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Radionuclide biological half-life values for terrestrial and aquatic wildlife 15 

Abstract 16 

The equilibrium concentration ratio is typically the parameter used to estimate organism 17 

activity concentrations within wildlife dose assessment tools. Whilst this is assumed to be fit 18 

for purpose, there are scenarios such as accidental or irregular, fluctuating, releases from 19 

licensed facilities when this might not be the case. In such circumstances, the concentration 20 

ratio approach may under- or over-estimate radiation exposure depending upon the time since 21 

the release. To carrying out assessments for such releases, a dynamic approach is needed. The 22 

simplest and most practical option is representing the uptake and turnover processes by first-23 

order kinetics, for which organism- and element-specific biological half-life data are 24 

required. In this paper we describe the development of a freely available international 25 

database of radionuclide biological half-life values. The database includes 1907 entries for 26 

terrestrial, freshwater, riparian and marine organisms. Biological half-life values are reported 27 

for 52 elements across a range of wildlife groups (marine=9, freshwater=10, terrestrial=7 and 28 

riparian=3 groups). Potential applications and limitations of the database are discussed. 29 

1. Introduction 30 

To estimate the uptake of radionuclides by wildlife, the whole organism1 concentration ratio 31 

(CRwo-media) is most commonly used (e.g. Beresford et al. 2008a; Hosseini et al. 2008; Strand 32 

et al. 2009; Yankovich et al. 2013; Howard et al. 2013; IAEA 2014). This is defined as the ratio 33 

of radionuclide activity concentration in the whole organism to that in the surrounding medium:  34 

	
	 	 	 	 	 	 	

	 	 	
 35 

where, media maybe soil (Bq kg-1 dry mass), water (Bq L-1) or air (Bq m-3) dependent upon 36 

ecosystem and radionuclide. 37 

                                                            
1Organism less both gastrointestinal tract contents and fur/feathers 
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The concentration ratio is an aggregated transfer parameter, incorporating within it the 38 

physical, chemical and biological factors affecting the uptake of radioelements by biota in an 39 

empirical way. The turnover of elements differs depending on, for instance, ingestion or 40 

sorption processes, their chemical and biochemical behaviour and the requirements of the 41 

organism for the element or its analogue. Instantaneous equilibrium between the organism and 42 

the media activity concentrations is assumed in all models that use the CRwo-media concept (e.g. 43 

USDOE 2002; Brown et al. 2008; Beresford et al. 2008b). 44 

Although some organisms may equilibrate relatively rapidly with radionuclides present in the 45 

surrounding media (timescales in the order of days to a few months), there are scenarios 46 

whereby equilibrium cannot be assumed. For example, after a short-term pulsed release of 99Tc 47 

activity into the marine environment, the activity concentration in lobsters along the dispersion 48 

path begins to increase gradually with time. This is because lobsters have a biological half-life 49 

for technetium in the range of 60-300 days (Pentreath 1981). Technetium is soluble in seawater 50 

and the pulsed release will clear quickly from the area of sea where lobsters live. Therefore, its 51 

concentration in seawater will decrease sharply within a few days after a pulse discharge. 52 

Lobster specimens sampled from the area within days of the discharge, when water 53 

concentrations have declined, may appear to have an anomalously high CRwo-media value 54 

because they retain the technetium that they absorbed whilst seawater concentrations were 55 

high. Conversely, if sampled on the day of discharge CRwo-media would be low as little uptake 56 

would have occurred but seawater concentrations would be high.  57 

If the timeframe of interest is long (e.g. years or decades of planned authorised discharges, 58 

involving continuous releases or gradual changes in discharge concentrations) then the CRwo-59 

media approach is currently considered to be sufficient (Strand et al. 2009; IAEA 2014). 60 

However, if unplanned release scenarios involving abrupt changes in discharge concentrations 61 

are being modelled then the CRwo-media approach may be inadequate and dynamic models of 62 

radionuclide transfer to biota may be a better assessment tool. This is especially true for 63 

organisms that respond slowly to a change in ambient radioactivity concentration (Vives i 64 

