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Abstract: This research work has two main objectives, being the first related to the characterization 

of variable stiffness composite plates’ behavior by carrying out a comprehensive set of analyses. 

The second objective aims at obtaining the optimal fiber paths, hence the characteristic angles 

associated to its definition, that yield maximum fundamental frequencies, maximum critical 

buckling loads, or minimum transverse deflections, both for a single ply and for a three-ply 

variable stiffness composite. To these purposes one considered the use of the first order shear 

deformation theory in connection to an adaptive single objective method. From the optimization 

studies performed it was possible to conclude that significant behavior improvements may be 

achieved by using variable stiffness composites. Hence, for simply supported three-ply laminates 

which were the cases where a major impact can be observed, it was possible to obtain a maximum 

transverse deflection decrease of 11.26%, a fundamental frequency increase of 5.61%, and a 

buckling load increase of 51.13% and 58.01% for the uniaxial and biaxial load respectively. 

Keywords: variable stiffness composite plates; first-order shear deformation theory; static; free 

vibration and static buckling analyses; optimal design 

 

1. Introduction 

Fiber-reinforced polymers have been used over the years in many different application areas 

[1], wherein the use of straight fibers with selected orientations within each ply deserved a 

significant research attention. More recently, with the technological advances in fiber placement [2] 

the manufacture of variable stiffness (VS) composites emerged, bringing the possibility to consider 

non rectilinear fiber paths within each ply, hence achieving coordinate dependent’ fiber angles. 

These advances conferred enhanced tailoring ability to these composite materials, hence a greater 

capability to meet structures’ requirements, which has been studied in recent years by a number of 

researchers. Among the published research work until this moment, it is, thus, relevant to give a 

brief overview on the diversity of the studies performed on these advanced composites subject. 

Hence, one may refer the work due to Setoodeh et al. [3] which investigated the use of cellular 

automata (CA) on the optimization of the fiber angles to improve the in-plane stiffness since CA is 

appropriate for parallel implementations. Different situations were analyzed revealing a good 

convergence and robustness rate and significant gains in using VS. Following this study, Abdalla et 

al. [4] introduced the generalized reciprocal approximation to maximize the fundamental frequency. 

The design variables were linked to the nodes, instead of the elements, to assure the continuity of the 

distribution of the lamination parameters, being the maximization made at each node separately. 



J. Compos. Sci. 2020, 4, 80 2 of 19 

 

The results showed that higher frequencies could be achieved by using VS composites. Later, 

Setoodeh et al. [5] extended this method to buckling analysis, obtaining the same conclusions for the 

buckling load. In the context of buckling finite element analysis, Lopes et al. [6] studied the 

improvement of buckling load and first-ply failure of VS laminates taking into account tow-drops 

and overlaps. It was demonstrated that VS revealed higher buckling load and first-ply failure, but 

the results could be hindered if the resin-rich regions were taken into account. Gürdal et al. [7] used 

the classical lamination theory, the Rayleigh–Ritz method and the Trefftz criterion to develop an 

iterative analytical approach to analyze the buckling response on VS laminates. They concluded that 

it is possible to change either the buckling load or the in-plane stiffness while keeping the other 

constant. Hao et al. [8] studied also the buckling behavior of variable-stiffness panels but using a 

different approach based on isogeometric analysis. This study was performed for a linear fiber angle 

and a flow field fiber angle variation for different ply quantities, geometric parameters, boundary, 

and loading conditions being the results compared with the ones obtained by finite element analysis. 

The results obtained showed that the isogeometric analysis is well suited for the analysis of VS 

panels and that the geometric stiffness has a significant influence on the buckling load and on the 

corresponding buckling mode shapes.  

Honda et al. [9] developed an analytical method, based on the Ritz method, to study the 

vibration of VS composite rectangular plates. They applied the method to a single-ply with parabolic 

shaped fibers and compared the results with straight fiber plates, verifying that the plate with the 

parabolic fibers can have higher frequencies and that they have a strong effect on the vibration 

modes. Houmat [10] used a three-dimensional elasticity theory and the finite element method to 

study the vibrations of VS rectangular plates and analyzed the inter-laminar modal flexural and the 

modal transverse shear stresses and the modal cross-sectional warping. The author concluded that 

the inter-laminar modal flexural stresses are discontinuous because of the difference of the fiber 

angle between adjacent layers, the sign of modal transverse shear stresses can change through the 

thickness due to the change of the fiber angle over in-plane dimensions and that the shape of modal 

cross-sectional warping is influenced by the mode number and stacking sequence of layers. 

A p-version finite element based on a third-order shear deformation theory (TSDT) and 

considering geometric non-linearity was used by Akhavan et al. [11] to determine the deflections, 

the normal and the shear stresses of VS composite laminate under transverse loads. They concluded 

that due to the changes in the maximum stresses, the VS laminates are not always better than 

constant stiffness composite laminates.  

Venkatachari et al. [12] studied the effects of the radius-to-thickness ratio, the thickness ratio, 

the temperature, the moisture, and the boundary conditions on the fundamental frequency for 

doubly curved, cylindrical, and spherical panels. They used a first-order and a higher order shear 

deformation theories and concluded that the pattern of frequency variation is similar for both 

cylindrical and spherical panels and that the fiber angles have a significant effect on the fundamental 

frequency. Sarvestani et al. [13] developed a semi-analytical methodology to conduct 

hygro-thermo-mechanical analysis on thin to relatively-thick fiber-steered composite, conical and 

cylindrical panels as well as circular plates. The authors registered up to 57% and 44% 

improvements in the buckling loads and fundamental frequencies respectively.  

