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Abstract

Antibiotics are widely applied for the treatment of humans and animals. These compounds can
be found in the different water compartments, including wastewater and drinking water. The pres-
ence of antibiotics in the aquatic environment causes the development antibiotic-resistant bacteria,
which is related to the emerging of untreatable infectious diseases.

Sulfonamides are an important antibiotic group, and have been frequently found in the aquatic
medium. One of the most common methods for determination of sulfonamides in water consists in
high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). De-
spite the high sensitivity and selectivity of this methodology, it is an expensive, reagent consuming
process and not suitable for an in situ analysis strategy.

One important property of sulfonamides is how the compound reacts when added the col-
orimetric reagent p-dimethylaminocinnamaldehyde. When these two compounds mix, a color is
obtained, and it’s intensity is related to the concentration of sulfonamides in the sample. This
opens the possibility of using colorimetry to measure the concentration of this group of antibiotics
in a sample. To allow an analysis on the field, the solution needs to be fully mobile and practical,
so as to avoid carrying heavy, potentially unnecessary equipment. In this context, a new screening
method was developed that utilizes a picture and a computer for the analysis. However, despite
this approach improving the analysis process when compared to traditional methods, it is still not
fully mobile, since it requires cumbersome equipment to be transported, as the processing is done
on a laptop or PC due to software restrictions of the language used for the algorithm.

Smartphones’ computational capabilities are increasing, and they are more powerful than
many laptops of older generations. Taking this into account, we developed a mobile analysis
application that leverages the computing power and ease of use of a smartphone. In the app, an ex-
isting image of the reaction can be loaded or a new one can be taken. This input will pass through a
color correction algorithm to normalize the capture considering the environmental lighting. When
the algorithm finishes processing the image, the app will return the estimated concentration of the
sample. This approach enables in situ analysis, without requiring an Internet connection nor spe-
cific analysis equipment, and the ability to have a rather precise guess of the level of contamination
of any water. It is also capable of using manual input to assist the algorithm should the automatic
version fail.
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Resumo

Antibidticos sdo utilizados para o tratamento de humanos e animais. Estes compostos podem ser
encontrados em diferentes compartimentos aqudticos, incluindo 4guas residuais e de consumo. A
presenca de antibiéticos nestes ambientes leva ao desenvolvimento de bactérias com resisténcia a
antibidticos, que estd relacionada com o aumento de doencas infeciosas sem tratamento.

Sulfonamidas sdo um grupo importante de antibiéticos, e t€m sido frequentemente encon-
tradas no meio aqudtico. Um dos métodos mais comuns para a determinagdo de sulfonamides em
dgua consiste na parceria de cromatografia liquida de alta eficiéncia (HPLC-MS/MS). Apesar da
sensibilidade e seletividade alta deste método, € um processo caro, que consome muitos reagentes
e nado apropriada para andlise in situ.

Uma propriedade importante de sulfonamidas é como estes compostos reagem quando ¢ adi-
cionado o reagente colorimétrico p-dimethylaminocinnamaldehyde. Quando estes dois compostos
se juntam, obtém-se uma cor cuja intensidade estd relacionada com a concentracio de sulfonami-
das na amostra. Isto abre a possibilidade de usar colorimetria para medir a concentracdo deste
grupo de antibiéticos numa amostra. Para permitir uma andlise no local, a solugdo tem de ser
movel e prética, para evitar levar equipamento pesado, potencialmente desnecessdrio. Neste con-
texto, um novo método foi desenvolvido que utiliza uma imagem e um PC para efetuar a andlise.
No entanto, apesar de esta metodologia ser uma boa melhoria comparativamente aos processos
tradicionais, ainda ndo € completamente movel, visto que requer o transporte de equipamento
pouco prético, ja que o processamento serd feito num portétil ou PC devido a restricdes de soft-
ware.

A capacidade computacional de smartphones tem aumentado, e sio mais poderosos que muitos
portateis de geragdes anteriores. Tendo isto em conta, desenvolvemos uma aplicag@o para andlise
mobile que aproveita o poder computacional e facilidade de uso de um smartphone. Na apli-
cac¢do, uma imagem da reacdo pode ser carregada da galeria ou uma nova pode ser capturada. Esta
fotografia ird ser passar por um algoritmo de correcdo de cores para normalizar a imagem con-
siderando a iluminagdo ambiente. Quando o algoritmo acaba de processar a imagem, a aplicagao
ird providenciar a concentracao estimada da amostra. Esta abordagem possilibita a andlise in situ,
sem necessitar de uma conexdo a Internet ou de equipamento especifico para o processamento,
dando uma estimativa relativamente precisa do nivel de contaminagdo de qualquer dgua.
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“These things never make sense. They just happen
and we get swept up in the storm.”
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Chapter 1

Introduction

As modern medicine advances, more forms of combatting diseases arise. Sulfonamides are an
important group of antibiotics, and they are widely used not only to treat humans, but also farm
animals [17]. Sulfonamides and their metabolites are frequently found in environmental water.
They can reach this medium through different pathways, such as wastewater discharges, contami-
nated manure and slurry, and aquaculture. Their presence accelerates natural selection on bacteria
colonies in the water, since sulfonamides kill the bacteria that cannot resist antibiotics, allowing
the others to proliferate. It was also found that the aquatic medium is highly favorable to the trans-
fer of genes [3], which lead to more bacteria acquiring the antibiotic resistant gene. This escalated
into the global threat of antimicrobial resistance, hence the quantification of sulfonamides concen-
tration in water is crucial to assess environmental risk and to establish health and environmental
policies.

Currently there are several strategies being used to quantify sulfonamides, but for most tradi-
tional methods the researcher has to collect a water sample to be tested and take it to a laboratory

capable of doing this procedure. This approach is impractical, expensive, and not mobile.

1.1 Motivation

Recently, a new methodology was developed to detect sulfonamides in water by Carvalho et al. [5].
This approach is based on the colorimetric reaction between sulfonamides and the reagent p-
dimethylaminocinnamaldehyde, after retention of these antibiotics in a solid support. It was ob-
served that there exists a relation between the intensity of the color product to the concentration
of sulfonamides in the sample. Knowing this, research was done to conclude whether an image
of the color was enough to quantify sulfonamides in g per liter using digital colorimetry. The
investigation concluded that this approach was viable, and provided a more streamlined process to
get an estimation of the degree of contamination in waters. However, despite being more practical
and much less expensive, it still has its own drawbacks, namely requiring a computer to run the

analysis algorithm.
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Traditional methodologies for analyzing contaminated water for sulfonamides have limita-
tions. They require the investigator to collect a sample in situ, transport it to a lab, and expensive
and resource intensive processes. On top of that, in some remote regions of the world, getting
the sample from the location to the lab can also be a costly and time consuming endeavour. An
algorithm using digital image colorimetry can mitigate some of these limitations. For example,
after collecting a sample, the investigator could later use software to process the image of the
chemical reaction between the sulfonamides and the reagent. This would be less expensive, and
generate less overhead to get an estimation of the contamination. This approach was researched
by Carvalho et al. [5], where an algorithm was created that could accurately extract the value of
sulfonamides concentrations in a sample. However, requiring an extra piece of equipment to per-
form the processing hinders the solution’s mobility, as it would need to be either carried to the
field, or the sample be transported and later processed in a lab computer.

Mobile devices are not only becoming more prevalent [15], but also more computationally
capable. A smartphone could handle taking the picture of the reaction, and after this there were

two possible solutions:

» Upload the captured photograph to a web server, and run the already finished algorithm on
that capture. A simple approach, with potentially the best results in terms of performance,
since the performance could be improved by upgrading hardware on the servers. It also
enabled the algorithm to be used without needing any porting effort. However, this has
two major disadvantages, which are the reliance on an Internet connection and the need for
servers capable of processing the algorithms. The former is of critical importance, as there
are use cases of researchers in Africa analyzing waters in remote regions with no Internet

acCcCess.

» Use the photograph and run a new, mobile-friendly version of algorithm to detect sulfon-
amides concentration locally. This would be the most complex task, as it requires the porting
of the algorithm, coupled with the need for performance optimizations, since smartphone
hardware isn’t as powerful as a computer. Despite this, it has none of the major shortcom-
ings of the already mentioned alternative. This makes all the difference if an area or device

has connectivity issues.

Given both options, we decided to tackle running a new algorithm locally, as its advantages far
outweigh the disadvantages, it would be a fully mobile solution, and is overall a more challenging

approach.

1.2 Objectives

There were several key objectives to this research:

* Fully migrate the algorithm to a mobile-friendly language: The algorithm done by Car-
valho et al. [5] is reliant on MATLAB, which is a proprietary language that mobile devices
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cannot run. There is a version of MATLAB for Android (MATLABMobile), but it is reliant
on an Internet connection for any processing. This would not be ideal, since some of the
regions could be remote, and no Internet connection would be available; In order for the
processing to take place in the device and take advantage of the work already done, the al-
gorithm would have to be ported to a new language. This removes the limitation of working
with proprietary software, allowing the team to be more in control of the entirety of the

code;

» Use manual input to assist the algorithm: Some steps of the algorithm, like cropping the
image to just contain the sample, can be done manually. Using the touch capabilities of
smartphones, we can give the user direct control on specific parts of the algorithm, if the

automated version fails;

* A high-performance application: Despite the advances in mobile computing, it will never
be as good at performing complex operations as a laptop or a desktop. For this reason,
performance is a critical priority, so as to allow the quick analysis of multiple pictures.

Ideally, the user could also tweak the level of precision to allow for faster analysis.

