
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Latent Context-aware Recommender
Systems

Maria dos Santos de Abreu

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Carlos Soares, PhD

Co-supervisor: Tiago Cunha, PhD

February 24, 2020

Latent Context-aware Recommender Systems

Maria dos Santos de Abreu

Mestrado Integrado em Engenharia Informática e Computação

February 24, 2020

Abstract

The relevance of Recommender Systems (RS) grew with the increase in the variety of products,
content and activities that users are presented with nowadays. These types of systems are used
daily by millions of people on services as diverse as Spotify, Amazon and Netflix. Most ap-
proaches use relatively simple and straightforward data, such as user and item properties. As
progress in this area was made, it was established that user preferences can change with context.
For example, a person running would listen to a different type of music comparatively to a person
relaxing at night. Even though context is hard to capture, the ubiquity and interconnectivity of
devices present an opportunity to do so. With the widespread usage of smartphones and other
smart devices, huge amounts of data are generated daily. Context-aware Recommender Systems
(CARS) constitute an approach that aims to make better use of more of the available data. CARS
are a subset of RS that use contextual information such as location, time of day, or other relevant
variables to improve the quality of the recommendations.

Amongst its main characterisation traits lies the fact that contextual data can be classified by
whether it is latent or not. Non-latent variables’ meaning is known and well-defined from the
start, such as the ones aforementioned. These variables can model context through predetermined
variables, such as time and location, for an example. Even though non-latent variables are more
prevalent, including these additional contextual variables turns the rating matrix into a tensor,
which will be sparser than the matrix. On the other hand, latent variables must be extracted from
non-latent context, and their explicit meaning is unknown. Even so, capturing these variables can
help model context more accurately, with less variables and consequently, less sparsity. Since
latent context is derived from the predetermined, non-latent context, it can reflect hidden relation-
ships or patterns from combinations of the original variables. In the previous example, if time and
location were the original non-latent context, we could extract one single variable to model both
temporal and positional contexts. Another advantage is that this extraction process can be param-
eterised, which means it would be possible to decide the number of variables and experiment in
order to obtain the best results. Therefore, latent context might be used implicitly to improve the
end result. For all these reasons, we infer that it is relevant and important to ascertain the value of
this type of context.

Thus, in this dissertation we will develop a method to extract latent contextual variables and
empirically evaluate their usefulness for recommendation. The project was composed of several
tasks: firstly, a technique to extract latent context variables from contextual variables was em-
ployed. Afterwards, this context was integrated in a recommender system. The method developed
was evaluated against another state of the art CARS approach. Our method was also compared
with the same algorithm not using any type of context, as well as other traditional, popular non-
contextual algorithms. All these methods were empirically evaluated in terms of the quality of
their recommendations.

The analysis of the results revealed potential in latent contextual approaches. In two out of the
three data sets used, the approach developed obtained better results in all the evaluation metrics,

i

including AUC and NDCG. Furthermore, in the remaining data set, the performance of our method
is comparable to the others. Therefore, the results provide evidence in favour of latent context
improving recommendations while using less variables.

ii

Resumo

A relevância dos Sistemas de Recomendação tem aumentado com a variedade de produtos, con-
teúdo e atividades que rodeiam os utilizadores nos dias que correm. Este tipo de sistemas são
usados diariamente por milhões de pessoas, em serviços tão diversos como Spotify, Amazon e
Netflix. A maior parte destes sistemas usam dados relativamente simples e diretos, tais como as
propriedades de cada item e as caraterísticas do utilizador.

À medida que foi sendo feito progresso nesta área, foi estabelecido que as preferências dos
utilizadores podem mudar com o contexto em que estes se encontram. Por exemplo, uma pes-
soa a correr ouvirá um tipo de música diferente comparativamente a outra que esteja a relaxar
à noite. Apesar do contexto ser difícil de capturar, a ubiquidade e interconetividade dos dispos-
itivos apresentam uma oportunidade para o fazer. Com o uso comum de smartphones e outros
dispositivos inteligentes, são geradas diariamente grandes quantidades de dados. Os Sistemas de
Recomendação Contextuais constituem uma abordagem que tem como objetivo aproveitar mais e
melhor os dados disponíveis. Os Sistemas de Recomendação Contextuais são um subconjunto dos
Sistemas de Recomendação que usa informação contextual, tal como localização, hora do dia, ou
outras variáveis relevantes para melhorar a qualidade das recomendações.

Uma das principais formas de caracterizar contexto prende-se ao facto de dados contextuais
poderem ser classificados como latentes ou não-latentes. O significado das variáveis não-latentes
é conhecido e bem definido desde o início, como nos exemplos mencionados anteriormente. Estas
variáveis modelam o contexto através de variáveis predefinidas, como hora do dia e localização,
por exemplo. Apesar de variáveis contextuais não-latentes serem mais prevalentes, o seu uso
faz com que a matriz de avaliações passe a ser um tensor, que será mais disperso que a matriz
original. Por outro lado, as variáveis latentes têm de ser extraídas através de variáveis contextu-
ais não-latentes e o seu significado explícito é desconhecido. As variáveis não-latentes modelam
variáveis pré-determinadas, como por exemplo tempo e localização. Ainda assim, capturar estas
variáveis pode permitir modelar o contexto mais fielmente, com menos variáveis, e portanto menos
dispersão. Dado que o contexto latente é derivado do contexto predeterminado, não-latente, é pos-
sível que este reflita relações ou padrões escondidos em combinações das variáveis originais. No
exemplo anterior, sendo hora do dia e localização as variáveis contextuais originais não-latentes,
poderia extrair-se uma única variável que modelasse tanto o contexto temporal como local. Outra
vantagem é que este processo de extração é parametrizável, o que significa que é possível decidir
o número de variáveis que são extraídas e experimentar de modo a obter os melhores resultados.
Assim, o contexto latente pode ser usado implicitamente para melhorar as recomendações. Por
todas as razões apresentadas, depreende-se que é relevante e importante averiguar o valor deste
tipo de contexto.

Deste modo, nesta dissertação desenvolveremos um método para extrair contexto latente e
avaliaremos empiricamente a sua utilidade em recomendações. O projeto foi composto por várias
tarefas: primeiro, uma técnica foi usada para a extração do contexto latente. De seguida, este con-
texto latente foi integrado num sistema de recomendação. O método de recomendação contextual

iii

latente desenvolvido foi avaliado contra outro sistema de recomendação contextual state of the art.
O nosso método foi ainda comparado com um algoritmo semelhante que não usa qualquer tipo de
contexto, assim como com outros algoritmos populares não-contextuais tradicionais. Todos estes
diferentes métodos foram comparados empiricamente em termos da qualidade das recomendações
feitas.

A análise dos resultados revelou potencial na abordagem contextual latente. Em dois dos
três data sets utilizados, o método desenvolvido obteve melhores resultados em todas as métricas
de avaliação, incluindo AUC e NDCG. Para além do mais, no data set restante os resultados da
nossa abordagem são comparáveis aos das outras abordagens. Consequentemente, os resultados
apresentam argumentos a favor do uso de contexto latente para melhorar recomendações, usando
menos variáveis.

iv

Acknowledgements

Gostaria de começar por expressar a minha gratidão para com os meus orientadores. Pela paciência
infinita, por toda a disponibilidade, pelos conselhos e pelo voto de confiança, obrigada.

Queria também deixar uma palavra de apreço a todos os colegas e professores que de alguma
forma me ajudaram ao longo deste percurso académico.

A todas as pessoas do laboratório onde desenvolvi esta dissertação, agradeço a simpatia e o
acolhimento afável.

A todos os amigos (e vizinhas) que me animaram quando mais precisava, obrigada pelas vossas
palavras, companhia e carinho.

Ao Francisco, pelo apoio inabalável, pela calma e pela fé em mim, muito obrigada.
Por último mas não em último, à minha família, sem a qual nada disto seria possível.

Maria dos Santos de Abreu

Este trabalho é financiado parcialmente por Fundos FEDER através do Programa Operacional
Competitividade e Internacionalização - COMPETE 2020 e por Fundos Nacionais através da
FCT - Fundação para a Ciência e a Tecnologia no âmbito do projeto CONTEXTWA (FCT
PTDC/EEI-SCR/6945/2014 - POCI-01-0145-FEDER-016883).

This work is partly funded by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation - COMPETE 2020
Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para
a Ciência e a Tecnologia within project CONTEXTWA (FCT PTDC/EEI-SCR/6945/2014 -
POCI-01-0145-FEDER-016883).

v

vi

“An answer is invariably the parent of a great family of new questions.”

John Steinbeck

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Research Questions . 2
1.3 Dissertation Structure . 3

2 Recommender Systems 5
2.1 Algorithms . 5

2.1.1 Content-based Filtering . 6
2.1.2 Collaborative Filtering . 6
2.1.3 Hybrid Approaches . 8

2.2 Common Issues . 9
2.3 Evaluation . 11
2.4 Contextual Recommender Systems . 14

2.4.1 Definition of Context . 15
2.4.2 Non-latent Context versus Latent Context 15
2.4.3 Algorithms . 16
2.4.4 Literature Review of Latent Approaches 18
2.4.5 Related Work . 20

2.5 Summary . 21

3 A Latent Context-aware Recommender System Approach 23
3.1 Approach Overview . 23

3.1.1 Context-aware Recommender Systems 24
3.1.2 Latent Context Extraction . 25

3.2 Empirical Evaluation . 26
3.2.1 Latent Context Extraction . 26
3.2.2 Latent Context-aware Recommender System 27

3.3 Experimental Setup . 28
3.3.1 Data . 28
3.3.2 Data Preparation . 28
3.3.3 Evaluation . 29

3.4 Implementation . 32
3.5 Discussion . 32

4 Empirical Study 33
4.1 Experimental Setup . 33

4.1.1 Data . 33
4.1.2 Data Preparation . 34

ix

CONTENTS

4.1.3 Evaluation . 35
4.2 Implementation . 37
4.3 Analysis of the Results . 37

4.3.1 DePaulMovie . 38
4.3.2 InCarMusic . 42
4.3.3 TijuanaRestaurant . 45

4.4 Discussion . 48
4.5 Research Questions . 48

5 Conclusions and Future Work 51

References 53

A Preparations 59

B Results 61

x

List of Figures

1.1 Illustration of the objectives for the project . 3

2.1 Matrix representation of a traditional Recommender System 6
2.2 Amazon collaborative filtering example . 7
2.3 Schematic representation of the kNN algorithm 8
2.4 Categorisation of context according to acquisition and latency 15
2.5 Method used in related work [UBSR16] . 21

3.1 Tensor representation of contextual data . 24
3.2 Matrix approximation of contextual data . 25
3.3 High level scheme of the developed method . 26
3.4 Process for latent context extraction . 27
3.5 Process for generation of recommendations and empirical evaluation 28
3.6 Schematic representation of aggregation of two contextual variables 29
3.7 Evaluation protocol for Recommender Systems 30

4.1 Schematic representation of aggregation of two contextual variables 34
4.2 Evaluation protocol for Recommender Systems 35
4.3 Comparison of P@5 and P@10 in the DePaulMovie data set 39
4.4 Comparison of AUC@5 and AUC@10 in the DePaulMovie data set 40
4.5 Comparison of MAP@5 and MAP@10 in the DePaulMovie data set 40
4.6 Comparison of NDCG@5 and NDCG@10 in the DePaulMovie data set 41
4.7 Comparison of F1@5 and F1@10 in the DePaulMovie data set 41
4.8 Comparison of AUC@5 and AUC@10 in the InCarMusic data set 42
4.9 Comparison of MAP@5 and MAP@10 in the InCarMusic data set 43
4.10 Comparison of NDCG@5 and NDCG@10 in the InCarMusic data set 43
4.11 Comparison of F1@5 and F1@10 in the InCarMusic data set 44
4.12 Comparison of P@5 and P@10 in the InCarMusic data set 44
4.13 Comparison of AUC@5 and AUC@10 in the Ti juanaRestaurant data set 45
4.14 Comparison of MAP@5 and MAP@10 in the Ti juanaRestaurant data set 46
4.15 Comparison of NDCG@5 and NDCG@10 in the Ti juanaRestaurant data set . . 46
4.16 Comparison of P@5 and P@10 in the Ti juanaRestaurant data set 47
4.17 Comparison of F1@5 and F1@10 in the Ti juanaRestaurant data set 47

B.1 First worksheet of the results from the DePaulMovie data set 62
B.2 Second worksheet of the results from the DePaulMovie data set 62
B.3 First worksheet of the results from the InCarMusic data set 63
B.4 Second worksheet of the results from the InCarMusic data set 63
B.5 First worksheet of the results from the RestrTi juana data set 64

xi

LIST OF FIGURES

B.6 Second worksheet of the results from the RestrTi juana data set 64

xii

List of Tables

2.1 Classification of context-aware recommendation algorithms by [LBK17] 16

4.1 Collection of statistics for the used data sets . 34
4.2 Set of approaches tested . 38
4.3 Non-latent context conditions and latent context conditions extracted per data set 38
4.4 Frequency distribution of data set DePaulMovie 39
4.5 Frequency distribution of data set InCarMusic 42
4.6 Frequency distribution of data set Ti juanaRestaurant 45

xiii

LIST OF TABLES

xiv

Abbreviations

RS Recommender Systems
CARS Context-Aware Recommender Systems
ML Machine Learning
MF Matrix Factorisation
PCC Pearson’s Correlation Coefficient
JMF Joint Matrix Factorisation
POI Points of interest
MAE Mean Absolute Error
RMSE Root-mean-square Error
NDCG Normative Discounted Cumulative Gain
NDPM Normalised Distance-based Performance Measure
PCA Principal Component Analysis
GUI Graphical User Interface
kNN k Nearest Neighbours
ROC Receiver Operating Characteristics
PRC Precision Recall Curve
AUC Area Under the Curve
MAP Mean Average Precision
P@K Precision at K
R@K Recall at K
LDA Latent Dirichlet allocation
GSP Generalized Sequential Pattern
SGD Stochastic gradient descent

xv

Chapter 1

Introduction

Recommender Systems (RS) have become more prevalent as the variety of products, content and

activities increases and it becomes difficult for users to browse an entire catalogue in order to find

relevant content. More recently, RS have been evolving alongside the widespread usage of smart-

phones and other smart devices. With the constant use of these devices, huge amounts of data are

generated daily, presenting an opportunity for companies to improve the quality of their recom-

mendations and better match their products to the consumers. In fact, RS are considered the most

suitable solution to the information overload problem that plagues consumers nowadays, facilitat-

ing their decision of what to consume. The matrix with all the information required can become

very large, and therefore Matrix Factorisation (MF) is a common method used for dimensional-

ity reduction. However, it is also common for user preferences to change with context [AT11].

For instance, on weekdays a person might prefer to watch short series, and films on weekends.

Therefore, capturing the current circumstances of the user and including them in the recommen-

dation process can improve the quality of the recommendations. Context-Aware Recommender

Systems (CARS) are RS that take into account the user context to generate recommendations. The

pertinence of CARS can be ascertained by recent literature on the topic [AT11, VSDCT18].

Existing contextual RS show an overall improvement relatively to their non-contextual coun-

terparts [Ado05]. These systems make recommendations by adding a contextual dimension to the

traditional User x Item recommendation space. However, this also normally implies using a higher

number of variables, in order to represent the user context. This increases the problem of the di-

mensionality of the attribute space, which negatively affects the computational cost and makes it

harder to find patterns. Additionally, a system with more dimensions also requires a considerable

amount of data along each one, so the model can learn and generalise for each dimension. How-

ever, increasing the number of dimensions turns the rating matrix into a tensor, less dense than

the matrix, which might negatively impact the recommendations [AT11]. Therefore, it would be

useful to know which variables are more important and use them to model contextual information.

Latent context variables present a possibility for tackling these issues.

