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Abstract 

Understanding the interactions between ecosystems and their underlying environmental 

constraints, the services which they provide, and the people benefiting from those services, 

are essential for the effective management and sustainability of socio-ecosystems 

(ecosystems which support and are impacted upon by humans). Ecosystem service (ES) 

indicators attempt to provide a means of measuring service provision, but the scale at which 

they are developed is likely to impact on how they can be used to influence the effective 

management of socio-ecosystems. This paper compares science and practice in the 

development of service measures at contrasting scales in: a) an active research project, 

focused on local catchment management to improve water quality at Loweswater in the 

English Lake District, and b) a science-based study developing national scale indicators of 

water quality using the Countryside Survey dataset.  

The paper explores different approaches taken towards the production of ecological 

measures, which inform on either single or multiple ES delivery across the land/water 

interface, dependent on scale.  It considers how scale impacts on the process of gathering 

data and on the types of data which can contribute to ES indicators. It further reflects on how 

service indicators representing different scales of study may be used and by whom. Local 

scales, in this case the catchment scale, provide a valuable socio-ecological unit for 

exploring ES delivery, but the extent to which ecosystem service indicators may be used by 

local actors is uncertain. Larger scale studies may be confined to single services by virtue of 

data availability but can provide useful policy tools for targeting action. The paper concludes 

that ‘scale’ is an important consideration when developing ES indicators. It also concludes 

that questions around the utility of such indicators should consider the relevance of scale 

and how it relates to governance.  
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Introduction 

All ecosystems, both managed and unmanaged have an important role in supporting human 

well-being (Millenium Ecosystem Assessment, 2005) through the provision of multiple 

ecosystem services (ES) including, for example: food production, clean air and water and 

cultural services, such as recreation. These services are themselves underpinned by natural 

capital: soils, waters, habitats and species. In managed ecosystems, an understanding of 

the actual and potential impacts that land managers and occupiers have on their 

environment is vital to achieving sustainable use of natural capital and the ES that flow from 

it (Daily and Matson, 2008; Swinton et al., 2007). Rather than tackling complexity by 

reducing the scope of our science, the challenge for scientists is to open out our science and 

address the inherent complexities of socio-ecosystems; ecosystems which support and are 

impacted upon by humans (Carpenter et al., 2009; de Lange et al., 2010). Science seeking 

to support sustainable resource management needs to be able to produce indicators that 

reflect such complexity.  

Scientists have employed a range of approaches to try to take on board the inherent 

complexity of socioecological systems when developing indicators (McVittie et al., 2015). 

Such approaches attempt to measure both indirect and direct human impact on natural 

capital through for example, land management, or diffuse pollution impacts on waterbodies. 

Through measuring such impacts the potential for improving management to enhance the 

production of ES is increased. A number of key factors are likely to be important for 

measuring and managing human-ecosystem interactions. This paper considers the 

relevance of ‘scale’, and factors associated with it, for the development of ES indicators. 

Scale 

Identifying scales which are relevant to both social and natural systems is difficult, especially 

in a globalised world where the goods produced by one part of the world may be consumed 

by humans from another, e.g. tea produced in India and drunk in the UK, or lamb produced 

in northern England and consumed in the south-east of England.  Inevitably the larger the 

scale of assessment, the coarser the resolution of data and hence the resultant 

information/advice on resource management that can be produced. For resource 

management, an essential consideration in relation to scale is that of environmental 

governance (Görg 2007; Padmanabhan and Jungcurt 2012). Most land is managed at parcel 

(field) scales with broader governance structures, where they exist, effective at local to 

national scales. Governance with an ES agenda may be increasingly widespread following 

the MA (Millenium Ecosystem Assessment, 2005) but little research has been done to inform 

land managers (and those institutions with the responsibility for ensuring large scale ES 



provision) about optimal landscape scale management for the delivery of ES (Hassan et al. 

2005).  

The scale at which science is carried out tends to be prescribed by the constraints imposed 

by funding mechanisms and their required deliverables. Most natural science studies focus 

either on the micro-scale, and study a reduced set of variables with relatively high control, or 

focus on the landscape scale using large amounts of data collected over a wide range of 

sites to identify effects/trends (Bilotta et al., 2010; Boix-Fayos et al., 2009; Collins et al., 

2007). The potential value of socio-ecological landscape scale approaches, which take into 

account human impacts on and use of ES, is increasingly recognised by natural scientists 

and others (Potschin and Haines-Young 2006, Görg 2007). Despite this, many gaps remain 

in our understanding of the interactions between ecosystems and with humans because 

relatively little science which incorporates both natural and social science perspectives 

(interdisciplinary science) is actually done in this area.   

Recognition of the lack of studies which could provide valuable insight into how interactions 

between humans and ecosystems impact on the delivery of services from ecosystems has 

led to research initiatives which seek to promote interdisciplinary approaches. These include 

the Rural Economy and Land Use (RELU) programme (Lowe and Phillipson 2006) under 

which the Loweswater work described here was conducted. Another key pillar of the RELU 

programme, recognising the role that publics play in environmental decision making (Lowe 

and Phillipson 2006), was stakeholder engagement. ‘Stakeholder’ covers a wide range of 

potential participants in research, from individual land owners to national policy makers and 

wider publics affected by environmental decision making. Increasingly stakeholder 

engagement is recognised as an important facet of studies investigating and attempting to 

address socio-ecological issues (Krueger et al. 2012), reflecting the role of stakeholders in 

environmental management at multiple scales. In the development of ES measures, 

understanding human interactions with the environment and the roles of stakeholders therein 

are intrinsically connected to ‘place’ (Berkes 2004; Lowe et al. 2009; Fish et al. 2010; 

Waterton et al. 2015). For example, the provision and enjoyment of clean water in a 

catchment needs to take into account those impacting on and using the water, rather than 

assessing land and water quality in that catchment independently of human interactions. 

