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Abstract—Advances in hyperspectral sensors have led to a sig-
nificantly increased capability for high-quality data. This trend
calls for the development of new techniques to enhance the way
that such unprecedented volumes of data are stored, processed,
and transmitted to the ground station. An important approach to
deal with massive volumes of information is an emerging technique,
called compressive sensing, which acquires directly the compressed
signal instead of acquiring the full dataset. Thus, reducing the
amount of data that needs to be measured, transmitted, and stored
in first place. In this article, a hardware/software implementation in
a system-on-chip (SoC) field-programmable gate array (FPGA) for
compressive sensing is proposed. The proposed hardware/software
architecture runs the compressive sensing algorithm with a unitary
compression rate over an airborne visible/infrared imaging spec-
trometer sensor image with 512 lines, 614 samples, and 224 bands
in 0.35 s. The proposed system runs 49× and 216× faster than an
embedded 256-cores GPU of a Jetson TX2 board and the ARM
of the SoC FPGA, respectively. In terms of energy, the proposed
architecture requires around 100× less energy.

Index Terms—Compressive sensing, field-programmable gate
arrays (FPGA), hyperspectral imagery, on-board processing, real
time.

I. INTRODUCTION

HYPERSPECTRAL sensors acquire images containing
hundreds of spectral data bands with high spatial and

spectral resolution. The high spectral resolution of these sensors
allows an accurate identification of the different materials con-
tained in the scene of interest. This feature among others, has turn
hyperspectral images into a powerful tool in many applications
in the fields of agriculture [1], surveillance [2], [3], medical
imaging [4], food safety [5], [6], forensic applications [7], [8],
and many others [9].
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Considering the collected data in a 2-D spatial domain of
megapixel size and with the spectral dimension with hundreds of
bands, one can represent the data as a 3-D image cube comprising
a huge amount of data. Consequently, its scanning, storage,
and digital processing is challenging [10]. In remote sensing
scenarios where hyperspectral images are collected on-board
satellites and need to be transferred to the Earth’s ground station,
an efficient compression of such images is mandatory [11].

The compressed sensing (CS) theory proposed in [12] and
[13] has received considerable interest since it states that if a
signal is sparse itself, thus it can be sampled with much less
data than those dictated by the Shannon–Nyquist theorem and
reconstructed accurately with these sampled data [14], [15].
Fortunately, the structure of hyperspectral data is sparse [16],
[17] and it can be modeled by a linear mixing model, con-
sidering that the total set of pixel vectors are represented by
a few number of endmembers [9], [18]. Additionally, these
images also present a high correlation in the spatial domain,
which may improve the compression ratio and the quality of
the reconstructed image [19]. These hyperspectral features have
encouraged recent developments and implementations of CS
techniques on hyperspectral imagery [20]–[26].

Running compressive sensing algorithms in on-board pro-
cessing platforms is subject to throughput and power constraints.
Images are acquired at a certain rate, and therefore, these plat-
forms must be fast enough for real-time processing to avoid
image storage. For example, the AVIRIS senses 512 pixels of
224 spectral bands in 8.3 ms. So, 614 samples must be processed
in about 5 s. On-board processing is also subject to power
constraints. Thus, platforms must be designed for best energy
efficiency with reduced power.

Since CS measurement process is based on performing a
large number of parallel dot products between random vectors
and the signal of interest, graphics processing units (GPUs)
are well suited to perform this task. Several implementations
of CS and random projections algorithms over hyperspectral
data with GPUs have been proposed [27]–[29], concluding that
by using GPUs, it is possible to achieve real-time performance
for the random projection step. On the other hand, the power
requirements of this hardware make them ineffective for on-
board applications. Over the last years, the advances in the
semiconductor industry and the huge interest in developing
mobile devices have allowed companies such as NVIDIA to
develop low power GPUs. For example, Jetson TX2 board has
a low power consumption GPU, that nevertheless, can achieve
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high throughput in image processing applications at the same
time [11], [30], [31].

Field-programmable gate arrays (FPGAs) are also a good
platform for on-board processing systems since they have high
computational performance, compact size, reduced weight, and
low power consumption among other characteristics. Addition-
ally, FPGAs permit the adaptation of the hardware to the needs of
different missions, which make them appealing for satellite plat-
forms. [32]–[36]. However, in order to include FPGA in satellite
payload, they must be resistant to damages or malfunctions
caused by ionizing radiation, present in the harsh environment
of outer space [37]–[39]. The available rad-hard FPGAs (e.g.,
Virtex-5QV) easily provide sufficient resources to implement
the proposed architecture with the same performance and with
fault tolerance.