1.3 Contributions

At the end of the dissertation we have:

* A fully functional standalone application;
* An adapted version of the algorithm done Carvalho et al. [5] running on an Android device;

* An interface that the user can interact with to assist the analysis process.

1.4 Document Structure

This dissertation will have the following structure:

* Chapter 2 - Literature Revision: In this section we analyze in-depth the current state of
affairs of sulfonamide analysis, as well as approach any area that might be related to this
dissertation. It is subdivided in three sections, exploring sulfonamides, the image capture

process, and the usage of colorimetry as an analysis method;

* Chapter 3 - Architecture: An analysis of the key user requirements for the application, fol-

lowed by the structural components and key design decisions to allow all the requirements;

* Chapter 4 - Analysis: An in-depth exploration into every stage of the algorithm, divided by

it’s automatic and manual counterparts, with images of the interface;
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* Chapter 5 - Performance: A list of all the necessary optimizations that were necessary to

increase stability and reduce analysis times;

* Chapter 6 - Tests: A summary of all the tests done to validate all the aspects that relate to

the application’s execution.

In this chapter we addressed what motivated this dissertation, the contributions we have made

at the end of development, and how this document is layed out.



Chapter 2

Literature Revision

To organize the literature revision, we split the research into three different components:

* Sulfonamides: What the compounds are and what are the traditional methods to detect them

in aquatic solutions;

* Image capture: Images are the input that is going to be used to obtain a result, so we will

delve into every aspect of the image capture and processing issues;

* Colorimetry as an Analysis Method: An exploration into how colorimetry can be used for
analysis, first by viewing how smartphones can help in this function, followed by colorime-
try in the chemistry and physics fields.

2.1 Sulfonamides

Appearing in 1968, sulfonamides are an important functional group of antibiotics that are very
widely used. Some of it’s common use cases revolve around the treatment of both urinary and
upper respiratory tract infections [7]. The widespread consumption of this compound is under-
standable, since it is low cost, low toxicity (i.e. well tolerated by patients), and very effective
against bacteria. However, the appeal of the consumption of antibiotics is promoting an overpre-
scription of these compounds [16]. To further complicate matters, these drugs have also been used
for the treatment of livestock. These factors cause an increase in the appearance of sulfonamides
in environmental water.

The presence of sulfonamides in water promotes the proliferation of bacteria colonies with
antibiotic-resistant genes. To measure the concentration of these compounds, there are several

methods, with the ones listed requiring a laboratory capable of performing these procedures:

» High-performance liquid chromatography tandem mass spectrometry (HPLC-MS): This
method essentially combines two different processes, where liquid chromatography sepa-
rates the individual components of the sample, and mass spectrometry analyses the mass

structure of each element [11]. This synergistic approach is extensively used, not only for
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the detection of sulfonamides, but also other classes of organic compounds composed by

multiple molecules;

* Capillary electrophoresis: The previous method can sometimes be limited by low efficiency
in the separation process, which is critical in residues analysis [14]. This method can be an
alternative to that approach, by separating the components of a solution according to their
charge and size. This is done by the use of a very small tube (capillary), in which the sample
(injector) travels until reaching a destination vial. Smaller molecules are faster than larger
ones, and in a point of the cable there is a detector (integrator or computer) that analyzes

what is passing through the capillary;

* Immunoassay: Antibodies are highly specific molecules capable of binding to a particular
target structure. In the context of the research done by Li et al. [20], an antibody was created
that could bind to the structure of sulfonamides. This area of investigation started in 2000,
when Muldoon et al. [25] produced a monoclonal antibody that detected eight sulfonamides.
More recently, Korpiméki et al. [19] produced antibodies capable of detecting different

sulfonamides under various levels of concentration;

* Gas chromatography coupled with atomic emission detection: Developed by Chiavarino
et al. [6], it can analyse nine sulfonamides by initially separating the compounds using
gas chromatography, and then using atomic emission detection for the determination of the

sulfonamides.

2.2 Image Capture

One of the major components in this dissertation is how images are used for the estimation of
sulfonamides. This chapter will delve into the image capture process and we will approach three
key factors for the analysis, namely an explanation of what colorimetry consists in, followed by
how images can be captured on smartphones, and the problems that this platform has when it

comes to color constancy in photos.

2.2.1 Colorimetry

Colorimetry is a methodology that quantifies physically the human color perception [26]. Similar
in nature to spectrophotometry, it is solely focused on the visible region of the electromagnetic
spectrum.

To perform colorimetry, a device capable of capturing the wavelengths of visible light is re-

quired. Traditional tools include:

* Tristimulus colorimeter: Also called a colorimeter, it is frequently used for display calibra-
tion. It works by analyzing the colors the screen emits using photodetectors, to establish a

display profile that can be used for the calibration [27].
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» Spectrophotometer: a device that can quantitatively measure the spectral reflectance, trans-

mittance or irradiance of a color sample [29].

Although these devices are specialized in obtaining raw wavelength data, they are geared
only for experienced users, like photographers or researchers, not the average consumer. For this
reason, any function that might require an average user (like taking a picture to analyze a wound)
becomes out of reach for most. A smartphone is a more practical, common tool, that has most of
the features required for this type of analysis, albeit with some issues. We will address the topic

of Android more thoroughly in the next subsection.

2.2.2 Android and Mobile Cameras

It’s important to mention why Android was the target operating system. This decision was made
in 2016, and 10S was not part of the scope of the project. However, we could also use frameworks
such as React Native, Ionic or others to create an application for both operating systems. This
presented a problem, as we used OpenCYV for the processing, and the SDK is either made for i0S
or Android. Since we needed to create a very high-performance application using this framework,
we decided to focus exclusively on native Android development, as developing for iOS would
require essentially doubling the amount of work, which could compromise the robustness of the
final application.

Android is one of the largest current operating systems in the world, with over 70% market
share as of June 2020. Developed by Android Inc. and later acquired by Google in 2005, it has
grown massively since it’s debut in 2007. It now amasses over 85% of the smartphone market
share, totalling over 329 million devices as of the second quarter of 2018 [22].

Current Android devices are computationally capable and equipped with a slew of features,
such as connectivity, Bluetooth, database storage, and others. For the aspects of this thesis, the
most important capability of these devices is the camera.

The first mobile camera appeared in 2000 with the J-Phone, featuring 0.11 megapixels. 6
years later, Sony released the Sony Ericsson, with a 3.2MP camera. Not only was this a lot
more powerful in terms of raw pixel count, it also featured more technologies such as image
stabilization, auto-focus and a flash.

Tech giants entered a race for megapixels, with again Sony releasing in 2009 the Sony Ericsson
S006, featuring a 16MP camera. Around that time, the smartphone industry started to boom, and
devices with large cameras were becoming more inconvenient. Size and form factor started to
carry more importance, and the previous model’s cameras were quite bulky. For these reasons,
camera development reached a standstill, since it was becoming more apparent that it was not
only raw megapixel count that determined the quality of a picture [13].

Software was coming to the front stage, with companies starting to developing more and more
features, such as HDR, panoramas, and more intelligent ways of capturing detail. Images were
being processed with more advanced methods, some even featuring Al to enhance a photograph.

This advancement in software features is a double-edged sword however, as two cameras with
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similar hardware specifications might produce completely different results. This presents a large
problem with using colorimetry, since the accuracy of the color value is of the utmost importance

for the final result.

2.2.3 Device and Lighting Variation

When the color of the image is critical to the result of the processing, it becomes vital to ensure that
different devices under the same conditions can capture a very similar photograph. Unfortunately,
this does not happen, as the vast majority of smartphones operates in the RGB color space, which
is device dependent, i.e. changes in every equipment. To address this, before using the image,
it needs to be processed from a device dependent color space like RGB, to a device independent
color space like CIE L*a*b*, CIE XYZ or sRGB.

Color constancy is the perception of the same color appearing constant even in varying light-
ing scenarios [10]. Color correcting images to a device independent color space helps achieve
constancy by approximating the hue of the colors to the real hue of the objects. There are multiple

algorithms that can transform color spaces, such as:

* Root-Polynomial Regression: Mapping from a device dependent RGB color space to a de-
vice independent XYZ space using linear color correction (LCC) can often have a high
amount of error. Polynomial color correction can have higher precision, but it is susceptible
to changes in exposure. Root-polynomial regression was created to solve this problem. It is
an extension of LCC with low complexity that enhances color correction performance [9].

An example of the color correction method can be seen in figure 2.1

» Simulated Annealing: Standard camera calibrations use a color checker, which is a profes-
sional grade equipment featuring color patches, where the values are known beforehand by
the manufacturer. This allows the application of a transformation matrix from each patch to
its corresponding known value in the XYZ color space. A common methodology to do this
is by using a least-squares regression, but there is an error associated caused by algorithm
limitations and CCD dark currents (when unwanted free electrons are generated in a charged

coupled device of a camera due to thermal energy) [30].

Figure 2.1: a) Photo captured with SRGB sensors, b) Photo captured without sSRGB sensors, but
color corrected to SRGB using polynomial model , ¢) Same color correction applied after intensity
of light increase [9].
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Machine learning was an avenue of exploration for color constancy. Bianco et al. [4] used a
Convolutional Neural Network (CNN) to estimate the scene illumination using as input a RAW
image. It uses a color checker to establish the ground truth, and utilizing a CNN combining feature
learning and regression the results obtained were better than every state-of-the-art technique at the
time. Around the same time, Lou et al. [23] was also exploring Al in the same field, more
specifically deep learning neural networks. By approaching color constancy as a DNN-based
regression and using trained datasets with over a million images, they managed to outperform

state-of-the-art implementations by 9%, while maintaining good performance throughout.

