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Abstract
Feathers have been widely used to assess mercury contamination in birds as they reflect

metal concentrations accumulated between successive moult periods: they are also easy to

sample and haveminimum impact on the study birds. Moult is considered the major pathway

for mercury excretion in seabirds. Penguins are widely believed to undergo a complete,

annual moult during which they do not feed. As penguins lose all their feathers, they are

expected to have a low individual-variability in feather mercury concentration as all feathers

are formed simultaneously from the same somatic reserves. This assumption is central to

penguin studies that use feathers to examine the annual or among-individual variation in mer-

cury concentrations in penguins. To test this assumption, wemeasured the mercury concen-

trations in 3–5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird

Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed sub-

stantial within-individual variation in the amount of mercury in their feathers (Coefficient of

Variation: 34.7–96.7%). This variation may be caused by differences in moult patterns among

individuals within the population leading to different interpretations in the overall population.

Further investigation is now needed to fully understand individual variation in penguins’moult.

Introduction
The increasing concentration of contaminants in the environment and the need to understand
their effects on wildlife are some of the main reasons for the development of bio monitoring
programs [1]. Seabirds are often used as bio monitors because of their ease of access for study,
their role in the ecosystem as top predators, and the different ranges over which they forage
[2,3]. Many seabird species are now considered at risk and in need of protection as they face
many and diverse threats in their natural habitat [4]. This fact reinforces the need to collect
more information and to use non-invasive methods in defined monitoring programs [5].
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Given this perspective, feathers are now often used for measuring various parameters as they
can be collected with minimum harm to birds (e.g. feathers can be collected from the ground
in penguin colonies, or quickly from live individuals [2]). Feathers can also be stored for years
and do not require refrigeration, this therefore allows long-term studies to be conducted (i.e.
sampling feather from museums specimens) [3,6,7]. Various contaminants circulating in blood
can be sequestered in feathers during their formation, where the contaminants remain physi-
cally stable [8]. Mercury is one such contaminant which has been associated with adverse
effects on seabird reproductive output, behavior and survival, which has led to it becoming a
focus of pollutant monitoring programs [9]. Unlike other contaminants, mercury concentra-
tions in feathers has a much greater internal than external origin, reflecting the mercury dietary
intake of mercury prior to feather growth [10–13].

The timing and sequence of moult are factors that are related to a seabird species’ lifecycle,
so it is important to take any differences into account which can influence mercury concentra-
tions between species (e.g. [14]), individuals (e.g. [15,16]) and even between feathers from the
same individual (e.g. [17]). For example, barn owls (Tyto alba) have an irregular and incom-
plete moult [18], while bald eagles (Haliaeetus leucocephalus) may take more than one moult
to replace all their primary feathers [19]. In fact, large seabirds, such as albatrosses, do not
replace all their flight feathers in one single moult (due to time constraints and reproduction
costs); in some cases they take three moulting periods to complete the process [20–22]. Body
feathers have been reported to show significant variation in mercury concentrations [16,23]. A
high level of variability between body feathers from the same individuals has been reported in
Arctic terns (Sterna paradisaea), common terns (Sterna hirundo) and Leach’s storm-petrels
(Oceanodroma leucorhoa), which has been related to a long moulting period that occurs during
migration to different regions where mercury contamination concentrations may differ [14].
Therefore, the use of more than one feather has been recommended when assessing mercury
loads in such species, in order to average out within-individual variation in mercury concentra-
tions. Recently, the use of birds with a synchronous moult, such as penguins and seabird fledg-
lings, has been recommended as suitable for monitoring contaminants in seabird communities
[17]. This is because of their synchronous moult that can be defined as a moult in which all
body feathers grow simultaneously, at a constant rate and in a short period of time.

Unlike other seabird species, the moult in penguins has a simple pattern, as they replace all
their feathers over a period of two to five weeks [24–27]. During this period they remain ashore
and do not feed. Therefore, it is anticipated that with this moulting pattern all body feathers
should show similar burdens of mercury within individuals as the feathers were formed simul-
taneously from the same somatic resources [27]. In this study we set out to test this hypothesis
using gentoo penguins, that is that variation in individual moulting patterns may occur. In this
context, our aims for this study were 1) to assess if there was within-individual variability in
the mercury content of body feathers from gentoo penguins; 2) to evaluate the causes of such
variability given the assumed synchronous moulting pattern; and 3) to discuss future studies
that should be performed to clarify the occurrence of variation in penguins’moult.

