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Abstract  19 

Aim: To detail the extent and prevalence of post-exercise and nocturnal hypoglycemia 20 

following peri-exercise bolus insulin dose adjustments in individuals with type 1 diabetes 21 

(T1D) using multiple daily injections of insulins aspart (IAsp) and degludec (IDeg). 22 

Methods: Sixteen individuals with T1D, completed a single-centred, randomised, four-period 23 

crossover trial consisting of 23-hour inpatient phases. Participants administered either a 24 

regular (100%) or reduced (50%) dose (100%; 5.1±2.4, 50%; 2.6±1.2 IU, p<0.001) of 25 

individualised IAsp one hour before and after 45-minutes of evening exercise at 60±6% 26 

V̇O2max. An unaltered dose of IDeg was administered in the morning. Metabolic, 27 

physiological and hormonal responses during exercise, recovery and nocturnal periods were 28 

characterised. The primary outcome was the number of trial day occurrences of 29 

hypoglycemia (venous blood glucose ≤3.9 mmol.L -1).  30 

Results: Inclusion of a 50% IAsp dose reduction strategy prior to evening exercise reduced 31 

the occurrence of in-exercise hypoglycemia (p=0.023). Mimicking this reductive strategy in 32 

the post-exercise period decreased risk of nocturnal hypoglycemia (p=0.045). Combining this 33 

strategy to reflect reductions either side of exercise resulted in higher glucose concentrations 34 

in the acute post-exercise (p=0.034), nocturnal, (p=0.001) and overall (p<0.001) periods. 35 

Depth of hypoglycemia (p=0.302), as well as ketonic and counter-regulatory hormonal 36 

profiles were similar. 37 

Conclusions: These findings demonstrate the glycemic safety of peri-exercise bolus dose 38 

reduction strategies in minimising the prevalence of acute and nocturnal hypoglycemia 39 

following evening exercise in people with T1D on MDI. Use of newer background insulins 40 

with current bolus insulins demonstrates efficacy and advances current recommendations for 41 

safe performance of exercise. 42 

Keywords; Type 1 diabetes, exercise, insulin aspart, insulin degludec, hypoglycemia. 43 
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Introduction 45 

Individuals with type 1 diabetes (T1D) on multiple daily injection (MDI) regimens are reliant 46 

on insulin replacement therapy for managing blood glucose. However, exogenously 47 

administered insulin is not subject to autoregulation, thus hyperinsulinemia 1,2, and therefore 48 

hypoglycemia 3,4, remain major limitations in the current therapeutic management of 49 

diabetes. This becomes particularly relevant around physical exercise, which can rapidly 50 

increase intramuscular glucose uptake through mechanisms mediated by, but also 51 

independent of, insulin 5–10. Thus, the additive effects of peripheral hyperinsulinemia and 52 

exercise in promoting tissue permeability and uptake of glucose 11–14 , accentuate the risk of 53 

exercise-related hypoglycemia in people with T1D. Beyond these acute effects, exercise-54 

induced increases in tissue sensitisation to insulin may persist for many hours following 55 

cessation 15–20, with evidence of a second peak occurring several hours later 21. In the case of 56 

evening exercise, this may bring an already chronically hyperinsulinemic individual with 57 

T1D into a nocturnal period in a supra-insulin-sensitised state. As such, the window of 58 

hypoglycaemic risk is often expanded to include the nocturnal hours 22–25, at a time when 59 

self-blood glucose monitoring is understandably difficult 26. In appreciation of these factors, 60 

careful adjustments in bolus insulin therapy around physical exercise are advised for 61 

individuals with T1D, and general recommendations across many diabetes associations and 62 

peer-reviewed outlets are available 27–29. However, intra-individual variation in blood glucose 63 

responses to the same exercise is large 30, which only adds to the complexity of developing an 64 

effective glycemic management strategy around physical activity in those with T1D. 65 

Furthermore, despite the endorsed integration of insulin dose reduction strategies, research 66 

continues to demonstrate that individuals with T1D frequently begin exercise 67 

hyperinsulinemic 25,31–33, a situation worsened by the apparent rise in systemic insulin 68 

concentrations during aerobic activities 12,25,34, likely due to the associated subcutaneous 69 

insulin washout, hyperaemia and blood/interstitial volume redistribution 35. A key source of 70 

variance in research pertaining to recommended MDI alterations around exercise is the 71 

diversity of bolus and basal insulins employed within and between studies 34,36–40, most of 72 

which have relied on home-based interstitial glucose monitoring for confirmation of 73 

hypoglycemia leading into and throughout the nocturnal hours, a method with its own 74 

inherent limitations due to device inaccuracy when glucose deviates from the physiologic 75 

range 41. Given the distinct pharmacokinetic profiles of different insulins, the range used in 76 

existing research makes for difficulty in interpreting findings, particularly when now outdated 77 
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analogues have previously been used and overnight sampling is scarce. Modern insulin 78 

analogues are in clinical practice, and the incorporation of ultra-long acting insulin analogues 79 

as conventional basal therapies with established bolus insulins is common within primary and 80 

secondary healthcare. Therefore, there remains a need to explore combinations of current 81 

generation insulins as part of a basal-bolus glycemic management strategy that, not only 82 

strengthens the efficacy of current exercise strategy recommendations pertinent to those with 83 

