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Abstract

Congenital muscular dystrophy type 1A (MDC1A) is one of the main subtypes of early-onset mus-
cle disease, caused by disease-associated variants in the laminin-a2 (LAMA2) gene. MDC1A usu-
ally presents as a severe neonatal hypotonia and failure to thrive. Muscle weakness compromises
normal motor development, leading to the inability to sit unsupported or to walk independently.
The phenotype associated with LAMA2 defects has been expanded to include milder and atyp-
ical cases, being now collectively known as LAMA2-related muscular dystrophies (LAMA2-MD).
Through an international multicenter collaborative effort, 61 new LAMA2 disease-associated vari-
ants were identified in 86 patients, representing the largest number of patients and new disease-
causing variants in a single report. The collaborative variant collection was supported by the
LOVD-powered LAMA2 gene variant database (https://www.LOVD.nl/LAMA?2), updated as part of
this work. As of December 2017, the database contains 486 unique LAMAZ2 variants (309 disease-
associated), obtained from direct submissions and literature reports. Database content was sys-
tematically reviewed and further insights concerning LAMA2-MD are presented. We focus on the
impact of missense changes, especially the c.2461A > C (p.Thr821Pro) variant and its association
with late-onset LAMA2-MD. Finally, we report diagnostically challenging cases, highlighting the
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1 | BACKGROUND

Laminin-211 is a heterotrimetric cruciform-shaped complex that
establishes a stable link between the sarcolemma of muscle fibers
and the extracellular matrix, being a major component of the extrasy-
naptic skeletal muscle basement membrane (BM; Durbeej, 2015). The
-211 classification derives from the three specific chains (¢2, 1, and
y1), which compose this specific laminin form (Aumailley et al., 2005).
Laminin-211 binds to the glycosylated residues of a-dystroglycan (a-
DG) and also self-assembles (polymerizes) into networks through its
N-terminal domain (Yurchenco, 2015). This supramolecular network
connects to collagen IV and to perlecan (heparan sulfate proteo-
glycan) through nidogens cross-linking (Jones, Dehart, Gonzales, &
Goldfinger, 2000). Laminin-211 expression is not confined to skele-
tal muscle but has also been shown to be expressed in a variety of
other tissues, more importantly in peripheral nerve (Schwann cells)
and in brain (Yurchenco, 2015). Posttranslational changes have been
reported in laminin-211 components. More specifically, laminin-a2
chain was found to undergo cleavage at residue 2580 under spe-
cific conditions to generate an N-terminal 300 kDa peptide and a C-
terminal 80 kDa peptide, which are subsequently connected through a
noncovalent process (Durbeej, 2015).

Disease-associated (pathogenic) variants located in the gene that
codes for the a2 chain (LAMA2; MIM# 156225) of laminin-211, give
rise to a group of diseases collectively designated as LAMA2-related
muscular dystrophy (LAMA2-MD). LAMA2 maps to chromosome
6g22.33 and spans over 260 kb. It comprises 65 exons and codes for
a protein with a molecular mass of approximately 390 kDa (Zhang,
Vuolteenaho, & Tryggvason, 1996). The majority of patients with
LAMA2 mutations have a congenital muscular dystrophy (CMD) phe-
notype classified as type 1A (MDC1A; MIM# 607855). The classical
phenotype manifests as neonatal hypotonia or muscle weakness
during the first months of life and reduced spontaneous movements
(Helbling-Leclerc et al., 1995). As muscle weakness persists during
development, it compromises the achievement of normal motor
milestones (no cephalic control or inability to sit unsupported) and
frequently gives rise to failure to thrive. Other manifestations such
as gastroesophageal reflux, aspiration, recurrent chest infections,
and even respiratory failure were reported in MDC1A (Jones et al.,
2001). Facial muscle weakness, ophthalmoparesis, and macroglossia
are also features present in these patients but are often beyond early
childhood (Quijano-Roy, Sparks, & Rutkowski, 2012). Other relevant
clinical hallmarks of MDC1A include elevated creatine kinase (CK)
levels and dystrophic changes (necrosis and regeneration of fibers,
chronic inflammation, and fibrosis) recognizable in muscle biopsies
of these patients (Tomé et al., 1994). Diagnostically important fea-

tures are the complete absence of laminin-a2 staining evaluated by
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immunohistochemistry (IHC) performed in muscle or in skin biopsies
(Sewry et al., 1996) using specific antibodies, and typical white matter
changes (WMC) in brain detectable by magnetic resonance imaging
(MRI; Lamer et al., 1998). WMC are related with alterations in the
brain's water content, due to modifications in the maturation and/or
function of the blood-brain barrier, and are detectable after the first
six months to one year of life (Menezes et al., 2014). Besides WMC,
brain structural defects have been reported in patients with laminin
deficiency, in an estimated ~4% of LAMA2-MD cases (Jones et al.,
2001). In some initial studies, performed before LAMA2 genotyping
was available, this association was based solely on laminin staining by
IHC (Brett et al., 1998; Martinello, Angelini, & Trevisan, 1998; Philpot
et al., 1999; Pini, Merlini, Tomé, Chevallay, & Gobbi, 1996; Sunada,
Edgar, Lotz, Rust, & Campbell, 1995; Tsao, Mendell, Rusin, & Luquette,
1998). It is plausible that any dystroglycanopathy could account for
the partial laminin deficiency observed in some patients, explaining
the diversity of structural brain defects reported. It is nonetheless
consensual that primary laminin-a2 deficiency can contribute to struc-
tural abnormalities in the cerebral cortex during fetal development.
Malformations found in patients with LAMA2 disease-causing variants
includes: (a) cortical dysplasia (Mercuri et al., 1999), (b) changes within
the lissencephaly spectrum, namely agyria or pachygyria (Geranmayeh
et al., 2010), and (c) polymicrogyria (Vigliano, Dassi, Di Blasi, Mora, &
Jarre, 2009).

In a subset of MDC1A cases there is partial laminin-a2 deficiency
(reduced/irregular laminin-a2 staining in IHC), which translates
into a CMD with a slower disease progression (Geranmayeh et al.,
2010; Oliveira et al., 2008). There is some degree of correlation
between independent ambulation and IHC status of laminin-a2.
The majority of MDC1A patients that do not acquire indepen-
dent locomotion have complete laminin-a2 deficiency on muscle
biopsy, whereas in the majority of cases that are able to walk inde-
pendently a partial laminin-a2 deficiency has been documented
(Geranmayeh et al., 2010).

