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Abstract 

 

Context 

Habitat fragmentation can have contrasting effects on species and their interactions within 

communities, changing community structure and function. Parasitoids and pathogens are key 5 

natural enemies in invertebrate communities, but their responses to fragmentation have not 

been explored within the same community. 

 

Objectives 

This study aimed to explore the scale-dependent effects of habitat fragmentation on the 10 

population density of a Lepidopteran host and particularly its trophic interactions with a 

specialist parasitoid and virus. 

 

Methods 

Host density and host larval-mortality from the parasitoid and the virus were measured in 15 

twelve isolated sites and thirteen connected sites. An index of habitat isolation was created 

based on the amount of suitable habitat surrounding sites at a range of spatial scales (0.1-5 

km radii), and the direct and indirect effects of habitat isolation were analysed using 

generalised linear mixed effects models. 

 20 

Results 

Consistent with predictions, habitat isolation had direct negative effects on host density at the 

smallest and largest spatial scales, and indirect negative effects on host mortality from the 

virus at the largest scale, but in contrast to predictions it had direct positive effects on 

parasitism at small and medium scales. 25 
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Conclusions 

Higher trophic level species may still display responses to habitat fragmentation contrary to 

predictions based on well supported theory and empirical evidence. The mechanisms 

underlying these responses may be elucidated by studying responses, contrary to 30 

expectations, shared by related species. Developing general predictions about the responses 

of host-pathogen interactions to fragmentation will require greater understanding of the 

system-specific mechanisms by which fragmentation can influence pathogen transmission. 

 

 35 

Key-words: biotic interactions • habitat connectivity • habitat loss • host-parasite • host-

parasitoid • host-pathogen • landscape epidemiology • natural enemies • species interactions 
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Introduction 

 40 

Globally, habitat fragmentation has led to declines in biodiversity at all scales, largely 

because of changes in the amount, but also the connectivity, of suitable habitat (Ewers and 

Didham 2006; Fahrig 2003). Although the responses of individual species have been well 

studied (e.g. Didham et al. 1998), the effects of habitat fragmentation can also cascade 

through communities via trophic interactions between species, which can lead to complex 45 

changes in community structure and function (Laurance et al. 2002). Some broad patterns in 

the responses of trophic interactions to habitat fragmentation are now evident. In general, 

habitat fragmentation has typically negative effects on trophic interactions, which are 

generally more severe for trophic specialists and higher trophic levels than trophic generalists 

and lower trophic levels (Martinson and Fagan 2014). However, these overall patterns often 50 

hide substantial variability. For example, although habitat fragmentation generally has 

negative effects on host-parasitoid interactions, reducing levels of parasitism, (Martinson and 

Fagan 2014), contrasting results are also often found (van Nouhuys 2005). Additionally, for 

other widespread trophic relations, particularly host-pathogen interactions, typical responses 

to habitat fragmentation have yet to be found (Martinson and Fagan 2014; McCallum 2008). 55 

Studies examining the responses of multiple types of trophic interaction within the same 

community can help to reduce these gaps in knowledge. 

In terrestrial ecosystems parasitoids and pathogens are key drivers of mortality in 

insect populations (Graham et al. 2004; Hawkins et al. 1997). They can have important 

regulatory influences on their host’s population dynamics (Bonsall 2004; Hassell 2000), and 60 

are thought to play a key role in the cyclical outbreaking dynamics of many insect pests 

(Myers and Cory 2013). However, the effects of habitat fragmentation on host-parasitoid and 

host-pathogen interactions within the same community have yet to be examined. Higher 
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trophic levels (e.g. predators and parasitoids) are predicted to be more severely impacted by 

habitat fragmentation than lower trophic levels. This is because their populations tend to be 65 

smaller, more variable and subject to both direct effects of fragmentation, and also indirect 

effects due to their dependence on lower trophic levels, which may themselves be negatively 

affected by fragmentation (Holt et al. 1999; Valladares et al. 2006). However, although there 

is good support for this “trophic-level hypothesis” (Kruess and Tscharntke 1994, 2000; 

Martinson and Fagan 2014), studies also reveal both positive and neutral responses to habitat 70 

fragmentation by higher trophic levels (e.g. Brückmann et al. 2011; Doak 2000; Schnitzler et 

al. 2011). The reasons for this variation are not entirely understood, but may be explained by 

the influence of other key traits, particularly trophic specialisation (Cagnolo et al. 2009; Holt 

et al. 1999; van Nouhuys 2005). Trophic specialists are predicted to be especially vulnerable 

to habitat fragmentation, because it can separate them from their prey (Davies et al. 2004), 75 

whilst generalists can utilise alternative resources, which may result in neutral and even 

positive responses to habitat fragmentation (Brückmann et al. 2011; Schnitzler et al. 2011). 

Host-pathogen dynamics are usually assumed to be regulated by density-dependent 

processes (McCallum et al. 2001), where transmission rates increase with host density 

(Anderson and May 1981). Spatially explicit aspects of disease transmission have also been 80 

well studied, providing important insights into the effects that spatial structure, particularly 

the size and connectivity of host populations, can have on the likelihood of invasion and 

persistence of pathogens in host populations (Park et al. 2001, 2002), and the evolution of 

pathogen virulence (Boots et al. 2004; Boots and Mealor 2007). Consequently, the spatial 

distribution of hosts and pathogens, and the connectivity between host populations, can have 85 

significant effects on pathogen transmission and disease prevalence (Ostfeld et al. 2005). 

Therefore, by affecting the density and connectivity of host populations habitat fragmentation 

may indirectly influence pathogen transmission and resulting patterns of disease prevalence 
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(Allan et al. 2003; Langlois et al. 2001; McCallum 2008). However, so far there have been 

very few studies investigating these effects in natural systems, and general patterns of 90 

response are not yet clear (Martinson and Fagan 2014; McCallum 2008). 

