (2012) which summarises 80 records of both sea surface and land surface 195 

proxies to reconstruct global latitudinal temperature curves. Their temperature curve 196 

corresponding to 30–60oN is used here (Figure 3). 197 

Time interval 22–40 kyr BP 198 

For this interval there are no available regional time-series compilations of MAAT, and 199 

therefore proximal NE Atlantic SST records have been used to estimate the shape of the UK 200 

MAAT curve. For 22–40 kyr the proximal SST record from ocean core BOFS 201 

(Biogeochemical Ocean Flux Study) 5K (Figure 3) was referenced; this site is located west of 202 

the Porcupine Seabight at a similar latitude to the southern UK (Maslin et al. 1995). This is 203 

believed to be a reasonably accurate estimate due to the proximity of the site, and similarity 204 

to the Davis et al. (2003) and Shakun et al. (2012) compilation curves from the 0–22 kyr 205 

interval (Figure 3). For BOFS 5K, both summer and winter absolute temperatures are 206 

reconstructed by using planktonic foraminiferal assemblage data and different transfer 207 

functions which all show similar trends (Figure 3). 208 

Time interval 40–140 kyr BP 209 

Finally, for the longer oldest time interval, the NE Atlantic SST reconstruction from ocean 210 

core ODP 980 has been used (Figure 3), which is located in the Rockall Trough at a similar 211 

latitude to the central UK (McManus et al. 1999). This record has some similarities to BOFS 212 

5K, but is at a far lower temporal resolution and is therefore only applied to the older interval. 213 

Scaling the MAAT curve 214 

In order to scale the idealised MAAT curve (Figure 4 middle panel) modern MAAT is 215 

applied as the Holocene average (maximum temperature), and the Annan and Hargreaves 216 

(2013) global estimate of MAAT during the LGM (19–23 kyr BP) is used as a guide for the 217 

minimum temperature, with a linear scaling of temperature between. The Annan & 218 

Hargreaves (2013) dataset is based on a combination of computer modelling and pollen 219 

MAAT proxies, where northern England and Scotland localities are 12–20oC below present. 220 

Therefore, the minimum MAAT for the Cairngorms during the LGM has been estimated as 221 

17oC below modern (present day) temperatures. This estimated temperature anomaly 222 

of -17oC below present day temperatures for the Cairngorm region can be compared against 223 
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regional estimates. The average global estimate for the LGM fits reasonably well with the NE 224 

Atlantic SST records, which show ~11oC offset between Holocene and LGM values at BOFS 225 

5K (Maslin et al. 1995), and ~8oC offset at ODP 980 (McManus et al. 1999). The anomaly is 226 

slightly greater than the SST estimates of the oceans surrounding the UK published by 227 

MARGO et al. (2009), which were based on a synthesis of global integrated fossil and 228 

geochemical proxies. It also fits well with pollen based reconstructions at 21 kyr BP from 229 

central Europe (Bartlein et al. 2011) and NE France (Busschers et al. 2007), showing MAAT 230 

~10oC below present, and the pollen-based European regional reconstructions for the 231 

Younger Dryas (12-11 kyr) at ~4oC below present (Davis et al. 2003). 232 

Effect of ice cover 233 

Due to the insulating capacity of ice sheets, the final land surface temperature estimates will 234 

differ from the estimated MAAT during periods of glacier ice cover. Hence, it is necessary to 235 

reconstruct the times at which the East Grampians were covered by glacier ice. This has been 236 

modelled by several studies (e.g. Siegert & Dowdeswell 2004; Hubbard et al. 2009; Evans et 237 

al. 2009; Clark et al. 2012). The British Ice Sheet reconstructions of Hubbard et al. (2009) 238 

provide a series of time-slices with reconstructed ice sheet extent since 35 kyr BP. To 239 

reconstruct the presence of an ice sheet in the older part of the record two scenarios have 240 

been modelled. A number of authors have presented evidence for glaciations during this older 241 

period (e.g. Clapperton 1997; Stoker & Bradwell 2005; Stewart & Lonergan 2011), so in the 242 

first scenario glacier ice is assumed in the period 35–120 kyr BP whenever the reconstructed 243 

temperature is at or below that during the period 12–35 kyr BP where Hubbard et al. (2009) 244 

modelled the presence of glacier ice in the East Grampians region. Thus, ice cover is assumed 245 

continuously from 110 kyr to 12 kyr BP. However, some authors dispute the presence of 246 

older ice cover (e.g. Westaway & Younger, 2013) and so in the second scenario it is assumed 247 

the Cairngorm region is only covered by glacier ice during the period 37 to 12 kyr BP. 248 