Problems associated with specific localities or ‘places’ tend to require approaches which 

reflect the specific social and natural composition of the locality. Methods currently used to 

derive ecosystem indicators vary widely with some focusing on modelling at 

field/experimental scales (Lavelle et al. 2014, Williams and Hedlund 2014) and many others 

at regional/national scales (Maes et al. 2012, Locatelli et al. 2014). The extent to which 



indicators developed at large scales translate to particular localities has not been widely 

investigated. Similarly comparisons to highlight the constraints and benefits of working at 

different scales, and their impacts on the value of the ES indicators developed, are rare. 

 This paper seeks to address this issue by carrying out and then contrasting alternative 

approaches to providing indicators of ES delivery at different scales, focusing particularly on 

the interactions between land management and water quality indicators, but also 

incorporating a wider range of service indicators, where practical. The work on which it is 

based was developed in response to a political and scientific desire to understand the 

important factors influencing the value of ES indicators related to the scale at which they are 

produced. The study focuses on data from two ‘sites’: 1) Great Britain (GB), as sampled by 

the Countryside Survey, a national long term monitoring programme  (Norton et al. 2012) 

and 2) the Loweswater catchment in the English Lake District, as sampled by the 

Loweswater Rural Economy and Land Use (RELU) study. The former study takes an 

integrated ecological sampling approach at a representative sample of GB sites on an 8-10 

year cycle (5 surveys since 1978). The Loweswater study was an interdisciplinary, 

stakeholder engaged active research project to investigate approaches to community 

catchment management in a catchment suffering from poor water quality. Modelling 

approaches described here build on previous work exploring the provision of clean water at 

the two ‘sites’ using water quality indicators (Dunbar et al. 2010 – Countryside Survey and 

Norton et al. 2011b - Loweswater). Previous approaches include process based modelling 

and mixed effects linear models, whilst new approaches described here include the use of 

Bayesian Network (BN) analysis and Boosted Regression Tree (BRT) modelling. Bayesian 

networks are now widely used to model environmental systems due to their capacity for 

integrating multiple issues and investigating trade-offs (Barton et al. 2008, Chen and Pollino 

2012), such as those between water quality and food production. Understanding how the 

production of one ES may trade-off against another is important when making decisions for 

sustainable ES delivery. In contrast to BN’s, Boosted Regression Tree models are a 

relatively new approach to modelling large and complex ecological data sets. They include 

features which are highly suitable for typical characteristics of ecological data (complex, non-

linear relationships, non-normality, missing data, variable data formats and inter-correlated 

predictor data).  

The new models were used to explore the limits of the available data in order to gain an 

understanding about the importance of scale and approach, from both modelling and data 

collection perspectives, to what we can learn about ES indicators. The approaches are 

compared systematically in terms of how scale impacts on: a) the data required, b) the 

extent to which the approaches conceptualise the socio-ecosystems under study, c) the 



ecosystem indicators produced and on d) the potential relevance of the approaches to land 

managers, institutional frameworks and policy makers. 

Methods 

The methods used in this paper consist of two parts. The first (modelling approaches) 

describes the construction of the two modelling approaches used to provide ES indicators at 

two different scales. The second (comparative approaches) describes the comparison 

between the two approaches in terms of scale and associated factors. 

1. Modelling approaches 

Pre-existing data and previously published models (Dunbar et al 2010: Norton et al. 2011b) 

were supplemented by additional data and new modelling approaches for two ‘sites’: 

Loweswater and Great Britain (GB). The GB model (using Countryside Survey (CS) data) 

produced an indicator of water quality whilst that for Loweswater produced indicators of 

landscape quality (as a cultural service, i.e. a pleasant landscape to visit and look at) and 

farmer income (provisioning service) as well as water quality.  Detailed modelling 

approaches for each of the sites and for comparison between them are described below.   

Site - Loweswater 

Loweswater is a small lake (0.6 km2), couched within a mixed upland and lowland farmland 

catchment, also containing woodland, totalling 7.6 km2 in area. Over 85% of the catchment 

is farmed by eight beef and sheep farmers with small scale low-income enterprises. The 

catchment’s sparse population is supplemented with modest numbers of visitors to the area 

with residential, visitor accommodation and farm buildings occupying approximately 1% of 

the catchment. Loweswater experiences regular, potentially toxic blooms of blue-green algae 

resulting from high concentrations of Phosphorus (P) in the water. 

The catchment has been the focus of a number of studies post 2004, the first of which was a 

natural science modelling exercise to identify the potential impacts of farming practices on 

Loweswater (Maberly et al. 2006). The Loweswater catchment was subsequently the focus 

of a RELU project (2007-2011) which aimed to: 1) understand the social and environmental 

perspectives surrounding the provision of the ES of clean water at Loweswater (Norton et al. 

2011b) and 2) help to create a mechanism that would enable community and institutional 

involvement in decision making (collaborative governance) as a basis for long-term 

ecological, economic and social sustainability within the Loweswater catchment, the 

Loweswater Care Project (Tsouvalis and Waterton 2011).  Within the RELU project the 

catchment provided an opportunity to try out modelling approaches which incorporated a 

wide range of expertise from land management to scientific measurement. Thus the 



modelling was embedded in the community mechanism aimed at improving water quality 

and incorporated inputs from both scientists and non-scientists.  

 

Loweswater data:  

Table 1 provides a summary of data from Loweswater used in previous (RELU) models and 

the additional data incorporated into new models described here.  

 

Table 1: Summary of data used in Loweswater models. BBN refers to the Bayesian Belief 

Network model. 

 

Data used in models (Norton et al. 2011b) Additional data used for BBN model 

Catchment boundary Presence , extent and condition of 

landscape features (i.e. walls, hedges, lines 

of trees and individual trees)* 

Catchment land cover and land use 

(collected in the field) 

Condition of inbye land (as measured in 

standard vegetation plots size 200m2, on 

each farm* 

Detailed land management information from 

farmers (stocking, feeding, housing, agri-

environment scheme payments). 

Farming income aggregated into two crude 

classes of ‘moderate’ and ‘low moderate’ 

incomeɫ. 

