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Abstract

Aim: To detail the extent and prevalence of post-eserand nocturnal hypoglycemia
following peri-exercise bolus insulin dose adjustisein individuals with type 1 diabetes

(T1D) using multiple daily injections of insulinsgart (IAsp) and degludec (IDeg).

Methods: Sixteen individuals with T1D, completed a singkntred, randomised, four-period
crossover trial consisting of 23-hour inpatient gg¢® Participants administered either a
regular (100%) or reduced (50%) dose (100%; 5.1+30P6; 2.6+1.2 U, p<0.001) of
individualised 1Asp one hour before and after 45umes of evening exercise at 60x6%
VO,max An unaltered dose of IDeg was administered in therning. Metabolic,
physiological and hormonal responses during exerececovery and nocturnal periods were
characterised. The primary outcome was the numMdertrial day occurrences of
hypoglycemia (venous blood glucosg9 mmol.L™).

Results: Inclusion of a 50% IAsp dose reduction strateggrpto evening exercise reduced
the occurrence of in-exercise hypoglycemia (p=010RBmicking this reductive strategy in
the post-exercise period decreased risk of nodttnyoglycemia (p=0.045). Combining this
strategy to reflect reductions either side of eisercesulted in higher glucose concentrations
in the acute post-exercise (p=0.034), nocturnatQ@01) and overall (p<0.001) periods.
Depth of hypoglycemia (p=0.302), as well as ketoaid counter-regulatory hormonal

profiles were similar.

Conclusions: These findings demonstrate the glycemic safetperi-exercise bolus dose
reduction strategies in minimising the prevalendeacute and nocturnal hypoglycemia
following evening exercise in people with T1D on MDse of newer background insulins
with current bolus insulins demonstrates efficangl advances current recommendations for

safe performance of exercise.

Keywords; Type 1 diabetes, exercise, insulin aspart, ingdgigiudec, hypoglycemia.
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I ntroduction

Individuals with type 1 diabetes (T1D) on multiglaily injection (MDI) regimens are reliant
on insulin replacement therapy for managing bloddcase. However, exogenously
administered insulin is not subject to autoregalatithus hyperinsulinemis?, and therefore
hypoglycemia®“ remain major limitations in the current therapeumanagement of
diabetes. This becomes particularly relevant arophgsical exercise, which can rapidly
increase intramuscular glucose uptake through mmésima mediated by, but also
independent of, insulin™*®. Thus, the additive effects of peripheral hyparimemia and
exercise in promoting tissue permeability and uptakglucosé*™*, accentuate the risk of
exercise-related hypoglycemia in people with T1Ry@&d these acute effects, exercise-
induced increases in tissue sensitisation to insoiay persist for many hours following
cessation> 2% with evidence of a second peak occurring seveats late’. In the case of
evening exercise, this may bring an already chadlyichyperinsulinemic individual with
T1D into a nocturnal period in a supra-insulin-sesed state. As such, the window of
hypoglycaemic risk is often expanded to include ioeturnal hour*=> at a time when
self-blood glucose monitoring is understandablyiddift 2°. In appreciation of these factors,
careful adjustments in bolus insulin therapy arowidsical exercise are advised for
individuals with T1D, and general recommendatioa®ss many diabetes associations and
peer-reviewed outlets are availabfe® However, intra-individual variation in blood glse
responses to the same exercise is [&tgehich only adds to the complexity of developimg a
effective glycemic management strategy around physactivity in those with T1D.
Furthermore, despite the endorsed integration sifllin dose reduction strategies, research
continues to demonstrate that individuals with TliPequently begin exercise
hyperinsulinemic®***23 a situation worsened by the apparent rise inesyst insulin
concentrations during aerobic activiti€s?®>3? likely due to the associated subcutaneous
insulin washout, hyperaemia and blood/interstitialume redistributior?>. A key source of
variance in research pertaining to recommended MiMrations around exercise is the
diversity of bolus and basal insulins employed initand between studi€éd>**° most of
which have relied on home-based interstitial glecomonitoring for confirmation of
hypoglycemia leading into and throughout the nowurhours, a method with its own
inherent limitations due to device inaccuracy wigiimcose deviates from the physiologic
range*’. Given the distinct pharmacokinetic profiles offelient insulins, the range used in

existing research makes for difficulty in interpngtfindings, particularly when now outdated
3
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analogues have previously been used and overnahplsg is scarce. Modern insulin

analogues are in clinical practice, and the incafon of ultra-long acting insulin analogues
as conventional basal therapies with establishégsbosulins is common within primary and
secondary healthcare. Therefore, there remainsed tee explore combinations of current
generation insulins as part of a basal-bolus glycamanagement strategy that, not only
strengthens the efficacy of current exercise gisatecommendations pertinent to those with
T1D, but also encourages safe exercise performagcémiting the potential for post-

exercise and nocturnal hypoglycemia.

