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Abstract---We investigated the hypotheses that two different varieties of Arabidopsis thaliana 

show differences in physiology and terpene production. The two varieties of A. thaliana used in this 

study were wild-type (WT) and transgenic line (CoxIV-FaNES I) genetically modified to emit 

nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, 

fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For 

both types, we found co-eluting α-pinene+β-ocimene, limonene, and humulene in leaves; and in the 

roots we found co-eluting α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and 

humulene. At the end of the growing cycle, COX plants tended to have lower pools of terpene 

compounds in their leaves, with 78.6% lower photosynthesis rates and 30.8% lower electron 

transport rates, compared with WT plants at that time. The maximal photochemical efficiency 

Fv/Fm was also significantly lower (25.5%) in COX plants, indicating that these varieties were 

more stressed than WT plants. However, COX plants had higher (239%) root terpene contents 

compared to WT plants. COX plants appear to favor root production of volatile terpenes rather than 

leaf production. Thus we conclude that there were significant differences between COX and WT 

plants in terms of terpenoid pools, stress status and physiology. 

--------------------------------- 

1 This text was submitted by the authors in English. 

--------------------------------- 

Abbreviations: A---CO2 uptake; COX--- transgenic line (CoxIV-FaNES I); ETR---electron transport 

rate; Fv/Fm---maximum photochemical efficiency of PSII; F/F’m---actual photochemical 

efficiency of PSII; gs---stomatal conductance; TPSs---terpene synthases; VOCs---volatile organic 

compounds; WT---wild-type. 
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INTRODUCTION 

Plants produce a variety of volatile organic compounds (VOCs) of which isoprenoids are the 

most representative and abundant group [1]. Mono- and sesquiterpenes are C10 and C15 isoprenoid 

compounds that can be produced in the chloroplasts (MEP pathway) and in the cytosol (MVA 

pathway) [2]. One of the generally accepted physiological functions of these isoprenoids is to avoid 

damage in cellular membranes when the plants are under physiological stresses, for example, water 

stress, high temperatures, oxidative stress and high irradiation [3]. Mono- and sesquiterpenes also 

have ecological functions; they contribute to the defense strategies of the plants against pathogen 

attack [4], they can act as pollinator attractants [1], and may also play a role in allellopathy [5]. 

Terpenoids can also have impact on regional air quality reacting with anthropogenic and biogenic 

nitrogen oxides, contributing to tropospheric ozone and photochemical smog formation [6]. 

Volatile isoprenoids are mostly produced and emitted by the aerial parts of the plant (leaves 

and flowers). However, Janson et al. [7] suggested roots as a possible source of monoterpenes in 

soil and studies also show that there is terpenoid production and emission in roots [8]. This has been 

supported by measurements of monoterpene emissions in laboratory experiments from pine roots 

with qualitative and quantitative evidence of the existence of monoterpenes in soils under pine trees 

[9]. Root emitted terpenes have an ecological role in plant-animal interactions; for example, 

nematodes are attracted to emission of (E)--cayophyllene from western corn maize roots damaged 

by rootworm [10]. 

Arabidopsis thaliana flowers produce and emit terpenes [11, 12]. This species is thought to 

have over 30 putative genes associated with terpene synthases (TPSs), a multigene family [12, 13]. 

Most of them are almost exclusively expressed in flowers [12, 14, 15].  

Other parts of A. thaliana are likely to produce and emit terpenes: trace amounts of the 

monoterpenes limonene and -myrcene were emitted within its leaves [12], -ocimene was 

emitted by rosette leaves [16] and even a release from roots to the rhizosphere (namely, 1,8-cineole) 

was suggested [17]. Although Chen et al. [12] reported leaf and root emissions, there is generally a 

lack of information regarding leaf or root production of terpenes in this species. 

Recent studies show wide genetic variation among A. thaliana from diverse habitats. Different 

varieties of this species are likely to have different genotypes that might affect both primary and 

secondary metabolism [18]. We aimed to test the prediction that different Arabidopsis varieties will 

show differences in physiology and terpene content in leaves and roots. The two selected varieties 
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were a wild-type (WT) and a transgenic line (CoxIV-FaNES I) with linalool/nerolidol synthase, 

targeted specifically to the mitochondria (COX) developed by Kappers [19]. These varieties were 

selected as contrasting types with high potential to display such differences.  

