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ABSTRACT. In this paper we undertake a quantitative analysis of the dynamic process by which ice
underneath a dry porous debris layer melts. We show that the incorporation of debris-layer airflow into
a theoretical model of glacial melting can capture the empirically observed features of the so-called
Østrem curve (a plot of the melt rate as a function of debris depth). Specifically, we show that the
turning point in the Østrem curve can be caused by two distinct mechanisms: the increase in the
proportion of ice that is debris-covered and/or a reduction in the evaporative heat flux as the debris
layer thickens. This second effect causes an increased melt rate because the reduction in (latent) energy
used for evaporation increases the amount of energy available for melting. Our model provides an
explicit prediction for the melt rate and the temperature distribution within the debris layer, and
provides insight into the relative importance of the two effects responsible for the maximum in the
Østrem curve. We use the data of Nicholson and Benn (2006) to show that our model is consistent with
existing empirical measurements.
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INTRODUCTION
The presence of a debris layer on the surface of a glacier can
have a significant influence upon its expected lifespan, even
though the layer may be just a few centimetres thick
(Mihalcea and others, 2006). As shown in Figure 1, debris
can become embedded within glacial ice by various
mechanisms, including rock wall collapse and wind-blown
particles within the snow accumulation zone. As the glacier
flows into the ablation zone, the buried debris is liberated by
the gradual melting of the overlying ice and contributes to
the surface debris layer (e.g. Stokes and others, 2007). If
enough debris cover is created, it can significantly affect the
interaction between the glacial ice and the atmosphere (e.g.
by changing the surface albedo and insulation effects).
Despite the debris layer’s importance to the energy balance
of a glacier, there are still many uncertainties regarding the
underlying physical processes (Collier and others, 2014). It
is the purpose of this paper to help close this gap and
thereby offer insight into the relationship between glacial
debris cover and glacial melt rates.
Field studies of debris-covered glaciers have revealed

many of the important mechanisms that contribute to the
energy flux balance, and these have allowed melt-rate
computations to be conducted (e.g. Benn and Evans, 2010).
However, a disparity appears to exist between current
model predictions and field observations. Existing models
of glaciers that are fully covered by debris predict that their
melt rate decreases monotonically with increasing debris
thickness (e.g. Nicholson and Benn, 2006). Yet the well-
known experimentally measured Østrem curve (Østrem,

1959), which plots melt rates against debris thickness
(Fig. 2), shows that a thickening of the debris layer can
initially enhance melting up to a critical depth, after which
the melt rate decreases due to insulation effects (Reid and
others, 2012). Reid and Brock (2010) noted this discrep-
ancy within their debris energy-balance model (which
assumed perfect debris coverage) stating that ‘there is no
sign that [the melt rate] reaches a maximum and then
decreases [. . .] as the debris thickness tends to zero’. They
argue that the disparity may be due to the ‘patchiness’ of
debris cover for thin non-uniform debris layers, whereby
the melt rate increases as the proportion of glacier that is
debris-covered increases. Whilst the patchiness of the
debris cover certainly affects the rising limb of the Østrem
curve, experiments show that it can still be produced on
fully covered ice (e.g. Adhikary and others, 2000). Current
theoretical models lack a mechanism that could account for
this discrepancy.
The present paper builds upon previous theoretical

models, primarily by Bozhinskiy and others (1986),
Nicholson and Benn (2006) and Reid and Brock (2010),
but incorporates the important fact that glacial debris is
porous (Nicholson and Benn, 2012), thus allowing air to
flow through the debris layer. This enables our model to
take account of the heat energy exchange between the
moving air and the ice at the bottom of the debris layer. The
airflow within the debris layer is heavily attenuated with
depth (Beavers and Joseph, 1967), causing the energy
exchange between the moving air and underlying ice (and
hence energy available for evaporation) to diminish rapidly
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as the debris layer thickens. It is this reduction in (latent)
energy to evaporation that is presented, and quantified, as a
potential cause for the increasing melt rate in the Østrem
curve for uniformly covered glaciers.
The outline of the paper is as follows. We start by

examining the energy balance of a debris-covered glacier,
paying particular attention to the dependence of the
evaporative heat flux on the debris-layer thickness. We
use the energy-balance equations to derive an explicit
prediction of the glacier’s melt rate for the case of a spatially
uniform, continuous debris cover and then extend the
model to the case of patchy debris cover. We show that our
predictions for the melt rate agree well with experimental
data obtained by Nicholson and Benn (2006), and then
study the effect of various physical quantities on the
development of the maximum in the Østrem curve. Finally,
we demonstrate how the meltout of debris particles from the

glacier contributes to the thickness of the debris layer, and
show that this has a strong effect on the long-term evolution
of the glacier.

THE MODEL PROBLEM AND ENERGY
CONSIDERATIONS
The model configuration is shown in the schematic diagram
of Figure 3, where we consider a small section of a debris-
laden glacier. We denote the volume (packing) fraction of
solid debris within the porous debris layer by ’, and the
volume fraction of debris embedded in the ice by �. The ice/
debris interface is located at z ¼ h, where z is measured
positive downwards, with z ¼ 0 indicating the initial pos-
ition of the ice surface. The interface between the debris
layer and the atmosphere is located at z ¼ s, so that the
debris thickness is h � s. Both h and s will, in general, vary
over different horizontal locations on the glacier. Assuming
that these variations are sufficiently gentle at a local scale
(i.e. within the small glacial section of interest), we neglect
such spatial dependence in our analysis and assume that h
and s are functions of time, t, only. Of course, this may affect
the absolute value of the melt rate, but the approximation
significantly simplifies the analysis and will not undermine
the principle of the processes to be discussed here.
The main aim of this paper is to determine the rate of

melting of glacial ice. To determine this it is necessary to
study the energy fluxes at z ¼ s and z ¼ h and to evaluate
the temperature, T (°C), throughout the debris layer. For the
sake of clarity it will be assumed that the ice layer under
investigation is at the melting point, T ¼ 0�C. This implies
there is no heat flux into the ice across its surface at z ¼ h.
For simplicity we neglect energy input due to precipitation
and condensation (we explore this further in the Discussion
section). We also assume that all meltwater that is not
evaporated runs off without pooling and does not influence
the energy exchange processes. Similar assumptions are
made by Bozhinskiy and others (1986), Nicholson and Benn
(2006), Reid and Brock (2010) and Lejeune and others
(2013), although the latter does include a snow layer
overlying the top of the debris surface. The energy flux in the
system then has the following components:

Shortwave energy flux
During daylight hours, there is shortwave solar irradia-
tion of the glacier. It is assumed that throughout the day

Fig. 2. A selection of measured Østrem curves, showing ice melt
rates versus debris thickness. This figure is taken from Mattson and
others (1993).