Soil Phosphorus (P) sampling data from 

farmers’ fields 

Relief (difference between highest and 

lowest altitude, by farm) 

Information on septic tank use and P loss  

Flow data (for inflows)  

Weather data (rainfall, air temperature, wind 

speed and humidity) 

 

Lake water quality data (water temperature, 

chlorophyll concentration, soluble reactive 

phosphate, nitrate and silicate and 

phytoplankton composition and abundance) 

 

*Data collection approaches followed those for Countryside Survey, see Norton et al. (2012). 

 ɫ ‘Moderate’ income was considered as income in line with income for similar farms in the North West (from the 

Farm Business Survey for 2007) at £7,000 per annum. ‘Low Moderate’ was more than 25% lower than 

‘moderate’. 

 



Site – GB (Countryside Survey) 

Countryside Survey is a large scale long-term monitoring programme which investigates 

stock and change in habitats, landscape features, vegetation, soils and freshwaters across 

Great Britain (Norton et al.2012). Data collection takes place across a randomly stratified 

sample of GB 1km squares which represent 45 ITE Land classes (landscape types) (Norton 

et al. 2012; Bunce et al 1996). In 2007, 591 squares were surveyed. Following the 2007 

survey, the recognised need for national data on ecosystems and their role in the production 

of ES led to the production of the CS Integrated Assessment (Smart et al. 2010). This piece 

of work involved scientists working closely with a policy ‘topic’ group (consisting of 

representatives of national UK government bodies with responsibility for the environment) to 

recast CS data as indicators relevant to ES provision. This paper focuses on CS freshwater 

data. 

CS data: 

CS freshwater data relevant to water quality includes a) actual counts of invertebrate species 

in sampled headwater streams and b) a suite of physical variables for each stream (plus 

alkalinity) which are used to predict an expected ‘reference’ macroinvertebrate community at 

a stream or river site using the River Prediction and Invertebrate Classification System 

(RIVPACS) software (see Dunbar et al. 2010). This predicted community (b) is then 

compared to measured stream community (a) for each site, to provide an observed/expected 

ratio which in an un-impacted site will be close to one. As degradation, associated with 

human impacts increases, the observed index value fails to meet expectations and the value 

of the ratio falls below one.  

Whilst this work builds on a modelling approach used by Dunbar et al. (2010), which 

investigated factors impacting on water quality within the CS 1km sample squares 

themselves, extrapolation to the national scale has required the use of broadly comparable 

data outside of those squares. Table 2 provides a summary of data used in previous 

modelling approaches and in the new model described here.   

Table 2: Summary of data used in CS models. Explanatory variables for the Boosted 

Regression Tree (BRT) models are numbered 1) to 10). 

Data used in CS 1km2 models (Dunbar et 

al. 2010) 

 Data used in national 1km2 BRT models 

and catchment model (C) 

Biological Monitoring Working Party 

(BMWP) + invertebrate taxa score – 

observed/expected 

Biological Monitoring Working Party 

(BMWP)+ invertebrate taxa score – 

observed/expected 



% Improved grassland in the 1km survey 

squares from CS 

1)% Arable, 2)% Improved Grassland, 3) % 

Urban in 1km square from LCM* and (C) 

% woody cover in plots associated with the 

headwater stream 

4)% woody cover along the headwater 

stream  

Cover weighted canopy height in plots 

associated with the headwater stream 

 

 5) Slope - over a 1km length centred on the 

sampling site i.e. from a point 500 m 

upstream to a point 500m downstream 

Average slope (C) 

 6) Altitude of sampling site 

Average altitude (C) 

 7) Easting and 8) Northing co-ordinates 

 9) Strahler& stream order (1,2 or 3) 

 10) Survey year 

+ Biological Monitoring Workers Party (BMWP) score is an index for measuring the biological quality of rivers 

using selected families of macroinvertebrates as biological indicators (Armitage et al., 1983). 

*LCM is the UK Land Cover Map, a map of UK habitats with data derived from satellite imagery (Morton et al. 

2011). 

&Strahler stream order is used to define stream size. When two first-order streams come together, they form 

a second-order stream. When two second-order streams come together, they form a third-order stream. CS 

samples only headwater streams, i.e. streams of Strahler order 1, 2 or 3. 

Modelling 

Detailed descriptions of historic modelling approaches discussed in brief below can be found 

in the original publications (Norton et al. 2011b – Loweswater; Dunbar et al. 2010 – CS). 

Descriptions of the Bayesian Belief Network and Boosted Regression Tree models relevant 

to the aims of this paper are provided here. Detailed information on both approaches is 

included in Supplementary Information (S1).  

Bayesian Network (BN) - Loweswater 

Bayesian networks are graphical models that encode probabilistic relationships among 

variables of interest in a network from primary cause to final effect (Chen and Pollino 2012), 

effectively providing an influence diagram. Model development begins with a conceptual 

outline of the ‘issue’, which in this case was to develop an understanding of the joint 

production of ES at Loweswater. Previous successful process based modelling of water 

quality in Loweswater which used a series of linked models (Norton et al. 2011b) to relate 

catchment variables (including land management) to the likelihood of blue-green algal 



blooms (indicative of poor water quality) provided a good basis for the BN. The next steps 

were to incorporate additional information from the catchment, which would enable inclusion 

of indicators for farm income and cultural service provision for Loweswater to be modelled 

alongside water quality. In order to avoid over-complicating the network, a pragmatic 

approach to its development was taken focusing on key areas of human impact.  

The Bayesian Network (Figure 1) was created in Netica (Norsys, 2003). Probabilistic 

relationships were altered to deterministic relationships where there were known 

dependencies between model nodes (through data collection and modelling). This included 

known endpoints in relation to farmer income and a good understanding of processes 

leading to the presence of blue green algae. This mean that rather than being used to 

provide new information on all three services, the model was primarily being used to provide 

new measures of cultural services (landscape quality scores), provided by the farmers within 

the catchment, and information on how the variables within the model jointly contributed to 

multiple ES delivery. Landscape quality scores were based on values assigned to key 

catchment characteristics. These values were essentially ‘expert’ judgement based on 

previous collaborative work looking at landscape cultural services (Norton et al. 2011a). As 

required by BN’s, values for nodes were aggregated into categories (discretised) rather than 

entered as continuous variables. This process both simplified the model and diluted 

statistical accuracy. 

