See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338355587

Advances in the Reduction of the Costs Inherent to Fossil Fuel Biodesulfurization Towards Its Potential Industrial Applications

Chapter · January 2020

Project

Project

CITATIONS		READS			
- 	unders in the T CORE	85			
4 autho	's:				
	Susana M Paixão		Tiago P. Silva		
	Laboratório Nacional de Energia e Geologia		Laboratório Nacional de Energia e Geologia		
	58 PUBLICATIONS 591 CITATIONS		15 PUBLICATIONS 97 CITATIONS		
	SEE PROFILE		SEE PROFILE		
	Bruno Firmino Arez		Luís Alves		
	Laboratório Nacional de Energia e Geologia	L'	Laboratório Nacional de Energia e Geologia		
	6 PUBLICATIONS 34 CITATIONS		57 PUBLICATIONS 966 CITATIONS		
	SEE PROFILE		SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

CONVERTE - Potencial Biomássico para a Energia (POSEUR-01-1001-FC-000001) View project

Valorization of agro-industrial residues by bioactive molecules extraction and bioenergy production View project

Nanocomposites for the Desulfurization of Fuels

Part of the Advances in Chemical and Materials Engineering Book Series

Tawfik Abdo Saleh (King Fahd University of Petroleum and Minerals, Saudi Arabia)

Description:

Research on nanotechnology has mainly focused on the aspects of synthesis of nanomaterials that have unique chemical, thermal, and mechanical properties applicable to a wide range of applications. A variety of properties and phenomena have been investigated, and many of the studies have been directed toward understanding the properties and applications of nanomaterials. Nanomaterials have

properties that are useful for enhancing surface-to-volume ratio, reactivity, strength, and durability. Due to their enhanced chemical and mechanical properties, the nanomaterials play promising roles in enhancing the desulfurization.

Nanocomposites for the Desulfurization of Fuels is an essential reference source that discusses the synthesis, properties, and technological developments of nanomaterials and their applications in petroleum. Featuring research on topics such as hybrid materials, catalytic properties, and environmental concerns, this book is ideally designed for chemical engineers, scientists, researchers, academicians, and students in fields that include chemistry, petroleum, materials science, physics, and engineering.

ISBN: 9781799821465 Release Date: November, 2019 Copyright: 2020 Pages: 300

Topics Covered:

- Catalytic Properties
- Cost Reduction
- Environmental Concerns
- Hybrid Materials
- Industrial Applications

Hardcover: \$225.00 E-Book: \$225.00 Hardcover + E-Book: \$270.00

- Liquid Fuels
- Nanotechnology
- Organosulfur Compounds
- Petroleum
- Polyoxometalates

Order Information Phone: 717-533-8845 x100 Toll Free: 1-866-342-6657 Fax: 717-533-8661 or 717-533-7115 Online Bookstore: www.igi-global.com Mailing Address: 701 East Chocolate Avenue, Hershey, PA 17033, USA

https://www.igi-global.com/chapter/advances-in-the-reduction-of-the-costs-inherent-tofossil-fuel-biodesulfurization-towards-its-potential-industrial-applications/246162

IGI Globa				Shop	oing Cart Logir	Register	Language: English	US Khina	
DISSEMINATOR OF KNC	WLEDGE			Search title,	author, ISBN		A	All Products 👻 🔍	
Books Journals	InfoSci [®] -Databases	Articles/Chapters	Publish with Us	Resources +	Catalogs	About Us	Newsroom	Special Offers 👻	
Premier Reference Source Nanocomposites for the Desulfurization of Fuels	Advances in th Biodesulfuriza Susana M. Paixão (Bioer (Bioenergy Unit, Nationa National Laboratory of Er Laboratory of Energy and Source Title: Nanocomp Copyright: © 2020 P Dot: 10.4018/978-1-7998-2	Advances in the Reduction of the Costs In Biodesulfurization Towards Its Potential I Susana M. Paixão (Bioenergy Unit, National Laboratory of Energy and Geo (Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal) National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal) Source Title: Nanocomposites for the Desulfurization of Fuels Copyright © 2020 Pages: 49 D0: 10.4018978-1-7998-2146-5.ch007			nherent to Fossil Fuel industrial Applications ology (LNEG), Lisbon, Portugal), Tiago P. Silva on, Portugal), Bruno F. Arez (Bioenergy Unit, d Luís Alves (Bioenergy Unit, National			Buy Instant PDF Access Oty: 1 • \$37.50 Add to Cart • • Available: Instant access upon order completion.	
	Download:						Recomm	end to a Colleague >	
ADSTFACT The biodesulfurization (BDS most of the organosulfur cor conditions, without the need) process consists of the use of npounds recalcitrant to the conv for molecular hydrogen or metal	microorganisms for th entional hydrodesulfur I catalysts. This technic	e removal of sulfur from ization (HDS), the petrol que results in lower emi	fossil fuels. Through i eum industry's solutio ssions, smaller residi	BDS it is possible n, at mild operati ue production, an	e to treat ng d less	f ⊻ ir	n 🔤 👂 🌫	
energy consumption, which much is already known abou been delayed by several lim	makes BDS an eco-friendly proc It the process. Clearly, BDS pres tations both upstream and dowr	ess that can complem ents advantages as a nstream the process. T	ent HDS making it more complementary techniq 'his study will comprehe	e efficient. BDS has be ue to HDS; however, it insively review and dis	en extensively str s commercial us cuss key issues	idied and e has like	Free Cont	tent	1
reduction of the BDS costs,	advances, and/or challenges for	a competitive BDS tow	ards its potential indust	rial application aiming) ultra-low sulfur f	uels.	Sample PL	JF	