Batlle 2012), and this has been highlighted in the post-accident assessment of the Fukushima 65 

accident (e.g. Kryshev & Sazykina 2011; Buesseler et al., 2011). Such dynamic models need 66 

to have rate constants, or biological half-life values (T1/2b), describing the loss of radionuclides 67 

from organisms. Whilst the biological half-life is typically defined to described the rate of loss 68 

of radionuclide from an organism, it is also often used in the estimation of uptake (e.g. Whicker 69 

& Schultz 1982; Vives i Batlle et al. 2008). 70 

At higher (more detailed) assessment tiers, the USDOE (2002) RESRAD BIOTA approach 71 

incorporates some simple foodchain modelling ability using allometric (or mass) expressions; 72 

these include allometric biological half-life relationships for a limited number of radionuclides 73 

(Higley et al. 2003). Further exploitation of the allometric T1/2b approach to other radionuclides 74 

was not possible because of a lack of T1/2b data from which to derive the relationships.  75 

Commonly used assessment tools exploit the CRwo-media model with the tacit assumption that 76 

this is generally likely to be conservative.  However, it has been noted that wildlife 77 

assessment models do not include direct deposition of radionuclides to vegetation surfaces 78 

and that under conditions of continuous aerial discharge this may contribute a significant 79 

proportion of radioactivity entering food chains (Copplestone et al. 2010). At the time of 80 

writing this paper we are aware that the IAEA is working on an assessment approach for 81 

wildlife which does include this deposition pathway (see Beresford et al. 2015a), but, which 82 

as a consequence, requires some knowledge of the biological half-life of radionuclides in 83 
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wildlife. Similarly, reported CRwo-media values are, in theory at least, equilibrium values and an 84 

increasing number of radioecological studies utilise inductively coupled plasma mass 85 

spectrometry (ICP-MS) analyses to derive CRwo-media values from stable element data which 86 

should be at equilibrium (e.g. Barnett et al. 2011,2014; Higley 2010; Tagami and Uchida 87 

2010; Takata et al. 2010; Sheppard 2013). Application of an equilibrium CRwo-media value to a 88 

short-lived radionuclide will over-estimate the resultant whole organism activity 89 

concentrations and dose rate. IAEA (2010) propose an approach whereby equilibrium activity 90 

concentrations could be corrected (to CRwo-corrected) for application to short-lived 91 

radionuclides, but this again requires some knowledge of biological half-life: 92 

                           (2) 93 

where: 94 

                                       (3) 95 

where, T1/2p is the physical half-life of the radionuclide under assessment. 96 

There are, as demonstrated here, a number of requirements for a comprehensive database of 97 

wildlife radionuclide T1/2b values. However, such a database has to date not been available. In 98 

this paper we describe the development of a T1/2b database for wildlife. 99 

2. Methods 100 

The work described here was conducted by an international working group under the 101 

auspices of the International Atomic Energy Agency’s MODARIA programme (see: 102 

http://www-ns.iaea.org/projects/modaria/). The review and compilation of T1/2b values was 103 

divided amongst the group members depending upon their prior expertise (i.e. by ecosystem 104 

and/or organism).  105 

Prior to beginning the review a recording sheet, in MS Excel™, was designed to allow easy 106 

collation of the various components into the final database. The recording sheet entry fields 107 

are listed in Table 1. The wildlife group categorisations were broadly compatible with those 108 

used in the Wildlife Transfer Database (as described by Copplestone et al. 2013) and 109 

subsequently by the IAEA (Howard et al. 2013; IAEA 2014).  The ‘Changeover time’ is  110 

defined as the time of intersection of two successive depuration curves which are governed 111 

by their respective biological half-lives when the two are plotted as regression lines on a 112 

logarithmic scale (this parameter is useful if fractions of loss in each component are not 113 

directly reported). No attempt was made to standardise the English common names used; 114 

similarly we have not updated Latin species names, but we acknowledge that these may have 115 

changed since the original publications. 116 

The review was undertaken to identify studies reporting either T1/2b values (i.e. the time taken 117 

for the initial activity concentration in an organism, or tissue, to half) or elimination rate 118 

constants from which T1/2b (d) values could subsequently be estimated as: 119 

 

