
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Conversational Interface for
Webpage Code Generation

Luís Miguel Santos Monteiro Saraiva

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: André Restivo

Co-Supervisor: Hugo Sereno Ferreira

July 30, 2020

A Conversational Interface for Webpage Code Generation

Luís Miguel Santos Monteiro Saraiva

Mestrado Integrado em Engenharia Informática e Computação

July 30, 2020

Abstract

Since the creation of the World Wide Web in 1993, several languages were developed that permit to
specify the elements in the webpages and change their appearance. Furthermore, tech companies
and developers felt that it was required to create prototypes of the webpages before implementing
them. Before the creation of these prototypes, hand-drawn mockups are made to outline the
elements that will appear on the prototype as well as their position. After creating the prototype,
the designers and developers present the result to the client. In this step, the client can verify if the
prototype is according to his specification. In case that something is missing on the prototype, the
mockups and the prototype must be created again. The repetition of these steps can be an arduous,
time-consuming and a skill-intensive process. Easing this process would permit developers to
create more accurate prototypes.

Natural Language Programming allows developers to program using natural language. These
systems usually use a Speech Recognition (SR) and a Natural Language Processing (NLP) module.
The SR module transforms the user’s voice into text. The NLP component tries to understand what
was the user’s intention using the text that was obtained in the SR module. Due to the current
development of Artificial Intelligence, both modules were largely improved. However, until now,
these tools do not permit the generation of webpages. This thesis aimed at creating a tool to generate
webpages using natural language without designing its sketch.

Given the problems detailed above, we developed a conversational interface as an alternative
way to create web page prototypes, without needing HyperText Markup Language (HTML) and
Cascading Style Sheets (CSS) knowledge, and without creating a visual sketch of the website
beforehand. First, a domain-specific language was specified. This language allows creating elements
on a webpage, changing their appearance and it contains other functionalities that developers are
familiarised when creating software. Afterwards, the conversational interface was developed
using this domain-specific language. The conversational interface has a NLP module that permits
understanding the action that was requested to be executed by the user. After assessing what the
user’s intention was, the conversational interface executes the functionality that was requested.

Afterwards, the domain-specific language was validated by creating a questionnaire where
asking the participants to write commands that could replicate a webpage. The most used elements
in the answers were present in the domain-specific language as well as the most used properties
to change the appearance of the elements. Then, an experiment was conducted to evaluate the
developed conversational interface. The participants of this experiment felt that the domain-specific
language was not hard to understand and the ones that usually do not develop front end answered
that they would use this tool to develop prototypes.

We believe this work can influence how a prototype is developed by easing the arduous and
continuous task of creating mockups and transforming them into prototypes.

Keywords: Computer-aided Design, Conversational Interface, CSS, HTML, Natural Language
Processing

i

ii

Resumo

Desde a criação da World Wide Web em 1993, foram desenvolvidas várias linguagens para
especificar elementos nas páginas web e mudar a sua aparência. Para além disso, empresas
tecnológicas e programadores sentiram que era necessário criar protótipos das páginas web antes de
as implementar. Antes da criação do protótipo, são feitos desenhos à mão para definir os elementos
que irão aparecer na página web e a sua posição. Após a criação do protótipo, os designers e
developers apresentam o resultado ao cliente para verificar se o protótipo está de acordo com a
especificação. Se o protótipo não estiver de acordo com a especificação, os mockups e o protótipo
têm de ser refeitos. A repetição destes passos pode ser um processo árduo, demorado e exigente
pelo que é importante tornar este processo mais eficiente.

A Programação por Linguagem Natural incluem um módulo de Speech Recognition (SR) e um
módulo de Natural Language Processing (NLP). O módulo de SR transforma a voz do utilizador
em texto. O módulo de NLP pretende compreender qual foi a intenção do utilizador usando o
texto que foi obtido no módulo de SR. Devido ao desenvolvimento da Inteligência Artificial, foram
realizados progressos em ambos os módulos. Apesar disso, atualmente, estas ferramentas não
permitem a geração de páginas web. Neste trabalho foi criada uma ferramenta para gerar páginas
web usando linguagem natural sem ser necessário fazer esboços dessa página.