Dang et al. [8] also highlighted the importance of color correcting images when used for health
purposes, more specifically a photoplethysmogram (PPG). This operation is used for detecting
blood volume changes through illuminating the skin and measuring changes in light absorption
[2]. Using different devices for capturing the photo results in errors that reduce the precision of the
measurements. For this they developed a color correction algorithm using a least square estimation

based method, and with this reduced the mean and standard deviation differences between devices.

In the context of sulfonamide analysis using digital image colorimetry, Carvalho et al. [5]
compared the efficiency of different color correction methods. For all tests, they used a color
checker as mentioned in the simulated annealing method. The current implementation of their

algorithm tested out 5 different methodologies:

» Weighted Gray Edge: Different edge types exist in images: shadows, highlights, materials,
etc. These different edges contribute differently to illuminant estimation. This algorithm
classifies edges based on photometric properties, and then evaluates the edge-based color
constancy according to the edge types. The research showed that using an iterative weighted
Gray-Edge based on based on highlights reduces the median error by about 25%. In an
uncontrolled scenario, it can offer improvements of up to 11% against regular edge-based

color constancy [12].

¢ [lluminant Estimation Using White Patch (White): Utilizes a white patch, and estimates the
illuminant based on the difference of the value of the the patch to absolute white, since any

deviation is caused by illumination.

* [lluminant Estimation Using Achromatic Patches (Neutral): Similar to the previous method,

but uses the average of a 6 patch color set.

* Color Correction Matrix RGB to RGB: Used the 24 colors provided in a color checker,
and compares the colors to the reference values provided by the manufacturer. Uses a least

square regression between the two sets of values.

* Color Correction Matrix RGB to XYZ: Similar to the previous method, but maps to the
XYZ color space.
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Comparisons were done between the standard deviations of all the previous methodologies in
each color space, and in over 90% of them, the color correction matrix from RGB to XYZ yielded

the best results.

2.3 Colorimetry as an Analysis Method

We will divide the usage of colorimetry in analysis in two components, namely how smartphones

can be used for this task, followed by colorimetry in chemistry.

2.3.1 Colorimetry Using Smartphones

One of the fields that can be most improved with the introduction of colorimetry using smart-
phones is Medicine. Traditional medical equipment, such as X-Ray machines or spirometers are
expensive and complex, and because of this, are only used by trained professionals in clinical
environments [1]. These limitations can increase the waiting time for patients, which could be
critical in an early diagnosis.

Modern smartphones have many sensors that can be useful in assisting a medical diagnosis,
such as microphones to record user input, heart beat monitors, or cameras. Due to the context of
this dissertation, we will focus only on the latter.

One example of the camera being used in medicine is for the analysis of diabetes wound
healing. In the US, 7.8% of the population have diabetes, and over 5 million patients have chronic
wounds that require frequent visits to the doctor. Agu et al. [1] designed an application called
Sugar with the intention of helping the user track the progress of their wounds more easily. To

achieve this, the application had the following execution flow:

1. The patient captures a photograph of the wound;
2. The photograph is decompressed;
3. Algorithm calculates wound boundaries through set segmentation;

4. Relative size of red, yellow and black tissues within the wound are measured, and these

areas outline the current progress of the wound healing.

Another example of a smartphone camera using colorimetry for a medical situation was the
analysis of tongue images. Wang et al. [28] researched in the area of a traditional chinese medicine,
where tongue images can indicate physiological differences on the body. The researchers faced
the same adversities that we mentioned previously, namely the device variation arising from the
RGB color space. Photographs captured in one device might contain different color values from
another photograph taken in the same environment with another smartphone. Traditional methods
to ensure color constancy like polynomial regression were not very successful due to the restricted
range of colors of the tongue, so they needed to be further optimized. Firstly, they chose the target

device independent color space. The decision process obeyed the following criteria:
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* It had to be well endorsed by companies, since it needed to be easily stored and exchanged;
* Should be RGB-like to display images on monitors without any extra processing;

¢ Needs to have a constant relation with CIE L*a*b* to allow calculation of color differences.

The color space that best fit these criteria was SRGB. The color correction algorithm also uti-
lizes a color checker to calibrate the device for the scenario of the tongue images. After the algo-
rithm was developed and applied, the researchers reached a difference of under 0.085% compared
to the real value, with a high adaptability to different tongues and varying lighting conditions.

Another example can is the work of Jarujamrus et al. [18] for the analysis of mercury in water.
A small amount of this element in water can produce massive damages to the entire ecosystem
that depends on it. For this reason, they developed a way to use smartphones and colorimetry to
assess the level of mercury contamination in water.

Mercury does not have a visible representation, so in order to analyze a sample using colorime-
try, there had to be a way to visually check the concentration. For this they created a reaction that
produced a color that changed intensity according to the amount of mercury in the sample. To
achieve this they used a microfluidic paper-based analytical device (UPAD) that was coated with
synthetic silver nanoparticles (AgNPs). These particles disappeared from a deep yellow to a fainter
yellow as the concentration of mercury increased.

Previous iterations of the prototype built were not very practical, as the methodology required
a digital camera, with an optimized control light box. After the photo was taken, an external
software needed to be run, and since the camera could not perform any calculations, this operation
was done in a computer. Another limitation was the fact that it was not easy for an unskilled user
to correctly perform the operation. All of this meant that this methodology was not available for
on-site usage.

To improve upon the previous version, they opted to use a smartphone and the optimized
light box. A smartphone solved easily two of the previous problems: it had a built-in camera with
several features, including flash, (one of the method’s requirements), and the ability to process cal-
culations locally. Before this newer prototype, determining the concentration of mercury was not
an easy task. It required complex laboratory analysis, and it required the sample to be transported,
a problem similar to sulfonamide analysis.

The researchers concluded that this prototype could be used as a viable alternative for the task.
It was fast, simple, with an instant report on the screen of the device, and most importantly, offered
comparable accuracy to a laboratory analysis. Another advantage was that it was easy enough for

an unskilled user to get reliable results.

2.3.2 Colorimetry in Chemistry

In this subsection we will delve into how colorimetry can be used for analysis in chemistry. For
this, the most relevant work in the context of this dissertation was the algorithm done by Carvalho

et al. [S]. The goal of their work was to research a more inexpensive way to assess concentration



12 Literature Revision

of sulfonamides in water samples, as traditional methodologies were impractical and resource ex-
pensive since as they required a sample to be sent to the laboratory to be analyzed. This increased
overhead to obtain results, diminishing efficiency. To solve this problem, they explored using
digital image colorimetry to extract the result from a sample.

For their new method, a chemical reagent was required (p-dimethylaminocinnamaldehyde),
but the process was streamlined, and did not require any complex laboratory equipment for the
analysis process. To analyze the reaction, all that was necessary was a smartphone camera to take
a picture of the reaction, and a computer to run the algorithm.

The algorithm needed to be fully automatable, with the full sequence of events of the imple-

mentation bwing as follows:

1. Acquire photo: To test the algorithm, many pictures were taken, varying in sulfonamide
concentration, and device that captured them. To make the concentration vary, samples
were prepared in a laboratory to ensure the values of the concentration were known before-
hand. This allowed the results of the analysis to be directly compared to the real values.
Photographs were taken with different smartphones to determine the impact that device

variation had on the final results;

2. Segmentation: Since the algorithm was completely automatic, it needed to detect where
the color checker and the sample were in the picture. The segmentation of each object is

done individually. The objects that need to be identified are as follows:

(a) Color checker: Before we identify the individual patches, it is necessary to first locate
the color checker. For this research, an x-rite ColorChecker Passport was used, that
contained 24 patches, with a black frame. This last characteristic is important, since
after grey-scaling the image, a multi-level Otsu thresholding is used that will identify
the darkest contours in the image. The largest found contour is the color checker. After
that, knowing the orientation of the color checker, the selection is split in two and the
side of the object containing the color patches is selected. An overview of the process

can be seen in figure 2.2.

(b) Patches: After having selected the region of the image containing the patches, it is
necessary to select the center of all the individual squares, so a new Otsu thresholding
operation is performed. However, it is difficult to binarise the image in a way that
selects all the patches. For this reason, since we know that the color checker contains
a grid of 6 by 4 patches, the position of the missing pieces in the grid are estimated. A

visual representation of this segmentation process can be seen in figure 2.3.

To mitigate the possibility of the selected pixel being an outlier due to some artifact, a
bounding box is created for each patch, with the identified point as its center. From this
bounding box, the median value is selected. The visual representation of the results

can be seen in figure 2.4
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Figure 2.2: ColorChecker process [5].
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Figure 2.3: Patches Center Identification [5].

(c) Disk: Having identified the color checker, the only element remaining is the disk. This
is a more complex object to binarise, because in the case of low concentration the color
is not intense enough to be easily observed in a histogram. To solve this, the image
is grey-scaled, normalized between 0 and 1, and then equalised using the histogram.
After this process, another Otsu thresholding is done, and this results in the outline of

the selection. With this, the median of all values is obtained, and the color is extracted.

The process can be seen in figure 2.5.

3. Color Correction: With the information of the color patches, they tested various color

Figure 2.4: Patches Bounding box [5].
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Figure 2.5: Disk identification process [5].

correction algorithms as mentioned before. The results indicated that the best precision was
achieved when using the color checker to map from the RGB color space to the XYZ color

space, which is device independent.

An important factor for the calculus of the concentration is the relation between the concen-
tration of sulfonamides and the color of the reaction in all color spaces and color components.
The results showed that using the Hue color component provides the best mapping between color
property to the concentration.

In this section we analysed the current literature on sulfonamide detection, colorimetry and
setbacks of using smartphone cameras for colorimetry tasks. We also explored the basis for this
project, which is the work done by Carvalho et al. [5]. In the following chapter we will analyse

the overall architecture and key design decisions for the application.