Contextual variables can be classified as latent or non-latent. Non-latent contextual variables

have well-defined meanings. The time and location at which someone listened to a certain song

1

Introduction

are easily interpretable examples of non-latent context. This type of context can be acquired ex-

plicitly, through user input for an example, or implicitly, through sensor data and other indirect

information. On the other hand, latent contextual variables are extracted from non-latent contex-

tual variables. They are learned from hidden patterns in non-latent data, and their meaning is not

straightforward. Latent context variables’ can potentially model context more accurately and with

less variables, since they might reflect relations in the data. Besides, they also have advantages

in terms of maintaining privacy as defended by [UBSR16], as their explicit meaning is unknown.

Latent context-aware RS are a subset of CARS that use latent context instead of non-latent con-

text [Ung15].

1.1 Motivation

This particular line of investigation is still relatively recent and consequently there is still room

for contributions. This happens since latent variables’ potential is not fully understood yet, and

therefore more studying is required to understand their value.

This dissertation proposes a new method for a latent context-aware RS. This area is still in an

early stage of development. While in related work methods such as neural networks are used to

extract context, here a simple MF algorithm will be used. Even though this method is widely used

for dimensionality reduction, its purpose in this project is innovative. Therefore, we will explore

this idea, proposing a new CARS algorithm based on it.

The latent data resultant from MF will afterwards be integrated within a RS based on this

method of extraction, in order to confirm whether latent context presents a viable option. Empirical

validation will be made using standard, benchmark contextual data sets from different domains.

1.2 Goals and Research Questions

The main purpose of this research is to find an alternative, potentially more informative represen-

tation to use instead of the current non-latent variety of contextual data within a CARS. Therefore

we will aim at developing a method to extract latent context variables from non-latent context

variables. This contextual information will afterwards be integrated within a RS, in order to con-

firm whether latent context presents a viable option. This system will be empirically evaluated on

different data sets, each pertaining to a different domain. In order to assess latent context perfor-

mance, it will be compared against CF and CARS State of the Art algorithms and baselines. A

high level scheme of the goals can be observed in Figure 1.1.

The research questions identified were the following:

1. Is the extraction of latent context from non-latent context variables through MF vi-
able? With this question the focus is on ascertaining whether the extraction of latent con-

text is possible through standard, off-the-shelf methods. MF is a common recommendation

algorithm, but using it to extract latent context is a novel application.

2

Introduction

Non-latent Context Latent Context

extraction is used to calculate

Latent CARS
kNN

Distance
Matrix

feeds

CARS

Non-contextual
kNN

evaluated
against

Figure 1.1: Illustration of the objectives for the project

2. Can the quality of recommendations be improved by using latent context information
obtained with an adaptation of MF? The value of using latent variables for contextual

recommendations will be put to test by evaluating the models created alongside other mod-

els from previous work [UBSR16]. The results will be evaluated using metrics such as Area

Under the Curve (AUC) and Normative Discounted Cumulative Gain (NDCG), among oth-

ers.

This project will then contribute to the exploration of latent contextual variables’ value for

improving the quality of recommendations. The contributions of this project are the following:

• Adapting current methods to obtain latent context from non-latent contextual data.
The related work on this topic [UBSR16] described in section 2.4.5 uses different meth-

ods, so it will be interesting to see if alternative, simpler techniques are also viable. More

specifically, this study will use MF, which is a widely used method for matrix decomposi-

tion [KBV09], but has yet to be applied to the extraction of latent variables.

• Empirically compare the proposed method with a CARS approach and non-contextual
approaches. By the end of this study, some insights into the specific benefits and drawbacks

of this type of variables are expected.

• Propose a new CARS method to handle latent contextual data. In order to integrate

the previously extracted latent context information, a new CARS method will be developed.

This method is based on precalculating distances between users in the latent space, which is

less sparse, and then generating the recommendation on the original space. However, this is

a general method, applicable with other methods for the extraction of latent context.

1.3 Dissertation Structure

This dissertation will be organised according to the following structure:

3

Introduction

• In chapter 2, the state of the art regarding RS and more specifically, Latent Context-Aware

RS is presented, alongside other relevant information that frames the work to be developed.

• In chapter 3, the problem is presented, alongside the proposed solution. The approach and

methodology taken will also be discussed and explained.

• In chapter 4, the results of the empirical study will be analysed and discussed. Some con-

siderations about the data and setup will also be referred.

• Finally, in 5 the conclusions of this work will be drawn, with a brief summary of previous

chapters. Also, some directions of future work will be suggested.

4

Chapter 2

Recommender Systems

RS are an ubiquitous constant in the average person’s interactions with technology. Their main

purpose is to help users navigate the huge amount of options available on entertainment services

or other catalogues, pointing them towards items that should align more with their interests. RS

are used in diverse areas to help with decision making, encompassing fields such as entertainment

(including streaming services for music, television shows or movies), learning, books or even

health and medicine. These types of systems are useful both for the end user and the platform

where they are implemented. Assuming the user has limited time to spend, he will probably enjoy

his time more and/or buy more products if he runs into personally interesting items. Essentially,

RS can function as a personalised, automated sales assistant or guide.

2.1 Algorithms

RS work by collecting the preferences of the entire user base regarding the available items, whether

through explicit methods like ratings, or through implicit methods, such as the time spent on a

page, songs added to a playlist or movies watched. The information gathered is then used to

calculate and predict a certain user’s interest or rating for items. The way these predictions are

made is what defines the different types of RS [AT05].

The main goal of RS is establishing a function R that estimates ratings. A formalisation for a

non-contextual RS typically involves its set of users, User, and its set of items, Item. An example

of a possible formalisation can be seen in Eq. 2.1.

R : User× Item→ Rating (2.1)

According to the paradigm they use to make recommendations, RS can be categorised as

content-based filtering, collaborative filtering and hybrid approaches.

5

Recommender Systems

2.1.1 Content-based Filtering

To use content-based filtering, a user profile is created, describing the user’s likes, dislikes and past

interests. Items are categorised and ascribed keywords, and are recommended if their keywords

match the user’s interests. Product and user characteristics are often taken into account. Since

these methods have their roots on information retrieval techniques, their main focus is finding

what previously consumed items have in common. In the case of music, for example, the artist

and genre would be considered. The goal is to recommend only similar items to the ones the user

consumed in the past [Ado05].

The similarity can be calculated by traditional heuristics, such as TF-IDF, cosine similarity or

by model-based techniques, like Bayesian classifiers, decision trees or artificial neural networks.

Other methods include rule induction and Rocchio’s algorithm [BOHG13].

Content-based filtering sometimes implies collecting external information to complete the pro-

files, which can be troublesome [KBV09]. Since content-based filtering is mostly derived from

information retrieval methods, it can struggle with automating the extraction of relevant informa-

tion/tags for different types of items, including multimedia and text. Since this impacts the quality

of recommendations, it also means that in practice, most of the content-based systems do not rely

solely on this type of filtering [BOHG13]. Those approaches are classified differently, as hybrid

systems. These will be discussed below in Section 2.1.3

2.1.2 Collaborative Filtering

Eq. 2.1 can also be seen represented in matrix format in Fig. 2.1. Having the current set of Users

and Items, the objective is to estimate user ratings for items they did not rate yet. Using as guide-

line the notation in [EK19], users are denoted as u ∈User, while items are denoted as i ∈ Item.

Consequently, ui represents user u being recommended item i. When multiple users or items are

required, subscripts such as u1,u2, ...,un can be employed. If user u rated item i, this can be de-

noted by rui ∈ R, while the absence of rating from user u to item i can be represented by rui /∈ R.

Additionally, a rating predicted by the RS for user u and item i can be expressed as rpui . For an

example, in the case of Fig. 2.1, the system would generate rpu1i2
, rpu2i1

and rpu3i3
.

�1 �2 �3

u1

u2

u3

2

3

5

4

2

2?

?

?

Figure 2.1: Matrix representation of a traditional Recommender System

6

Recommender Systems

Figure 2.2: Amazon collaborative filtering example

Collaborative filtering approaches are based on the principle that people who enjoyed similar

things in the past will continue to do so in the future, much like how one has a higher chance of

enjoying a movie recommended by a friend with similar taste. As such, users with similar past

ratings are located in order to generate recommendations to each other. A well-known example of

this type of RS is found on Amazon, through the section "Users who viewed item A also viewed

item B", as seen in Fig. 2.2. In Eq. 2.1 it is possible to see a formalisation of this type of methods.

Collaborative filtering approaches can be classified as model-based, memory-based (also known

as heuristic-based) or hybrid. While memory-based methods usually rely on existing user and/or

item information to calculate similarity metrics, model-based methods use the available informa-

tion to generate a model that will make its own recommendations. Memory-based approaches

consist of neighbourhood algorithms, like k Nearest Neighbours (kNN) [PKCK12], which has

user to user and item to item variations. In the user-based kNN the similarity is calculated be-

tween users according to their past ratings, while the item-based considers two different items

instead. An illustrative scheme of how this algorithm works is observable in Fig. 2.3. The object

to classify, which can be an user or an item, is represented by a question mark. The similarity

is calculated between that object and the other objects in the database. Afterwards, the object is

classified according to its k most similar neighbours. kNN relies heavily on similarity measures.

Popular similarity measures include angular measures, such as cosine similarity and Pearson cor-

relation [AJOP11]. Although simple and capable of providing good results, the kNN algorithm

7

Recommender Systems

?

Class A Class B

Figure 2.3: Schematic representation of the kNN algorithm

is vulnerable to sparsity and does not scale well [BOHG13]. Some model-based methods include

probabilistic approaches, neural networks, MF, Restricted Boltzmann Machines clustering, among

others. For an example, MF consists on characterising user and items through vectors of latent fac-

tors [KBV09]. These factors are inferred from item rating patterns, and in the case of music, as an

example, can represent aspects such as genre, danceability or even other undecipherable traits.

Additionally, [Ado05] consider demographic filtering an extension of collaborative filtering

that takes into account user information such as age, gender or nationality. This information can

also be used to calculate users’ similarity.

2.1.3 Hybrid Approaches

Hybrid methods combine both content-based filtering and collaborative filtering in order to get

the best outcome possible, more specifically to avoid certain drawbacks of one of the approaches,

like the cold start problem [Bur02]. Additionally, the author of [Bur02] also characterises hybrid

systems according to the method they use to combine the different approaches. Seven different

combinations are described:

• Weighted The different approaches produce different recommendations, but these are all

aggregated into one single recommendation.

• Switched The system switches between the different approaches in accordance to some

pre-established criterion.

• Mixed Different approaches produce different recommendations, which are then displayed

alongside each other.

8

Recommender Systems

• Feature combination Different recommenders produce different features, which will feed

a single recommendation algorithm.

• Cascade In this ordered process, a recommender first produces coarse recommendations

which are then refined by another recommender.

• Feature augmentation One recommender produces outputs that are used as input features

for the next recommender.

• Meta-level The model generated by one technique is used as input for another.

[BOHG13] present several ways of combining content-based filtering and collaborative filtering

approaches. They separate four different approaches: A) content-based and collaborative based

approaches are calculated separately and combined afterwards; B) content-based techniques are

integrated into the collaborative filtering approach; C) both methods are integrated in the model;

and finally D), where collaborative filtering techniques are incorporated in the content-based fil-

tering method.

As alluded to in Section 2.1.1, one of the problems with content-based filtering is being lim-

ited to certain domains or having challenges with automated extraction of information or features

about items. However, [TC00] created a hybrid model which switches between content-based or

collaborative approaches in accordance with the quality of the results, which can adapt to the type

of domain with more ease.

Other solutions involve including social or personal preference data. For instance, [YGK+06]

use a Bayesian network with rating, content and latent user preferences data. Meanwhile, [LXG+14]

use MF alongside item features to attribute more weight to “expert” opinions. These opinions are

used to help users with a short past history of items.

A good overview of this type of approaches can be found on [BOHG13] and [VSDCT18].

2.2 Common Issues

The different types of RS mentioned in the previous sections all present their own set of challenges

or issues. This section will go over each of the most significant ones individually.

Cold Start

The cold start problem, also referred to as new user or new item problem in [Ado05], is related

to the amount of data necessary to jump-start the system. Some of the content-based filtering

approaches require the user to rate some items before they can match his preferences to the rest of

the items. For example, an entertainment streaming service might ask a set number of favourite

movies or shows, upon the creation of an account. By doing this, the system immediately has

some basic information about user interests that can be used to make recommendations.

Collaborative filtering systems are usually more affected by this problem, since they require

the user to rate some items in order to find the users most similar to him and be able to make

9

Recommender Systems

recommendations. Additionally, a new item that was just added to the system will need to be rated

by several users in order to be suggested to other users. A solution to this issue would be adding

those item features to the recommendation process, including content-based techniques through a

hybrid approach. This would combine the strengths of content-based filtering and collaborative

filtering. Yet another option is using implicit feedback such as time spent on a certain item page or

items downloaded to gather information about what the user prefers [MDW+12]. Another possi-

bility is incorporating social network information in the recommendation process. For example, if

a user has just joined and therefore has not rated any items yet, it is possible to suggest him some

items that his friends or neighbours liked. Some examples of these approaches are summarised

in [VSDCT18].

Overspecialisation and Diversity

Ideal recommendations should be in line with the user preferences, but should also be diverse

enough not to saturate him. An example of this would be only recommending previously heard

artists to a music streaming platform user. This can be a problem in a pure implementation of

content-based filtering, since recommendations will consist of previously consumed content or

items related to that content. Other items are usually not recommended, and the system sticks to

what was certified relevant in the past [BOHG13, AT05].

Serendipity

In order to keep the system interesting to use, it is necessary to keep the recommendations fresh.

This implies suggesting new items with a varying degree of randomness, allowing the user to

choose items outside his safe zone. As an example, it would not be surprising to suggest a famous

80s band to a user who mostly listens to music of that period, and therefore that recommenda-

tion would not be particularly good. It would be interesting, however, to point him to a current

indie band who is very inspired by the 80s. This seemingly random find would be more valu-

able to someone who already has a good grasp of the 80s artist scene and wants to expand his

horizons [AT05, VSDCT18].

Sparsity

Rating sparsity is another of the problems that affect RS. Essentially, sparsity means the amount

of ratings is not homogeneous across the entire catalogue of items. Additionally, it can mean there

are few ratings comparatively with the the amount needed to make recommendations [Ado05]. In

practice, even very active users have not rated the entirety of films or books available on a certain

website. This would mean that using collaborative filtering, lesser-known films would never be

recommended since only few users have rated them, even if those ratings were consistently high.

Another problem of sparsity in collaborative filtering is the inability to provide good recom-

mendations to users who have a more niche set of interests, since these will naturally have less

peers with similar interests [AT05].

10

Recommender Systems

Scalability

RS can be integrated in platforms with a large amount of items and/or users. These parameters can

range from thousands to even millions in certain cases, such as in music recommendation [AT05].

This implies RS should be able to process these levels of information in an efficient manner.

To attain this, implementations have been developed using parallel computation. One popular

library that is capable of such parallelism in Machine Learning is TensorFlow1. More specifically,

TensorFlow allows for parallelism both for multiple cores and threads. Other options for scalable

computation involve using the power of cloud computing [YL10].

[CKH+16] implemented a recommendation model using deep neural networks in TensorFlow.

Other approaches include [PLS16], who developed an hybrid, parallel method for collaborative

filtering on Apache Spark, a big data processing framework, through dimensionality reduction and

clustering. Another option is the use of cloud computing platforms like Hadoop to tackle this issue,

as done by [ZS10]. This last approach used Map-Reduce for parallelisation, a programming model

that allows automatic execution on a large cluster of computers, allowing better scalability [DG08].

Privacy

As of late, privacy has risen to the top of the list of concerns of many consumers regarding infor-

mation systems and social networks. It is therefore important for ethical reasons to make sure RS

use information with users’ consent and that data is subject to treatment when needed. This will

increase users’ trust in the system [VSDCT18].