Fig. 1. A schematic diagram showing some of the processes by
which debris can become embedded and transported within (and
upon) a mountain glacier, causing the debris content of the glacier
surface to increase towards the snout.

Fig. 3. Schematic diagram of a portion of a debris-laden and debris-
covered glacier.
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the incoming shortwave radiation reaches the surface at
an average rate of Q (Wm� 2), which will vary with time;
however, a certain fraction, �, is reflected back into the
atmosphere. The parameter � (the albedo) depends upon
the material in question (and could vary with moisture)
and we denote the broadband albedo of debris and bare
ice by �d and �i, respectively. Thus, for a section of
glacier completely covered by debris, the shortwave
energy flux supplied to the debris layer is

QS ¼ ð1 � �dÞQ: ð1Þ

Longwave energy flux
The debris layer emits longwave radiation, which
increases with its surface temperature, Tðz ¼ sÞ, via the
Stefan–Boltzmann law: �ðT þ TÞ4, where � is the Stefan–
Boltzmann constant and T is 273 K. In practice, the
emitted longwave energy flux depends on the thermal
emissivity, �, of the debris (i.e. its ability to emit radiation
compared with a perfect black body at the same
temperature). This outgoing radiation is offset by a
component I� (Wm� 2), comprised of incoming long-
wave radiation from the atmosphere (e.g. overlying
cloud layers and air particles (Liston and others,
1999)). This implies that the total longwave energy flux
to the debris layer is

QL ¼ I� � �� T þ TðsÞ
� �4

: ð2Þ

Sensible heat flux
The sensible heat flux at the upper debris surface
represents the rate at which thermal energy is transferred
across the surface from the air and into the debris layer.
The (downwards) vertical flux of sensible heat, QSH, at
that location depends upon the temperature gradient of
the air at the debris surface (z ¼ s) and can bemodelled as

QSH ¼ � Kh�aca
@T
@z

�
�
�
�
z¼s
, ð3Þ

where ca is the specific heat of air, �a is the air density and
Kh is the eddy diffusivity for heat (assuming that heat
transfer is dominated by turbulent mixing rather than
molecular diffusion).

Heat flux due to evaporation at the ice surface
Spatial variations in the absolute humidity, q (the mass of
water vapour per unit volume of air), result in a diffusive
(mass) flux of water vapour at a rate that is proportional
to its gradient, @q=@z. Assuming again that this diffusive
transport process is dominated by turbulent mixing, the
mass flux of vapour is given by � Kw@q=@z where Kw is
the eddy diffusivity for water vapour. At the ice surface,
this mass flux is balanced by the creation of water
vapour via evaporation, a process that extracts energy
from the system at a rate

QV ¼ KwLv
@q
@z

�
�
�
�
z¼h

, ð4Þ

where Lv is the latent heat of evaporation. The
dimensions of QV are the same as those of a heat flux
(Wm� 2), therefore we refer to it as the evaporative heat
flux (also known as the latent heat flux).

Latent heat of melting
The energy flux required to melt (pure) ice at a rate dh=dt
is given by Lm�i dh=dt, where Lm is the latent heat of

melting and �i is the density of the ice. For a glacier with
debris volume fraction �, the flux of energy, QM,
required to melt the glacier at the same rate is therefore
given by

QM ¼ ð1 � �Þ�iLm
dh
dt

�
�
�
�
z¼h

: ð5Þ

Heat flux within the debris layer
The debris layer is a randomly distributed air-filled
porous medium, which, for ease of analysis in this paper,
will have its thermal properties represented by a single
conductivity, k, which should be a suitably averaged
mixture of the thermal conductivities of rock(s), moisture
and air that comprise the layer. Consequently, the debris
mantle’s heat flux automatically takes account of the
sensible heat exchange between rock and air within the
debris. The heat flux downwards through the debris is
then given by Fourier’s law

QD ¼ � k
@T
@z

, ð6Þ

which also holds at both the upper and lower debris
surfaces. Note that, for convenience, we have assumed
that k has no spatial variation. Conservation of energy
within the debris layer then implies that the temperature
distribution is governed by the heat equation

@T
@t
¼ �

@2T
@z2

, ð7Þ

where � ¼ k=ð�dcdÞ is the thermal diffusivity, expressed
in terms of the debris layer’s average density, �d, and its
average specific heat, cd. Since our interest is the
development of the debris layer over a long time, it is
reasonable to assume that the melt rate is slow enough
for daily fluctuations in the temperature to be averaged
out, allowing us to neglect the time-derivative in Eqn (7).
The temperature distribution in the debris layer is then
governed by the steady heat equation,

�
@2T
@z2
¼ 0: ð8Þ

With these energy fluxes, the energy balance at the upper
and lower surfaces of the debris layer can now be written.
Assuming that the ice is perfectly covered by debris (an
assumption we later relax), the energy balance at the top of
the debris surface (at z ¼ s) is

QD ¼ QSH þQS þQL, ð9Þ

and at the bottom surface of the debris cover, where it
makes contact with the ice (at z ¼ h), we have

QD ¼ QM þQV: ð10Þ

We stress that these energy fluxes also form the basis of
many other theoretical models of glacial melting (Cuffey and
Paterson (2010) provide a discussion in the context of clean
ice; Nicholson and Benn (2006) and Reid and Brock (2010)
discuss the case of debris-covered glaciers). However, the
novel feature of our model is that the evaporative heat flux,
QV, is evaluated at the bottom of the debris layer, which is
where the melting takes place. The fact that this makes QV
dependent upon the wind dynamics within the debris layer
will turn out to be a key feature that allows us to explain the
maximum in the Østrem curve.
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DETERMINATION OF THE SENSIBLE AND
EVAPORATIVE HEAT FLUXES
To make further progress, it is necessary to derive expres-
sions for the sensible and evaporative heat fluxes, QSH and
QV, in terms of quantities that are, at least in principle, easy
to measure (Garratt, 1992). A key element for the forth-
coming discussion will be the turbulent flow of air both in
the atmosphere above the debris and in the debris layer
itself. The model will partition these distinct flow regions,
and the height z ¼ r (where r < s) denotes the separation, or
switching, surface between the two (see Fig. 4). That is, for
z < r it is assumed that the wind-speed profile resembles the
usual turbulent boundary layer flow over a surface, whereas
for z > r the wind-speed profile is dominated by the debris
properties and so a porous flow model must be employed
(Brutsaert (1982), gives an analysis of the related problem of
flow through canopies and vegetation). The height,
s � r ¼ xr, say, can be thought of as an effective surface
roughness length scale (Fig. 3), which is related to the
average particle size and packing configuration of the debris
at the top surface of the layer.