Differences in the composition and formation of host-parasitoid-pathogen 

communities can also drive qualitatively different host dynamics, leading to shifts in host-

cycle periodicity and effects on the risk of population extinction (Begon et al. 1996; Sait et al. 

2000). Parasitoids and pathogens also have strongly competitive interactions within hosts, 95 

usually resulting in the death of the parasitoid (Begon et al. 1999). Thus, if hosts and their 

natural enemies respond differently to habitat fragmentation this could lead to changes in 

host-enemy dynamics, due to altered interspecific interactions within the community. 

However, these possibilities have yet to be explored in the field. 

Species’ responses to habitat fragmentation are also dependent on the spatial scale 100 

considered (Roland and Taylor 1997). This is because species experience landscapes 

differently at different spatial scales, related to key traits that include their dispersal and 

foraging abilities, body size and trophic specialisation (Tscharntke and Brandl 2004). For 

example, specialist natural enemies appear to respond to habitat structure at smaller spatial 

scales than generalist natural enemies (Chaplin-Kramer et al. 2011). Consequently, it is 105 

important to take a multi-scale approach when exploring the effects of habitat structure. 

Therefore, this study investigated the scale-dependent effects of habitat fragmentation on an 

insect host-parasitoid-pathogen community. This was achieved by examining the effects of 

habitat isolation, measured as the proportion of suitable habitat surrounding sampling sites at 

a range of spatial scales (Winfree et al. 2005), on population densities of a lepidopteran host 110 

and particularly its interactions with two key natural enemies (i.e. the mortality caused by 

those natural enemies). 
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The study was conducted on Mainland Orkney, and focused on an insect host, the 

magpie moth (Abraxas grossulariata, Lepidoptera: Geometridae), which is not typically 

considered a pest species. However, on Mainland Orkney there are widespread populations of 115 

magpie moth that suffer substantial larval mortality from a pathogen and a parasitoid, making 

it an ideal model system for exploring these questions. The parasitoid wasp is a specialist, 

solitary, koinobiont Aleiodes (Hymenoptera: Braconidae) sp. (which will be formally named 

by C. van Achterberg & M.R. Shaw, unpublished data), with no known alternative hosts (C. 

van Achterberg & M.R. Shaw, unpublished data); whilst the pathogen is a specialist 120 

nucleopolyhedrovirus (NPV), AbgrNPV (Harold 2009). NPVs are horizontally transmitted 

when larvae consume foliage contaminated with infectious NPV virions (Cory and Myers 

2003). However, as a mechanism for the pathogen to persist at low host densities, NPV 

infections can also be vertically transmitted as non-lethal covert infections, which pass from 

adults to their offspring before re-emerging as lethal, overt infections (Burden et al. 2002; 125 

Burden et al. 2003). 

Within the community there are interactions between all the species. Therefore, the 

host and the parasitoid may be directly affected by habitat isolation, but also indirectly if the 

other species with which they interact are themselves affected by habitat isolation. There are 

no clear biological mechanisms for habitat isolation to directly affect the virus AbgrNPV, but 130 

indirect mechanisms from the effects habitat isolation can have on adult movement patterns, 

and/or host density, and/or the parasitoid (thereby altering within-host competition) are all 

plausible. Therefore, to try and gain a more mechanistic understanding of the effects of 

habitat isolation a comparative approach was taken involving creating models that either 

controlled for the effects of species interactions or did not. For each species this meant that 135 

models were created to assess the effects of habitat isolation without also controlling for 

interactions with the other species in the community (i.e. providing an overall measure of the 
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sum of direct and indirect effects of habitat isolation). Additional models were then created 

for each species to assess the effects of habitat isolation whilst also controlling for 

interactions with each of the other species in the community, both separately and then 140 

together (i.e. separating out any indirect effects of habitat isolation mediated by species 

interactions). It was then possible to assess whether variation explained by an overall effect 

of habitat isolation was actually better explained by the effects of interactions between 

species, indicating the importance of direct and indirect effects of habitat isolation. 

Therefore, the following hypotheses were addressed. (1) Host population density will 145 

decrease with greater habitat isolation because of reduced focal habitat area available to 

support larval populations (Connor et al. 2000), and reduced immigration and inter-

population dispersal (Hanski 1994). (2) Parasitism will decrease with greater habitat isolation 

because of reduced density-dependent parasitism in more isolated, lower density host-

populations (Hassell 2000), and because parasitoids will fail to reach more isolated host 150 

populations (Kruess and Tscharntke 1994). (3) Host mortality from AbgrNPV virus infection 

will decrease with greater habitat isolation because of reduced density-dependent horizontal 

transmission in lower density larval populations (Anderson and May 1981), and also because 

of reduced inter-population vertical transmission of the virus by adults in more isolated 

populations. 155 
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Methods 

 

Study area and species 

 160 

Field work was conducted between 28.05.2012 and 20.06.2012 on Mainland Orkney, the 

largest of the Orkney Islands (523 km
2
), which are situated off the north-east coast of 

Scotland (Fig. 1). On Mainland Orkney larvae of the magpie moth are found feeding widely 

on heather (Calluna vulgaris), which covers approximately 19.8% of the island. This heather 

habitat is distributed between three large, separate heather moorlands (with areas of 4490, 165 

1840 and 1570 ha), as well as a number of smaller but still extensive areas of heather (the 

largest being 519 ha), and over 450 small patches of heather (Fig. 1). Magpie moth larvae are 

polyphagous, and feed on a number of shrubs and trees including Ribes spp., blackthorn 

(Prunus spinosa) and hazel (Corylus avellana) (Allan 1979). However, the remaining land 

area on Mainland Orkney consists almost entirely of pasture with some semi-natural 170 

grasslands and almost no woodland, meaning that suitable larval habitat is overwhelmingly 

restricted to, and dominated by, heather habitat. 