T1D, but also encourages safe exercise performance by limiting the potential for post-84 

exercise and nocturnal hypoglycemia.  85 

Aim: To detail the extent and prevalence of post-exercise and nocturnal hypoglycemia 86 

following peri-exercise bolus insulin dose adjustments in individuals with type 1 diabetes 87 

(T1D) using multiple daily injections of insulins aspart (IAsp) and degludec (IDeg). 88 

Methods and Materials 89 

Study design 90 

This study involved a primary analysis of a single-centre, randomised, open-label, four-91 

period cross over clinical trial (German Clinical Trials Register; DRKS00013509). The study 92 

was performed in accordance with good clinical practice and the Declaration of Helsinki 93 

(1996). Approval was granted by both the national research ethics committee (16/WA/0394) 94 

and the local health authority (EudraCT number: 2017-004774-34; UTN: U1111-1174-6676). 95 

Screening visit  96 

Ahead of trial inclusion, participants were screened for anthropometric, cardiovascular and 97 

T1D specific markers prior to the performance of a cardio-pulmonary exercise test on a semi-98 

recumbent cycle ergometer (Corival Recumbent, Lode, NL) 42. After successful completion 99 

against the reference inclusion criteria, participants were switched from their usual 100 

basal/bolus insulin therapies (n=8; glargineU100/aspart, n=1; glargineU300/aspart, n=1; 101 

degludec/aspart, n=6; detemir/aspart) to ultra-long-acting insulin degludec ([IDeg], 102 

Tresiba®, NovoNordisk, Denmark) in 3 mL pre-filled investigational pens (PDS290) and 103 

rapid-acting insulin aspart ([IAsp], NovoRapid® NovoNordisk, Denmark) in 3 mL pre-filled 104 

investigational pens (FlexPen®). Once titrated, the total daily basal insulin dose (TDBD) was 105 

20% less for the once-daily-morning dosing for IDeg than detemir, glargineU100 and 106 
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glargineU300. Participants were required to achieve a mean overnight-fasted morning 107 

capillary blood glucose (cBG) value of 4.4 – 7.2 mmol.L-1 over 3 consecutive days within 4 108 

weeks after first trial basal insulin dose. If glycemic instability persisted for ≥3 days 109 

following titration, a dose adjustment alteration was made until criteria was met. A run-in 110 

period of >7 days was required to assure optimal adaptation to IDeg prior to the experimental 111 

period. All participants were using IAsp ahead of trial inclusion, thus were instructed to 112 

maintain their usual bolus insulin regime in accordance with their individualised meal-time 113 

insulin dose requirements (Mean insulin: carbohydrate [CHO] ratio = 1 IU :10±4g).  114 

Experimental trial visits 115 

A schematic overview of experimental trial visits is illustrated in Figure 1. Between 08:00 116 

and 16:00, participants undertook a standardised period during which they received set 117 

breakfast, brunch and lunch meals that were matched in macronutrient content to their 118 

habitual dietary preferences. Low glycaemic index (G1) meals were provided at each feeding 119 

timepoint to control the influence of high GI foods on blood glucose over the 23-hour in 120 

patient stays. With each of these meals, participants injected their routine dose of IAsp based 121 

on their individualised carbohydrate factor (CarbF) calculated by means of an algorithm 122 

(CarbF=5.7*kg/TDD)43. One hour before and after exercise (Ex), participants administered 123 

either a full (100%) or reduced (50%) dose (100%; 5.1±2.4 versus 50%; 2.6±1.2 IU, p<0.001) 124 

of individualised IAsp alongside the consumption of an identical low glycemic index (brown 125 

rice based vegetable dish), carbohydrate rich meal equating 1g.CHO.kg.bm-1 (Total energy; 126 

496±62 kcals, Fat; 9±5g [20%], Protein; 19±11g [15%], CHO 80±10 [65%]). If pre-exercise 127 

fingertip cBG was <6 mmol.L-1, the exercise test was delayed, and participants consumed a 128 

standardised 10g CHO gel (Glucogel®, BBI healthcare Ltd, UK) with subsequent 10-129 

minutely monitoring until cBG was above a target threshold.  130 

On the basis of block randomisation, trials were allocated the following identifiable codes; 131 

PreEx Full – PostEx Full (FF), PreEx Full – PostEx Reduced (FR), PreEx Reduced – PostEx 132 

Full (RF) and PreEx Reduced – PostEx Reduced dose (RR). The evening (17:00) exercise 133 

test consisted of 45 minutes (3-minute warm up @ 20 watts, 42-minutes @ target workload) 134 

of continuous cycling on a semi-recumbent ergometer at 60±6 % V̇ O2max. The workload 135 

intensity was computed as the mid-point between the first and second lactate turn points as 136 

previously described 42. During exercise, heart rate (HR [s410, Polar®, Finland]) respiratory 137 

Jo
urn

al 
Pre-

pro
of



6 

 

6 

 

exchange ratios (METAMAX® 3B; Cortex Biophysik GmbH, GER) and power metrics were 138 

collected continuously. Respiratory exchange ratios were used to calculate the rates of 139 

carbohydrate and lipid oxidation via the principles of indirect calorimetry as described 140 

previously 44. Prior to retiring to bed, participants consumed a small CHO-rich snack 141 