Chapter 3

Architecture

Before delving deep into the design decisions, it’s important to know what is expected of the
application in terms of use cases and requirements. By always adhering to what was required, the

application maximizes it’s usability for the end user.

3.1 Requirements

The key advantage of this application is that it enables the analysis of a sample on the field, without
requiring any specific equipment for the task. With this use case in mind, several requirements

arise. Several functional requirements were identified in the application planning, namely:

» The user needs to be able to load previously taken pictures, or take pictures from within the

application to launch an analysis;
* The user needs to be able to store samples, so that they could analyse them later;

* The user can intervene directly in the algorithm, with a manual implementation for each

step, so a valid estimation could be achieved, even if the automatic version fails;

* The user can select a specific number of patches for the color checker, as well as utilizing a
revised 13 patch-set done by Carvalho et al., in order to have full control over the patches

used;

* The user can have select the level of precision of the algorithm, to allow control over the

time it takes to get an analysis.

For the first requirement, in order to begin analyzing a sample, the user would have to input
some image, either by loading an already taken picture, or by launching the phone’s camera appli-
cation and capturing a photo. After that, the flow of information converges to the analysis setup
screen. The interface for the analysis setup screen is in figure 3.1.

In the picture, the analysis setup interface is shown, where the user views the image that needs

to be stored, and is required to provide a name to later help identify the sample. If the user either

15
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Sulfonamides Analysis Application
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Figure 3.1: Sample Menu Screen.

selects to continue the analysis, or analyze later, the image is stored in the application’s external
memory, saving the date of the upload as metadata. This storage is required to not only allow the
user to continue with the tests without immediately analyzing, but also to re-analyse a picture if a

mistake was made. With this system in place, the second requirement was handled.

Another requirement that arose in the middle of development was the possibility of utilizing
a specific set of color patches of the checker for the color correction matrix. The color patches
are all the individual squares on the right side of the color checker. The original algorithm used
exclusively all 24 patches for the color correction matrix, but more recently Carvalho et al. [5]
concluded that using a specific subset of 13 patches obtained better results. As this requirement
appeared mid-development, the color patch stage had to be reworked to enable this feature, while
demonstrating clearly to the user which were the patches that were being used. There are three
different patch sets to choose from: the full 24 color patch set, the revised 13 patch set, and a
custom setting, in which the user could select whichever patches they wanted. This configuration

is stored persistently.

The final requirement was related to performance, as we always wanted to go above and be-
yond the minimum requirements, and one idea that was established to improve the usability of the
application was a customizable level of precision. For this, we developed two main optimizations
that can be controlled, namely the color checker finding precision and the overall quality. We will
go in-depth into what these two options do in the performance chapter. However, in order for the
user to tweak all the mentioned options, we needed to have all of them in a settings menu, which

can be seen in the figure 3.2.
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Figure 3.2: Settings Menu Screen.

3.2 Key Architecture Decision Decisions

The first major decision on creating this mobile application was the selection of the target devices.
Our goal was to support the lowest possible Android version that didn’t compromise the require-
ments for the app, which ended up being version 4.0.3. At the time of writing, it is estimated that
all Android devices on the market run a version of Android equal or higher than 4.0.3.

The second major component regarding the architecture is the framework that was used to port
the algorithm itself. Since MATLAB cannot run on Android devices, a capable alternative had to
be found. For this purpose we investigated what image processing frameworks were available for
Android that also allowed for an extremely high level of performance. We selected OpenCV for

the following reasons:

* It is well supported, with a specific build for Android;

* It is overall decently documented, expediting the development process;

e It is the most comprehensive alternative to MATLAB that could run on Android device;
» Allows the code to be run without requiring any Internet connection;

* It is open-source and does not require any type of licenses;

After deciding on the framework to use, we began designing the structure of the application.
From the start of the project, one of the major avenues for improvement was the utilization of
user input as a backup plan in case the automatic detection fails in any step. This would boost the
robustness of the application, allowing the extraction of results from a photo, even if it couldn’t
be done automatically. The automatic process could fail for various reasons, but the most reliably
reproducible error is when the background of the photo has high contrast elements that influence

the thresholding results.
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Figure 3.3: Example image.

In order to fully realize the feature of using manual intervention, the architecture of the ap-
plication had to take into account the possibility of incorrect automatic results, remaining flexible
enough to allow obtaining the expected results manually. To achieve this, a chain of inputs and
expected outputs for each stage was designed. This enables the user to intervene, regardless of
which step the algorithm is in, and then seamlessly transition to the next stage, which will be per-
formed automatically again. This shift back from manual to automatic increases accuracy, while
prioritizing speed by removing the human input bottleneck whenever possible.

Before going into the details of the architecture, it’s important to have a visual example of
the types of images the algorithm will work on. Figure 3.3 showcases a typical photo, in which
the color checker is located left of the disk, with the color patches on the right side. With this
information in mind, it is easier to understand the steps to obtain a concentration result.

One of the aspects of the work done by Carvalho et al. [5] that was very advantageous to the

architecture design was that it clearly outlined the process in five key steps:

1. Detection of the Color Checker: Identifies the corners of the part of the color checker that
contains the color patches;

2. Detection of the Patches: Identifies all the color patches on the color checker;

3. Color Correction: Creates a color correction matrix that will be used in fixing the lighting

variations on the images;
4. Detection of the Disk: Detects the disk in which the sample is located;

5. Detection of the Sample: Identifies the parts of the disk that contain the sample after the

reaction.

Since these steps are clearly separated, it allowed the entire process to be done sequentially,

and with a clear visual feedback to the user if the step has gone wrong. Knowing if a step went
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wrong, the user can intervene and manually correct the results, and progress to the next step. This
can be visually represented by the flowchart in figure 3.4.
After outlining the key stages of the algorithm, we now need to approach the specific informa-

tion and data structures flow that make using manual input possible.

3.3 Information Flow

The inputs and outputs of each stage are chained to allow the user to potentially intervene in only
one step, without breaking the next automated steps. To allow this we needed to establish a clear

flow of information and data structures, which goes as follows:

1. Detection of the Color Checker:
* Input: Base image;
* Qutput: An array of points for each corner;

2. Detection of the Patches:

* Input: Cropped image of the right side of the color Checker using previous step’s
points;

* Qutput: All the color patches in the grid;
3. Color Correction:

* Input: All the color patches found in the previous step;

e Qutput: Color correction matrix;
4. Detection of the Disk:

* Input: Base image and corners of color checker;

e Qutput: Bounding box for disk;
5. Detection of the sample:

* Input: Color corrected image and disk bounding box;

* Output: Median color of the sample;

In this chapter we explained the key design decisions in terms of data structure and flow of
information to allow meeting the established requirements. With a strong knowledge of the overall
architecture and design process of the application, we will explore comprehensively into how the
algorithm performs each step, and what alterations had to be done from the original MATLAB code

in the following chapter.
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Figure 3.4: Flowchart of the application.
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Chapter 4
Analysis

In this chapter we will go through the process of porting each of the stages of the algorithm, as
well as the challenges we had to overcome on each of them. We will first explore the automatic
version of each step, followed by the manual version, since the latter was far simpler to implement,
and is easier to explain.

Throughout this chapter, to visually demonstrate what the user sees on each stage there is an

accompanying figure, and they all follow the same logic:

* On the top, there is the visual result of each step;

* Below the image, there is a short description to guide the user that varies from stage to stage,

and whether it is in automatic or manual mode;

* Below that, there are button prompts to control whether to move forward or backward in the

analysis process.

Let’s start with the first step, the color checker detection.

4.1 Color Checker Detection

The first step to be done is the identification of the portion of the color checker containing the
patches. In terms of raw complexity, this phase was the most challenging to complete, since many

helper functions that were used later in the the algorithm had to be created in this stage.

4.1.1 Automatic Color Checker Detection

The first operation to do is to remove possible fireflies or small noise in the raw image. For this
effect, the original MATLAB code used a function that OpenCV does not have, namely medfilt2.
Situations of missing functions ended up being somewhat common, and in those cases we looked
at what was the expected outcome of the desired operation, and either manually implemented a

function that served a similar purpose, or used a close alternative. We will mention whenever we
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hit these obstacles throughout this chapter. In this case, a very slight blur did the intended purpose
of removing fireflies well (and fast) enough to be acceptable.

After blurring the image came one of the biggest hurdles. As of writing this thesis, OpenCV
does not support multi-level Otsu thresholds. In this function, an Otsu threshold is performed
n-times through histogram analysis. There are versions of this algorithm for OpenCV, but these
are done for the C++ version of OpenCV, which is not what we are using. The Java version of
OpenCV for Android came with a prohibitively high impact to performance when iterating through
matrices with thousands of elements, so a new solution had to be devised. Throughout the original
MATLAB code, there are several usages of this type of Otsu threshold, but all of them shared
two characteristics: they were all three leveled thresholds, and the extracted result was always
the lowest values. Taking this into account, we created a several step system to achieve a similar

result, while always using the native libraries for maximum performance:

1. Perform a regular Otsu threshold, generating a binary image for the center threshold;

2. Store the values in two masks, one being the regular binary image (for the values above the
threshold) and an inverted binary image (so that the values below the threshold appear as

white);

3. Get the maximum value of the image below the threshold, which was an easy way to acquire
the threshold value;

4. Create a new image containing a filled image with the values above the threshold with the

value acquired in the previous step;

5. Create a new image consisting of the multiplication the original image with the inverted
mask. This image will be filled with black above the threshold and the original image

outside of those zones;

6. Do a bitwise OR operation with the two images. This generates the final image, containing

the original image below the threshold, with the rest filled with the threshold value;

7. Do a new Otsu threshold with the new image. This will be the second tier of the multi-level

Otsu, and the values below the new threshold will be the results we are looking after.