Chapter 7 Advances in the Reduction of the Costs Inherent to Fossil Fuel Biodesulfurization Towards Its Potential Industrial Applications

Susana M. Paixão

bittps://orcid.org/0000-0003-0955-4467 Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal

Tiago P. Silva Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal

Bruno F. Arez

Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal

Luís Alves

Bioenergy Unit, National Laboratory of Energy and Geology (LNEG), Lisbon, Portugal

ABSTRACT

The biodesulfurization (BDS) process consists of the use of microorganisms for the removal of sulfur from fossil fuels. Through BDS it is possible to treat most of the organosulfur compounds recalcitrant to the conventional hydrodesulfurization (HDS), the petroleum industry's solution, at mild operating conditions, without the need for molecular hydrogen or metal catalysts. This technique results in lower emissions, smaller residue production, and less energy consumption, which makes BDS an eco-friendly process that can complement HDS making it more efficient. BDS has been extensively studied and much is already known about the process.

DOI: 10.4018/978-1-7998-2146-5.ch007

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Advances in the Reduction of the Costs Inherent to Fossil Fuel Biodesulfurization

Clearly, BDS presents advantages as a complementary technique to HDS; however, its commercial use has been delayed by several limitations both upstream and downstream the process. This study will comprehensively review and discuss key issues, like reduction of the BDS costs, advances, and/or challenges for a competitive BDS towards its potential industrial application aiming ultra-low sulfur fuels.

INTRODUCTION

The combustion of fossil fuel generates emissions of sulfur as sulfur dioxide (SO₂), which is corrosive and toxic, and as fine particulate matter of metal sulfates. These emissions are responsible for damage in many different areas. Gaseous chemical compounds of sulfur constitute a major health hazard when present in the air: the large-ring thiophenes, such as dibenzothiophene, abundant in crude oil, are toxic to mammals (Murphy, Amin, Coletta, & Hoffman, 1992); SO₂ gas at high levels can cause bronchial irritation and trigger asthma attacks in susceptible individuals and long-term exposure to combustion-related one particulate air pollution is an important risk factor for cardio-pulmonary and lung cancer mortality (Pope et al., 2002; Mohebali & Ball, 2008). In addition, incomplete burning of liquid fossil fuels causes emissions of aromatic sulfur compounds to the air (Ho & Li, 2002), and the oxidation of sulfur compounds in the atmosphere eventually leads to an aerosol of sulphuric acid. This aerosol causes acid rains, which are responsible for the corrosion of many infrastructures and monuments, and even affect several living organisms including agricultural crops, thus causing direct damage to the economy (Bender & Weigel, 2011). The aerosol is also harmful to the stratospheric ozone contributing to the hole on the Earth's protective ozone layer (Denis, 2010). Lastly, sulfur compounds even prevent the functioning of all major pollution control

technologies such as automobile catalytic converters (Maricq, Chase, Xu, & Laing, 2002), making it more difficult to fight against pollution.

Since gasoline, diesel and non-transportation fuels account for 75 to 80% of the total refinery products (Babich & Moulijn, 2003), it is only natural that countries find the reductions of sulfur concentration in fuels as the most effective way to decrease the amount of SO_2 emitted in to the air and limit its prejudicial effects (Mohebali, Ball, Kaytash, & Rasekh, 2008).

Therefore, in response to the increasing concerns with environmental and health effects of the SO_x molecules, several countries have started to impose strict limits on the levels of sulfur present in fossil fuels. This forced the petroleum industry to develop techniques which remove the sulfur from the fuels, such as hydrodesulfurization (HDS), a process that combines high temperatures and pressures with molecular hydrogen in the presence of complex metal catalysts. However, this process is not very effective at removing heterocyclic sulfur compounds, which can account

47 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/advances-in-the-reduction-ofthe-costs-inherent-to-fossil-fuel-biodesulfurization-towards-

its-potential-industrial-applications/246162?camid=4v1

This title is available in Advances in Chemical and Materials Engineering, InfoSci-Books, InfoSci-Environmental, Agricultural, and Physical Sciences, InfoSci-Science and Engineering, Science, Engineering, and Information Technology. Recommend this product to your librarian: <u>www.igi-global.com/e-resources/library-</u> recommendation/?id=75

Related Content

Lipid Nanocarriers for Intracellular Delivery

Clara Bernard Fernandes, Divya Suares and Vivek Dhawan (2018). *Multifunctional Nanocarriers for Contemporary Healthcare Applications (pp. 129-156).* www.igi-global.com/chapter/lipid-nanocarriers-for-intracellulardelivery/199911?camid=4v1a

The Synthesis of Stochastic Circuits for Nanoscale Computation

Weikang Qian, John Backes and Marc D. Riedel (2011). *Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains (pp. 279-294).*

www.igi-global.com/chapter/synthesis-stochastic-circuits-nanoscalecomputation/50148?camid=4v1a

Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization

Tendai O. Dembaremba, Adeniyi S. Ogunlaja and Zenixole R. Tshentu (2020). Nanocomposites for the Desulfurization of Fuels (pp. 168-234). www.igi-global.com/chapter/coordination-polymers-and-polymer-nanofibersfor-effective-adsorptive-desulfurization/246161?camid=4v1a

Fine Control and Selection of Travelling Waves in Inorganic Pattern Forming Reactions

B. P.J. de Lacy Costello, J. Armstrong, I. Jahan and N. M. Ratcliffe (2009). International Journal of Nanotechnology and Molecular Computation (pp. 26-35). www.igi-global.com/article/fine-control-selection-travellingwaves/4083?camid=4v1a