1/2

1/2 1/2
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ln 2
1/2b k

T                                                              (4) 120 

Some T1/2b values were estimated from reported percentages of initial activity remaining (At) 121 

at time t, where: 122 

                          (5) 123 

and T1/2b is subsequently estimated from k as in Equation (4). 124 

The review used Web of Knowledge (http://wok.mimas.ac.uk/), SCOPUS 125 

(http://www.scopus.com/), IAEA INIS (http://www.iaea.org/inis/) and Pubmed 126 

(http://www.ncbi.nlm.nih.gov/pubmed). Targeted searches of grey literature catalogues (e.g. 127 

the U.S. Department of Energy portal: http://www.osti.gov/scitech/) were also conducted. 128 

The on-line versions of key journals in the area (e.g. Journal of Environmental Radioactivity, 129 

The Science of the Total Environment, Radiation Protection Dosimetry, Health Physics, 130 

International Journal of Radiation Biology, Journal of Radiological Protection and Journal 131 

of Radiation Research) were also searched to identify appropriate studies. Search terms 132 

included: “biological half-life”, “biological period”, “kinetic transfer modelling”, 133 

“accumulation rate”, “depuration rate” and organism names.  134 

Reviews of the Japanese and Russian language literature to identify data appropriate for 135 

inclusion in the database were also conducted. It was necessary to estimate k and hence T1/2b 136 

values from some of the Russian language literature by fitting appropriate exponential 137 

relationships to reported data using MATCAD software. Some additional Russian language 138 

values, for birds, were also obtained from the review of Fesenko et al. (2015).  139 

In some instances, previously published reviews were used to identify source references. 140 

Where possible the source references were consulted rather than relying on data from the 141 

earlier compilation; these reviews are identified below. The reviews were also used as a 142 

starting point for additional searches to identify any papers citing them which may have 143 

appropriate data. We also benefited from the knowledge of working group members who 144 

identified appropriate sources they were aware of, including in-house studies (e.g. PhD. 145 

studies funded by the Institute for Radiological Protection and Nuclear Safety and published 146 

in French). 147 

For the terrestrial ecosystem the earlier key reviews used were those of Kitchings et al. 148 

(1976), Whicker & Schultz (1982), Stara et al. (1971) and DiGregorio et al. (1978). The 149 

freshwater ecosystem review of Alonzo (2009) was used as the primary source of freshwater 150 

information with additional work focussing on identifying appropriate publications 151 

subsequent to the year 2000. For the marine ecosystem, the important reviews were those of 152 

Vives i Batlle et al. (2007; 2008; 2009) (covering principally 99Tc, 129I, 137Cs, 239,240Pu and 153 
241Am), CIESM (2002) EPA (2013) Gomez et al. (1987) and Phillips & Russo (1978). 154 

For the terrestrial environment, whilst they are not wild animals, data from the domesticated 155 

dog (Canis lupus familiaris) and cat (Felis silvestris catus) have been included in the 156 

database as these are unlikely to be collated anywhere else and are of relevance to some 157 

ln
100
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species of wildlife; farm animal data were excluded from the database with the exception that 158 

it is possible that some goose and duck data originate from domesticated species. 159 

2.1 Quality control 160 

An independent quality check was conducted by co-authors not involved in the actual data 161 

compilation. As a minimum, 10% of the entered data were confirmed by going back to the 162 

source reference. Additionally, for some key data sources all entries were checked. Any 163 

issues raised were investigated and corrected as required in consultation with the originators 164 

of those entries in the database. 165 

Some of the compiled data have already been used in the development of allometric 166 

approaches for terrestrial (Beresford & Wood 2014; Beresford et al. 2015b) and marine 167 

(Vives i Batlle et al., 2007) wildlife and as such have been subjected to additional quality 168 

checking. In the case of the reptile data this involved confirmation of most entries into the 169 

database (Beresford & Wood 2014). 170 

A column was added to the database to record which entries had been quality controlled 171 