Temperatures at the base of the Scottish ice sheet were discussed by Glasser & Siegert (2002) 249 

and Hall & Glasser (2003). Wet-based ice that is often found under thick ice in topographical 250 

troughs is warmer than dry-based ice frozen to its bed. Temperatures at the base of the ice 251 

will also be affected by the mean annual air temperature. Sliding at the base of ice sheets may 252 

be due to the pressure being close to the pressure melting point; a sufficiently high pressure 253 

that the ice melts even though its temperature is below 0ºC. Hall & Glasser (2003) have 254 

shown that during basal freezing conditions, basal temperatures can range from -12ºC to -6ºC 255 

(absolute). However, when basal melting occurs, basal temperatures are more likely to be in 256 
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the range of -1ºC to +1ºC (absolute). The results of Hall & Glasser (2003) have been used to 257 

assign basal ice temperatures for the four heat flow borehole localities considered here. For 258 

the period 110-37 kyr BP a pre-glacial topography is assumed, whilst present-day topography 259 

is used for the period 37-12 kyr BP. The Mount Battock, Bennachie and Ballater boreholes 260 

are all in valleys, hence a basal ice temperature of 0ºC is assumed for the period 110-37 kyr 261 

BP and +1ºC (absolute) for 37-12 kyr BP. The Cairngorm borehole is situated at a higher 262 

elevation (616 m compared to ~220 m for the other boreholes) and is on the upper slope of a 263 

valley. Assumed basal ice temperatures are therefore -3ºC (absolute) for the period 110-37 264 

kyr BP and -2ºC (absolute) for 37-12 kyr BP. These surface temperature histories are shown 265 

in Figure 5. 266 

Heat flow from each of the boreholes has been corrected for the surface temperature histories. 267 

There are two alternative corrections reflecting the two scenarios of continuous ice cover 268 

from 110-12 kyr BP (scenario 1) and ice cover only for the period 37-12 kyr BP (scenario 2). 269 

These corrections are listed in Table 1 and demonstrate that the palaeoclimate correction is 270 

large, approximately 24-28% of the raw (uncorrected) heat flow. 271 

Corrections for topography 272 
Heat flow is also affected by topography as heat will preferentially diffuse into valleys 273 

resulting in an over estimate of heat flow in valleys, but an underestimate on hills and 274 

mountains. As the heat flow boreholes in the East Grampians region were all in valley 275 

locations heat flow will have been over estimated. Wheildon et al. (1984) applied a 276 

topographic correction using an analytical three-dimensional treatment of topography, 277 

described by Bullard (1940), and the heat flow values quoted in the Introduction above 278 

include this correction. Westaway & Younger (2013) also discussed topographic corrections 279 

and adapted a method by Lees (1910) for mountain ranges so that it could be applied to 280 

valley locations. In this method a 2D topographic profile perpendicular to the valley axis is 281 

fitted according to a mathematical form, referred to as a Lees Valley. From the fit, a series of 282 

parameters are obtained from which the temperature perturbation arising from the valley is 283 

easily calculated at any depth and location along the profile. From knowledge of thermal 284 

conductivity this can be converted to a perturbation to heat flow via equation (1). For the 285 

depth range 100-290 m Westaway & Younger (2013) calculated a topographic heat flow 286 

correction of -5.7 mWm-2 for the Ballater borehole. The Lees Valley method has been applied 287 

here to Ballater for each of the intervals over which heat flow was calculated and the average 288 

for the depth range 140-280 m is -5.8 mWm-2. The value quoted by Wheildon et al. (1984) 289 
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for Ballater is -4.2 mWm-2, which is in close agreement with those derived using the Lees 290 

Valley method. Therefore heat flow topographic corrections for the Cairngorm, Mount 291 

Battock and Bennachie boreholes have not been repeated using the Lees Valley method and 292 

the corrections of Wheildon et al. (1984) are used. These are shown in Table 1 along with a 293 

final corrected heat flow for each borehole. 294 

New insights into the geology and petrogenesis of the East Grampians Batholith 295 