In the field of the optimization of these VS composites performance it is also possible to find 

some works although with a restricted scope. Among these works, Demir et al. [14] optimized the 

lamination parameters based on a least-squares finite element, considering a continuity constraint to 

find a manufacturable layup, having obtained good compliance values. Following this work, 

Shafighfard et al. [15] optimized the fiber angle direction for open-hole geometries by minimizing 

the compliance taking as design variables the lamination parameters, and afterward obtaining 

manufacturable designs. These authors achieved smaller compliances and maximum stress 

concentrations for the VS and determined that the optimal fiber angles did not match with the 

principal stress directions.  

Hao et al. [16] developed a multi-stage design method based on lamination parameters. The 

method begins by firstly using B-spline surfaces to fit the lamination parameters followed by an 
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isogeometric analysis along with a gradient-based method to attain the optimal stiffness. In short, 

the lamination parameters are converted into fiber angles using an evolutionary algorithm, and the 

fiber paths are obtained by using flow field functions, ensuring their manufacturability, and, lastly, 

the buckling load is taken as the objective function. The gradient-based method is used again for 

final optimization. This hybrid method showed good global optimization and high computational 

efficiency.  

To improve the in-plane flexibility and the bending stiffness of wing skins, Murugan et al. [17] 

studied which material would be better suited, within a set of materials. The effects of boundary 

conditions and aspect ratio on the out-of-plane deflection were considered in the minimization of the 

in-plane stiffness and maximization of the bending stiffness, by spatially varying the volume 

fraction of the fibers. They concluded that the aspect ratio and the boundary conditions have a 

considerable effect on the out-of-plane deflection and the variable fiber volume can contribute to 

enhance the desired characteristics. Similarly, Murugan and Friswell [18] studied the effect of curved 

fiber paths on the in-plane flexibility and out-of-plane bending stiffness representative of a 

morphing wing skin to maximize the in-plane deformation and, simultaneously, minimize the 

out-of-plane deformation. They concluded that the curved fiber paths have a considerable influence 

in the in-plane flexibility and out-of-plane bending stiffness, varying with the aspect ratio. 

Furthermore, the ply’s away from the neutral axis tend to be curved while the ones near tend to be 

straight.  

Zhangming Wu et al. [19] proposed a formulation to represent non-linear varying fiber angles 

in which the coefficients of polynomials directly reflect the fiber angles at selected reference points. 

With that formula describing the fiber angles evolution, an optimization was performed to obtain 

the maximum buckling load, revealing similar results to ones in the literature using lamination 

parameters.  

With this work one presents a study that aims at providing a transversal characterization of the 

optimal mechanical behavior of variable stiffness composites, from the linear statics perspective to 

the free vibrations and linear buckling perspectives, for a single layer and a three-layer configuration 

composite plates. 

Hence, in the first part of this study, one presents the main aspects associated to the 

methodology used, followed by a set of verification case studies.  

The application case studies are divided in two parts: The first one, wherein a set of static and 

buckling analyses aim at complementing a free vibrations analysis considered in the context of the 

verification case studies; and the second part and the main part of the present work, where a 

complete and transversal set of optimization studies are presented. In this last context, one performs 

a set of constrained optimization processes focused on a single layer and on three layers VS 

composite plates, where the objective functions are the minimization of the maximum transverse 

deflection, the maximization of the fundamental frequency, and the maximization of the critical 

buckling load. The design variables are the characteristic angles associated to the fibers’ path in each 

ply. 

2. Materials and Methods 

2.1. Static Buckling, Free Vibrations, and Static Analyses 

As mentioned, the present work aims at considering a set of optimization case studies that will 

be based on the free vibrations, static buckling, and also on the static analyses of variable stiffness 

composite plates. To these purposes the Lagrangean functional for plate elements is written as 

follows [20,21]: 

Π =
1

2
�(������)��

�

+
1
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�����

� ��,���,��
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�� −
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2
�����̇

�
��� − � (���)��

�

 (1)

where the first and second terms correspond to the first and second order elastic strain energy, and 

represents the stress components associated to the initial state of stress previously determined via a 
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linear static analysis. The third term denotes the kinetic energy and the last one the work performed 

by the external forces. By applying Hamilton principle and considering the whole discretized 

domain, one obtains the following equilibrium equation: 

(� + ��)� + ��̈ = � (2)

which if one considers a linear static instability analysis yields the equation: 

��� + ������ = 0 (3)

In this equilibrium equation, �� is the geometric stiffness matrix, � is the stiffness matrix, and 

�� is the eigenvector associated to the eigenvalue ��. To the minor eigenvalue will correspond the 

critical buckling load. 

On the other hand, if one intends to perform a dynamic free vibration analysis, and by 

assuming free harmonic vibrations, the equilibrium equation achieved will be: 

(� − ��
��)�� = 0 (4)

The eigenvalues of this equation correspond to the square of the natural frequencies associated 

to the vibration mode shape given by the eigenvector ��. To the minor eigenvalue square root will 

correspond the fundamental frequency of the plate. 

If instead, one aimed at performing a static analysis, wherein the second order elastic strain 

energy and the kinetic energy will be null, then the equilibrium equation for each plate element will 

be given as: 

�� = � (5)

All these analyses were implemented through the finite element method, considering the use of 

the first order shear deformation theory (FSDT). Next to obtaining the element matrices and vectors 

and after carrying out their assembly to reproduce the whole discretized domain, the corresponding 

boundary conditions were imposed, so as to achieve the solutions for each specific combination of 

design variables. 