Model evaluation and testing was carried out to validate the model structure and the model 

detail. Previous modelling and data collection in the catchment (Norton et al. 2011b) 

facilitated this process. The decision node in the network, the ‘farmer’ node, enabled an 

assessment of a) how individual farmer practice/ownership influenced the three ES 

measures and, b) how collectively farmers influenced ES measures across the catchment as 

a whole. Although the modelling process built on previous stakeholder engagement and 

interdisciplinary approaches at Loweswater, engagement with catchment stakeholders 

regarding BN development was only possible at the end of the process. 

Boosted Regression Tree (BRT) – Countryside Survey 

Boosted Regression Tree models are a machine learning modelling technique which uses a 

progressive ensemble approach that combines the strength of two algorithms: i) regression 

trees (models that relate a response to their predictors by recursive binary splits) and ii) 

boosting (an adaptive method for combining many simple models to give improved predictive 

performance) (Elith et al., 2008). The models comprised the observed Biological Monitoring 

Working Party (BMWP) score (Box-Cox transformed, lambda 0.628) as the response 

variable and the 10 explanatory variables (Table 2) as the potential predictors. The models 

were used to identify those explanatory variables that may account for, or help explain 



trends in the observed BMWP scores. The best-fit models were determined by adjusting 

values of two model parameters (tree complexity and the learning rate) until model predictive 

deviance was minimized without data overfitting. The models were initially trained on a sub-

set of the CS 1km squares and tested on the remainder before being extended to the 

national scale at 1km2 and catchment scales. Model performance was evaluated based on 

the proportion of the deviance explained (pseudo R2), the Pearson correlation coefficient (c) 

and the root mean square error (RMSE) between fitted and observed data. Residuals were 

examined using histograms and Sharpio-Wilk tests to test whether predictions follow normal 

distributions and to confirm model assumptions were met.  

Final models were used for prediction to the national scale for each 1km2 grid and catchment 

containing a stream/river of Strahler order 1, 2 or 3 across GB, comprising a total of 152,639 

grids. The national model incorporated the catchment of Loweswater, hence results for the 

catchment boundary, sub catchment boundaries and 1km2 grids for Loweswater were 

generated, each containing a random point on a river for which predictions would be made.  

The 10 explanatory variables in both models were generated for all prediction areas. In order 

to produce predicted o/e BMWP values for the unmonitored sites, expected values for 

BMWP (predicted) were required and these were generated using the 45 ITE land classes 

as a base. The expected BMWP scores from the CS data (data derived from RIVPACS 

using real, sampled environmental attributes at each site) were averaged for each land 

class. This value was used as the predicted expected BMWP values for the randomly 

generated river sampling site in each unmonitored grid square. Predicted o/e values were 

calculated by dividing the predicted observed (from BRTs) by the predicted expected 

(average scores for ITE land classes).  

As with the Loweswater work model described here, the BRT models built on previous 

stakeholder engaged approaches to understanding the requirements of (in this case) policy 

makers for national measures of ES. A future workshop with policy stakeholders will discuss 

the value of both models in that context. Model findings, for both models were 

communicated to the steering group of the new community based project (the Loweswater 

Care Programme) at Loweswater in June 2014. 

 

2. Comparative approaches 

Following the two modelling exercises the approaches were compared systematically. 

Comparisons focused on how the scale of the different approaches affected: a) the data 

required, b) the extent to which the approaches conceptualised the socio-ecosystems under 

study, c) the resultant ecosystem service indicators produced and d) the relevance of the 

results to sustainable land management. The latter was assessed through engagement with 



stakeholders at local, and to a lesser extent, national policy scales. This included 

presentation of both models to the steering group of the new community based project (the 

Loweswater Care Programme) at Loweswater. Consideration of the relevance of ES 

indicators from a national policy perspective refer largely to work on indicator development 

post CS and to the commissioning of this work by policy makers.  

Results 

1. Modelling approaches 

Detailed model results are provided in S1. Summary results are given below. 

Bayesian Network (BN) models – Loweswater 

The Bayesian network analysis produced results for all possible combinations of variables 

across the model. Results for just one of the scenarios representative of conditions in the 

catchment at the time of data collection (2008) are given in Table 3. These results represent 

the scores for each of the farmers for each of the three service measures at high levels of 

hydrologically effective rainfall (HER), the part of precipitation that reaches stream channels 

as runoff. Probabilities for blue-green algae out of 100 are relatively low for each farmer but 

around 25% for the catchment as a whole. Variance in probability between farmers (1.22 -

5.22%) reflects management practices in terms of farm inputs and the area of improved land 

managed in the catchment as well as the known contribution of P from septic tanks 

associated with each farm. 

The highest % for a credible outcome in terms of farmer income (i.e. one which is not in the 

‘not present’ category), as given in table 3, is the known income level for each farmer. Lack 

of variability in income in the catchment makes it difficult to test for any relationship between 

impact on blue-green algae and farming income, but given that the ‘low moderate’ income 

farmer has the second highest impact on blue-green algae any expected relationship 

between low income and blue-green algae probability can be discounted. 

Landscape quality scores varied quite considerably between farmers in the catchment (from 

21.5 out of 100 to 68 out of 100). Smaller farms (or parts of farms within the catchment) 

tended to have lower landscape quality scores (ANOVA, F1,7=4.25, P<0.08), despite account 

having been taken for area in the measure of landscape features. Not all farms followed this 

pattern with two farms covering similar areas within the catchment (62 and 66 Ha) having 

landscape quality scores of 65 and 34 respectively. These farms differed primarily in a) the 

presence of farm buildings within the catchment and b) the extent of hedges and walls.   

Linear regression showed that there was no relationship between the probability of blue-

green algae and the landscape quality score (F1,7=2.11, P<0.2). Overall the results indicate 



that at Loweswater the production of desirable landscapes is not linked to high income levels 

or to particular impacts on blue-green algae. 