Dados os problemas previamente detalhados, foi desenvolvida uma interface conversacional
como uma forma alternativa para desenvolver páginas web sem ser necessário ter conhecimento de
HTML e CSS e sem ser preciso fazer um esboço da página web. Em primeiro lugar, foi detalhada
uma linguagem específica de domínio. Esta linguagem permite a criação de elementos numa página
web, mudar a aparência dos elementos e contêm outras funcionalidades com que os developers
estão familiarizados. Depois, foi desenvolvida a interface conversacional utilizando esta linguagem
específica de domínio. A interface conversacional tem um módulo de NLP que permite perceber
qual foi a ação cuja execução foi solicitada pelo utilizador. Depois de compreender essa intenção, a
interface conversacional executa a funcionalidade solicitada.

De seguida, a linguagem específica de domínio foi avaliada através de um questionário em
que foi perguntado aos participantes para escreverem comandos que poderiam replicar uma página
web. Os elementos mais utilizados nas respostas estavam presentes na linguagem específica de
domínio assim como as propriedades que permitem mudar a aparência dos elementos. Depois, foi
realizada uma experiência para avaliar a interface conversacional desenvolvida. Os participantes
desta experiência sentiram que a linguagem específica de domínio não era difícil de perceber e os
que normalmente não desenvolvem front end responderam que utilizariam esta ferramenta para
desenvolver um protótipo.

Ao finalizar este trabalho pensamos que ele pode influenciar a forma como um protótipo é
desenvolvido facilitando a árdua e contínua tarefa de criar esboços e transformá-los em protótipos.

Keywords: CSS, Desenho assistido por computador, HTML, Interface Conversacional, Processa-
mento de linguagem natural

iii

iv

Acknowledgements

Firstly, I want to express my gratitude to my Supervisor, André Restivo, and Co-Supervisor, Hugo
Sereno Ferreira, for their constructive feedback and time which permitted to improve the tool that
was developed and is explained in this document.

Secondly, I want to thank my friends, especially to Francisca and Mariana, for always motivating
me.

Finally, I wish to thank my family for always being in my side and caring for me. A special
thanks to my father for the revision of the thesis.

Luís Miguel Santos Monteiro Saraiva

v

vi

“Give me six hours to chop down a tree and
I will spend the first four sharpening the axe.”

Abraham Lincoln

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 Goals . 3
1.5 Hypothesis . 3
1.6 Thesis Structure . 3

2 Background 5
2.1 Architecture of a Conversational User Interface 5

2.1.1 Speech Recognition . 5
2.1.2 Natural Language Processing . 7
2.1.3 Text Synthesis . 9

2.2 Live Software Development . 9
2.3 Web Development . 10
2.4 Summary . 11

3 State of the Art 13
3.1 Interaction in Computer-aided Design Softwares 13
3.2 Conversational User Interfaces . 14

3.2.1 Chatbots . 15
3.2.2 Assistant Systems . 16
3.2.3 Conversational Interface Development Platforms 18

3.3 Hand-drawn mockup to Prototype . 19
3.3.1 Sketch2Code: Transformation of sketches to ui in real-time using deep

neural network . 20
3.3.2 pix2code: Generating Code from a Graphical User Interface Screenshot . 21
3.3.3 Generating a website from a paper mockup 22
3.3.4 Live web prototypes from hand-drawn mockups 24

3.4 Programming using Natural Language . 24
3.5 Conclusion . 25

4 Problem Statement 27
4.1 Problem Summary . 27
4.2 Proposal . 28
4.3 Fundamental Challenges . 29
4.4 Thesis Statement . 30
4.5 Research Questions . 30

ix

x CONTENTS

4.6 Validation Methodology . 31
4.7 Conclusions . 31

5 Implementation 33
5.1 Overview . 33
5.2 Domain-Specific Language . 33

5.2.1 Defining the operations of the chatbot 34
5.2.2 Definition of the commands, answers and questions 35
5.2.3 Entity Definition . 37
5.2.4 Domain-specific language Configuration file 37