This multi-level Otsu, despite being more taxing to performance compared to a single Otsu
threshold, is still fast enough to be used with requiring too much time, while gaining robustness
to different images under different lighting conditions. The increase in reliability is due to the fact
that the color checker frame is very close to black, which makes it easy to identify under normal
thresholds. A multi-level Otsu is beneficial when there are other dark elements in the image that
may be lighter, but are caught in the threshold, which lead to incorrect results.

After performing the threshold, the patches inside the color checker will be excluded from the
selection due to their wide range of values. MATLAB has a function to fill the holes in an image,
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Figure 4.1: OpenCV Fill Holes Operation [24].

but OpenCV does not have a standalone function reserved solely for this purpose. Fortunately, an
alternative was not hard to derive, while still maintaining a very high level of performance.

Initially, a simple flood fill from the first pixel, followed by an inversion would generate the
mask correctly and when performing a bitwise OR with the initial threshold, the holes were filled
correctly. However, there is an edge case in which the first pixel is already white, which would
render the whole operation useless. To combat this, we tweaked the algorithm, so that the flood
fill would be performed by every pixel in the borders of the image, if the pixel in question was set
to black. This ensures the best results, and despite having a small performance penalty associated
with it, it’s negligible since the flood fill operation is not performed too many times. A visual
representation of the process can be seen in the figure 4.1, where the left image is the base image,
followed by the original threshold. After that, the a new image is created based on the threshold,
using a flood fill on the corners, is later inverted, and then added with a bitwise OR with the original
threshold. This produces the same results as MATLAB’s implementantion [24].

At this point the thresholds are identified, so what remains is to find the largest contour in the
image. Although some tweaks had to be done, the overall process is quite straightforward, since
OpenCV natively supports a function to find contours. We iterate through all the found contours,
and return the bounding rectangle for the one with largest area. From this rectangle, the points
are easily found, and we have the output for this step completed. The interface can be seen in the
figure 4.2. All the prompts for the automatic stage are questions to check whether the detection
went smoothly. If the user confirms that everything is correct, the algorithm moves on to the next

stage, otherwise the application switches to the manual version of the current step.

4.1.2 Manual Color Checker Detection

The manual implementation of the color checker detection is not complex, since the only inputs
the user needs to provide is the four corners. This is done via touch input, in which the user picks
in order the four corners. After four points have been selected, the user can grab each one of
the four points, and drag the position until all four points align with the corners. Although this
technique worked well when testing with an emulator, when using an actual device, it was clear
that dragging the point to where the user was touching was not practical, since the precise location
was being occluded by the finger. For this reason we altered slightly the input scheme, and when
the user clicks anywhere on the screen, the nearest point will be selected, and the difference from
the current input is used to alter the point’s position. This allows for a much higher degree of

precision, while simultaneously increasing the user comfort when interacting in this mode. The
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Was the colour checker correctly identified?

PREVIOUS NO YES

Figure 4.2: Automatic Color Checker Detection.

interface of this step can be seen in figure 4.3. The green handles represent the ways the user can

interact with the selection, and these remain consistent throughout the entire application.

Since the crop for the next stage requires the points to be ordered, instead of forcing the user

Click on the four corners of the colour checker.

PREVIOUS ADVANCE

Figure 4.3: Manual Color Checker Detection.
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to comply to a certain order to the selection, we give total freedom, and later sort the points to
conform to the order the input required in the next step. For this we created a helper function that
will be reused throughout the project whenever an array of points is generated so that the all points
are ordered the same way, no matter the step nor type of interaction. To further assist the user,
even if the points are selected rather loosely, without closely adhering to the color checker shape,
the following stages are resilient enough to handle high levels of warping, as we will see later.

Another caveat that needs to be addressed is the fact the points that the user has selected in
the device space, meaning that the points that appear on the screen will not match the points when
used on the image. To work around this, we created a function that translates the points from any
device to the image that is represented on the screen, regardless of smartphone, screen orientation
or image characteristics. This function is reused for all the functions that require user input as
well.

After translating and sorting the points, the output for this step is in the correct format for the

color patches detection.

4.2 Color Patches Identification

In this step, the points from the color checker are used to perform a crop, and the cropped image is
the input that both the automatic and manual process require. Since the crop may not necessarily
be a perfect rectangular shape, warping is done to make sure that the entire inside crop results
in a new image with a fixed width and height. The latter values are calculated by measuring the

distance between the top left and top right corners, and top left and bottom left corners respectively.

4.2.1 Automatic Color Patches Identification

After cropping the image, we need to identify all the patches inside. An Otsu threshold is applied
to mask out the color checker itself, but it also masks some patches due to their low values. Despite
this, it will have picked the necessary amount to allow us to mathematically interpolate the rest.
Before discovering the hidden patches we first store the ones we did find after performing the
threshold. For this, we check to see if the width or height of each contour is of an appropriate
size taking into consideration the overall size of the cropped image. If they fall within acceptable
range, we save that contour. After that we need to check the real position in the grid of patches for
each found patch. In the original MATLAB code, this was done using complex array manipulation
similar to what Python allows. Since this was not an option for Java, we devised a new way of
performing this operation. Firstly, we create an array filled with empty rectangles representing
the grid of patches, then we iterate through each patch we discovered in the previous stage, and
check what would we be their appropriate position in the grid in terms of X and Y positions. After
that, the patch is added to the array of rectangles in the correct position. After completing this
process, we now have a more complete grid with a few known elements. The empty rectangles are
interpolated based on average X value per column and average Y value per row. A finished result

can be seen in figure 4.4.
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Figure 4.4: Automatic Patches Detection.

With a grid of rectangles, we now extract the mean value for each rectangle, which differs from
the original algorithm that uses the median. This is done since our custom median implementation
we will explain in the sample subsection requires iterating through every value in a matrix, and
the matrices in this step are too large to do that efficiently. After obtaining the mean we then store
the colors in a list, which is the necessary output for the next step.

As we stated before, this stage can handle some, though not too much warping, which can
happen if the previous stage was manually and loosely done. To correct this, a new selection
could be done in the previous step, or the user could manually intervene, as we will see in the next

subsection.

4.2.2 Manual Color Patches Identification

If the automatic detection fails, and the user wants to manually intervene, the user interface will
change, showing to the user a grid of rectangles with a bounding green rectangle. The user then
drags the nearest selected point until the grid aligns well with the patches grid. When that happens,
the user can select advance, and the application will calculate the averages of each grid rectangle,
and store them in the required list of colors. The method of interacting with the corner handles is
similar to the previous step, to maintain consistency in user input while also providing a forgiving
experience, with a precise alignment being easy to perform.

After selecting the grid, when the user attempts to advance to the next stage, some further
processing is done. Firstly, the four corners are translated to the image. Next, unlike the automatic

version, no complex interpolation is required, since the user selected the location of all the patches.
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Adjust the corners until the points in the grid are
in the middle of the patches

PREVIOUS ADVANCE

Figure 4.5: Manual Patches Detection.

We used the position of each patch, and obtained the mean value for each patch. We stored the
results in the list of colors that will be used later for the color correction matrix.

An example of the finished user interface design can be seen in figure 4.5.

One advantage of this method, is that even in very extreme warping cases, the user can still
correctly get a decent result, since the user can still alter the position of off-screen handles. A

compilation of several cases can be seen in figure 4.6.

4.3 Disk Detection

One of the requirements of the original MATLAB code is that the disk containing the sample be
placed right besides the color checker. With this assumption in mind, the algorithm takes into

account the bounding box of the color checker detection, and crops the region right next to it.

Figure 4.6: Warping with Manual Patches Detection.
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This image crop is the basis for the disk detection step, as it is inside this new image where the

algorithm will attempt to discover the disk.

4.3.1 Automatic Disk Detection

After cropping the image to the correct region, the first step is to perform a Canny edge detection to
discover all the possible contours within the crop. The original code performs this edge detection
in all three channels, and then combines the results of each Canny into a single image. To allow
this behavior, a new function was created to extract individual channels from an array, as well
as creating a new function to later merge them back into another image. The threshold values
used for the Canny edge detection are the same as in the original MATLAB code, which obtained
good results at identifying the correct regions. The resulting contours are simple lines, which
may not be connected. To discover the edge surrounding the disk, it is first necessary to dilate the
image, expanding the edges and thus connecting shapes. After multiple dilations, the main shape is
assumed to be connected. However, the shape is now too large, but before eroding away the shape,
it’s important first to make sure that newly connected shapes do not lose their connection, so we
first fill the image’s holes utilizing the function that we previously mentioned in the color checker
detection. After filling the empty spaces, we can safely erode, to get a closer approximation of the
actual shape of the disk.

After all the preprocessing of edges, the original MATLAB code chose the contour with the
largest area, which worked well since the process was fully automated. However, when testing it
was revealed that if the user manually selected the color checker contours, they normally did not
find the exact edges of the object, selecting only an inner region. This imprecision is harmless
in that stage, but the first crop in this stage is dependent on the positioning found for the color
checker. Since the color checker frame generates such a high contrast with the background, and
is bigger than the disk, the algorithm usually selected the object’s contour. To work around this
limitation, extra heuristics were created to determine more accurately what is the correct contour.
This included checking whether the bounds of the contour obeyed a specific set of restrictions,
which resulted in a more stable algorithm, without requiring extra care from the user in previous
stages.

With the correct contour identified, a bounding box was created, outlining the position of the
disk in the image. This set of points is the output of the disk detection, that will feed into the final
stage of the algorithm. An example of the interface can be seen in figure 4.7.