Aim: To detail the extent and prevalence of post-eger@nd nocturnal hypoglycemia
following peri-exercise bolus insulin dose adjustitsein individuals with type 1 diabetes
(T1D) using multiple daily injections of insulinsgart (IAsp) and degludec (IDeg).

Methods and M aterials

Study design

This study involved a primary analysis of a singhre, randomised, open-label, four-
period cross over clinical trial (German Clinicalals Register; DRKS00013509). The study
was performed in accordance with good clinical ficacand the Declaration of Helsinki
(1996). Approval was granted by both the natioeakarch ethics committee (16/WA/0394)
and the local health authority (EudraCT number:72004774-34; UTN: U1111-1174-6676).

Screening visit

Ahead of trial inclusion, participants were screkl@ anthropometric, cardiovascular and
T1D specific markers prior to the performance gcaedio-pulmonary exercise test on a semi-
recumbent cycle ergometer (Corival Recumbent, Lods, *2. After successful completion
against the reference inclusion criteria, participawere switched from their usual
basal/bolus insulin therapie®=8; glargineU100/aspartn=1; glargineU300/aspartn=1;
degludec/aspart,n=6; detemir/aspart) to ultra-long-acting insulin detgc ([IDeg],
Tresiba®, NovoNordisk, Denmark) in 3 mL pre-filléavestigational pens (PDS290) and
rapid-acting insulin aspart ([IAsp], NovoRapid® NiNordisk, Denmark) in 3 mL pre-filled
investigational pens (FlexPen®). Once titrated,tthal daily basal insulin dose (TDBD) was

20% less for the once-daily-morning dosing for ID#@mn detemir, glargineU100 and

4
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glargineU300. Participants were required to achievenean overnight-fasted morning
capillary blood glucose (cBG) value of 4.4 — 7.2 oo over 3 consecutive days within 4
weeks after first trial basal insulin dose. If gdyaic instability persisted for3 days

following titration, a dose adjustment alteratioasMmade until criteria was met. A run-in
period of >7 days was required to assure optimaptdion to IDeg prior to the experimental
period. All participants were using IAsp ahead wédltinclusion, thus were instructed to
maintain their usual bolus insulin regime in acemce with their individualised meal-time

insulin dose requirements (Mean insulin: carbohydf@HO)] ratio = 1 IU :10+4Q).
Experimental trial visits

A schematic overview of experimental trial visissiilustrated in Figure 1. Between 08:00
and 16:00, participants undertook a standardisetgealuring which they received set
breakfast, brunch and lunch meals that were matehechacronutrient content to their
habitual dietary preferences. Low glycaemic ind@s) meals were provided at each feeding
timepoint to control the influence of high Gl fooda blood glucose over the 23-hour in
patient stays. With each of these meals, parti¢gpamected their routine dose of IAsp based
on their individualised carbohydrate factor (Carlw@culated by means of an algorithm
(CarbF=5.7*kg/TDD}®. One hour before and after exercise (Ex), pasitip administered
either a full (100%) or reduced (50%) dose (100%+3.4 versus 50%; 2.6£1.2 1U, p<0.001)
of individualised IAsp alongside the consumptioraafidentical low glycemic index (brown
rice based vegetable dish), carbohydrate rich regahting 1g.CHO.kg.bth(Total energy;
49662 kcals, Fat; 9+5g [20%], Protein; 19+11g [15@HO 80+10 [65%]). If pre-exercise
fingertip cBG was <6 mmol.L, the exercise test was delayed, and participartswned a
standardised 10g CHO gel (Glucogel®, BBI healthcaré, UK) with subsequent 10-

minutely monitoring until cBGvas above a target threshold.

On the basis of block randomisation, trials wetecalted the following identifiable codes;
PreExFull — PostExrull (FF), PreExFull — PostExReduced ER), PreExReduced — PostEx
Full (RF) and PreExReduced — PostEReduced doseRR). The evening (17:00) exercise
test consisted of 45 minutes (3-minute warm up @vafis, 42-minutes @ target workload)
of continuous cycling on a semi-recumbent ergomate60+6 % \O.max The workload
intensity was computed as the mid-point betweerfiteeand second lactate turn points as