All of the East Grampians intrusions have been re-mapped since the mid-1980s (British 296 

Geological Survey 1989; 1992; 1993a,b; 1995a,b,c; 1996a,b; Harrison 1987; Thomas et al. 297 

2004). The new maps and descriptions reveal aspects of their character and emplacement 298 

history in considerably more detail than was known previously. A feature of all the intrusions 299 

(and of the nearby Monadhliath intrusion, which is similar lithologically and also has HHP 300 

character), is the sense of a complicated emplacement history. The two larger intrusions 301 

(Cairngorm and Mount Battock) in particular display patterns indicating multi-phase 302 

emplacement of magma batches that over time became smaller and increasingly scattered 303 

within the confines of the intrusion. Two-phase texture, caused when magma is emplaced 304 

forcefully into a nearly-solidified rock causing it to brecciate, is another relatively common 305 

feature of the East Grampians intrusions, providing further support for a complicated, multi-306 

phase emplacement history. This character may in part reflect the compositional similarity of 307 

the various batches of magma, which probably lacked the contrasts in density and viscosity 308 

that are believed to yield more ordered arrangements, such as concentric zoning, in some 309 

intrusions. However, the large number of discrete mappable units and their lack of spatial 310 

order contrast markedly with other well-characterised granite intrusions of broadly the same 311 

age in Scotland, which display simple, concentrically zoned patterns at outcrop; these include 312 

the Ben Rinnes, Lochnagar, and Peterhead plutons (Stephenson & Gould 1995), the Fleet 313 

pluton (Stephens 1999) and the Ross of Mull pluton (Highton 1999). 314 

It seems likely that HHP character, highly evolved magma compositions, disordered 315 

emplacement patterns, and fluid enrichment are related features in the four studied East 316 

Grampians intrusions. The presently exposed surface through each one probably lies near to 317 

(<2 km below) the former intrusion roof (Thomas et al. 2004), in a zone situated at the top of 318 

the evolving magma system. Within this zone, multiple batches of highly fractionated, 319 

radiothermal granite magma were emplaced in rapid succession. Much of the magma 320 

fractionation may have occurred prior to emplacement, at deeper levels in the system, and 321 

there was probably little additional fractionation following emplacement. The radiothermal 322 
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elements therefore may not be vertically fractionated within the zone exposed at outcrop. 323 

This zone is likely to be of limited vertical extent - perhaps 1-2 km - and a vertical diminution 324 

in the concentration of radiothermal elements may only become apparent over a depth range 325 

of this size. Fluid exsolving from the magma (and perhaps also entering the system from 326 

adjacent country rocks) initially caused pervasive alteration of crystallised minerals (mainly 327 

feldspars), but became increasingly partitioned into discrete zones as the magma solidified. 328 

The Hill of Fare, Lochnagar, Glen Gairn and Peterhead intrusions crop out in the same E-W 329 

trending zone as the four intrusions studied in the Geothermal Energy programme, and a 330 

shared set of geochemical and petrological attributes (and similar age) led Stephens & 331 

Halliday (1984) to propose that they all share a genetic relationship and therefore constitute a 332 

suite - the ‘Cairngorm Suite’. Stephens & Halliday (1984) did not include intrusions north of 333 

the Great Glen Fault in their study, but the Helmsdale intrusion and possibly one or two 334 

others in this region appear to share the same set of attributes and may be related genetically 335 

to the East Grampians intrusions. These other intrusions of the Cairngorm Suite have HP 336 

values in the range 2.2-4.1 μWm-3 (Brown et al. 1982) and therefore lack the very high HP 337 

values of the four studied intrusions. They also lack evidence for fluid enrichment, and they 338 

have more organised emplacement patterns - the Lochnagar, Peterhead and Ben Rinnes 339 

intrusions are concentrically zoned at outcrop (Stephenson & Gould 1995). These intrusions 340 

may therefore give an indication of what the Cairngorm, Mt Battock, Ballater and Bennachie 341 

intrusions are like at levels a few kilometres below their present outcrop. 342 

Webb & Brown (1984) showed that HP values calculated from surface samples were around 343 