5.3 Chatbot Implementation . 37
5.3.1 Server . 38
5.3.2 Client . 39

5.4 Conclusions . 45

6 Validation 49
6.1 Validation Methodology . 49

6.1.1 Domain-Specific Language Validation 50
6.1.2 Tool Validation . 57

6.2 Validation Threats . 60
6.2.1 Internal Validity . 60
6.2.2 External Validity . 63
6.2.3 Construct Validity . 63

6.3 Conclusions . 64

7 Conclusions and Future Work 65
7.1 Main Difficulties . 65
7.2 Main Contributions . 66
7.3 Summary Research Questions and Hypothesis 66
7.4 Future Work . 67

References 69

A Domain-Specific Language Configuration file 73

B Domain-Specific Language Questionnaire 83

C Webpages to Replicate in the Questionnaires 85

D Questionnaires Results 93

E Experiment Guide 97

F File with the Commands 103

G Expected results of the Experiment Problems 109

H Experiment Questionnaire 113

I Experiment Results 117

List of Figures

2.1 Architecture of an Automatic Speech Recognition System 6
2.2 Natural Language Processing Components . 7
2.3 First Website . 11

3.1 Process of creating a complex object in a CAD software 14
3.2 Command line feature in AutoCAD . 15
3.3 Hand-drawn mockup of a webpage . 19
3.4 Prototype of a web application . 20
3.5 From a hand-drawn mockup to prototype . 21

4.1 Expected result of the interaction between the user and the system 29

5.1 Webpage with conversational panel . 40
5.2 Adding an Element . 41
5.3 Removing an Element . 42
5.4 Changing the text property of an Element . 43
5.5 Changing the margin property of an Element . 44
5.6 Changing the colour property of an Element . 45
5.7 Colouring when selecting an element . 46
5.8 Making copies of an element . 47

6.1 Ten most used components . 54
6.2 Box and Whisker plot for all the components 55
6.3 Webpage asked to upload in the second task of the tutorial 58
6.4 Results of the questionnaire about the experience 62

I.1 Number of commands of each type that the each participant needed to complete
the Problem 1 . 118

I.2 Number of commands of each type that the each participant needed to complete
the Problem 2 . 118

xi

xii LIST OF FIGURES

List of Tables

6.1 Mean time and mean number of commands taken to complete each problem . . . 59

I.1 Time and number of commands that each participant required to complete each
problem . 117

xiii

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
CSS Cascading Style Sheets
GMM Gaussian Mixture Model
HMM Hidden Markov Model
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
LDB Local Discriminant Bases
LPC Linear Predictive Coding
MFCC Mel-Frequency Cepstral Coefficients
NLP Natural Language Processing
RNN Recursive Neural Network
SQL Structured Query Language
SR Speech Recognition
TS Text Synthesis
UI User Interface
URL Uniform Resource Locator
WWW World Wide Web

xv

Chapter 1

Introduction

1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 Goals . 3
1.5 Hypothesis . 3
1.6 Thesis Structure . 3

This chapter provides an introduction to this MSc Thesis by addressing its scope, motivations, and

goals. Section 1.1 outlines the problem associated with the creation of user interface prototypes.

Section 1.2 delineates the main drivers of this work. Section 1.3 introduces the issue tackled by this

thesis. Section 1.4 describes what this project aimed at achieving. Section 1.5 details the hypothesis

of this work. Lastly, Section 1.6 explains the organisation of the rest of the document.

1.1 Context

At the end of the 90 century, Tim Berners-Lee started working on the World Wide Web (WWW),

on the HyperText Transfer Protocol (HTTP), on the HyperText Markup Language (HTML), on the

first web browser and on the first web server. Nowadays, the WWW is used by the majority of

humans and can be accessed using a computer, laptop or smartphone.