2.3 Evaluation

The authors of [GS09] distinguish three types of recommendation systems, corresponding to dif-

ferent tasks. The first task consists of recommending a list of equally enjoyable or interesting

items to the user, which require no ordering. The second consists on optimising the utility, which

can be revenue or sales, for example. Finally, the third group consists on predicting user ratings

for certain items. This project falls in the first and last categories. These categories should be

taken into account when selecting the evaluation metrics. The metrics used to evaluate RS and

the quality of their recommendations can be classified according to what they measure or are an

indicator for accuracy or usefulness and usability [MDW+12]. Additionally, metrics should be

selected according to the type of system.

Usefulness can be measured through surveys, focus group testing, trial experiments, A/B test-

ing and other ways to collect user feedback. Usability metrics are useful for figuring out the per-

ceived quality of the recommendations through the lens of the end user. This also usually involves

collecting information about other usability characteristics of the system, such as responsiveness,

transparency and trustworthiness.

1https://www.tensorflow.org/

11

https://www.tensorflow.org/

Recommender Systems

To evaluate the numeric quality of the predicted ratings, accuracy metrics are required. Since

the ultimate goal of recommendation systems is to predict numeric values (ratings of items for

different users), akin to a regression problem, statistical accuracy metrics such as Mean Average

Error (MAE) and RMSE can be used to evaluate the difference between the predicted value and the

real, expected value [Ado05]. Assuming there are n observations in the set and that en represents

the error for each observation and prediction, MAE and RMSE can be calculated through Eq. 2.2

and Eq. 2.3 respectively [CD14]. The error erui for a given rating rui is calculated through the

difference between the predicted rating, rpui and the observed rating, rui, which can be seen in

Eq. 2.4.

MAE =
1
n

n

∑
i=1
| ei | (2.2)

RMSE =

√
1
n

n

∑
i=1

e2
i (2.3)

erui = rpui− rui (2.4)

Even though both MAE and RMSE measure the average magnitude of the error in a set, they have

some key differences. For instance, MAE uses the absolute value of the error, which means it

does not consider if it is positive or negative. Additionally, all the errors have the same weight.

Meanwhile, RMSE attributes more weight to the most significant errors, since the error is squared.

This means that RMSE is more sensitive to outliers. Besides, these measures are adequate to

express different error distributions. Since MAE fits uniformly distributed errors, RMSE is better

suited when the error has a normal distribution [CD14].

Accuracy metrics are relatively simple to calculate and handy to establish comparisons, but

there has been discussion regards their pertinency. This stems from the fact that in real-life sce-

narios, it is not necessary to exactly predict the rating a user would give to a given item. Instead,

it is more compelling to be able to distinguish between items the user is interested in versus items

the user has no interest in [MRK06]. Classification accuracy metrics can be used to measure

whether the system decided correctly if the item was relevant or not, on a binary scale [HKTR04].

These metrics include precision, recall and F-measures. Precision and recall measure the rate of

recommended items that are relevant and the rate of relevant items that were recommended, re-

spectively [GS09]. However, these two metrics can be misleading when used individually, since

they have a trade-off relation. A model with very high precision mostly makes recommendations

that are very relevant to the user. However, increasing precision can lead to lower recall, which

means many relevant recommendations are left out. Conversely, a model with high recall rec-

ommends most of the relevant items. Still, increasing recall can lower precision, meaning many

irrelevant recommendations are also made. F-measures were created out of this problem, com-

bining both metrics into one [AJOP11]. Eq. 2.7 shows how to calculate F1, or F-score, consisting

on the harmonic average of precision (Eq. 2.5) and recall (Eq. 2.6). In order to calculate these

measures, some concepts must be defined: relevant items that were correctly classified as such are

12

Recommender Systems

represented by T R; irrelevant items that were correctly classified as irrelevant are represented by

T I; relevant items that were misclassified as irrelevant are FI and lastly, irrelevant items that were

classified as relevant are FR.

Precision =
T R

T R+FR
(2.5)

Recall =
T R

T R+FI
(2.6)

F1 = 2× Precision×Recall
Precision+Recall

(2.7)

Metrics such as Receiver Operating Characteristics (ROC) and Swet’s A measure present an

alternative. The main goal of ROC is measuring how well the system can distinguish between

relevant and irrelevant recommendations. The area under the ROC curve (AUC), also known as

Swet’s A measure, can provide the probability of the system being able to pick correctly between

two randomly selected items, one from the set of relevant items, and one from the set of irrelevant

items [HM82]. For an example, an AUC value of 0.5 would represent a random recommendation.

Still, with this measure swaps at the same distance have similar impact regardless of their position

in the ranking. Additionally, these measures require the nature of the recommendations to be

binary: recommendations can either be relevant or irrelevant, interesting or uninteresting. This is

not adequate when preference has a wider range of possible values.

Therefore, in RS it is also interesting to measure the capacity of the system ordering a list

of recommendations by their relevancy, in a granular, non-binary manner. It is useful to show

the most relevant recommendations first so the user can quickly find interesting items, without

losing interest. Rank accuracy metrics, with roots in Information Retrieval, include precision at K

(P@K), Normalised Cumulative Discounted Gain (NDCG), average rank and hit at K (Hit@K).

These metrics are based on the assumption that the errors that matter are the ones in the limited

list (top-K items) that is shown to the user. P@K measures the number of relevant items in the

top-K items list, where K is chosen by the researcher. This metric has little value by itself, since

it does not account for the precision of the complete data. Even so, it can be used to establish

some relative comparisons [Ste13]. Meanwhile, Hit@K is calculated as the number of hits in the

top-K recommendations. A hit is counted when an item in the top-K recommendations is also

present in the ratings of the user [YSGL12]. Aggregating this metric over all users results in recall

at K (R@K). Another interesting measure is average rank of the correct recommendation in the

list. If the item corresponding to the hit is close to the top, it can mean the user did not have to

search a lot to find the match. On the other hand, NDGC evaluates the top-K list items taking into

account their position. By associating a certain discount according to the item position on the list,

it is possible to account for user interest in items that show up first. The formula to calculate the

Discounted Cumulative Gain (DCG) can be seen in Eq. 2.8, considering N users and an ordered

list of K items. guik represents the gain of a user u when recommended item i with position k. The

logarithm base, y, is usually chosen between 2 and 10 [SG11]. NDGC is the normalised version

13

Recommender Systems

of DGC.

DCG =
1
N

N

∑
u=1

K

∑
k=1

guik
max(1, logy k)

(2.8)

The metrics presented so far evaluate the utility of a ranking. Nevertheless, the ranking can be

evaluated based on whether the ordering is correct or not. To do this, the generated ranking can

be correlated with a reference ranking. A reference ranking, such as a ranking provided by the

user is required. Metrics for this type of correlation are Spearman’s rho, Kendall’s tau coefficient

and Normalised Distance-based Performance Measure (NDPM). The main difference between

Spearman’s rho/Kendall’s tau and NDPM regards the way they deal with ties [SG11]. Spearman’s

rho and Kendall’s tau are better suited to cases where the reference ranking is complete, including

all user preferences. Thus, a tie between items in the user ranking means indifference, which

means they should be ranked equally. NDPM, on the other hand, is adequate to systems where

items will appear ordered and ties are not allowed. Therefore, the evaluation has to allow for tied

items to be ranked differently. This measure cannot evaluate the value predicted, only the list

order [HKTR04]. The formula to calculate NDPM can be seen in Eq. 2.9. C− represents the items

that the system ranked incorrectly, while C+ represents the ones correctly ranked. Cu represents

the number of items of the reference rank that did not tie and Cu0 is the number of pairs that tied

in the system ranking but not in the reference ranking.

NDPM =
C−+0,5Cu0

Cu [SG11] (2.9)

[HKTR04] All of these rank correlation metrics have the disadvantage of penalising shifts at the

bottom and top of the list equally.

Finally, coverage can be measured to know the percentage of items or users of the system

that are effectively used to provide recommendations [IFO15]. To measure the coverage of items,

Gini Index and Shannon Entropy are used. User coverage can be evaluated through offline testing

the amount of profile information required to make recommendations, according to the type of

RS [SG11].

2.4 Contextual Recommender Systems

People’s consuming habits are influenced by the context they are inserted in [Ado05]. Using as

an example the case of film recommendations, it is understandable how a person might want to

watch a different type of film during a weekend night with family comparatively to a weekday

afternoon with friends. Therefore, it became important to add contextual dimensions to traditional

RS, which then became known as CARS [Ado05, BOHG13].

Therefore, the formalisation from Eq. 2.1 can be adapted to include a Context dimension, as

seen in Eq. 2.10.

R : User× Item×Context→ Rating [AT11] (2.10)

14

Recommender Systems

2.4.1 Definition of Context

Context can be defined as the set of conditions that describe the situation of an entity [ADB+99].

Essentially, context describes a situation and the environment a device or user is in. Context

includes time, human factors, such as the user, social environment and the task, but also physical

factors, such as conditions, infrastructure and location [SBG99].

In terms of acquisition, context can be classified as implicit or explicit. Explicit context is

acquired through direct user input, such as inserting a user’s current location or social company.

Meanwhile, implicit context is gathered automatically, by using the device’s GPS location, for

example. Implicit context can also be inferred through the analysis of user interactions or other

sensor data [MDW+12], using processes such as Activity Recognition. An example of this would

be inferring whether a person is running or driving through their mobile sensor data [DPDM14].

In both types of approaches the meaning of the variables is easy to understand.

2.4.2 Non-latent Context versus Latent Context

As previously mentioned, non-latent context is all the context that is captured or inferred through

either implicit or explicit means. However, including these variables also increases dimensionality

in the recommendation matrix, which in turn further complicates the sparsity problem [Ung15].

For this reason, attempts at maintaining contextual information while tackling dimensionality

and privacy have leaned towards the usage of latent context variables. Latent context variables are

inferred from non-latent contextual data. However, unlike traditional, non-latent variables, latent

variables’ meaning is unknown. As the name indicates, latent context consists of hidden contextual

variables which can be extracted from non-latent context through different techniques [UBSR16].

This hidden context has the potential to reflect only the most significant contextual variables,

making it possibly more accurate and concise. A diagram that summarises this classification can

be seen in Fig. 2.4.

Non-latent Context

Explicit Implicit

Extraction
method

Latent Context

Context

Figure 2.4: Categorisation of context according to acquisition and latency

15

Recommender Systems

CARS techniques CARS algorithms Used model (in case of
contextual modelling techniques)

Contextual pre-filtering (Herlocker and Konstan, 2001) Not Applicable
Reduction based approach (Adomavicius and Tuzhilin, 2001)
(Adomavicius et al., 2005)
Item splitting technique (Baltrunas and Ricci, 2009) (Baltrunas and
Ricci, 2014)
User splitting technique (Said et al., 2011)
User Item splitting technique (Zheng et al., 2013)
Distributional-Semantics Pre-filtering (Codina et al., 2016)

Contextual post-filtering Weight and Filter post-filtering methods (Paniello et al., 2009) Not Applicable
Contextual modelling Context aware SVM (Oku et al., 2006) Support Vector Machines

Multi-verse Recommendation (Karatzoglou et al., 2010) Tensor Factorization
Context Aware Matrix Factorization (Baltrunas et al., 2011) Matrix Factorization
Context Aware Factorization Machines (Rendle et al., 2011) Factorization Machines
TFMAP (Shi et al., 2012) Tensor Factorization
iTALS (Hidasi and Tikk, 2012) Tensor Factorization
Gaussian Process Factorization Machines (Nguyen et al., 2014) Gaussian Process
Contextual SLIM (Zheng et al., 2014) (Zheng, 2014) (Zheng et al.,
2015)

Sparse Linear Method

Contextual Operating Tensor for CARS (Liu et al., 2015) Matrix Factorization

Table 2.1: Classification of context-aware recommendation algorithms by [LBK17]

[Ung15] identifies three steps to his process of extracting latent context:

1. Gathering raw data from sensors and other sources Data from mobile sources is gath-

ered, such as accelerometer, GPS and applications currently in use.

2. Using feature engineering to extract features from raw data Several statistics are calcu-

lated from the previous collected raw data, with the goal of representing it in a simple and

informative manner.

3. Training unsupervised model to extract the latent contextual variables With the goal

of extracting latent contextual variables, an autoencoder neural network is trained to find

relations and patterns in the initial data.

Other methods for the extraction of latent variables involve topic modelling techniques, SVD,

MF techniques or PCA [UBSR16]. Topic modelling techniques include latent Dirichlet allocation

(LDA) [LX13], and MF techniques include Biased MF [LW15].

2.4.3 Algorithms

Decomposition methods are widely used in CARS. These include traditional dimensionality re-

duction techniques, such as MF techniques, Singular Value Decomposition (SVD), or Principal

Component Analysis (PCA) [AT05, AJOP11]. Other approaches like Support Vector Machines

(SVM), Factorisation Machines (FM) and Tensor Factorisation (TF) are also used. Of these, MF

techniques are popular for not being demanding in computational terms, for being scalable and

offering good results [KBV09].

The authors of [LBK17] summarised and classified the most frequently used CARS algorithms

in Table 2.1. The most relevant ones will be explained and discussed here.

16

Recommender Systems

Three main ways of including contextual information in the recommendation have been iden-

tified in [AT05], each with its own set of advantages and challenges. These are also used by the

authors of [LBK17] to classify contextual algorithms:

• Contextual pre-filtering Using this approach, context is first considered in order to elimi-

nate ratings that are not relevant for the specific situation. The recommendation algorithm

is only applied afterwards, using only ratings with relation to the user’s context.

• Contextual post-filtering Using this approach, recommendations are generated first on

the data without influence of contextual variables. Afterwards, the recommendations are

adapted (filtered) for each user’s context.

• Contextual modelling This approach consists of including the contextual information di-

rectly in the recommendation algorithm. Usually this implies an increase in dimensionality,

thanks to the addition of the contextual information to the model.

Regarding contextual pre-filtering for example, the item-splitting method works by splitting

each item into varied, different virtual items depending on the possible contexts. User-splitting,

on the other hand, separates user profiles into different profiles for different contexts, which are

then used for the recommendations [AT11].

In contextual post-filtering, there are two approaches, Weight and Filter. The Weight method

attributes a weight to a recommendation according to the probability of it being relevant in the

corresponding context, and uses these weighted values to reorder the recommendations. Mean-

while, the Filter method removes items with little probability of being relevant to a certain con-

text [AT11]. Essentially these approaches consist in filtering the generated recommendations and

eliminating items with a probability below a certain minimum value. Alternatively, recommenda-

tions can be ranked according to their weight and likeliness of being relevant.

Finally, in contextual modelling, multidimensional algorithms are used [MDW+12]. These ap-

proaches can also be classified as heuristic or model-based. Heuristic methods incorporate context

in the calculations of the recommendations, and include neighbour-based approaches which were

adapted for the extra dimensions. This usually means adopting n-dimensional similarity metrics

that take into account more than just users or items. Meanwhile, model-based approaches include

for example SVM, a supervised learning ML technique that learns how to classify an item as in-

teresting or uninteresting. Another possibility is Context-Aware MF (CAMF), which introduces

more parameters to 2D MF to model the context. CAMF presents good scalability and accu-

racy [LBK17]. However, it is used often alongside SVD to aid in the matrices decomposition. The

SVD implementations are often adaptations such as SVD++ to better deal with sparsity. Lastly,

another option is using TF, which calculates the recommendations as the product of the latent fac-

tors of the separate items, users and context matrices [VSDCT18]. However, as more contextual

variables are introduced, the number of model parameters also increases. Besides, with CAMF

using a linear, reduced set of parameters it is possible to obtain equivalent results [UBSR16].

Both pre and post-filtering approaches have the drawback of requiring supervision alongside

each step of the process and of requiring a sufficient amount of ratings in all the possible contexts

17

Recommender Systems

in order to overcome sparsity. Another problem with these methods is that in order to decide

which method better suits the case, either pre-filtering or post-filtering, it is necessary to test and

compare several implementations of each [PTG+09]. Contextual modelling has the advantage of

integrating context information directly into the model. At the same time this can also create more

sparsity thanks to the number of variables included, which can prove demanding [UBSR16].