Variable Stiffness Composites 

The fiber within each ply follows a curvilinear path, defined according to the linearly varying 

angle along the x-coordinate, proposed by Gürdal and Olmedo [22]: 

��(�) =
2(�� − ��)

�
|�| + �� (6)

where T� is the angle at the center of the plate and T� is the angle at the edges of the plate. The 

variable (�) denotes the length of the plate and ��(�) is the angle at the x coordinate, being the 

notation < �0|�1 > used to represent such paths. For an easier visualization, Figure 1 depicts <

20|60 > and < 50| − 20 > fiber paths configurations, where �, � directions define the plate and 

each layer planes.  

  

Figure 1. Fiber Path for 〈20|60〉 configuration (left) and 〈50|−20〉 configuration (right). 



J. Compos. Sci. 2020, 4, 80 5 of 19 

 

To avoid, as much as possible, kinks in the fibers the maximum curvature is submitted to the 

constraint [23]: 

1

�
=

��

��� �(�)

�1 + �
�

��
�(�)�

�

�

�
�

< 3.28 ��� 
(7)

where �(�) is the fibers’ path function and � the curvature radius. According to this constraint, the 

manufacturing domain is represented in Figure 2, where, the region in white denotes the fiber angles 

combination domain that yield feasible manufacturing layers, while the grey region represents the 

fiber angles combination domain that will exceed the maximum allowed curvature. 

 

Figure 2. Feasible manufacturing fiber angles domain, in white. 

To perform the finite element analyses, each plate finite element was assigned a fiber angle 

according to the element center x coordinate value, so the more elements along the x coordinate, the 

less the angle discretization error, when compared to the analytical definition, as shown in Figure 3.  

  

(a) (b) 

Figure 3. Angles discretization. (a) 10 × 10 mesh, (b) 50 × 50 mesh. 
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In this figure one presents for a square plate, the angles associated to each element of 10 × 10 

and 50 × 50 discretized domains. The solid line represents the exact angle and the dashed lines are 

the angles in each element. 

2.2. First Order Shear Deformation Theory and Constitutive Relation 

The displacement field associated to the first-order shear deformation theory [24,25], describes 

the plate kinematics as follows: 

�(�, �, �) = ��(�, �) + �. ��
�(�, �),  

�(�, �, �) = ��(�, �) + �. ��
�(�, �), (8)

�(�, �) = ��(�, �)  

where �(�, �, �), �(�, �, �), and �(�, �) represent the displacements of a plate arbitrary coordinate 

point, ��(�, �), ��(�, �), and ��(�, �) stand for the displacements of a mid-plane’ point associated 

to it, and ��
� and ��

� denote the normal to the midplane’ rotations, respectively. 

The generalized strains are obtained by considering the elasticity kinematical relations for small 

deformations, and by considering the assumptions associated to this theory and the material 

characteristics, one can write for each variable stiffness composite layer, the constitutive relation: 

⎣
⎢
⎢
⎢
⎡

��

��

���

���

��� ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
����(��, ��) ����(��, ��) ����(��, ��) 0 0

����(��, ��) ����(��, ��) ����(��, ��) 0 0

����(��, ��) ����(��, ��) ����(��, ��) 0 0

0 0 0 �. ����(��, ��) 0
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⎥
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⎤

, (9)

The general expressions for the transformed elastic stiffness coefficients Q���  are given in 

literature, for constant stiffness layers. However, in the present case, the stiffness coefficients are not 

constant within each layer. They depend on the x coordinate, thus on θ� and θ� angles as denoted 

in the constitutive relation. Additionally, as according to this theory the equilibrium conditions are 

not satisfied at the plate’s upper and lower surfaces, a shear correction factor k is needed [20,26,27]. 

2.3. Optimization 

A typical minimization problem is commonly formalized as: 

Minimize: �(�) 

Subject to: ��(�) ≤ 0, ∀ � = 1,2, … , � 

ℎ�(�) = 0, ∀ � = 1,2, … , � 

Where: �� ≤ � ≤ �� 

(10)

where �(�) represents the objective function being � the design variables vector and ��(�) and 

ℎ�(�) denote respectively behavioral inequality and equality constraints. The design variables are also 

subject to side constraints ��, ��.[28–30]. 

The optimization method used in the present work is an adaptive single objective method, 

which combines an optimal space-filling design of experiments, a kriging response surface, and 

mixed-integer sequential quadratic programming. This mathematical optimization method, based 

on a response surface, which enables in a lighter way the search for the global optimum, uses a 

minimum number of design points strictly necessary to allow building the kriging response surface 

[30,31]. 

In the present work, the optimization case studies are constrained optimization problems, 

focused on single objective functions, with continuous design variables. Concerning to the 

constraints, besides the side constraints one has also considered the constraint associated to the 

maximum curvature in a layer by layer basis. To perform the optimization studies, the finite element 

codes developed in Matlab [32] were linked to a hybrid adaptive optimization procedure [30]. 
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This adaptive optimization technique can be described according to the present pseudocode, in 

a summarized form: 

ASO Algorithm 

Define optimization parameters 

While Candidates not stable Do 

 OSF Procedure  

 While Candidates not good Do 

  Kriging response surface Procedure 

  MISQP Procedure 

  If Stop criteria is false Do 

   Evaluate if candidates are good 

  Else Stop (algorithm not converged) 

  End  

 End   

 Evaluate candidate’s stability 

 If Candidates not stable Do 

  Domain reduction Procedure around candidates 

 End  

End (algorithm converged) 

This algorithm combines an optimal space-filling (OSF) design space, a kriging response 

surface and mixed-integer sequential quadratic programming (MISQP). Based on this hybrid 

approach the algorithm searches for the optimal solution based on the response surface obtained, 

which requires a minimum number of design points to build the kriging response surface [31]. This 

approach enables considering a reduced number of design points for the optimization process, 

which provides lower computation time requirements. 