Further to MDC1A, “milder” LAMA2-related phenotypes have been
increasingly reported over the past few years. These late-onset
LAMA2-MD patients are mainly characterized by proximal muscle
weakness with onset during childhood, delayed motor milestones,
achievement of independent ambulation, and persistently elevated CK
levels (Gavassini et al., 2011). Some reports classified these patients as
asubtype of limb-girdle muscular dystrophy (LGMD). Patients included
in this group may also show muscle hypertrophy, rigid spine syndrome,
and pronounced joint contractures which are often more evident in
the elbows. In addition to cardiac involvement in a limited number of
cases, these clinical features are evocative of Emery-Dreifuss muscu-
lar dystrophy (EDMD; Nelson et al., 2015). It should be emphasized
that patients with late-onset LAMA2-MD still manifest typical brain
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WMC, but IHC labeling of laminin-a2 in muscle biopsy may show only
very subtle changes.

As laminin-a2 is also expressed in Schwann cells, there is a range of
clinical features related with peripheral nerve involvement in LAMA2-
MD patients. In a particular series of MDC1A patients, the major-
ity had decreased motor nerve conduction, suggesting that periph-
eral demyelinating neuropathy is a disease feature (Shorer, Philpot,
Muntoni, Sewry, & Dubowitz, 1995). Later it was also shown that
laminin-a2 related neuropathic abnormalities also included sensory
nerves (Quijano-Roy et al., 2004). More importantly, in a milder case
of LAMA2-MD there was evidence of a myelinogenesis disorder, lead-
ing to the assumption that the neuropathy in laminin-a2 deficient
cases is actually dysmyelinating (Di Muzio et al., 2003). These changes
are more evident in milder LAMA2-MD patients (Chan et al., 2014;
Deodato et al., 2002; Mora et al., 1996), whereas as in MDC1A presen-
tations the more severe muscle involvement probably masks the subtle
neuropathic features of the disease.

In terms of the mutation spectrum of the LAMA2 gene, four inde-
pendent studies described cohorts with more than twenty patients
(Geranmayeh et al., 2010; Oliveira et al., 2008; Pegoraro et al., 1998;
Xiong et al., 2015). The most frequent reported genotypes include vari-
ants that create premature termination codons (PTC) in both disease
alleles, and are associated with complete deficiency of laminin-a2 in
muscle biopsy as well as an MDC1A phenotype. In contrast, missense
variants are present in a smaller number of cases and usually corre-
late with partial laminin-«2 deficiency giving rise to milder phenotypes.
The asymmetrical proportion between truncating and non-truncating
variants, explains the higher prevalence of MDC1A as compared with
other emerging LAMAZ2-related phenotypes.

A relatively high frequency (18.4% of disease-causing variants) of
large deletions and duplications in LAMA2 was also reported. Vari-
ants of this sort are detectable by multiplex ligation-dependent probe
amplification (MLPA) or array comparative genomic hybridization
(array-CGH; Oliveira et al., 2014).

The LAMA2 locus-specific database (LSDB), which we initiated in
2002, was continuously updated and used to assist the collection of
new variants as reported here. Of the 486 unique variants registered
to date (December 2017), a total of 61 novel disease-associated vari-
ants detected in 86 patients are reported for the first time. Database
content is systematically presented and further insights into the geno-
types and phenotypes of LAMA2-MD are presented.

2 | DEVELOPMENT AND UPDATE OF LAMA2
LSDB

As part of the work we report the development of a comprehensive
database for LAMAZ2 variants, an important resource made available
for the scientific community since 2002. The LOVD software (Fokkema
etal., 2011) was used to store genetic and clinical data, allowing an off-
the-shelf LSDB deployment in accordance with international guide-
lines for the curation and creation of these databases (Celli, Dalgleish,
Vihinen, Taschner, & den Dunnen, 2012; Vihinen, den Dunnen, Dal-

gleish, & Cotton, 2012). The LSDB content was updated and migrated

to LOVD version 3.0, being completely redesigned in terms of its
database architecture.

Variant data was collected from publications accessed by the cura-
tors (64%) or through direct database submissions (36%). Currently (by
December 2017), the LAMA2-LOVD contains a total of 1,186 of entries
(486 unique) identified in a total of 748 individuals. Based on disease
impact, these entries comprise: 816 disease-associated variants (309
unique), 317 benign (141 unique), and 53 variants of unknown clinical
significance (VUS, 38 unique).

3 | DESCRIPTION OF NOVEL LAMA2
VARIANTS

A total of 61 novel disease-associated or likely associated variants
were identified in the LAMAZ2 gene (Table 1), representing more than
20% (61/309) of the total disease variants currently listed in the
LAMA2 LSDB. Variant interpretation followed the standards and guide-
lines for the classification of sequence variants, proposed by the Amer-
ican College of Medical Genetics and Genomics (ACMG; Richards et al.,
2015). The LOVD LAMA?2 database gives two classifications, a Func-
tional classification (column Effect) and a Clinical classification (col-
umn ClassClinical). The functional classification indicates the conse-
quences of the variant for the function of the gene/protein (e.g., affects
function), the clinical classification the consequences for the individ-
ual carrying the variant (e.g., ACMG:5, disease-associated, autoso-
mal recessive [pathogenic]). The summary conclusion of the curators
for specific variants, based on all individual observations of the vari-
ants, is given in a SUMMARY record. All unpublished variants col-
lected and/or classified in the course of this project can be retrieved
from the database using the following link: https://databases.lovd.nl/
shared/references/DOI:10.1002/humu.23599.