 

MATERIALS AND METHODS 

Plant material and plant growth. We used 15 specimens each of Arabidopsis thaliana 

ecotype Landsberg erecta (Ler-0) (WT) and the transgenic ecotype Columbia CoxIV-FaNES 1 line 

(COX) supplied by Iris Kappers (Wageningen UR, Plant Research International), which expresses a 

linalool/nerolidol synthase gene. The seeds were germinated for 4 days at 4ºC in Petri dishes, and 

were cultivated in 475 cm3 plastic pots filled with peat and perlite (2 : 1, v/v) in a controlled 

environment chamber (14 h photoperiod, 130–150 mol quanta /(m2 s), 21ºC air temperature).  

The growth medium used was based on that optimized by Gibeaut et al. [20]. The final 

contents were 1.5 mM Ca(NO3)2, 1.25 mM KNO3, 0.75 mM MgSO4, 0.5 mM KH2PO4, 70 µM Fe-

diethylenetriamine pentaacetate, 50 µM KCl, 50 µM H3BO3, 10 µM MnSO4, 2 µM ZnSO4, 1.5 µM 

CuSO4, and 0.075 µM ammonium molybdate (chemicals were from Fluka, Buchs, Switzerland). 

Plant measurements: basal rosette diameter, CO2 exchange and chlorophyll 

fluorescence. The diameter of the basal rosette was measured in each of the 30 plants 5 times 

throughout the experiment at 15, 18, 22, 28 and 31 days after germination respectively. CO2 uptake 

(A) and stomatal conductance (gs) were measured in leaves of the basal rosette only at the end of the 

growing cycle 31 days after germination of the seeds, using a portable non-dispersive infra-red gas 

analyzer (IRGA), model ADC-LCi (ADC Inc. Hoddesdon, Hertfordshire, England) connected to an 

Arabidopsis leaf chamber (ADC Inc. Hoddesdon, Hertfordshire, England). A and gs values were 

expressed on a projected leaf area basis, which was measured with Li-Cor 3100 Area Meter (Li-Cor 

Inc., Nebraska, United States). 

The maximum photochemical efficiency of PSII (Fv/Fm) and the apparent photosynthetic 

electron transport rate (ETR) were also measured at the end of the growing cycle with a PAM-2000 

fluorometer (Walz, Effeltrich, Germany). ETR was estimated as: 

ETR = F/F’m × PPFD × 0.84 × 0.5, 

where F/F’m (actual photochemical efficiency of PSII) was calculated within the software, 0.84 is 

the coefficient of absorption of the leaves, and 0.5 is the fraction of electron involved in the 

photoexcitation produced by one quanta [21]. Chlorophyll fluorescence was measured twice: after 

turning the lights on and after 7 hours of lighting. The maximum PSII photochemical efficiencies 

(Fv/Fm) were measured after keeping leaves in the dark for at least 25 min. 
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Laboratory analyses: leaf and root terpene contents at the end of the growth cycle. 

Samples for terpene extractions were taken from leaves and roots 35 days after germination, from 

the plants growing in the controlled environmental chamber. Leaf and root material was ground in 

liquid nitrogen and repeatedly extracted (three times) with pentane, with a non-terpenoid internal 

standard (0.1 l dodecane). The pentane-extracted leaves and roots were centrifuged at 10 000 rpm 

for 10 min. Extracts were then concentrated with a stream of nitrogen, because low concentrations 

were expected. 

Monoterpene separation was conducted using a GC-MS system (Hewlett Packard HP59822B, 

Palo Alto, California, USA). Extracts (3 l) were injected into the GC-MS system and passed into a 

30 m x 0.25 mm x 0.25 mm film thickness capillary column (Supelco HP-5, Crosslinked 5% pH Me 

Silicone. A full scan method was used to perform the chromatography. The GC oven was 

programmed to start at 40ºC, then the temperature was increased at 30ºC/min up to 70ºC, and 

thereafter at 10ºC/min up to 150ºC, when the temperature was maintained for 5 minutes, and 

thereafter at 70ºC/min up to 250ºC, which was maintained for another 5 min. Helium flow was 1 

ml/min. For both varieties of A. thaliana, two blank analyses per day were also conducted.  