Evaporative heat flux
As stated in Eqn (4), the evaporative heat flux, QV, is
determined by the humidity gradient in the air and the eddy
diffusivity of water vapour, Kw. Since the flux of water
vapour must be conserved throughout the system, the spatial
variation in humidity, q, is governed by the diffusion
equation

@

@z
Kw

@q
@z

� �

¼ 0, ð11Þ

where we have again assumed that the timescales involved
are sufficiently slow for time-derivatives to be neglected. To
solve this equation within the atmosphere and the porous
debris layer, appropriate forms for Kw are required in each
region. To simplify matters, it is reasonable to assume that
the eddy diffusivity, Kw (i.e. the rate at which vapour
disperses), is the same as the eddy viscosity of the air, K say
(i.e. the rate at which momentum disperses). Thus, the ratio
Kw=K, which resembles an eddy Prandtl number, is taken as

unity in both regions (Cuffey and Paterson, 2010). The eddy
viscosity is defined by the relation

� ¼ � �aK
@u
@z

, ð12Þ

where � is a turbulent shear stress and u is the mean
horizontal wind speed at height z. It can be expected that
the variation of u and � with z will be quite different within
the debris mantle or above it in the atmosphere. In order to
determine � and u it is necessary to postulate the fluid
mechanical behaviour in each region.
In the atmosphere above the surface roughness height

z ¼ r it is possible to follow the approach employed by,
among others, Cuffey and Paterson (2010), who assume that
the flow within the atmospheric dynamic sublayer obeys the
classical log-law velocity profile (e.g. Landau and Lifshitz,
1987)

uðzÞ ¼
u�
k�
ln

s � z
xr

� �

þ ur, ð13Þ

with a constant turbulent shear stress

� ¼ u2��a, ð14Þ

where u� is a constant friction velocity and k� is the von
Kármán constant. Substitution into Eqn (12) gives the
atmospheric eddy viscosity as

K ¼ u�k�ðs � zÞ: ð15Þ

Crucially, Eqn (13) introduces a nonzero slip velocity, ur, at
the switching surface z ¼ r, which we will match to the flow
within the debris. While the slip velocity is, in principle, yet
another parameter that has to be measured, Landau and
Lifshitz (1987) state that the slip velocity is equal to the
friction velocity multiplied by a ‘constant of the order of
unity’. For simplicity we will therefore assume that ur � u�.
We note that in many previous studies where the porosity of
the debris layer was neglected (e.g. Nicholson and Benn,
2006), the slip velocity was set to zero. While this only has a
small effect on the velocity field at sufficiently large
distances above the debris surface (i.e. for s � z� xr), ur
cannot be neglected close to the debris surface (i.e. when
the distance becomes comparable with the roughness
height, xr). In fact, it is important to note that a nonzero
slip velocity is a feature of any turbulent flow above a rough
surface, whether porous or not (Spurk and Aksel, 2008); we
shall make use of this when we consider the melting of a
bare-ice surface.
Within the debris layer, it can be expected that the wind

speed is heavily attenuated with depth. Analogies to the
present model occur in many other porous media flow
models, such as wind flow through crops. Brutsaert (1982)
provides a detailed description of such similar models,
which themselves are based on general physical principles
from dimensional analysis, and are therefore appropriate to a
wide range of porous media. In particular, Brutsaert presents
two assumptions by which � and u can be determined
explicitly. These assumptions are (1) that flow within the
porous layer is given by the momentum-balance equation

@�

@z
þ
1
2
ACD�au2 ¼ 0, ð16Þ

where A is the average ratio of a debris particle’s surface
area to the volume of air (1 � ’) in the debris layer, and CD
is the drag coefficient on a typical debris particle; and
(2) that the flow is turbulent with a constant mixing length,

Fig. 4. Schematic diagram of the wind-speed profile above, and
within, a debris layer. At any depth, z ¼ h, within the porous flow
region, the overlying debris depth is h � s. In the atmospheric
region the wind speed can be thought of as obeying a logarithmic
flow profile and in the porous region it obeys an exponential decay
profile (Brutsaert, 1982).
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xd, implying

K ¼ � x2d
@u
@z

�
�
�
�

�
�
�
�: ð17Þ

By solving the coupled Eqns (12), (16) and (17), and
ensuring continuity of wind speed across the switching
surface, z ¼ r, it can be shown that

u ¼ ure� �ðz� rÞ, ð18Þ

� ¼ �aðxd�urÞ
2e� 2�ðz� rÞ, ð19Þ

K ¼ x2d�ure
� �ðz� rÞ, ð20Þ

for z � r, where

� ¼
ACD
4x2d

 !1=3

: ð21Þ

Finally, it is necessary to determine the mixing length, xd,
which is obtained by satisfying continuity of shear stress
across z ¼ r:

xd ¼
4

ACD
u�
ur

� �3

: ð22Þ

The above relation allows � to be written in the more
convenient form

� ¼
ACD
4

ur
u�

� �2

�
ACD
4

, ð23Þ

where the final approximation follows from our assumption
that ur � u�. These descriptions for � , u and K confirm two
important empirical observations: horizontal wind speed
within a porous medium decays exponentially with depth
(Brutsaert, 1982), and evaporative heat transfer is propor-
tional to wind speed (because K, and hence Kw, is directly
proportional to u) (Cuffey and Paterson, 2010). The fact that
this derivation confirms these observations is encouraging,
although clearly heuristic arguments could have been
employed from the outset without having to involve mixing
length theory. But what the present derivation provides,
which an observational approach does not, is a quantifiable
link between debris geometry (captured by A and CD) and
the exponential decay rate, �, of the wind speed. That said,
it is clear that in practice, debris geometry, drag and packing
fraction will be difficult to measure, and thus A and CD will
be extremely hard to determine robustly. Thus, it may
actually be easier to employ direct values for � found by
experiment, supported by the knowledge that there is a
physical justification for doing so.
With expressions for Kw ¼ KðzÞ derived in both

regions (Eqns (15) and (20)), it is now possible to determine
the humidity, qðzÞ, via Eqn (11). This, in turn, enables the
simple step of calculating the evaporative heat flux at the ice
surface (z ¼ h) from Eqn (4). To solve Eqn (11) in the two
regions, four boundary conditions for q are needed. First,
continuity of humidity and vapour flux, respectively, at the
switching surface require that