previously describetf. During exercise, heart rate (HR [s410, Polar®|dfid]) respiratory
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exchange ratios (METAMAX® 3B; Cortex Biophysik GmpBER) and power metrics were
collected continuously. Respiratory exchange ratiese used to calculate the rates of
carbohydrate and lipid oxidation via the principles indirect calorimetry as described
previously **. Prior to retiring to bed, participants consumedsraall CHO-rich snack
(0.49g.CHO .kg.brif) with omission of 1Asp (21:00). Glycemia was detéred via capillary
(08:00-15:59) and venous (16:00-07:00) BG monitprover the 23-hour inpatient stays.
Venous derived samples were taken hourly leading (h6:00) and acutely post-exercise
(17:45-21:00), then obtained two-hourly leadingojnéand throughout the nocturnal period
(00:00-05:59). During exercise, @0capillary samples were collected every 6 minidtem
the right earlobe and used for within-exercise in@ia analysis. Following obtention, BG
was analysed immediately via an enzymatic-ampenmnatethod (Biosen C-Line, EKF
Diagnostic, GER). Hypoglycemia was identified asrenous BG (vBG) value 0£3.9
mmol.L'l. Hypoglycemia was treated via the oral adminigtnaof a standardised 10g
containing CHO gel (Glucogel®, BBI healthcare LtiK). cBG was subsequently monitored
every 10 minutes, and if necessary, the treatmemtedure was repeated until cBG was

restored to euglycemic concentrations.
Metabolic and counter-regulatory hormonal biomarkers

The Randox Daytona Plus RX series analyser (Rahdbwratories, Ltd, UK) was used for
determination of R-hydroxybutyratep{DHB] RB4067). ELISA assays were used for the
guantification of plasma glucagon (DGCGO, R&D Sysde Inc. Minneapolis, USA) and
catecholamines (epinephrine [EPI] and norepineghiiNE] ECT31-K02, Eagle biosciences,
Inc. New Hampshire, USA]). Venous derived bloodtdée (vBLa) concentrations were
measured via the fully enzymatic-amperometric mgtfBiosen C-Line, EKF Diagnostic,
GER).

Data analysis

All statistical analyses were carried out using SR8.0 statistical software (SPSS, Chicago,
lllinois, USA) and p:0.05 (two sided) was considered statistically gigant. Data were
treated via repeated measures ANOVA and uni-or imatiate analysis techniques with
bonferroni-corrected pairwise comparisons usedost-poc analysis to determine time and
treatment effects. The total daily dose (TDD [irsthe of basal and bolus amounts] of insulin

taken during the control period and exercise donatvere accounted for as covariates in the
6
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model where appropriate. Cross tabulation analyasis used to identify estimated risk ratios
(ERR) between nominal variables, with fishers exasting and chi-square values used to
report significance. Data were stratified into iist phases i.e. the day-time control period
(08:00-15:59), the pre-exercise period (16:00-15:88 exercise period (17:00-17:45), the
post-exercise period (17:46-23:59), the nocturnatigal (00:0005:59) and the fasted
morning period (06:00-07:00).

Results

Participant characteristics and pre-intervention study standardisation

Baseline physiological and diabetes characteristiesdisplayed in Table 1. During the day-
time control period (08:00-15:59), carbohydrate (@Hhtake ([inclusive of standardised and
treatment amountsfFF 169.3+46.7,FR 168.6+43.6,RF 168.5+37.8,RR 165.3+34.3 g,
p=0.993) and total daily insulin dosag#s$-(0.50+0.22,FR 0.48+0.20,RF 0.50+0.20,RR
0.49+0.22 1U.kg.bnt, p=0.995) were identical between trials.

23-hour hypoglycemia

Trial day vBG concentrations were highest in &f trial, which differed from all other arms
(FF 8.0+3.6,FR 8.0+3.3,RF 7.8+3.3,RR 9.2+3.8 mmol.[!, p<0.001). Of a possible 832
sample draws, there were 66 (8%) confirmed vBG pglymemic events during the entire
experimental periodHF = 21 events in 14 peopléR =16 events in 14 peopl&R =15
events in 9 peopl&RR = 14 events in 10 people, p=0.593). During thaidg involvement,
every participant experienced at least 1 hypoglycavent, whilst 15/16 people experienced
recurrent hypoglycemia (>1 event). There was nteihce between trials in the probability
of experiencing recurrent hypoglycemjé £ 1.834,DF = 3, p=0.608). The average depth of
hypoglycemia during the experimental period wasilambetween trials (p=0.302, Table 4),

with a mean concentration of 3.3+0.4 mmdi(tange 2.2 to 3.9 mmol1).
Hypoglycemia during exercise

Baseline FF 7.1+1.9, FR 6.7+1.3, RF 6.1+1.5, RR 6.3+2.0 mmol.[}, p=0.670) and
immediate pre-exercise (Table 2, p=0.448) vBG cotradons were identical between
experimental arms. In all trials, vBG decreasedmduexercise (80.001). However, both the