In this article, a hardware/software architecture is proposed
to run the CS method. The architecture is implemented in a
system-on-chip (SoC) FPGA. The performance of the system is
compared to the execution of the algorithm in the ARM of the
SoC FPGA and in an embedded GPU on a Jetson TX2 board. The
work compares the performance and the power consumption of
the three implementations. The results indicate that the proposed
system delivers a peak performance of 96.8 GOPs (Giga Oper-
ations per second). and runs the compressive sensing algorithm
with a unitary compression rate over an AVIRIS sensor image
with 512 lines, 614 samples, and 224 bands in 0.35 s. Compared
to the other two platforms, it runs 49 times and 216 times faster
than the embedded GPU and the ARM, respectively. In terms
of energy, the proposed architecture requires around 100 times
less energy than the other two solutions.

The rest of this article is organized as follows. In Section II,
the compressive sensing method is summarized. Section III
describes the design and implementation of the proposed hard-
ware/software architecture. In Section IV, a set of experiments
are conducted to demonstrate the effectiveness of the archi-
tecture to execute compressed sensing. Also, the architecture
is compared to other computing platforms. Finally, Section V
concludes this article and presents future lines of research work.

II. COMPRESSIVE SENSING METHOD

In this section, the CS method termed hyperspectral coded
aperture (HYCA) [22] is briefly described. This method for
its characteristics is well suited to be developed in a parallel
fashion [27]. It takes advantage of the following two central
properties of most hyperspectral images:

1) the spectral vectors live systematically in low-dimensional
subspaces [17];

2) the spectral bands present a high correlation in the spatial
domain.

The former property allows to represent the data vectors
using a reduced set of spectral endmembers due to the mixing
phenomenon [18] and also exploits the high spatial correlation
of the fractional abundances associated to the spectral end-
members. HYCA performs CS in the spectral domain, for this
purpose, a set of q inner products between random vectors and
the image pixels is performed, with q lower than the original

number of bands of the hyperspectral data bands. Thus, the
size of the compressed signal is bands

q times smaller than the
original. This operation may be represented as yp = Hpxp for
p ∈ {1, . . . , n}, where n is the number of pixels of the image,
yp ∈ Rq is the pth compressed pixel, Hp is a matrix containing
the random vectors used for the measurement process for the
pth pixel, which is represented as xp ∈ Rbands. Due to the
fact that the number of pixels n in a given scene may be very
large, for instance, an AVIRIS sensor acquire for each image
scene a set of 512 scans containing 614 samples and 224 bands,
which yields approximately 140 MB. Thus, storing in memory
different matrices Hp for p ∈ {1, . . . , n} is unattainable, the
HYCA measurement strategy splits the dataset into different
windows of size m = ws× ws, and then, repeat the matrices
Hi used in each window, thus requiring to store in memory
just m different Hp matrices. Formally, the pseudocode of the
compressive sensing method is given by Algorithm 1.

Algorithm 1 considers that the matrix X is represented as
a 2-D matrix of size lines × samples, where each entry of the
matrix (pixel) is a vector of bands and that the disposition on
memory follow the Band-Interleaved-by-Pixel format. For each
pixel X(i, j), q inner products are calculated and accumulated
between its vector of bands and a vector of matrix H. The result
is stored in the matrix Y. Each inner product with a vector
of H produces one element of the vector associated with the
compressed pixel.

Considering that the measurements are sent from the on-
board platform, the bulk of the processing to reconstruct the
original image is performed on the Earth’s ground station. The
reconstruction of the original image can be formulated as an
optimization problem, where it is assumed that the dataset live in
a low-dimensional subspace [17]. Furthermore, the abundances
exhibit a high spatial correlation and must be nonnegative, these
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features are exploited for estimating z using the following:

min
z≥0

(1/2)‖y −Hz‖2 + λTVTV(z). (1)

Therefore, the minimization of (1) aims at finding a solution
that is a compromise between the fidelity to the measured
data, enforced by the quadratic term (1/2)‖y −Kz‖2, and the
properties enforced by the total variation regularizer TV(z),
that is piecewise smooth image of abundances. The relative
weight between the two characteristics of the solution is set the
regularization parameter λTV > 0.