The identification of terpenes was conducted by comparison with standards from Fluka 

(Buchs, Switzerland), and with the GCD Chemstation G1074A HP with the Wiley275 library. The 

internal standard dodecane was used to determine extraction efficiency. Dodecane did not co-elute 

with any terpene. Calibrations was performed with the common terpenes -pinene, 3-carene, -

pinene, -myrcene, p-cymene, limonene, and sabinene standards once every five analyses. The 

quantification of the terpenes was conducted using the fractionation product with mass 93 [22]. 

Terpene calibration curves (n=4 different terpene contents) were always significant (R2 > 0.99) in 

the relationship between signal and terpene contents. The most abundant terpenes had very similar 

sensitivity (differences were less than 5%). Total terpene contents were calculated as the sum of 

these main terpenes. 

Leaf and root dry weights were determined after drying the plant material at 60ºC until 

constant weight in each of the 30 plants at the end of the growing cycle 31 days after germination of 

the seeds. 

Statistical analyses. Analysis of variance (ANOVA) with Fisher post hoc tests for all the 

studied dependent variables, and Student’s t-tests were used to test the significance of differences in 

response between transformed (COX) and wild type plants (WT), using R 2.7.2 software for 

Windows (R Foundation for Statistical Computing, Vienna, Austria). Differences were considered 

significant at a probability level of P < 0.05. 
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RESULTS 

Growth: mean diameter of the basal rosette 

 

The growing pattern of WT and COX varieties differed: at the end of the experiment COX 

plants achieved 34% larger basal rosettes compared with WT plants (table 1). WT plants reached 

their maximum diameter half way through the experiment, with very low increase during the two 

last weeks. During this time WT plants increased from 4.16 to 4.72 cm. COX plants had larger 

basal rosettes diameters that increased continuously during the 4 weeks of the experiment. During 

the two last weeks of the experiments, COX plants grew from 4.0 to 6.3 cm (table 1). 

 

Plant biomass 

The dry weight of the aerial part of the plants was significantly higher in WT (0.082 ± 0.009 

mg) compared with COX plants (0.054 ± 0.007 mg) (table 2). The dry weight of the roots was 

significantly lower in WT (0.056 ± 0.009 mg) compared with COX plants (0.141 ± 0.06 mg) (table 

2). 

 

Net photosynthetic rates, stomatal conductance and fluorescence measurements at the end of 

the growth cycle 

Net photosynthetic rates at the end of the experiment (A) were 78.6% lower in COX plants 

than in WT plants (P < 0.001; table 2). Stomatal conductance (gs) tended to be lower in COX plants 

compared to WT plants (not significant P = 0.12, table 2). The apparent photosynthetic electron 

transport rate (ETR) was 30.8% lower (P < 0.001) in COX plants than in WT plants (table 2). The 

maximum photochemical efficiency of PS II (Fv/Fm) was 25.5% lower (P < 0.001) in COX plants 

than in WT plants (table 2). 

 

Leaf terpene contents 

For both varieties, leaves contained α-pinene+β-ocimene (WT 42.67 ± 20.64 µg/g dry wt, 

COX 10.55 ± 2.45 µg/g dry wt), limonene (WT 24.64 ± 6.73 µg/g dry wt, COX 11.58 ± 2.81 µg/g 

dry wt) and humulene (WT 10.64 ± 5.76 µg/g dry wt, COX 34.31 ± 7.65 µg/g dry wt) (fig. 1, table 

3). 

There was no significant difference in leaf terpene contents between the two varieties, but 

there was a tendency for higher terpene contents in WT plants (fig. 2). Other unidentified 

compounds were found: “unidentified compound 1” (possibly myrtenal), “unidentified compound 

2” (possibly β-ionone) and “unidentified compound 3” (fig. 1, table 3). COX plants tended to 

Table 1 

Table 2 

Table 3 

Fig. 1 

Fig. 2 
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produce lower amounts of terpenes than WT plants (fig. 1). The “unidentified 2” compound was not 

produced in COX plants (fig. 1). 

