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Abstract
Arabinogalactan Proteins (AGPs) are hydroxyproline-rich proteins containing a high proportion of carbohydrates, widely 
spread in the plant kingdom. AGPs have been suggested to play important roles in plant development processes, especially 
in sexual plant reproduction. Nevertheless, the functions of a large number of these molecules, remains to be discovered. In 
this review, we discuss two revolutionary genetic techniques that are able to decode the roles of these glycoproteins in an 
easy and efficient way. The RNA interference is a frequently technique used in plant biology that promotes genes silencing. 
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)—associated protein 9 (CRISPR/Cas9), emerged 
a few years ago as a revolutionary genome-editing technique that has allowed null mutants to be obtained in a wide variety 
of organisms, including plants. The two techniques have some differences between them and depending on the research 
objective, these may work as advantage or disadvantage. In the present work, we propose the use of the two techniques to 
obtain AGP mutants easily and quickly, helping to unravel the role of AGPs, surely a great asset for the future.

Keywords  Arabinogalactan proteins · Mutants · RNA interference · CRISPR/Cas9 · Plant genome engineering

Introduction

Arabinogalactan proteins (AGPs) belong to the supefamily 
of hydroxyproline-rich glycoproteins (HRGPs), and most of 
them are predicted to be tethered to the plasma membrane by 
a glycosylphosphatidylinositol (GPI) anchor [1–3].

These characteristics always made them predictable 
candidates to be involved in signalling mechanisms, in sev-
eral plant developmental processes [4]. Showalter et al. [5] 
identified 85 AGPs in Arabidopsis, divided into five classes: 
classical AGPs, lysine-rich AGPs, AG peptides, fasciclin-
like AGPs (FLAs), and other chimeric AGPs [6, 7]. These 
glycoproteins, ubiquitous in the plant kingdom, have crucial 

roles in multiple biological processes, including cell divi-
sion, cellular communication, programmed cell death, 
embryogenesis, secondary wall deposition, organ abscission, 
plant–microbe interactions, and reproductive processes [4, 
8–13].

AGPs have been subject to innumerous studies in the 
recent years, which have tried to tackle its functions in 
plants. Even though, their specific mode of action and the 
functions of many specific AGPs remains largely unknown.

Due to the complexity of their AG sugar chains and the 
heterogeneity of their core proteins these molecules are dif-
ficult to study. Besides, in large families, redundancy is a 
problem when one intends to obtain a phenotype and under-
stand the function of a protein [14]. Therefore, the AGPs 
functional redundancy due to the similarity between its ami-
noacidic sequences, further interferes with the study of their 
functions [15–18]. Despite this, the work being developed 
with tools such as the anti-AG chain-based immunomicros-
copy, β-Yariv reagents, enzymes that target specific parts 
of AG chains, chemical synthesis of specific structures 
of AG chains and bioinformatics, is slowly clarifying the 
nature of AGPs [19]. Moreover, with the development of 
powerful molecular biology tools, it is possible a genetic 
approach that offers a great alternative to identify a specific 
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AGP function [20]. The use of several approaches to con-
trol gene expression, since the first classical genetic studies 
until the most recent molecular techniques, has revealed to 
be essential to determine the functions of different genes 
correlating them with phenotypes and integrating them in 
several biological pathways.[21]. In Arabidopsis thaliana, 
reverse genetic techniques to isolate mutants correspond-
ing to known sequences, such as antisense suppression, 
co-suppression by overexpression of the target gene, tar-
geted gene disruption, or the PCR approach of screening 
for T-DNA insertion libraries, have been developed, but are 
often insufficient and have many unexpected difficulties [22]. 
These limitations can be partially overcome by new genetic 
approaches. One classical strategy that has been established 
for plant functional genetics research, including functional 
studies for AGPs, is the loss-of-function by RNA interfer-
ence (RNAi), a great transient gene-expression repression 
approach discovered over a decade ago [23]. Recently, a 
new genome engineering technique, using type II clustered 
regularly interspaced short palindromic repeat (CRISPR) 
and CRISPR-associated protein 9 (Cas9) from Streptococ-
cus pyogenes, is becoming a powerful tool for functional 
genomics research in plants [24]. In this review, we describe 
the best CRISPR/Cas9 and RNAi approaches to obtain AGP 
mutants, with the intention of getting to know more about 
the biological function of AGPs.