(0.4g.CHO.kg.bm-1) with omission of IAsp (21:00). Glycemia was determined via capillary 142 

(08:00-15:59) and venous (16:00-07:00) BG monitoring over the 23-hour inpatient stays. 143 

Venous derived samples were taken hourly leading into (16:00) and acutely post-exercise 144 

(17:45-21:00), then obtained two-hourly leading into, and throughout the nocturnal period 145 

(00:00-05:59). During exercise, 20μl capillary samples were collected every 6 minutes from 146 

the right earlobe and used for within-exercise metabolic analysis. Following obtention, BG 147 

was analysed immediately via an enzymatic-amperometric method (Biosen C-Line, EKF 148 

Diagnostic, GER). Hypoglycemia was identified as a venous BG (vBG) value of ≤3.9 149 

mmol.L-1. Hypoglycemia was treated via the oral administration of a standardised 10g 150 

containing CHO gel (Glucogel®, BBI healthcare Ltd, UK). cBG was subsequently monitored 151 

every 10 minutes, and if necessary, the treatment procedure was repeated until cBG was 152 

restored to euglycemic concentrations. 153 

Metabolic and counter-regulatory hormonal biomarkers 154 

The Randox Daytona Plus RX series analyser (Randox Laboratories, Ltd, UK) was used for 155 

determination of ß-hydroxybutyrate ([β-OHB] RB4067). ELISA assays were used for the 156 

quantification of plasma glucagon (DGCG0, R&D Systems, Inc. Minneapolis, USA) and 157 

catecholamines (epinephrine [EPI] and norepinephrine [NE] ECT31-K02, Eagle biosciences, 158 

Inc. New Hampshire, USA]). Venous derived blood lactate (vBLa) concentrations were 159 

measured via the fully enzymatic-amperometric method (Biosen C-Line, EKF Diagnostic, 160 

GER). 161 

Data analysis  162 

All statistical analyses were carried out using SPSS 26.0 statistical software (SPSS, Chicago, 163 

Illinois, USA) and p≤0.05 (two sided) was considered statistically significant. Data were 164 

treated via repeated measures ANOVA and uni-or multi-variate analysis techniques with 165 

bonferroni-corrected pairwise comparisons used in post-hoc analysis to determine time and 166 

treatment effects. The total daily dose (TDD [inclusive of basal and bolus amounts] of insulin 167 

taken during the control period and exercise duration were accounted for as covariates in the 168 
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model where appropriate. Cross tabulation analysis was used to identify estimated risk ratios 169 

(ERR) between nominal variables, with fishers exact testing and chi-square values used to 170 

report significance. Data were stratified into distinct phases i.e. the day-time control period 171 

(08:00-15:59), the pre-exercise period (16:00-16:59), the exercise period (17:00-17:45), the 172 

post-exercise period (17:46-23:59), the nocturnal period (00:00 -05:59) and the fasted 173 

morning period (06:00–07:00).  174 

Results 175 

Participant characteristics and pre-intervention study standardisation 176 

Baseline physiological and diabetes characteristics are displayed in Table 1. During the day-177 

time control period (08:00-15:59), carbohydrate (CHO) intake ([inclusive of standardised and 178 

treatment amounts] FF 169.3±46.7, FR 168.6±43.6, RF 168.5±37.8, RR 165.3±34.3 g, 179 

p=0.993) and total daily insulin dosages (FF 0.50±0.22, FR 0.48±0.20, RF 0.50±0.20, RR 180 

0.49±0.22 IU.kg.bm-1, p=0.995) were identical between trials.  181 

23-hour hypoglycemia 182 

Trial day vBG concentrations were highest in the RR trial, which differed from all other arms 183 

(FF 8.0±3.6, FR 8.0±3.3, RF 7.8±3.3, RR 9.2±3.8 mmol.L-1, p<0.001). Of a possible 832 184 

sample draws, there were 66 (8%) confirmed vBG hypoglycemic events during the entire 185 

experimental period (FF = 21 events in 14 people, FR =16 events in 14 people, FR =15 186 

events in 9 people, RR = 14 events in 10 people, p=0.593). During their study involvement, 187 

every participant experienced at least 1 hypoglycemic event, whilst 15/16 people experienced 188 

recurrent hypoglycemia (>1 event). There was no difference between trials in the probability 189 

of experiencing recurrent hypoglycemia (χ
2 = 1.834, DF = 3, p=0.608). The average depth of 190 

hypoglycemia during the experimental period was similar between trials (p=0.302, Table 4), 191 

with a mean concentration of 3.3±0.4 mmol.L-1 (range 2.2 to 3.9 mmol.L-1).  192 

Hypoglycemia during exercise 193 

Baseline (FF 7.1±1.9, FR 6.7±1.3, RF 6.1±1.5, RR 6.3±2.0 mmol.L-1, p=0.670) and 194 

immediate pre-exercise (Table 2, p=0.448) vBG concentrations were identical between 195 

experimental arms. In all trials, vBG decreased during exercise (p≤0.001). However, both the 196 

magnitude of the drop (FF ∆ -3.45±2.94, FR ∆ -4.41±2.29, RF ∆ -3.37±1.4, RR ∆ -197 
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3.59±2.13 mmol.L-1, p=0.444) and the rate of change in vBG were similar between trials (FF 198 