Table 3: Ecosystem service scores by farmer and for the whole catchment (TOTAL) under 

high levels of hydrologically effective rainfall, (highest probabilities only for blue-green algae 

and farming income and mean and Standard Deviation for landscape quality score). 

 

Farmer Blue-green algae 

(probability %) 

Farming income 

(probability %) 

Landscape quality 

(score) 

A (High) 1.82 Moderate (71.0) 56.1 (±19) 

B (High)  5.22 Moderate (97.0) 55.6 (±19) 

C (High)  4.37 Low moderate (78) 59 (±14) 

D (High)  3.17 Moderate (44) 64.6 (±23) 

E (High)  2.78 Moderate (58) 21.5 (±10) 

F (High)  1.22 Moderate (98) 24.4 (±15) 

G (High)  3.36 Moderate (97) 68 (±14) 

H (High)  2.69 Moderate (56) 34.1 (±10) 

MEAN (High)  3.07 Moderate 47.9 

TOTAL (High) 24.63 N/A 383.3 

 

Boosted Regression Tree (BRT) models – Countryside Survey 

The models that showed the best explanatory power indicated that the 10 variables (Table 2 

column 2) were significant predictors of observed BMWP at both grid and catchment scales. 

Predictor variables were inter-correlated, but attempts to simplify the models by removing 

some correlated predictor variables indicated that it was beneficial to retain all variables, as 

the model accounted for the interactions. The 1km2 grid model explained 86% of total 

BMWP variance (pseudo R2). The RMSE for the grid based model was 37.42 and c was 0.5 

while RMSE for the catchment based model was lower at 35.48 and a higher c of 0.57. 

Shapiro–Wilk tests provided evidence to show that the residuals were from a normally 

distributed population, meeting model assumptions. 

Percentage of woody cover and degree of topographical slope were the most influential 

drivers of observed BMWP values at the grid scale. Mean catchment altitude and slope were 

the most prominent for the catchment scale. The data display significant spatial correlation, 

as denoted by the easting and northing coordinates. Partial dependency plots for the 10 

variables show the non-linear effect of each variable on observed BMWP values (fitted 

function) after accounting for the average effects of all other variables in the model.  



The predicted o/e BMWP values at the national scale are presented in Figure 2. They show 

a strong southeast/northwest pattern, with higher water quality in western and northern 

areas (with the exception of coastal areas particularly in west Wales and northwest 

Scotland), and lower water quality in the east and south across England.  Predictions for 

Loweswater gridded points and sub-catchments are shown in Figures 3 and 4 respectively. 

The predicted o/e BMWP value for a point just after the lake outlet at Loweswater, taking the 

data within the whole catchment as explanatory variables, was 1.36.  The predicted o/e ratio 

values range from 0.24 to 2.10. Low values (under 1.0) indicated that the predicted observed 

BMWP scores were lower than the predicted expected scores, i.e. less families were 

predicted to have been observed than should have been according to inherent 

environmental variables that were used to generate the expected BMWP scores (also 

predicted based on CS expected). Loweswater stream water quality predictions are varied at 

the 1km scale from 0.69 to 1.14. For sub-catchment areas water quality predictions range 

from 0.46 to 1.25. 

2. Comparative approaches 

a) Data requirements 

Tables 1 and 2 summarise the data used in the two different scale modelling approaches. 

Data from Loweswater comprised detailed field and farm level data, collected by 

professionals and non-scientists including land managers, to ensure the best possible 

representation of the catchment (from social and natural perspectives). Use of the Bayesian 

approach resulted in some constraints to the resolution at which data could be used. For 

example, raw data values used in the process based modelling for water quality (under 

RELU), were converted to coarser categories of data for the BN.  

Data used in the national BRT models built on relationships established through detailed 

field sampling in 1km squares (Table 2), extrapolated using variables from national mapping 

products. The data used were natural science only. The large scale of the modelling 

approach limited the resolution (1km scale) and volume of data that could be used in the 

model. 

b) Conceptualisation of socio-ecosystems 

The national BRT models incorporated information on socio-ecosystems by proxy, 

essentially using land cover type to provide information on land management impacts on 

water quality. In contrast the BBN approach at Loweswater attempted to conceptualise the 

socio-ecosystem there, focusing on stakeholder engagement in order to understand their 

roles in the provision of ecosystem services. Table 4 summarises the key contrasts between 

the two approaches for providing ES indicators at each of the study sites, in terms of; scale, 

interdisciplinarity of approaches and stakeholder engagement.  



 

Table 4: Summary of site contrasts in terms of scale, stakeholder engagement and 

interdisciplinarity of project and/or modelling approaches. 

Site Scale Stakeholder engagements Interdisciplinarity 

Loweswater Small 

catchment 

(7.6km2) 

Project: Stakeholders 

included local residents, 

farmers, representatives of 

local environmental 

institutions and scientists. 

Project results 

communicated to 

representatives of national 

stakeholder institutions. 

Model: Stakeholder data 

included. 

Project: Social and 

natural scientists 

from academia and 

among local 

stakeholders 

working together in 

the project. 

Model: 

Interdisciplinary 

approach using 

social and natural 

data. 

Great Britain (CS) Large 

(country) 

(209,331km2) 

Project: Policy 

stakeholders were involved 

in the development of 

indicators from the start of 

the project. 

Model: No local 

stakeholder input 

Project: Natural 

scientists only. 

Model: Natural 

science approach. 

 

c) Ecosystem service indicators 

Detailed data collected across the Loweswater catchment made it possible to produce 

indicators of three different services. The catchment scale had direct relevance for water 

quality and less relevance for farmer income or landscape quality but was generally 

adequate. Farmer income is reliant on whole farms (rather than the area within a particular 

catchment) and landscape or farm type. However, it was possible to relate income to land in 

the catchment, as the majority of land for most farmers was in catchment, with land outside 

of catchment not adjudged to significantly impact on income. Landscape quality measures 

were to some extent hampered by the scale, as inclusion of whole farms in the catchment 

would mean, at least, that farm buildings (an important contributor to landscape quality in the 

model) would be present on all farms. However it was possible to construct measures of 



landscape quality for land belonging to each of the farmers in the catchment, and using the 

BN, link that to farming income and impacts on water quality. 