However, in all presented approaches, the inclusion of contextual variables leads to an in-

evitable increase in dimensionality and, consequently, sparsity [UBSR16]. Privacy is also a press-

ing concern, seeing as information about an individual’s context can be highly personal and its

collection and usage should be made transparent [VSDCT18].

2.4.4 Literature Review of Latent Approaches

So far, the most widely used algorithms were discussed according to their technique for including

contextual information. However, this summary only considered the aforementioned technique

and, in contextual modelling approaches, the used model.

With this in mind, a survey of specific contextual approaches was conducted. Articles selected

were analysed in terms of the type of data used, the field of application, the type of context (latent

or non-latent), the techniques and type of model employed and evaluation measures. Results are

summarised in Table 2.4.4, from the most recent to the least recent. The intention was to have a

comprehensive overview of the evolution of the methods used across a recent timeline.

18

Recommender Systems

Appr. Data type Field Context Representation Technique Algorithm Model Evaluation

[PZ18] Playlist name,

track analysis,

user listening

history

Music Latent Matrix Contextual

modelling

SVM, FM, MF us-

ing MCMC

Model-based F-score, RMSE,

Precision, Recall

[ARD+16] Social tags Music Non-

latent

Tensor, ma-

trix

Contextual

modelling

Normalized fre-

quency matrix,

cosine similarity

Model-based Precision, Recall,

F-score

[UBSR16] Mobile sensor

data

POI Latent Matrix Contextual

modelling

Autoencoder, PCA,

MF

Model-based RMSE, Hit@K,

NDCG, average

rank

[LW15] Demographic,

mood, time

Movies,

books,

music

Latent Matrix Contextual

modelling

Biased MF, SGD Model-based MAE, RMSE

[SLH13] Mood tags, plot

keywords

Movies Latent Matrix Contextual

modelling

JMF, latent similar-

ity

Model-based P@K, MAP

[LHZ13] Social data,

time

Movies Latent Matrix Contextual

modelling

MF Model-based P@K, MAP, AUC

[HMB12] Sequence of

songs, social

tags

Music Latent Matrix Contextual

modelling

LDA, GSP Heuristic-based Hit ratio, Precision

[SBCH12] Location, form

of transporta-

tion, mood

POI Non-

latent

Decision tree Contextual

pre-filtering

Hidden Markov

Model, Bag of

words

Heuristic-based Cognitive walk-

through

[KABO10] Companion,

time, place,

hunger level,

demographics

Movies,

food

Non-

latent

Tensor Contextual

modelling

Tensor factorisa-

tion

Model-based MAE

[Ado05] Time, place,

companion

Movies Non-

latent

Tensor Pre-filtering Cosine similarity,

sum of products

Heuristic-based Precision, Recall,

F-score, MAE

It is possible to see that the fields of application are varied, from music to POI and movies. In

fact, 4 out of 10 articles used data related to music, while 5 used movie related data. Some used

data from more than one field of application.

The type of representation usually alternates between matrices and tensors. Nonetheless, one

of the articles analysed used a decision tree [SBCH12]. In fact, matrix and tensor decomposition

techniques are the most widely used to tackle the issues such as scalability and sparsity [Sym16].

By representing user, item and context information in matrix form, it is possible to apply matrix

factorisation techniques. This process will reveal latent factors that associate user and item in-

formation, for an example. However, in order to represent ternary relations directly, structures

19

Recommender Systems

such as tensors can be used [Sym16]. Using tensors usually requires different algorithms, since

algorithms used for matrices can no longer be applied to this type of representation. Even though

tensors allow for more complex representations, they also require more computational resources

as the rank increases [FO17].

It seems as though pre-filtering and post-filtering approaches have been less used with time,

giving way to contextual modelling. Even though contextual modelling involves some increase in

dimensionality, its use seems to be increasing since it is advantageous to include context informa-

tion directly in the process. Unlike pre and post-filtering approaches, which only use contextual

information to filter items rated for a given situation, contextual modelling integrates the context

in the recommendation system. This means it is possible for the model to learn to recommend

taking into account both the item and context. The algorithms used are also varied, with MF being

used in different variations.

Most approaches are model-based, with only two of nine being heuristic-based instead. Addi-

tionally, the cases in which an heuristic-based approach was used were less recent. Model-based

approaches also make more sense seeing as contextual modelling is prevalent.

In terms of evaluation metrics, prediction metrics such as MAE and RMSE are used, as are

coverage metrics such as Precision and Recall. Additionally, ranking metrics such as P@K and

Hit@K are also used.

2.4.5 Related Work

There has been some previous work in this research area, more specifically an approach in [UBSR16].

This article’s main goal was to present a solution for the inclusion of latent context in a recom-

mendation algorithm, improving accuracy and addressing privacy and usability concerns. The

aforementioned article showcases a new approach to integrating context in recommendations, us-

ing contextual modelling. Contextual information is represented by data collected from mobile

sensors, from which only a small group of the most appropriate features is selected through fea-

ture engineering.

The latent context is extracted from hidden patterns contained in the raw data, through unsu-

pervised Deep Learning (DL) techniques, more specifically an autoencoder, and through statistical

procedures such as PCA. Afterwards, the authors describe an implementation of a CARS using

the extracted latent context, and another hybrid one that uses latent context in conjunction with

non-latent context. An overview of their method can be seen on Fig. 2.5.

These models were evaluated against a non-contextual algorithm using MF and a simple, non-

latent contextual model from [BLR11] as baselines. The evaluation was carried out by analysing

the use of an Android application that provided recommendations about points of interest. User

feedback was captured alongside their contextual information through the sensors. Metrics used

were RMSE, NDCG, Hit@K, and average rank of the selected recommendation.

This research suggests that latent contextual variables are a viable alternative to non-latent

context. However, other methods for latent context extraction have yet to be explored, and the

value of these variables is still not fully understood.

20

Recommender Systems

Figure 2.5: Method used in related work [UBSR16]

2.5 Summary

From the study and review of the current developments in the area of RS and, more specifically,

CARS, it seems there is some room for further study and improvement. Some issues inherent to

RS, such as dimensionality, sparsity and privacy are still pressing and concerning even shifting

to contextual RS, and therefore require new solutions. Latent contextual variables are one of the

proposed solutions for these issues, but their role and value is still not completely established or

clear.

Moreover, there has been some previous work related to the one proposed here. However,

even though the general goal of that approach is similar, the methods to attain it proposed here

are different. It is our goal to find alternatives which allow to tackle the issues of time and space

complexity and which do not necessarily rely on Machine Learning (ML) techniques. Besides, the

proposed approach will be evaluated using different data sets from various domains.

21

Recommender Systems

22

Chapter 3

A Latent Context-aware Recommender
System Approach

This chapter details the method developed for latent context-aware recommendations. Afterwards,

the empirical setup will also be explained.

3.1 Approach Overview

A simple overview of the method used in our approach consists of the following steps: the data is

projected into a latent context space; the nearest neighbours of the test cases are then found; and

the representation of those cases in the original space is then used to make recommendations. We

opted for a contextual modelling approach, since this has the advantage of including context di-

rectly in the generation the recommendations. Moreover, in [PTG14] different approaches such as

content-based, collaborative filtering and hybrid are evaluated and compared regarding accuracy

and diversity. The results revealed that contextual modelling obtained consistently good results,

even if not always the absolute best solution. In order to have a model-based method, translating

between latent and non-latent dimensions is required. This is difficult since it would be necessary

to invert the matrix of latent dimensions obtained through MF. However, the inversion opera-

tion requires a square matrix, which is limiting. In order to address this concern, we opted for

a memory-based approach instead. As explained in Section 2.1.2, memory-based methods gen-

eralise to new users, items and contexts by using a similarity measure and comparing unknown

occurrences to the known examples. This means the system does not build a model for the data,

but instead finds the most similar labelled user or items and uses their information to make a pre-

diction [RESK15]. Besides, collaborative filtering approaches are still very popular and widely

used [PKCK12].

23

A Latent Context-aware Recommender System Approach

Furthermore, instead of implementing a new method for extraction of latent context, we opted

for applying Matrix Factorisation. This decision was made since the main goal of this project was

to use off-the-shelf methods to learn latent context.

3.1.1 Context-aware Recommender Systems

As previously defined in Eq. 2.10, in CARS each User, Item and Context combination are associ-

ated with a different Rating. This means that the most direct way to represent this type of data is

with a three-dimensional tensor, as seen in Fig. 3.1.

User

Item

Context

T

Figure 3.1: Tensor representation of contextual data

However, CARS data can be approximated by a matrix, preserving the tensor information. But

in order to approximate this three-dimensional association in 2D format, it is required that all the

possible user-item-context combinations are represented.

For an example, we have defined context in section 2.4.1 as the variables that characterise the

environment of a user. Therefore, it is important to maintain the intrinsic relation between each

user-item pair and its context. This means any given user-item pair should be able to have more

than one possible context associated with him, as seen in Eq. 3.1. For an example, user John can

consume movie A in different times (during the week or during the weekend), or with different

company (friends, family or alone). Therefore, the possible combinations are (John,A,week),

(John,A,weekend), (John,A, f riends), (John,A, f amily), (John,A,alone).

Context = f (User, Item) (3.1)

To safeguard these conditions, the matrix approximation in Fig. 3.2 was used. In this repre-

sentation, context variables still depend on the user-item combination. More specifically, the rows

of the matrix embody all the possible contextual variables. In turn, the columns identify all the

possible user and item combinations. This can be seen formalised in Eqs. 3.2,3.2,3.2.

Mm×n,

m = user_item,

n = context_conditions

This representation was chosen for its convenience and simplicity for the rest of the process.

24

A Latent Context-aware Recommender System Approach

MContext

User_Item

Figure 3.2: Matrix approximation of contextual data

3.1.2 Latent Context Extraction

In addition to the notation established in Chapter 2, some elements more specific to this problem

will be introduced. Since the chosen extraction algorithm is MF, some concepts about how it

works will be presented in this subsection.

Eq. 3.2 refers to the general process commonly known as MF. This algorithm decomposes a

matrix M into two different matrices, P and Q.

M = P×Q (3.2)

In case the matrix includes only User, Item and Ratings the decomposition is translated by Eq. 3.3.

The original matrix M is decomposed into two matrices that represent user factors (UF) and item

factors (IF), respectively [KBV09]. The way this algorithm does this decomposition is essen-

tially by projecting the original matrix M to a latent factor space. In this latent space, the algo-

rithm characterises users and items on factors learned from user feedback [KB15]. User feedback

can be explicit, as in the case of ratings, or implicit, such as browsing history or mouse move-

ments [KBV09]. Each item will then have a corresponding matrix IF that quantifies the factors

that match its characteristics. Meanwhile, each user has its respective matrix UF that estimates

the appeal of items according to their factors for that user [KB15], as seen in Eq. 3.3.

M =UF× IF (3.3)

Consequently, the rating r of item i by user u can be given by the scalar product of UFu and IFi.

Nonetheless, in this approach we are not using this algorithm for rating prediction, but instead

for the mapping of the original matrix to a latent space dimension. Adapting the approach to our

contextual matrix, the process can be translated by Eq. 3.4.

M =CF×UIF (3.4)

In this case, CF and UIF consist of two matrices, corresponding to context factors and user-

item factors, respectively. Matrix UIF will be a matrix with no sparsity, since every user-item

combination will have an associated interest in each context, according to its latent factors. For

25

A Latent Context-aware Recommender System Approach

an example, given three contexts A, B and C, the combination userJohn− productWizardO f Oz

will have three different ratings, one for each of the contexts. These measures of interest will then

be used as ratings. Since these ratings result from latent context factors, they can be considered

latent contextual ratings. It is also worth noting that the number of lines in the UIF matrix can be

parameterised, by setting the number of factors. This means this process allows customisation of

the number of contextual variables.

These concepts and decomposition are the key to the extraction of latent context.

3.2 Empirical Evaluation

The method is divided into two components: extraction of latent context and generation of recom-

mendations. The main components and flow can be seen in Fig. 3.3. In the aforementioned figure,

the two main processes are represented with an oval shape. The two components will be explained

in the following sections.

Latent Context
Extraction

apply
MF

Original
Data

results in Latent
Data

used to
calculate Distance

Matrix

Recommendation
Generation

Set of
recommendations

outputs

Figure 3.3: High level scheme of the developed method

3.2.1 Latent Context Extraction

The first part of the approach consists in the extraction of the latent contextual variables by Matrix

Factorisation, more specifically SVD++ in our implementation. However, our method is indepen-

dent of the type of MF used. In Fig. 3.4 ([3]) it is possible to visualise this step of the process

of extraction through decomposition techniques. First, the data is split into train and test sets,

respectively Ttrain and Ttest . Some of the ratings in the test set are hidden and afterwards the data

is aggregated into one set again. Next, the full set with some hidden ratings, Thid , containing

User-Item-Context data can be approximated by the User_Item-Context matrix M for these opera-

tions. This matrix is then decomposed in two other matrices, in the operation equivalent to Eq. 3.4,

through a MF method. Since we can define the parameters of the process, in this approach we will

ensure the number of latent contexts, C’, will always be inferior to the number of original contexts,

C. The reason for this decision is the simplification of the problem and reduction of dimensions.

26

A Latent Context-aware Recommender System Approach

The result of this operation is matrix < Q, filled with latent contextual ratings which are used

afterwards to calculate the similarities between users in the next step.

U

I

C

T

U

I

C

T_train

U

I

C

T_test

MC

UI

MF QC'

UI

U

I

C

T_test_h

U

I

C

T_hid

[1]

[2] [3]

Figure 3.4: Process for latent context extraction

3.2.2 Latent Context-aware Recommender System

After the latent context extraction, the similarities between the users are calculated using a sim-

ilarity measure. In our implementation, we used Pearson. This similarity measure assumes a

linear relation between variables, while also adjusting for variations in how users rate along the

scale [IFO15]. All the users are projected to a latent context space, where the similarities between

them are calculated. Afterwards, for a given active user, a recommendation is computed using the

data in the original space.

The recommendations are generated using a traditional collaborative filtering algorithm, kNN.

However, our approach differs from common kNN methods regarding the similarity matrix. The

similarity matrix used in Fig. 3.5 is precalculated using the latent ratings information. Even though

the distances are calculated in the latent space dimension, the recommendations are actually gener-

ated in the original dimension. Thus, this approach eliminates the need to convert between latent

and non-latent dimensions. Essentially, we obtain a matrix with latent ratings through the MF

extraction process. The similarities between users are calculated using this matrix, which means

they take into account the latent ratings and therefore latent context. Afterwards, this similarity

matrix is used in a kNN algorithm that generates the recommendations.

27

A Latent Context-aware Recommender System Approach

QC'

UI

U

I

C'

T'_train

T'_test
Simil.

kNN Rec.
U

I

C

T_train U

I

C

T_test
Evaluation

Figure 3.5: Process for generation of recommendations and empirical evaluation

3.3 Experimental Setup

3.3.1 Data

The data used consists of three data sets, all from different domains. All these data sets include

at least two contextual variables, and the rating scale is from 1 to 5. Their domains and various

statistics can be consulted in Table 4.1. These data sets were available in the CARSKit github

repository in English .1

The data sets are all relatively small, with the largest one having 97 users, 79 items and 11255

ratings. In contrast, the smallest one has 50 users, 40 items and 2828 ratings. The smallest data

set is also the most dense, with a data density of 10.09%. The lowest data density value is 2.40%,

which can be considered very high in large scale applications, and is found in the data set with the

highest number of context variables and conditions. Even though the data sets are small in size,

they are the best publicly available solutions to study the CARS problem in the context of latent

contextual dimension extraction.