½qðzÞ�þ� ¼ 0 on z ¼ r, ð24Þ

K
@q
@z

� �þ

�

¼ 0 on z ¼ r, ð25Þ

where ½:�þ� denotes the difference in the given quantity either
side of a boundary. Next, the humidity level at the ice/debris

interface is taken to be that for saturated air, qh,

q ¼ qh on z ¼ h, ð26Þ

which is justified by the melting conditions at the ice
surface. We further assume that measurements at z ¼ m,
which is at a height xm above the mean surface of the debris
layer, z ¼ s, have determined the humidity level and wind
speed as qm and um, respectively, i.e.

q ¼ qm and u ¼ um on z ¼ m ¼ s � xm: ð27Þ

Solving for q in Eqn (11) is straightforward, and the vapour
flux within the debris layer can be written as

KðzÞ
@q
@z
¼

qh � qmð Þu2�k�
u�ln xm=xrð Þ þ urk� e�ðh� rÞ � 1½ �

, ð28Þ

in which Eqns (22) and (23) have been used to eliminate xd.
With some slight rearrangement and use of Eqns (13) and
(18), this result yields the evaporative heat flux (Eqn (4)) at
the ice/debris interface as

QVðhÞ ¼
Lv qh � qmð Þu2�uðhÞ
½ðum � 2urÞuðhÞ þ u2r �

: ð29Þ

The presence of the ice surface wind speed, uðhÞ, within
Eqn (29) means that this energy flux will rapidly tend to zero
as the debris depth increases, thereby offering a mechanism
by which the Østrem curve can be reproduced.
It is of note that one can transform the above equation, in

terms of absolute humidity, to one in terms of another water
vapour measure (e.g. specific humidity, relative humidity or
water vapour pressure).

Sensible heat flux
The flux of sensible heat may be treated in a similar manner.
Fortunately its value is required only at the debris/
atmosphere interface, where it interacts with the overlying
atmosphere. The flux of sensible heat is again taken as
quasi-steady, implying

@

@z
Kh

@T
@z

� �

¼ 0, ð30Þ

and Kh, the eddy diffusivity of heat, is taken to be the eddy
viscosity, K, i.e. the eddy Prandtl number is again assumed
to be unity. In the surface roughness region, r < z < s, the
diffusivity is given by Eqn (20), whereas above this, in z < r,
it takes the linear profile given by Eqn (15). Hence Eqn (30)
may be integrated, ensuring continuity of temperature and
heat flux across z ¼ r, to yield

QSH ¼
�acau2�ðTm � TðsÞÞ
um þ ðe�xr � 2Þur

, ð31Þ

where Tm is the temperature measured at z ¼ m.
Note that if we were to set the slip velocity, ur, to zero

then the wind speed throughout the debris layer vanishes. If
we then express um via Eqn (13), evaluated at z ¼ m, the
heat flux at the top of the debris layer becomes

QSHj½ur¼0� ¼
�acau�k� Tm � TðsÞð Þ

ln xm=xrð Þ
: ð32Þ

This agrees with the expression used by Cuffey and Paterson
(2010) for an impermeable debris layer, and this form of
sensible heat flux is utilized in several other studies,
including Nicholson and Benn (2006).
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GOVERNING EQUATIONS
Complete, spatially uniform debris cover
We are now in a position to derive an equation for the melt
rate at the ice surface and will first consider the case where
the debris cover is complete and spatially uniform. For this
purpose we split the spatially one-dimensional model of
debris-covered ice shown in Figure 1 into three regions: the
atmosphere, the debris and the ice. The debris-layer depth,
h � s, can be determined by consideration of the rate at
which it grows due to the fraction of debris (e.g. rocks, silt or
sand), �, liberated as the ice melts, and any supraglacial
source terms of debris, g (e.g. via rock avalanches or the
addition or loss of wind-blown particles so that g can be
positive or negative). Thus, as the ice melts at a rate dh=dt, it
creates additional debris at the rate � dh=dt and hence the
pile grows at the rate �=’ dh=dt due to the debris packing
fraction, ’. Similarly, the supraglacial debris deposition
leads to an additional debris-pile growth rate of g=’, and
hence the debris-layer growth equation is

d
dt
ðhðtÞ � sðtÞÞ ¼

dh
dt
ðtÞ

�

’
þ

g
’
: ð33Þ

If we assume, for simplicity, that �, g and ’ are locally
constant then Eqn (33) can be integrated to give the
instantaneous position of the debris surface level as

sðtÞ ¼ hðtÞð1 � �=’Þ � gt=’ � d0, ð34Þ

where � d0 is the initial position of the debris surface (at time
t ¼ 0) as hð0Þ ¼ 0, and therefore the initial debris thickness
is d0. We shall take d0 ¼ 0 in what follows, but will assume
that the glacier has an initial debris cover that, although
infinitesimally thin, perfectly covers the ice. Hence, the
glacier’s surface albedo remains a constant, �d, for all time;
however, in the following subsection we extend the model
to allow the glacier to have an initially bare-ice surface.
The temperature distribution in the debris layer (for

sðtÞ < z < hðtÞ) is governed by the steady heat equation,
Eqn (8), subject to boundary conditions for the temperature,

T ¼ 0 on z ¼ hðtÞ, ð35Þ

the energy flux balance at the ice/debris interface,

� k
@T
@z

�
�
�
�
�

¼ ð1 � �Þ�iLm
dh
dt
þQv on z ¼ hðtÞ, ð36Þ

where QV is given by Eqn (29), and the energy flux balance
at the atmosphere/debris interface

� k
@T
@z

�
�
�
�
þ

¼QSH þ I�

� ��ðT þ TÞ4 þQð1 � �dÞ on z ¼ sðtÞ,
ð37Þ

whereQSH is given by Eqn (31). The þ=� subscript indicates
the limiting value of the specified quantity as s is ap-
proached from below/above respectively. Equations (8–37)
constitute a free-boundary problem – a so-called ‘Stefan
problem’ – whose solution determines the melt rate and the
evolution of the debris-layer thickness.
Integration of the steady heat equation (Eqn (8)), subject

to the temperate ice condition (Eqn (35)) at the lower
interface, z ¼ hðtÞ, yields the temperature distribution within
the debris