Variants were identified by different international groups (mate-
rial and methods in Supporting Information 1), which reflects by the
diversity of the patients’ geographical origins (11 distinct nationali-
ties). Most variants are predicted to be truncating, 20 nonsense type
and 23 small frame-shift variants (16 deletions and seven duplications).
In addition, this list includes a significant number of variants affecting
canonical splice-sites (n = 13), the majority located in donor sites (+1
and +2 positions). Due to the inability to obtain proper biological sam-
ples or study limitations it was mostly not possible to evaluate their
impact at the mRNA level. Thus, the impact of these splice-site vari-
ants was evaluated with bioinformatic tools (see Section 3.1), which for
all variants indicated unequivocal deleterious effects. One fully charac-
terized was ¢.819+2T > C, located in the donor splice-site of intron 5.
Analysis by RT-PCR followed by sequencing, showed the presence of
aberrant transcripts (details in Section 6 and Supporting Information
Il Figures S1 and S2). In addition to the most prevalent type of vari-
ants already stated, the remainder include: (a) two missense variants
(one of which might also have an effect on splicing), (b) one in-frame (IF)
codon deletion, (c) one deletion-insertion variant, and (d) a large dele-
tion encompassing exons 57 to 65. This large deletion was detected in
ahomozygous patient with an MDC 1A phenotype by array-CGH tech-

nique (Supporting Information Figure S3). The 61 new variants were
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identified in 87 patients (85 families) and in one obligate carrier. In
terms of genotypes, a total of 25 patients had homozygous variants. In
the remaining 57 cases compound heterozygous variants were found:
52 classified as pathogenic and five VUS. From this cohort, only five
cases (5.7%) had incomplete genotyping as only one mutated allele was
identified. Four variants were detected in more than three unrelated
patients: ¢.939_940del (n=7),c.1762del (n=7),c.396+1G > T (n = 6),
and ¢.5914C > T (n = 4). This is explainable by study inclusion criteria
and the higher frequency of variants identified in patients of specific
populations or ethnic groups still underrepresented in the literature
(c.1762del in patients from Saudi Arabia, and the others were found
in patients with Hispanic ancestry). Finally, concerning the clinical pre-
sentation, the majority of patients were classified as MDC1A, whereas
only seven had onset beyond infancy, and achieved independent loco-
motion. This particular phenotype (“late-onset” LAMA2-MD) was seen
in patients with splicing variants or missense substitutions, presumably
non-truncating alleles, and with partial LAMAZ2 deficiency documented

in some of the cases.

3.1 | Bioinformatic analysis of novel LAMA2 variants

The novel LAMAZ2 variants, especially those of the missense type
and/or predicted to affect splicing, were further assessed resorting to
bioinformatic prediction tools. A total of 14 variants fitting into these
categories are shown in Table 2. With the exception of homozygotes,
all variants are heterozygous and found in combination with a second
change known to be disease-associated or likely disease-associated.
Since experimental evidence could not be obtained, bioinformatic
analysis was pivotal to attempt their classification in terms of
pathogenicity.

Listed in Supporting Information Il are the in silico tools used to
evaluate variants, more specifically tolerance predictors and splicing
predictors. Considering the extensive list of tools available to evalu-
ate missense variants, we sought to determine which could be most
efficient in the case of LAMA2 variants. The performance measures
for binary classifiers, as described by Niroula and Vihinen (2016),
were calculated for nine tolerance predictors algorithms. Two con-
trol sets of LAMAZ2 variants consistently classified in LOVD database
as either pathogenic (n = 29) or benign (n = 22) were used to per-
form these calculations (Supporting Table). The tools with best perfor-
mance for our purpose, based on the accuracy and Matthews correla-
tion coefficient, were MutPred2 (Pejaver, Mooney, & Radivojac, 2017),
PolyPhen-2 (HumVar; Adzhubei et al., 2010), SIFT (Kumar, Henikoff, &
Ng, 2009), and UMD-Predictor (Salgado et al., 2016; Supporting Infor-
mation Table S1). These algorithms were subsequently applied to eval-
uate the new missense variants reported in this work (Table 2).

The majority of variants listed in Table 2 were inferred as being of
the missense type (n = 8). Five variants were consistently classified
as deleterious by all four tolerance predictors used, and two variants
were classified as deleterious by three out of the four algorithms. The
other missense variant was considered deleterious by half of the toler-
ance predictors.

In four variants, also inferred to be of the missense type, a dual

effect was predicted as they could also influence the splicing mecha-

nism. In these, the majority of algorithms tested to evaluate missense
variants consistently pointed toward intolerance (all except MutPred2
in three and SIFT in one of the variants) and also indicated an effect on
splicing by all tools used, except GeneSplicer in two of the variants.

From the two variants remainingin Table 2, one is an apparently syn-
onymous substitution predicted to create a new acceptor splice-site
by three distinct algorithms (all except GeneSplicer) and the other is
a large intronic inversion that was predicted to disrupt the canonical
acceptor splice-site.

4 | BIOLOGICAL RELEVANCE: CONTENT
ANALYSIS OF THE LAMA2 LSDB

An overview of disease-associated variants found in the LAMAZ2 gene
is shown in Figures 1 and 2. These may be subdivided as: 59.6% sin-
gle nucleotide variants (SNV) (n = 184 unique; 496 in total), 24.9%
small deletions (n = 77; 214), 8.7% small insertions (n = 27; 62), 6.2%
large deletions or duplications (n = 19; 42), and two deletion/insertions
(0.6%). In terms of their foreseeable impact, the most frequent group is
that of variants that cause a PTC. These include nonsense (n = 79) and
out-of-frame changes (65 deletions, 23 duplications). A total of 79 vari-
ants were predicted or experimentally demonstrated to affect splic-
ing. The first and last two conserved nucleotides of introns concen-
trate the vast majority of splicing variants. It should be highlighted that
both PTC-inducing and splice-site variants are widespread throughout
the gene with no clear “mutational” hotspots. In terms of distribution
throughout the gene, missense variants (n = 40, 13% of total disease-
associated variants) do not follow a similar pattern; they seem to clus-
ter in specific regions of laminin-a2 (Figure 1). The first group (n = 11,
27.5% of missense variants) affect residues located in domain VI corre-
sponding to the N-terminal part of the laminin-a2. A possible explana-
tion is that missense variants located in this region have a detrimen-
tal effect on laminin-211 function through the disruption of protein
folding and loss of the ability for polymerization into supramolecular
networks, that occurs through a cooperative self-assembly process of
laminin-211 (Durbeej, 2015; Yurchenco, 2015). A subset of these mis-
sense substitutions (namely p.Tyr138His, p.GIn167Pro, p.Leu243Pro,
and p.Gly284Arg) are located on the presumed polymerization face
near a patch containing the sequence P-L-E-N-G-E, corresponding to
residues 208-213 of laminin-a2 (Yurchenco, 2015). These changes
were identified in patients with late-onset LAMA2-MD with moder-
ately reduced protein levels.