It is also noteworthy that the number of items is mostly on pair with the number of items,

except for the InCarMusic data set. In the case of this data set, the number of items are approxi-

mately triple the number of users. Attending to these characteristics, we opted for an user-based

kNN approach [DKR+11]. In this type of approach, a prediction for a given user is generated

based on the ratings of similar users.

Since these data sets are small-sized, the analysis and conclusions drawn from these results

are illustrative and would therefore benefit from further validation.

3.3.2 Data Preparation

All the aforementioned data sets were subject to similar preparation. All user ids, item ids and rat-

ings were converted to numeric types. Furthermore, all invalid rows (non-numeric) were dropped.

1https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets

28

https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets

A Latent Context-aware Recommender System Approach

User Item Rating Context1 Context2

u1 i1 5 A B

u2 i2 4 B A

u3 i3 3 A A

u1 i4 2 B B

User Item Rating Context

u1 i1 5 AB

u2 i2 4 BA

u3 i3 3 AA

u1 i4 2 BB

Figure 3.6: Schematic representation of aggregation of two contextual variables

The detailed rules for dropping rows and other specifics can be consulted in App. A.

Regarding contextual variables, each one of these was converted into a categorical type. Af-

terwards, all these categories are aggregated into a single contextual variable. This variable has

a unique value for each combination of contexts. Fig. 4.1 schematises this aggregation with a

small example. In this case, two contextual variables can each take two different values, A or B.

Consequently, the aggregated context variable can take four values, representing all the possible

combinations between A and B. This is useful so that the method can be applied to any num-

ber of context variables and context conditions. However, this step was not necessary in data set

Ti juanaRestr [RGGaV14], since the two contextual variables were already aggregated.

As detailed in Fig. 3.4 and Fig. 3.5, the method developed is made up of two processes: the

extraction of latent context and the generation of recommendations. However, the pipeline for the

method includes different tools for different processes. More specifically, the preprocessing and

extraction of latent context is done in Python [PVG+11, Oli06, McK10] with surprise [Hug17].

3.3.3 Evaluation

3.3.3.1 Evaluation Protocol

As previously mentioned, our method calculates the distance matrix in the latent space dimension,

while it generates the recommendations in the original non-latent dimension. Thus, it is necessary

to adapt the evaluation method to conform to these different spaces. Due to this, in order to evalu-

ate our approach, a percentage of the ratings is hidden before applying MF, as seen in Fig. 3.4([1]).

The recommendations are evaluated afterwards in the original non-latent space, as is visible in

Fig. 3.5.

Furthermore, in RS a common research protocol consists in using a predetermined number of

known items or, alternatively, hidden items in the test set [SG11]. A scheme for this approach

can be seen in Fig. 4.2. In case the predetermined number corresponds to the number of known

ratings, this protocol is known as "given n", while in the case it is the number of hidden ratings it is

known as "all but n". The recommendations generated by the model (Predicted) will be evaluated

against the previously hidden ratings from the test set. In order to hide items for the evaluation,

the data is split into training T ′_train and test sets T ′_test, some of the ratings hidden and only

29

A Latent Context-aware Recommender System Approach

Data
(D)

Training
(TR_D)

Testing
(T_D)

Known ratings

Hidden ratings

Recommender
System Model

(RSM)

Recommendations
(Predicted)to evaluate

generates

build

build

Figure 3.7: Evaluation protocol for Recommender Systems

then are the combined sets projected. The input for this calculation will be T ′_train and T ′_test,

as seen in Fig. 3.4([5]).

3.3.3.2 Additional Procedures

To evaluate whether latent context provides better recommendations, we will compare our method

with different, preexistent methods:

• State of the art CARS A contextual baseline is important to ascertain the differences be-

tween our latent contextual approach and a non-latent contextual approach. As such, a state

of the art algorithm for context-aware recommendations is considered, namely CAMF.

• Non-latent version of our approach Since our latent CARS implementation has multiple

components, we compare the proposed method with a version in which we turn off the use of

latent context, while every other aspect remains the same. As such, we also consider a plain

version of the kNN algorithm we use in our approach. However, for this baseline we will

not provide the precalculated distance matrix. This means the distances will be calculated

in the same space as the recommendations, using non-latent ratings. It is also worth noting

that this algorithm does not take context into account whatsoever in this form.

Additionally, traditional baseline algorithms will be applied to serve as reference for the dif-

ficulty of the problem, namely MF implementations such as BiasedMF and SVD++. These al-

gorithms do not include contextual information in the recommendation process. Even so, they

facilitate drawing some conclusions regarding general quality and whether the contextual dimen-

sion is relevant to the recommendation problem.

The evaluation protocol will then consist of cross-validation, by splitting the data set D into

two parts, one for training (T R_D) and another as test set (T _D). The model will be trained using

the training set, and afterwards some of the metrics referred in section 2.3 will be calculated in the

test set.

30

A Latent Context-aware Recommender System Approach

3.3.3.3 Metrics

Even though there are many different types of metrics available, it is necessary to choose the most

appropriate ones taking into account the type of data, their meaning and the task at hand, as ex-

plained in section 2.3. For quite some time, the metrics used for the evaluation of RS have been

a topic of discussion in the community. The authors of [MRK06] claim that even though rating

accuracy metrics such as RMSE or MAE have been helpful to compare algorithms, better alterna-

tives should be explored. To this end, they defend the evaluation of recommendation quality in list

form instead of individually. In fact, this is how the recommendations are commonly displayed to

the end user on several applications. In [LMY+12] it is mentioned how RMSE and MAE are not

adequate to evaluating the utility of a list of recommendations.

Alternatives more suited to this task include metrics such as AUC@K, MAP@K, P@K and

R@K. These metrics help measure how well the system distinguishes between relevant and irrel-

evant items without focusing as much on the accuracy of the predicted ratings [LMY+12, SG11].

Plus, since users pay more attention to the first items in the recommendation list, it is also im-

portant to evaluate the items position in the list. Thus NDGC@K will be calculated, a metric

originated in Information Retrieval. This metric is based on ranking the relevance of items the

further up they are on a list [SG11]. This will ensure that there is a gradation of relevance instead

or just binary values for "recommend" or "do not recommend".

3.3.3.4 Considerations

The first paragraph of this section is concerned with evaluation; the other two are concerned with

parameters of the methods. As will be explained in the next section, it is not possible to assure the

exact same environment for baseline recommendations and the ones generated by our approach.

This considered, the setup was as homogenous as possible. The validation consisted of k-fold

cross-validation, with 5 folds. To obtain more reliable results, all experiments were repeated 10

times and the results averaged.

In the case of kNN-based approaches, the experiments were repeated with k=1, k=3, k=5

and k=10, to find which value obtained the best results. If k is too small, the algorithm may be

more susceptible to noise, and if it is too large the distinctions between labels will be blurrier,

hence the importance of finding a reasonable value. Additionally, the number should be prime to

minimise ties in the voting. The experiments were done with varying factors, in order to observe

how changing the number of factors might affect the results, and also to obtain the best results

possible with each method. In the case of model-based approaches, the experiments were done

with 100 iterations and repeated with number of factors numFact = 1, numFact = 3, numFact =

5 and numFact = 10. In the specific case of our approach, we also ran several experiments with

a varying number of factors for the extraction of latent context, to see if changing this number

improves the results. This will also provide some insights as to whether the number of latent

context variables has influence in the information they contain. At least three different number of

31

A Latent Context-aware Recommender System Approach

factors were tried for each data set. The minimum of these numbers was 1, while the maximum

was half of the number of context conditions.

3.4 Implementation

After extracting the latent ratings that result of the first part of our method, the similarities between

users are calculated and used as input to generate recommendations. For this part of the process,

librec, a Java-based tool [GZSYS15, GZYS15, SGZ15] is used. Librec uses the latent ratings to

calculate the distance matrix. Next, librec uses these distances to calculate the recommendation.

Additionally, librec is also used to run baseline experiments with the same algorithm as the one in

our approach (kNN) but without the distance matrix provenient from the latent ratings.

However, librec does not support contextual recommendations. Therefore, in order to run

baseline experiments with contextual algorithms, another toolkit named CARSKit [ZMB15] was

used. CARSKit is based on librec, which allows the comparability of results while providing a

complete library of context-aware algorithms.

3.5 Discussion

We theorise that this projection of the contexts to a latent dimension will reduce sparsity. Ad-

ditionally, the distances between users will also be reduced, in comparison with the non-latent

approach. As explained in 4.1.3.1, the data is split, some of the ratings in the test set are hidden

and only then are the sets projected into the latent dimension. This solves the question of compu-

tational cost, since in this case the projection does not need to be done multiple times for different

test sets. The most pressing issue in this case is cold start, discussed in 2.2, since in the case there

are not enough users in the system it might be complicated to find similar users. Additionally, in

case the existing users have not rated enough items, it is complicated to measure how similar they

are to other users.

32

Chapter 4

Empirical Study

This chapter presents the results of the empirical study conducted. Afterwards, the research ques-

tions will be studied, in face of the empirical results obtained.

4.1 Experimental Setup

4.1.1 Data

The data used consists of three data sets, all from different domains. All these data sets include

at least two contextual variables, and the rating scale is from 1 to 5. Their domains and various

statistics can be consulted in Table 4.1. These data sets were available in the CARSKit github

repository in English .1

The data sets are all relatively small, with the largest one having 97 users, 79 items and 11255

ratings. In contrast, the smallest one has 50 users, 40 items and 2828 ratings. The smallest data

set is also the most dense, with a data density of 10.09%. The lowest data density value is 2.40%,

which can be considered very high in large scale applications, and is found in the data set with the

highest number of context variables and conditions. Even though the data sets are small in size,

they are the best publicly available solutions to study the CARS problem in the context of latent

contextual dimension extraction.

It is also noteworthy that the number of items is mostly on pair with the number of items,

except for the InCarMusic data set. In the case of this data set, the number of items are approxi-

mately triple the number of users. Attending to these characteristics, we opted for an user-based

kNN approach [DKR+11]. In this type of approach, a prediction for a given user is generated

based on the ratings of similar users.

Since these data sets are small-sized, the analysis and conclusions drawn from these results

are illustrative and would therefore benefit from further validation.

1https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets

33

https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets

Empirical Study

DePaulMovie
[ZMB15]

InCarMusic
[BKL+11]

TijuanaRestr
[RGGaV14]

Domain Film Music POI/Restaurant
Users 97 42 50
Items 79 139 40
Ratings 11255 8846 2828
Context variables 3 8 2
Context conditions 13 27 7
Data density 5.05% 2.40% 10.09%
Average rating 3.3297 2.4462 3.9030
Median rating 3 1 4
Mode rating 5 1 5

Table 4.1: Collection of statistics for the used data sets

4.1.2 Data Preparation

All the aforementioned data sets were subject to similar preparation. All user ids, item ids and rat-

ings were converted to numeric types. Furthermore, all invalid rows (non-numeric) were dropped.

The detailed rules for dropping rows and other specifics can be consulted in App. A.

Regarding contextual variables, each one of these was converted into a categorical type. Af-

terwards, all these categories are aggregated into a single contextual variable. This variable has

a unique value for each combination of contexts. Fig. 4.1 schematises this aggregation with a

small example. In this case, two contextual variables can each take two different values, A or B.

Consequently, the aggregated context variable can take four values, representing all the possible

combinations between A and B. This is useful so that the method can be applied to any num-

ber of context variables and context conditions. However, this step was not necessary in data set

Ti juanaRestr [RGGaV14], since the two contextual variables were already aggregated.

As detailed in Fig. 3.4 and Fig. 3.5, the method developed is made up of two processes: the

extraction of latent context and the generation of recommendations. However, the pipeline for the

method includes different tools for different processes. More specifically, the preprocessing and

extraction of latent context is done in Python [PVG+11, Oli06, McK10] with surprise [Hug17].

User Item Rating Context1 Context2

u1 i1 5 A B

u2 i2 4 B A

u3 i3 3 A A

u1 i4 2 B B

User Item Rating Context

u1 i1 5 AB

u2 i2 4 BA

u3 i3 3 AA

u1 i4 2 BB

Figure 4.1: Schematic representation of aggregation of two contextual variables

34

Empirical Study

4.1.3 Evaluation

4.1.3.1 Evaluation Protocol

As previously mentioned, our method calculates the distance matrix in the latent space dimension,

while it generates the recommendations in the original non-latent dimension. Thus, it is necessary

to adapt the evaluation method to conform to these different spaces. Due to this, in order to evalu-

ate our approach, a percentage of the ratings is hidden before applying MF, as seen in Fig. 3.4([1]).

The recommendations are evaluated afterwards in the original non-latent space, as is visible in

Fig. 3.5.

Furthermore, in RS a common research protocol consists in using a predetermined number of

known items or, alternatively, hidden items in the test set [SG11]. A scheme for this approach

can be seen in Fig. 4.2. In case the predetermined number corresponds to the number of known

ratings, this protocol is known as "given n", while in the case it is the number of hidden ratings it is

known as "all but n". The recommendations generated by the model (Predicted) will be evaluated

against the previously hidden ratings from the test set.

Data
(D)

Training
(TR_D)

Testing
(T_D)

Known ratings

Hidden ratings

Recommender
System Model

(RSM)

Recommendations
(Predicted)to evaluate

generates

build

build

Figure 4.2: Evaluation protocol for Recommender Systems

4.1.3.2 Additional Procedures

To evaluate whether latent context provides better recommendations, we will compare our method

with different, preexistent methods:

• State of the art CARS A contextual baseline is important to ascertain the differences be-

tween our latent contextual approach and a non-latent contextual approach. As such, a state

of the art algorithm for context-aware recommendations is considered, namely CAMF.

• Non-latent version of our approach Since our latent CARS implementation has multiple

components, we compare the proposed method with a version in which we turn off the use of

latent context, while every other aspect remains the same. As such, we also consider a plain

35

Empirical Study

version of the kNN algorithm we use in our approach. However, for this baseline we will

not provide the precalculated distance matrix. This means the distances will be calculated

in the same space as the recommendations, using non-latent ratings. It is also worth noting

that this algorithm does not take context into account whatsoever in this form.

Additionally, traditional baseline algorithms will be applied to serve as reference for the dif-

ficulty of the problem, namely MF implementations such as BiasedMF and SVD++. These al-

gorithms do not include contextual information in the recommendation process. Even so, they

facilitate drawing some conclusions regarding general quality and whether the contextual dimen-

sion is relevant to the recommendation problem.

The evaluation protocol will then consist of cross-validation, by splitting the data set D into

two parts, one for training (T R_D) and another as test set (T _D). The model will be trained using

the training set, and afterwards some of the metrics referred in section 2.3 will be calculated in the

test set.

4.1.3.3 Metrics

Even though there are many different types of metrics available, it is necessary to choose the most

appropriate ones taking into account the type of data, their meaning and the task at hand, as ex-

plained in section 2.3. For quite some time, the metrics used for the evaluation of RS have been

a topic of discussion in the community. The authors of [MRK06] claim that even though rating

accuracy metrics such as RMSE or MAE have been helpful to compare algorithms, better alterna-

tives should be explored. To this end, they defend the evaluation of recommendation quality in list

form instead of individually. In fact, this is how the recommendations are commonly displayed to

the end user on several applications. In [LMY+12] it is mentioned how RMSE and MAE are not

adequate to evaluating the utility of a list of recommendations.

Alternatives more suited to this task include metrics such as AUC@K, MAP@K, P@K and

R@K. These metrics help measure how well the system distinguishes between relevant and irrel-

evant items without focusing as much on the accuracy of the predicted ratings [LMY+12, SG11].

Plus, since users pay more attention to the first items in the recommendation list, it is also im-

portant to evaluate the items position in the list. Thus NDGC@K will be calculated, a metric

originated in Information Retrieval. This metric is based on ranking the relevance of items the

further up they are on a list [SG11]. This will ensure that there is a gradation of relevance instead

or just binary values for "recommend" or "do not recommend".