TðzÞ ¼ TðsÞ
ðh � zÞ
ðh � sÞ

: ð38Þ

To make further progress, we assume that the variations in

temperature at the debris surface are sufficiently small
(compared with T ¼ 273K) to allow the longwave radiation
term, Eqn (2), to be linearized in T. This simplifies the
analysis but does not qualitatively alter the results. Employ-
ing the derived expressions for the evaporative heat flux,
QV, at the ice surface, Eqn (29), and the sensible heat flux,
QSH at the upper surface of the debris layer, Eqn (31), the
boundary conditions Eqns (36) and (37) reduce to

ð1 � �Þ�iLm
dh
dt
¼ � k

@T
@z
�
ð1 � �Þ�iLm�1
1þ �2e� �ðh� sÞ

� �

e� �ðh� sÞ ð39Þ

on z ¼ hðtÞ, and

� k
@T
@z
¼ ð1 � �Þ�iLm�1 � k�2T ð40Þ

on z ¼ sðtÞ, where the constants are defined as

�1 ¼
I� � ��T4 þQð1 � �dÞ þ �Tm

ð1 � �Þ�iLm
, ð41Þ

�2 ¼
� þ 4��T3

k
, ð42Þ

� ¼
�acau2�

um � urð2 � e�xrÞ
, ð43Þ

�1 ¼
Lvu2�ðqh � qmÞe� �xr

ð1 � �Þ�iLmur
, ð44Þ

and

�2 ¼
ðum � 2urÞe� �xr

ur
: ð45Þ

By construction, it is physically reasonable to assume that all
of these constants take positive values whilst the ice is
melting.
Differentiating Eqn (38) allows the heat flux to be written

in terms of the temperature at the debris surface, TðsÞ. So, by
eliminating TðsÞ between Eqns (39) and (40) it is straightfor-
ward to show that the solution to this free-boundary
problem is determined by the ice surface evolution equation

dh
dt
¼

�1

1þ �2ðh � sÞ
�

�1

�2 þ e�ðh� sÞ
, ð46Þ

in which the debris surface location, s, is given by Eqn (34).
For completeness, the vertical debris temperature profile is

TðzÞ ¼
�iLmð1 � �Þ�1ðh � zÞ
k 1þ �2ðh � sÞ½ �

: ð47Þ

The original Stefan problem has thus been reduced to the
simple nonlinear first-order ordinary differential (Eqn (46))
for hðtÞ as a function for time, solutions to which are readily
computable. The debris-layer temperature may be solved
directly from the linear Eqn (47), which does not rely on a
spatial discretization. Most importantly, Eqn (46) shows
clearly why the present model can produce a melt-rate
curve of the form measured by Østrem: the second term on
the right-hand side is associated with the energy loss due to
evaporation and rapidly decays to zero as the debris-layer
thickness (h � s) increases, thus increasing the melt rate (due
to the negative sign). However, as time progresses, the first
term on the right-hand side also gets smaller, due to
increased insulation of the ice via the debris, thereby
reducing the rate of melt from its peak. Thus, Eqn (46)
appears to resolve a long-standing problem regarding
dynamic ablation due to debris from ice. The model
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includes new physical elements not used in previous
studies, yet is still easily solvable, and so it seems appropri-
ate to term Eqn (46) the ‘dynamic ablation due to debris
from ice (DADDI) equation’.

Modifications for thin, patchy debris cover
So far we have assumed that the debris layer is sufficiently
thick to be able to form a spatially uniform covering over the
ice. This assumption is questionable during the very early
stages of the formation of the debris mantle, when the
thickness of this layer is comparable to the typical grain
width, 2xg, say. In this regime the debris cover is likely to be
patchy and we denote the fraction of the ice surface that is
debris-covered by, p, say. To determine this time-varying
(and probabilistic) debris-coverage fraction, we have to make
certain assumptions about how the grains accumulate and
distribute (Kirkbride and Deline (2013) provide a discussion
of this issue). We will assume that while the debris cover is
incomplete, the debris arrives at the glacier surface to form a
layer that is a single grain thick. After reaching complete
debris coverage (p ¼ 1) we then assume that the debris
thickness increases uniformly over the entire surface.
For a (horizontal) unit area of ice, the total rate of increase

in volume of the debris deposited from melting and
supraglacial sources is, from Eqn (33),

dH
dt
ðtÞ

�

’
þ

g
’
, ð48Þ

where now dH=dt is the weighted average melt rate of bare
and covered ice, i.e.

dH
dt
¼ pðtÞ

dh
dt
þ 1 � pðtÞð Þ

db
dt

, ð49Þ

where b is the surface elevation of the bare-ice proportion
(itself an average). The evolution equation for h is given by
Eqn (46) and b is found by substituting h ¼ s into Eqn (46) to
give

db
dt
¼ �i1 �

�1

�2 þ 1
, ð50Þ

where �i1 is given by Eqn (41) but using the albedo of ice, �i.
We can finally close the system by integrating Eqn (48)

(with initial condition Hð0Þ ¼ 0) to get the accumulated
volume of debris in a unit area of ice, and hence dividing by
the average grain size yields the surface debris fraction

pðtÞ ¼ min 1,
�Hþ gt
2’xg

� �

: ð51Þ

The numerical solution of Eqn (49) is straightforward, using p
from Eqn (51), h from Eqn (46) and b from Eqn (50). Given
this model’s relation to the DADDI (Eqn (46)) and its con-
sideration of bare ice, we term Eqn (49) the DADDI-BARE
equation.