The process starts with an initial population with a number of individuals that will remain 

constant along the process. The design space is subdivided into a specified number of divisions 

which will also remain constant. After each domain reduction, done after each evaluation phase by 

assessing the most promising design space region, this new domain with closer delimitating borders 

will be again subdivided. In order to maintain the same number of design points, as some of the 

previous will be eliminated, the required number will be added. 

The mixed-integer sequential quadratic programming technique will then search within the 

response surface generated for each search domain, considering different starting points. The 

identified optimum candidates are then evaluated, considering the kriging error predictor criterion. 

The stability of each solution will be then assessed by considering an additional refinement of the 

kriging’s response surface, which after its validation a domain reduction centered on the accepted 

candidates will be performed. If the candidate is rejected, a new verification point is calculated and 

inserted in the current kriging response surface as a refinement point, restarting the MISQP process. 

The global optimum is achieved when the achieved solution is stable and is not susceptible to improve 

according to the parameters considered. 

3. Verification Applications 

3.1. Case 1: Natural Frequencies of Isotropic Plates 

An isotropic plate with a side ratio of α = a/b is considered along with four different boundary 

conditions, here generically denoted as XXYY, with the first and second X representing the sides in x 

= −a/2 and x = a/2, respectively, and the first and second Y the sides in y = −b/2 and y = b/2. The letter 

C will signify a clamped edge, S a simply supported edge, and F a free edge. 

The results are shown in a non-dimensional frequency way, by considering  

�� = �
ρhω�a�

D
 (11)
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In Table 1 one presents the results obtained using the classical theory and the first-order shear 

deformation theory. These results were compared to reference alternative solutions [26] which 

considered a classical approach. The relative deviations (dev) among the present classical theory 

results and [26] solutions are denoted within parenthesis and calculated as ��� = �
����������

������
� ×

100%. 

Table 1. Non-dimensional frequencies �� for α = 1.0 

Mode 
SSSS CCCC SFSF CFCF 

CLPT FSDT CLPT FSDT CLPT FSDT CLPT FSDT 

1 
19.737 
(0.010) 

19.739 
35.975 

(0.031) 
36.006 

3.367 

(0.089) 
3.367 

6.920 

(0.058) 
6.923 

2 
49.337 

(0.022) 
49.350 

73.364 

(0.042) 
73.483 

17.318 

(0.046) 
17.316 

23.908 

(0.063) 
23.914 

3 
49.337 

(0.022) 
49.350 

73.364 

(0.042) 
73.483 

19.293 

(0.078) 
19.293 

26.584 

(0.026) 
26.590 

4 
78.922 

(0.044) 
78.959 

108.127 

(0.084) 
108.629 

38.214 

(0.196) 
38.211 

47.655 

(0.031) 
47.675 

5 
98.666 

(0.642) 
98.695 

131.508 

(0.206) 
131.755 

51.044 

(0.513) 
51.036 

62.710 

(0.223) 
62.718 

6 
98.666 

(0.642) 
98.695 

132.138 

(0.205) 
132.471 

53.492 

(0.705) 
53.488 

65.536 

(0.227) 
65.557 

As it is possible to conclude from Table 1, there is a very good agreement between the present 

classical shear deformation theory model and the ones obtained by the reference. It is also possible to 

observe that the present first-order model also demonstrates a good performance. 

Table 2 presents a similar study but now for a side ratio α = 2.5. Although the reference does not 

consider the CCCC boundary conditions for this aspect ratio situation, in this study it was 

considered the inclusion of these results for completion purpose. These specific results are just 

compared among the present two models (CLPT and FSDT). 

Table 2. Non-dimensional frequencies �� for α = 2.5 

Mode 
SSSS CCCC SFSF CFCF 

CLPT FSDT CLPT FSDT CLPT FSDT CLPT FSDT 

1 
71.552 

(0.004) 
71.585 147.757 147.939 

8.247 

(0.243) 
8.247 

24.830 

(0.068) 
24.831 

2 
101.154 

(0.010) 
101.202 173.758 173.957 

29.568 

(0.125) 
29.571 

44.562 

(0.079) 
44.565 

3 
150.490 

(0.333) 
150.595 221.295 221.568 

64.478 

(0.820) 
64.492 

81.496 

(0.214) 
81.519 

4 
219.559 

(1.530) 
219.812 291.595 292.084 

98.684 

(0.154) 
98.737 

135.810 

(1.769) 
135.910 

5 
256.587 

(0.009) 
257.093 384.200 385.100 

117.791 

(2.473) 
117.857 

142.475 

(3.188) 
142.607 

6 
286.171 

(0.017) 
286.711 394.201 395.538 

125.624 

(0.705) 
125.690 

165.002 

(0.236) 
165.144 

Again, it is possible to understand the good performance of the models for the rectangular 

plates’ non-dimensional frequencies. To note, in a more specific manner the good performance of the 

FSDT model. 

3.2. Case 2: Buckling Critical Loads of Constant Stiffness Composite Plates 

This second verification case considers a (0/90)s composite plate with an edge to thickness 

ratio of 10 (a/h = 10). The material properties relations are defined as G12/E2 = 0.6 and ν12 = 0.25. The 
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aim of this case is the evaluation of the present models’ buckling response for different degrees of 

orthotropy (E1/E2), and the comparison of their results to an alternative solution [33]. The buckling 

response of the plates when submitted to a uniaxial compression load ��  applied along the � 

direction, is presented in a non-dimensional form as: 

����� =
����

��ℎ�
 

(12)

The results obtained are presented in Table 3, for the present FSDT model. In this case one has 

considered also for illustrative purposes, a situation where the shear correction factor assumes the 

value 5/6, and another situation where, as previously mentioned, this factor is calculated [27]. 