The next cluster consists of missense variants (n = 10, 25% of
total) that specifically alter cysteine residues, located in one of the
three EGF-like repeats (domains V, lllb, and Illa), known to establish
disulfide bridges. Here, the solenoid-like structure conveyed by these
rigid rod-like structures is probably modified in a way that alters the
integrity of the connection between the sarcolemma and extracellu-
lar matrix mediated by laminin-a2. The last group of missense vari-
ants affects residues located in the C-terminal region of the protein
that contains a tandem of five laminin G-like (LG) domains—LG1-5. A
total of seven disease-associated missense variants (17.5% of all mis-
sense) are in LG2, LG3, or LG4 domains. LG4 and LG5 domains mediate
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FIGURE 1 Point variants recorded in the laminin-a2 (LAMA2)-LOVD. Top layer unveils the number of unique variants that originate premature
termination codons (PTC): nonsense, out-of-frame (OF) deletions (DEL) or insertions (INS), per LAMAZ2 exon (black rectangles). Middle layer shows
splice-site variants (SPL), also indicating the number of unique variants per region: intronic (grey) or exonic (light green). Laminin-211 protein
domains: | to VI, and Laminin G-like (LG) are shown in light pink to red boxes, from the C-terminal (C) to N-terminal region (N). Bottom layer
displays missense (MIS) changes or single codon in-frame (IF) deletions. Light blue triangles indicate substitution of a cysteine. Variants are
clustered per exonic region, and numbers below each symbol indicate the total number of changes
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FIGURE 2 Large deletions and duplications listed in the laminin-a2 (LAMA2)-LOVD. Large duplications (DUP) are shown in the top layer as
yellow rectangles encompassing affected gene regions, and deletions (DEL) are shown in the bottom part of the picture as red rectangles. Black
rectangles represent the LAMA2 gene exons. Grey boxes indicate undetermined breakpoints and numbers the total of entries in the database

(otherwise only one entry is present)

the binding of laminin-a2 to the O-linked carbohydrate chains of a-DG,
whereas LG2 and LG3 bind to integrin a7/41. Rare missense variants
and IF deletions pose a problem for genetic data interpretation. Four
IF codon deletions have been reported so far and, since there are no
functional analysis strategies currently available for laminin-a2 vari-
ants, their impact remains unclear. A second aspect to be considered, as
highlighted before, is that some changes predicted to be missense may
instead have an effect on mRNA splicing. In addition to the application
of bioinformatics tools used to assess the pathogenicity of missense
changes (such as those mentioned in 3.1), it is advisable to consider if
their location coincides with the potential hotspots outlined here.

Since our previous assessment (Oliveira et al., 2014) only two novel
large deletions have been reported (Bhowmik, Dalal, Matta, Sundaram,
& Aggarwal, 2016; Ding et al., 2016), totaling 17 deletions and two
duplications (Figure 2). There are two apparent mutational “hotspots”
for large deletions, the first region includes exons 3 and 4, and the sec-
ond is in the 3’ end of LAMA2 gene (exons 56 to 65).

Considering the distribution of disease-associated variants, exons
14, 21, 22, 26, 27, 36, 38, and 56 contain over 25 variant entries.
In contrast, seven exons (namely 20, 28, 44, 45, 48, 53, and 58)

have no disease-causing variants reported so far. Fourteen disease-

associated variants are among the most prevalent in the LAMA2-LOVD
database, with at least 10 independent entries each (Table 3). The most
frequent across different ethnical backgrounds are: c¢.2049_2050del
(p.Arg683Serfs*21), ¢.3085C > T (p.Argl029*), and c.3976C > T
(p.Arg1326%). Interestingly, these variants are also represented in pop-
ulation variant databases such as gnomAD (ExAC), found in heterozy-
gosity with frequencies ranging from 0.012 to 0.001%. Other variants
such as ¢.1854_1861dup (p.Leu621Hisfs*7), seem to be population-
or ethnic group-specific, exhibiting a relatively high frequency (0.23%)

within control alleles from the “Latino” population (gnomAD).

5 | CLINICAL RELEVANCE: THE EXPANDING
DISEASE SPECTRUM OF LAMA2-RELATED
MD

5.1 | Genotype-phenotype correlations

The severest end of the spectrum of LAMA2-related MD—MDC1A—
corresponds to a neonatal onset disease that gives rise to hypotonia

and compromised normal motor development. In LAMAZ2-related MD
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TABLE 3 List of the most frequent pathogenic variants in the LAMA2 LSDB (variants with 10 or more entries in LOVD)

Exon/
Intron
13

14

18
22

26i

27

32

36i

38

38i

46

55

55i_
56i

58i

DNA variant
(NM_000426.3)
¢.1854_1861dup

€.2049_2050del

c2461A>C
c.3085C>T

€.3924+2T7>C

c.3976C>T

c4645C>T

c.5234+1G>A

c.5476C>T

c.5562+5G>C

c.6488del

c.7732C>T

€.7750-1713_
7899-2154del

c.8244+1G>A

Note. nr: number.

the locomotion attainment has been considered an important clini-
cal measure of disease severity. In a series of 26 MDC1A patients
only two had acquired independent locomotion (Oliveira et al., 2008).
Interestingly, all patients that harbored variants inducing PTC in both

disease alleles were unable to achieve independent walking. In con-

DNA variant
(hg19)

8.129571328_
129571335dup

8.129573393_
129573394del

8.129601216A > C
8.129621928C>T

g.129637097T>C

8.129637234C>T

8.129674430C>T

g.129712799G > A

g.129722399C>T

.129722490G > C

g.129774191delA

g.129802567C>T

g.129805906_
129810892del

8.129813629G > A

RNA variant
r.1854_1861dup

r.2049_2050del

r246la>c
r.(?)

r.3736_3924del

r.(?)

r[4645¢c > u,
4580_4717del]

r.5072_5234del

r[5446_
5562del,
5562_5563ins5562

r.(?)

r.(?)

r.7750_7898del

r.8076_8244del

Predicted effect on
protein
p.Leu621Hisfs*7

p.Argé83Serfs+21

pThr821Pro
p.(Arg1029+)

p.Leu1246_Glu1308del

p.(Arg1326%)

p.[Arg1549+, Cys1527_
Val1572del]

pVal1765Serfsx21

p.(Arg1826%)

p.[Lys1816_Asp1854del,

Tyr1855Valfs+24]

p.(Lys2163Argfs+12)

p.(Arg2578%)

p.Ala2584Hisfs+8

p.Pro2693Valfs+12

Number of

independent Geographic origin

entries in
LOVD

12

42

18
24

33

24

10

10

14

15

17

12

of patients
(LOVD)