4.1.3.4 Considerations

The first paragraph of this section is concerned with evaluation; the other two are concerned with

parameters of the methods. As will be explained in the next section, it is not possible to assure the

exact same environment for baseline recommendations and the ones generated by our approach.

This considered, the setup was as homogenous as possible. The validation consisted of k-fold

36

Empirical Study

cross-validation, with 5 folds. To obtain more reliable results, all experiments were repeated 10

times and the results averaged.

In the case of kNN-based approaches, the experiments were repeated with k=1, k=3, k=5

and k=10, to find which value obtained the best results. If k is too small, the algorithm may be

more susceptible to noise, and if it is too large the distinctions between labels will be blurrier,

hence the importance of finding a reasonable value. Additionally, the number should be prime to

minimise ties in the voting. The experiments were done with varying factors, in order to observe

how changing the number of factors might affect the results, and also to obtain the best results

possible with each method. In the case of model-based approaches, the experiments were done

with 100 iterations and repeated with number of factors numFact = 1, numFact = 3, numFact =

5 and numFact = 10. In the specific case of our approach, we also ran several experiments with

a varying number of factors for the extraction of latent context, to see if changing this number

improves the results. This will also provide some insights as to whether the number of latent

context variables has influence in the information they contain. At least three different number of

factors were tried for each data set. The minimum of these numbers was 1, while the maximum

was half of the number of context conditions.

4.2 Implementation

After extracting the latent ratings that result of the first part of our method, the similarities between

users are calculated and used as input to generate recommendations. For this part of the process,

librec, a Java-based tool [GZSYS15, GZYS15, SGZ15] is used. Librec uses the latent ratings to

calculate the distance matrix. Next, librec uses these distances to calculate the recommendation.

Additionally, librec is also used to run baseline experiments with the same algorithm as the one in

our approach (kNN) but without the distance matrix provenient from the latent ratings.

However, librec does not support contextual recommendations. Therefore, in order to run

baseline experiments with contextual algorithms, another toolkit named CARSKit [ZMB15] was

used. CARSKit is based on librec, which allows the comparability of results while providing a

complete library of context-aware algorithms.

4.3 Analysis of the Results

As established in section 1.2, one of the main research goals for this project was to determine

whether recommendations could be improved using latent context. More precisely, our hypothesis

was that using latent context would yield better recommendations. This is due to the fact that even

in the case of some reduction of information, we expect the reduction in sparsity to compensate

for it.

To better examine this assumption, we tested it empirically in comparison with the groups of

approaches in Table 4.2, as detailed in section 4.1.3.1. These identifications will be used through-

out the document.

37

Empirical Study

Description Identification
Our novel latent context-aware RS L_kNN
State of the art CARS CAMF_CU
Standard, non-contextual version of our approach S_kNN

Popular traditional non-contextual algorithms
BiasedMF
SVD++

Table 4.2: Set of approaches tested

The results obtained from our experiences indicate that in most of the cases tested, our ap-

proach obtains better results than the other methods. Furthermore, in the cases where it does not

obtain the best results globally, these results are not considerably worse than the best method. This

confirms our initial hypothesis. Additionally, it reveals that latent context is an avenue of research

with potential to be explored.

It is worth noting that the approaches in all the following plots are the ones with the number

of factors that yielded better results. This stands for both the state of the art methods and ours.

As such, in the Ti juanaRestr data set our approach uses 4 factors for the latent context extraction,

and the best results obtained with state of the art CARS were the ones with 10 factors. In the case

of DePaulMovie data set the best results appeared when 1 factor was used, both for the extraction

of latent context and also for the state of the art models. For the InCarMusic data set the state of

the art algorithms showed their best results with 10 factors. In the same data set, our approach

performed the best with 1 factor for latent context extraction.

As is visible through the figures, in two out of the three data sets used, our approach had

overall the best results. To be more precise, the values obtained by our approach were generally

higher compared to other approaches, except in data set InCarMusic.

The full results are available in the form of tables in the App. B. The results for each data set

will be analysed individually in the following subsections.

4.3.1 DePaulMovie

The frequencies for each rating in this data set can be seen in Table 4.4. It is observable that most

of the ratings are positive, considering 3 as the threshold. More precisely, ratings equal to 1 or 2

make up 28.88% of the total number of ratings.

Data set
Non-latent context

conditions
C

Optimal latent
context conditions

C’
DePaulMovie 13 1
InCarMusic 27 1
TijuanaRestr 7 4

Table 4.3: Non-latent context conditions and latent context conditions extracted per data set

38

Empirical Study

Rating Frequency
1 829
2 625
3 1005
4 1209
5 1367

Table 4.4: Frequency distribution of data set DePaulMovie

In this data set, P@5 is the only metric whose value is slightly higher on S_kNN. Our approach

obtained a P@5 value of 0.112, while S_kNN has 0.113. In Fig. 4.3 it is possible to see the

comparison of the values of precision across the different approaches. However, the highest value

globally for MAP@5 and P@5 still come from our method, using 7 factors for latent context

extraction. Even so, we opted to consider the approach with 1 factor of extraction in the graphs,

since this is the factor that performed better in general.

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

P@10 P@5

Figure 4.3: Comparison of P@5 and P@10 in the DePaulMovie data set

Fig. 4.4 shows a comparison of the different methods in terms of their AUC@5 and AUC@10.

As mentioned in section 2.3, this metric represents the area under the ROC curve, considering a

top set of 5 and 10 elements, respectively. This metric measures the probability of a random rele-

vant item being ranked higher than a random irrelevant item. In the plot it is observable that our

approach obtains better AUC@5 results as the number of neighbours increases, with a maximum

of 0.701. This does not happen with the similar approach S_kNN, which does not include con-

textual information. However, the S_kNN approach obtains similar results to our approach when

the number of neighbours is reduced. Regarding AUC@10, the highest value is obtained with our

approach, using the maximum number of neighbours, obtaining 0.760.

By observing Fig. 4.5 we can compare the values of MAP@5 and MAP@10 across the differ-

ent approaches. This measure represents the mean of the Average Precision for all the users, and is

well suited to ranking recommendations. This is due to giving more weight to items recommended

39

Empirical Study

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

AUC@10 AUC@5

Figure 4.4: Comparison of AUC@5 and AUC@10 in the DePaulMovie data set

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

MAP@10 MAP@5

Figure 4.5: Comparison of MAP@5 and MAP@10 in the DePaulMovie data set

40

Empirical Study

at the top of the list than to the ones at the bottom. In this metric we can see a reasonable difference

between the contextual and non-contextual approaches. CAMF_CU and L_kNN present the best

values, with 0.106 and 0.126, respectively. The S_kNN method presents their best results with

only one neighbour, while L_kNN seems to improve with higher k values.

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

NDCG@10 NDCG@5

Figure 4.6: Comparison of NDCG@5 and NDCG@10 in the DePaulMovie data set

In Fig. 4.6 is a graph with the comparison of NDCG@5 and NDCG@10 obtained with the

different methods. NDCG assumes that top recommendations are more important than bottom

ones, and measures the utility of a given recommendation based on its position in the ranked list.

All the methods had relatively low values in comparison with the values obtained in [UBSR16].

However, once again context-aware approaches generally outperformed the others. L_kNN seems

to improve with higher k numbers, while the performance of S_kNN does not seem to be as

affected by the value of k. L_kNN has the highest value again, followed by S_kNN in the case of

NDCG@5 and CAMF_CU in the case of NDCG@10.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

F1@10 F1@5

Figure 4.7: Comparison of F1@5 and F1@10 in the DePaulMovie data set

41

Empirical Study

Rating Frequency
1 1452
2 705
3 652
4 513
5 494

Table 4.5: Frequency distribution of data set InCarMusic

Finally, in Fig. 4.7 it is possible to compare F1@5 and F1@10 in the different methods. As

mentioned in section 2.3, F1 is the harmonic average of Precision and Recall. This means it

measures both the precision and the robustness of the algorithm, assuming there is always a trade-

off between the two. Essentially, in this data set L_kNN has the best results, followed by S_kNN.

Once again, the traditional approaches SV D++ and BiasedMF are outperformed by all other

methods.

4.3.2 InCarMusic

The frequency distribution for this data set can be seen in Table 4.5. The threshold is also consid-

ered to be 3. It is noteworthy that the mode of the distribution is 1, which means the most common

rating is a negative one. Plus, negative ratings make up more than half of the data set, with 56.53%

of the total number of ratings.

In this data set our approach has the best results in two metrics, P@5 and P@10. In the other

metrics SV D++ has higher values. However, it is worth noting that in this data set our approach

still performs better than S_kNN. Additionally, our approach does not yield considerably worse

results for most of the metrics, with the worst difference being relative to R@10.

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

AUC@10 AUC@5

Figure 4.8: Comparison of AUC@5 and AUC@10 in the InCarMusic data set

42

Empirical Study

In Fig. 4.8, a comparison of AUC@5 and AUC@10 across the varying approaches can be

seen, which shows similarity between the values obtained with our approach and with SV D++.

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

MAP@10 MAP@5

Figure 4.9: Comparison of MAP@5 and MAP@10 in the InCarMusic data set

The comparison of MAP@5 and MAP@10 for the different methods can be seen in Fig. 4.9.

Once more S_kNN staggers behind the other approaches by a considerable margin. L_kNN seems

to get better results as the k increases.

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

NDCG@10 NDCG@5

Figure 4.10: Comparison of NDCG@5 and NDCG@10 in the InCarMusic data set

A similar reading is done for Fig. 4.10. The results are also low in general, with the best result

being obtained with SV D++. However, the second best method was Biased_MF , followed by

L_kNN.

In Fig. 4.11 the comparison of F1@5 and F1@10 can be observed for the different methods.

Even though the values are low in general, it is interesting to see that in terms of these metrics

L_kNN is the winner with the higher absolute value.

43

Empirical Study

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

F1@10 F1@5

Figure 4.11: Comparison of F1@5 and F1@10 in the InCarMusic data set

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

P@10 P@5

Figure 4.12: Comparison of P@5 and P@10 in the InCarMusic data set

44

Empirical Study

Rating Frequency
1 154
2 122
3 188
4 192
5 757

Table 4.6: Frequency distribution of data set Ti juanaRestaurant

Furthermore, in Fig. 4.12, we have a comparison of P@10 and R@10, which are the metrics

with the most pronounced differences between L_kNN and SV D++. In the case of R@10, SV D+

+ has more 0.17 points than our approach, while in terms of P@10 our approach is 0.6 points

higher than SV D++. SV D++ seems to have very low precision, which means a lot of irrelevant

recommendations are made alongside the relevant ones. However, it seems to have high recall,

which means it recommends most of the relevant items. L_kNN seems more balanced in the sense

that it has higher precision and lower recall.

An hypothesis is that the unusual characteristics of this data set, such as low median rating,

prevalence of negative ratings and higher item-to-user ratio might explain the performance of our

approach. However, this would require further validation and testing.

4.3.3 TijuanaRestaurant

The frequency distribution for this data set can be seen in Table 4.6. Since the rating scale is

identical to the previous two, the threshold is also considered to be 3. This data set is the smallest

one, and also the densest. Plus, most ratings are positive.

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

AUC@10 AUC@5

Figure 4.13: Comparison of AUC@5 and AUC@10 in the Ti juanaRestaurant data set

The comparison for AUC@5 and AUC@10 for this data set can be seen in Fig. 4.13. It is

observable that the best results are obtained by L_kNN. SV D++ is the second best in terms of

45

Empirical Study

AUC@5, but S_kNN is better in terms of AUC@10. Additionally, the value of AUC@10 in our

method is the highest globally in this data set. One hypothesis to explain this could be the higher

density of data.

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

MAP@10 MAP@5

Figure 4.14: Comparison of MAP@5 and MAP@10 in the Ti juanaRestaurant data set

In Fig. 4.14 it is possible to observe the comparison of MAP@5 and MAP@10 for this data

set. Our method vastly outperforms all the others, with the second best being S_kNN. However,

the values are not particularly high. The state of the art contextual approach CAMF_CU showed

the worst results in these metrics.

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

NDCG@10 NDCG@5

Figure 4.15: Comparison of NDCG@5 and NDCG@10 in the Ti juanaRestaurant data set

In Fig. 4.15 the comparison of NDCG@5 and NDCG@10 for this data set is visible. It is

worth pointing out that this data set shows the highest values out of all the data sets in terms of

this metric. This reveals that the ranking of recommendations is done with the most relevant items

at the top of the list, since changing the order of the recommendations would alter/decrease the

46

Empirical Study

value of NDCG. CAMF_CU displayed the worst results here, while S_kNN was the second best.

In both L_kNN and S_kNN increasing k seems to improve the results.

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

P@10 P@5

Figure 4.16: Comparison of P@5 and P@10 in the Ti juanaRestaurant data set

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

knn_librec(k=1)

knn_librec(k=3)

knn_librec(k=5)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

F1@10 F1@5

Figure 4.17: Comparison of F1@5 and F1@10 in the Ti juanaRestaurant data set

In Fig. 4.16, it is possible to see the comparison for the precision metric in this data set. Once

again, our approach outperforms all the other methods, obtaining the highest values.

The comparison of F1@5 and F1@10 can be consulted in Fig. 4.17. L_kNN displays the best

results, followed by S_kNN. In last place is the CAMF_CU approach. Especially relatively to

F1@5, we can see an improvement in the results with the increase in k in our method. It is also

in this data set that we see the highest values out of all the data sets. More research would be

required in order to exhaust all the possibilities, but this might be caused by the characteristics

aforementioned.

47

Empirical Study

4.4 Discussion

After some analysis, the results obtained can be summarised in the following points:

1. In two out of the three data sets tested, our approach obtains better results than the other

methods;

2. The data set where our approach does not obtain the best results (InCarMusic) has different

characteristics, like a low median rating and also a larger percentage of negative ratings;

3. The ideal number of factors for the latent context extraction is highly variable; in the data set

Ti juanaRestr, the best results were obtained with 4 latent context conditions vs the original

7, while in the InCarMusic and DePaulMovie data sets the best results were obtained with

1 context condition vs the original 27 and 13, respectively

4. In all the data sets tested, our approach always obtained the best performance in terms of

precision compared with the remaining approaches. This happened even in the data set

where our method was not the best performer

After scrutiny of the aforementioned points, some observations can be made. First of all,

dense matrices seem to be related to better performances, as expected. Additionally, it seems

as when the number of initial context conditions is large, our method does better with a smaller

number of extracted latent conditions,. An explanation for point 2 can be that it is harder to predict

which items will be liked if the data includes more information about the users’ dislikes than likes.

In the case of this data set, more than half of the ratings being negative means there are also

fewer positive ratings the system can learn to generalise to new instances. When latent context

is extracted from this data, there is a possibility that sparsity is reduced but also exacerbating the

percentage of negative ratings at the same time. Point 3 might indicate that the more contextual

information available, namely, contextual conditions, the easier it is to find relevant relationships

between the conditions. This might also mean that systems with more contextual conditions would

benefit more from a latent approach. Nevertheless, more research would be necessary to derive

more conclusions.

4.5 Research Questions

The results can also be discussed in terms of the Research Questions first presented in section 1.2.

1. Is the extraction of latent context from non-latent context variables through MF vi-
able? After our experiments, it is possible to conclude that MF is a viable method to extract

latent context. We managed to extract latent contextual variables from non-latent context,

while parameterising the number of latent contextual variables to be extracted.

48

Empirical Study

2. Can the quality of recommendations be improved by using latent context information
obtained with an adaptation of MF? The results from our experiments suggest that the

recommendations can be improved using latent context. In fact, in two out of the three

data sets tested, the performance improved in regard to various metrics using latent context

instead of non-latent context.