magnitude of the dropFE A -3.45+2.94,FR A -4.41+2.29,RF A -3.37x1.4,RR A -
7
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3.59+2.13 mmol.L}, p=0.444) and the rate of change in vBG were sinfitween trialsHF
-0.10+0.08FR -0.13+0.06 RF -0.09+0.04RR -0.08+0.05 mmol.I>.min™, p=0.278). Of 64
exercise sessions, 39 (61%) were terminated preetatdue to hypoglycemiaFE 11, FR
14,RF 8,RR 6 events, p=0.021 [Table 3]) with proportionalityre hypoglycemia observed
in the FR versuskRR dosing arm (p=0.023). The risk of hypoglycemiainigicycling was 2-
fold higher in trials that incorporated a full doskIAsp with the pre-exercise meal (ERR
2.00 [95% CI 1.234 - 3.259], p=0.005). The meandgyycemic value at the end of exercise
was 3.3+0.4 mmol.t (ranging from 2.2 to 3.9 mmol}) and reached severe hypoglycemia
(<3.00 mmol.}) in all except théR dose-trial, in which the lowest vBG measuremens wa
3.0 mmol.* (Table 4). There was no difference between tiialshe end hypoglycemic
(p=0.659 [Table 4]) or overall (p=0.711 [Table 2BG concentrations. Exercise duration did
not differ between trialsHF 37.0+10.2,FR 36.1+6.2,RF 39.3+8.7,RR 42.0+6.3 minutes,
p=0.175). As a result of a greater incidence ofdgyycemia, more rescue CHO were needed
in the pre-exercise unaltered insulin dosing tr{&ls 6.9+4.8,FR 8.8+3.4,RF 5.0+5.2,RR
4.4+5.1 g, p=0.048).

Post exercise and nocturnal hypoglycemia

The second largest incidence of trial-related hyymmia (13 of 66 events = 20% of trial
total) occurred in the immediate post-exerciseque(iL7:46-23:59). The 13 events happened
in 12/16 people across all 4 triaBR; 6 events in 6 people [38%R; 2 events in 2 people
[13%], RF; 2 events in 2 people [13%RR; 3 events in 2 people [13%]). During the post-
exercise period, there were no differences betvieals in either the occurrence (p=0.348,
Table 3), nor depth (p=0.527, Table 4), of hypogiya, neither was there any difference in
the risk of recurrent hypoglycemig €3.048, DF=3, p=0.384). Overall post-exercise (17:45—
23:59) vBG concentrations were highest in R trial (FF 7.49+3.76,FR 7.35+2.76 RF
7.45+2.78,RR 8.67+3.52, p=0.034). There was a greater neegdst-exercise treatment
CHO in theFF trial (FF 9.7+£8.7,FR 2.5+7.7,RF 5.6£9.6,RR 1.9 £ 5.4¢g, p=0.030).

Mean nocturnal (00:00-05:59) vBG concentrationsewkighest during th&kR trial (FF

9.5+3.2,FR' 10.1+3.2,RF 9.2+3.7,RR 11.5+3.6 mmol.[}, p=0.001), which differed from
the two opposing unaltered post-exercise dosingerotrms. Nocturnal hypoglycemia
occurred on 7 occasions (11% of trial total) withmean hypoglycemic vBG value of

3.03+0.36 mmol.[>. The occurrence of nocturnal hypoglycemia was qrignately low

8
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between conditiond—F 3, FR 0, RF 3, RR 1 events, p=0.558, Table 3) as was the likelihood
of experiencing recurrent nocturnal hypoglycemfa=(3.048,DF =3, p=0.384). The extent
of hypoglycemia was also equivalent (p=0.238, TahleOf the 7 incidences of nocturnal
hypoglycemia, 6 (86%) occurred in the trials thatluded a full dose of 1Asp in the post-
exercise period, which was associated with a ndalddincrease in the risk of hypoglycemia
during the night (ERR 3.81 [95% CI 0.611 — 23.7340.045).

Physiologic, metabolic, and counter-regulatory hormonal responses to exercise

The cardiorespiratory, metabolic, and counter-raiguy hormonal responses to exercise are
presented in Table 2. There were no differencesvdmst trials in any parameter at
immediately prior to exercise, as an exercisingmmeaat the end of exercise. The exercising
energy expenditure from CH®F 83.8+10.7 FR 84.6£9.8,RF 79.4+13.1RR 81.6%7.4%,
p=0.752) and lipidsKF 16.2+10.7,FR 15.4+9.8,RF 20.6+13.1RR 18.5+7.4%, p=0.752)
was similar between trials. Cycling induced a digaint increase in all cardio-respiratory
variables (Table 27). Catecholamines and glucagammned unchanged by exercise in all
conditions. There were no differences betweenstrialthe magnitude of changgf) in
response to exercise in any counter-regulatory boanor metabolic biomarkers (EBL
p=0.142, NEea p=0.443, GlucagQ@is p=0.842, B-OHByelta p=0.758, VBLga p=0.919).
There were no recorded incidences of any trialtedldyperketonemia or lactic acidosis at

any timepoint throughout the entire experimentaiqoe

Discussion

This study is the first to detail the extent anévaidence of post-exercise and nocturnal
hypoglycemia, following peri-evening exercise boiasulin dose alterations using specific
multiple daily injections of insulins aspart (IAsphd degludec (IDeg) in individuals with

T1D over a 23-hour in-patient period. Our findingsmonstrated that a 50% IAsp dose
reduction prior to evening exercise reduces thaeiwence of hypoglycemia during exercise
and mimicking this strategy in the post-exerciseique decreases the risk of nocturnal
hypoglycemia. Combining this approach and redudihgp dose either side of exercise

results in higher glucose concentrations in acat-pxercise, nocturnal and overall periods.