20-30% lower than those in equivalent rocks collected from borehole cores, because uranium 344 

is easily leached in near-surface bedrock. The range of HP values for these other intrusions of 345 

the Cairngorm Suite rises to 2.6-4.9 μWm-3 after a correction of 20% is applied to allow for 346 

inferred uranium leaching. The East Grampians granite intrusions have such highly evolved 347 

compositions that the nature of their source rocks has not been deduced with certainty. They 348 

display I-type characteristics (formed mainly from melted igneous rock), but were considered 349 

by Stephens & Halliday (1984) to be transitional between I-type and A-type (formed from 350 

melted high-grade metamorphic rocks). If they are I-type, the intrusions may be vertically 351 

stratified, with granite at outcrop and progressively less evolved compositions (e.g. 352 

granodiorite, diorite and cumulate mafic rocks) at deeper levels.  353 

Discussion 354 
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The palaeoclimate corrections clearly indicate that a substantial underestimation of heat flow 355 

has occurred by not considering the effect of past climate. The two scenarios of continuous 356 

ice cover from 110-12 kyr BP (scenario 1) and ice cover only for the period 37-12 kyr BP 357 

(scenario 2) have produced a very similar result. This is because at the shallow depths of the 358 

East Grampian boreholes, the main palaeoclimate influence is the warming that has taken 359 

place since the LGM during the last 18 kyr. The difference in the two climate scenarios 360 

occurs for the period prior to 37 kyr, which would have a greater influence on the 361 

palaeoclimate correction for heat flows calculated from greater depths. The palaeoclimate 362 

correction for each borehole has been taken as the mean of the two climate scenarios and 363 

these range from 20.7 to 17.9 mWm-2. The Bennachie borehole yields the highest value, but 364 

also has the largest error due to the discrepancy in thermal conductivities between the upper 365 

and lower sections of the borehole. For the analysis at Bennachie three heat flow 366 

determinations were made in the interval 90-200 m and three in the interval 200-280 m. 367 

Hence, the upper part of the borehole generates a lower value of corrected heat flow (89.9 ± 368 

2.1 mW m-2) compared to the lower part (111.9 ± 1.4 mW m-2).There is no discussion in 369 

Wheildon et al. (1984) as to the change in thermal conductivity, but the high values in the 370 

lower part of the borehole appear suspect. In Table 1 heat flows are listed for the average of 371 

the whole borehole and the average for the upper section. Overall, the measured heat flow 372 

from the four boreholes of the East Grampians shows a substantial increase over that 373 

previously reported as a result of correction for palaeoclimate. The percentage increases are 374 

27%, 29%, 24% and 18% for the Cairngorm, Mount Battock, Ballater and Bennachie (upper 375 

section) boreholes respectively. Combining these borehole heat flows gives a mean revised 376 

heat flow for the East Grampians batholith of 86 ± 7 mWm-2, an increase of 25% over the 377 

previously reported values of Wheildon et al. (1984). 378 

The gravity modelling of Rollin (1984; 2009) represented the granites as large volumes with 379 

steeply outward-dipping straight (or slightly convex) sides extending to considerable depth 380 

(9-13 km) with either a flat or curved base, modelled with a mean granite density of 2.62 Mg 381 

m-3. This can be considered as the traditional view of how granites are intruded into the upper 382 

crust. This gravity modelling is at odds with the revised petrological evidence where it is 383 

expected that the East Grampians intrusions become increasingly mafic, and therefore denser, 384 

with depth. More recent published work (e.g. Cruden 1998; Petford et al. 2000; Taylor 2007) 385 

indicates that granites more commonly have a tabular form reflecting upward travel of 386 

magma through one or several near-vertical, narrow (1 – 50 m wide) conduits. Spreading-out 387 
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of the magma at higher crustal levels results in thinner granite (a few kms thick) with 388 

potentially very thick granite over the feeder conduits. The Bouguer gravity anomaly at the 389 

Cairngorm and Ballater borehole sites is -46 mGal and is -28 and -38 mGal at the Bennachie 390 

and Mount Battock borehole sites respectively. Assuming a tabular space form for the East 391 

Grampians batholith this may indicate a central, west-east orientated conduit (beneath 392 

Cairngorm and Ballater) and thinner tabular lobes to the north and south (beneath Bennachie 393 

and Mount Battock). The revised heat flow value for Mount Battock is the lowest, possibly 394 

reflecting thinner granite, although the heat flow values for Cairngorm, Ballater and 395 