To solve the convex optimization problem in (1), a set of
new variables per term of the objective function were used and
the ADMM methodology [40] has been adopted to decompose
very hard problems into a cyclic sequence of simpler problems.
Further details on the algorithm implementation and its paral-
lelization can be found in works [27], [41].

III. DESIGN AND IMPLEMENTATION OF THE

HARDWARE/SOFTWARE ARCHITECTURE

In this section, the hardware/software architecture to run the
compressive sensing algorithm is described. The methodology
followed to design the hardware architecture consisted of the
following steps.

1) Algorithm optimization: The algorithm was reorganized
to improve data accesses from external memory. Loop
tilling exploits spatial and temporal locality allowing data
to be accessed in blocks (tiles) permitting to execute the
operations over a block of data stored in on-chip memory.

2) Architecture design: Design of a hardware/software ar-
chitecture where the hardware runs the compute intensive
operations of the algorithm and the processor controls the
cycles of the algorithm and data transfers from/to external
memory.

A. Algorithm Optimization

The original algorithm slides sequentially over the input pixels
of the hyperspectral image. The problem with this approach is
that the matrix H is not reused by the next pixel. So, unless the
local memory is enough to hold all ws × ws H matrices, each
H matrix is read lines×samples

ws×ws times from main memory. This
introduces a penalty in the execution time of the algorithm.

Since there are no data dependencies between the calculation
of different output pixels and there are no constraints over the
order with each output pixels must be produced, a loop tilling
technique has been applied to the algorithm that guarantees that
each matrix H is only read once from the main memory (see
Algorithm 2).

In the optimized algorithm, each different matrix H is only
read once and used in all pixels multiples of the window size.
Each matrix H is then reused lines

ws × samples
ws times before the

next matrix H is read. Also, each pixel is reused q times in
the calculation of the inner products between the pixel and the
vectors of matrix H.

B. FPGA Architecture

This section presents the proposed hardware/software imple-
mentation of Algorithm 2 described in the previous section.
The architecture is designed to support real-time processing of
hyperspectral images acquired from the AVIRIS sensor. AVIRIS
is a whiskbroom scanning system that collects data in a 12-bit
quantization. Each image contains 614 × 512 pixels comprising
224 spectral bands in the range from 370 to 2500 nm.1 Radiance
values are stored, after onboard calibration, with 16-bit inte-
gers [42]. Thus, the proposed architecture use 16 bits short inte-
ger (int16) that guarantees enough precision for the algorithm.

The architecture consists of a general-purpose processor
(ARM) and a dedicated hardware accelerator to run the core of
the algorithm. Algorithm 2 was partitioned into the accelerator
and the processor. The processor controls the whole algorithm,
namely the cycles in lines 1, 2, 6, and 7 of the algorithm. In
lines 3–5 and lines 8–10, the processor configures a set of direct
memory access (DMAs) to send matrix H and the input image
to the hardware. Lines 11–13 are implemented in a hardware
consisting of the inner product calculation. The compressed
image is sent back to the main memory. The block diagram
of the architecture is illustrated in Fig. 1.

The architecture contains an ARM processor with access to
external memory and to the accelerator implemented in the

1[Online] Available: https://aviris.jpl.nasa.gov/html/aviris.instrument.html

https://aviris.jpl.nasa.gov/html/aviris.instrument.html
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Fig. 1. Hardware/Software architecture designed to run the compressive sens-
ing algorithm.

programmable logic of the FPGA. The transfer of data between
the external memory and accelerator in the programmable logic
is done through four high-performance (HP) ports using four
DMA blocks. The data dispatch and interconnect (DPI) block
is responsible for forwarding data between DMA buffers and
on-chip memories used to store the matrices of the algorithm
to be processed by the inner product module. Block DPI is
configured and controlled by the processor.

The architecture can be implemented in a non-SoC FPGA
replacing the processor of the SoC FPGA by a soft processor or
a dedicated controller for a fixed algorithm configuration.

The inner product block implements the inner products of
the algorithm (lines 11–13). To improve the performance of
the solution, multiple values are read from local memories and
calculated in parallel (see Fig. 2).