 

 

#Figure 1 approximately here# 175 

 

 

 

 

 180 
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Fig. 1. Location of the Orkney Islands, Mainland Orkney, the sampling sites on Mainland 

Orkney and the distribution of heather habitat across Mainland Orkney. 
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185 
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Site selection and sampling protocol 

 

To investigate the effects of habitat fragmentation on the host-parasitoid-pathogen 

community larvae were sampled from a range of isolated and connected sites within heather 190 

habitats. Thirteen connected sites were located within large, continuous areas of heather 

moorland, ranging in size from 118 to 4486 ha (mean 2723 ± 2050 ha, 1 S.D.). Twelve 

isolated sites were located in much smaller, discrete patches of heather habitat ranging in size 

from 0.31 to 5.68 ha (mean 1.79 ± 1.89 ha, 1 S.D.; Fig. 1). Isolated sites were also separated 

from any large, continuous areas of heather habitat (of minimum size 98.86 ha) by between 195 

703 and 6298 m (Fig. 1). 

Sampling of larvae from heather plants occurred within ten 1 m
2
-quadrats, placed at 

regular intervals along a 100m transect, which was randomly placed within each site. Within 

each transect any living and dead magpie moth larvae were collected via an exhaustive 

manual search of heather plants and the ground below the plants. Aleiodes parasitoids 200 

eventually turn their host into characteristic “mummies” formed from the host’s exoskeleton, 

which were also collected. Living larvae were then reared individually in 12 ml plastic pots in 

an outdoor insectary, and provided with non-sterile green heather shoots for food, which were 

taken from their sampling sites to minimise altering the risk of infection from the virus 

AbgrNPV. Larvae were checked every 1-3 days, with food replaced as needed until larval 205 

pupation, death or development of a parasitoid “mummy”. All larvae found to have died were 

tested for infection by the virus AbgrNPV via Giemsa staining (Lacey 2012), with all 

cadavers staining negative further tested for AbgrNPV DNA using PCR reactions (Harold 

2009). 

 210 

Explanatory variables 
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An area-based buffer index of habitat isolation was used to quantify the degree of habitat 

isolation at each sampling site, across multiple spatial scales. All non-heather habitat was 

assumed unsuitable for larval development, and so the index was based on the percentage of 215 

heather habitat within nested concentric circles surrounding the centre of each sampling 

transect, with the following radii used to vary the spatial scale: 0.1, 0.25, 0.5, 1, 2.5 and 5 km. 

To make it an index of isolation, all percentage values were rescaled by first subtracting them 

from 100. Therefore, the index ranged from 0 to 100, or from no isolation (0 = 100% heather 

habitat within the area considered) to complete isolation (100 = theoretically 0% heather 220 

habitat within the area considered). To calculate the habitat isolation index the distribution of 

heather habitat was mapped across Mainland Orkney using ArcMap 10.0 (ESRI 2011) and 

data from the Land Cover Map 2007 for Britain (Morton et al. 2011). Heather habitat was 

determined based on the habitat classifications “heather” and “heather grassland” (Morton et 

al. 2011). This data was then edited based on recent (2006-2012) aerial imagery from Google 225 

Earth (Google 2011), and verified in the field. Although this type of index is widely used as a 

measure of habitat isolation it does not take account of the spatial distribution of habitat, only 

the amount of habitat within a given area (Winfree et al. 2005). Therefore, it is not possible to 

separate effects related to habitat area from those related to the spatial distribution of habitat. 

However, this type of area-based buffer measure is a necessary and suitable index of habitat 230 

isolation when discrete habitat patches are not well defined (Winfree et al. 2005), which is 

the situation for the connected sites in this study (Fig. 1). 

Site-level measures of host density and percentage host-mortality from the parasitoid 

(parasitism) and the virus AbgrNPV were created by pooling the quadrat-level sampling data 

within sites, for use as explanatory variables. These variables acted as proxy measures for 235 

interactions between species within the community, allowing their effects to be analysed and 
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controlled for. Additionally, site elevation and heather plant height were thought likely to 

have important influences on all species. Lepidopteran larval density is known to be affected 

by heather plant height (Haysom and Coulson 1998), whilst parasitoid foraging efficiency 

and NPV persistence are also affected by plant height and structure (Obermaier et al. 2008; 240 

Raymond and Hails 2007). Increasing elevation affects both insect density and the level of 

parasitism due to the changes in abiotic conditions, particularly temperature, associated with 

changes in elevation (Hodkinson 2005). Little research has been done on the relationships 

between elevation and diseases in insect communities, but temperature and UV radiation vary 

with elevation, and both have important impacts on interactions between hosts and NPVs 245 

(Morris 1971). Plant height and site elevation are also likely to vary with habitat isolation, 

and so they were measured as explanatory variables so that their effects could be controlled 

for. Plant height was measured at the quadrat scale by dividing each quadrat into four equal 

sections, and taking the mean of the four heights of each plant within the centre of each 

section (measured along the stem from the base to the tip). Site elevation was measured at the 250 

centre of each sampling transect using the Spatial Analyst extension in ESRI® ArcGIS™ 

10.0 (ESRI 2011) and Ordnance Survey Land-Form Profile Digital Terrain Model data (10 

m
2
 resolution) (OS, 2003). 