RNA interference (RNAi)

Possibly, one of the most important advances from the past 
decades has been the discovery that RNA molecules can reg-
ulate the expression of genes [25]. In 1998, the group of Fire 
and Mello [23] announced their discovery of RNAi—the 
silencing of gene expression by double stranded RNA mol-
ecules—in nematode worms. From this discovery emerged 
the notion that a number of previously characterized, homol-
ogy-dependent gene-silencing mechanisms might share a 
common biological origin. Between the 80’s and 90’s, plant 
biologists working with petunias were surprised to find that 
introducing numerous copies of a gene encoding deep purple 
flowers led to white or patchy flowers plants, instead of an 
expected even darker purple color [26, 27]. Somehow, the 
introduced transgenes had silenced both their own ‘purple-
flower’ genes. In parallel, several research groups found 
that plants responded to viruses RNA by targeting viral 
RNAs for destruction [28–31]. Most of the techniques used 
to induce gene silencing have been shown to share many 
mechanistic similarities, such as RNAi, co-suppression and 
virus-induced gene silencing (VIGS). Even the biological 
pathways which are the core of dsRNA-induced gene silenc-
ing are present in most eukaryotic organisms [32].

RNAi is based in the natural pathways of RNA silenc-
ing. The first pathway, siRNA silencing, may be important 
in virus-infected plant cells, where the dsRNA could be a 
replication intermediate or a secondary-structure feature 
of single-stranded viral RNA. In plant DNA viruses, the 
dsRNA may be formed by annealing of overlapping tran-
scripts. The second pathway is the silencing of endogenous 
messenger RNAs by miRNAs, these are originated from 
single-stranded transcripts. The miRNAs bind to specific 
mRNAs by base pairing, and in this way, negatively regu-
late a specific gene expression, either by RNA cleavage or 
by disturbing its translation process [33]. Thus, these two 
classes of silencing RNAs (sRNAs), short interfering RNAs 
(siRNAs) and microRNAs (miRNAs), affect gene expres-
sion in animals and plants, presenting differences between 
them. The siRNAs are a class of double-stranded RNAs of 
21–22 nucleotides in length, generated from dsRNAs. siR-
NAs silence genes by promoting the cleavage of mRNAs 
with exactly complement sequences. miRNAs are a class of 
19–25-nucleotide, single-stranded RNAs that are encoded 
in the genomes of multicellular organisms, these are evo-
lutionarily conserved and developmentally regulated. They 
silence genes interfering with protein translation [25, 34]. 
sRNAs interfere with normal gene function on several levels, 
including promoter activity, mRNA stability, and transla-
tional efficiency. These small RNAs derive from double-
stranded RNA precursor molecules that are cleaved by a 
specialized class of RNases, the Dicer family which has 
RNase III domains, into short 21–26 nucleotide small RNAs 
[33–35]. In animals, dicers are named DCRs, and in plants 
Dicer-like (DCL) proteins.

Chuang and Meyerowitz [22] have shown that it is pos-
sible to induce sequence-specific inhibition of gene function 
in an efficient way by dsRNA-mediated genetic interference 
in Arabidopsis thaliana. siRNAs and miRNAs are produced 
in the genome of A. thaliana, by the cleavage of dsRNAs 
by the Dicer-like gene family, which has only four mem-
bers: Dicer-like (DCL) 1, 2, 3 and 4. Plant sRNAs precur-
sors are processed in the nucleus by DCL1, releasing the 
cleaved sRNA duplexes, but usually one of the two constitu-
ent sRNAs are preferably associated with ARGONAUTE 
(AGO), in Arabidopsis AGO1. This strand has been termed 
the siRNA guide strand, and in the case of miRNAs, cor-
responds to the mature miRNA. Plant miRNAs pair almost 
perfectly to their target RNA using preferentially transcript 
cleavage and subsequent degradation, instead of translation 
suppression as the silencing mechanism [36].