RESULTS
To illustrate the capabilities of our model, we start by
comparing the instantaneous melt rate predicted by Eqn (46)
with field measurements obtained by Nicholson and Benn
(2006) on Larsbreen, Svalbard. The parameter values of
Nicholson and Benn (2006) are listed in Table 1, which
themselves are 24 hour means from a dry debris layer. We
choose to apply these particular parameter values to our
model as they provide, to the best of our knowledge, the
most comprehensive parameter set yet published. In doing

so, they leave us to specify only two remaining parameter
values, both of which arise out of the novel aspects of our
own modelling: the volume fraction of debris in the ice, �,
and the wind-speed attenuation constant, �. The former only
has a small effect on the instantaneous melt rate (but see
Fig. 10 for an illustration of how variations in � affect a
glacier’s long-term evolution) and was set to 1%. A value for
� can be obtained via estimates for the parameters A and CD
which feature in Eqn (23). The parameter A is the average
ratio of the debris surface area to the volume of air in the
debris layer. We can obtain a rough estimate of this quantity
by assuming that the debris is composed of identical spheres
of radius xg (the typical grain size) and packed into a body-
centred cubic arrangement with volume fraction ’. It is then
straightforward to show that A is given by

A ¼
3’

xgð1 � ’Þ
, ð52Þ

which yields A ¼ 188m� 1 for a grain radius of xg ¼ 4mm.
To estimate the drag coefficient, CD, we use data from
Reddy and Joshi (2008), who performed experiments on
flow through a rigid body-centred cubic arrangement of
spheres over a range of Reynolds numbers and packing
fractions. For the parameter regime of interest here, CD � 5,
which yields the estimate � ¼ 234m� 1. We note that the
dependence of A (and thus, via Eqn (23), also �) on xg in
Eqn (52) is consistent with the empirical findings of Harris
and Pedersen (1998), who showed that wind can transfer
heat energy through large blocky debris (larger xg thus
smaller �) much more easily than it can through fine-
grained material (smaller xg thus larger �). Our estimate for �
is nevertheless very crude and any attempt to directly
measure this quantity in field experiments (e.g. by fitting
the exponentially decaying profile, Eqn (18), to the
flow speed measured within the debris layer, using

Table 1. Parameter values taken from Nicholson and Benn (2006)
for their measurements on Larsbreen, Svalbard. The lower eight
parameters take non-site-specific values

Description Value

I� Incoming longwave radiation 285Wm� 2

Q Incoming shortwave radiation 160Wm� 2

k Thermal conductivity 0.585Wm� 1K� 1

qm Measured humidity level 0:74qh
qh Saturated humidity level 0.006 kgm� 3

Tm Measured atmosphere temperature 279K
�a Air density 1.22 kgm� 3

um Measured wind speed 2.2m s� 1

xm Measurement height 1.5m
xr Surface roughness height 0.01m
�d Debris albedo 0.07
�i Ice albedo 0.4
u� Friction velocity 0.16m s� 1

’ Debris packing fraction 0.2
ca Specific heat capacity of air 1000 J kg� 1 K� 1

Lm Latent heat of melting ice 3.34� 105 J kg� 1

Lv Latent heat of water evaporation 2.5� 106 J kg� 1

T Water freezing temperature 273K
� Thermal emissivity 0:95
�i Ice density 900 kgm� 3

� Stefan–Boltzmann constant 5.67�108Wm� 2 K� 4

k� von Kármán constant 0.4
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micro-anemometers; see Juliussen and Humlum, 2008)
would therefore be valuable.
Figure 5 shows that, with these parameter values, our

predictions for the melt rate (solid curve) against debris-layer
thickness are in excellent agreement with Nicholson and
Benn’s (2006) field measurements (symbols) which were
averaged over an 11day measurement period. The figure
also shows the predictions from Nicholson and Benn’s own
computations (dash-dotted curve), in which the time-
derivative in the diffusion equation (Eqn (7)) for the
temperature was retained. The agreement between the three
datasets indicates that our quasi-steady model, which is
based on time-averaged heat fluxes and a homogenized
debris layer, adequately describes the melt process. The
figure also shows that the presence of a thin debris layer
increases the melt rate above that of clean ice (shown by the
dashed line), because the debris layer has a smaller albedo
than clean ice and therefore absorbs a larger fraction of the
incoming shortwave radiation. Neither of the datasets shows
any evidence of a maximum in the melt rate at small debris-
layer thicknesses, suggesting that in this particular parameter
regime the evaporative heat flux is small and only plays a
minor role in the overall energy balance. The shape of that
curve is therefore determined predominantly by the insulat-
ing effect of the debris layer, resulting in a continuous
decrease in the melt rate with an increase in debris-layer
thickness. The only effect of the evaporative heat flux is the
slight reduction in the slope of the melt-rate curve for very
small debris-layer thicknesses.
Figure 6 shows a plot of the temperature, TðsÞ, at the top

of the debris layer versus thickness of the debris layer. The
figure shows that the surface temperature initially increases
rapidly with the debris-layer thickness, before ultimately
approaching an asymptotic limit of �14.6°C. This value,
which is indicated by the dashed line, may be obtained by
taking the limit of Eqn (47) for large values of h � s.

Physically, the limit corresponds to the situation in which
the debris layer has become thick enough for heat
conduction into the debris to have become negligible, so
that the surface temperature is simply determined by the
energy balance between shortwave and longwave energies,
and the sensible heat flux.
Evaporation is driven by humidity gradients (Eqn (4)),

therefore the relative importance of the evaporative heat flux
on the overall energy balance depends strongly on the
atmospheric humidity, qm. This is illustrated in Figure 7b,
which shows that a decrease in qm (from 0.74qh to 0.5qh
and 0.25qh while keeping all other parameters constant)
increases the evaporative heat flux, Qv, significantly. The
associated reduction in the amount of energy available for
melting results in a noticeable decrease in the melt rate
(Fig. 7a). This implies that the reduction in Qv caused by an
increase in debris-layer thickness now has an appreciable
effect on the energy balance, and manifests itself in the
clearly defined maximum in the Østrem curve at modest
debris-layer thicknesses. The maximum in the melt rate
arises for debris-layer thicknesses of the order of a few
centimetres, consistent with the field measurements shown
in Figure 2.
Figure 8 illustrates the effect of variations in the attenu-

ation coefficient, �, which is a key parameter in our model.
Here the reference � (234m� 1) is varied by �33%. An
increase in � corresponds to an increase in the drag
experienced by the flow in the porous debris layer
(Eqn (23)) and therefore reduces the wind speed at the ice
surface. The associated reduction in the evaporative heat
flux, shown in Figure 8b, again increases the amount of
energy available for melting and therefore increases the melt
rate (Fig. 8a). Interestingly, the maximum in the melt-rate
curve only develops for sufficiently large values of �. To
explain this we note that the debris-layer depth beyond
which the evaporative heat flux becomes so small that it
only plays a minor role in the overall energy balance
decreases with increasing �. An increase in � therefore
increases the initial slopes of the curves in Figure 8b, which
represent the rate at which an increase in the debris-layer

Fig. 6. Plot of temperature at the top of the debris layer, TðsÞ, as a
function of the debris-layer thickness, for the parameter values in
Table 1. The dashed line shows the theoretical limit for an infinitely
thick debris layer.