France, Portugal,
Brazil, Spain

Several countries

Portugal

Portugal, Spain,
United States

Saudi Arabia, Sudan,
United States

Portugal, Sweden,
United States,
Spain, Denmark

Australia, Italy,
United States

Portugal, Canada,
United States

China, Saudi Arabia,
United Kingdom

United Kingdom,
United States

Qatar, Saudi Arabia,
United States

China, Denmark,
Mexico, Russian

Federation, United

States

Portugal

Germany, Portugal,
Tunisia, United
States

1329

gnomAD/ExXAC
data: population, nr
alleles/ total alleles
(frequency)

Latino: 2/838 (0.23%)

All populations
except Ashkenazi
Jewish:

34/277,008 (0.012%)

Latino:

1/34,418 (0.003%);

European
(Non-Finnish):

1/126,676 (0.001%)

European
(Non-Finnish):
14/126,524
(0.001%);
European (Finnish):
1/25,788 (0.004%)

South Asian:
2/30,780 (0.006%)

Latino:

1/34,376 (0.003%);

European
(Non-Finnish):

2/126,266 (0.002%)

East Asian:

2/17,240 (0.012%);
European
(Non-Finnish):

5/111,398 (0.0045%)

European
(Non-Finnish):
7/125,864
(0.0056%);

European (Finnish):
1/25,408
(0.0039%)

Latino:

3/34,380 (0.0087%);

European
(Non-Finnish):
10/126,598
(0.0079%);

East Asian:

1/18,834 (0.0053%);

South Asian:

1/30,782 (0.0032%)

European
(Non-Finnish):
1/111,114
(0.0009%)

trast, the two patients that were able to walk had a missense or a
single codon deletion in one of the disease genes. LSDB content and
other studies reported in the literature (Geranmayeh et al., 2010)
further corroborated our findings. However, there are exceptions to

this rule; for example, a patient with a homozygous nonsense variant
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(p.Arg1549*) was able to reach ambulation and even climb stairs (Ger-
anmayeh et al., 2010). This particular variant was reported in associa-
tion with partial deficiency of laminin-a2 in several unrelated patients
(Di Blasi et al., 2000; Geranmayeh et al., 2010; Pegoraro et al., 1998).
Here, an explanation for this discrepancy is the fact that the variant is
located within exon 32 that undergoes alternative splicing (Pegoraro
et al,, 2000). The exon removal leads to an IF deletion at the mRNA
level, thereby restoring the reading frame from the PTC created by the
nonsense variant.

Geranmayeh et al. (2010) provided further genotype-phenotype
correlations with prognostic clinical implications. Statistically signifi-
cant differences were identified between patients with complete defi-
ciency and those with partial deficiency of laminin-a2. Patients with
absence of laminin-a2 had earlier onset (P = 0.0073), lack of indepen-
dent ambulation (P = 0.0215), and were more prone to requiring arti-
ficial feeding (P = 0.0099) or respiratory support (P = 0.0354; Ger-
anmayeh et al., 2010). Within MDC1A, there is a subset of patients
with early onset phenotype but a “milder” disease progression and with
partial laminin-a2 deficiency. This partial deficiency is often associ-
ated with missense variants, IF deletions, and splicing variants (leaky or
inducing IF exon-skipping; Allamand & Guicheney, 2002; Quijano-Roy
etal.,2012). One of the earliest such cases reported had a homozygous
variant (p.Cys996Arg) that affects domain Ilb of laminin-a2 (Nissinen
etal., 1996).

Despite the general consistency between phenotype, the type of
variant and the IHC status, some exceptions have been documented
in the literature. These include patients with complete laminin-a2
deficiency and missense variants that achieved independent loco-
motion (Geranmayeh et al., 2010), although this could be attributed
to IHC sensitivity issues. Intrafamilial clinical variability has also
been reported, such as that found among patients from one large
Kenyan kindred of Asian ancestry. Here, patients shared the same
genotype (homozygous missense variant located in the G-domain of
laminin-a2) but locomotion was not achieved in all cases (Geranmayeh
etal,, 2010).

As previously mentioned, a very small fraction of LAMA2-MD
patients have brain structural defects, which are frequently associ-
ated with intellectual disability (ID) and/or refractory seizures (Ger-
anmayeh et al.,, 2010, Vigliano et al., 2009). However, there are also
reports of patients, with these structural defects who, apparently have
no seizures or ID. The opposite also holds true in the case of seizures
(and to a lesser extent ID) since they have been reported in patients
without cerebral structural changes. Based on the reassessment of
data available in the LOVD and reported in the literature, no associa-
tion was found between epilepsy, cognitive function or brain anoma-
lies, and a particular set of LAMA2 genotypes/variants. The variants
found in these cases are diverse in terms of their impact, ranging
from those causing PTC to missense changes, and are apparently dis-
persed with no obvious hotspot along the gene. Furthermore, pheno-
typical discrepancies have been found in patients sharing with same
genotype. For example, two siblings reported by Di Blasi et al. (2001)
and case #2 from Nelson et al. (2015) share the same genotype (a
homozygous nonsense variant p.Arg744*), but cortical polymicrogyria

and lissencephaly were only reported in the latter patient. It is conceiv-

able that other genetic factors besides LAMAZ2 variants are contribut-
ing to these phenotypes.

Over the last few years there has been a significant increase in
reports of late-onset LAMA2-related MD patients (Ding et al., 2016;
Gavassini et al., 2011; Harris et al., 2017; Kevelam, van Engelen, van
Berkel, Kisters, & van der Knaap, 2014; Kim et al., 2017; Lgkken,
Born, Duno, & Vissing, 2015; Marques et al., 2014; Nelson et al.,
2015; Rajakulendran, Parton, Holton, & Hanna, 2011). Most of these
patients have heterozygous or homozygous missense or splice vari-
ants. Their clinical presentation is also variable but often overlapping
with a childhood-onset LGMD, consisting of proximal muscle weakness
and delayed motor milestones, but in all cases achieving independent
ambulation. Rigid spine syndrome with joint contractures has been also
reported in some patients (Nelson et al., 2015).

5.2 | Additional cases of late-onset LAMA2-related
MD sharing the p.Thr821Pro variant

Phenotypic variability in LAMAZ2-related MD has been clearly underes-
timated so far, with only a limited number of patients with this later-
onset phenotype reported in the literature. As for establishing further
genotype-phenotype correlations, the cases are still relatively scarce
and there is a vast diversity of genetic defects and/or genotypes, which
makes it difficult to stratify patients into homogeneous groups.