 

Statistical analyses 255 

The data were analysed to assess the effects of habitat isolation at different spatial scales on 

the species within the community. Direct effects of habitat isolation on the host and the 

parasitoid are likely, because they are independently mobile organisms. However, direct 

effects are not plausible for the virus AbgrNPV, although indirect effects mediated by the 

responses of the host and the parasitoid to habitat isolation are. Similarly, indirect effects of 260 

habitat isolation on the host and the parasitoid are also plausible, mediated by the responses 
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to habitat isolation of the other species in the community with which they interact. Therefore, 

data were analysed using generalised linear mixed-effects models (GLMMs) in a multimodel 

inference process (Burnham and Anderson 2002). For each species this involved first creating 

a set of GLMMs to represent different hypotheses about the importance or otherwise of the 265 

influence of habitat isolation at each of the different spatial scales, whilst either controlling or 

not controlling for the effects of site elevation and heather plant height (Table S1; Table S5; 

Table S9). No effects from the other species within the community were controlled for, which 

meant that the effects of habitat isolation represented the sum of all direct or indirect 

influences of habitat isolation. 270 

Therefore, to develop a more mechanistic understanding of the effects of habitat 

isolation the initial sets of models were constructed again for each species, but including 

variables to control for the effects of the other species in the community. For each species 

this was done by first controlling for the effects of each of the remaining species in the 

community separately and then together, resulting in four sets of models for each species 275 

(Table S1-S12). For each species it was then possible to examine whether variation 

significantly explained by an overall effect of habitat isolation (i.e. the sum of all direct and 

indirect effects of habitat isolation) was actually explained by the effects of one or both 

remaining species in the community. Thus, if an overall effect of habitat isolation was no 

longer significant once the effects of one or both of the remaining species in the community 280 

were controlled for then an indirect effect of habitat isolation was interpreted as having been 

mediated by the effects of either one or both of the remaining species in the community. If 

habitat isolation still explained a significant amount of variation once the effects of the other 

species in the community were controlled for, then for the host and the parasitoid this was 

interpreted as a direct effect of habitat isolation; whilst for the virus AbgrNPV this was 285 

interpreted as an indirect effect of habitat isolation mediated by changes in adult host-
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movement patterns, given that the effects of host density and parasitism were controlled for, 

and this was the remaining plausible mechanism (Langlois et al. 2001; McCallum 2008). 

Host density data were analysed with GLMMs using negative binomial errors and 

log-link functions, and mortality data for the parasitoid and the virus AbgrNPV were 290 

analysed with GLMMs using binomially distributed errors and logit-link functions. All 

response data was analysed at the scale of the quadrat, and to account for any non-

independence due to spatial autocorrelation within sites all models contained site as a random 

factor (Zuur et al. 2009). Model fitting was done in version 3.0.2 of the statistical software R 

(R Core Team 2010), with host density models fitted using the glmmADMB package (Skaug 295 

et al. 2012), and models for mortality due to the parasitoid and the virus AbgrNPV fitted 

using the lme4 package (Bates et al. 2012). 

 Within each of the four model sets for each species models were ranked by their AICc 

scores, and Akaike weights used to create 95% confidence model sets (Burnham and 

Anderson 2002). Inference was then based on model-averaged parameter estimates and their 300 

95% confidence intervals, calculated using all models remaining in each 95% confidence 

model set. If only one model was retained in the 95% confidence model set, inference was 

based on parameter estimates and their 95% confidence intervals from this model. Model-

averaged parameter estimates were calculated using the natural-average method, and their 

95% confidence intervals were calculated based on unconditional standard errors (Burnham 305 

and Anderson 2002). Parameter estimates were considered to show evidence for statistically 

significant effects if their 95% confidence intervals excluded the null-effect value. 

Explanatory data were rescaled to have a mean of 0 and a standard deviation of 1, so that 

parameter estimates could be easily compared as unit free predictors on the same scale, and to 

reduce any multicollinearity (Zuur et al. 2009). Validation of models was based on the best 310 

AICc scoring model within each 95% confidence model set. Adequacy of model fit and 
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adherence to relevant statistical assumptions was confirmed using a range of residual plots 

following Zuur et al. (2009). Multicollinearity in predictor variables was assessed using 

variance inflation factors (VIFs), but all VIF scores were <3.5, indicating no issues (O'Brien 

2007). Spline correlograms confirmed there were no issues with between-site spatial 315 

autocorrelation in model residuals (Bjornstad and Falck 2001).  
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Results 

 

A total of 927 magpie moth larvae were collected, with individuals found in all sites and 74% 320 

of quadrats, highlighting the widespread distribution of magpie moth larvae on heather 

habitat across Mainland Orkney at both large and small scales. Overall, 38.5% of larvae 

eclosed as adults, whilst 43.8% died from infection by the virus AbgrNPV, 11% died from 

parasitism and the remaining 6.7% died from unknown causes (total mortality of 61.5%). 

These unknown causes were not investigated further, but there was no parasitism found from 325 

species other than the Aleiodes sp. 

 

 

#Table 1 approximately here# 

  330 
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Table 1 Isolated and connected sites' summary statistics for host density, larval 

mortality from the virus AbgrNPV, the parasitoid and unknown causes, larval survival, 

and plant height and site elevation. 

 Isolated sites (n = 12)  Connected sites (n = 13) 

Variable 

Mean 

(±1 S.D.) Range C.V.  

Mean 

(±1 S.D.) Range C.V. 

Density (larvae m
-2

) 26.7 ± 18.7 7-54 0.7  45.2 ± 41.3 4-146 0.91 

AbgrNPV virus (%) 39.7 ± 22 0-75 0.55  47.1 ± 23 0-82 0.49 

Parasitism (%) 7 ± 8.7 0-24 1.24  14.1 ± 15.5 0-56 1.09 

Unknown (%) 7.7 ± 9.9 0-30 1.29  6 ± 5.4 0-16 0.9 

Survival (%) 45.7 ± 18.3  17-71 0.4  32.8 ± 14.7 15-60 0.45 

Plant height 34.8 ± 11.4 5-63 3.05  41.6 ± 11.6 16-76 3.58 

Site elevation 22.8 ± 21.1 2-68 1.08  66.8 ± 31.3 16-119 2.13 

Statistics are based on quadrat-level data pooled within sites, except for site elevation, 

which is measured at a site level. Unknown (%) represents the percentage of larval 

mortality not attributable to the virus AbgrNPV or the parasitoid, and survival (%) 

represents the percentage of larvae surviving to the pupal stage. C.V. = coefficient of 

variation. 
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Site-level host density varied substantially between all sites, but was generally greater 

in connected sites (Table 1). The analysis showed moderately strong, negative relationships 

between the overall effects of habitat isolation (i.e. the sum of any direct and indirect effects) 335 

at the smallest and largest (100 m and 5000 m) spatial scales and host density (Table 2). 