4.3.2 Manual Disk Detection

The manual implementation uses the same image as the automatic version, but the user interaction
is slightly different compared to other steps. After testing, precisely selecting four corners in such
a small portion of the image was too much to be done in a comfortable way. On top of that, the
output for this stage was a perfect rectangle, so it was much simpler to finely control just two

diagonally opposed points.
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Figure 4.7: Automatic Disk Detection.

After multiple iterations, we ended with the user first drag selecting the overall bounding box.
If the selected region is not perfect, the user can then fine-tune the selection by dragging either the
top-left or bottom-right handle. As before, the user does not need to touch the point itself, since
the closest point will be automatically selected, and only the motion is used to change the point’s
position. When performing this, the rectangle will be resized, without warping the shape. When
tested, this proved to be an efficient solution, capable of delivering fast and precise results.

The selected bounding box will the input to the final stage of the algorithm, and an example

of the finished user interface can be seen in figure 4.8.

4.4 Sample Detection

For the final stage of the analysis process, the algorithm will use the color patches discovered in

the second stage and the bounding box found in the previous stage to crop a new image. This will

Figure 4.8: Manual Disk Detection.
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be the starter input for only the automatic version, as the manual mode requires a special input that

will be explained in that subsection.

4.4.1 Automatic Sample Detection

After cropping, the newly created image contains the disk, with the sample being a smaller region
inside. To discover the latter area, we do the same steps as the original MATLAB code, we extract
the blue channel of the image, and perform a simple Otsu threshold on that channel. We then
identify the largest contour available, and create a new temporary image that is cropped to that

contour.

To showcase the results, we needed to finally correct the colors of the image, and store it in
a new variable. This is what will be used to show the results. Unfortunately, the color correction
process was not straightforward. Despite the original algorithm taking only about 20 lines of code,
one key assumption differs from MATLAB to OpenCV. In the original algorithm, a color matrix
is converted from one color space to the XYZ color space using the function rgb2xyz. It would
be straightforward to assume that the original color space was RGB, when it is in fact SRGB. In
OpenCV, the RGB to XYZ conversion is done as the name suggests, and no SRGB variant exists.
Due to this, we had to create our own conversion function that was able to convert from sRGB to
XYZ and back. Despite not being complex operations by themselves since they are just matrices
multiplications [21], there was one major caveat. The XYZ to sSRGB operation was different
depending on the values of the individual pixel. As we mentioned before, iterating through every
value of a larger matrix is prohibitively expensive. For this reason, we needed to come up with
a new solution, that still respected the conversion properties while also prioritizing efficiency. In
the XYZ to sRGB conversion process, the operation changed whether the pixel channel value was
higher than a certain threshold. This provided the necessary clue to solving the puzzle, as two
images were created through standard binary thresholds, one for the values above the threshold,
and the other for the values below. We then applied the different calculations to each image, and
then combined the result taking into consideration the masks. The result of the color correction

can be seen in figure 4.9.

Figure 4.9: Color corrected image.
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After correcting the colors, we intended to diverge from the original algorithm, as it further
cropped the image to center the selection even more. This lead to the selection not fitting the shape
of the sample, as it selected a smaller subset of pixels. Since we wanted to show clearly to the
user the contour that was used to extract the color value, initially we did not crop the image fur-
ther. In initial tests, the results were promising, as the full contour was being correctly identified.
However, the results were only positive when there was a high sulfonamides concentration, which
increased the contrast between the sample and the disk. When testing with a sample without any
antibiotics presence, the contrast was so low that the threshold was unable to detect the sample
region correctly. For this reason, we ultimately had to opt for the same workaround as Carvalho et
al. [5], and crop the image further. This presented a larger problem related to the presentation of
the results. Since the original algorithm was never meant to require any user input, the data did not
need to be presented in a comprehensible format. This was not the case for this application, and if
a clear contour was not presented, the user might be left confused as to what was actually used for
the value. Initially we simply showed a final masked image, with black and color values being the
colors that were used for obtain the median. This proved to be too unclear, as the user could not
tell what part of the picture was used for the crop, and from where did those colors come from.
We ended up with a solution that does not show the user any contour information, as it would
only cause confusion, but instead shows the color value that was extracted, side-by-side with the
original corrected image. If the two values are extremely similar, then the user knows the value
that was selected is right, and if not, direct user intervention is necessary. Should the color be well

selected, this is the last output required before presenting the results.
The representation of the final screen can be seen in figure 4.10.

Despite the presentation side being handled, the algorithm was not yet complete, as we still

s the right colour very similar to the center of
the sample?

PREVIOUS NO YES

Figure 4.10: Automatic Sample Detection.
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need to extract the color value. Continuing the algorithm with the more aggressively cropped
image, we began to identify the pixels that might belong the reaction and not the disk. For this, we
followed the original code by Carvalho et al. [5] and performed two steps to spread the values of
the image. Firstly, we identified the minimum and maximum values in the image, and shifted the
minimum values to 0, and the maximum values to 1. This spreads the values evenly throughout
the entire range. After that, a histogram equalization was done to enhance the contrast.

After altering the contrast of the image, we performed the custom multi-level Otsu threshold
we developed for the color checker identification to extract a threshold containing pixels inside the
sample region. This threshold, after inversion, is the region of the image that contains the sample
pixels, and will be multiplied with the color corrected image.

To extract the concentration result, we had to calculate the median of the values in the mask.
Unfortunately, the OpenCV build we used did not natively contain this function, so we had to
create a custom median function that returned the center value after ordering, while discarding all
the values in the array that were pure black, as these represented the mask. With the median value

obtained, we have the input for the final part of algorithm.

4.4.2 Manual Sample Detection

Unlike the other manual interventions, this step requires an input obtained directly from the au-
tomatic version. It would be unnecessary, more taxing and time-consuming to color correct the
cropped image again, so the image that was created in the automatic version is used. This is what
the user will see on the left side of the screen as the base image, similarly to before. On the right
screen, there will be another panel, showing the currently found color. A new crosshair will appear
on the center of the left side, which will be the user’s way of input. By dragging around the screen,
the crosshair will move according to the motion, and the new color will be the average of a small
square around the currently selected point. The user will then hover the crosshair to the center of

the sample, and advance. An image of the activity is seen in figure 4.11.

Drag to change the center of the arrow, make
the arrow point to the center of the sample

PREVIOUS ADVANCE

Figure 4.11: Manual Sample Detection.
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4.4.3 Extracting the Result

Although the algorithm itself is complete, we still did not extrapolate the concentration value from
the metrics we obtained. For this, Carvalho et al. [5] determined that the color property that could
be most accurately used to extract the concentration was the Hue. Similarly to before, we had to
develop our own function that could obtain the Hue value from an sRGB color.

After this, we needed to use an equation that mapped out the Hue values value to a concen-
tration. This presented a problem, as each phone had a different curve that more accurately fit
the tests. This meant that we could potentially get worse results if we used different phones to
capture the images. For this dissertation, we created curves tailored for only one phone, since
validating the results of different photos captured with various phones was outside of the scope of
this dissertation.

Figure 4.12 shows an image of the final activity screen containing the measured result that was
achieved by inserting the extracted median value into the created curve.

In this chapter we talked about the automatic and manual implementation of every stage of the
algorithm. We will address next the performance optimization pass made to ensure that even low-

end phones could get approximate results, without sacrificing too much time or responsiveness.

Measured Concentration
Value:

2.98 ug/L

DISCARD SAVE RESULTS

Figure 4.12: Results Screen.
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Chapter 5

Performance

From the beginning of the development, performance was a clear priority, as our goal was to have
the application running smoothly without requiring too much time from the user to obtain a result.
Another nice-to-have was the possibility of having a quality slider to have some manual control if
the maximum precision mode is too taxing. In this chapter, we will address what limitations we

had to overcome, and compromises that had to be established to ensure a great user experience.

5.1 Memory Constraints

To stress test the performance of this application, we tested on a two phones with very different
specifications, the weakest of them being a Motorola G3 of 2015 with 1GB of RAM memory. In
2017, two of the most common RAM configurations were 1 and 2GB , and since then this number
keeps on increasing, with some phones even going to 12GB of RAM. For this dissertation, we
believed that 1GB was the correct lowest possible target. With this small budget, we set out to
optimize the application.

The major limiting factor when it comes to memory management was the size of the images.
The pictures that were taken that we used for testing had a very high resolution, of up to 4128 by
3096 pixels, which needed to be stored in matrices that contained all three channels. This means
that in a worst case scenario, a single matrix containing an image had to store over 38 million
individual elements. On top of that, we frequently had to use multiple temporary matrices after
applying some sort of processing. Despite OpenCV managing to do surprisingly well on Android,
constant care and attention needed to be had, or otherwise crashes due to out of memory exceptions
were soon to follow.

To mitigate some of the issues of large matrices, we employed a strategy of aggressive memory
flushing, where we would manually release each matrix as soon as it stopped being necessary.
This allowed us to not only keep memory leaks in check since OpenCV for Android is a Java
abstraction for C++ code, but also to decrease the memory load to the necessary minimum at all
times. However, even these measures were not enough on their own, as we still had occasional

crashing, so more redesign had to be done.
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5.1.1 Algorithm Optimizations

In the original MATLAB code, the color correction stage occurs right after detecting the color
checker patches. In this step, the entire image is color corrected. However, this matrix was not
only as big as the entire image, it could not be flushed until the very end of the algorithm, as this
was the image that was cropped after the disk outlines are discovered. This increased massively
the amount of required memory, without even taking into account that the process of correcting
the colors was very taxing when large matrices were involved. To work around this, we changed
the moment in which this stage happens, and only used the original image for all the detections.
Only when cropping the original image to fit the disk do we decide to color correct this image.
This resulted in a huge memory decrease, from around 1GB to under 400MB. This optimization
alone made this application run on lower end devices, and in much better times, as this is the part
of the algorithm that had the highest cost in memory and time. This high impact is due to the
need of using the custom XYZ to sSRGB function that, despite being better than iterating pixel by
pixel, was still very demanding, and did not scale well with higher resolution images. Despite this
optimization, there was still more room for improvement.