This work demonstrates that CS data collected at a 1km square scale can be used to model 

a national water quality indicator, using the relationships identified between landscape 

variables and water quality in those squares. Catchment is also clearly an important scale for 

consideration of water quality, hence the BRT was used to produce a catchment model for 

water quality at Loweswater.  

d) Relevance of results to sustainable land management.  

When presented to stakeholders at Loweswater the models elicited several responses. One 

response led to a direct change in the indicator developed from the BRT model from a 

BWMP score for water quality to a relative observed/expected BWMP score. This provides 

more useful information on stream condition relative to what might be expected for the area 

under study. The models also raised a number of questions discussed (in ‘Relevance to 

Users’, below). These included: ‘which modelling approach is appropriate for us? And, how 

do we use it?’   

National policy stakeholders helped to both fund and shape the work carried out under CS to 

provide a national assessment of water quality (alongside other ES), based on indicators 

developed from CS data. Policy stakeholders also supported the work reported here in order 

to gain a better understanding of a) the issues and constraints associated with using national 

level data to provide information at local scales and b) the importance of scale for ES 

indicators. Feedback from policy users in relation to the models presented here has been 

affected by changes in government and the individuals responsible for commissioning this 

work, leading to limited interactions between researchers and policy makers. It has also 

been affected by deep government budget cuts and resultant impacts on staffing and 

workloads of staff within government departments. 

Discussion 

Model results 

Bayesian Network (BN) models – Loweswater 

For water quality, the BN results reflect what is already known from the catchment from 

previous models and data collection (Norton et al. 2011). Farming negatively impacts on lake 

water quality by contributing to nutrient loss from the land. Farming impacts on water quality 

in the catchment are captured in the BN through land cover type and inputs related to 

stocking, and to a lesser extent through delivery from septic tanks. The BN captures impacts 

in the form of a probability of high, medium or low likelihood of blue-green algae. Indicators 



of farm income from the BN simply reflect known information. Farmer income in the 

catchment is highly constrained by the nature of the catchment and its extent (and as a 

direct result, the size of farms in the catchment) (Norton et al. 2014). As a result of this, only 

substantial increases in either government subsidy (through agri-environment schemes and 

CAP pillar one payments) or stock prices, or potential amalgamation of all farms in the 

catchment (at a minimum), could improve farming income. 

Landscape quality scores varied substantially between farmers with buildings and the 

presence of landscape features driving differences. These scores were based on information 

about cultural variables (which are important to people in their experience of landscapes) 

from previous work (Norton et al. 2011a). It is acknowledged that scoring could potentially 

have been improved through consultation with users of the Loweswater landscape. For 

example, species richness, (although only accorded low impact in this study), may in fact 

have no impact, whereas the presence of sheep or cattle may be important. From a 

landscape quality perspective, the whole catchment and its context is more relevant to 

visitors than individual farms, but like water quality, understanding contribution at a farm 

level is important in any policy aimed at enhancing services. Another key landscape quality 

issue would be water quality impacts on landscape quality. No attempt has been made to 

include that in this model, in part because lake water quality is a catchment rather than a 

farm issue.  

The BN was essentially used as a quantitative influence diagram providing a quantification of 

how different (largely farmer related) variables in the catchment influenced service 

indicators. Even though highly rationalised, the BN indicates that multiple service delivery at 

farm and catchment scale is complex. In its current form there are no clear optimal farm 

management strategies which maximise delivery of all three services, which is probably a 

good reflection of reality. At the catchment scale it would be important to consider non-

farmed land (woodland and water) and their impacts on services alongside farmed land. 

Because of its basis on process based models (Evans 2012), the BN lends itself to the 

consideration of alternative scenarios and their impacts on multiple service delivery. 

Exposure of the BN to the Loweswater Care Programme steering group highlighted the 

issue of who might use the BN. This is discussed further below (Relevance to users). 

Boosted Regression Tree (BRT) models – GB 

Both of the BRT models provided a high explanation of variance of the response variable. 

Relative to more traditional means of modelling (e.g. multiple linear regression, generalised 

additive models), studies have shown that BRT models tend to show superior performance 

(Leathwick et al. 2006; Brown et al., 2012), however fits are subject to user controls during 



the modelling procedure (Elith et al., 2008). For example, if it is not appropriately controlled, 

the risk of overfitting (i.e. allowing the learning algorithm to fit obscure aspects of the training 

data that are unlikely to improve prediction accuracy) is much higher in machine learning 

techniques, such as BRTs, than other modelling methods. Hence regularization methods 

were used in model development to balance model fit and predictive performance.  The 

accuracy of the predicted values (gauged as RMSE and c values) indicated that reasonable 

and sensible estimates were generated, however although the grid model showed a higher 

R2, its RMSE and c values were higher and lower, respectively, when compared with the 

catchment model, hinting at a possible slight overfitting of the data in comparison.     

The outputs from BRT analysis indicate that there is a high level of association in the 

relationship between the BMWP score of a river and metrics of land use and biophysical 

characteristics at both 1km square and catchment scales, and that these relationships show 

complex, non-linear relationships.  Although previous studies have shown that such 

relationships exist (Dunbar et al. 2010), the analyses here has been able to isolate the 

relative impacts and interactions of individual explanatory variables, together with looking at 

the influence of spatial scale studied. Notably, the three metrics of land use collectively 

influence BMWP scores less in the catchment-scale analysis (14%) when compared with the 

grid-scale study (24%).In both cases the biophysical aspects of both the grid and catchment 

boundaries (such as slope, altitude and position north and east) have greater influence on 

water quality. Differences between results at catchment and 1km scales reflect the extent to 

which water moves through a landscape and is subject to influences along its passage 

rather than at any particular point in the landscape.  