However, when controlling for the effects of mortality from both the parasitoid and the virus 

AbgrNPV only a single best model was retained in the 95% confidence set of models, which 

contained an effect of habitat isolation at 100 m, along with effects from site elevation and 

plant height (Table S4 & Table S16). This model predicted a decrease in host density from 340 

6.6 to 1.49 (larvae m
-2

) as habitat isolation at the 100 m scale increased from 0-89.9% (Fig. 

2). When controlling for host interactions with both natural enemies the effect of habitat 

isolation at 100 m was largely unchanged from the overall effect of habitat isolation at 100 m 

(Table 2), suggesting a direct mechanism of action. 

The effect of habitat isolation at 5000 m when mortality from either the parasitoid or 345 

the virus AbgrNPV were controlled for was also very little changed compared to the effect of 

habitat isolation at 5000 m when mortality from both natural enemies was not controlled for 

(Table 2). Therefore, although no model was retained in the 95% confidence set when 

mortality from both the natural enemies was controlled for at the same time (Table S4), again 

the results indicated that the important effects of habitat isolation (this time at the 5000 m 350 

scale) were best explained as resulting from direct mechanisms. When controlling for 

interactions with both natural enemies there was also evidence for a moderately strong, 

negative effect of site elevation, but no effect of plant height, on host density (Table S16). 

 

 355 

#Table 2 approximately here# 
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Table 2 Parameter estimates and 95% confidence intervals for the effects of habitat 

isolation at different spatial scales on host density, with or without also controlling for 

host mortality from the virus AbgrNPV and the parasitoid separately or together. 

Species effects 

controlled for None 

AbgrNPV 

virus
*
 Parasitoid

†
 

AbgrNPV virus 

+ parasitoid 

Spatial scale of 

habitat isolation 

(m)     

100 0.58  

(0.46, 0.72) 

0.61  

(0.49, 0.77) 

0.56  

(0.44, 0.71) 

0.57
‡
  

(0.45, 0.72) 

2500  0.67  

(0.53, 0.85) 

  

5000 0.64  

(0.52, 0.77) 

0.67  

(0.55, 0.82) 

0.63  

(0.52, 0.77) 

 

* = Site-level percentage host mortality from the virus AbgrNPV. † = Site-level 

percentage host mortality from the parasitoid. Parameter estimates and their 95% 

confidence intervals are based on back-transformed model-averaged coefficients and 

their standard errors from the multimodel inference (MMI) analysis. ‡However, the 

estimated effect of habitat isolation at 100 m when both species were controlled for 

comes from the single model retained in the relevant 95% confidence set of models. 

Explanatory data were standardised, and estimates represent the multiplicative change in 

host density (larvae m
-2

) given a 1 S.D. increase in habitat isolation at the given scale. 

Therefore, values >1 indicate a positive effect on host density, values <1 indicate a 

negative effect, and 95% confidence intervals excluding 1 indicate a significant effect. 

The MMI process for all results also controlled for the effects of site elevation and plant 
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height, and missing values indicate no models containing an effect of habitat isolation at 

that scale were retained in the relevant 95% confidence set of models (see supplementary 

material S1 & S2). 
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#Figure 2 approximately here# 360 
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Fig. 2 Negative relationship between habitat isolation at the 100 m scale and host density 

(larvae m
-2

), whilst site-level percentage mortality from the virus AbgrNPV and the 

parasitoid are controlled for (as well as site elevation and plant height). The habitat isolation 

index represents the proportion of heather habitat surrounding a sampling site within a radius 365 

of 100 m, with 0 representing complete connectivity (100% heather habitat with a 100 m 

radius of a site) and 100 representing (theoretically) complete isolation (0% heather habitat 

within a 100 m radius of a site). Host density values (± S.E.) are back-transformed model-

predictions based on the fixed effects from the single negative binomial GLMM retained in 

the 95% confidence set of models that controlled for both natural enemies (as well as site 370 

elevation and plant height), with all predictor variables other than habitat isolation at 100 m 

held at their mean values, whilst habitat isolation was varied across the range of measured 

values. 
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At a site level, in both isolated and connected sites there was far greater average and 

maximum levels of mortality from the virus AbgrNPV than the parasitoid (Table 1). 

However, there was also less relative variation in site-level percentage mortality due to the 

virus AbgrNPV than the parasitoid (Table 1). Site-level percentage mortality due to the virus 380 

AbgrNPV was also slightly higher in connected sites than in isolated sites (Table 1), but the 

analysis indicated no significant overall effects of habitat isolation at any scale on the 

likelihood of mortality from the virus AbgrNPV (Table 3). When controlling for site-level 

percentage mortality from the parasitoid (i.e. within-host competition), with or without 

controlling for host density, there was a marginally significant, weak, negative effect of 385 

habitat isolation at 5000 m on the likelihood of mortality from the virus AbgrNPV (Table 3). 

Consequently, the model-averaged predicted probability of mortality declined from 0.51 to 

0.39 as habitat isolation at 5000 m increased from 48.2%-98.3% at the 5000 m scale when 

controlling for parasitism and host density (Fig. 3). 

The effect of habitat isolation at 5000 m, when controlling for species interactions, 390 

was little different to the overall effect of habitat isolation at 5000 m, albeit with narrower 

confidence intervals (Table 3). Therefore, given that any effects from changes in host density 

or competition from the parasitoid, in response to habitat isolation, were controlled for, the 

effect may be interpreted as being driven by changes to host-movement patterns at large 

spatial scales. Although not significant, similar trends in the effects of habitat isolation at 395 

smaller spatial scales were also observed, but declined in importance with decreasing scale. 