Root terpene contents 

For both varieties, roots contained α-pinene+β-ocimene (WT – 9.5 ± 1.32 g/g dry wt, COX 

– 21.58 ± 3.61 µg/g dry wt), sabinene+β-pinene (WT – 32.16 ± 3.66 µg/g dry wt, COX – 100.91 ±

15.34 µg/g dry wt), β-myrcene (WT – 0 ± 0 µg/g dry wt, COX – 23.44 ± 5.95 µg/g dry wt), 

limonene (WT – 2.35 ± 1.25 µg/g dry wt, COX – 16.75 ± 2.56 µg/g dry wt) and humulene (WT – 

5.44 ± 1.45 µg/g dry wt, COX – 2.97 ± 1.34 µg/g dry wt) (fig. 3, table 3).  

COX plants showed significantly (P < 0.001) higher (239%) contents of terpenes compared 

WT plants (fig. 4). Other terpenes were found: “unidentified 3” and “unidentified 4” (fig. 3, table 

3). 

DISCUSSION 

Compounds detected in leaf and root extracts 

There is clear evidence of terpene production in leaves and roots of both WT and COX 

varieties of A. thaliana. Our results agree with and expand the previous results who found traces of 

terpenes in leaves of Arabidopsis thaliana plants, such as β-caryophyllene, thujopsene, β-farnesene, 

and β-chamigrene [12, 23]. 

We did not find linalool, nerolidol or DMNT ((E)-4,8-dimethyl-1,3,7-nonatriene) in the 

foliage and root extracts of the COX plants as it was expected. Based on previous findings 

differences in the outcome of linalool/nerolidol synthase could be due to allelic variation in 

encoding functional terpene synthase genes, conversion of the enzyme product into other 

compounds as found by Aharoni et al. [11], differences in subcellular sites of gene expression, 

different activities of the terpene synthase together with different substrate pools available for the 

enzyme might be responsible for the product outcome [11, 14], or silent metabolism [24]. It is 

possible that no linalool or nerolidol was produced; in fact, Kappers et al. [19] detected no linalool 

emissions from any of their plants’ foliage, and no nerolidol in 25% of the transformed (COX) 

plants. It is also possible that linalool might have been produced in leaves but released immediately 

after production (similar to isoprene). It is also possible that our extraction technique would not 

have captured such compounds. The most likely possibility is that most of linalool and nerolidol are 

produced in Arabidopsis flowers, but we did not investigate floral emissions because we removed 

the flowers to retard the senescence processes in the leaves [25]. Aharoni et al. [11] found small 

Fig. 3 

Fig. 4 
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amounts of linalool (from 0.02 to to 13.3 µg/day plant depending on the transgenic line) in the 

headspace of transformed Arabidopsis plants, with the FaNES 1 gene expressed in the plastids, 

while Kappers et al. [19] expressed the FaNES 1 gene in the mitochondria and also observed 

nerolidol emissions from the transformed plants’ foliage. Kappers et al. [19] did not make clear in 

which plastids the gene was expressed. If it was only in the chloroplasts, then the compounds 

detected in the root are likely to have been synthesised in the chloroplasts and differentially 

translocated down to the roots. However Hedtke et al [26] indicate that target plastids might be both 

chloroplasts and non-pigmented leucoplasts in the roots. In which case, the root terpene content is 

likely to be synthesised within the root tissue. Further experimentation is needed to confirm this. 

But in any case, lack of nerolidol and linalool does not detract in any way from the aims and 

conclusions of this work. 

 

Effect of variety 

There were differences in the morphology of the basal rosette in the two varieties used in our 

study. The WT had higher numbers of smaller leaves that were shed and replaced when they 

reached a certain size, while the COX species had fewer leaves whose length increased constantly 

along the vegetative cycle. Despite the fact that the two varieties (WT and COX) are 

morphologically different, the experimental plants were comparable in terms of health and 

phenology to satisfy the aims of the experiment, providing two different varieties of the same 

species.  