The relative deviations among the present results and the higher-order shear deformation 

theory alternative solutions [33] are denoted within parenthesis and are calculated as ��� =

�
����������

������
� × 100%. 

Table 3. Non-dimensional buckling coefficient λ���� 

E1/E2 Present FSDT HSDT 

 k calculated k = 5/6 [33] 

10 
10.061 

(2.936) 

10.076 

(3.090) 
9.774 

20 
15.606 

(2.013) 

15.633 

(2.190) 
15.298 

30 
20.186 

(1.147) 

20.235 

(1.393) 
19.957 

40 
24.045 

(3.021) 

24.131 

(3.389) 
23.34 

From a global perspective, the results obtained with the present first-order shear deformation 

model present a reasonable agreement with the higher-order model (HSDT) of the reference authors 

[33]. It is also possible to conclude that the calculation of the shear correction factor considering the 

specific characteristics of the laminate is able to provide results that are closer to the ones given by 

the higher-order theory, which would be expected. 

3.3. Case 3: Natural Frequencies of Three-Layer Variable Stiffness Composite Plates 

This last verification case considers a simply supported three-layer VS square plate, and its 

natural frequencies. The geometrical and material properties are described in Table 4.  

Table 4. Geometric and material characteristics of the plate. 

a (m) h (m) E1 (GPa) E2 (GPa) G12 (GPa) ν12 ρ (kg∙m−1) 

1 0.01 173 7.2 3.76 0.29 1540 

The results obtained with the present FSDT model are presented in Table 5. 

Table 5. Natural frequencies (rads∙s−1). 

Stacking Models 
ω (rad∙s−1) 

1 2 3 4 5 6 

(<0|45˃, <−45|−60>, <0|45>) Present 355.30 586.66 958.69 1070.28 1317.52 1464.42 

 [26] 
347.1 

(2.36) 

576.1 

(1.83) 

949.31 

(0.99) 

1066.64 

(0.34) 

1300.47 

(1.31) 

1457.21 

(0.50) 

 [34] 
358.49 

(0.89) 

589.9 

(0.55) 

960.36 

(0.17) 

1075.21 

(0.46) 

1327.88 

(0.78) 

1474.67 

(0.70) 

        

(<30|0>, <45|90>, <30|0>) Present 308.66 503.63 845.09 1130.41 1276.93 1305.21 

 [26] 308.03 502.03 842.79 1133.79 1277.26 1300.73 
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Stacking Models 
ω (rad∙s−1) 

1 2 3 4 5 6 

(0.20) (0.32) (0.27) (0.30) (0.03) (0.34) 

 [34] 
308.8 

(0.05) 

503.8 

(0.03) 

845.51 

(0.05) 

1131.31 

(0.08) 

1279.85 

(0.23) 

1307.4 

(0.17) 

        

(<90|45>, <60|30>, <90|45>) Present 326.20 533.07 880.53 1082.91 1259.90 1388.02 

 [26] 
320.05 

(1.92) 

521.15 

(2.29) 

877.23 

(0.38) 

1084.42 

(0.14) 

1238.85 

(1.70) 

1395.8 

(0.56) 

 [34] 
329.69 

(1.06) 

539.41 

(1.18) 

886.39 

(0.66) 

1091.2 

(0.76) 

1279.9 

(1.56) 

1401.87 

(0.99) 

Table 5 allows concluding on the very good agreement between the present FSDT results and 

the ones obtained by [34] that used a third-order shear deformation theory. The classical theory 

results obtained by [26] over predicts the natural frequencies as it would be expected. 

4. Numerical Applications 

The material properties used in this section cases studies are presented in Table 4. Each layer 

thickness is now set to 10/3mm. The stacking sequences of the variable stiffness laminates studied in 

the last verification study are now used to analyze the static deflection of the plate when subjected to 

a uniformly distributed pressure under different sets of boundary conditions. The pressure 

magnitude values used both in the static analysis and in the optimization study, are presented in 

Table 6. 

Table 6. Magnitudes of the uniformly distributed pressure. 

 Layers  Boundary Condition 

   SSSS CCCC SSFF CCFF SFSF CFCF 

Pressure (kPa) 1  1 1 0.1 0.1 0.01 0.1 

 3  10 10 1 1 0.1 1 

4.1. Static and Buckling Analyses of Three-Layer Variable Stiffness Composite Plates 

The maximum transverse displacements presented by the different plates, obtained with the 

FSDT model can be observed in Table 7. The boundary conditions in these cases correspond to the 

simply supported ones, already used in the verification case of Section 3.3. 

Table 7. Maximum transverse deflection [mm] for the three-layer configurations of variable stiffness 

(VS) plates. 

Stacking Boundary Condition 

 SSSS CCCC SSFF CCFF SFSF CFCF 

(<0|45˃, <−45|−60>, <0|45>) 7.894 3.005 1.456 0.411 8.571 10.834 

(<30|0>, <45|90>, <30|0>) 10.83 2.285 2.167 0.339 15.657 7.100 

(<90|45>, <60|30>, <90|45>) 9.736 2.016 18.951 1.938 10.382 9.388 

As we can observe, it is not possible to say that a specific stacking sequence is able to provide 

the best performance for all the boundary conditions considered. This is an expected behavior due to 

the variable stiffness character of these composites, being particularly relevant to note that this 

constitutes an additional design parameter to consider in the context of composite materials’ tailor 

ability. 

These stacking schemes were also considered in the context of linear buckling analysis, where 

two situations were studied; one related to a uniaxial compression state, along the x coordinate, and 

another consisting in a biaxial compressive load, with a ratio Fx/Fy = 1 and a magnitude of 100 kN. 