When controlling for all species interactions site-level percentage parasitism had a 

moderately strong, negative effect on the likelihood of mortality from the virus AbgrNPV, 

whilst host density, heather height and site elevation all had no clear effects (Table S20). 

 400 
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Table 3 Parameter estimates and 95% confidence intervals for the effects of habitat 

isolation at different spatial scales on host mortality from the virus AbgrNPV, with or 

without also controlling for host mortality from the parasitoid and host density 

separately or together. 

Species effects 

controlled for None Parasitoid
* 

Host density†
 

Parasitoid + 

host density 

Spatial scale of 

habitat isolation 

(m)     

100 0.79  

(0.48, 1.31) 

0.88  

(0.66, 1.17) 

0.83  

(0.49, 1.4) 

0.9  

(0.67, 1.21) 

250 0.69  

(0.4, 1.22) 

0.84  

(0.64, 1.1) 

0.73  

(0.4, 1.33) 

0.86  

(0.65, 1.14) 

500 0.79  

(0.43, 1.45) 

0.84  

(0.63, 1.1) 

0.99  

(0.68, 1.43) 

0.85  

(0.64, 1.13) 

1000 0.70  

(0.36, 1.36) 

0.8  

(0.58, 1.1) 

0.74  

(0.37, 1.48) 

0.82  

(0.6, 1.13) 

2500 0.67  

(0.35, 1.28) 

0.75  

(0.54, 1.06) 

0.71  

(0.36, 1.39) 

0.77  

(0.55, 1.08) 

5000 0.74  

(0.45, 1.19) 

0.73  

(0.56, 0.95) 

0.76  

(0.45, 1.29) 

0.74  

(0.55, 0.98) 

* = Site-level percentage host mortality from the parasitoid. † = Site-level host density. 

Parameter estimates and their 95% confidence intervals are based on back-transformed 

model-averaged coefficients and their standard errors from the multimodel inference 

(MMI) analysis. Explanatory data were standardised, and estimates represent the 
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multiplicative change in the odds of host mortality from the virus AbgrNPV given a 1 

S.D. increase in habitat isolation at the given scale. Therefore, values >1 indicate a 

positive effect on host density, values <1 indicate a negative effect, and 95% confidence 

intervals excluding 1 indicate a significant effect. The MMI process for all results also 

controlled for the effects of site elevation and plant height (see supplementary material 

S1 & S2). 

 

 405 
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Fig. 3 Negative relationship between habitat isolation at the 5000 m scale and the probability 

of host mortality from the virus AbgrNPV, whilst site-level percentage host mortality from 

the parasitoid and site-level host density are controlled for (as well as site elevation and plant 410 

height). The habitat isolation index represents the proportion of heather habitat surrounding a 

sampling site within a radius of 100 m, with 0 representing complete connectivity (100% 

heather habitat with a 100 m radius of a site) and 100 representing (theoretically) complete 

isolation (0% heather habitat within a 100 m radius of a site). Values for the probability of 

host mortality from the virus AbgrNPV (± S.E.) are back-transformed predictions based on 415 

the model-averaged fixed effects of the binomial GLMMs retained in the 95% confidence set 

of models that controlled for parasitism and host density (as well as site elevation and plant 

height), with all predictor variables held at their mean values, whilst habitat isolation at 5000 

m was varied across the range of measured values. 

  420 



31 

 

  



32 

 

Parasitism varied substantially between all sites, and there were generally higher 

levels of parasitism in connected sites (Table 1). However, contrary to expectations there 

were strong, positive, overall effects of habitat isolation on the likelihood of parasitism at the 

100 and 250 m scales (Table 4) when the effects of site elevation and plant height were 425 

accounted for (e.g. isolated sites were typically at substantially lower elevations than 

connected sites, Table 1). When controlling for the effects of host density, or host density and 

site-level percentage mortality from the virus AbgrNPV (i.e. within-host competition), effects 

of habitat isolation at the 100 and 250 m scales remained, and there was also a smaller 

positive effect of habitat isolation at the 500 m scale (Table 4). These effects were little 430 

different in size from the overall effects of habitat isolation at the same spatial scales when 

not controlling for species interactions (Table 4), indicating direct mechanisms. The strongest 

direct effect was at the 100 m scale, where the probability of parasitism was predicted to 

increase from 0.03 to 0.15 as habitat isolation increased from 0-89.9% at the 100 m scale 

(Table 4 & Fig. 4). When controlling for all species interactions there was a moderate, 435 

positive effect of host density on the likelihood of parasitism, and a stronger, negative effect 

of site-level percentage mortality from the virus AbgrNPV; whilst site elevation had a strong, 

positive effect, and plant height a moderately strong, positive effect on the likelihood of 

parasitism (Table S24). 

 440 
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Table 4 Parameter estimates and 95% confidence intervals for the effects of habitat 

isolation at different spatial scales on host mortality from the parasitoid, with or without 

also controlling for host mortality from the virus AbgrNPV and host density separately 

or together. 