The significant reduction in IAsp units injectedfdre exercise (PreEx50% 2.6+1.2 vs.
PreEx100% 5.1+2.4 [U, p<0.001), resulted in a gneaheal-induced rise in glucose

9
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compared to the unaltered dose (PreEx20%2.1+2.1 vs PreEx100% +1.2+2.0 mmol.L,
p=0.031). However, despite the small amount of linstaken before exercise, and the
consequent increase in post-prandial blood gludbs® acute relative reduction represented
only ~6% of injected insulin up to this point. Siatito previous studie%$2>*'** participants
were likely supra-hyperinsulinemic ahead of exerccdmmencement, which potentially
evoked an inhibitory effect by inactivating phosphase, ultimately reducing the rate of
glycogenolysis, yet accentuating peripheral glucapeake *2 Further, exercise induced
increases in skeletal muscle blood flow, capill@grfusion and membrane permeability
enhance the rate of delivery and absorption of dlborne substrates and hormones to
working muscles during exercié&*® The macronutrient composition of a pre-exercisaim
also considerably influences patterns of fuel mataim and utilisation during exercise, with
shifts towards higher muscle glycogenolysis andaaydrate oxidation observed following
ingestion of a glucose loatl, particularly when superimposed with hyperinsutiie **.
Thus, that participants not only exercised withie peak effect of 1Asp (time until peak
onset of action = ~31 - 70 minutéy, but were also acutely post-prandial, having just
consumed a high carbohydrate meal (~65% carboleda@ttent), likely primed tissues to
use glucose as the predominate energy source dexargise'”>° Indeed, irrespective of the
pre-exercise insulin dose used, exercising ratescasbohydrate oxidation were high
compared to lipid combustion (contribution of cdrpdrates ~83+9%), and probably
accounted for the significant drop in blood glucesacentrations during exerciseA(vBG
3.7+2.2 mmol.[%). Notably, 61% of all exercise tests were terneédaprematurely due to
hypoglycemia. As such, as an independent time phide 45-minute exercise period
accounted for 59% of all hypoglycemic events reedraver 23 hours. This was most
obvious when exercising with an unaltered doseAsp) which led to a two-fold increase in

the risk of hypoglycemia relative to when a 50%edmesduction was incorporated.

Hypoglycemia defence mechanisms were challengett witr model of cycling, with
pronounced drops in arterial blood glucose coneéintis observed across all trial arms.
However, glucagon and catecholamine concentratemsined unchanged from pre-exercise
values in all conditions. Both glucagon and thecabdlamines positivity regulate net hepatic
endogenous glucose production via stimulating gjgemlysis and gluconeogenesis™
However, in addition to abnormalities in hepatiziaglse production during exercisg

individuals with T1D demonstrate attenuated courggulatory responses to hypoglycemia

10
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11
*4 a situation worsened by hyperinsulinemifa Thus, the small, and possibly blunted,
counter-regulatory hormonal responses observeduindata, may be an additional factor

owing to the high prevalence of within-exercise tyflycemia.

The effects of exercise on enhancing tissue seitgitio insulin and peripheral glucose
uptake persist for several hours following exerassasation, a situation intensified in the
presence of hyperinsulinemid *®°® Our data reveal that overall acute post-exertige
hours) glycemia was most supported in the peri@serdose reduction arm, whilst in direct
contrast, the incorporation of an unaltered dossigategy either side of exercise
independently accounted for ~50% of all acute gastcise hypoglycaemic events. These
data support and advance research work by Camebaell®’, who also demonstrated the
glycemic preservation benefits associated with % Sfbse reduction to the post-exercise
bolus insulin (IAsp or lispro used with backgroundulins glargineU100 and detemir) dose
in the acute (~4 hours) but not extended (~8 hopesjod after exercisé’. The authors
hypothesised that the observed similarity in thevalence of hypoglycemia in the extended
post-exercise window may have been due to the asimaton of additional, and indeed
unaltered, bolus insulin doses in the post-laboyatbome-phase. In heed of these
discoveries, later work highlighted the protectaféect of consuming a small carbohydrate
based snack (0.49.CHO.kg.Bjnahead of the night-time period in minimising Eatef
nocturnal hypoglycemia subsequent to evening eserair patients treated with insulins
aspart and glargineU10&°. However, due to relatively short post-exercisepatient
monitoring phases (~3 hours), hypoglycemia was rdeted via interstitial glucose
monitoring in both of these studies, and givenittieerent flaws in device accuracy during
hypoglycemia®™, may have misidentified events. Thus, using verdrra/ed glucose values
collated in laboratory-controlled conditions, ouatal confirm the effectiveness of these

strategies in people with T1D using MDI consistaignsulins aspart and degludec.