-0.10±0.08, FR -0.13±0.06, RF -0.09±0.04, RR -0.08±0.05 mmol.L-1.min-1, p=0.278). Of 64 199 

exercise sessions, 39 (61%) were terminated prematurely due to hypoglycemia (FF 11, FR 200 

14, RF 8, RR 6 events, p=0.021 [Table 3]) with proportionality more hypoglycemia observed 201 

in the FR versus RR dosing arm (p=0.023). The risk of hypoglycemia during cycling was 2-202 

fold higher in trials that incorporated a full dose of IAsp with the pre-exercise meal (ERR 203 

2.00 [95% CI 1.234 - 3.259], p=0.005). The mean hypoglycemic value at the end of exercise 204 

was 3.3±0.4 mmol.L-1 (ranging from 2.2 to 3.9 mmol.L-1) and reached severe hypoglycemia 205 

(<3.00 mmol.L-1) in all except the FR dose-trial, in which the lowest vBG measurement was 206 

3.0 mmol.L-1 (Table 4). There was no difference between trials in the end hypoglycemic 207 

(p=0.659 [Table 4]) or overall (p=0.711 [Table 2]) vBG concentrations. Exercise duration did 208 

not differ between trials (FF 37.0±10.2, FR 36.1±6.2, RF 39.3±8.7, RR 42.0±6.3 minutes, 209 

p=0.175). As a result of a greater incidence of hypoglycemia, more rescue CHO were needed 210 

in the pre-exercise unaltered insulin dosing trials (FF 6.9±4.8, FR 8.8±3.4, RF 5.0±5.2, RR 211 

4.4±5.1 g, p=0.048). 212 

Post exercise and nocturnal hypoglycemia 213 

The second largest incidence of trial-related hypoglycemia (13 of 66 events = 20% of trial 214 

total) occurred in the immediate post-exercise period (17:46-23:59). The 13 events happened 215 

in 12/16 people across all 4 trials (FF; 6 events in 6 people [38%], FR; 2 events in 2 people 216 

[13%], RF; 2 events in 2 people [13%], RR; 3 events in 2 people [13%]). During the post-217 

exercise period, there were no differences between trials in either the occurrence (p=0.348, 218 

Table 3), nor depth (p=0.527, Table 4), of hypoglycemia, neither was there any difference in 219 

the risk of recurrent hypoglycemia (χ2 =3.048, DF=3, p=0.384). Overall post-exercise (17:45–220 

23:59) vBG concentrations were highest in the RR trial (FF 7.49±3.76, FR 7.35±2.76, RF 221 

7.45±2.78, RR 8.67±3.52, p=0.034). There was a greater need for post-exercise treatment 222 

CHO in the FF trial (FF 9.7±8.7, FR 2.5±7.7, RF 5.6±9.6, RR 1.9 ± 5.4g, p=0.030).  223 

Mean nocturnal (00:00-05:59) vBG concentrations were highest during the RR trial (FF 224 

9.5±3.2, FR, 10.1±3.2, RF 9.2±3.7, RR 11.5±3.6 mmol.L-1, p=0.001), which differed from 225 

the two opposing unaltered post-exercise dosing other arms. Nocturnal hypoglycemia 226 

occurred on 7 occasions (11% of trial total) with a mean hypoglycemic vBG value of 227 

3.03±0.36 mmol.L-1. The occurrence of nocturnal hypoglycemia was proportionately low 228 
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between conditions (FF 3, FR 0, RF 3, RR 1 events, p=0.558, Table 3) as was the likelihood 229 

of experiencing recurrent nocturnal hypoglycemia (χ
2 = 3.048, DF =3, p=0.384). The extent 230 

of hypoglycemia was also equivalent (p=0.238, Table 4) Of the 7 incidences of nocturnal 231 

hypoglycemia, 6 (86%) occurred in the trials that included a full dose of IAsp in the post-232 

exercise period, which was associated with a near 4-fold increase in the risk of hypoglycemia 233 

during the night (ERR 3.81 [95% CI 0.611 – 23.734], p=0.045). 234 

Physiologic, metabolic, and counter-regulatory hormonal responses to exercise 235 

The cardiorespiratory, metabolic, and counter-regulatory hormonal responses to exercise are 236 

presented in Table 2. There were no differences between trials in any parameter at 237 

immediately prior to exercise, as an exercising mean, or at the end of exercise. The exercising 238 

energy expenditure from CHO (FF 83.8±10.7, FR 84.6±9.8, RF 79.4±13.1, RR 81.6±7.4%, 239 

p=0.752) and lipids (FF 16.2±10.7, FR 15.4±9.8, RF 20.6±13.1, RR 18.5±7.4%, p=0.752) 240 

was similar between trials. Cycling induced a significant increase in all cardio-respiratory 241 

variables (Table 2†). Catecholamines and glucagon remained unchanged by exercise in all 242 

conditions. There were no differences between trials in the magnitude of change (delta) in 243 

response to exercise in any counter-regulatory hormonal or metabolic biomarkers (EPIdelta, 244 

p=0.142, NEdelta, p=0.443, Glucagondelta, p=0.842, vβ-OHBdelta, p=0.758, vBLadelta, p=0.919). 245 