Species effects 

controlled for None 

AbgrNPV 

virus
* 

Host density†
 

AbgrNPV virus 

+ host density 

Spatial scale of 

habitat isolation 

(m)     

100 3.55  

(1.37, 9.19) 

2.64  

(1.15, 6.03) 

4.48  

(1.65, 12.17) 

3.39  

(1.56, 7.34) 

250 3.48  

(1.36, 8.9) 

2.51  

(1.09, 5.75) 

4.18  

(1.65, 10.62) 

3.01  

(0.55, 5.85) 

500 2.67  

(0.91, 7.82) 

1.99  

(0.81, 4.84) 

3.09  

(1.03, 9.23) 

2.39  

(1.07, 5.36) 

1000 2.42  

(0.79, 7.45) 

1.6  

(0.61, 4.2) 

2.92  

(0.9, 9.45) 

 

2500     

5000  0.31  

(0.31, 1.31) 

  

* = Site-level percentage host mortality from the virus AbgrNPV. † = Site-level host 

density. Parameter estimates and their 95% confidence intervals are based on back-

transformed model-averaged coefficients and their standard errors from the multimodel 

inference (MMI) analysis. Explanatory data were standardised, and estimates represent 
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the multiplicative change in the odds of host mortality from the parasitoid given a 1 S.D. 

increase in habitat isolation at the given scale. Therefore, values >1 indicate a positive 

effect on host density, values <1 indicate a negative effect, and 95% confidence intervals 

excluding 1 indicate a significant effect. The MMI process for all results also controlled 

for the effects of site elevation and plant height, and missing values indicate no models 

containing an effect of habitat isolation at that scale were retained in the relevant 95% 

confidence set of models (see supplementary material S1 & S2). 
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Fig. 4 Positive relationship between habitat isolation at the 100 m scale and the probability of 

host mortality from the parasitoid, whilst site-level percentage host mortality from the virus 

AbgrNPV and site-level host density were controlled for (as well as site elevation and plant 450 

height). The habitat isolation index represents the proportion of heather habitat surrounding a 

sampling site within a radius of 100 m, with 0 representing complete connectivity (100% 

heather habitat with a 100 m radius of a site) and 100 representing (theoretically) complete 

isolation (0% heather habitat within a 100 m radius of a site). Values for the probability of 

host mortality from the parasitoid (± S.E.) are back-transformed predictions based on the 455 

model-averaged fixed effects of the binomial GLMMs retained in the 95% confidence set of 

models that controlled for host mortality from the virus AbgrNPV and host density (as well 

as site elevation and plant height), with all predictor variables held at their mean values, 

whilst habitat isolation at 100 m was varied across the range of measured values. 
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Discussion 

 

There was evidence for a direct negative effect of habitat isolation at the smallest scale (100 

m) on host density, and also an overall negative effect of habitat isolation at the largest scale 465 

(5000 m) on host density, also probably driven by direct mechanisms. There was also 

evidence for an indirect negative effect of habitat isolation at the largest scale on the 

likelihood of mortality due to the virus AbgrNPV. Lastly, in contrast to expectations based on 

the trophic-level hypothesis and the trophic specialism of the parasitoid (Holt et al. 1999; 

Kruess and Tscharntke 1994, 2000), there was evidence for direct positive effects of habitat 470 

isolation at small and medium scales (100-500 m) on the likelihood of parasitism, once the 

effects of site elevation and plant height were also controlled for. 

The direct effects of habitat isolation on host density may be due to processes related 

to habitat area and/or the spatial arrangement of habitat, but it is not possible to distinguish 

between these possibilities based on the habitat isolation index, and so both must be 475 

considered. In insects relationships between population density and habitat area are variable 

(Bender et al. 1998; Connor et al. 2000; Hambäck and Englund 2005). Positive relationships 

have usually been explained by the resource concentration hypothesis (Connor et al. 2000), 

and the results observed here may indeed be due to larger areas of heather habitat supporting 

denser larval populations. Alternatively, more recent work has attempted to explain 480 

population density-area relationships in terms of the scaling of migration rates with habitat 

area (Hambäck and Englund 2005; Hambäck et al. 2007). Applied to moths, as observed here 

positive relationships between population density and habitat area are typically found, and 

may be explained by their reliance on primarily olfactory cues to locate suitable habitat for 

oviposition (Renwick and Chew 1994), which scale strongly with habitat area (Hambäck and 485 

Englund 2005; Hambäck et al. 2007). Consistent with this hypothesis, butterflies instead 
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locate suitable habitat for oviposition primarily using visual cues (Renwick and Chew 1994), 

which scale much less with habitat area (Hambäck and Englund 2005; Hambäck et al. 2007), 

and they typically display negative relationships between population density and habitat area. 

In terms of the spatial arrangement of habitat, metapopulation theory predicts that 490 

population densities should decline with increasing habitat isolation because of reduced 

immigration (Hanski 1994), and this has been demonstrated by experimental and 

observational studies (Gonzalez et al. 1998; Hanski and Thomas 1994). This represents an 

alternative mechanism to area-related processes, and could also explain the observed results 

if more isolated sites receive fewer immigrants due to their isolation from other large areas of 495 

heather habitat. The dispersal ability of the magpie moth is not known, but it is a relatively 

large bodied species, and so may be expected to be a relatively strong disperser (Sekar 2012). 

Therefore, although it is not possible to distinguish area-related effects from those due to the 

spatial arrangement of habitat based on the isolation index, the effect of habitat isolation at 

the largest spatial scale is consistent with immigration being reduced for sites isolated at large 500 

spatial scales, due to the dispersal limitations of the magpie moth. Similarly, the direct 

negative effect of habitat isolation at the smallest spatial scale is also more consistent with 

small-scale area-related mechanisms (Fahrig 2003), reflecting greater larval resources and/or 

greater immigration with increasing habitat area (Hambäck and Englund 2005; Hambäck et 

al. 2007). 505 

Within the Mainland Orkney landscape the magpie moth may be seen as a habitat 

specialist due to the essentially binary suitability of the landscape for its larval stages. 

Consistent with results found here, habitat specialists are predicted to display more positive 

density-area relationships than habitat generalists. This is because of their greater risk of 

population extinction in smaller areas of habitat, given that they cannot utilise alternative 510 

habitats (Hambäck et al. 2007; Steffan-Dewenter and Tscharntke 2000). However, an 
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interaction between habitat specialisation and body size has also been observed, with large 

bodied (and therefore generally highly mobile) habitat specialists displaying either neutral or 

negative relationships between population density and habitat area, compared to the more 

positive relationships displayed by small bodied species (Hambäck et al. 2007). Therefore, 515 

the results presented here suggest a more important role for trophic specialisation over 

dispersal ability in determining species’ sensitivity to habitat fragmentation, at least in this 

species. 

