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Abstract  Harnessing natural-based renewable molecular resources to construct functional synthetic green 

polymers is a promising research frontier at the interface of sustainable/green chemistry, polymer chemistry and 

nanobiotechnology. As natural glycoprotein mimics/analogues and biocompatible building blocks of nanobio- 

materials, synthetic functional glycopolypeptides and their structural/functional analogues have attracted great 
attentions in recent years. This mini-perspective article reviewed current synthetic strategies and methods of 

glycopolypeptides and their analogues. The pros and cons of the synthesis protocols were discussed, moreover, 

possible future perspectives in this field were also stated. 
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Glycopolypeptides, are generally referred as polypeptides 

containing pendant sugar moieties, sometimes glycopeptide 
analogs such as chemical conjugates of polyamino acids/poly- 

peptides with polysaccharides/glycopolymers, are also referred 

to glycopolypeptides.[1] As natural glycoprotein mimics, syn-

thetic glycopolypeptides are able to be employed as artificial 
models to decipher the structures (such as α-helix, β-sheet and 

advanced architectures) and functions (such as aggregation, 

molecular recognition, cell adhesion, and signal transduction) of 

their natural glycopeptide/glycoprotein counterparts.[2] Moreo-
ver, they could also be utilized as biocompatible building blocks 

for construction of biocompatible, biodegradable, morpholo-

gy-varied and function-diversified nano-assemblies/aggregates 

as functional platforms towards biomedical applications.[3] 

To prepare functional glycopolypeptide and their analogues, 

to date, many synthetic strategies and functionalization/modi- 

fication methods have been developed.[4] In general, the syn-

thetic strategies of glycopolypeptides could be divided into 
three categories (Figure 1): (a) Synthesis of glycopolypeptides 

by post-polymerization glycosylation of synthetic polypeptides. 

Glycosides or sugar-containing moieties were grafted onto 

polyamino acid side chain/polypeptide backbones via chemical 
coupling reactions (activated ester coupling, isothiocyanide 

linking, click chemistry, thiol-ene/yne addition, methionine al-

kylation, and so on).[5] Among them, thiol-ene/yne and methio-

nine alkylation methods possess very high (near quantitative) 
grafting reactivity.[6] Nevertheless, in the “grafting to” approach, 

the grafting efficiency of sugar-containing moieties largely de-

pend on the key factors such as molecular hydrophobicity/ 

philicity, steric hindrance, reaction mediums and catalysts, 
which remain still challenges to be addressed; (b) Synthesis of 

glycopolypeptides by ring-opening polymerization (ROP) of 

glycosylated N-carboxyanhydride (glyco-NCA) monomers. The 

ROP approach to functional glycopolypeptide from functional 
NCA monomers can effectively avoid the drawback of incom-

plete coupling/grafting reaction in post-polymerization glycosyl-

ation.[7] Many glyco-NCA monomers were synthesized and 

 
Figure 1  Current synthetic strategies of glycopolypeptides 

and their analogues. 

successfully applied to the preparation of subsequent glyco-

peptides,[8] whereas the preparation and purification of many 

high polarity glycol-NCA monomers are hard-to-manipulate. 
Therefore, it is highly desirable to: 1. developing stable and 

easy-to-handle glycol-NCA monomers by choosing proper 

protection moieties and expanding the moieties’ diversity; 2. 

using efficient and easy-to-operate organic/polymer synthetic 
(e.g., “one-pot” or cascade glycosylation) methods, which need 

to be highly focused in future research; (c) Synthesis of 

glycopolypeptide analogues by glycosylation at the termini of 

polypeptides. In order to overcome the cumbersome prepara-
tion and purification process for glycopolypeptides and to ex-

pand the structural diversity, some glycopolypeptides ana-

logues were developed by coupling glycopolymer to the termini 

of polyamino acid/polypeptide via efficient “Click” reaction in 
recent years. By this means, monosaccharide, oligosaccharide 

and polysaccharide-containing glycopolymers can be effectively 

coupled to the end of polyamino acid/polypeptide chains, to 

obtain linear, branched and dendritic glycopolypeptides and 
expand the structural diversity.[9] The key issue in this area is 

the rational design of monomers, controlling the reactivity and 

polymer polydispersity, adaptivity of the block copolymers and 

linkage between each blocks.[10] Notably, efficient combination 
of multiple reactions (ROP, controllable free radical polymeriza-

tion, Click coupling, etc.) need to be further developed to pre-

pare glycopolypeptide analogues.[11] These structural-diver- 

sified glycopolypeptide analogues may serve as new artificial 
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models for the study of glycomics, bio-recognition/-adhesion, 

nano-biomaterials/theranostics,[12] as well as 3D-printable ma-
trix for cell/tissue engineering. 

Regarding the future of synthetic glycopolypeptide and their 

analogues, there are still vast spaces for extensive research 

and development. The following aspects need to be empha-
sized (Figure 2): (1) simplifying the reaction/synthesis steps and 

developing efficient purification strategies for the preparation of 

glycopolypeptides; developing green synthesis/polymerization 

processes by using natural-based renewable building blocks, 
environmental friendly reaction mediums (water, ionic liquid), 

and heavy metal-free catalytic processes (photocatalysis, 

organocatalysis and enzyme catalysis), solid-phase polypep-

tide synthesis may need to be considered, (2) expanding the 
topological diversity of the glycopolypeptides structures (such 

as hyperbranched structures, advanced symmetric/asymmetric 

structures, macrocyclic structures, as well as special 3D ge-

ometry such as Janus, Knots and Origami); (3) developing 
“smart” functional (stimuli-responsive, self-regulated/adaptive, 

as well as multifunction-intergrated) glycopolypeptides and 

analogues towards the requirement of precision and personal-

ized medicine; (4) design and synthesis of biofunction (such as 
bio-recognition and receptor targeting, signal transduction and 

molecular chaperone-simulating)-oriented glycopolypeptides  

to mimic the natural glycoproteins/glycopolypeptides;[13] (5) 

studying and elucidating the structure-function relationship 
(SFR) between the structures of glycopolypeptides and their 

physico-chemical/biological functions. 

 
Figure 2  Future perspective of synthetic glycopolypeptide 

and their analogues. 

By using the synthesized functional glycopolypeptide as 

building blocks, further incorporating (self or forced) 

supramolecular assembly and controllable nanotechnology,[14] 
new series of high performance glycopolypeptide nanoasse- 

mblies could be created. We can anticipate that, these “green, 

smart and sweet” functional biomimetic nanoassemblies could 

serve as sustainable and controllable nanoplatforms towards 
future biomedical applications. 
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