Table 8 demonstrates the buckling load multipliers (λ) for the first six modes. 
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Table 8. Buckling load multipliers for the three-layer configurations of VS plates. 

Stacking Loading 1 2 3 4 5 6 

(<0|45˃, <−45|−60>, <0|45>) Uniaxial 2.12 3.865 5.519 6.625 7.337 8.122 

 Biaxial 1.091 1.208 1.678 2.384 3.08 3.203 

        

(<30|0>, <45|90>, <30|0>) Uniaxial 1.451 3.091 4.765 5.651 6.895 7.987 

 Biaxial 0.794 0.831 1.218 1.742 2.327 2.880 

        

(<90|45>, <60|30>, <90|45>) Uniaxial 1.006 1.132 1.674 1.937 2.684 3.153 

 Biaxial 0.658 0.750 1.148 1.585 2.083 2.295 

From the results obtained it is possible to conclude that as it could be expected, biaxial 

compression states yield lower buckling load multipliers regardless the instability mode one 

considers. It is also possible to observe that the first VS configuration provides the higher buckling 

loads, hence it would be a better solution considering the buckling problem. 

4.2. Optimization  

In this sub-section, it is presented a first set of optimization studies where a single VS layer is 

considered, in order to minimize its maximum transverse displacement. It is also considered the 

maximization of its fundamental frequency and its critical buckling load when submitted to a 

uniaxial and biaxial compression state. Next, one considers a three-layer configuration and one 

performs a similar set of optimization studies. 

4.2.1. Single Layer Variable Stiffness Composite Plates 

A single layer simply supported plate is considered in order to achieve the best configuration 

concerning the angles T0 and T1 (Figure 1) that will minimize the maximum transverse deflection 

(����) of the plate when subjected to a uniformly distributed pressure, with the magnitudes shown 

in Table 6, under a different set of boundary conditions, being the results shown in Tables 9 and 10. 

Tables 9 and 10, show that for the boundary conditions SSFF, CCCC, and CCFF, the 

characteristic angles assume similar values for the CS and VS plates, which may pose the possibility 

to adopt a straight fiber solution instead of a curvilinear one if no other requisites are imposed.  

Table 9. Optimum angles for a single layer VS plate for SSSS, SSFF, and SFSF boundary conditions. 

Properties SSSS  SSFF  SFSF 

 CS VS  CS VS  CS VS 

T0 () 0 19.124  0 0.005  −45 −41.002 

T1 () 0 -62.531  0 0.017  −45 −50.329 

����  (mm) 25.118 21.526  2.540 2.540  11.963 11.843 

Decrease (%) - 14.301  - 0  - 1.003 

 

Table 10. Optimum angles for a single layer VS plate for CCCC, CCFF, and CFCF boundary 

conditions. 

Properties CCCC  CCFF  CFCF 

 CS VS  CS VS  CS VS 

T0 () 0 0.015  0 0.000  78.174 30.998 

T1 () 0 −0.004  0 −0.001  78.174 −1.155 

����  (mm) 5.109 5.109  0.501 0.501  20.101 19.193 

Decrease (%) - 0  - 0  - 4.517 

Concerning the remaining boundary conditions, SSSS, SFSF, and CFCF, although 

demonstrating better results for the VS plate, the improvement can be considered residual for the 
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SFSF case while being more significant in SSSS boundary conditions’ case. Hence in these last 

analyses’ conditions, it can be concluded that in some cases there would be no particular advantages 

on the use of VS composites, contrarily to what was observed in buckling analyses and also in free 

vibration analyses. 

One has considered now the maximization of the fundamental frequency (����) and the critical 

buckling load multiplier (λ���) when subjected to a uniaxial compression load along the x direction, 

and a biaxial compressive load, with Fx/Fy = 1, with a magnitude of 1 kN. In the optimization process, 

one has considered that the angles could vary in the interval [−90, 90] considering additionally the 

curvature constraint already referred in Section 2.1. 

Tables 11 and 12 present the results obtained for the fundamental frequency maximization and, 

for comparison purposes, the results for a constant stiffness (CS) unidirectional composite plate. As 

we may conclude, the optimized VS plate shows a better result for most cases when compared to the 

CS plate. In this case, it was possible to achieve maximum improvement of 8.164% for the SSSS case. 

Table 11. Optimal angles of a single layer VS plate for maximum fundamental frequency (Hz), with 

simply supported boundary conditions. 

Properties SSSS  SSFF  SFSF 

 CS VS  CS VS  CS VS 

T0 () 0 22.828  0 0  −45 −40.493 

T1 () 0 −62.043  0 0  −45 −51.166 

����  (Hz) 17.224 18.630  16.032 16.032  2.932 2.950 

Increase (%) - 8.164  - 0  - 0.614 

Table 12. Optimal angles of a single layer VS plate for maximum fundamental frequency (Hz), with 

clamped boundary conditions. 

Properties CCCC  CCFF  CFCF 

 CS VS  CS VS  CS VS 

T0 () 0 −90  0 0  76.852 −40.493 

T1 () 0 −1.680  0 0  76.852 −51.166 

����  (Hz) 37.664 39.498  36.324 36.324  6.671 2.950 

Increase (%) - 4.869  - 0  - 4.062 

Tables 13 and 14 present the optimal configurations obtained for the maximum critical buckling 

loads associated with the uniaxial compression state. As we may conclude, the optimized VS plate 

shows a better result for some cases when compared to the CS plate. In this case, it was possible to 

achieve a maximum improvement of 15.958% for the SSSS case. 