There were differences in growth in both varieties of Arabidopsis. WT plants reached their 

maximum diameter before the COX plants (table 1). The COX plants’ diameters increased 

gradually and consistently from the germination until the mature state. Kappers et al. [19] also 

found that first- and second-generation COX plants showed some growth retardation of the basal 

rosette. Other differences in growth of Arabidopsis varieties have been previously reported: 

Beemster et al. [27] found that growth of roots varied substantially between varieties. 

Different varieties of A. thaliana showed evidence of differences in primary and secondary 

metabolism, indicating that metabolism in the two varieties is affected either by their different 

genotype, or by different post-translational control of metabolic processes. At the end of the 

experiment (21 days after germination), COX plants showed lower photosynthetic activity and 

production in leaves than the WT plants. Comparing COX and WT plants, we found that stomatal 

conductance (table 2) and calculated electron transport rates (ETR) were lower in COX plants than 

in WT, and this appeared to result in lower photosynthesis rates (table 2). These results might 

indicate that the COX plants were more stressed than WT plants. In addition, the mean ratio Fv/Fm 
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was significantly lower in COX plants compared with WT, which also indicates that the COX 

plants might have been suffering a degree of stress at the end of the experiment [28], although the 

plants were grown in identical conditions (see MATERIALS AND METHODS section).  

COX plants presented lower leaf weight than WT plants but higher root weight (table 1). 

These plants, under stress conditions may reallocate carbon from its leaves towards its roots. 

Reallocation of primary compounds within the plant was shown to reflect a strategy to survive the 

damaging effects of herbivores [29]. Previous authors have shown that stressed plants could be 

characterized by high terpene biosynthesis in roots [10]. Rasmann et al. [10] showed that 

production and emission of root terpenes in maize plants is related to indirect defense by attracting 

entomopathogenic nematodes.  

The carbon reallocation theory is supported by terpene foliar and root productions (figs. 2 and 

4): there was a tendency for COX plants to have lower foliar terpene contents than the WT plants, 

though this difference was not significant, and root terpene contents were much higher in COX 

plants than in WT plants. Basyuni et al. [30] found that leaf isoprenoid contents generally declined 

while root contents increased in salt-stressed mango plants. In our study, the same relationship of 

lower leaf terpene contents and higher root terpene contents in the COX plants also reflects the 

higher stress status in the COX plants, as indicated by the lower Fv/Fm values.  

 

Concluding remarks 

We have shown that a modified Arabidopsis variety (which emits nerolidol from 

mitochondrial synthesis) directs resources towards root production of terpenes rather than leaf 

production of these compounds. These plants also have generally lower carbon assimilation rate at 

the end of the growth cycle compared with wild-type plants.  

Further work of a similar nature is needed on other plant species, particularly root crop species 

that have been genetically modified or bred for certain characteristics of pest resistance and 

productivity. Breeding or genetic modifications resulting in redirection of resources to root 

production of terpenes might be advantageous for the defence strategies of root crops against soil 

herbivores and pathogens. However, the associated lower carbon assimilation might adversely 

affect root crop yield.  
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Table 1. Basal rosette diameter (cm) evolution for wild type (WT) and transformed (COX) A. 

thaliana plants after germination 

Days after germination WT COX P-values 

15 4.16 ± 0.32 4.01 ± 0.65 0.83 (ns) 

18 4.14 ± 0.25 4.27 ± 0.71 0.85 (ns) 

22 4.60 ± 0.32 4.64 ± 0.70 0.86 (ns) 

28 4.71 ± 0.36 5.81 ± 0.68 0.015 * 

31 4.72 ± 0.35 6.33 ± 0.55 0.0051 ** 

Statistical significance for the effect of variety is indicated (WT n = 15, COX n = 15); ns – not 

significant, * P < 0.05, ** P < 0.01. 
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Table 2. Leaf and root weights, net photosynthetic rates, stomatal conductance, apparent 

photosynthetic electron transport rate and photochemical efficiency (Fv/Fm) for wild type (WT) and 

transgenic (COX) A. thaliana plants 35 days after germination 

Variables Units WT COX P-values 

Leaf weight mg dry wt 0.082 ± 0.009 0.054 ± 0.007 < 0.05 

Root weight mg dry wt 0.056 ± 0.009 0.141 ± 0.060 < 0.05 

Net 

photosynthetic 

rates 

µmol/(m2 s) 1.58 ± 0.17 0.96 ± 0.17 < 0.001 

Stomatal 

conductance 

mol/(m2 s) 0.036 ± 0.001 0.030 ± 0.001 ns (0.12) 