For the Loweswater catchment, BRT results at both 1km2 and catchment scale indicate 

variability across the catchment in terms of water quality and indicate moderate levels of 

pollution. Model predictions at the catchment scale indicate particularly low water quality in 

one sub-catchment which is almost certainly inaccurate. However, for the most part results 

are broadly in line with measures of lake and stream water quality in the catchment. 

Variability in the macroinvertebrate community dataset and the structure of the BMWP 

scoring system may have contributed to uncertainty in the model outputs.   Even with the 

absence of nutrient pollution, the community of macro-invertebrates sampled varies between 

different sites and rivers as a result of inherent environmental variation, including attributes 

such as, sediment type, flow, underlying geology, river depth, river width, climate etc.  

Therefore, the BMWP scores are subject to natural variation that may not be accounted for 

in the model. 

 



Scale and the development of indicators  

a) Data requirements 

The contrasting scales of approach shown here presented different data challenges. 

Modelling at finer scales demands more detailed data in order to predict outcomes 

effectively; at larger scales statistical patterns become more regular and the use of coarser 

proxies more rational (Levin 1992). Data provided by the community relevant to income, land 

and septic tank management data and weather data as well as more general information, 

such as drainage patterns affecting the lake watershed, are all key parts of the BN model. 

These data reflect input by social and natural scientists as well as catchment stakeholders, 

all aided by the small scale of Loweswater (Norton et al. 2011b; Norton et al. 2014). The 

contrasting (national) scale of the BRT models led to a much more restricted set of (natural 

science only) data being used in the models. Modelling parameters used were constrained 

by the relationships identified between stream water quality and measured 1km square level 

variables (Dunbar et al. 2010), as well as by data available at national scales (to enable 

extrapolation). A further minor constraint was computing power, as the modelling involved 

sizeable computing tasks.  

b) Conceptualisation of socio-ecosystems 

If we recognise ecosystems as socio-ecosystems and acknowledge the vital role that 

humans play in ensuring their long term sustainability (Berkes and Folke 1998), then we 

must also recognise that science which attempts to measure ES needs to take approaches 

which engage with both social and natural parts of those systems (Klein 2004). Despite the 

recognised need for these interdisciplinary approaches to ecosystem management (Spash 

2012, Young et al. 2014), and initiatives which seek to promote these (Lowe et al. 2009), key 

challenges remain (Schoolman et al. 2012, Cullen and White 2013, Botey et al. 2014). Scale 

constraints on the extent to which the production of ecological indicators can incorporate 

both social and natural components of ecosystems relate, in part, to data issues (as 

discussed above).  

There are, however, other constraints including the availability of funding for such 

approaches and beyond that the ‘vision’ of potential funders for interdisciplinary approaches 

to tackle socio-ecological issues. Both of the approaches described here were fundamentally 

reliant on funders prioritising ‘ecosystem service’ approaches. A specific call for funded 

interdisciplinary research provided the opportunity for joint working at Loweswater (Lowe and 

Phillipson 2006), but such research programmes remain in the minority compared to single 

discipline research programmes. The development of a water quality indicator using CS data 



resulted from working alongside a policy stakeholder group to identify how CS could be used 

to develop national ES indicators (Smart et al. 2010). The same policy stakeholders provided 

funding for this comparative work. The scale of the national work limited the extent to which 

the modelling tool took into account both social and natural perspectives. However to an 

extent, the ‘social’ perspective was the policy stakeholder desire for the model and for how 

its results (in particular land cover) may help to influence policy.  

There are a range of benefits of working at a scale that is relevant to a specific community of 

people and stakeholders, such as Loweswater. Fish et al. (2010) point out that engagement 

with stakeholders, combined with interdisciplinary research and collaborative governance 

emphasises reciprocity, relationships learning and creativity. The collaborative governance 

approach at Loweswater, involving institutional stakeholders and locals, created the capacity 

for deeper understanding and appreciation of human impacts on Loweswater. In this respect 

the work echoed other work on water catchments, e.g. The SLIM (Social Learning for the 

Integrated Management) Project (Collins et al. 2007). 

Prior to the LCP a more restricted (purely natural science) project on water quality modelling 

for the catchment used earth observed data on the catchment land cover and made 

assumptions on management based on land cover type (Maberly et al, 2006). This exercise 

failed to engage effectively with farmers or the wider Loweswater community, because it was 

carried out independently of any local involvement and farmers were unable to link their 

actions to the data used in the models. The difference made by spending time with farmers 

and community members to learn about their knowledge of place, and trying to embed that 

knowledge in the science from the beginning of the project, was that the science then 

became more relevant and more accessible to them (Waterton et al., 2015). Direct links 

between farmer and wider community data and catchment use encouraged them to address 

issues where possible (including changed fertiliser applications, septic tanks management 

and co-operative vegetation management at the lake outlet). Engagement of farmers and 

community members also resulted in local action to further understandings of the catchment 

(through several small further research projects which arose out of the LCP, see Norton et 

al. 2014). Ultimately the project has led to the successful application for further funding by 

community representatives. This is enabling a range of practical and research initiatives 

(relating to water quality) to be undertaken in the catchment. From a scientific perspective 

engagement changed the scientific process, improved data quality and allowed the science 

to move further away from measures of natural capital towards ES measures. 

c) Ecosystem service indicators 



The discussion above focuses on the water quality indicator which was incorporated into the 

BN and was the primary focus of the RELU work. The ‘Loweswater’ scale was ideal for water 

quality indicators as it forms a natural water catchment within which stakeholder impacts can 

be evaluated (Hooper 2005; Mitchell 1990). It is important to note that the exploration of a 

wider set of ES indicators in the BN modelling, which was carried out following the 

completion of the RELU project, was not co-developed with the Loweswater Care 

Programme (although it relied on data collected within the project). Rather, the BN modelling 

was developed in response to a political and scientific desire for comparing the production of 

ES indicators at different scales (discussed further below). The Loweswater catchment (for 

reasons discussed under a) and b) above was a useful scale for producing ES indicators 

using a BN approach, despite issues surrounding scale mismatches (see results) which may 

have impacted on their validity. The degree to which common factors influenced all three 

indicators made them appropriate for the BN model, although necessarily somewhat coarse. 