To address some of these limitations, and resorting to our large
LAMA-related MD patient cohort, the clinical and genetic character-
ization of six additional patients with a late-onset phenotype from
four unrelated families is reported (Table 4). They all share the same
missense variant: p.Thr821Pro. In five cases the genotype was simi-
lar in that, besides this missense substitution, the second allele was
a truncating variant: c.7750-1713_7899-2154del (p.Ala2584Hisfs*8)
in patients P1 and P2, ¢.3976C > T (p.Arg1326*) in P3 and P4, and
¢.1854_1861dup (p.Leu621Hisfs*7) in P5. The sixth patient (P6) rep-
resents the first documented case with a homozygous p.Thr821Pro
missense variant. Most of these patients were only diagnosed during
adulthood, which reflects the diagnostic difficulties concerning non-
MDC1A cases. All have a very mild muscle weakness (as compared
with typical MDC1A) with lower limb weakness resulting in gait dis-
turbances. In the oldest patient (Pé) this weakness culminated in loss
of ambulation during the sixth decade of life. In four patients brain MRI
was performed (P1, P2, P3, and Pé), revealing WMC like those usually
found in LAMA2-related MD (Figure 3a-c). These findings were pivotal
for conducting LAMAZ2 gene analysis in three of the cases. Patient Pé,
who developed dementia over the last 2 years, also had hypothalamus
and pons alterations (data not shown). Five patients were subjected to
a muscle biopsy. These showed myopathic or dystrophic features (Fig-
ure 3d-f), and IHC analysis for laminin-a2 revealed apparently normal
labeling (n = 3, Figure 3g-i) or partial deficiency (n = 1, data not shown).

5.3 | Prevalence of pTrp821Pro variantina
genetically uncharacterized MD patient cohort

The missense variant p.Trp821Pro is one of the most frequent genetic

causes of late-onset LAMA2-MD in a population-specific (Portuguese)
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FIGURE 3 Brain magnetic resonance imaging (MRI) and muscle neuropathology results. Patient P1: (a) brain MRI (FLAIR) shows typical white
matter changes (WMC) with normal structural cerebral cortex changes; (d) moderate myopathic changes with discrete endomysial fibrosis in
hematoxylin eosin (h & e) staining, and (g) normal immunohistochemistry (IHC) for laminin-a2. Patient P2: (b) brain MRI (FLAIR) with WMC and
normal cerebral cortex; (€) myopathic changes with necrotic fibers and several “ragged red fibers” (h & e), and (h) normal IHC for laminin-a2.
Patient Pé: (c) WMC in brain MRI (FLAIR); (f) dystrophic changes (necrotic fibers under myophagocytosis, fiber splitting and hypersegmentation,
and fat substitution) and mild neurogenic features (atrophic angulated fibers and nuclear clumps), and (i) normal IHC for laminin-a2

patient cohort. This missense substitution was initially identified in
two patients with atypical presentations (Marques et al., 2014), prior
to the six patients described above. A further three patients, from
two unrelated families with Portuguese ancestry, have also been
reported by other groups: one patient from Canada (with #102482 in
LAMA2-LOVD), and two brothers studied in France (Nelson et al.,
2015). Thus far, all patients are reported to have milder muscle weak-
ness and the majority were initially classified as possible LGMD or
EDMD. To evaluate if this missense variant could account for addi-
tional uncharacterized cases, we screened an irreversibly anonymized
group of 239 myopathic Portuguese patients with clinical presentation
is compatible with LGMD or EDMD. Variant screening was performed
by restriction fragment length analysis (RFLA, Supporting Informa-
tion 1V), since the c.2461A > C change creates a new restriction site
for HpyCHA4III (Supporting Information Figure S4). Positive samples
were confirmed by Sanger sequencing. A total of seven patients car-
ried this missense substitution (2.9% of the cohort), three of which
were homozygotes and four were heterozygotes (2% of all disease
alleles). To further ascertain the genotype of the four patients car-
rying the c.2461A > C variant in heterozygosity, the entire cod-

ing sequence of the LAMA2 gene was sequenced. In all patients an

additional heterozygous variant was detected. Three were previously
identified in other (MDC1A) patients: c¢.4739dup (p.Leu1581Profs*5;
Oliveira et al., 2008), ¢.3372dup (p.Cys1125Metfs*4; patient #103970
in Table 1) and a missense variant ¢.32T > C (p.Leu11Pro) listed in
ClinVar (RCV000157587.1) as being disease associated. The fourth
variant, c.6707G > A, is also new and was interpreted as a VUS; it pre-
dictably gives rise to a missense change (p.Arg2236Lys) and/or may
have an effect on splicing (r.spl?; Table 2, patient #103971).

Since the c.2461A > C variant was not listed in variant population
databases, its prevalence was estimated in control individuals using
the aforementioned RFLA-screening strategy. For this study, we ran-
domly selected and irreversibly anonymized 1,100 out of a total of
11,000 samples previously analyzed in the laboratory. These were
residual samples from genetic studies for diseases unrelated with neu-
romuscular disorders that are performed on a nationwide basis. The
c.2461A > C variant was identified in one of these samples, in het-
erozygosity. Its allelic frequency in the general population was esti-
mated as 0.0452% (1/2,200), which explains the relatively high preva-
lence of this variant among Portuguese patients with LAMA2-MD.

Overall, the presented data reinforces that it is diagnostically

important to consider LAMA2 gene involvement not only in CMD
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Phenotypes:

A) Early-onset LAMA2-MD
(classical MDC1A) [Oliveira et al., 2008]

43,44, P m

B) Late-onset LAMA2-MD
(EDMD-like/COL6RD-like)
[Marques et al., 2014; Nelson et al., 2015]

P1, C)Late-onset LAMA2-MD
P2  (LGMD-like)

D) Atypical LAMA2-RD
(predominant CNS involvement)
[Marques et al., 2014]