There were no recorded incidences of any trial related hyperketonemia or lactic acidosis at 246 

any timepoint throughout the entire experimental period.  247 

Discussion 248 

This study is the first to detail the extent and prevalence of post-exercise and nocturnal 249 

hypoglycemia, following peri-evening exercise bolus insulin dose alterations using specific 250 

multiple daily injections of insulins aspart (IAsp) and degludec (IDeg) in individuals with 251 

T1D over a 23-hour in-patient period. Our findings demonstrated that a 50% IAsp dose 252 

reduction prior to evening exercise reduces the occurrence of hypoglycemia during exercise 253 

and mimicking this strategy in the post-exercise period decreases the risk of nocturnal 254 

hypoglycemia. Combining this approach and reducing IAsp dose either side of exercise 255 

results in higher glucose concentrations in acute post-exercise, nocturnal and overall periods.  256 

The significant reduction in IAsp units injected before exercise (PreEx50% 2.6±1.2 vs. 257 

PreEx100% 5.1±2.4 IU, p<0.001), resulted in a greater meal-induced rise in glucose 258 
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compared to the unaltered dose (PreEx50% ∆ +2.1±2.1 vs PreEx100% ∆ +1.2±2.0 mmol.L-1, 259 

p=0.031). However, despite the small amount of insulin taken before exercise, and the 260 

consequent increase in post-prandial blood glucose, this acute relative reduction represented 261 

only ~6% of injected insulin up to this point. Similar to previous studies 12,25,31,34, participants 262 

were likely supra-hyperinsulinemic ahead of exercise commencement, which potentially 263 

evoked an inhibitory effect by inactivating phosphorylase, ultimately reducing the rate of 264 

glycogenolysis, yet accentuating peripheral glucose uptake 12. Further, exercise induced 265 

increases in skeletal muscle blood flow, capillary perfusion and membrane permeability 266 

enhance the rate of delivery and absorption of blood borne substrates and hormones to 267 

working muscles during exercise 45,46. The macronutrient composition of a pre-exercise meal 268 

also considerably influences patterns of fuel metabolism and utilisation during exercise, with 269 

shifts towards higher muscle glycogenolysis and carbohydrate oxidation observed following 270 

ingestion of a glucose load 47, particularly when superimposed with hyperinsulinemia 12. 271 

Thus, that participants not only exercised within the peak effect of IAsp (time until peak 272 

onset of action = ~31 - 70 minutes 48), but were also acutely post-prandial, having just 273 

consumed a high carbohydrate meal (~65% carbohydrate content), likely primed tissues to 274 

use glucose as the predominate energy source during exercise 49,50. Indeed, irrespective of the 275 

pre-exercise insulin dose used, exercising rates of carbohydrate oxidation were high 276 

compared to lipid combustion (contribution of carbohydrates ~83±9%), and probably 277 

accounted for the significant drop in blood glucose concentrations during exercise (~∆ vBG 278 

3.7±2.2 mmol.L-1). Notably, 61% of all exercise tests were terminated prematurely due to 279 

hypoglycemia. As such, as an independent time phase, the 45-minute exercise period 280 

accounted for 59% of all hypoglycemic events recorded over 23 hours. This was most 281 

obvious when exercising with an unaltered dose of IAsp, which led to a two-fold increase in 282 

the risk of hypoglycemia relative to when a 50% dose reduction was incorporated.  283 

Hypoglycemia defence mechanisms were challenged with our model of cycling, with 284 

pronounced drops in arterial blood glucose concentrations observed across all trial arms. 285 

However, glucagon and catecholamine concentrations remained unchanged from pre-exercise 286 

values in all conditions. Both glucagon and the catecholamines positivity regulate net hepatic 287 

endogenous glucose production via stimulating glycogenolysis and gluconeogenesis 51,52. 288 

However, in addition to abnormalities in hepatic glucose production during exercise 53, 289 

individuals with T1D demonstrate attenuated counter-regulatory responses to hypoglycemia 290 
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54, a situation worsened by hyperinsulinemia 55. Thus, the small, and possibly blunted, 291 

counter-regulatory hormonal responses observed in our data, may be an additional factor 292 

owing to the high prevalence of within-exercise hypoglycemia.  293 

The effects of exercise on enhancing tissue sensitivity to insulin and peripheral glucose 294 

uptake persist for several hours following exercise cessation, a situation intensified in the 295 

presence of hyperinsulinemia 15–18,56. Our data reveal that overall acute post-exercise (~6 296 

hours) glycemia was most supported in the peri-exercise dose reduction arm, whilst in direct 297 

contrast, the incorporation of an unaltered dosing strategy either side of exercise 298 

independently accounted for ~50% of all acute post-exercise hypoglycaemic events. These 299 

data support and advance research work by Campbell et al 57, who also demonstrated the 300 

glycemic preservation benefits associated with a 50% dose reduction to the post-exercise 301 

bolus insulin (IAsp or lispro used with background insulins glargineU100 and detemir) dose 302 

in the acute (~4 hours) but not extended (~8 hours) period after exercise 57. The authors 303 

hypothesised that the observed similarity in the prevalence of hypoglycemia in the extended 304 

post-exercise window may have been due to the administration of additional, and indeed 305 