All bands of a pixel can be read and multiplied by an H
vector in parallel. More parallelism can be exposed by unrolling
the cycle of line 11 (parallel inner products for different q).
The inner product block is statically configurable in terms of
parallel multipliers and unrolling factor, permitting to optimize
the architecture for a required throughput and available FPGA
resources. When unrolled, multiple inner products are calculated
in parallel, one for each value of q. The example illustrated in
Fig. 2 and later used in the tested implementations, corresponds
to an implementation of the cycle unrolled four times.

The output of the multipliers are accumulated with an adder
tree. The adder tree guarantees full arithmetic, that is, adders
of each subsequent level have an extra bit to represent the
result to keep full precision. The number of levels of the adder
tree, l, depends on the number of multipliers, Nmult, that is:
l = �log2Nmult�. The accumulator (ACC) in the end of the
adder tree is required if the number of multipliers is lower than
the number of bands. In this case, the inner product must be
executed in multiple steps and the intermediate results are accu-
mulated in ACC. For example, to process 224 bands with only
112 multipliers, the architecture determines the inner product of

the first 112 bands and the result is accumulated with the inner
product of the next 112 bands. Therefore, in this case, it takes
two steps. To improve the throughput of the circuit, the whole
datapath is pipelined, illustrated with gray lines (registers) in the
figure.

After calculating the inner products, the results are truncated
back to 16 bits before being stored and sent to the external
memory.

The DDI block transfers data (H matrix, image) from the
external memory to on-chip memories (H memory and pixel
memory) and from the Y memory (compressed image) to exter-
nal memory (see Fig. 3).

The data transfer is done through the four HP ports of the
ZYNQ FPGA that allow a total data transfer of up to (4 × 1.2
GB/s). Four DMAs are used to do data transfers. These are
dynamically configured for specific data transfers (start address
and data size) by a central controller that is configured by the
ARM processor. Each on-chip memory has an associated address
generator that generates read and write addresses of simple
dual port memories. On-chip memories are dual port to allow
simultaneous read and write of data.

All four DMAs are used to read data from the external
memory to the on-chip memory. One DMA is used to transfer
the compressed image from the local memory (Y memory) to
the external memory.

The H and pixel memories store four bands of four different
H vectors and pixels, respectively, in each memory write and
the Y memory stores four bands of an output pixel in a single
write.H and pixel memories must have a large bandwidth so that
multiple values are read in parallel. Therefore, these memories
are implemented with a set of distributed memories (BRAMs
of the FPGA) each having an output datawidth of 64 bits (see
Fig. 4).

Each memory block H stores several vectors of the H matrix
and each memory block PixelMem stores several pixels.

The main control block of the DDI block guarantees the
synchronization between data communication and computation.
Following Algorithm 2 described previously, the ARM sets the
control block to configure the DMAs to transfer the H matrix
and the set of pixels to the local memories of the architecture.
After transferring the first data, the controller signals the address
generators and the inner product block to start execution. At the
same time, configures the DMAs to transfer the next H matrix
and the next set of pixels of the input image.

After finishing the operation, the inner product block notifies
the controller. If the nextHmatrix and the first pixels for the next
inner product are already available in the on-chip memories, the
controller signals the address generators to restart again. The
process repeats until the end of the algorithm.

IV. EXPERIMENTAL RESULTS

The proposed hardware architecture has been described in
VHDL and implemented on a Xilinx Zynq Zedboard with a
XC7Z020 SoC FPGA. The hardware design and implementation
has been done with Vivado Design Suite 2019.1 and the power
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Fig. 2. Architecture of the inner product block of the proposed architecture.

Fig. 3. Block diagram of the DDI block.

Fig. 4. Organization of the on-chip memories: H and Pixel memories.

of the circuits has been estimated with Xilinx Power Estimator
tool.

The FPGA board has 512-MB DDR3 memory with a mea-
sured 3.3 GB/s of memory bandwidth. This is the memory
bandwidth available to transfer the hyperspectral image and
matrices H to the FPGA and the compressed image from the
FPGA to the external memory.

The target FPGA is an SoC that contains a Dual ARM Cortex-
A9 and a reconfigurable area with Artix-7 technology. This fam-
ily of FPGAs is quite appropriate to develop embedded systems
making these boards ideal for fast prototyping, proof-of-concept
development, and fast deployment of embedded systems. The
programmable logic of the FPGA has 85 K logic cells with
106 400 registers, 53 200 lookup tables (LUTs), 140 BRAMs,
and 220 digital signal processing blocks (DSP48).