Bennachie are virtually the same.  396 

Sub-surface temperature profiles, based on the revised heat flow determinations, and taking 397 

into consideration the nature of the East Grampians batholith, have been made. It is assumed 398 

that the Cairngorm, Mount Battock, Ballater and Bennachie intrusions are part of the roof 399 

zone of the evolved magma system and, due to vertical fractionation, the concentration of 400 

radiothermal elements diminishes with depth. Other intrusions of the Cairngorm suite may 401 

give an indication of reduced HP values at depth within the East Grampians batholith. From 402 

studies of continental heat flow it has been observed that there is a linear relationship 403 

between the heat production at the surface, A0 (µW m-3), and the surface heat flow, q0 404 

(mWm-2) (Birch et al, 1968; Roy et al, 1968) i.e. 405 

q0 = q* + A0D (5) 406 

where q* is the basal or lower crust/mantle heat flow (mWm-2) and D, which has a dimension 407 

of length, represents a depth of radioactive enrichment within the upper crust.  Solutions for 408 

calculating the subsurface temperature are given by Wheildon et al. (1981) and Wheildon & 409 

Rollin (1986). These take into account the decrease of thermal conductivity with increasing 410 

temperature, which will occur with increasing depth, i.e. 411 

𝜆𝑧 = 𝜆0𝑎′
(𝑏′+𝑇𝑧) (6) 412 

where λz (W m-1 K-1) is the thermal conductivity at depth z (km), λ0 (W m-1 K-1) is the 413 

surface thermal conductivity, Tz (ºC) is temperature at depth z, b is an empirical constant, 414 

with units of ºC, quoted by Wheildon & Rollin (1986) as 823.33 and  = b+ T0 (where T0 is 415 

the surface temperature in ºC). The vertical temperature distribution is given by Wheildon & 416 

Rollin, (1986) as, 417 

𝑇𝑧 =  𝑎′𝑒
(𝑞0𝑧 − 𝑓(𝑧))

𝑎′𝜆0 −  𝑏′ (7) 418 
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Where for an exponential decrease of heat production with depth, f(z) in equation (7) has the 419 

form, 420 

𝑓(𝑧) =  𝐴0𝐷 �𝑧 − 𝐷 �1 − 𝑒
−𝑧
𝐷 �� (8) 421 

In this case D is the range of depth over which the heat production decreases to 1/e (0.37) of 422 

its surface value and has been assigned a value of 4 km. Predicted sub-surface temperatures 423 

incorporating the revised heat flows are tabulated in Table 2 along with λ0 and T0 for each 424 

borehole (note that heat production data, A0, are given in Table 1). A graphical representation 425 

of the sub-surface temperatures is shown in Figure 6. Two predictions are shown for 426 

Bennachie, the first (small dashed line) is based on the heat flow of 100.9 mWm-2 calculated 427 

from the whole depth of the borehole and the second (large dashed line) on the heat flow of 428 

89.9 mWm-2 calculated from the upper section of the borehole. For the East Grampians 429 

batholith as a whole the predicted temperature at 5 km depth is 129 ºC and at 7 km depth it is 430 

176 ºC, where these mean temperatures have excluded the heat flow calculated from the 431 

lower section of the Bennachie borehole where the thermal conductivities appear suspect. 432 

The predicted temperatures are dependent on the depth value D. For instance, if D = 7 km 433 

then the equivalent mean temperatures at 5 km and 7 km depth are 126 ºC and 168 ºC 434 

respectively. A value of D = 4 km is preferred based on the geological mapping evidence 435 

presented above that the HHP character of the granite is likely to be confined to a relatively 436 

narrow upper zone of the intrusions. 437 

Westaway (2009) and Westaway & Bridgland (2014) also present a solution to the 438 

temperature distribution with depth assuming heat production decreases exponentially with 439 

depth, but with constant thermal conductivity, i.e. 440 

𝑇𝑧 = 𝑇0 + 𝑞∗𝑧
𝜆0

+ 𝐴0𝐷2

𝜆0
�1 − 𝑒

−𝑧
𝐷 � (9) 441 

With a value of D = 4 km and with the same parameters as used above, sub-surface 442 

temperature predictions based on equation (9) are also tabulated in Table 2 and shown in 443 