Silencing RNAs serve as specific components for pro-
tein machines known as RNA-induced silencing complexes 
(RISCs), which contain as catalytic subunits, ARGONAUTE 
proteins, the mediators of gene silencing, since they cleave 
target mRNAs, followed often by degradation of the cleaved 
RNA [33, 37, 38] (Fig. 1).



2317Molecular Biology Reports (2020) 47:2315–2325	

1 3

One of the most developed and effective ways to generate 
siRNAs in plants is by using long hairpin precursors; this 
approach is known as inverted repeat, post-transcriptional 
gene silencing (PTGS) or hairpin RNAi (hpRNAi) [39]. 
In this case, sense and antisense RNAs are so close that 
dsRNA is easily formed. The use of hpRNAi is extensively 
used for many plant species, since many generic plasmids 
for transgene generation have been made available by the 
scientific community [34]. On the other hand, plants miR-
NAs have musch less off targets than animal miRNAs [35, 
40], which is a positive feature for most of the silencing 
studies aiming to silence a specific gene rather than a set of 
genes. When the artificial miRNAs (amiRNAs) are produced 
and inserted into the cells, the endogenous miRNAs precur-
sors form sRNAs that consequently lead to gene silencing 
[35, 41–44]. miRNA precursors preferentially produce one 
sRNA duplex, the miRNA–miRNA* duplex. When both 
sequences are modified without changing structural features, 
this often leads to high-level accumulation of a miRNA of 

a desired sequence. amiRNAs are effective when expressed 
from either constitutive, such as the 35S promotor, or tissue-
specific promoters and plant amiRNAs have similarly high 
specificity as endogenous miRNAs. amiRNAs were used 
in Arabidopsis [43], where they were shown to effectively 
interfere with reporter gene expression. The online platform 
MicroRNA Designer (WMD3) [34, 35] uses sequences of 
target genes as an input to design artificial microRNAs 
(amiRNAs), which can be genetically engineered and func-
tion to specifically silence genes of interest. After the plat-
form performs a search for candidate 21-mers sequences 
that are similar to natural miRNAs in the whole length of 
reverse complements of target transcripts, it is just necessary 
to select the favorite candidates [34, 35]. Some of the advan-
tages of using amiRNA directed gene silencing are greater 
specificity and less off-target effects compared to traditional 
inverted-repeats gene silencing vectors [45]. After choos-
ing the best amiRNA, the WMD includes the ‘Oligo’ tool 
[34], which allows automatic generation of oligonucleotide 

Fig. 1   Schematic representa-
tion of the RNAi mechanism. 
The double-strand RNA 
(dsRNA) may occur in the cell 
as exogenous RNAs introduced 
by viruses or created in labora-
tory, or as endogenous RNAs 
transcribed from nuclear genes. 
These dsRNAs are recognized 
and processed into small 
interfering RNAs by Dicer in 
siRNA or miRNA, respectively. 
These sRNAs associate with 
RNA-induced silencing com-
plexes (RISC), which contain 
a catalytic protein, ARGO-
NAUTE (AGO). If, the pairing 
with mRNA target sequence 
and siRNA is 100%, the AGO 
cleaves target mRNA and 
promotes its degradation. In the 
other hand, if the pairing is not 
perfect (< 100%) this cleavage 
does not occur and the mRNA/
RISC complexes are associated 
with P bodies with consequent 
inhibition of translation. The 
two pathways culminate in the 
reduction of gene expression
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primers that can be used in combination with the MIR319a 
precursor from A. thaliana. Both miRNA and the partially 
complementary region, the miRNA*, are replaced by 
amiRNA and amiRNA*, respectively. As structural features 
are considered important for guiding correct DCL1-medi-
ated processing, the amiRNA sequence is specified so away 
that mismatch positions to the amiRNA* are retained [34]. 
Lastly, the chimeric sequence is then transferred to a vector 
of choice prepared to receive the created construction and 
transferred to A. thaliana by the Agrobacterium-mediated 
transformation.