To test the architecture, the DDR memory available in the
board was utilized to store the dataset. The ARM processor
available in the FPGA was utilized as the processor of the
proposed architecture.

The experiments are carried out on the Cuprite AVIRIS scene
labeled as f970619t01p02_r02_sc03.a.rfl. This scene has 614 ×
512 pixels comprising 224 spectral bands.

A. Area, Performance, and Power of the Proposed Architecture

Several implementations of the proposed architecture were
designed for different compression rates and with different
number of multipliers in a pipelined datapath to calculate four
output pixels in parallel (unroll factor of four). The utilization
of resources after postplace and route is given in Table I.

The number of multipliers determines the number of used
DSPs, while q determines the number of BRAMs of the archi-
tecture. The largest architecture, with the higher critical path,
operates at a maximum frequency of 220 MHz. The same
operating frequency was considered for all architectures.

The architecture with 224 multipliers was implemented for
different compression rates and the execution times to compress
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TABLE I
UTILIZATION OF RESOURCES OF THE PROPOSED ARCHITECTURE FOR

DIFFERENT CONFIGURATIONS IN TERMS OF NUMBER OF MULTIPLIERS

OF THE INNER PRODUCT BLOCK AND FOR SEVERAL VALUES OF q

Fig. 5. Execution time of the compression process of a hyperspectral image
(512 × 614 × 224) for different compression rates and window sizes of 8 and
64. The circuit runs at 220 MHz in a ZYNQ7020 SoC FPGA.

an hyperspectral image of size 512 × 614 × 224 were deter-
mined (see the results for window sizes of 8 and 64 in Fig. 5).

With a unitary compression, the proposed circuit compresses
an hyperspectral image of size 512 × 614 × 224 in 0.35 s. The
execution time reduces five times with a compression rate of 14.
The circuit has a total power of 3.66 W. Another important obser-
vation is that the execution time of the compression algorithm in
our architecture reduces with the size of the window. The figure
shows the results for the extreme cases of window sizes: 8 and
64. The largest variations occur for the higher compression rates.

The previous performance results are for a configuration
with the highest throughput. However, since the AVIRIS sensor
acquires 512 pixels of 224 spectral bands in 8.3 ms [43] (5.1 s to
process 614 samples), the parallelism can be reduced, which
reduces the required hardware resources and the power (see
Fig. 6).

As can be observed, with just 16 multipliers in parallel, with
q = 224 and a power 1.94 W, it is possible to execute AVIRIS
images in real time. This design uses just 7001 LUTs, 16 DSPs,
and 31 BRAMs. The power is smaller but the energy increases
from 1.3 to 9.6 J, since the power associated with the processor is
almost constant for different hardware architectures. With com-
pression rates above four, the results show that four multipliers
are enough to run the algorithm in real time. Consequently, the
hardware resources are drastically reduced.

The compression rate determines the requirements in terms
of computation and communication. Therefore, the architec-
ture can be optimized in terms of resources considering the
compression rate. The execution times of both components,
communication and computation, have been determined (see
Fig. 7).

Fig. 6. Execution time of the compression process of a hyperspectral image
(512 × 614 × 224), for different values of q, and for different levels of architec-
tural parallelism. The circuit runs at 220 MHz in a ZYNQ7020 SoC FPGA.

Fig. 7. Computation versus communication time of the compression process
of a hyperspectral image (512 × 614 × 224), for different compression rates and
ws = 64. The circuit runs at 220 MHz in a ZYNQ7020 SoC FPGA.

For low compression rates, the total execution time is deter-
mined by the computational performance of the architecture.
For compression rates higher than three, the total execution
time is determined by the communication performance of the
architecture. In this case, the bottleneck is associated with the
memory bandwidth.

Considering the communication to computation ratios, in the
design of architecture, it is important to determine how efficient
the computational resources are used. The metric to quantify
this is performance efficiency, which is the ratio between the
measured performance and peak performance converted to per-
centage.

To analyze the efficiency of the proposed architecture, three
different architectures with different tradeoffs between the per-
formance and performance efficiency were implemented for a
window size of 64. The architectures have 224, 112, and 56 paral-
lel multipliers. In all cases, we measured the execution times for
different compression ratios, and from these, the performance
efficiency was determined (see Fig. 8).