The CS sampling strategy is designed to enable the generation of national level data 

relevant to ecosystems, e.g. measures of natural capital relevant to ES delivery (Dunbar et 

al. 2010; Norton et al. 2011a; Maskell et al. 2013). ES indicators at national scales are only 

ever likely to be indicative rather than absolute, because of the resolution of the data used. 

Potentially, it may be more accurate to refer to the indicators produced here as indicators of 

natural capital rather than of ES, given that data used is a proxy for human impacts rather 

than a direct measure (such as stocking levels or fertiliser application). There is currently no 

scope for accessing and using the kinds of detailed information collected at the Loweswater 

catchment scale at national scales. Improvements in the availability of data which is already 

collected, e.g. farm management data, would enhance the quality of such indicators and the 

potential for understanding and predicting changes in them. Weaving spatially resolved 

social data on land management, income or visitor usage together with data on natural 

capital within national sampling sites, and more broadly across national scales, can only 

enhance scientific capacity for providing ES indicators and understanding key drivers of 

change.  

d) Relevance to users 

This work was developed in response to a political and scientific desire to understand the 

factors influencing the value of ES indicators related to the scale at which they are produced. 

The work shows that the scale at which indicators are developed can have a profound effect 

on the indicators developed. It is possible to produce a national indicator of water quality 

using data on land cover and land type which can be used to provide relative assessments 

of where water quality is poor or good on a national scale. This may be useful for targeting 

funding for action at such scales.  It is also possible to scale such data to local catchments 



or to a standard unit (in this case 1km2), but the relevance and accuracy of such data at local 

levels is constrained by a lack of information on human’s roles within the ecosystem 

(Eigenbrod et al., 2010).  

It is clear from the discussion above that development of indicators at local scales through a 

process of engagement may have a range of benefits, from improved scientific accuracy to 

eliciting local action to address issues negatively impacting on indicators. However, the 

extent to which such a process can promote action depends on the nature of the specific 

indicators, how they have been developed and the extent to which locals have the ‘power’ or 

‘resource’ to affect them. At Loweswater targeting practices towards improving water quality 

has happened (and is continuing) following on from the models linking catchment 

management to water quality (Norton et al. 2011). Although the BN presented a more 

rounded approach to ecosystem delivery in the catchment, the potential for locals to engage 

with the model and it’s outputs was constrained by a lack of ‘power’ or ‘resource’ to affect 

outcomes, particularly in terms of largely market driven farmer income. Hence the question, 

‘how do we use it?’ in response to the model being presented to locals. To which, the 

answer was perhaps, ‘you don’t, but perhaps it at least allows you to see the bigger picture?’ 

In the CS project, interactions with policy stakeholders were, as at the local scale, beneficial 

on both sides. Sharing the scientific process with stakeholders enhanced both the 

accessibility and understanding of the science and the scientific process for stakeholders 

(Waterton et al., 2015). Of particular importance was how engagement led to a better 

understanding by policy stakeholders and scientists of the constraints of the natural science 

data, in terms of direct links with ES. From a science perspective because the project was 

focused on data already collected, there was perhaps little change to the scientific process. 

However, through a series of meetings with policymakers which ran throughout the project, 

the way the science was communicated and presented changed to become more relevant to 

a non-scientific audience and to policy targets. Specifically this involved which words were 

used and how they were understood in the description of measures and uncertainties. It also 

involved the production of figures, in particular maps, which can provide a very accessible 

picture of national ES delivery.   

Fundamental questions concerning the relevance of scale and stakeholder engaged 

approaches to the production of ES indicators and the decision contexts surrounding them, 

include: who are the indicators for? Who is going to make decisions based on the indicators? 

For national scale policy makers, implementing the ecosystem approach and trying to do so 

on the basis of available evidence, it is important to understand the importance of scale and 

approach and the constraints therein. The relevant scale for indicator production depends on 



the scale at which they will be used. Case studies and national predictions are useful for 

policy insights but in order to affect change, translation into relevant indicators at local scales 

is essential (Cash et al. 2003, Norton et al. 2011b).  

Despite its use of local input the BN was effectively developed as a science and policy tool 

to explore multiple ecosystem service delivery at a catchment scale. A particular challenge 

from the work is to discover whether some of the advantages of the place-based science can 

be effectively brought into larger scale investigations (e.g. improved data on land use 

contributing to the evaluation of multiple services), or whether it is enough to recognise that 

work at different scales has different uses and advantages. In the longer term, greater 

awareness amongst the scientists of stakeholder needs will, it is to be hoped, encourage 

changes in the scientific process which will better meet the needs of society. 

 

Concluding remarks 

This work described the development of two models to produce indicators of ES at a national 

scale for GB (water quality), and at a local scale for a site within GB (water quality, income, 

landscape quality). A comparison of the two models and the approaches taken in their 

development provided insights into how scale can influence the production of ES indicators.  

The results indicate that the production of ecosystem indicators at national scales is 

supported by a nationally representative sampling approach which can be extrapolated using 

measured relationships with variables available at national scales. They also indicate that 

such indicators may be locally inaccurate due to lack of knowledge about local level 

variables, but may provide a means of targeting more in-depth studies. Indicators produced 

from in-depth local level studies benefit from engagement with local stakeholders early on in 

the process and may be used to direct changes in local level management. Local studies 

which engage stakeholders provide the potential for development of multiple ecosystem 

service indicators which may be more relevant for policy decision making at larger scales. 

Governance structures determine the extent to which ecosystem service indicators can used 

for landscape management at different scales.  
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Figure 1: The causal Bayesian network for the provision of ecosystem service indicators: farming income, presence of blue-green algae and 

landscape quality 
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Figure 2: Map showing predicted o/e BMWP values for a headwater stream site in 152,639 

1km2 grids across GB using the grid model generated in the study. 



 

Figure 3: (left) Map showing predicted o/e BMWP values for a randomly selected 

river/stream site in each 1km2 grid within the Loweswater catchment. 

Figure 4: (right) Map showing predicted o/e BMWP values for sub catchments within the 

Loweswater catchment. 
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