FIGURE 4 Different phenotypes in laminin-a2-related muscular dystrophy (LAMA2-MD) found in association with the c.2461A > C
(pTrp821Pro) variant. (a) Early-onset (classical muscular dystrophy type 1A [MDC1A]): no independent ambulation; muscle biopsy shows
dystrophic features and no labeling for laminin-a2 in immunohistochemistry (IHC). Several patients reported in Oliveira et al. (2008). (b)
Late-onset (Emery-Dreifuss muscular dystrophy [EDMD]/COL6-RD-like): rigid spine syndrome; cardiac involvement in some patients; walking
difficulties; dystrophic features in MD, normal and irregular laminin-«2 staining in IHC. Pat.2—patient 2 (Marques et al., 2014); cases #3, #4
(Nelson et al., 2015); P5 (this work). (c) Late-onset (limb-girdle muscular dystrophy (LGMD)-like): slow progression; dystrophic features, normal
and irregular laminin-«2 staining in IHC, walking difficulties later in life; P1-4, P6 (this work). (d) Atypical LAMA2-RD: predominant central
nervous system (CNS) involvement, (occipital agyria, white matter changes (WMC), epilepsy); increased variability of muscle fiber diameter and
irregular laminin-a2 staining in IHC. Pat.1—patient 1 in Marques et al. (2014). Genotype-phenotype correlations suggest that the classical
MDC1A presentation is explainable by variants causing premature termination codons (PTC) in both disease alleles. While late-onset LAMA2-MD

are more likely to be associated with missense (MS) substitutions
Note. o: homozygous; +: Heterozygous.

patients, but also as a possible cause of MD with onset beyond
childhood and even in adulthood. The association between LAMA2
and this later onset phenotype was not fully established, consider-
ing the limited number of cases reported so far. Nonetheless, it is
advisable to include LAMA2 in the list of candidate genes for MDs
(LGMD or EDMD). The p.Trp821Pro missense variant constitutes an
interesting genotype-phenotype linker, as it may give rise to differ-
ent phenotypes depending on the variant found in the second allele
(Figure 4).

6 | DIAGNOSTIC RELEVANCE

Molecular defects in the LAMA2 gene are the main genetic causes
(~30%) of CMDs in most countries, except for Japan where Fukuyama-
type CMD has the highest prevalence, due to a frequent founder muta-
tion in the FKTN gene (Kobayashi et al., 1998). Besides the clinical
examination, the clinical diagnostic workup of CMDs conventionally
relies upon performing a muscle biopsy (Bénnemann et al., 2014).
In addition to standard staining methods, muscle pathology analysis
includes a panel of antibodies for IHC against proteins involved in
MD (laminin-a2, sarcoglycans, dystrophin, and dysferlin). Three differ-
ent commercial antibodies are currently available for laminin-a2 IHC
studies: clone 5H2 detects the 80 kDa protein (C-terminal region),

clone Mer3/22B2 detects the 300 kDa product (N-terminal region),
and clone 4H8-2 clone, which also recognizes the N-terminal domain.
The diagnostic sensitivity of IHC is extremely high for typical MDC1A
cases, where complete deficiency would be detectable regardless of
the antibody used for analysis. The milder LAMA2-MD cases are more
challenging as often only a partial deficiency is often documented.
Moreover, depending on the underlying molecular defects, this IHC
deficiency may not be consistent for the different antibodies (Cohn,
Herrmann, Sorokin, Wewer, & Voit, 1998). N-terminal antibodies usu-
ally have higher sensitivity for cases with partial laminin-a2 deficiency,
as there was a relatively intact labeling with the antibody for the
80 kDa fragment, when compared with that using the other antibod-
ies (Cohn et al., 1998). It is therefore advisable to include at least two
different antibodies against laminin-a2 in order to increase IHC sensi-
tivity. In a small fraction of CMD patients there is also irregular label-
ing or partial laminin-a2 deficiency. There is some degree of genetic
heterogeneity among these patients, depending on whether it is a pri-
mary or a secondary deficiency. To distinguish between these two pos-
sibilities, antibodies against glycosylated residues of «-DG and laminin-
a4/5 may be effective. If changes are detected in «-DG, this would
indicate a defective glycosylation pathway and involvement of other
loci. On the other hand, normal a-DG labeling and overexpression of
laminin-a4/5 (a compensatory gene expression mechanism) is sugges-

tive of a primary laminin-a2 deficiency.
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Brain MRI performed beyond the first 6 to 12 months is also an
important diagnostic resource for CMDs. As previously mentioned all
LAMA2-related MD patients have brain WMC, consisting in bilateral
hyperintensity signal on T2-weighted and FLAIR MRI, in periventric-
ular areas and subcortical cerebral hemisphere (Quijano-Roy et al.,
2012). These findings alone should be an indication to perform LAMA2
genetic testing. As demonstrated by this work and previously sug-
gested by Gavassini et al. (2011), it is diagnostically relevant to per-
form brain MRI in uncharacterized LGMD patients. This could be per-
formed even during adulthood, as these typical brain changes will per-
sist throughout life. Brain MRI is especially relevant for “atypical” or
mild MD cases where IHC for laminin-a2 has a lower diagnostic yield.

Considering the size and number of exons in the LAMA2 gene,
its genetic analysis has been simplified, more than a decade ago,
with the introduction of automatized sequencers (fragment analyz-
ers) for Sanger sequencing and the use of universal-tailed primers.
Gene sequencing is undoubtedly the approach with the highest sen-
sitivity for LAMA2 analysis, detecting approximately 80% of disease-
associated variants. Based on the variant data collected, there is a
significant frequency (~18%) of large deletions and duplications. The
genetic study should therefore be complemented with other molecu-
lar techniques such as MLPA or array-CGH.

Data available in the LSDB and population-specific cohorts can help
to optimize the LAMA2 genetic analysis. This was exemplified in a Por-
tuguese CMD patient cohort where a 3-tier genetic test was proposed
(Oliveira et al., 2014): (a) sequencing a small set of selected exons
where the majority of point mutations are located (based on a specific
population or ethnical group variant data); (b) sequencing the remain-
ing LAMA2 exons; and (c) MLPA analysis or array-CGH.

The introduction of next-generation sequencing technology (NGS,
or massive parallel sequencing) has remodeled genetic analysis strate-
gies, especially in genetically heterogeneous conditions such as the
MDs. Distinct NGS applications such as gene panels or whole-exome
sequencing (WES) can be extremely useful to address diagnostically
difficult cases. In fact, novel cases with milder LAMAZ2-related pheno-
types recently reported in the literature have been solved resorting to
NGS (Dean, Rashid, Kupsky, Moore, & Jiang, 2017; Ding et al., 2016;
Harris et al,2017; Kim et al., 2017).