A 50% dose reduction to mealtime insulin in thetposercise period provided a near 4-fold
decrease in the risk of nocturnal hypoglycemia cameg to a full bolus insulin dose.
Interestingly, in addition to the provision of a aincarbohydrate based snack with bolus
insulin omission 2 hours ahead of the night timerkpthe nocturnal period in this study
commenced ~5 hours following the last bolus insuimection, hence, given its
pharmacokinetic characteristics (time of duratidraction; 3 - 5 houré®), it was unlikely

that IAsp represented much of the total pool wittie circulation. The enhanced sensitivity
11
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to insulin following exercise has been shown tdolwl a biphasic trend, during which in
addition to an initial increase immediately aftaercise, a second peak occurs 7-11 hours
later?® .Thus, in addition to the direct effects of aday@erinsulinemia in accelerating risk of
in-exercise hypoglycemia, these data affirm thegistanding metabolic effects of antecedent
exercise in increasing the risk of delayed onsehygoglycemia in people with T1P".
Irrespective of hypoglycemiper se employing 50% dose reductions either side of @ser
led to the highest preservation in glucose througliee night-time hours, thus reinforces the
glycemic safety of prudent dose alterations aladeysiarbohydrate rich meals before and
after exercise for this cohort. Though considerdigjher following the administration of an
unaltered insulin dose post-exercise, rates ofumpat hypoglycemia in this study were
minimal, and align with previous reports of a loweyalence of severe<3.1 mmol.L*%)
nocturnal hypoglycemia following moderate intensiycle exercise (~60% O,mayx for 30
minutes) in participants with T1D treated with iliss aspart and degludé& However, in
this study the pre-exercise mealtime bolus insoianipulation was taken well in advance of
exercise commencement (~3 hours), with an equivateduction in the carbohydrate
amount. Critically this meant that the individualis carbohydrate :insulin ratio remained
unaltered, which may explain the complete avoidaotdypoglycemia during exercise.
Interestingly, when we re-examined our data agahlesthreshold for severe hypoglycemia,
the occurrence dropped to 3 events which happemnelddy across trialsKF, 1FR 0,RF 1,

RR 1 eventsy? = 1.049,DF = 3, p=0.789) and provide some assurance for glicstability
whilst using IDeg. In light of the potential obesogc implications associated with an over
reliance on additional carbohydrate intake and erogs insulin administratior®, the
increase in energy expenditure as a result of lodgeation exercise, combined with a lesser
need for treatment carbohydrates with insulin dosductions, has important clinical
undertones that stretch beyond those relating &glggemia. Finally, trial day3-OHB

concentrations were below levels deemed hyper-ketin (>1.0 mmol.L}) °

° thus support
previous work in displaying no adverse metaboliplications associated with bolus insulin
reduction (or omission) concomitant with high cdrpdrate intakes in individuals with T1D
®L Therefore, from a clinical viewpoint, the inteioa of peri-exercise IAsp dose reductions

with IDeg can be implemented safely with no riskefone body formation.

12
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Study strengths, limitations, and future recommendations

The study design enabled intensive 23-hour momigoincluding an overnight stay in a
medically-supervised clinical research facility hvitfrequent venous sample draws,
standardised mealtime feedings and monitored msddise administrations. Collectively,
these factors helped overcome the identified litiaites of previous research whilst providing
up-to-date information on the extent and prevalesfoexercise-related hypoglycemia, using
specific modern insulin analogue combinations iogbe with T1D. With mixed gender

design of the study and a wide age range for im@lsion, our participant cohort findings
are applicable to the wider population and advaoae understanding of insulin dose

adjustments in T1D individuals treated with MDI.

Conclusion

These findings demonstrate improved glycemia widmi-pxercise bolus dose reduction
strategies which reduce the prevalence of acute rewdurnal hypoglycemia following
evening exercise. Incorporation of newer backgrounsailins with current bolus insulins
demonstrates efficacy and advances current reconmtiens for safe performance of

exercise in people with T1D using MDI.
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601 Tables

602 Table 1. Baseline characteristics of study pardictp

Baseline characteristics of study participants
Characteristic n=16
Gender M versus F (n) 13vs 3
Age (years) 34.5£13.9
BMI (kg.m?) 26.0+3.4
Lean Mass (%) 23.4+3.3
HbA. (%) 7.2¢1.3
HbA1:.(mmol/mol) 56+15
Diabetes Duration (years) 14.4+11.1
Pre study TDD (IU.kg.bih) 0.6+0.3
Pre study TDBD (IU.kg.bih 0.4+0.2
VOsmax(ml.kg*.min b 40.3+10.3