The AGPs are a large family and several T-DNA mutants 
exist, but not enough to study each AGP specific function. 
RNAi techniques have been used to elucidate gene func-
tion by creating knockdown mutants for these glycoproteins. 
To define the AGP18 function, Acosta Garcia and Vielle 
Calzada [46], used RNAi-induced posttrancriptional silenc-
ing, specifically degrading the endogenous AGP18 tran-
scripts. The RNAi technique allowed them to demonstrate 
that this classical AGP is essential for female gametogenesis 
in A. thaliana. Another work on specific AGP functions is 
the study of agp6agp11 and their role in pollen grain devel-
opment [14]. This work has been accomplished using gene 
silencing studies that created two Arabidopsis transgenic 
lines by RNAi technology, silencing both AGP6 and AGP11. 
The comparison of RNAi mutants (knockdown) and knock-
out mutants created by T-DNA insertion was essential to 
confirm these AGP phenotypes. Down-regulation of AGP6 
and AGP11 by RNAi and artificial microRNA led to pollen 
grain abortion, inhibition of pollen tube growth, and reduc-
tion of fertility [14, 47].

FLA3 is a fasciclin-like Arabinogalactan protein pre-
dicted to be involved in microspore development of Arabi-
dopsis. The involvement of this protein in microspore devel-
opment and pollen intine formation was revealed by RNAi 
plants, a useful tool to discover AGP functions [48]. More 
recently, the function of AGP4/JAGGER was identified 
by studying not only knock out mutants for this glycopro-
tein, but also one RNAi line [49]. This line (jagger_RNAi) 
allowed the reduction of JAGGER expression only in certain 
tissues of the flower, allowing the author to determine the 
exact pistil tissue responsible for its function. Therefore, in 
this case the RNAi line was crucial to determine the AGP4 
function.

A specific group of chimeric AGPs, belonging to the early 
nodulin-like proteins (ENODLs), related to the phytocyanin 
family, are very similar to classical AGPs: EN11-EN15 and 
were shown to play important roles in plant reproduction 
[13]. Hou et al. [50] when studying the function of polarly 
localized ENs, could not obtain null mutations by T-DNA 
insertion for all the five ENODLs. So they created higher 
order mutants by introducing an RNAi silencing construct 
for EN11/EN12 into the triple mutant en13en14en15 and an 

en-RNAi mutant that contained the loss of function of EN13 
EN14 EN15 and lowered expression of EN11 and EN12, 
respectively. In this case, RNAi technology was crucial to 
understand that these proteins played an essential role in 
male–female communication and fertilization, especially in 
pollen tube reception.

At this moment, it is clear that RNAi technology is 
vital to discover AGPs specific functions, and the discov-
ery of RNA silencing completely changed the perspective 
of reverse genetic studies. RNAi is an efficient alternative 
method to study and determine the function of an individ-
ual AGP, and it is reasonable to consider that in the future, 
RNAi will keep a certain unique space in these studies.