49

Empirical Study

50

Chapter 5

Conclusions and Future Work

Nowadays, RS have become significantly relevant to tackle the current information overload prob-

lem. It has been established that context can alter user preferences, and thus including it in RS

yields better recommendations. These contextual variables can either be non-latent or latent. Non-

latent contextual variables’ meaning is very intelligible, but adding too many of these variables

can increase sparsity and consequently worsen performance. Because of this, latent variables are

seen as an alternative. These variables are obtained from the previously mentioned non-latent con-

textual variables, but their meaning is unknown since they are extracted from hidden patterns. For

reasons such as privacy, usability and sparsity reduction, latent contextual variables have become

more and more appealing as of late. However, their value and contribution power is not confirmed

yet. The motivation for this study was to develop a method to extract and use latent contextual

variables and empirically evaluate it. A possible advantage of these variables is a more precise

representation of context with less dimensionality. This would diminish the need for feature engi-

neering and lower computational cost, without compromising recommendation quality.

The main objective of this project was fulfilled, since we experimented with a methodology

for the extraction of latent context from non-latent contextual variables and for generating recom-

mendations. As such, we assembled a latent context-aware RS.

The developed method was evaluated against a state of the art CARS approach and also the

kNN algorithm without the latent similarity matrix. Additionally, some popular non-latent algo-

rithms were used as baseline. The results obtained were very favourable and demonstrated clear

potential to improve recommendations. In two out of three data sets, the developed approach

presented more positive results than the other methods in metrics such as AUC, MAP and NDCG.

However, only three data sets were used, and these are also relatively small and therefore more

research is still required to consolidate the results. In addition, there are still interesting questions

that could be potential future areas of work. For an example, it would be compelling to investigate

the relation between latent and non latent contextual variables. This could be done in terms of

51

Conclusions and Future Work

similarity/distance between both representations, through metrics such as Jensen-Shannon diver-

gence. This metric is a symmetric adaptation of the Kullback-Leibler divergence, which allows

multivariable comparisons and can also be non-parametric. This is useful since we do not know if

the distribution of the data follows a known distribution. Doing this would give some insight about

the level of information in each type of context. Plus, it might also provide additional information

that could help improve the extraction process. For example, knowing which variables are highly

correlated might prove useful for the extraction of latent variables on future iterations. Visuali-

sation algorithms could also be used to reveal possible patterns in the representations. Another

interesting avenue would be trying more methods of extraction of latent contextual variables, such

as autoencoders, and comparing their performances.

52

References

[ADB+99] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness. In
International symposium on handheld and ubiquitous computing, pages 304–307.
Springer, 1999.

[Ado05] Incorporating Contextual Information in Recommender Systems Using a Multidi-
mensional Approach. ACM Transactions on Information Systems, 23(1):103–145,
2005.

[AJOP11] Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M Pujol. Data mining
methods for recommender systems. In Recommender systems handbook, pages 39–
71. Springer, 2011.

[ARD+16] Mohammed F. Alhamid, Majdi Rawashdeh, Haiwei Dong, M. Anwar Hossain, and
Abdulmotaleb El Saddik. Exploring Latent Preferences for Context-Aware Person-
alized Recommendation Systems. IEEE Transactions on Human-Machine Systems,
2016.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[AT11] Gediminas Adomavicius and Alexander Tuzhilin. Context-Aware Recommender Sys-
tems. Springer, 2011.

[BKL+11] Linas Baltrunas, Marius Kaminskas, Bernd Ludwig, Omar Moling, Francesco Ricci,
Aykan Aydin, Karl-Heinz Lüke, and Roland Schwaiger. Incarmusic: Context-aware
music recommendations in a car. In E-Commerce and Web Technologies, pages 89–
100. Springer, 2011.

[BLR11] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factorization tech-
niques for context aware recommendation. Proceedings of the Fifth ACM Confer-
ence on Recommender Systems - RecSys ’11, page 301, 2011.

[BOHG13] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems
survey. Knowledge-Based Systems, 46:109–132, 2013.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User model-
ing and user-adapted interaction, 12(4):331–370, 2002.

[CD14] Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean ab-
solute error (mae)?–arguments against avoiding rmse in the literature. Geoscientific
model development, 7(3):1247–1250, 2014.

53

REFERENCES

[CKH+16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceedings of the 1st workshop on
deep learning for recommender systems, pages 7–10. ACM, 2016.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[DKR+11] Christian Desrosiers, George Karypis, F Ricci, L Rokach, B Shapira, and PB Kantor.
Recommender systems handbook. In A comprehensive survey of neighborhood-
based recommendation methods, pages 107–144. Springer, 2011.

[DPDM14] Toon De Pessemier, Simon Dooms, and Luc Martens. Context-aware recommenda-
tions through context and activity recognition in a mobile environment. Multimedia
Tools and Applications, 72(3):2925–2948, 2014.

[EK19] Michael D. Ekstrand and Joseph A. Konstan. Recommender Systems Notation: Pro-
posed Common Notation for Teaching and Research. 2019.

[FO17] Evgeny Frolov and Ivan Oseledets. Tensor methods and recommender systems. Wi-
ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3):e1201,
2017.

[GS09] Asela Gunawardana and Guy Shani. A survey of accuracy evaluation metrics of rec-
ommendation tasks. Journal of Machine Learning Research, 10(Dec):2935–2962,
2009.

[GZSYS15] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. Librec: A java library for
recommender systems. In UMAP Workshops, volume 4, 2015.

[GZYS15] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. Trustsvd: Collaborative filtering
with both the explicit and implicit influence of user trust and of item ratings. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[HKTR04] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Eval-
uating collaborative filtering recommender systems. ACM Transactions on Informa-
tion Systems (TOIS), 22(1):5–53, 2004.

[HM82] James A Hanley and Barbara J McNeil. The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[HMB12] Negar Hariri, Bamshad Mobasher, and Robin Burke. Context-aware music recom-
mendation based on latenttopic sequential patterns. page 131, 2012.

[Hug17] Nicolas Hug. Surprise, a Python library for recommender systems. http://
surpriselib.com, 2017.

[IFO15] FO Isinkaye, YO Folajimi, and BA Ojokoh. Recommendation systems: Principles,
methods and evaluation. Egyptian Informatics Journal, 16(3):261–273, 2015.

[KABO10] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Mul-
tiverse recommendation: n-dimensional tensor factorization for context-aware col-
laborative filtering. In Proceedings of the fourth ACM conference on Recommender
systems, pages 79–86. ACM, 2010.

54

http://surpriselib.com
http://surpriselib.com

REFERENCES

[KB15] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender
systems handbook, pages 77–118. Springer, 2015.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[LBK17] Fatima Zahra Lahlou, Houda Benbrahim, and Ismail Kassou. Context aware recom-
mender system algorithms: State of the art and focus on factorization based methods.
Electronic Journal of Information Technology, 2017.

[LHZ13] Nathan N. Liu, Luheng He, and Min Zhao. Social temporal collaborative ranking
for context aware movie recommendation. ACM Transactions on Intelligent Systems
and Technology, 4(1):1–26, 2013.

[LMY+12] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and Tao
Zhou. Recommender systems. Physics reports, 519(1):1–49, 2012.

[LW15] Xin Liu and Wei Wu. Learning context-aware latent representations for context-
aware collaborative filtering. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pages 887–890.
ACM, 2015.

[LX13] Bin Liu and Hui Xiong. Point-of-interest recommendation in location based social
networks with topic and location awareness. In Proceedings of the 2013 SIAM In-
ternational Conference on Data Mining, pages 396–404. SIAM, 2013.

[LXG+14] Chen Lin, Runquan Xie, Xinjun Guan, Lei Li, and Tao Li. Personalized news rec-
ommendation via implicit social experts. Information Sciences, 254:1–18, 2014.

[McK10] Wes McKinney. Data structures for statistical computing in python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Confer-
ence, pages 51 – 56, 2010.

[MDW+12] Nikos Manouselis, Hendrik Drachsler, Martin Wolpers, Erik Duval, Katrien Verbert,
Xavier Ochoa, and Ivana Bosnic. Context-Aware Recommender Systems for Learn-
ing: A Survey and Future Challenges. IEEE Transactions on Learning Technologies,
5(4):318–335, 2012.

[MRK06] Sean M McNee, John Riedl, and Joseph A Konstan. Being accurate is not enough:
how accuracy metrics have hurt recommender systems. In CHI’06 extended ab-
stracts on Human factors in computing systems, pages 1097–1101, 2006.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[PKCK12] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim. A literature
review and classification of recommender systems research. Expert Systems with
Applications, 39(11):10059–10072, sep 2012.

[PLS16] Sasmita Panigrahi, Rakesh Ku Lenka, and Ananya Stitipragyan. A hybrid distributed
collaborative filtering recommender engine using apache spark. Procedia Computer
Science, 83:1000–1006, 2016.

55

REFERENCES

[PTG+09] Umberto Panniello, Alexander Tuzhilin, Michele Gorgoglione, Cosimo Palmisano,
and Anto Pedone. Experimental comparison of pre- vs. post-filtering approaches in
context-aware recommender systems. 2009.

[PTG14] Umberto Panniello, Alexander Tuzhilin, and Michele Gorgoglione. Comparing
context-aware recommender systems in terms of accuracy and diversity. User Mod-
eling and User-Adapted Interaction, 24(1-2):35–65, 2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[PZ18] Martin Pichl and Eva Zangerle. Latent feature combination for multi-context music
recommendation. Proceedings - International Workshop on Content-Based Multi-
media Indexing, 2018-Septe:1–6, 2018.

[RESK15] Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan. Active learn-
ing in recommender systems. In Recommender systems handbook, pages 809–846.
Springer, 2015.

[RGGaV14] Xochilt Ramirez-Garcia and Mario GarcÃ-a Valdez. Post-filtering for a restaurant
context-aware recommender system. In Recent Advances on Hybrid Approaches for
Designing Intelligent Systems, volume 547 of Studies in Computational Intelligence,
pages 695–707. Springer International Publishing, 2014.

[SBCH12] Norma Saiph Savage, Maciej Baranski, Norma Elva Chavez, and Tobias Höllerer.
I’m feeling loco: A location based context aware recommendation system. In Ad-
vances in Location-Based Services, pages 37–54. Springer, 2012.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen. There is more to context
than location. Computers & Graphics, 23(6):893–901, 1999.

[SG11] Guy Shani and Asela Gunawardana. Evaluating recommendation systems. In Rec-
ommender systems handbook, pages 257–297. Springer, 2011.

[SGZ15] Zhu Sun, Guibing Guo, and Jie Zhang. Exploiting implicit item relationships for
recommender systems. In International Conference on User Modeling, Adaptation,
and Personalization, pages 252–264. Springer, 2015.

[SLH13] Yue Shi, Martha Larson, and Alan Hanjalic. Mining contextual movie similarity
with matrix factorization for context-aware recommendation. ACM Transactions on
Intelligent Systems and Technology, 4(1):1–19, 2013.

[Ste13] Harald Steck. Evaluation of recommendations: rating-prediction and ranking. In
Proceedings of the 7th ACM conference on Recommender systems, pages 213–220.
ACM, 2013.

[Sym16] Panagiotis Symeonidis. Matrix and tensor decomposition in recommender systems.
In Proceedings of the 10th ACM Conference on Recommender Systems, pages 429–
430. ACM, 2016.

56

REFERENCES

[TC00] Thomas Tran and Robin Cohen. Hybrid recommender systems for electronic com-
merce. In Proc. Knowledge-Based Electronic Markets, Papers from the AAAI Work-
shop, Technical Report WS-00-04, AAAI Press, page 12, 2000.

[UBSR16] Moshe Unger, Ariel Bar, Bracha Shapira, and Lior Rokach. Towards latent context-
aware recommendation systems. Knowledge-Based Systems, 104:165–178, jul 2016.

[Ung15] M. Unger. Latent context-aware recommender systems. RecSys 2015 - Proceedings
of the 9th ACM Conference on Recommender Systems, pages 383–386, 2015.

[VSDCT18] Norha M. Villegas, Cristian Sánchez, Javier Díaz-Cely, and Gabriel Tamura. Char-
acterizing context-aware recommender systems: A systematic literature review.
Knowledge-Based Systems, 140:173–200, 2018.

[YGK+06] Kazuyoshi Yoshii, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and Hi-
roshi G Okuno. Hybrid collaborative and content-based music recommendation
using probabilistic model with latent user preferences. In ISMIR, volume 6, page
7th, 2006.

[YL10] Zhang Yujie and Wang Licai. Some challenges for context-aware recommender
systems. In 2010 5th International Conference on Computer Science & Education,
pages 362–365. IEEE, 2010.

[YSGL12] Xiwang Yang, Harald Steck, Yang Guo, and Yong Liu. On top-k recommendation
using social networks. In Proceedings of the sixth ACM conference on Recommender
systems, pages 67–74. ACM, 2012.

[ZMB15] Yong Zheng, Bamshad Mobasher, and Robin Burke. Carskit: A java-based context-
aware recommendation engine. In Proceedings of the 15th IEEE International Con-
ference on Data Mining Workshops. IEEE, 2015.

[ZS10] Zhi-Dan Zhao and Ming-Sheng Shang. User-based collaborative-filtering recom-
mendation algorithms on hadoop. In 2010 Third International Conference on Knowl-
edge Discovery and Data Mining, pages 478–481. IEEE, 2010.

57

REFERENCES

58

Appendix A

Preparations

In this appendix are listed some preparation details. Some rows were dropped from the original

data in order to clean and prepare it for the subsequent operations. The rows which did not fulfil

the following rules were dropped:

• Any alphabetic characters are removed from user ids

• Any alphabetic characters are removed from item ids

• User ids are converted to numeric types

• Item ids are converted to numeric types

• Ratings are converted to numeric types

Context variables were aggregated into one single context variable with all the possible conditions.

Additionally, after these steps the data was indexed in terms of all the possible user-item combi-

nations. This was done by using the cartesian product of the unique user ids and item ids as index.

Finally, new user-item-context combinations, with no previous rating information were filled with

zeros.

59

Preparations

60

Appendix B

Results

In this appendix the full results for each data set are presented, with the highest global value for

each column highlighted.

In Figs. B.1 and B.2, it is possible to see the full results for the DePaulMovie data set. In

Figs. B.3 and B.4 are the results for the InCarMusic data set, while in Figs. B.5 and B.6 it is

possible to observe the results for the Ti juanaRestaurant data set. In these figures, all the metrics

gathered are visible, as well as the various runs of the algorithms with different parameters.