603 Table 1. Baseline characteristics of study parteifs. Data are presented as meanSD. n; numbeaxfgpants. M; Male. F; Female.
604 BMI; body mass index. Kg; kilograms. M; meters. TDDbtal daily insulin dose (inclusive of basal amolus amounts). TDBD; total daily
605 basal insulin dose. Bm; body mass. ml; millimeths; minutes.
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Table 2. Metabolic, physiologic, and counter-retuiahormonal responses to exercise

Physiologic, metabolic, and respiratory responses
Parameter p
FF FR RF RR value
a) Cardiorespiratory responses

HRmean(bpm) 133+11t |[135+12t |[134+11t [133+12t |0.904
V Ozmean(l.min™) 1.9+0.3t | 1.9+0.41 | 1.9+0.3t| 1.9+0.3f| 0.63P2
VCOzmean(l.min™) 1.8+0.3t | 1.8+0.4t | 1.8+0.3t| 1.8+0.3tf] 0.728
CHO oxidatiomean(g.min?) | 1.940.5% | 1.9#0.5% | 1.9+0.4f| 1.9+0.41 0.91b
Lipid oxidationnean(g.mifY) | 0.2+0.11 | 0.2+0.1t | 0.2#0.2t | 0.2+0.11 0.455
TEEmean(kcals.mirt') 9.3+1.67 | 9.1#1.8t | 9.2+1.7t| 9.3x1.5%| 0.668

b) Metabolic responses
VBGpre-ex(mmoI.L'l) 8.04+3.29 | 8.26+2.02| 7.87+2.49 9.40+2.60 0.448
VBGeng(mmol.L?) 4.59+3.091 3.69+1.191| 4.69+1.861| 4.98+2.181 0.711
VBLapre_ex(mmol.L'l) 0.97+0.28 | 0.98+0.25| 0.96+0.23 0.95+0.24 0.975
VBLaeng(mmol.L'Y) 2.71+1.48 | 2.63+0.98/(2.61+1.231] 2.74+1.57 | 0.980
VB-OHBpre.ex(mmol.L'l) 0.04+0.01 | 0.04+0.00f 0.04+0.00 0.04+0.01 0.185
VB-OHBeng(mmol.L™) 0.05+0.01 | 0.05+0.01| 0.05+0.02 0.04+0.01 0.408

c) Counter-regulatory hormonal responses

EPbreex(nmol.LY) 0.03+0.03 | 0.06+0.10] 0.06+0.12 0.05+0.d5 0.773
EPkng (nmol.LY) 0.09+0.11 | 0.09+0.12| 0.05+0.78 0.08+0.11 0.887
NEqre-ex(nmol.LY) 0.65+0.85 | 0.63+1.01] 0.79+0.90 1.01+1.d9 0.605
NEeng (nmol.LY) 1.08+1.04 | 1.36+1.29] 1.62+1.38 1.21+1.00 0.367
GlucagoRe.ex(pg.mL™) 14.9+34.8 | 21.1+33.5| 50.5+83.4 15.6+26/8 0.191
Glucagomng (pg-mL") 16.4+24.8 | 18.6+21.7| 45.5+76.9 21.0+54]7 0.361

Table 2. Physiologic, metabolic, and counter-regpria responses to exercise. Data are reported esnt®D (metabolic and counter-
regulatory hormonal data n=16. Cardiorespiratorytdan=14). HR; Heart rate. bpm; beats per minut@,\Wolume of inhaled oxygen.
VCO,; Volume of inhaled carbon dioxide. l.rifiditers per minute. g.mify grams per minute. TEE; Total energy expendit(eals;
kilocalories. vBLa; venous blood lactat@-@HB; venous beta-hydroxybutyrate. End; end of @zer Pre-exe; pre-exercise.<{p05
compared with the corresponding pre-exercise value.
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614 Table 3. Prevalence of trial-day hypoglycemia

Prevalence of trial-day hypoglycemia
Time FF FR RF RR # hypos as % total (n=6
Pre-Exercise 1/1 0/0 1/1 4/3 6/5 (9% of total hypos)
(16:00-16:59) | (6%) (0%) (6%) | (19%) p=0.197
Exercise 11/11 14/14 8/8 6/6 | 39/16 (59% of total hypos)
(17:00-17:45) | (69%) | (88%)* | (50%) | (38%)* p=0.021*
Post-Exer cise 6/6 2/2 2/2 3/2 | 13/12 (20% of total hypos)
(17:46-23:59) | (38%) (13%) | (13%)| (13%) p=0.348
Nocturnal 3/1 0/0 3/3 1/1 715 (11% of total hypos)
(00:00-05:59) | (6%) (0%) (19%) | (6%) p=0.558
Fasted a.m. 0/0 0/0 1/1 0/0 1/1 (2% of total hypos)
(06:00-07:00) | (0%) (0%) (6%) | (0%) p=0.406
Overall 21/14 16/14 15/9 | 14/10 | Total =66 in 16 people
(16:00-07:00) | (88%) (88%) | (56%)| (63%) p=0.593