Material and Methods

Ethics statement
This project was approved by the Animal Ethics Committee of British Antarctic Survey (BAS)
and under a permit issued by the Government of South Georgia. There was no evidence of any
prejudicial effects during fieldwork procedures, either on gentoo penguins behavior, breeding
success or survival.
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Fieldwork
Sampling procedures and analyses have been previously described [28]. Samples were collected
between June and September of 2009 from gentoo penguins breeding at Bird Island, South
Georgia (54°S 38°W) after their moult (gentoo penguins moult between March and April [24]).
Penguins were randomly selected when returning from sea and coming out of the water at
dusk. penguin was handled as follows: after putting a cover on the penguins head (to reduce
visual stimuli for the bird), five to seven chest feathers were collected. Feathers were then stored
in polyethylene bags until analysis. It should be noted that sampled feathers were cleaned but
not washed with organic solvents prior to mercury quantification. The solvents are used to
remove any possible surface contamination. By not washing the feathers during their prepara-
tion for mercury analysis it is plausible that this could have introduced some bias for the mer-
cury determination [29,30]. However, this should not influence the overall interpretation of
the results, since all feathers were processed in exactly the same way. Also, only the tips of the
feathers are generally exposed to exogenous mercury, since they overlap one another [30].
Total mercury analyses were performed by thermal decomposition atomic absorption spec-
trometry with gold amalgamation using a LECO AMA-254. The analysis of certified reference
material was performed to guarantee accuracy and precision of the method (IAEA-407 fish tis-
sue certified value = 0.220 ± 0.006 mg kg-1 dry mass, recovery of 101.5% ± 6.25%, n = 55).
Three feathers were analysed for each penguin. When these feathers showed high variation in
the mercury concentration values (SD� 42%, see results in S1 Table), two additional feathers
(five in total) were analysed. Every day, mercury concentrations were corrected according to
the certified reference material. Blanks were analysed at the beginning and between different
feather samples. Based on the blanks, our limit of detection was 0.0638 ng and the mean con-
centrations for blanks ranged from 0.0035 to 0.0589 ng.

Data analysis
Linear mixed-effect models (LMMs) were used to test the repeatability of feather mercury con-
centrations within all individuals. The variance explained by the model (d; the between-indi-
vidual variance), and the residual variance (σ) were used to calculate the intra-class correlation
coefficient (ICC) following the formula d2/(d2 + σ2), as a measure of repeatability [17,31]. ICC
varies between 0 and 1. ICC values close to one mean that differences between individuals
explain most of the variance. Significant differences were considered when p<0.05. Reported
values are mean ± SD, unless otherwise stated.

Results
Mercury concentrations in the population ranged from 0.15–3.10 mg kg-1. The coefficient of
variation (CV) of the overall sampled population of gentoo penguins varied between 0.23–
73.17% (Table 1) and showed a clear bimodal distribution (Fig 1). Birds 42–55 exhibited a very
high CV value (Table 1), even when determining the mercury content of more than three body
feathers (S1 Table).

The overall population of gentoo penguins showed a low intra class correlation coefficient
(ICC) value. The analysis of further feathers (N = 5) from the individuals with high CV did not
change the high CV pattern, with values ranging between (34.68–96.65%; S1 Table).

Discussion
Previously, low within-individual variability has been reported in analyses of king penguins
(Aptenodytes patagonicus) feathers, such that the authors recommended the use of seabirds
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Table 1. Mercury concentration in gentoo penguins’ body feathers (mg Kg-1).

Bird SD Minimum Maximum CV

1 0.01 0.80 0.81 0.23

2 0.01 0.67 0.68 0.25

3 0.01 1.23 1.24 0.33

4 0.01 1.38 1.39 0.34

5 0.01 1.48 1.50 0.53

6 0.01 0.82 0.84 0.66

7 0.01 0.88 0.89 0.68

8 0.01 0.65 0.66 0.71

9 0.03 2.49 2.54 1.07

10 0.02 1.41 1.44 1.10

11 0.03 2.62 2.68 1.11

12 0.02 1.47 1.51 1.20

13 0.01 0.66 0.69 1.70

14 0.02 0.95 0.99 1.70

15 0.01 0.27 0.28 1.93

16 0.01 0.75 0.78 1.94

17 0.02 1.02 1.06 2.06

18 0.02 0.75 0.78 2.10

19 0.07 3.02 3.15 2.16

20 0.01 0.51 0.53 2.17

21 0.04 1.64 1.71 2.31

22 0.01 0.20 0.21 2.54

23 0.03 1.07 1.13 2.58

24 0.05 1.30 1.39 3.65

25 0.01 0.31 0.33 3.83

26 0.03 0.59 0.64 4.47

27 0.01 0.24 0.26 4.52

28 0.14 2.79 3.04 4.62

29 0.01 0.14 0.15 4.71

30 0.01 0.19 0.21 5.45

31 0.01 0.18 0.20 6.04

32 0.06 0.85 0.97 6.72

33 0.01 0.19 0.22 6.92

34 0.03 0.39 0.44 7.20

35 0.04 0.37 0.45 10.34

36 0.18 1.45 1.79 11.02

37 0.05 0.34 0.43 11.85

38 0.03 0.21 0.27 13.03

39 0.14 0.90 1.18 13.54

40 0.05 0.25 0.34 17.10

41 0.25 0.91 1.39 21.14

42 0.48 0.55 1.38 43.62

43 0.29 0.30 0.81 45.86

44 0.22 0.30 0.68 50.90

45 0.15 0.20 0.46 52.93

46 0.61 0.43 1.52 54.02

47 0.43 0.26 1.01 56.36

(Continued)
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Table 1. (Continued)