61

Results

0 6220 Median of all rating values: 3 Key:

1 829 Standard deviation all ratings: 1.906723

2 625 Mode of all rating values: 5

3 1005 Context conditions: 13 Nr users: 97

4 1209 Data density: 5.05% Nr items: 79

5 1367 Avg val of all ratings: 3.329688 Nr ratings: 11255

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.6424 0.7090 0.0903 0.1019 0.1333 0.1703 0.0822 0.1487 0.0689 0.2507 shrinkage=10

0.6305 0.7263 0.0761 0.0950 0.1190 0.1758 0.0773 0.1283 0.0886 0.2677

0.6710 0.7317 0.0785 0.0961 0.1343 0.1796 0.1023 0.1705 0.0886 0.2798

0.6610 0.7185 0.0796 0.0987 0.1337 0.1810 0.1126 0.1276 0.1011 0.2449

0.6268 0.7040 0.0707 0.0966 0.1092 0.1698 0.0683 0.1613 0.0662 0.3177 nIter: 100,lrate: 0.02,maxlr: -1.0

0.6253 0.7015 0.0725 0.0979 0.1103 0.1699 0.0668 0.1601 0.0655 0.3128

0.6092 0.6830 0.0563 0.0725 0.0903 0.1461 0.0581 0.1373 0.0590 0.2799

0.6029 0.6836 0.0548 0.0801 0.0868 0.1472 0.0554 0.1315 0.0598 0.2879

0.6013 0.6840 0.0532 0.0784 0.0772 0.1459 0.0539 0.1299 0.0592 0.2891

0.5957 0.6718 0.0494 0.0727 0.0790 0.1355 0.0512 0.1178 0.0556 0.2653

0.5879 0.6725 0.0451 0.0703 0.0726 0.1345 0.0478 0.1134 0.0568 0.2753

0.5903 0.6722 0.0446 0.0697 0.0729 0.1337 0.0478 0.1141 0.0562 0.2729

0.5863 0.6695 0.0433 0.0677 0.0702 0.1305 0.0464 0.1061 0.0551 0.2636

0.5868 0.6815 0.0460 0.0767 0.0736 0.1462 0.0481 0.1208 0.0615 0.3117

0.5840 0.6806 0.0418 0.0719 0.0686 0.1410 0.0459 0.1135 0.0608 0.3040

0.6251 0.7173 0.0745 0.1059 0.1128 0.1858 0.0677 0.1709 0.0727 0.3597

our method

similar to ours but no context

baseline_cf

state of the art CARS

max global value

ALGORITHM\METRIC

knn_librec(k=3)

knn_librec(k=1)

SVD++(5 fac)

SVD++(1 fac)

CAMF_CU(1 fac)

knn_librec(k=10)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

UIC matrix statistics

CAMF_CU(5 fac)

BiasedMF(3 fac)

BiasedMF(5 fac)

SVD++(3 fac)

CAMF_CU(3 fac)

knn_librec(k=5)

BiasedMF(1 fac)

Figure B.1: First worksheet of the results from the DePaulMovie data set

DATASET Movie_DePaulMovie

SETUP kcv 5 folds trainset ratio = 0.8 MF 1 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.6282 0.7097 0.0663 0.0808 0.1070 0.1513 0.0822 0.1181 0.0744 0.2329 shrinkage=10

0.6414 0.7169 0.0854 0.1025 0.1297 0.1777 0.0886 0.1443 0.0830 0.2593

0.6623 0.7143 0.0923 0.1109 0.1353 0.1828 0.0911 0.1428 0.0844 0.2578

0.7005 0.7601 0.0963 0.1256 0.1567 0.2207 0.1122 0.1710 0.1110 0.3233

DATASET Movie_DePaulMovie

SETUP kcv 5 folds trainset ratio = 0.8 MF 3 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.6056 0.6910 0.0444 0.0629 0.0790 0.1312 0.0652 0.1027 0.0697 0.2388 shrinkage=10

0.6521 0.7215 0.0799 0.0961 0.1282 0.1736 0.0932 0.1377 0.0846 0.2517

0.6471 0.7035 0.0828 0.1006 0.1318 0.1756 0.0955 0.1415 0.0875 0.2471

0.6629 0.7200 0.0849 0.0986 0.1363 0.1765 0.0901 0.1508 0.0791 0.2523

DATASET Movie_DePaulMovie

SETUP kcv 5 folds trainset ratio = 0.8 MF 7 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.6086 0.6781 0.0585 0.0684 0.0927 0.1311 0.0736 0.0976 0.0690 0.2038 shrinkage=10

0.6573 0.7293 0.0877 0.1043 0.1353 0.1849 0.0966 0.1378 0.0908 0.2723

0.6675 0.7342 0.0861 0.1045 0.1392 0.1881 0.1101 0.1494 0.1022 0.2722

0.6699 0.7462 0.0969 0.1219 0.1535 0.2126 0.1200 0.1551 0.1067 0.3021

our_approach(k=3)

ALGORITHM\METRIC

our_approach(k=5)

our_approach(k=10)

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

our_approach(k=1)

our_approach(k=10)

our_approach(k=1)

Figure B.2: Second worksheet of the results from the DePaulMovie data set

62

Results

0 5030 Median of all rating values: 1 Key:

1 1452 Standard deviation all ratings: 1.473793

2 705 Mode of all rating values: 1

3 652 Context conditions: 27 Nr users: 42

4 513 Data density: 2.40% Nr items: 139

5 494 Avg val of all ratings: 2.446235 Nr ratings: 8846

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.5444 0.5953 0.0664 0.0691 0.0956 0.1133 0.0836 0.0580 0.0865 0.1146 shrinkage=10

0.5429 0.5908 0.0619 0.0633 0.0874 0.1018 0.0802 0.0511 0.0810 0.0978

0.5393 0.5802 0.0620 0.0608 0.0891 0.0983 0.0803 0.0443 0.0771 0.0865

0.5558 0.6075 0.0729 0.0753 0.1026 0.1195 0.0869 0.0711 0.0880 0.1209

0.5475 0.5792 0.0356 0.0445 0.0493 0.0706 0.0225 0.0809 0.0198 0.1433 nIter: 100,lrate: 0.02,maxlr: -1.0

0.5471 0.5783 0.0364 0.0452 0.0498 0.0706 0.0223 0.0796 0.0196 0.1404

0.5442 0.5792 0.0306 0.0409 0.0442 0.0687 0.0207 0.0768 0.0197 0.1497

0.5458 0.5808 0.0387 0.0490 0.0514 0.0755 0.0218 0.0829 0.0204 0.1531

0.5414 0.5802 0.0349 0.0459 0.0463 0.0726 0.0202 0.0741 0.0203 0.1519

0.5380 0.5740 0.0299 0.0401 0.0409 0.0653 0.0184 0.0673 0.0189 0.1397

0.5486 0.5918 0.0420 0.0545 0.0555 0.0852 0.0234 0.0907 0.0232 0.1787

0.5434 0.5918 0.0381 0.0519 0.0499 0.0831 0.0212 0.0796 0.0233 0.1791

0.5576 0.6056 0.0447 0.0589 0.0616 0.0951 0.0276 0.1033 0.0264 0.2030

0.6442 0.6955 0.1450 0.1612 0.1798 0.2169 0.0648 0.2686 0.0464 0.3772

0.6504 0.7080 0.1553 0.1734 0.1909 0.2325 0.0676 0.2802 0.0491 0.4024

0.5687 0.6758 0.1130 0.1312 0.1439 0.1857 0.0547 0.2198 0.0429 0.3439

max global value

ALGORITHM\METRIC

UIC matrix statistics

our method

baseline_cf

similar to ours but no context

state of the art CARS

SVD++(3 fac)

knn_librec(k=10)

knn_librec(k=3)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(1 fac)

knn_librec(k=5)

BiasedMF(1 fac)

SVD++(1 fac)

knn_librec(k=1)

CAMF_CU(10 fac)

CAMF_CU(5 fac)

BiasedMF(3 fac)

BiasedMF(5 fac)

SVD++(5 fac)

CAMF_CU(3 fac)

Figure B.3: First worksheet of the results from the InCarMusic data set

DATASET InCarMusic

SETUP kcv 5 folds trainset ratio = 0.8 MF 1 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.5908 0.6668 0.0980 0.1000 0.1386 0.1648 0.1130 0.0995 0.1018 0.1991 shrinkage=10

0.5987 0.6586 0.1087 0.1132 0.1513 0.1731 0.1121 0.1170 0.1024 0.1875

0.6163 0.6718 0.1203 0.1234 0.1694 0.1886 0.1293 0.1357 0.1127 0.2028

0.6168 0.6780 0.1282 0.1296 0.1742 0.1960 0.1247 0.1506 0.1072 0.2284

DATASET InCarMusic

SETUP kcv 5 folds trainset ratio = 0.8 MF 3 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.5444 0.5941 0.0812 0.0838 0.1079 0.1253 0.0976 0.0555 0.0983 0.1160 shrinkage=10

0.5446 0.5888 0.0769 0.0723 0.1019 0.1117 0.0916 0.0518 0.0862 0.1014

0.5534 0.6025 0.0893 0.0828 0.1181 0.1272 0.0987 0.0622 0.0885 0.1225

0.5696 0.6241 0.0835 0.0859 0.1169 0.1335 0.0999 0.0753 0.0966 0.1275

DATASET InCarMusic

SETUP kcv 5 folds trainset ratio = 0.8 MF 7 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.5307 0.5860 0.0574 0.0606 0.0837 0.1005 0.0763 0.0376 0.0812 0.0928 shrinkage=10

0.5178 0.5592 0.0644 0.0568 0.0834 0.0880 0.0719 0.0351 0.0683 0.0708

0.5228 0.5636 0.0617 0.0548 0.0829 0.0870 0.0738 0.0360 0.0700 0.0670

0.5346 0.5728 0.0582 0.0539 0.0801 0.0875 0.0739 0.0362 0.0693 0.0742

DATASET InCarMusic

SETUP kcv 5 folds trainset ratio = 0.8 MF 14 fac threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.5372 0.6077 0.0913 0.0887 0.1154 0.1327 0.0969 0.0539 0.0959 0.1301 shrinkage=10

0.5770 0.6329 0.0950 0.0928 0.1303 0.1447 0.1147 0.0752 0.1040 0.1406

0.5660 0.6173 0.0975 0.0908 0.1292 0.1372 0.1098 0.0756 0.0966 0.1298

0.5589 0.6035 0.0878 0.0835 0.1199 0.1299 0.1038 0.0672 0.0939 0.1200

our_approach(k=1)

our_approach(k=3)

our_approach(k=3)

our_approach(k=5)

ALGORITHM\METRIC

our_approach(k=1)

our_approach(k=5)

our_approach(k=10)

our_approach(k=10)

our_approach(k=1)

our_approach(k=3)

our_approach(k=3)

our_approach(k=1)

our_approach(k=10)

our_approach(k=5)

our_approach(k=10)

our_approach(k=5)

Figure B.4: Second worksheet of the results from the InCarMusic data set

63

Results

0 1415 Median of all rating values: 4 Key:

1 154 Standard deviation all ratings: 2.191017

2 122 Mode of all rating values: 5

3 188 Context conditions: 7 Nr users: 50

4 192 Data density: 10.09% Nr items: 40

5 757 Avg val of all ratings: 3.903043 Nr ratings: 2828

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.3919 0.7261 0.2438 0.2939 0.3197 0.4040 0.2308 0.3637 0.2000 0.6137 shrinkage=10

0.5331 0.6963 0.2877 0.3114 0.3603 0.4059 0.2500 0.4206 0.1841 0.5652

0.3480 0.6688 0.2696 0.3032 0.3409 0.4048 0.2571 0.3554 0.2171 0.5670

0.3970 0.7192 0.2895 0.3148 0.3724 0.4257 0.2700 0.3845 0.2150 0.5745

0.5344 0.6182 0.0849 0.1112 0.1148 0.1695 0.0671 0.1732 0.0603 0.3229 nIter: 100,lrate: 0.02,maxlr: -1.0

0.5322 0.6154 0.0848 0.1101 0.1134 0.1671 0.0655 0.1674 0.0592 0.3164

0.5476 0.6306 0.0971 0.1229 0.1292 0.1842 0.0710 0.1904 0.0628 0.3424

0.5477 0.6389 0.0973 0.1276 0.1325 0.1972 0.0728 0.2016 0.0669 0.3823

0.5447 0.6378 0.0992 0.1308 0.1331 0.1994 0.0723 0.1975 0.0670 0.3817

0.5366 0.6215 0.0861 0.1126 0.1163 0.1726 0.0659 0.1767 0.0605 0.3311

0.5643 0.6455 0.1136 0.1417 0.1513 0.2106 0.0779 0.2234 0.0668 0.3872

0.5571 0.6397 0.1100 0.1376 0.1467 0.2047 0.0768 0.2183 0.0660 0.3781

0.5456 0.6268 0.0962 0.1227 0.1277 0.1828 0.0709 0.1854 0.0622 0.3372

0.5847 0.6541 0.1625 0.1845 0.1973 0.2434 0.0855 0.2556 0.0655 0.3828

0.5887 0.6598 0.1558 0.1791 0.1952 0.2439 0.0880 0.2672 0.0678 0.4017

0.5578 0.6366 0.1152 0.1403 0.1491 0.2010 0.0767 0.2133 0.0641 0.3561

CAMF_CU(5 fac)

BiasedMF(10 fac)

SVD++(10 fac)

CAMF_CU(10 fac)

ALGORITHM\METRIC

BiasedMF(3 fac)

SVD++(3 fac)

CAMF_CU(3 fac)

BiasedMF(5 fac)

SVD++(5 fac)

knn_librec(k=1)

knn_librec(k=10)

UIC matrix statistics

our method

similar to ours but no context

baseline_cf

state of the art CARS

max global value

knn_librec(k=3)

knn_librec(k=5)

BiasedMF(1 fac)

SVD++(1 fac)

CAMF_CU(1 fac)

Figure B.5: First worksheet of the results from the RestrTi juana data set

DATASET RestrTijuana

SETUP kcv 5 folds trainset ratio = 0.8 MF 1 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.4181 0.7102 0.2957 0.3403 0.3697 0.4434 0.2650 0.3938 0.2275 0.6224 shrinkage=10

0.5396 0.6755 0.3319 0.3560 0.4148 0.4510 0.2895 0.4229 0.2000 0.5469

0.4920 0.7271 0.3973 0.4225 0.4897 0.5373 0.3167 0.5178 0.2389 0.6821

0.4566 0.7076 0.3946 0.4284 0.4754 0.5298 0.3135 0.4581 0.2405 0.6464

DATASET RestrTijuana

SETUP kcv 5 folds trainset ratio = 0.8 MF 2 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.3831 0.7108 0.2388 0.2793 0.2925 0.3727 0.2378 0.2876 0.2270 0.5502 shrinkage=10

0.4360 0.7049 0.3524 0.4061 0.4032 0.5147 0.2629 0.3281 0.2514 0.6662

0.6493 0.7227 0.3719 0.4040 0.4611 0.5126 0.2974 0.5000 0.2154 0.6473

0.5832 0.7406 0.3506 0.3786 0.4145 0.4738 0.2850 0.4313 0.2175 0.6373

DATASET RestrTijuana

SETUP kcv 5 folds trainset ratio = 0.8 MF 4 fact threshold=3

AUC@5 AUC@10 MAP@5 MAP@10 NDCG@5 NDCG@10P@5 R@5 P@10 R@10

0.4458 0.7288 0.2014 0.2524 0.2661 0.3656 0.2098 0.3225 0.1878 0.6056 shrinkage=10

0.4718 0.7356 0.4012 0.4495 0.4690 0.5503 0.2743 0.4456 0.2400 0.6664

0.5630 0.7448 0.3948 0.4069 0.4836 0.5094 0.3091 0.5014 0.2182 0.6265

0.6788 0.7946 0.4864 0.5036 0.5791 0.6159 0.3429 0.6455 0.2310 0.7868

ALGORITHM\METRIC

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

our_approach(k=1)

our_approach(k=1)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

our_approach(k=3)

our_approach(k=5)

our_approach(k=10)

Figure B.6: Second worksheet of the results from the RestrTi juana data set

64

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals and Research Questions
	1.3 Dissertation Structure

	2 Recommender Systems
	2.1 Algorithms
	2.1.1 Content-based Filtering
	2.1.2 Collaborative Filtering
	2.1.3 Hybrid Approaches

	2.2 Common Issues
	2.3 Evaluation
	2.4 Contextual Recommender Systems
	2.4.1 Definition of Context
	2.4.2 Non-latent Context versus Latent Context
	2.4.3 Algorithms
	2.4.4 Literature Review of Latent Approaches
	2.4.5 Related Work

	2.5 Summary

	3 A Latent Context-aware Recommender System Approach
	3.1 Approach Overview
	3.1.1 Context-aware Recommender Systems
	3.1.2 Latent Context Extraction

	3.2 Empirical Evaluation
	3.2.1 Latent Context Extraction
	3.2.2 Latent Context-aware Recommender System

	3.3 Experimental Setup
	3.3.1 Data
	3.3.2 Data Preparation
	3.3.3 Evaluation

	3.4 Implementation
	3.5 Discussion

	4 Empirical Study
	4.1 Experimental Setup
	4.1.1 Data
	4.1.2 Data Preparation
	4.1.3 Evaluation

	4.2 Implementation
	4.3 Analysis of the Results
	4.3.1 DePaulMovie
	4.3.2 InCarMusic
	4.3.3 TijuanaRestaurant

	4.4 Discussion
	4.5 Research Questions

	5 Conclusions and Future Work
	References
	A Preparations
	B Results