(approximately 40% of entries were quality controlled as described above). The database was 172 

also reviewed for duplicate entries and the few identified were removed. 173 

Some (n=165), predominantly freshwater, ecological half-life (i.e. parameter describing the 174 

overall rate of reduction in radionuclide levels of animals in contaminated environments) data 175 

for Cs and Sr were identified during the review and these have been retained within the 176 

database (as a separate datasheet). It is important to note that these have not been quality 177 

controlled and they are not discussed further below. 178 

3. Results 179 

The database resulting from the review is freely available (Beresford et al. 2015c; 180 

http://doi.org/10.5285/b95c2ea7-47d2-4816-b942-68779c59bc4d); this contains all reference 181 

details and hence these are not repeated in this paper.  182 

The database contains 1907 entry lines split between organisms from three generic 183 

ecosystems as follows: marine (n=547); freshwater (n=530); and terrestrial (n=743). 184 

Additionally there are 87 entries for riparian organisms which live in both freshwater and 185 

terrestrial ecosystems (i.e. amphibians and some species of reptiles and birds).  Sixty-five 186 

entries from the Japanese literature were for ‘brackish water’ species, in the database these 187 

are classified as marine (‘Brackish species’ appears within the notes column to identify the 188 

entries). Table 2 summarises the available T1/2b values by wildlife group (as defined in 189 

Copplestone et al. (2013)) and by generic ecosystem. In some instance entries may be for 190 

different tissues from the same study. We should also note that it is likely that the database 191 

entries are a mix of mean values and single data. 192 

The compiled database contained T1/2b values for a total of 52 elements (27 for freshwater, 48 193 

for terrestrial, 24 for marine and 10 for riparian) (Table 2).  For all three ecosystems data for 194 

Cs were the most numerous entries (Figure 1), with some commonality in the other dominant 195 

elements (i.e. Co, Sr, Ru and Mn). Iodine data were relatively numerous within the terrestrial 196 

and marine organism data, but not within the freshwater data. Relatively more Co values 197 

were available for freshwater and marine organisms than for terrestrial organisms; in the 198 
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marine ecosystem these data originate primarily for Japanese literature. The large number of 199 

data classified as ‘other’ within Figure 1 for terrestrial organisms reflects the greater number 200 

of elements for which data are available for this ecosystem (see Table 2) and that few data are 201 

available for many of these.  For marine organisms, entries for Tc were relatively numerous; 202 

no data for the element were available for freshwater or terrestrial organism. Differences 203 

between data availability are in-part driven by different radioecological issues between the 204 

ecosystems and potentially by the focus of some of the key review sources used to begin to 205 

establish the database (e.g. Tc was a focus of the review of marine data by Vives i Batlle et 206 

al. (2007)). 207 

Data on biological half-lives ranged from single components of loss to up to four components 208 

(i.e. four T1/2b values) of loss recorded for some entries. In part, the number of reported loss 209 

components is determined by the experimental approach with respect to the total study 210 

duration and also the interval between measurements (Fesenko et al. 2015). For instance, 211 

short-term studies will not provide estimates of longer components of loss, whilst if sampling 212 

is at too large an interval early in the study the shortest components of loss may be missed.  213 

Most entries were for the whole organism (n=1417). However, some entries (n=126) do not 214 

have a record for the tissue sampled. In most instances, these records are for organisms where 215 

it is highly likely that the values are for the whole organism or at least for soft tissues (e.g. 216 

terrestrial arthropods, marine mussels, macroalgae). Other entries are for elements where the 217 

value can be assumed to be representative of whole organism loss rates (e.g. Cs). 218 

Supplementary information entered was, in some instances, sparse (e.g. few data on sex) 219 

though many entries recorded study length (n=885), temperature (n=845), live-weight 220 

(n=844) and age (n=904). With respect to age, entries were available for different live-stages 221 

such as tadpole, fry and larvae. 222 

The database is too diverse in terms of organisms, elements, administration routes and how 223 

T1/2b values are presented (i.e. number of loss components) to attempt any analyses in this 224 

paper.  225 

4. Discussion 226 

There are a number of reasons why T1/2b values are required to improve radiological 227 

assessments (as discussed above). The database we describe here represents a significant 228 

resource by which we may begin to improve, or test, available assessment approaches. For 229 

some elements the database may also be useful to those assessing the exposure of wildlife to 230 

metals (e.g. the database contains T1/2b values for Ag, Cr, Hg, Pb, Zn etc.). 231 