As can be observed from the figure, the performance
efficiency reduces considerably (from 91% to 31%) with the
compression rate when the architecture is designed with 224
multipliers. This is because the reduction in the compression
rate increases the ratio between communication delay and
computation delay. When the communication delay is higher
than the computation delay, the idle times of computational units
increase, and consequently, the performance efficiency reduces.
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Fig. 8. Performance and performance efficiency of the compression process
of a hyperspectral image (512 × 614 × 224), for different compression ratios
and three different architectures (with 224, 112, and 56 multipliers) running at
220 MHz in a ZYNQ7020 SoC FPGA.

When the number of multipliers is reduced to half, the compu-
tation time doubles reducing the communication to computation
ratio. With 112 multipliers, the performance efficiency reduces
to 61% with a compression ratio of 14 up to 20% with the highest
compression rates. The increase in the efficiency is traded off
by performance, that is, improving the efficiency reduces the
performance since there are less computational resources. With
56 multipliers, the highest performance efficiency is kept until a
compression rate of 14. Since the execution times of the circuit
with a compression rate above 14 are independent of the number
of multipliers, the reduction in performance efficiency is due to
the communication bottleneck.

The most appropriate architecture depends on the application
requirements in terms of the required performance and energy.
The designer should always try to be as close to the requirement
as possible to improve the efficiency of the architecture.

B. Comparison With Other Embedded Computing Platforms

The performance, power, and energy consumption of the
proposed SoC architecture was compared to other embedded
computing platforms, namely the embedded GPU of the Jetson
TX2 platform [44] and the ARM processor of the ZYNQ7020
SoC FPGA, in the execution of the compressive sensing
algorithm.

Jetson TX2 incorporates a quad-core 2.0-GHz 64-bit ARMv8
A57 processor, a dual-core 2.0-GHz superscalar ARMv8 Denver
processor, and an integrated embedded low-power Pascal GPU.
There are two 2-MB L2 caches, one shared by the four A57
cores and one shared by the two Denver cores. The GPU has
two streaming multiprocessors, each providing 128 1.3-GHz
cores that share a 512-kB L2 cache. The six CPU cores and
integrated GPU share 8 GB of 1.866-GHz DRAM memory [45].
The Jetson TX2 typically draws between 7.5 and 15 watts with
a voltage input of 5.5–19.6 V dc and requires minimal cooling
and additional space.

The processing system side of the ZYNQ7020 device con-
tains a dual-core ARM Cortex-A9 working with a frequency
of 667 MHz. The memory hierarchy consists of 32 kB level-1
cache for each core and 512 kB level-2 cache common to both
cores, 256 kB of the on-chip memory and a memory controller
to access the external board memory with a measured memory
bandwidth of 3.3 GB/s. The dual-core ARM and caches are

TABLE II
COMPARISON OF THE DELAY OF PROPOSED ARCHITECTURE AGAINST AN

EMBEDDED GPU AND A DUAL-CORE ARM PROCESSOR RUNNING

COMPRESSIVE SENSING OVER AN AVIRIS SENSOR IMAGE WITH 512 LINES,
614 SAMPLES, AND 224 BANDS AND A WINDOW SIZE OF 64

TABLE III
COMPARISON OF THE ENERGY OF THE PROPOSED ARCHITECTURE AGAINST AN

EMBEDDED GPU AND A DUAL-CORE ARM PROCESSOR RUNNING

COMPRESSIVE SENSING OVER AN AVIRIS SENSOR IMAGE WITH 512 LINES,
614 SAMPLES, AND 224 BANDS AND A WINDOW SIZE OF 64

integrated in a complete processing system that also includes
a NEON media processing engine and a single and double
precision vector floating-point unit. The NEON engine was not
used to run the algorithm.

All platforms run the integer version of the algorithm for
a fair comparison. Running the algorithm with integer data
in these platforms achieves a slightly better performance than
running with the floating-point arithmetic. This may be caused
by improved utilization of cache or better compiler optimization.

The real hyperspectral dataset, acquired by the AVIRIS sen-
sor, used in this experiments has 614 samples times 512 lines and
224 bands. The window size is set to 64 (see results in Table II).

The results show that the proposed hardware/software ar-
chitecture is 49 times faster than the implementation in the
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TABLE IV
COMPARISON OF THE PROPOSED ARCHITECTURE AGAINST CCSDS-123 IMPLEMENTATIONS

embedded GPU and 216 times faster than the solution with the
dual-core ARM processor.