Figure 7. The result is a set of slightly reduced geotherms (-8 ºC at 5 km and -15 ºC at 7 km 444 

depth) that illustrates the importance of considering the effect of increasing temperature on 445 

thermal conductivity. 446 

The revised temperatures of 129 ºC and 176 ºC at 5 km and 7 km respectively, compare to 447 

temperatures of 92 ºC at 5 km depth and 118 ºC at 7 km depth predicted by Wheildon et al. 448 

1984, corresponding to percentage increases of 40% at 5 km depth and 49% at 7 km depth. 449 
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These temperatures are lower than expected at similar depths in the Cornubian batholith of 450 

Cornwall where temperatures of 182 ºC at 5 km depth and 258 ºC at 7 km depth were 451 

predicted by Downing & Gray (1986a). However, they do indicate a substantially increased 452 

resource over that originally predicted for the East Grampians batholith and suggest that 453 

power generation could be possible from boreholes drilled to depths greater than 5 km. In 454 

addition, the geothermal resource may be accessible as hot water (direct use geothermal). 455 

Calcite-cemented breccia, quartz-calcite veins and calcite veins were all described from the 456 

cores taken in the heat flow boreholes (Webb & Brown 1984; Webb et al. 1985) raising the 457 

possibility that there are networks of transmissive fractures at depth from where the calcite 458 

has dissolved. Manning et al. (2007) measured a fracture permeability of 1.68 x 10-10 m2 459 

within the North Pennine Batholith (Weardale granite) which is the highest measured 460 

permeability for a granite within the UK. Although there is no evidence to indicate a fracture 461 

permeability of this magnitude within the East Grampians, with predicted temperatures of 58 462 

ºC at 2 km depth a borehole targeted to intersect a fracture zone could provide a direct use 463 

resource for communities within the Cairngorm region. 464 

Conclusions 465 
A rigorous correction for the effects of palaeoclimate on heat flow has been applied to the 466 

East Grampians batholith. This has resulted in an increase of 25% over previously reported 467 

values to 86 ± 7 mWm-2. Two scenarios have been followed for the surface temperature 468 

history in the Cairngorm region during the last glacial-interglacial 469 

 cycle due to uncertainty in the extent of ice cover for the period prior to 37 kyr BP. These 470 

two scenarios made little difference to the correction demonstrating that in the depth range 471 

100-300 m it is warming since the LGM that has been the major influence on perturbing sub-472 

surface temperatures. Recent mapping suggests that the outcropping granites of the East 473 

Grampians batholith lie near the surface of a highly evolved magma system. Evidence from 474 

other outcropping granites that are probably representative of the Cairngorm, Mount Battock, 475 

Ballater and Bennachie intrusions at a few kilometres depth supports the hypothesis that heat 476 

production decreases with depth as the rock becomes progressively less siliceous. The 477 

coincident, large Bouguer gravity anomaly low has been previously modelled as granite 478 

extending to great depth. More recent work on granite emplacement suggests that granite 479 

intrusions are more likely to be tabular in form with deep seated, semi-vertical feeder 480 

conduits. Such a shape presents more options for creating a model of evolved granite at 481 
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outcrop with more mafic (and hence denser) rocks at depth. It is recommended that a new 3D 482 

gravity model of the East Grampians batholith should be produced. 483 

Modelling of sub-surface temperatures that take account of the decrease of heat production 484 

and thermal conductivity with depth suggest a temperature of 129 ºC at 5 km depth and 176 485 

ºC at 7 km depth for the East Grampians batholith, increases of 40% and 49% respectively 486 

compared to previous estimates. Although these temperatures are currently at the lower end 487 

of viability for EGS they indicate that there is a considerable geothermal resource within the 488 

batholith. Hydrothermal alteration within the granite indicates the possibility of transmissive 489 

fractures at depth that might be exploitable for direct geothermal heat use. 490 
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Figure 1. Distribution of granite within the crust of Scotland based on surface exposure and 
interpretations of gravity data. Heat production (in units of µWm-3) are shown for intrusions 
where values greater than 3.5 µWm-3 have been measured. 

Figure 2. Shaded relief image, illuminated from the north, of the Bouguer gravity anomaly 
over the East Grampians batholith, based on gravity data from the British Geological Survey 
national gravity databank. The outlines of outcropping granites are shown in red and the 
locations of the four heat flow boreholes are indicated by white crosses. 