The application of dynamic models to environmental assessment of radioactivity could be 232 

criticised as being overly complex (IAEA, in-press). For many planned release situations it is 233 

likely that the CRwo-media model will lead to appropriate assessments (Strand et al. 2009; IAEA 234 

2014). Though, as noted above, for routine aerial releases the CRwo-media model may under 235 

predict activity concentrations in organisms and the current approaches may not be optimised 236 

for all planned release scenarios. Application of equilibrium CRwo-media models to accidental 237 

situations or irregular pulsed discharges from licensed facilities is outside of the intended 238 

scope of their application. In aquatic ecosystems, immediately after pulsed releases, when 239 

media activity concentrations are high, CRwo-media models are likely to over-predict exposure 240 

by not taking into account biological half-life (or uptake rate) and the consequent lack of 241 
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equilibrium. Subsequently they may under-predict as water concentrations decrease more 242 

rapidly than those in exposed organisms; in the longer-term the CRwo-media  model should 243 

adequately predict exposure in the post-accident situation. In the terrestrial ecosystem, 244 

immediately after a release the CRwo-media  model may again over-predict exposure. However, 245 

there is the possibility of under prediction when there is significant direct deposition on 246 

vegetation surfaces (i.e. contamination is not dominated by the soil-plant route assumed in 247 

the CRwo-media model). Whilst inappropriate, equilibrium CRwo-media models were applied to 248 

assess risk to biota following the Fukushima accident (Garnier Laplace et al. 2011; Strand et 249 

al. 2014). Although such assessments may have aimed to be conservative, as we demonstrate 250 

above, the resultant predictions may not always have been conservative. Some attempts to 251 

conduct more relevant assessments in the marine ecosystem using dynamic models have been 252 

made (Kryshev et al. 2012; Vives i Batlle et al. 2014). However, more recent analyses 253 

suggests that these models over predicted the rates of decline in fish (Johansen et al. 2015). 254 

This was potentially because the models assumed single loss component (Vives i Batlle 255 

2015); a more robust T1/2b database is expected to improve the parameterisation of such 256 

dynamic models. 257 

4.1 Use of the database 258 

We envisage that the database will be useful in both parameterising and testing models. 259 

Indeed some parts of the compiled database have already been used to test allometric models 260 

for homoeothermic vertebrates (Beresford & Vives i Battle 2013; Beresford et al. 2015b) and 261 

reptiles (Beresford & Wood 2014).  262 

Users of the database will need to consider their needs and the suitability of the data that it 263 

contains. For instance, we have included T1/2b values derived from studies using a number of 264 

exposure routes. However, it is probable that for some elements intravenously administered 265 

radionuclides will behave differently to those orally ingested (e.g. Mayes et al. 1996). The 266 

study length and experimental protocol (e.g. time of first measurement, frequency of 267 

measurements, time taken to reach limits of detection etc.) can influence the resultant T1/2b 268 

values and the number of components of loss observed. Experimental protocols of 269 

insufficient length to enable multiple components of loss to be observed are likely to result in 270 

T1/2b values which under-estimate the rate of loss (and consequently over estimate organism 271 

activity concentrations) in the short-term, but, over-estimate the rate of loss in the longer-272 

term. Beresford & Wood (2014) present an evaluation of the database with respect to reptiles. 273 

They highlighted that some of the entries were based upon only two time points and chose 274 

not to use these data in their analyses. Future, users will need to similarly critically evaluate 275 

the data. The present database provides them with a valuable resource from which to begin 276 

this evaluation. 277 
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Table 1. Parameters included in the database template. 