615 Table 3. Prevalence of trial-day hypoglycemi&.@ mmol.L*) with reference to distinct time phases. Datamorted as X/Y (Z%), where
616 X=number of hypoglycemic episodes, Y=number of ledopwhich hypoglycemia occurred and Z=numbere&dge in which
g%g hypoglycemia occurred as a percentage of total rermbparticipants (n=16). * g0.05 between the FR and RR trial (p=0.009) trial

23



24

619 Table 4. Extent of trial-day hypoglycemia

Extent of trial-day hypoglycemia

Time Value| FF FR RF RR | Overdllp value
Pre-Exercise | Mean | 3.2+0.0 3.9+0.0| 3.1+0.4| 3.2+0.5| 0.511
(16:00-16:59)| Range| 3.2-3.2 3.9-3.9| 2.6-3.5| 2.6-3.9

Exercise Mean | 3.3+0.4| 3.3+0.3| 3.4+0.3| 3.2+0.6| 3.3+0.4| 0.659
(17:00-17:45)| Range| 2.5-3.9| 3.0-3.8| 2.9-3.8| 2.2-3.8| 2.2-3.9
Post-Exercise | Mean | 3.4+0.3| 3.5+0.1| 3.0+1.1| 3.3+0.3| 3.3+0.4| 0.527
(17:46-23:59)| Range| 3.2-3.9| 3.4-3.6| 2.2-3.8| 2.9-3.4| 2.2-3.9

Nocturnal Mean | 3.2+0.2 3.320.5| 2.6+£0.0| 3.2+0.4| 0.238
(00:00-05:59)| Range| 2.9-3.3| | 2.8-3.7| 2.6-2.6| 2.6-3.7

Fasted am. | Mean 2.7x0.0 2.7+0.0 -
(06:00-07:00 | Range| | 2727|2727

Overall Mean | 3.3+0.4| 3.4+0.3| 3.3+0.5| 3.1+0.5| 3.3+0.4| 0.302
(16:00-07:00)| Range| 2.5-3.9| 3.0-3.8| 2.2-3.9| 2.2-3.8| 2.2-3.9

0 Table 4. Extent of trial-day hypoglycemizB(9 mmol.[Y) with reference to the range in values in distitivie phases. Data are reported as
1 meansSD (n=16).
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623
624 Figure 1. Experimental visit flow chart for each-B8ur in patient trial. Dashed black arrows indieatapillary blood glucose sampling.
625 With the breakfast, brunch and lunch feedings, digloicose was collected from the fingertip and ssseé via the inbuilt glucometer
626 (Freestyle libre, Abbott Laboratories Limited, UKKuring exercise, capillary blood glucose samphmas collected from the right earlobe
627 and analysed via the fully enzymatic-amperometgthod ([FEA] Biosen C-Line, EKF Diagnostic, GER)Ii& black lines represent
628 venous sampling from which blood glucose was asdesa FEA. Solid black arrows with a gap indictite provision of a meal and an
629 accompanied insulin dose. Cycling icon indicates4B-minute moderate intensity (@ 60@,¥.,) continuous exercise period. Bed icon
630 indicates the night-time period during which venbieod glucose was sampled every two hours. 10084jtered bolus dose. 50%;
631 reduced bolus dose.
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Highlights, resear ch impact and clinical relevance

Exercise-related hypoglycemia continues to repttes@major clinical concern in the
glycemic management of people with T1D.

Though the integration of bolus insulin dose reituns around physical exercise is
recognised as an integral component of an optilyabgiic management plan in
people with T1D, less work has systemically invgeed the extent and prevalence of
venous blood confirmed hypoglycemia following sfiegberi-exercise bolus dose
adjustments made on a background of ultra-longn@atisulin degludec over an
entire days’ worth of in-patient monitoring undentrolled, clinical laboratory
environments.

Using current generation insulin analogues, thaelt®sf this study provide up to date
reaffirmation of the glycemic safety of integratifplus insulin dose reductions
around dynamic physical exercise in people with Tidated with novel, ultra-long
acting basal insulins. We detail the safe integrabf modern basal-bolus insulins
around exercise in people with T1D and demonsttiaé failure to titrate bolus
insulin appropriately in the hour leading into, mdeed after, exercise greatly
increases the risk of hypoglycemia both during eiserand throughout the nocturnal

hours subsequent to its performance.