CRISPR/Cas9

With a higher interest in genome editing in the recent years, 
a new technology has emerged to fulfil the dream of modify-
ing, precisely and efficiently, the genomic DNA of cellular 
organisms. This technology, based upon the two component 
CRISPR-associated protein 9 (CRISPR-Cas9) system, is an 
adjustable bacterial immune system, which helps the bacte-
ria protecting itself against invading foreign DNA, such as 
the one from a bacteriophage. This process uses RNA-guided 
nucleases to cleave foreign genetic elements, and in recent 
years, it has become a resourceful molecular tool for genome 
editing in various organisms, including plants [51–54]. 
These CRISPR/Cas systems can be classified into types II 
and III, being the type II CRISPR/Cas system adapted as a 
genome-engineering tool [55]. CRISPR system comprises 
a group of genes associated with CRISPR, Cas, non-coding 
RNAs and a distinct matrix of repetitive elements (direct 
repeats). These repeats are interspersed by short vari-
able sequences derived from DNA exogenous targets, with 
homology to them, known as protospacers, and together they 
constitute the CRISPR RNA (crRNA). Within the DNA tar-
get, each spacer is always associated with a small conserved 
sequence named Protospacer adjacent motif (PAM). These 
small sequences are targets of the Cas endonucleases, thus 
allowing the system to distinguish its own DNA from for-
eign DNA. If the bacteria are invaded, a second time by the 
same invader, the crRNA encoding the 20nt guide RNA and 
an auxiliary trans-activation crRNA (tracrRNA) generates 
a complex with Cas9 (crRNA:tracrRNA:Cas9). This tracr-
RNA usually helps the process as it facilitates the division 
of the crRNAs in discrete units. The complex formed looks 
for the DNA sequence with a PAM motif, complementary 
to the crRNA and binds to it by Watson–Crick base pair-
ing. Finally, Cas9 separates the DNA target from the double 
strand and cleaves the two strands in a location close to the 
PAM motif, thus destroying the invader [56–59]. In order 
to use this system in genetic engineering, the crRNA and 
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tracrRNA were fused to create a chimeric single-stranded 
RNA (sgRNA) that present a designed hairpin to mimic the 
crRNA–tracrRNA complex [51]. This discovery created a 
simple two-component system (sgRNA and Cas9), being 
possible to change the genomic target of Cas9 protein, sim-
ply by changing the target sequence present in sgRNA [60].

The Cas9 originates from different bacteria, being the 
Streptococcus pyogenes more used for its isolation. In this 
system, a Polymerase II promoter [61] expresses this endo-
nuclease. In contrast, Polymerase III promoters, such as U6 
and U3 from Arabidopsis [62], typically express sgRNAs. 
The sgRNA in 5′end has a 20 nucleotide sequence (proto-
spacer) which acts as a guide to identify a target accompa-
nied by the PAM motif (5′-NGG sequence). At its 3′end it 
presents a scaffold sequence necessary for the binding of 
Cas9 (Cas9:sgRNA complex), which cleaves the double-
stranded DNA and forms a double-stranded breakdown 
(DSB) at 3 bp upstream of the PAM motif. These DSBs are 
repaired by evolutionarily conserved DNA repair pathways 
such as the non-homologous end joining method (NHEJ) or 
the homology direct repair (HDR). NHEJ is a repair system 
that connects the DSB by random insertion or deletion of 

short stretches of oligonucleotide bases. This can lead to a 
disruption of the codon-reading frame, resulting in wrong 
transcripts and ablation of gene expression. In HDR, there 
is the insertion of a DNA segment in regions homologues 
to the sequences flanking the two sides of the DSB, which 
makes the cells delivery system to embody an extra seg-
ment [63–65]. Therefore, NHEJ can lead to ablation of gene 
mutations and it can be used to knockout specific genes, and 
HDR can be used to introduce specific point mutations or 
introduce DNA segments of varying lengths into a specific 
gene [65]. The NHEJ method is the most used for genome 
editing because it is more efficient than HDR [66]. To give 
a more complete view of this technology, Fig. 2 presents a 
schematic representation of the CRISPR/Cas9 system.