Electron transport 

rate 

µmol/(m2 s) 0.55 ± 0.02 0.47 ± 0.02 < 0.001 

Fv/Fm 0.70 ± 0.01 0.53 ± 0.03 < 0.001 

Statistical significance for the overall effect of variety is indicated (WT n =15, COX n = 15); ns – 

not significant. 



15

Table 3. Retention time and most abundant ions (m/z) for the main terpenes found in leaves and 

roots 

Compound Tissue Retention 

time, min 

Most abundant ions Type of 

terpene 

α-Pinene/β-

ocimene 

leaf, root 7.79 93.00 (28%), 90.95 (9.05%), 

92.00 (8.51%), 27.05 (4%) 

monoterpene 

Sabinene/β-

pinene 

root 9.18 94.00 (12.95%), 93.15 

(12.39%), 41.05 (9.65%), 

28.05 (7.22%), 31.10 (7.21%) 

monoterpene 

β-Myrcene root 9.69 105.00 (10.55%), 93.10 

(7.40%), 31.00 (6.72%), 

119.95 (5.03%), 55.00 (5.01%) 

monoterpene 

Unidentified 4 root 10.26 43.10 (34.34%), 107.95 

(14.11%), 150.00 (11.36%), 

41.00 (9.89%), 92.90 (1.02%) 

monoterpene 

Limonene leaf 10.47 68.05 (7.07%), 67.05 (5.01%), 

93.00 (5.43%), 43.05 (5%), 

57.05 (4.14%) 

monoterpene 

Unidentified 1 

(possibly 

myrtenal) 

leaf 15.00 79.00 (6.53%), 28.00 (5.93%), 

107.00 (5.88%), 90.95 

(5.17%), 93.10 (3.58%) 

monoterpene 

α-Humulene 

(leaf) 

leaf, root 16.22 93.00 (21.39%), 80.00 

(7.15%), 121.05 (5.54%), 

91.00 (4.44%), 92.10 (4.35%) 

sesquiterpene 

Unidentified 2 

(possibly β-

ionone) 

leaf 16.53 177.00 (20.69), 43.00 

(12.44%), 122.95 (12.21), 

135.00 (3.35%), 93.00 (1.64%) 

sesquiterpene 

Unidentified 3 leaf, root 17.40 149.00 (43.49%), 176.95 

(9.05%), 150.00 (5.11), 175.95 

(3.82%), 93.00 (2.2%) 

sesquiterpene 
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FIGURE CAPTIONS 

Fig. 1. Individual foliar contents of identified and unidentified terpenes for wild type (WT, 1) 

and trangenic (COX, 2) A. thaliana plants 35 days after germination.  

Vertical bars indicate standard errors of the mean (WT n = 15; COX n = 15). Significant 

differences among varieties are indicated (+ P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001).  

Fig. 2. Total leaf terpene contents for wild type and transgenic (COX) A. thaliana plants 35 

days after germination.  

“Total” only includes the identified terpenes α-pinene+β-ocimene, limonene, and humulene. 

Vertical bars indicate standard errors of the mean (WT n = 15; COX n = 15). 

Fig. 3. Individual root contents of identified and unidentified terpenes for wild type (WT, 1) 

and trangenic (COX, 2) A. thaliana plants 35 days after germination.  

Vertical bars indicate standard errors of the mean (WT n = 15; COX n = 15). Significant 

differences among varieties are indicated (*** P < 0.001).  

Fig. 4. Total root terpene contents for wild type and trangenic (COX) A. thaliana plants 35 

days after germination.  

“Total” includes α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and 

humulene. Vertical bars indicate standard errors of the mean (WT n = 15; COX n = 15). Significant 

differences among varieties are indicated (*** P < 0.001).  
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Fig. 3 
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Fig. 4 
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