unaltered, bolus insulin doses in the post-laboratory home-phase. In heed of these 306 

discoveries, later work highlighted the protective effect of consuming a small carbohydrate 307 

based snack (0.4g.CHO.kg.bm-1) ahead of the night-time period in minimising rates of 308 

nocturnal hypoglycemia subsequent to evening exercise in patients treated with insulins 309 

aspart and glargineU100 25. However, due to relatively short post-exercise in-patient 310 

monitoring phases (~3 hours), hypoglycemia was determined via interstitial glucose 311 

monitoring in both of these studies, and given the inherent flaws in device accuracy during 312 

hypoglycemia 41, may have misidentified events. Thus, using venous derived glucose values 313 

collated in laboratory-controlled conditions, our data confirm the effectiveness of these 314 

strategies in people with T1D using MDI consisting of insulins aspart and degludec.  315 

A 50% dose reduction to mealtime insulin in the post-exercise period provided a near 4-fold 316 

decrease in the risk of nocturnal hypoglycemia compared to a full bolus insulin dose. 317 

Interestingly, in addition to the provision of a small carbohydrate based snack with bolus 318 

insulin omission 2 hours ahead of the night time hours, the nocturnal period in this study 319 

commenced ~5 hours following the last bolus insulin injection, hence, given its 320 

pharmacokinetic characteristics (time of duration of action; 3 - 5 hours 48), it was unlikely 321 

that IAsp represented much of the total pool within the circulation. The enhanced sensitivity 322 
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to insulin following exercise has been shown to follow a biphasic trend, during which in 323 

addition to an initial increase immediately after exercise, a second peak occurs 7-11 hours 324 

later 22 .Thus, in addition to the direct effects of acute hyperinsulinemia in accelerating risk of 325 

in-exercise hypoglycemia, these data affirm the long-standing metabolic effects of antecedent 326 

exercise in increasing the risk of delayed onset of hypoglycemia in people with T1D 25. 327 

Irrespective of hypoglycemia per se, employing 50% dose reductions either side of exercise 328 

led to the highest preservation in glucose throughout the night-time hours, thus reinforces the 329 

glycemic safety of prudent dose alterations alongside carbohydrate rich meals before and 330 

after exercise for this cohort. Though considerably higher following the administration of an 331 

unaltered insulin dose post-exercise, rates of nocturnal hypoglycemia in this study were 332 

minimal, and align with previous reports of a low prevalence of severe (≤3.1 mmol.L-1) 333 

nocturnal hypoglycemia following moderate intensity cycle exercise (~60% ��O2max for 30 334 

minutes) in participants with T1D treated with insulins aspart and degludec 58. However, in 335 

this study the pre-exercise mealtime bolus insulin manipulation was taken well in advance of 336 

exercise commencement (~3 hours), with an equivalent reduction in the carbohydrate 337 

amount. Critically this meant that the individualised carbohydrate :insulin ratio remained 338 

unaltered, which may explain the complete avoidance of hypoglycemia during exercise. 339 

Interestingly, when we re-examined our data against the threshold for severe hypoglycemia, 340 

the occurrence dropped to 3 events which happened similarly across trials (FF, 1 FR 0, RF 1, 341 

RR 1 events, χ2 = 1.049, DF = 3, p=0.789) and provide some assurance for glycemic stability 342 

whilst using IDeg. In light of the potential obesogenic implications associated with an over 343 

reliance on additional carbohydrate intake and exogenous insulin administration 59, the 344 

increase in energy expenditure as a result of longer duration exercise, combined with a lesser 345 

need for treatment carbohydrates with insulin dose reductions, has important clinical 346 

undertones that stretch beyond those relating to dysglycemia. Finally, trial day β-OHB 347 

concentrations were below levels deemed hyper-ketonemic (>1.0 mmol.L-1) 60, thus support 348 

previous work in displaying no adverse metabolic implications associated with bolus insulin 349 

reduction (or omission) concomitant with high carbohydrate intakes in individuals with T1D 350 
61. Therefore, from a clinical viewpoint, the integration of peri-exercise IAsp dose reductions 351 

with IDeg can be implemented safely with no risk of ketone body formation.  352 
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Study strengths, limitations, and future recommendations  353 

The study design enabled intensive 23-hour monitoring including an overnight stay in a 354 

medically-supervised clinical research facility with frequent venous sample draws, 355 

standardised mealtime feedings and monitored insulin dose administrations. Collectively, 356 

these factors helped overcome the identified limitations of previous research whilst providing 357 

up-to-date information on the extent and prevalence of exercise-related hypoglycemia, using 358 

specific modern insulin analogue combinations in people with T1D. With mixed gender 359 

design of the study and a wide age range for trial inclusion, our participant cohort findings 360 

are applicable to the wider population and advance out understanding of insulin dose 361 

adjustments in T1D individuals treated with MDI.  362 

Conclusion  363 

These findings demonstrate improved glycemia with peri-exercise bolus dose reduction 364 

strategies which reduce the prevalence of acute and nocturnal hypoglycemia following 365 

evening exercise. Incorporation of newer background insulins with current bolus insulins 366 

demonstrates efficacy and advances current recommendations for safe performance of 367 

exercise in people with T1D using MDI. 368 
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Tables 601 