Fig. 5. Instantaneous melt rate plotted against debris-layer thick-
ness, with parameters from Table 1. Solid curve: the Østrem curve
predicted by the DADDI equation (Eqn (46)) (at the y-intercept, the
debris layer is assumed infinitesimally thin); square markers:
Nicholson and Benn (2006) field measurements; dash-dotted curve:
spline fit to predictions from Nicholson and Benn’s (2006)
computational model; dashed line: melt rate for bare ice from
Eqn (50).
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depth reduces the evaporative heat flux, Qv. The maximum
in the melt-rate curve develops only for values of � for
which the rate at whichQv decreases with an increase in the
debris-layer thickness outweighs the reduction in the melt
rate due the concomitant increase in the insulating effect of
the debris layer. See the Appendix for a more detailed
analysis of the conditions under which the turning point in
the Østrem curve arises.
The results presented so far were obtained from Eqn (46),

which is based on the assumption that the debris cover
remains continuous as its thickness approaches zero. This
assumption implies that the melt rate for a (nominally) zero
debris-layer thickness exceeds that of bare ice (see, e.g.,
Fig. 5), because the albedo of the debris is lower than that of
the bare-ice surface. (All other effects associated with the
presence of the debris layer vanish as the layer thickness
goes to zero.) As discussed above, this is clearly an artefact
of the model, since it ignores the fact that very thin debris
layers are inevitably patchy and thus provide only a partial
cover to the underlying ice. Figure 9 shows the melt rate

predicted by our revised model, Eqn (49), which offers a
simple way to incorporate the transition from bare ice to
complete debris cover in the model. The three curves in the
figure show the instantaneous melt rate as a function of the
debris-layer thickness for different values of the debris
albedo, �d, which increases in the direction of the arrow
(�d ¼ 0:07, 0.24, 0.4). The humidity was set to qm ¼ 0:5qh,
the value for which the original model predicts a turning
point in the melt-rate curve (Fig. 7) due to the reduction of
the evaporative heat flux with increasing debris-layer
thickness. The topmost curve in Figure 9 shows the melt
rate for �d ¼ 0:07, which is the value used in the previous
computations. For a sufficiently thick debris layer (for which
we assume the debris cover to be continuous), the melt rate
therefore agrees with that already shown in Figure 7. Once
the debris-layer thickness drops below the average grain
width, 2xg (8mm), the reduction in the debris coverage, p
(modelled crudely by Eqn (51)), reduces the overall short-
wave energy input and thus reduces the average melt rate
until, for zero debris-layer thickness, it reaches that of bare

Fig. 7. (a) Instantaneous melt rate and (b) evaporative heat flux,
plotted against debris-layer thickness, for different humidities
(qm ¼ 0:74qh, 0.5qh and 0.25qh, decreasing in the direction of
the arrow). Other parameters as in Table 1.

Fig. 8. (a) Instantaneous melt rate and (b) evaporative heat flux,
plotted against debris-layer thickness, for different values of the
attenuation parameter (� ¼ 155, 234 and 311m� 1, increasing in
the direction of the arrow) and qm ¼ 0:5qh. Other parameters as in
Table 1.
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ice. Patchiness therefore contributes to the maximum in the
Østrem curve – a point also noticed by Reid and Brock
(2010). The additional curves in Figure 9 show that its
importance (relative to the reduction in evaporative heat
flux) depends on the difference in the albedo of ice and
debris. If �i and �d are very similar (or if the incoming
shortwave energy is small) the effect of partial debris cover
on the melt rate is modest. This is shown by the bottommost
curve in Figure 9, where we set the debris albedo to that of
bare ice, �d ¼ �i ¼ 0:4. In this extreme case the maximum
in the Østrem curve is entirely due to the variations in the
evaporative heat flux with the debris-layer thickness, while
patchiness only plays a very minor role.
So far our discussion has focused on the dependence of

the melt rate, dh=dt, on the instantaneous debris-layer
thickness. To determine the total thickness of ice melted
over a given period of time, it is important to account for the
fact that the meltout of debris particles that are embedded in
the ice leads to a continuous increase in the debris-layer
thickness. Within our model, this effect is represented by the
dependence of the melt rate on the volume fraction of debris
in the ice, �, via the parameters �1 and �1 (Eqns (41) and (44),
respectively). Using a highly simplified, yet useful, assump-
tion of constant energy fluxes, Figure 10 shows a plot of the
thickness of ice melted as a function of time for three
different values of �: � ¼ 0 (clean ice), � ¼ 0:01 and � ¼ 0:1.
The data were produced by time-integrating Eqn (46). Whilst
this estimate is not intended to reflect diurnal/annual effects,
it does demonstrate that the depth of ice melted is clearly
very sensitive to the debris volume fraction, confirming that
debris content can have a dramatic effect on the lifespan of
ice masses (Jansson and Fredin, 2002).

DISCUSSION AND CONCLUSIONS
We have developed a simple model for determining the
melt rate of a debris-laden glacier. Solutions to the model,
given by Eqn (46), are able to capture the experimentally
observed features of the Østrem curve, most notably the

turning point in the melt rate for debris-layer thicknesses of a
few centimetres (consistent with the observations shown in
Fig. 2). More specifically, model solutions are in close
agreement with field data from Nicholson and Benn (2006).
Our model provides a simple explanation for the

observed increase in the melt rate for thin debris layers: as
the debris layer thickens (either via meltout of englacial
debris or supraglacial source terms), the wind speed at the
ice/debris interface decreases. This reduces the rate of
evaporation, which increases the energy available for
melting. Once a sufficiently thick debris layer has been
created, the wind speed at the ice/debris interface becomes
negligible, allowing the thermodynamics of the system to
become dominated by the insulating effect of the debris
layer. A further increase in the thickness of the debris layer
then reduces the melt rate. For a sufficiently thin debris
layer, the patchiness of the debris cover makes an additional
contribution to the maximum in the melt-rate curve, and we
showed that the relative importance of the two effects
depends on the difference in the albedo of the ice and the
debris cover. Note that the results for the initial patchy phase
of the melting are rather dependent on the assumed form of
the debris distribution, Eqn (51), and are a useful area for
future investigation.
The consideration of the debris layer’s porosity intro-

duced a crucial new parameter, �, which appears explicitly
within the DADDI equation (Eqn (46)). This parameter
captures the attenuation of the wind speed within the debris
layer and we estimated it to take a value of �234m� 1 for the
parameters listed in Table 1. We showed that the
evaporative heat flux’s overall behaviour is fairly robust to
variations in �, although a 50% reduction in � was able to
suppress the turning point in the Østrem curve. It will be
interesting to assess its value in field experiments, particu-
larly when measured against a variety of debris media
compositions.
The relative simplicity of our model allowed us to

perform a detailed analysis of a small number of key
physical effects, while neglecting a large number of others.