In order to obtain knockout mutants by the CRISPR tech-
nology it is necessary to plan the experiment, which normally 
consists of four principal stages: (i) sgRNA design for the tar-
get sequence. For this stage, it is necessary to design the 20nt 
guiding sequence, specific only for the target sequence, pre-
ceded by the PAM motif. There are, nowadays, diverse bioin-
formatics tools to design sgRNAs, which are able to inform us 
about the main characteristics needed to consider choosing the 

Fig. 2   Schematic representation of the CRISPR/Cas9 technique 
mechanism of action. The sgRNA (single guide RNA - orange) is 
formed by a sequence of 20nt that defines the genomic target that 
will be modified and a scaffold sequence (red). The scaffold sequence 
allows the formation of a complex with the Cas9 protein; the com-
plex can detect target sequences in DNA that are complementary to 
the target sequence to be modified. If the target sequence is located 
directly upstream of a PAM (Protospacer adjacent motif- black) 

sequence, it is recognized by Cas9 leading to a double strand break 
(DSB) approximately 3  bp upstream of the PAM sequence. This 
break is usually repaired by NHEJ (non-homologous end joining) in 
most situations creating insertions/deletions in the gene leading to 
the complete loss by knockout. However, the break can be repaired 
by HDR (homology directed repair) creating a precise gene editing 
introducing specific point mutations. (Color figure online)
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best one, depending on the specific target [67]. The selection 
of a sgRNA has to consider the 5′-NGG PAM for S.pyrogenes 
Cas9 (a necessary sequence for Cas9 to bind the target DNA) 
and the minimization of off-target activity. Besides that, to 
generate genetic knockouts, sgRNAs commonly target 5′ 
constitutively expressed exons to reduce the chances that the 
targeted region is removed from the mRNA due to alterna-
tive splicing [68, 69]. Also, if the U6 (most common) RNA 
polymerase III promoter is used to express the sgRNA, the 
first base of its transcript should be a guanine (G) nucleotide. 
So, an extra G is added at the 5′ sgRNA, in a way that the 20nt 
guiding sequence does not start with G [70]. Occasionally, 
some sgRNAs may not work, thus there is the need of having 
at least two sgRNAs for each locus and the need to test their 
efficiencies in the intended cell type [58]. The second stage (ii) 
is to choose the best vector. In recent years, several researchers 
have developed vectors encoding the components of genome 
editing systems for CRISPR in plants. The choice of the vec-
tors largely depends on the type of the expression system to 
work with, the restriction sites present to insert sgRNA, the 
sgRNA promotor (RNA polymerase III promotor) and the type 
of Cas9 system [71]. Several researchers have constructed dif-
ferent binary vectors that combine Cas9 endonuclease with 
the sgRNA, having the target gene sequence to induce modi-
fications in several plant genes via Agrobacterium-mediated 
transformation method [72–76]. Xing and colleagues [77] gen-
erated a toolkit to set one or more sgRNA expression cassettes 
into a CRISPR/Cas9-based binary vector, using a Golden Gate 
Cloning system to amplify sgRNAs [78], this useful toolkit 
targets the mutation of multiple plant genes. In 2015, other 
CRISPR/Cas9 vector was reported to allow efficient assembly 
of multiple sgRNA expression cassettes into a single binary 
CRISPR/Cas9 vector, only in one cloning round [79], by the 
Golden Gate Assembly [80] or Gibson Assembly [81]. In the 
same year, Lowder and colleagues [61] developed a tool that 
does not require a PCR and can be used for transcriptional 
regulation with Cas9 fusion in plants. At the same time, Wang 
and colleagues [82] generated a vector for multiple sgRNAs 
cassettes with an egg cell-specific (EC1) promoter, to express 
Cas9 and obtain non-mosaic T1 CRISPR/Cas9 plants, since 
the mosaicism for the target gene was a problem. To solve this 
problem and improve the Floral Dip efficiency, a recent study 
created a extremely efficient CRISPR/Cas9 vector, pKAMA-
ITACHI Red, using a RPS5A promoter to drive Cas9 [83]. The 
RP5A and EC1 promotors for Cas9 endonuclease are constitu-
tively expressed in the egg cells or early embryo stage. If the 
expression of Cas9 and its subsequent induction of mutations 
occur in the initial cells or embryos as these promoters allow, 
the mutations are transferred to the next generation cells, and 
then all or most of the plant cells, including the meristematic 
region, will induce this mutation [83]. The pKAMA-ITACHI 
Red has one more advantage to isolate Cas9-free plants, 
because it contains an OLE1–TagRFP (red fluorescent protein) 