The second most demanding stage when it comes to memory consumption is the color checker
identification. In this step, there are two matrices that encompass the entirety of the image, namely
the matrix that stores the baseline image, and a processing matrix on which we perform the thresh-
old operations and other processing. After testing, it was clear that the high contrast of the color
checker with the contrast made it easily discoverable when using the custom multi-level Otsu
threshold. A hypothesis arose that the thresholding matrix did not need to be the size of the entire
image, but instead could be a scaled down version. This presented a problem, because a new,
scaled down image needed to be stored as well. However, the extra memory allocated to that im-
age still justifies the optimization, as the operations done to matrices require more memory when
dealing with larger resolutions. To make this tweak work, the points discovered on the scaled
matrix needed to be rescaled back according to scaling factor used. This tweak also had some
processing time improvements, as we will mention in the next section’s tests.

After performing all the mentioned optimizations, another pass at testing for memory leaks
was required, as profiling the application revealed that the memory allocated to native C++ code
did not fully reset if the user decides to abort the process mid-analysis. However, after further
testing, it appears that the base memory usage fluctuates between 28 and 40 MB, and after using
the application for a while, the base memory when idling is consistent, so no memory leaks were

ultimately identified.

5.2 Bitmap Size Constraints

Throughout development, most of the tests were done in an emulator out of commodity, which
despite not being an accurate measurement for raw performance, still gave a good indication of

relative performance across stages. However, one aspect in which it could not replace live testing
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was a bitmap drawing. On older hardware with more limited GPUs, large bitmaps such as the
ones used for testing could not be drawn at all, due to them exceeding maximum OpenGL texture
sizes. To circumvent this, we needed to develop an algorithm that could create a scaled bitmap
based on the properties of the device it was running on. This fixed the issue, and presented an

interesting avenue for improvements.

5.2.1 Image Resolution Optimizations

One of the optional requirements presented by the product owners was the ability to manually
select the precision, should the user require a faster, but less precise version, either due to time
or hardware constraints. Tweaking the algorithm itself was tricky, as alterations might bear unex-
pected side effects, decreasing consistency in results and lowering user trust. However, the impact
image resolution had extended beyond memory, as calculations become much quicker as the size
decreased.

We already mentioned that in the color checker stage we opted with using a scaled version
for the thresholds. This was reworked to make this parameter be customizable by the user in
the settings menu. This activity also included another slider for the overall quality of the image.
Decreasing this value decreases the resolution of the base image for the calculations, and can
improve times substantially. However, this decrease in resolution can negatively impact other
areas of the algorithm, most notably the disk detection. In this stage, the Canny edge detection can
be affected, since some finer lines might become less clear. Changing the resolution also required
some tweaks in the algorithm, as the values used in the dilation and subsequent erosion of edges
needed to scale according to the quality slider setting.

Regarding the color checker precision slider option, we capped the maximum resolution to
half the original image’s size, as this option offered excellent results, even with a lower overall
quality setting selected. We took this decision since the user could think that using full precision
mode might be necessary, when in fact half resolution is more than adequate, with great memory
and performance improvements. What matters by the end of the fist stage is whether the corners
are correctly identified, so if the algorithm takes 2 seconds or half a second, as long as those points
are correct, precision itself does not matter.

In this chapter we approached all the aspects regarding performance and optimizations that we
had to do to get the responsiveness to the level we wanted. We will explore how we tested the

application in the next chapter.
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Chapter 6

Tests

Throughout development, we kept on iterating on the algorithm, matching it’s stability to the
original MATLAB version, and improving it’s performance. After finishing the application, it was
critical to check if these two aspects were to the standard of quality we intended, so we performed

extensive testing. In this chapter we tested three different topics:

1. The precision of the application’s results;
2. The divergence in output from using the manual method;

3. The performance metrics using live phones.

For the first two components, all tests were run on an emulator, as time was not a factor to be
taken into consideration. In the performance section, we will perform a deep-dive into every facet

of the efficiency aspect.

6.1 Precision Comparisons

For the precision aspect of the application, we only used one run for each test, as there are no
elements of randomness in these purely automatic tests. With the exact same image and settings,
we will always get the exact same result, regardless of device. For each level of concentration we
used the average of four different photos, both for MATLAB as well as the application. For the
comparisons we will use the median Hue value obtained, since that removes from the equation
imprecisions associated with the calculation of the concentration. The main purpose of this test is
to check the differences between the final results of the MATLAB code and the newly developed
application, not the precision of the concentration value itself. In table 6.1 we compared the two
values in terms of raw Hue difference, using the 24 patch set for both methods. The Conc. column
refers to the concentration of sulfonamides in the sample, the Mob. column to the results obtained
in the application, and the PC results are extracted from the original MATLAB version of the

algorithm.
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Table 6.1: Hue differences between the application and MATLAB.

Conc. (ug/L) | PC Avg. | PC o | Mob.Avg. | Mob. ¢ | (PC Avg.-Mob. Avg.)/Avg. PC (%)
0 0.5908 0.008 | 0.6028 0.004 2%

5 0.5740 | 0.009 | 0.5833 0.010 1.6%
10 0.5379 0.006 | 0.5462 0.024 1.5%
15 0.5221 0.011 | 0.5217 0.010 >-0.1%
20 0.5085 0.017 | 0.5079 0.015 -0.1%
25 0.5065 0.009 | 0.5062 0.012 >-0.1%
40 0.4541 0.002 | 0.458 0.005 0.9%
50 0.4426 0.004 | 0.44525 0.009 0.6%
100 0.4202 >0.001 | 0.416725 | >0.001 | -0.8%
150 0.4117 0.002 | 0.40795 0.002 -0.9%

For the comparison, we use a weighted difference, to demonstrate that even in low values the
results are still very comparable. We registered a maximum difference of about 2%, which is
well within the accepted ranges for precision. This validates that the results obtained using the
application are comparable to running the MATLAB version of the algorithm.

For the second precision test, we compared the automatic results to the real concentration
value. For this we used the average of 4 runs for each concentration value, using the 13 patch set.
This was done as the most recent revisions of the work done by Carvalho et al. [5] concluded that
tests were more accurate using that specific set of patches. If the user uses a custom set of patches,
it defaults to using the 13 patch set curve. The final precision results using the generated curves
are in table 6.2.

The precision of the results themselves vary significantly, as the curve that is used can only
provide an approximation. However, despite the occasional stray of individual estimations, over-
all it remains close enough to get an approximation of the actual concentration in the sample. It’s
important to note that improvements to this approximation fall outside of the scope of the disser-
tation, as it’s main challenge was the port of the original MATLAB algorithm to a mobile Android
smartphone.

Table 6.2: Concentration precision tests for 24 and 13 patches.

Concentration (ug/L) | Avg (ug/L) | o

0 3.16 0.22
5 4.56 1.22
10 8.86 343
15 14.34 2.56
20 17.99 4.11
25 19.06 4.16
40 42.28 4.65
50 55.32 6.29
100 97.03 3.92
150 123.25 2.06
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6.2 Automatic vs Manual Methods Comparisons

In these tests we wanted to verify whether there is a discrepancy from the results that are obtained
manually from the ones performed automatically. This helps ensure that manually performing the
entire operation will not cause worry that the final estimated concentration value would stray far
from the automatic approach. Since this test involves a certain degree of randomness tied to the
manual input, the average of 5 manual runs is used for each concentration, and the results refer to
the measured Hue. All tests used the 13 patch set, and all the manual runs include all the stages
done manually. The results are found in table 6.3.

Similarly to the first tests, we used a weighted difference to measure the deviation between
the manual and automatic results, divided by the latter. This once again shows it’s impact more
dramatically on values that are lower than 1, which is the case, and even still, the maximum
recorded difference was 2.8%. The standard deviation is also well within acceptable ranges. To
make matters even better, this difference is mostly due to the square of pixels in the sample that
were selected in the final stage differing from the automatic approach. If the user only intervenes
in the bounding box detection, such as the color checker, patches and disk identification, there is a
chance that there is no difference at all between the two versions. Because of all of these factors,
this test proves that the manual version is a reliable alternative that, if used carefully, can be just

as good as the complex OpenCV algorithm.

6.3 Mobile Performance Metrics

For performance we used real phones with the latest version of the application. For the tests we
wanted to compare the time differences between a mid-range phone (which is one of the most
common device ranges), to a relatively low-end phone by the current standards. The two phones

we used were:

* Xiaomi Mi Al: The mid-range smartphone, featuring a Qualcomm MSM8953 Snapdragon
625 for the chipset, running an Octa-core 2.0 GHz Cortex-A53 CPU, an Adreno 506 GPU,

Table 6.3: Difference between automatic and manual version.

Concentration (ug/L) | Auto. | Manual | c Manual | (Auto.-Manual)/Auto. (%)
0 0.6306 | 0.6219 | 0.0033 -1.3&
5 0.5992 | 0.5822 | 0.0014 -2.8%
10 0.5502 | 0.5544 | 0.0052 0.7%
15 0.5132 | 0.5143 0.0007 0.2%
20 0.5 0.5 0 0

25 0.4961 | 0.4941 0.0009 -0.4%
40 0.4637 | 0.4592 | 0.0019 >-0.1%
50 0.4402 | 0.4416 | 0.0012 0.3%
100 0.4191 | 0.4243 0.0009 0.1%
150 0.407 | 0.4082 | 0.0002 0.3%
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Table 6.4: Average time for each stage.