The impact of NGS technology is also reflected in five patients
described in this work: (ID#s: 102662, 132012, 132013, 132015,
132025 in table 1), whose disease-associated variants listed were iden-
tified by NGS gene panels. One further patient (ID# 103207 in Table 1)
demonstrates the utility of NGS to address genetic and clinical het-
erogeneity. This is a patient with an LGMD phenotype and ID, who
has remained without genetic characterization for several years. The
patient, currently 14 years of age, had delayed motor development
(started walking at 31 months of age), lumbar lordosis, and elevated
CK levels (~1300 U/l). Muscle biopsy performed at 6 years of age (in
another clinical center where she was initially followed) revealed dys-
trophic features and normal IHC results for dystrophin and sarcogly-
cans. Genetic analysis of FKRP, CAPN3, LMNA, and DMPK genes were
negative. The patient was studied by WES as previously reported in a
similar research (Oliveira, Martins, Pinto Leite, Sousa, & Santos, 2017).

As a first approach, WES data analysis was restricted to a set of genes

known to be associated with muscle diseases (Supporting Informa-
tion IV). Within the list of filtered-in variants, two heterozygous vari-
ants were identified in LAMAZ2 (Supporting Information Figure S5). The
first was the c.1854_1861dup variant, previously reported as disease
associated in several MDC1A patients, and the second was a novel
splicing variant ¢.819+2T > C located in the donor splice-site of intron
5 (Table 1). To further characterize the effect of this splice-site vari-
ant, a muscle fragment available from patient ID# 102735 (shares the
same variant) was used (Supporting Information Il). LAMA2 transcript
analysis by RT-PCR showed the presence of multiple aberrant prod-
ucts that, upon sequencing, were attributed to multiple skipping events
involving exons 5 to 7 (Table 1, Supporting Information Figures S1 and
S2). Study of the patient's parents confirmed compound heterozygos-
ity, as each progenitor carried a different LAMA2 variant. Brain MRI
performed after WES analysis, revealed WMC but not configuring the
typical pattern found in MDC1A cases. In this patient, axial T2 and
FLAIR revealed small focal white matter hyperintensities in the subcor-
tical part of brain, more specifically in the frontal, temporal-anterior,
parahyppocampus, and insula regions with sparing of the internal cap-
sule and corpus callosum (data not shown).

Finally, as demonstrated by five cases listed in Table 1 (ID#s 102324,
102369,102378, 132014, and 132015), a small percentage of patients
were found to have only one heterozygous LAMA2 disease-causing
variant. This could be attributed to deeply placed intronic variants
affecting splicing or variants located in the gene's promotor region,
both of which are not covered by conventional sequencing, gene pan-
els, or even WES. Here, a more comprehensive NGS approach such as
WES and/or RNA sequencing may ultimately provide a final answer to

such cases with incomplete genotyping.

7 | FUTURE PROSPECTS

Although there is an increasing recognition of the involvement of
LAMAZ disease-associated variants in the genetic etiology of muscular
dystrophies, the incidence is probably still underestimated. To improve
the diagnosis of these cases, it is necessary to include both brain MRI
and to evaluate the expression of laminin-a2 in muscle by IHC. These
two approaches are often not considered in the clinical workup of
patients with (non-congenital) myopathies. NGS can also contribute
toward the identification of further cases. However, the interpretation
of variants from such studies often leads to their classification as VUS,
which considerably limits the clinical utility of these genetic data.

As for further research, it is necessary not only to continue
to document clinical data and LAMA2 variants to obtain further
genotype-phenotype correlations, but also to develop strategies for
functional analysis and validation of new variants, especially those
predictably of the missense type. This task may be complex, as variants
might affect several key aspects of the laminin-211 life-cycle: (a)
posttranslational modification, (b) protein translocation and secretion
process, (c) interaction with membrane-specific receptors, and (d) vari-
ety of molecular partners in the BM, possibly some yet to be identified.
One strategy for functional analysis would imply obtaining a biological

sample from the patient by an invasive procedure (e.g., muscle or
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skin biopsy), expanding cells through in vitro culture, and performing
protein-protein interaction studies, such as pull-down assays using a
battery of different bait-proteins known to interact with laminin-a2.
Failure to detect a particular interaction would indicate a deleterious
effect. To enable such studies, further research should primarily focus
in a comprehensive search for domain-specific interactions, which
could be accomplished by high-throughput proteomics analyses.
An assay for those variants specifically affecting domains involved
in laminin polymerization has been reported (Cheng, Champliaud,
Burgeson, Marinkovich, & Yurchenco, 1997; Hussain, Carafoli, &
Hohenester, 2011). Basically, a mixture of wild-type with the mutated
form of laminin would show a failure in establishing normal polymer-
ization levels. Here, the limiting step would be generating and purifying
sufficient amounts of proteins to conduct these in vitro studies.

As laminin-a2 is not confined to muscle or brain cells, in a transgenic
mouse model with deficient laminin-a2 it was shown that the loss of
this protein caused disruption of the apical ectoplasmic specialization-
blood-testis barrier, and leading to male infertility (Hager, Gawlik, Nys-
trém, Sasaki, & Durbeej, 2005). The laminin-a2 in testis was further
implicated in the regulation of an axis that functionally links the BM
to the blood-testis barrier of Sertoli cells (Gao et al., 2017). Consider-
ing that human infertility has not been linked to laminin-«2, it would be
relevant to evaluate male reproductive issues in late-onset LAMA2-MD
patients.

One of the most important aspects concerning LAMA2-MD is
the development of a suitable treatment for this condition. Several
approaches have been proposed, developed, and tested in laminin-
a2-deficient mice and zebrafish models (reviewed by Durbeej, 2015;
Wood & Currie, 2014). One particularly effective approach targets
extracellular matrix modulation as a way to ameliorate MDC1A. Here,
strategies aim to improve muscle viability, through the augmentation
of residual functionality within the cellular system, such as upreg-
ulation of other laminins (¢4 or a1) and integrin-a7 (Wood & Cur-
rie, 2014). However, with laminin-411 there are some limitations for
BM repair, since this laminin only forms a trimeric structure, lacking
capacity to further self-polymerize into superstructures such as those
derived from laminins-211 or -111. Overall there are some hurdles
toward its applicability, namely the large size of laminins, which make
its delivery to target locations extremely challenging. An effective way
to address this problem is to use shorter engineered proteins, such as
the chimeric laminin/nidogen protein or mini-agrin, shown to be effec-
tive in a LAMA2-MD mouse model (dyW/dyW; McKee et al., 2017; Rein-
hard et al., 2017). Probably in a near future, we will witness a new gen-
eration of laminin-binding proteins that, depending on the underlying
genetic defects, are able to replace defective domains of laminin and

promote the assembly of a stable and fully functional BM.
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