Parameter 
Entry ID 
Common name (English) 
Latin name 
Wildlife group 
Ecosystem (Marine, Freshwater, Terrestrial or Riparian)  
Radionuclide 
Live weight (kg) 
Developmental stage (e.g. adult, tadpole etc.) 
Compartment (whole organism or specific tissue) 
Experiment type 
Length of study (d) 
Temperature (oC) 
Biological half-life (d) (four columns were included to enable recordings of multiple loss 
components) 
Fraction released (four columns, one for each component of loss) 
Number of measurements (made in study) to determine T1/2b 
Measurement interval (d) 
Changeover time (d) (repeated for multiple loss components) 
Percentage left at time (t)  
Time (t) (d) (referring to the above percentage left)  
Organism dimensions (length, width, depth) (m) 
Sex 
Elimination rate (i.e. k; d-1) 
Reference 
Notes 
Comment on if the value has been independently quality controlled 
 

  



Table 2. A summary by generic ecosystem and wildlife group of the T1/2b values presented in 
the compiled database. 
Wildlife group Number 

of entries 
Number of 
species* 

Element 

Marine    
Annelid 9 ≥5 Cd, Cr, Tc 
Crustacean 39 ≥11 Cd, Co, Cs, I, Pu, Se, Sr, Tc, Zn 
Echinoderm# 21 >4 Ca, Co, Cs, Mn, Tc, Zn 
Fish 192 ≥19 Ce, Co, Cr, Cs, Fe, I, In, Mn, Nb, Ru, 

Sr, Tc, Zn, Zr 
Macroalgae 52 25 Am, Ce, Cs, I, Po, Pu, Sr, Tc, U, Zn 
Mollusc 227 ≥24 Ag, Am, Cd, Ce, Cm, Co, Cs, I, Mn, 

Pu, Ru, Sb, Se, Sr, Tc, Zn 
Phytoplankton 5 n/a Am, Pu 
Sea anemones/true 
coral 

1 1 Cs 

Zooplankton 1 n/a Am 
Freshwater    
Algae 22 ≥9 Ce, Co, Cs, Fe, P, Sr, Y 
Bryophytes# 12 2 Ag, Am, Co, Cs, I, Mn, Ru 
Crustacean 23 4 Am, Co, Hg, Ra, Ru, W 
Fish 246 >23 Ag, Am, Ce, Co, Cs, Fe, H, Hg, I, 

Mn, P, Ra, Rb, Ru, Sr, Zn 
Insect larvae 20 4 Am, Co, Cu, Ni, Pb, Ra, Ru, U, Zn 
Mollusc 83 ≥9 Ag, Am, Ca, Cd, Ce, Co, Cr, Cs, H, 

Mn, Na, Ra, Ru, S, Zn 
Phytoplankton  22 ≥3 Ag, Am, Co, Cs, Mn, Ra, Ru, Zn 
Reptile 42 1 Sr, Ra 
Vascular plant 24 ≥8 Am, Ce, Co, Cs, Na, Sr 
Zooplankton  36 1 Ag, Am, Co, Cs, Hg, Mn, Ra, Ru 
Terrestrial    
Annelid 56 ≥9 Cd, Co, Cs, Cu, Hf, Hg, I, Mn, Pb, Sc, 

Sr, Tb, U, Zn 
Arachnid 11 ≥6 Ca, Cs, K, Na, P, Zn 
Arthropod 119 >53 As, Ca, Co, Cr, Cs, Cu, Fe, I, Ir, K, 

Na, P, Pb, Rb, Ru, Sr, W, Y, Zn 
Bird 4 2 Cs, I 
Mammal 522 ≥40 Ag, Am, Au, Be, C, Cd, Ce, Cf, Co, 

Cr, Cs, Eu, Fe, H, Hg, I, In, Ir, K, Mn, 
Na, Nb, Np, P, Pa, Pb, Po, Pu, Ra, Rb, 
Ru, Sb, Sc, Se, Sn, Sr, Tb, Te, Th, U, 
W, Y, Zn, Zr 

Mollusc 2 1 Cs, Na 
Reptile 29 6 Co, Cr, Cs, Fe, I, Mn, Na, Rb, Zn 
Riparian    
Amphibian 15 6 Co, Cs, I, Mn, Rb, Sr, Zn 
Bird 32 ≥2 Ba, Co, Cr, Cs, I, Se, Zn 
Reptile 40 3 Cs, Sr 
#The wildlife groups are not included in Copplestone et al. (2013); *where ≥ used some data have been entered 
with no Latin species name, or as spp. etc.. 



 

Figure 1. Summary of entries by radionuclide for the three generic ecosystems considered; 
the 10 elements contributing most entrees for each ecosystem are presented separately. 
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