Checker (ms) | Patches (ms) | Disk (ms) Sample (ms)
Avg c Avg | © Avg | o Avg | ©

Mi Al 1306.2 | 2498 | 957.4 | 14.74 | 886.6 | 11.39 | 758.8 | 15.18
Moto G | 24354 | 293.2 | 1691 | 208.7 | 1691 | 39.58 | 2148 | 186.1

and 4GB of RAM memory '.

* Motorola Moto G (2015): Although not unusable, very low-end compared to modern mid-
range phones. Features a Qualcomm MSM8916 Snapdragon 410 chipset, a Quad-core 1.4
GHz CPU, an Adreno 306 GPU with the IGB RAM variant 2.

To have a better understanding of the performance of the application, we did 4 types of tests

evaluating different aspects of the application, namely:

1. Algorithm Stage comparison: Assessing which stages of the algorithm execution take the

longest;

2. Overall Quality Comparisons: Measuring the differences in time and final result when

tweaking the overall quality slider in the Settings activity;

3. Color Checker Finding Precision Comparisons: Similar to the previous test, but this time

comparing the color checker finding precision option;

4. Optimized Results: Tweaks to the options in the Settings activity that yield the best perfor-

mance without sacrificing too much accuracy in the results.

6.3.1 Algorithm Stage Comparisons

Despite solely using the automatic version of the algorithm, there is an inherent randomness to the
timings, as loads vary throughout execution of the application. For this reason, we ran each test 5
times and then averaged out the results.

For the first test, we measured the time each stage took to complete, to check which step is the
most taxing to responsiveness, using an average of 5 runs on both smartphones, and the results are
in table 6.4. This was done to estimate the relative time cost between each stage, and how evenly
spread it is throughout an entire run.

The results indicate that the most taxing part of the process is the color checker, and this can
be easily explained, since that is the stage that uses the largest matrices in the entire process. As
the stages progress, the processing of the respective image may be more taxing, but the size of

matrices is lower since they all deal with cropped versions of the base image. It’s also important

'Xiaomi Mi Al - Full Specifications, GSM Arena, https://www.gsmarena.com/xiaomi_mi_al_(mi_5x)
-8776.php

2Motorola Moto G (3rd Gen) - Full Specifications, GSM Arena, www.gsmarena.com/motorola_moto_g_(3rd_
gen) - 7247 . php


https://www.gsmarena.com/xiaomi_mi_a1_(mi_5x)-8776.php
https://www.gsmarena.com/xiaomi_mi_a1_(mi_5x)-8776.php
www.gsmarena.com/motorola_moto_g_(3rd_gen)-7247.php
www.gsmarena.com/motorola_moto_g_(3rd_gen)-7247.php
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to note that the concentration of the sample has no impact on time, as it is always the same code
that is run. Regarding the standard deviation increase on the low-end phone, this is explained by
the fact that the first run might need some additional time to create activities and bitmaps, as this

run was the worst in almost all stages, and in some cases by a large margin (600 ms).

6.3.2 Overall Quality Slider Comparisons

For the second and third tests, we wanted to measure the impact that changing precision had on
time and results, for both the overall quality and the color checker detection. As usage always
showed a linear decrease in time, we performed only one run for each configuration using the
mid-range smartphone.

For the overall quality test, we used maximum color checker finding precision, with the com-
parisons being in table 6.5. As resolution of the image decreases, the performance improves mas-
sively, but the results start to vary, albeit mildly, since the hue is altered by just 1%, but achieving
the outcome nearly 10 times faster.

It might be hard to believe that the times are so much better, while achieving almost the same

exact results. This happens due to two reasons:

1. Decreasing resolution improves performance significantly, but it might compromise the de-
tection of certain elements. For example, if the image loses too much resolution, the disk
borders might be impossible to threshold, because that information is lost in the downscale.
In this example, all the detections worked correctly, despite the reduced amount of informa-

tion;

2. Even if the thresholds work correctly, the sample pixels are altered, so the extracted Hue
should be different in theory. This does not happen because we use the median of the found
pixels, and not the average. This implies that even if a large number of pixels is changed,
what matters is the pixel exactly in the center of the ordered array. If there are many pixels
in the center region with the same value, that increases the chance of the same value being
selected. For these two reasons, it’s common to see exactly the same result, even while

altering the quality of the base image.

Table 6.5: Impact of overall quality slider.

Quality (%) | Time (ms) | Hue
100% 3985 0.602
80% 2566 0.6
60% 1372 0.6
40% 785 0.596
20% 571 0.593
10% 467 0.593
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Table 6.6: Impact of color checker precision.

Color Checker Precision (%) | Time (ms) | Hue
100% 1250 0.602
80% 860 0.602
60 % 662 0.6
40 % 554 0.6
20% 491 0.602
10% 462 0.602

6.3.3 Color Checker Finding Precision Slider Comparisons

For the color checker precision test, we used the maximum overall quality, and only measured the
time of the first stage, as this is the only part that is altered in the entire algorithm. The results are

seen in table 6.6.

The small deviation in results is explained by the way the color is obtained from each of the
patches. We use an average of all the colors inside the identified patches, and small differences
in the detection of corners might alter very slightly the position of the detected patches. This can
include colors that end up offsetting the average, resulting in a different color correction matrix.
Despite this, the results are very consistent overall, with the required processing time diminishing

considerably as the resolution of the color checker matrix goes down.

One aspect to keep in mind is that the overall quality slider and color checker resolution preci-
sion settings are somewhat coupled. If the overall quality of the image decreases, the base image
loses resolution, and so the color checker stage will go faster as a result. If the color checker
precision is also set, these two settings are multiplied, and it’s important to keep in note that low
quality and low precision may lead to a potentially faulty color checker detection. This can be eas-
ily solved either by using manual mode, or even sometimes continuing regardless, as most likely

the patches identification step will still function properly.

6.3.4 Optimized Results

For the following test we wanted to see how well the algorithm performed if we tweaked a few
settings based on the power of the hardware. This gave us our "best case scenario” when dealing

with lower-end phones. The results are in table 6.7.

Table 6.7: Tweaked settings impact.

Time (ms) | Hue

Mi A1 Baseline 3909 .600
Mi A1 Optimized (0.8 Overall Quality + 0.4 Color Checker Precision) 1720 .600
Moto G Baseline 8037 .600
Moto G Optimized (0.5 Overall Quality + 0.3 Color Checker Precision) | 1995 .600
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Table 6.8: Comparison with low-end smartphone and desktop PC.

Time (ms) | Hue
Moto G with Optimized Settings | 1995 0.600
MATLAB Code 4204 0.594

Looking at the results, it becomes apparent that, even though the baseline time is more than
two times larger on the low-end phone compared to the mid-range phone, it can still provide
fast results, and in this case without losing any precision. This might not happen in all cases, as
thresholds may not be as accurate, but it is still viable for images that follow a similar structure to
the example image in figure 3.3.

Our target for performance was high, as we wanted to get results from a low-end to be faster
than the MATLAB code running on a desktop. For the comparison, we used the tweaked settings
for the Motorola Moto G and ran them against a PC equipped with an Intel i7-4790k running at
4.5 GHz paired with an AMD RX 480 at stock frequencies running the original algorithm. It’s
important to note that the MATLAB results could still be improved, since the priority of the work
done by Carvalho et al. [5] was precision, not performance.

The results presented in table 6.8 speak for themselves, with only a .006 difference in hue in
half the time. With our ambitious performance target reached, and comparable precision to the
original algorithm, the development of the application was complete.

The final stage of tests was going to be done live, using the application installed on a smart-
phone on the laboratory where we could control the concentration of the samples. Unfortunately,
due to the pandemic that occurred during the time of writing the dissertation, we were not able to
collect that information, as the investigator that helped us throughout development did not return
return to the laboratory.

In this chapter we approached all the testing we did to measure stability, performance and pre-
cision compared to the original algorithm. All that remains is the conclusions for the dissertation

and future work.
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Chapter 7

Conclusions and Future Work

Sulfonamides are an important antibiotic group to combat bacteria. It is low cost and low toxi-
city, which lead to it’s widespread usage. This usage has lead to an increase in the presence of
antibiotics in water compartments, which proliferates bacteria capable of resisting antibiotics. The
impact of these bacteria is becoming a global threat, and analysis needs to be performed on waters
to assess their level of contamination.

Current methods for determining sulfonamides concentration are expensive and impractical.
They require resources and a laboratory setup. Colorimetry appears to be an interesting way
forward, increasing practicality, but so far is still not fully mobile. Smartphones have already
been used in the field for digital image colorimetry, with positive results. This dissertation fur-
ther proved the viability of smartphones for colorimetry tasks, providing adequate estimations of
concentration of sulfonamides in a sample.

Some of the limitations of this dissertation are somewhat similar to those found in the work by

Carvalho et al. [5], namely:

1. Despite being limited after color correcting the image, lighting variations can still play a big

role in the final concentration estimation;

2. Different phones may capture different photographs, with some camera applications pro-
cessing the image irregularly to achieve more realistic or pleasing results, such as when
using HDR. This presents a problem, since color correcting the image will be of reduced
efficiency, if not worthless. This could be mitigated by either creating an entire new custom
camera application that followed a specific set of parameters, or by creating a new camera
view within this application that handled that part. That way we could limit some features

to ensure that the result is captured raw, without extra image processing.
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