Figure 3. Selected temperature proxy records used to construct the average temperature 
trends over the UK during the past 140 kyr. References from top to bottom: A) Davis et al. 
(2003); B) Shakun at el. (2012); C) Maslin et al. (1995); D) McManus et al. (1999). SST is 
sea surface temperature and G-IG range is glacial-interglacial range. 

Figure 4. The reconstructed UK temperature trend for the last 120 kyr (B) scaled to the 
temperature at the Cairngorm latitude, aside the appended data used from several sources and 
regions to create the record (A; see also Figure 3). Ice core temperature proxy shown for 
comparison (C; North Greenland Ice Core Project members, 2004). 

Figure 5. a) Surface temperature history for scenario 1 where continuous ice cover has been 
assumed for the period 110-12 kyr BP. The solid line is for Cairngorm and where this differs 
for Mount Battock, Bennachie and Ballater it is shown by the dashed line. b) Surface 
temperature history for scenario 2 where ice cover has been assumed for the period 37-12 kyr 
BP only. The solid line is for Cairngorm and where this differs for Mount Battock, Bennachie 
and Ballater it is shown by the dashed line. 

Figure 6. Predicted sub-surface temperatures, based on the revised heat flow estimates, 
assuming heat production decreases exponentially with depth. A) Thermal conductivity 
decreases with temperature and B) thermal conductivity is assumed to be constant. In (A), the 
revised mean temperatures of 129 ºC at 5 km depth and 176 ºC at 7 km depth are displayed as 
stars. Note that two predictions are shown for Bennachie, where the solid line uses heat flow 
calculated from the whole borehole and the dashed line from the upper section only. 

Table 1. Tabulated values of heat production, uncorrected heat flow and corrections to heat 
flow with a final value of corrected heat flow for the East Grampians heat flow boreholes. 
The palaeoclimate correction scenarios and the two Bennachie borehole options are explained 
in the text. Note that the heat production data are from Webb & Brown (1984) and the 
topographic correction is taken from Wheildon et al. (1984). 

Table 2. Predicted temperatures at depth arising from the revised heat flow estimates. Heat 
production is assumed to decrease with depth exponentially for two cases. In the first, the 
temperature dependence of thermal conductivity is taken into account and in the second, it is 
assumed to be constant. 
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Figure 6



Table 1 

Table 2 
Borehole Surface 

temperature, 
T0 (ºC) 

Surface thermal 
conductivity, 0 
(W m-1 K-1) 

Predicted temperature at 5 km depth (ºC) Predicted temperature at 7 km depth (ºC) 

Temperature dependent 
thermal conductivity 

Constant thermal 
conductivity 

Temperature dependent 
thermal conductivity 

Constant thermal 
conductivity 

Cairngorm 5.8 3.5 122 115 167 153 

Mount Battock 8.2 3.0 130 122 178 163 

Ballater 8.2 3.2 136 127 185 169 

Bennachie (whole 
borehole) 

8.2 3.5 145 135 200 180 

Bennachie (top 
borehole) 

8.2 3.5 127 119 173 158 

Mean (excluding 
Bennachie 
whole borehole) 

129 121 176 161 

Borehole Heat production,  
A0 (μW m-3) 

Uncorrected heat 
flow (mW m-2) 

Palaeoclimate correction (mW m-2) Topographic 
correction 
(mW m-2) 

Corrected heat flow, 
q0 (mW m-2) 

Scenario 1 Scenario 2 Mean 

Cairngorm 7.3 71.3 ± 2.8 19.6 ± 0.5 21.0 ± 0.4 20.3 ± 0.5 -2.7 88.9 ± 2.8 

Mount Battock 4.8 65.0 ± 2.2 17.4 ± 0.4 19.1 ± 0.4 18.2 ± 0.4 -6.9 76.3 ± 2.2 

Ballater 6.8 74.1 ± 3.4 16.8 ± 1.3 19.0 ± 0.8 17.9 ± 1.1 -4.2 87.8 ± 3.6 

Bennachie 
(whole borehole) 

7.0 85.8 ± 13.2 19.6 ± 1.8 21.7 ± 1.7 20.7 ± 1.7 -5.6 100.9 ± 13.3 

Bennachie (top 
borehole) 

7.0 76.1 ± 2.1 18.3 ± 0.4 20.4 ± 0.4 19.4 ± 0.4 -5.6 89.9 ± 2.1 
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