that exhibits red fluorescence in seeds, creating an easier and 
faster selection method, when compared to a PCR reaction. 
Cas9 deletion is essential to avoid off-targeted mutations and 
undesirable mutations of a wild-type allele [83]. The third 
stage (iii) includes the cloning of the sgRNAs in the vector. 
As already mentioned above, some binary vectors were gener-
ated to allow efficient assembly of multiple sgRNA expression 
cassettes with the Golden Gate or Gibson Assembly [78, 80, 
81]. This method reports to its origins in 1996, when it was 
shown that multiple inserts could be assembled into a vector 
backbone using the type IIS restriction enzyme sequential or 
simultaneous activities together with T4 or T7 DNA ligase 
activities [84, 85]. Golden Gate or Gibson assembly is a flex-
ible, efficient and easy method to clone multiple fragments into 
a vector, ideal for CRISPR/Cas9 technology, and just needs 
a recognition site for type IIS restriction enzyme in the final 
vector and in multiple fragments (sgRNAs), and a T4 or T7 
ligase to assemble the fragments. This method works only in 
one tube and one-step [80]. The last stage (iv) consists in the 
delivery and expression of the vector into the plant. The most 
common method to transform plants with the CRISPR/Cas9 
final vector is Agrobacterium-mediated transformation, which 
introduces the T-DNA directly into the plant genome [86]. 
Cas9 and sgRNA expression cassettes can be easily cloned 
into Ti plasmid, transformed into Agrobacterium and further 
introduced into the plants, with the Arabidopsis Floral Dip 
method, where the egg cell is the target of the T-DNA [87–89]. 
Besides that, the most recent generated vectors of CRISPR/
Cas9 technology in plants have shown very positive results 
with the Floral Dip method [82, 83]. Therefore, this is an easy, 
efficient and fast method to obtain the transformed seeds that 
will give rise to the plants (T1 plants) with the desired edited 
genome.

Actually, the CRISPR/Cas9 technology is being used to 
obtain knockout mutants for several plant genes. Its effi-
ciency improvement to isolate knockouts of interest was 
achieved, being important to study plants genetic redun-
dancy, such as the case of AGPs [83]. However, there are 
still no mutants created by this technology to study the role 
of the AGPs large family, but the increasing interest in these 
proteins, together with the few available T-DNA lines and 
RNAi lines with visible phenotypes, it will not be long 
before the first CRISPR mutants are created to understand 
the functions of these glycoproteins.

CRISPR/Cas9 vs RNAi (advantages 
and disadvantages)

The most correct and usual approach to define gene func-
tion is to reduce or interrupt its normal expression. Dur-
ing the last decades, the RNAi technique, together with 
insertional mutants, has been intensively implemented to 
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discover the function of many genes. However, the emer-
gence of the CRISPR/Cas9 technology came to face these 
approaches. Nevertheless, while not able to completely dis-
rupt gene function, the use of knockdowns can offer numer-
ous advantages over knockouts. When intended to reduce 
gene expression only temporarily and if modification of 
the genetic code is undesirable, the best approach is RNAi-
mediated knockdown, because sRNAs in some generations 
may be lost. It is also advantageous if complete elimination 
of gene function is detrimental to the cell but a partial loss 
is not [21, 90]. When one intends to eliminate all variants of 
transcripts or families of whole genes, this is possible using 
a single sgRNA against exons that are conserved among all 
members of the family [91]. This is a very important point in 
studies of large gene families. The CRISPR/Cas9 technique 
allows genome editing which leads to precise and predict-
able modifications [90].