Considering power and energy consumption, the proposed
solution is also better (see energy results in Table III). However,
it should be noted that the GPU and ARM implementations were
not subject to the same development effort. So, their results can
potentially be improved, reducing the gap to the FPGA solution.

Since the SoC FPGA needs less power and executes the
algorithm faster, the energy is from 77 to 119 times lower than
the energy used by the embedded GPU and 146 to 99 times lower
than the energy of the ARM processor.

C. Comparison With Other FPGA-Based Platforms

As far as we know, there is no other previous implementation
of compressive sensing in FPGA. Most of the related work on
FPGA for compressive sensing methods are concerned with the
reconstruction part, which can be computed on the ground-based
station. However, there are a few developed designs on FPGA for
CCSDS 123 recommendation used to compress hyperspectral
images. A comparison of our work against implementations of
recommendation CCSDS 123 has been made (see Table IV).

The reported resources and power of the proposed architecture
are for the whole system, including the DDI module. So, it
reports in general more resources. The power in [48] and [49]
only refers to the dedicated hardware block and does not include
the power of the processor and data transfer. The proposed ar-
chitecture can achieve a compression ratio of 14 times, whereas
the reported CCSDS implementations have a compression factor
lower than 4.6. The highest throughputs are also achieved with
the proposed architecture. With a compression rate of 14, the
throughput is 56% better than the throughput reported in [49].

Another aspect of the previous architectures is that it is not
clear how data are sent and received from the main computing
core. A large percentage of the area and consumed energy
of the proposed architecture is relative to hardware for data
communication.

Also, the results of the proposed architecture are for the
highest throughput. However, as shown previously, the required
resources reduce drastically if the main goal is only to achieve
enough performance for real-time performance.

D. Comparison With Other Methods

The performance of the proposed SoC architecture is com-
pared with other methods, namely the compressive sensing

TABLE V
COMPARISON OF THE EXECUTION TIMES (IN SECONDS) FOR THE COMPRESSIVE

SENSING ALGORITHMS, FOR A COMPRESSION RATE OF 14.6 CONSIDERING AN

IMAGE WITH 512 LINES, 614 SAMPLES, AND 224 BANDS

TABLE VI
COMPARISON OF THE EXECUTION TIMES (IN SECONDS) FOR THE COMPRESSIVE

SENSING ALGORITHMS, FOR A COMPRESSION RATE OF 7.7 CONSIDERING AN

IMAGE WITH 512 LINES, 614 SAMPLES, AND 224 BANDS

method called SPECA, which was introduced in [28] and with
a parallel version of HYCA introduced in [27].

In Tables V and VI, the methods execution time is compared.
In [27], the method is tested on three different platforms. First,
an Intel i7-4770 K CPU at 3.50 GHz with four physical cores and
32 GB of DDR3 RAM memory; second, a GPU on a NVIDIA
GeForce GTX 590 board, which features 1024 processor cores
operating at 1.215 GHz, total dedicated memory of 3072 MB;
and finally; a GPU on a NVIDIA GeForce GTX TITAN board,
which features 2688 processor cores operating at 876 MHz,
total dedicated memory of 6144 MB. In [28], SPECA is tested
on a Intel i7-4790 CPU at 3.6-GHz clock speed connected to
32-GB RAM memory and on a GPU NVIDIA GeForce GTX
980, which contains 16 multiprocessors with 128 CUDA cores
each at 1.33-GHz and 4-GB of memory. From the results pre-
sented, one can conclude that, for the same compression ratio,
the execution time of the proposed work is lower than others
methods.

The accuracy of the proposed SoC architecture is compared
with the lossy compression method introduced in [50]. This
method employs a prediction-based scheme, with quantization
and rate-distortion optimization, with a low complexity tech-
nique in terms of memory and computational requirements.

The experiments are carried out using the Yellostone AVIRIS
image labeled as “Scene0” from flight f060925t01p00r12. Fig. 9
presents the accuracy in terms of the peak signal-to-noise ratio
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Fig. 9. PSNR in decibels for different compression ratios. Proposed architec-
ture (solid line) and [50] (dashed line).

(PSNR) for different compression ratios. For the proposed ar-
chitecture, the image reconstruction is done with the P-HYCA
reconstruction algorithm [27] in a desktop computer. On this
figure, the proposed architecture has a PSNR higher than 80 dB
for a compression ratio smaller than 30×. The PSNR start
dropping for a compression ratio higher than 50×. The reported
results for [50] are better in terms of PSNR for a compression
ratio higher than 75×.