Table 1. Baseline characteristics of study participants 602 

Baseline characteristics of study participants 

Characteristic n=16 

Gender M versus F (n) 13 vs 3 

Age (years) 34.5±13.9 

BMI (kg.m2) 26.0±3.4 

Lean Mass (%)  23.4±3.3 

HbA1c (%)  7.2±1.3 

HbA1c (mmol/mol) 56±15 

Diabetes Duration (years) 14.4±11.1 

Pre study TDD (IU.kg.bm-1) 0.6±0.3 

Pre study TDBD (IU.kg.bm-1 0.4±0.2 

V̇O2max (ml.kg-1.min.-1) 40.3±10.3 

Table 1. Baseline characteristics of study participants. Data are presented as mean±SD. n; number of participants. M; Male. F; Female. 603 
BMI; body mass index. Kg; kilograms. M; meters. TDD; Total daily insulin dose (inclusive of basal and bolus amounts). TDBD; total daily 604 
basal insulin dose. Bm; body mass. ml; millimetres. Min; minutes. 605 

 606 
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Table 2. Metabolic, physiologic, and counter-regulatory hormonal responses to exercise 607 

Parameter 

Physiologic, metabolic, and respiratory responses  

FF FR RF RR 
p 

value  

a) Cardiorespiratory responses 

HRmean (bpm) 133±11† 135±12† 134±11† 133±12† 0.904 

V̇O2mean (l.min-1) 1.9±0.3† 1.9±0.4† 1.9±0.3† 1.9±0.3† 0.632 

V̇CO2mean (l.min-1) 1.8±0.3† 1.8±0.4† 1.8±0.3† 1.8±0.3† 0.723 

CHO oxidationmean (g.min-1) 1.9±0.5† 1.9±0.5† 1.9±0.4† 1.9±0.4† 0.915 

Lipid oxidationmean (g.min-1) 0.2±0.1† 0.2±0.1† 0.2±0.2† 0.2±0.1† 0.455 

TEEmean (kcals.min-1) 9.3±1.6† 9.1±1.8† 9.2±1.7† 9.3±1.5† 0.668 

b) Metabolic responses 

vBGpre-ex (mmol.L-1) 8.04±3.29 8.26±2.02 7.87±2.49 9.40±2.60 0.448 

vBGend (mmol.L-1) 4.59±3.09† 3.69±1.19† 4.69±1.86† 4.98±2.18† 0.711 

vBLapre-ex (mmol.L-1) 0.97±0.28 0.98±0.25 0.96±0.23 0.95±0.24 0.975 

vBLaend (mmol.L-1) 2.71±1.48 2.63±0.98† 2.61±1.23† 2.74±1.57 0.980 

vβ-OHBpre-ex (mmol.L-1) 0.04±0.01 0.04±0.00 0.04±0.00 0.04±0.01 0.185 

vβ-OHBend (mmol.L-1) 0.05±0.01 0.05±0.01 0.05±0.02 0.04±0.01 0.408 

c) Counter-regulatory hormonal responses 

EPIpre-ex (nmol.L-1) 0.03±0.03 0.06±0.10 0.06±0.12 0.05±0.05 0.773 

EPIend (nmol.L-1) 0.09±0.11 0.09±0.12 0.05±0.78 0.08±0.11 0.887 

NEpre-ex (nmol.L-1) 0.65±0.85 0.63±1.01 0.79±0.90 1.01±1.09 0.605 

NEend (nmol.L-1) 1.08±1.04 1.36±1.29 1.62±1.38 1.21±1.00 0.367 

Glucagonpre-ex (pg.mL-1) 14.9±34.8 21.1±33.5 50.5±83.4 15.6±26.8 0.191 

Glucagonend (pg.mL-1) 16.4±24.8 18.6±21.7 45.5±76.9 21.0±54.7 0.361 

Table 2. Physiologic, metabolic, and counter-regulatory responses to exercise. Data are reported as mean±SD (metabolic and counter-608 
regulatory hormonal data n=16. Cardiorespiratory data n=14). HR; Heart rate. bpm; beats per minute. V̇O2; Volume of inhaled oxygen. 609 
V̇CO2; Volume of inhaled carbon dioxide. l.min-1; liters per minute. g.min-1; grams per minute. TEE; Total energy expenditure. Kcals; 610 
kilocalories. vBLa; venous blood lactate. vβ-OHB; venous beta-hydroxybutyrate. End; end of exercise. Pre-exe; pre-exercise. †p≤0.05 611 
compared with the corresponding pre-exercise value.  612 
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Table 3. Prevalence of trial-day hypoglycemia 614 

Prevalence of trial-day hypoglycemia 

Time FF FR RF RR # hypos as % total (n=66) 

Pre-Exercise 

(16:00-16:59) 

1/1 

(6%) 

0/0  

(0%) 

1/1 

(6%) 

4/3  

(19%) 

6/5 (9% of total hypos) 

p=0.197 

Exercise 

(17:00-17:45) 

11/11 

(69%) 

14/14 

(88%)* 

8/8  

(50%) 

6/6 

(38%)* 

39/16 (59% of total hypos) 

p=0.021* 

Post-Exercise 

(17:46-23:59) 

6/6 

(38%) 

2/2  

(13%) 

2/2  

(13%) 

3/2  

(13%) 

13/12 (20% of total hypos) 

p=0.348 

Nocturnal 

(00:00-05:59) 

3/1 

(6%) 

0/0  

(0%) 

3/3  

(19%) 

1/1  

(6%) 

7/5 (11% of total hypos) 

p=0.558 

Fasted a.m. 