Bird SD Minimum Maximum CV

48 0.80 0.43 1.93 59.88

49 0.82 0.42 1.87 59.92

50 0.63 0.63 1.75 61.51

51 0.46 0.43 1.23 66.27

52 0.55 0.15 1.11 70.53

53 1.33 0.31 2.64 72.12

54 0.69 0.53 1.75 72.80

55 0.38 0.29 0.96 73.17

Values are means of 3 feathers per individual bird. SD—Standard Deviation. CV—Coefficient of Variation

(%). Bold area—birds with high CV

doi:10.1371/journal.pone.0137622.t001

Fig 1. Frequency of occurrence for the Coefficient of Variation (CV) of the mercury content values. Three body feathers from 55 gentoo penguins
analyzed.

doi:10.1371/journal.pone.0137622.g001
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with a synchronous moulting pattern, such as penguins, in Southern Ocean monitoring pro-
grams [17]. In addition, penguins were considered to be a more precise indicator of mercury
concentrations in the marine ecosystem than seabirds that varied their foraging ranges and diet
during moult [27]. However, our results suggest that greater caution may be needed as our
study demonstrates that high within-individual variability in mercury concentrations occurs in
penguin body feathers. Variation in mercury concentrations does occur at the individual level,
at least in gentoo penguins, which may then influence levels of perceived accuracy in using
penguin feathers to monitor trends in mercury pollution.

The high coefficient of variation and the difference between the maximum and minimum
mercury concentrations in the feathers of gentoo penguins (Table 1), suggest a variable pattern
of moult among individuals in our study species. Significant differences between feathers at the
individual level have been reported previously for different penguin species [27]. Nevertheless,
the CV in that study was not as high as we report in this study. Such variability in the mercury
content of body feathers of gentoo penguins might be explained by more than one stage of
feather formation within a single moult. During moult mercury concentrations decrease gradu-
ally in blood while this contaminant is allocated to growing feathers [32]. As a consequence,
body feathers grown earlier will display higher mercury concentrations than those grown later,
as suggested by previous studies [14,32]. However it does not seem plausible that this pattern of
gradual reduction in blood mercury concentrations could explain the high within-individual var-
iability in feather mercury concentrations, due to the short period of time they take to complete
moult compared to flying birds. Other possible reasons might include deposition of mercury in
feathers from external origins [32]. Since the feathers were not washed in our study, external
mercury deposited on the surface of the sampled feathers could have added some unquantifiable
error in our mercury results. Nevertheless, contamination by external origins during moult
should be very low compared with mercury integrated in feathers from internal sources [10–12].
In addition, as all individual feathers went through a similar treatment, any superficial mercury
deposition during handling would be standardized across all feathers. An incomplete moult
therefore seems to be the most likely explanation for these results, as this variability in feathers
may represent lagged periods of environmental mercury availability [20,21,32].

Anecdotal evidence for this comes from a study of chinstrap penguins (Pygoscelis antarc-
tica) in which birds were marked with leg rings and dye marks on the chest feathers prior to
moult; the marks were still evident the following year after moult in some, but not all, individu-
als (N. Ratcliffe, pers. obs). An exactly analogous situation has also been observed for king pen-
guins (P. Trathan pers. obs). In combination with our findings, these observations suggest that
in some penguin species moult may be complete for some individuals.

In conclusion, incomplete moult would cause uncertainty when analyzing mercury concen-
trations (or indeed other stable components within the feather), which would reduce the tem-
poral accuracy of annual monitoring programs. In addition, it may be a confounding factor
when examining sources of variation in mercury concentrations among individuals (e.g. differ-
ences in diet, sex and age [31]), as some of the variation may be due to mercury concentrations
available in different years. Recent studies [17,27] considered that when using penguins as bio
monitors any quantity of body feathers would give the same information on mercury burdens.
However, results in this study show potential variation in moult patterns among individual
gentoo penguins that may give rise to uncertainties about the best method to use when evaluat-
ing the metal content from feathers. Furthermore, an incomplete moult may also affect the
results of dietary studies using inter-annual variation on stable isotopes in feathers. Further
empirical investigation is required to test the assumption of complete annual moult in penguin
species, using for example, dye experiments, on species with existing evidence of an incomplete
moult (N. Ratcliffe, pers. Obs; P. Trathan pers. obs).
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Supporting Information
S1 Table. Mercury concentration (mg Kg-1) in gentoo penguins’ body feathers of individu-
als with a Coefficient of Variation (CV)� 42%.
(DOCX)
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