V. CONCLUSIONS

On-board processing systems have recently emerged in order
to overcome the huge amount of data to transfer from the satellite
to the ground station. Hyperspectral imagery is a remote sensing
technology that can benefit from on-board processing. This
article proposes a hardware/software FPGA-based architecture
for compressive sensing of hyperspectral images.

The original algorithm was reorganized to improve the ac-
cesses to data stored in the external memory. The proposed
architecture has been designed in a Xilinx Zynq board with a
Zynq-7020 SoC FPGA. Experimental results with real hyper-
spectral datasets indicate that the proposed implementation can
fulfill real-time requirements with low resources in a low-cost
SoC FPGA. The architecture is also around 100 times more
energy efficient when compared to a software only solution and
to an embedded GPU.

Since the FPGA permits to configure the architecture for other
custom bitwidths, the algorithm and the architecture can be
further optimized for specific bitwidths will less than 16 bits.
However, it requires an additional analysis to determine how
the bitwidth reduction influences the signal-to-noise ratio.
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[48] J. Fjeldtvedt, M. Orlandić, and T. A. Johansen, “An efficient real-time
FPGA implementation of the CCSDS-123 compression standard for hy-
perspectral images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 10, pp. 3841–3852, Oct. 2018.

[49] M. Orlandic, J. Fjeldtvedt, and T. A. Johansen, “A parallel FPGA im-
plementation of the CCSDS-123 compression algorithm,” Remote Sens.,
vol. 11, p. 673, 2019, doi: 10.3390/rs11060673.

[50] A. Abrardo, M. Barni, and E. Magli, “Low-complexity predictive lossy
compression of hyperspectral and ultraspectral images,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2011, pp. 797–800.

José M. P. Nascimento received the Ph.D. degree in
electrical and computer engineering from the Instituto
Superior Técnico, Technical University of Lisbon,
Lisbon, Portugal, in 2006.

He is currently a Professor with Instituto Superior
de Engenharia de Lisboa, Lisbon, and a Researcher
with Instituto de Telecomunicações, Lisbon. He has
contributed to more than 60 journal, international
conference papers, and book chapters. His current
research interests include remote sensing, image pro-
cessing, and high-performance computing.

Dr. Nascimento is currently serving as a Reviewer of several international
journals and he has also been a member of Program/Technical Committees of
several international conferences.

Mário P. Véstias received the Ph.D. degree in elec-
trical and computer engineering from the Technical
University of Lisbon, Lisbon, Portugal, in 2002.

He is a Coordinate Professor with the Department
of Electronic, Telecommunications and Computer
Engineering, School of Engineering, Polytechnic In-
stitute of Lisbon, Lisbon. He is a Senior Researcher
with the Electronic Systems Design and Automa-
tion group, Instituto de Engenharia de Sistemas e
Computadores-Investigação e Desenvolvimento, Lis-
bon. His main research interests include computer

architectures and digital systems for high-performance embedded computing,
with an emphasis on reconfigurable computing.

Gabriel Martín received the Ph.D. degree in
computer engineering from the University of Ex-
tremadura, Caceres, Spain, in 2013.

He was a Predoctoral Research Associate (funded
by the Spanish Ministry of Science and Innovation)
with the Hyperspectral Computing Laboratory and
Postdoctoral Researcher with “Instituto de Telecomu-
nicações,” Lisbon, Portugal. He is currently working
as a Senior Performance Analytics Engineer with
Atrio Inc., CA, USA. He is coauthor of a patent
about a portable performance analytics system. He

has authored or co-authored more than 60 publications, including several book
chapters, journal citation report papers, and peer-reviewed international con-
ference papers. His research interest include hyperspectral image processing,
specifically the areas of unmixing and compressive sensing of hyperspectral
images, as well as the efficient processing of these images in high-performance
computing architectures such as graphics processing units.

Dr. Martín has served as a Reviewer for the IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING and the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. He was the recipient
of several awards for his Ph.D. dissertation such as the “Best Iberian Ph.D.
Dissertation in Information System and Technologies” awarded by the Iberian
Association for Information Systems and Technologies and the “Outstanding
Ph.D. Dissertation award” by the University of Extremadura.

https://doi.org/10.1117/12.2532581
https://dx.doi.org/10.1109/TETC.2018.2854412
https://dx.doi.org/10.3390/rs11060673


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