Changes in host density and host movement patterns in response to habitat structure 

are both plausible mechanisms by which habitat fragmentation may indirectly affect patterns 520 

in disease (Allan et al. 2003; Brownstein et al. 2005). The effect of habitat isolation at the 

5000 m scale on the likelihood of mortality from the virus AbgrNPV was essentially the same 

whether the effects of host density were controlled for or not, although the effect was only 

significant when at least controlling for competition with the parasitoid. When controlling for 

the other species in the community, the effects of habitat isolation on the likelihood of 525 

mortality from the virus AbgrNPV were all non-significant at spatial scales smaller than 5000 

m, and declined with decreasing spatial scale. Therefore, the significant negative effects of 

habitat isolation at 5000 m may be tentatively interpreted as reflecting reduced adult vertical 

transmission of covert AbgrNPV infections between populations, driven by reduced adult 

dispersal between populations isolated at large spatial scales (Sekar 2012; Tscharntke and 530 

Brandl 2004), ultimately leading to reduced larval mortality from emergent overt infections 

in more isolated populations (Boots et al. 2003; Burden et al. 2002; Burden et al. 2003). 

Covert vertical transmission of NPV infections appear to be relatively common in 

Lepidoptera (Burden et al. 2002; Burden et al. 2003; Vilaplana et al. 2010), but their 

dynamics have been little studied in natural settings, and their importance in this system 535 

remains to be determined. 
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Unexpectedly, there were also strong positive effects of habitat isolation on the 

likelihood of parasitism at small and medium spatial scales (100-500 m), possibly reflecting 

the generally more restricted dispersal abilities of higher trophic levels (Chaplin-Kramer et al. 

2011; Tscharntke and Brandl 2004). These effects appear to be driven primarily by direct 540 

mechanisms, rather than being mediated by the responses of the host and/or the virus 

AbgrNPV to the effects of habitat isolation. Again, the results must be interpreted in the 

context of the habitat isolation index, which does not allow direct effects related to habitat 

area to be separated from direct effects related to the spatial arrangement of habitat. 

Parasitoids are known to increase their oviposition rate and spend longer searching for hosts 545 

relative to the distance travelled to locate suitable foraging sites (Tentelier et al. 2006), which 

can lead to increased rates of parasitism in more isolated areas of habitat (Cronin and Strong 

1999). Parasitoids may also be less willing to disperse from within suitable habitat patches, 

and more likely to return to them after moving out into unsuitable “matrix” habitat, leading to 

increased aggregation of parasitism in more isolated patches (Cronin and Strong 1999). 550 

Insects also commonly exhibit negative responses to the edges of suitable habitat patches 

(Ewers and Didham 2006), which may lead to parasitoids becoming “trapped” in smaller, 

discrete patches of habitat, again resulting in increased rates of parasitism (Roth et al. 2006). 

Therefore, the positive relationship between parasitism and habitat isolation observed at small 

to medium spatial scales is consistent with these behavioural mechanisms, given that the 555 

more isolated sites were generally small, discrete patches of heather habitat, and usually 

separated from any other areas of heather habitat by substantial distances. 

The response of parasitism to habitat isolation therefore revealed that the parasitoid 

was robust to habitat fragmentation. This was contrary to the trophic-level hypothesis (Kruess 

and Tscharntke 1994, 2000), the typically negative responses of parasitoids to increasing 560 

habitat fragmentation (Martinson and Fagan 2014), and the trophic specialisation of the 
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parasitoid, which should make it especially susceptible to habitat fragmentation (Holt et al. 

1999). This emphasises that the responses of higher trophic levels can still show striking 

deviations from predictions based on existing theory (Brückmann et al. 2011; Doak 2000; 

Elzinga et al. 2007), even when they are trophic specialists and expected to be especially 565 

vulnerable to habitat fragmentation (Schnitzler et al. 2011). Interestingly, Schnitzler et al. 

(2011) have also documented a positive response to greater habitat isolation by another 

specialist Aleiodes parasitoid, whilst Doak (2000) demonstrated a positive response to greater 

habitat isolation and reduced patch size in a further Aleiodes parasitoid, although of unknown 

trophic breadth. Therefore, it is an intriguing but unexplored possibility that common 570 

responses to habitat fragmentation, including those contrary to expectations, could be shared 

by related species at higher trophic levels, driven by shared behavioural responses to habitat 

structure. 

 

  575 
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Conclusions 

 

The responses seen across all species within the community were likely to result primarily 

from the effects of habitat structure on host and natural enemy dispersal and foraging 

behaviours. However, whilst the observed effects were largely as expected for the host they 580 

were in opposition to those predicted for the parasitoid, based on existing theory and typical 

responses (Holt et al. 1999; Martinson and Fagan 2014). Thus, despite some clear patterns 

being evident in the general responses of host-parasitoid interactions to habitat fragmentation 

(Martinson and Fagan 2014), a better understanding of the mechanisms driving deviations 

from predicted responses is required. This may be advanced by looking for shared responses 585 

to habitat fragmentation, particularly those contrary to predictions, in taxonomically related 

suites of higher trophic level species, and then investigating their causes. 

Although the response by the virus AbgrNPV to habitat isolation was not unexpected, 

the responses of host-pathogen interactions to habitat fragmentation have received little 

attention compared to other trophic interactions (Martinson and Fagan 2014; McCallum 590 

2008), despite the increasing recognition of the importance of pathogens for host population 

dynamics (Bonsall 2004; Myers and Cory 2013). The proposed mechanism underlying the 

observed results in this study, involving adult vertical transmission of covert infections, 

highlights the need to improve understanding of the system-specific mechanisms by which 

habitat fragmentation can influence host-pathogen interactions in different systems. 595 

Improving understanding about these processes will enable general and specific predictions 

to made. 
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