Table 13. Optimal angles of a single layer VS plate for maximum uniaxial load multipliers, with 

simply supported boundary conditions. 

Properties SSSS  SSFF  SFSF 

 CS VS  CS VS  CS VS 

T0 () 0 23.057  0 0  43.256 34.701 

T1 () 0 -57.401  0 0  43.256 49.791 

λ��� 6.091 7.063  5.278 5.278  0.319 0.325 

Increase (%) - 15.958  - 0  - 1.881 

Table 14. Optimal angles of a single layer VS plate for maximum uniaxial load multipliers, with 

clamped boundary conditions. 

Properties CCCC  CCFF  CFCF 

 CS VS  CS VS  CS VS 

T0 () 0 0  0 0  12.386 15.750 

T1 () 0 0  0 0  12.386 7.048 

λ��� 22.672 22.672  21.098 21.098  1.881 1.891 

Increase (%) - 0  - 0  - 1.891 
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Tables 15 and 16 presents the optimal configurations obtained for the maximum critical 

buckling loads associated with the biaxial compression state. As we may conclude, the optimized VS 

plate shows a better result for most cases when compared to the CS plate. It is particularly relevant 

to note that in the SSSS case, it was possible to achieve a maximum improvement of 43.448%. 

Table 15. Optimal angles of a single layer VS plate for maximum biaxial load multipliers, with 

simply supported boundary conditions. 

Properties SSSS  SSFF  SFSF 

 CS VS  CS VS  CS VS 

T0 () 69.748 27.047  0 0  −45 −43.145 

T1 () 69.748 −66.919  0 0  −45 −47.282 

λ��� 2.594 3.721  1.331 1.331  0.175 0.175 

Increase (%) - 43.448  - 0  - 0 

Table 16. Optimal angles of a single layer VS plate for maximum biaxial load multipliers, with 

clamped boundary conditions. 

Properties CCCC  CCFF  CFCF 

 CS VS  CS VS  CS VS 

T0 () 0 10.852  16.874 79.914  45 60.389 

T1 () 0 −83.098  16.874 −14.036  45 39.411 

λ��� 5.699 6.659  2.890 3.626  0.987 1.033 

Increase (%) - 16.845  - 25.467  - 4.661 

The variation of the critical buckling load multiplier and the fundamental frequency with the 

change of T0 and T1 was further studied for the SSSS case. The surfaces were obtained by setting the 

angles from −90 to 90 with a step of 22.5. Figure 4 depicts the corresponding contour plots.  

 

Figure 4. Contour plots. (a) buckling uniaxial, (b) buckling biaxial, and (c) frequency. 

All these plots demonstrate to be antisymmetric in relation to the line T0 = T1. In all cases, 

although with less significance for the fundamental frequency, when the angle on the center of the 

plate (T0) is higher the results are lower. 

4.2.2. Three-Layer Variable Stiffness Composite Plates 

In the present subsection, the previously analyzed three-layer configuration was considered in 

the context of the optimization of its static, free vibration, and critical buckling load behavior. Hence, 

one has proceeded to the minimization of the maximum transverse deflection, and to the 

maximization of the fundamental frequency and critical buckling load.  

Tables 17 and 18 present the results obtained for the minimization of the maximum transverse 

deflection of VS plates submitted to different boundary conditions. From these tables, it is possible to 

draw a similar conclusion to the one of a single-layer VS plate. 

In the SSFF, CCCC, and CCFF case the CS composite with unidirectional fiber can be clearly 

used as they provide the same results as VS composites do. In the remaining boundary conditions’ 
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cases, the achieved optimal stacking sequence provides an effective contribution to lower the 

maximum transverse displacement of the plates, with more significance to the SSSS and CFCF cases. 

Table 17. Optimum angles for a three-layer VS plate minimum, maximum transverse deflection. 

SSSS, SSFF, and SFSF boundary conditions. 

Layer Properties SSSS  SSFF  SFSF 

  CS VS  CS VS  CS VS 

1 T0 () −45 −25.008  0 0  45 47.528 

 T1 () −45 62.886  0 0  45 42.625 

2 T0 () 45 26.499  0 0  45 49.833 

 T1 () 45 41.007  0 0  45 40.039 

3 T0 () −45 −15.557  0 0  −45 −42.512 

 T1 () −45 −54.835  0 0  −45 −47.796 

 ���� (mm) 8.529 7.569  0.945 0.945  2.718 2.704 

 Decrease (%) - 11.2578  - 0  - 0.515123 

Table 18. Optimum angles for a three-layer VS plate minimum, maximum transverse deflection. 

CCCC, CCFF, and CFCF boundary conditions. 

Layer Properties CCCC  CCFF  CFCF 

  CS VS  CS VS  CS VS 

1 T0 () 0 90  0 0  12.422 36.051 

 T1 () 0 90  0 0  12.422 0.913 

2 T0 () 0 −90  0 0  46.505 −70.004 

 T1 () 0 −90  0 0  46.505 −35.080 

3 T0 () 0 90  0 0  12.419 36.047 

 T1 () 0 90  0 0  12.419 0.917 

 ����  (mm) 1.930 1.930  0.189 0.189  7.458 6.667 

 Decrease (%) - 0  - 0  - 10.605 

Figure 5 depicts the color gradient contour plot of the optimal solution for the constant stiffness 

composite (a) and the variable stiffness composite (b) in the case of the simply supported boundary 

conditions. 

As it is possible to observe, in the second case, the shape profile of the deflection surface is more 

balanced and the color gradient illustrates also the difference between the quantitative values 

presented in Table 17. 

  
(a) (b) 

Figure 5. Transverse deflection surface for the optimal layups for the SSSS case. (a) constant stiffness 

(CS) and (b) VS. 