When AGPs are being studied, these two powerful tech-
nologies present some advantages and some disadvantages, 
as summarized in Fig. 3. The main differences are the off-
target activity, the length of the effect and the multiple 
genome editing. In these three cases, CRISPR/Cas9 is more 
useful because the off-targets can be eliminated, by design-
ing the best sgRNA and choosing the low off-target score 
[92] and high on-target score [93]. Furthermore, CRISPR/
Cas9 assures transmission of the heritable stable mutation 
[81, 82]. On the other hand, the RNAi technique may or 
may not generate offspring with reduced expression levels 
of the gene under study, because although the construct is 
transmitted to the next generation, the way that the RNAi 
mechanism acts is always different and sometimes the sRNA 
can be lost in the next generations [90]. The RNAi system 
turns out to be less reliable, and always necessary to check 
the expression levels of the gene of interest in all generations 
and in all plants, making it a more laborious and expensive 

method. However, it depends on the research goal, to choose 
a transient or permanent mutation [21].

To explore the role of gene family members with redun-
dant functions, mutations in multiple genes in normally nec-
essary. Therefore, the multiple genome editing is important, 
because it creates a mutation in multiple similar genes at the 
same time [81].

This review intends to show that both of these techniques 
are important and essential to understand the function of 
AGPs depending on the objective. RNAi has already proven 
its importance in discovering the roles of various AGPs, as 
mentioned in the previous section, and certainly, CRISPR/
Cas9 will similarly make it soon. Obtaining mutants for 
these glycoproteins using these techniques is easy and fast, 
Fig. 4. The AGPs genetic redundancy allows the comple-
mentarity of these two techniques [14, 94]. In addition, it 
is possible to create a higher order mutant by the two tech-
niques at the same time, in case double or triple knockout 
are not viable. Since most of the AGPs still do not have 
their function characterized, the application of these two 
techniques will be of great importance.

Conclusion

In recent years, the AGPs have been strong candidates for 
the performance of various functions in the most varied pro-
cesses of plant development, especially in the reproductive 
process, from the development of gametophytes to pollen-
pistil interactions, culminating in fertilization and seed for-
mation. However, the mode of action and signaling cascade 
of most AGPs is still to be unveiled.

Now is the time to unlock the functions of these glycopro-
teins by taking advantage of these new technologies, gene 
silencing and genome editing, such as RNAi and CRISPR/

Fig. 3   Summary of differences, advantages or disadvantages between RNAi and CRISPR/Cas9 techniques
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Cas9. In this review, it was clear that the two techniques are 
vital in studies with AGPs. The CRISPR/Cas9 revolution-
ized current biology, as it is a robust, simple and efficient 
technology that has opened a new door to genome editing. 
Several plant biology research groups already use this tech-
nology for distinct purposes, with the main goal of increas-
ing and improving agricultural productivity in the future. 
The application of CRISPR/Cas9 in the AGPs study, will 
allow to better understand the roles of these essential plant 
glycoproteins. The work developed for decades, by RNAi, 
grants that this technique continues to be essential to unravel 
the function of several genes, such as AGPs. The combina-
tion and comparison of results between these two techniques 
will be valuable in the future, especially in large families 
of genes as AGPs, where functional redundancy often is a 
problem.
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then transferred to a vector of choice using a Gateway cloning sys-
tem. Lastly, the construction is transferred into A. thaliana by the 
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qPCR may be used for confirmation of gene knockdown. For the 
CRISPR/Cas9 technique, the first step is to design the single guide 
RNA (sgRNA) with 20 nt (blue) and PAM sequence (red) in one of 

various online platforms (in this case, are shown two sgRNAs for 
target gene). The sgRNAs may be cloned into a binary vector which 
contains a Cas9 promotor, being ready to receive the sgRNAs. Mul-
tiple sgRNA expression cassettes can be cloned using a Golden Gate 
assembly (BsaI - IIS restriction enzyme). After cloning, A. thaliana 
plants may be transformed by the Floral Dip method and the seeds 
can be selected by red fluorescence (ex. pKAMA-ITACHI Red [83]). 
When the plants start to grow the genetic techniques such as PCR and 
Sequencing may be used for confirmation of gene knockout. (Color 
figure online)
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