Fig. 9. Instantaneous melt rate predicted by Eqn (51), plotted
against debris-layer thickness, for different values of the debris
albedo (�d ¼ 0:07, 0.24 and 0.4, increasing in the direction of the
arrow), where the measured humidity is set as qm ¼ 0:5qh. The
dashed line represents the melt rate of bare ice.

Fig. 10. Thickness of ice melted as a function of time for three
different values of the volume fraction of debris embedded in the
ice: � ¼ 0, 0.01 and 0.1, increasing in the direction of the arrow.
Other parameters are as in Table 1.
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For instance, our model deliberately ignores a sub-zero
temperature distribution in the glacier, energy exchange
with rain and snow, the effect of refreezing moisture within
the debris layer, spatial variations in the particle size
distribution and capillary effects, to name but a few. Some
of these effects could easily be incorporated into a more
complex version of our model. For instance, in a fine-
grained debris cover, capillary effects are likely to create a
thin, water-saturated layer of debris directly above the ice
surface. The inclusion of this feature will require the
evaluation of the evaporative heat flux at the (elevated)
air/water interface. While this is likely to change the precise
details of the model’s predictions, the main effect studied in
this paper, namely the increase in melt rate due to the
reduction of wind speed within the non-saturated porous
debris layer above the saturated region, is likely to remain a
key feature. Likewise, including a sub-zero ice temperature
(i.e. a nonzero temperature gradient) is an easy extension to
the model, although, again, it would not have added much
insight into the dynamics this paper focused on (and would
have been inconsistent with Nicholson and Benn, 2006).
However, there exist other physical effects whose

inclusion will require a considerable amount of additional
modelling. There are two such aspects we believe to be
particularly important. The first concerns the development
of a more detailed description of the spatio-temporal
evolution of the (highly inhomogeneous) debris layer.
Methods that can appropriately take account of this
complexity and offer estimates of a debris layer’s time-
and depth-varying thermal conductivity, and wind speed
attenuation, will be desirable. Secondly, the time-varying
effect of moisture (and its phase changes) within a debris
layer should be explored. Evidence of its importance has
been provided; for example, Brock and others (2010) and
Collier and others (2014) measured a positive evaporative
heat flux over reasonably deep debris layers. This is in
contrast to our dry debris-layer model, which assumed these
fluxes to be negligible. Both these future areas of work will
require an array of mathematical models, field trials and
laboratory experiments to be implemented. In doing so, a
fuller quantitative understanding of a debris-covered gla-
cier’s evolution could be produced, paving the way for more
accurate glacier mass-balance forecasts.
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APPENDIX
The maximum predicted melt rate can be determined by
differentiating Eqn (46) with respect to the debris depth,
X ¼ h � s. Although the Østrem curve has a single interior
(X > 0) turning point that is the maximum melt rate, it is
necessary to explore the possibility of multiple (or zero)
local maxima and minima melt rates. The turning points of
Eqn (46) are found by setting the derivative to zero, and
hence they are given by the roots of

gðXÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2

��2�1

r

cosh
�X � lnð�2Þ

2

� �

�
1
�2
� X, ðA1Þ

where use has been made of the fact that only positive
values of X are of interest.
Analytical insight may be gained by examining the

functional form of gðXÞ. Clearly, gðXÞ is large and positive
as X ! �1, and thus interior turning points must exist, and
one of them will be a global minimum. Differentiation of
gðXÞ reveals that there is one, and only one, turning point
(minimum) at

Xmin ¼
2
�
sinh� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1

��1�2

r� �

þ
lnð�2Þ
�

, ðA2Þ

at which point

gðXminÞ ¼
2
�

��1�2

�2�1
þ 1

� �1=2

�
1
�2
� Xmin: ðA3Þ

So, when gðXminÞ > 0, there will be no turning points of
Eqn (46) and hence the melt-rate curve will be monotonic
decreasing in X � 0. In the case gðXminÞ ¼ 0 then there will

be a single (interior) maximum to the curve of dh=dt if
Xmin > 0.
When gðXminÞ < 0, the curve of gðXÞ crosses the X-axis

twice; however, these crossings may occur for two positive
X values, a single positive X value, or for no positive X
values. To discern this number, it is necessary to find the
point at which gð0Þ ¼ 0, i.e. when zero is a root of Eqn (A1):

gð0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2

��2�1

r

cosh
lnð�2Þ
2

� �

�
1
�2
¼ 0: ðA4Þ

A new parameter, JD, say, may be introduced as

JD ¼
��1

ð1þ �2Þ2
� �1�2, ðA5Þ

which can be rearranged from Eqn (A4) so that JD ¼ 0
corresponds to gð0Þ ¼ 0. So, it is easy to conclude that two
positive roots occur if Xmin > 0 and gð0Þ > 0, and two non-
positive roots when Xmin < 0 and gð0Þ > 0. Finally one, and
only one, positive root occurs at the parameter values
corresponding to gð0Þ � 0. This may be summarized as
follows.

Zero roots: the melt rate monotonically decreases for all
debris thicknesses. In this case the parameter values
satisfy either:
(1) gðXminÞ > 0, or
(2) gðXminÞ � 0, Xmin � 0 and JD � 0.

One root: the melt rate will qualitatively behave as the
Østrem curve, with an interior maximum melt rate
occurring at a positive debris depth. In this case the
conditions are
(1) gðXminÞ ¼ 0, Xmin > 0, or
(2) gðXminÞ < 0, and JD > 0.

Two roots: The melt rate will have a local maximum and
minimum (where Xmin < Xmax). The conditions for this
novel scenario are given by gðXminÞ < 0, Xmin > 0 and
JD < 0.

It can be easily shown that JD is actually the slope of the
melt-rate curve at X ¼ 0; thus, as the function dh=dt tends to
zero for large debris thickness, there must be a maximum,
and the above analysis has shown this to be a single turning
point. When the initial slope is zero or negative, then for
X > 0 it has been shown that there can be two, or zero,
turning points. As a final point, it is a physical requirement
of the system that the melt rate is always positive; thus, from
Eqn (46) it is seen that the parameters obey the inequality

�1ð1þ �2Þ > �1: ðA6Þ
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