The maximization of the fundamental frequency of the simply supported three-layer composite 

was addressed next. The results obtained both for a constant stiffness and for a variable stiffness 

composite are presented in Table 19 and the corresponding mode shapes depicted in Figure 6. 
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Table 19. Optimum angles for the maximum fundamental frequency [Hz] of a three-layer variable 

stiffness composite plate. 

Layer 
Properties Fundamental Frequency 

 CS VS 

1 T0 () −45 16.715 

 T1 () −45 −60.572 

2 T0 () 45 57.990 

 T1 () 45 38.114 

3 T0 () −45 16.720 

 T1 () −45 −60.573 

 ����  (Hz) 54.937 58.016 

 Increase (%) - 5.605 

  
(a) (b) 

Figure 6. Fundamental vibration mode shape for the optimal layups for the SSSS plate. (a) CS and (b) 

VS. 

As in the single layer composite previously optimized, it is possible to conclude on the 

improvement of the maximum frequency of the VS composite plate, although to a less extent. It is 

also visible from Figure 6 that the vibration mode shape for the optimal configuration VS case 

acquires a more balanced profile toward biaxial symmetry, quite different from the one presented by 

the CS composite. It can also be observed that VS plates present in most cases, the outer layers with 

similar angles. It can also be observed that for the cases analyzed the angles of the outer layers 

present amplitudes close to the ones corresponding to the single-layer optimal configuration. 

This is, with terminology adaptations, applicable to the CS plates, which is an expected result 

considering the higher contribution that these layers provide to the fundamental frequency that 

corresponds to a flexural mode. 

The final optimization studies are related to the determination of the optimal layups that will 

provide the maximum critical buckling load multipliers both in uniaxial and biaxial compression 

load cases. The results obtained can be observed in Table 20 and the corresponding color gradient 

contour plots are visible in Figures 7 and 8. 

Table 20. Optimal angles of a three-layer VS plate for static buckling load multipliers. 

Layer 
Properties Uniaxial Buckling  Biaxial Buckling 

 CS VS  CS VS 

1 T0 () −6.925 30.476  −45 23.369 

 T1 () −6.925 −59.626  −45 −62.232 

2 T0 () 41.121 71.359  45 −19.928 

 T1 () 41.121 41.604  45 73.375 

3 T0 () −6.925 30.473  −45 23.355 

 T1 () −6.925 −59.626  −45 −62.236 

 λ��� 1.698 2.565  0.818 1.293 

 Increase (%) - 51.128  - 58.005 
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(a) (b) 

Figure 7. Critical buckling mode shape for the optimal layups for the SSSS plate. (a) CS and (b) VS 

uniaxial buckling. 

From Table 20 it can be concluded again that VS composites can have significant importance in 

the maximization of the critical buckling load corresponding to a uniaxial compression load case. 

This was already seen in the context of a single-layer. The aspect related to the magnitude of the 

angles presented by the outer layers is also here confirmed.  

  
(a) (b) 

Figure 8. Critical buckling mode shape for the optimal layups for the SSSS plate. (a) CS and (b) VS 

biaxial buckling. 

Concerning the corresponding critical mode shape, it can be observed that there is an 

elongation trend more visible in contrast to the one presented by the constant stiffness composite in 

the case of the uniaxial compression load. A similar elongation pattern is observed in Figure 8, for 

the biaxial critical buckling load, although more balanced when compared to the constant stiffness 

composite plate. 

5. Conclusions 

Due to their known fiber curvilinear paths, VS composites can provide greater design flexibility 

when compared to constant stiffness laminates, as they may enable for an eventual adjustment to 

geometrical specificities, such as holes, and contribute for a better load redistribution. Moreover, the 

possibility of selecting the better configurations for specific boundary conditions can be a very 

important feature to improve structures’ mechanical performance while considering functional or 

manufacturability constraints. 

This work presents a study on the optimization of VS composite plates considering the 

minimization of the maximum transverse deflection, the maximization of the fundamental 
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frequency, and of the critical buckling load both in a uniaxial and biaxial compression load 

condition.  

A set of studies based on first-order shear deformation theory were developed in a preliminary 

phase of the work for verification purposes and also with the aim of providing a more complete set 

of analyses namely for the three-layer VS composite, prior to the optimization case studies. 

The optimization studies, based on an adaptive hybrid technique, have considered single-layer 

and three-layer composite plates, having as design variables the characteristic fiber angles, T0 and T1, 

within each layer. To guarantee manufacturability conditions, according to results obtained by other 

authors, the present optimization studies took into account that feasibility constraint.  

From the results of the single layer case, it can be seen that the VS composite plates present a 

particularly improved behavior when they are simply supported on all their edges, having the 

maximum transverse deflection decreased by 14.30%, the fundamental frequency has increased by 

8.16%, and the buckling load multipliers has increased by 15.96% and 43.45% for the uniaxial and 

biaxial load, respectively.  

For the three-layer configuration, the VS composite plates also shown significant improvement 

over the CS composite ones, particularly for the simply supported boundary condition, having the 

maximum transverse deflection decreased by 11.26%, the frequency increased by 5.61%, and the 

buckling load multipliers increased by 51.13% and 58.01% for the uniaxial and biaxial load, 

respectively. 

In a global appreciation, VS composite plates present better results when compared to CS 

composite ones. However, the results obtained allow concluding that in some situations that depend 

not only on the boundary conditions but also on the nature of the objective function to be assessed, 

the advantage of the former may be not so significant. 

The achieved results provide a transversal overview on the potential advantages of variable 

stiffness composites, nevertheless for each specific optimization case, eventually ruled by other 

constraints, other specific studies may be required. 
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