(06:00-07:00) 

0/0 

(0%) 

0/0  

(0%) 

1/1  

(6%) 

0/0  

(0%) 

1/1 (2% of total hypos) 

p=0.406 

Overall 

(16:00-07:00) 

21/14 

(88%) 

16/14 

(88%) 

15/9 

(56%) 

14/10 

(63%) 

Total = 66 in 16 people 

p=0.593 

Table 3. Prevalence of trial-day hypoglycemia (≤3.9 mmol.L-1) with reference to distinct time phases. Data are reported as X/Y (Z%), where 615 
X=number of hypoglycemic episodes, Y=number of people in which hypoglycemia occurred and Z=number of people in which 616 
hypoglycemia occurred as a percentage of total number of participants (n=16). * p≤0.05 between the FR and RR trial (p=0.009) trial 617 
 618 
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Table 4. Extent of trial-day hypoglycemia 619 

Extent of trial-day hypoglycemia 

Time Value FF FR RF RR Overall p value 

Pre-Exercise 

(16:00-16:59) 

Mean 

Range 

3.2±0.0 

3.2-3.2 
- 

3.9±0.0 

3.9-3.9 

3.1±0.4 

2.6-3.5 

3.2±0.5 

2.6-3.9 

0.511 

Exercise 

(17:00-17:45) 

Mean 

Range 

3.3±0.4 

2.5-3.9 

3.3±0.3 

3.0-3.8 

3.4±0.3 

2.9-3.8 

3.2±0.6 

2.2-3.8 

3.3±0.4 

2.2-3.9 

0.659 

Post-Exercise 

(17:46-23:59) 

Mean 

Range 

3.4±0.3 

3.2-3.9 

3.5±0.1 

3.4-3.6 

3.0±1.1 

2.2-3.8 

3.3±0.3 

2.9-3.4 

3.3±0.4 

2.2-3.9 

0.527 

Nocturnal 

(00:00-05:59) 

Mean 

Range 

3.2±0.2 

2.9-3.3 
- 

3.3±0.5 

2.8-3.7 

2.6±0.0 

2.6-2.6 

3.2±0.4 

2.6-3.7 

0.238 

Fasted a.m. 

(06:00-07:00 

Mean 

Range 
- - 

2.7±0.0 

2.7-2.7 
- 

2.7±0.0 

2.7-2.7 

- 

Overall 

(16:00-07:00) 

Mean 

Range  

3.3±0.4 

2.5-3.9 

3.4±0.3 

3.0-3.8 

3.3±0.5 

2.2-3.9 

3.1±0.5 

2.2-3.8  

3.3±0.4 

2.2-3.9 

0.302 

Table 4. Extent of trial-day hypoglycemia (≤3.9 mmol.L-1) with reference to the range in values in distinct time phases. Data are reported as 620 
mean±SD (n=16). 621 
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Figures 622 

 623 

Figure 1. Experimental visit flow chart for each 23-hour in patient trial. Dashed black arrows indicate capillary blood glucose sampling. 624 
With the breakfast, brunch and lunch feedings, blood glucose was collected from the fingertip and assessed via the inbuilt glucometer 625 
(Freestyle libre, Abbott Laboratories Limited, UK). During exercise, capillary blood glucose sampling was collected from the right earlobe 626 
and analysed via the fully enzymatic-amperometric method ([FEA] Biosen C-Line, EKF Diagnostic, GER). Solid black lines represent 627 
venous sampling from which blood glucose was assessed via FEA. Solid black arrows with a gap indicate the provision of a meal and an 628 
accompanied insulin dose. Cycling icon indicates the 45-minute moderate intensity (@ 60% V̇O2max) continuous exercise period. Bed icon 629 
indicates the night-time period during which venous blood glucose was sampled every two hours. 100%; Unaltered bolus dose. 50%; 630 
reduced bolus dose.  631 
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Highlights, research impact and clinical relevance 

• Exercise-related hypoglycemia continues to represent a major clinical concern in the 

glycemic management of people with T1D.  

• Though the integration of bolus insulin dose reductions around physical exercise is 

recognised as an integral component of an optimal glycemic management plan in 

people with T1D, less work has systemically investigated the extent and prevalence of 

venous blood confirmed hypoglycemia following specific peri-exercise bolus dose 

adjustments made on a background of ultra-long acting insulin degludec over an 

entire days’ worth of in-patient monitoring under controlled, clinical laboratory 

environments. 

• Using current generation insulin analogues, the results of this study provide up to date 

reaffirmation of the glycemic safety of integrating bolus insulin dose reductions 

around dynamic physical exercise in people with T1D treated with novel, ultra-long 

acting basal insulins. We detail the safe integration of modern basal-bolus insulins 

around exercise in people with T1D and demonstrate that failure to titrate bolus 

insulin appropriately in the hour leading into, or indeed after, exercise greatly 

increases the risk of hypoglycemia both during exercise and throughout the nocturnal 

hours subsequent to its performance.  

Jo
urn

al 
Pre-

pro
of