Several languages that allow developing webpages were created since the creation of the WWW.

Some of these languages are HTML, Cascading Style Sheets (CSS), JavaScript, PHP and Structured

Query Language. These languages can be divided into two groups. The first group is composed

by the languages that permit the creation of webpages (HTML) and change how the webpage

looks (CSS) and how it can be interacted (JavaScript). These languages are normally used by front

end developers. The second group contains the languages that receive and send requests from the

webserver (PHP and SQL) which are used by back end developers.

1

2 Introduction

Normally, designers draw sketches of the webpages and then transform it into a intermediate

representation. Afterwards, front end developers create prototypes from these intermediate repre-

sentations. These sketches permit the designers to express their views in an easy way to understand.

The transformation of the intermediate representation to a web prototype gives the client a better

picture of how the website he/she asked will function. With this better understanding, the client

can verify if all the requirements he/she specified are considered and included in the design. This

four-phase process can be very time-consuming because it only ends when the client agrees with

the design that is presented to him.

After this procedure, the developers need to transform the mockups into a functional prototype.

During this transformation, some design flaws can be detected by the developers, which means that

the process mentioned previously must be iterated. This repetition indicates that even more time is

taken to complete the whole development process.

1.2 Motivation

As mentioned previously, designers utilise hand-drawn sketches to express their ideas more conve-

niently. This procedure permits them to express their proposals in a quick way. Afterwards, these

sketches are transformed in a intermediate representation that is sent to the developers. However,

wrong assumptions can be made while transforming the sketches into the intermediate representa-

tion and in the conversion of the intermediate representation to the prototype. So, the designers must

keep clarifying the mockups they draw which means they have a continuous communication with

the developers. If the developers make incorrect assumptions, the design that the client agreed upon

will probably not match the developed prototype. Therefore, the three-phase process explained

before must be repeated to correct the issues that were detected meanwhile. This repetition signifies

that it is taken more time and resources during the conception of a prototype. This ultimately means

that along this process, there can be fidelity problems in reflecting the client specifications in the

final webpages.

This continuous clarification of the mockups can be a tedious process. It also means that

designers have to continue working on the project until the creation of the prototype is completed.

Therefore, an alternative way to create web page prototypes, without needing HTML and CSS

knowledge, and without creating a visual sketch of the website beforehand (either digital or

analogue) was the primary motivation for this work. Another motivation was to create a tool that

permits persons with accessibility constraints to generate prototypes.

1.3 Problem

As mentioned previously, the current web page development process is time and resource consuming.

One of the most important tasks is the drawing of the sketches of the webpage. This phase can be a

tedious process because it will eventually have to be repeated numerous times.

1.4 Goals 3

A possible way to create web prototypes without previously requiring the creation of a hand-

drawn mockup is to use a conversational interface that enables the creation of web prototypes.

However, conversational interfaces face numerous challenges because machines do not effi-

ciently perform tasks such as interpreting natural language into logical representation intuitively as

humans can do. Another difficulty arises when the user does not provide all the required information

to perform a certain action. Furthermore, the conversation between the chatbot and the user should

not appear to be repetitive.

A conversational interface also requires the specification of a domain-specific language. This

language permits the chatbot to determine what was the intent of the user and to give an adequate

response. Some challenges arise when specifying a domain-specific language such as (a) the

language should not contain ambiguities, and (b) the users should easily comprehend the language.

1.4 Goals

As described above, the objectives of this work were to develop a tool that enables the creation of a

webpage without requiring the use of sketches. These objectives can be achieved by contributing to

the research field of prototype generation using natural language.

To achieve this goal, it was necessary to develop a software that has the ability of (a) obtaining

information from natural language, (b) developing all the required logic to execute the actions that

were interpreted in the previous step, (c) generate HTML and CSS code and (d) provide continuous

feedback of the actions that the user demanded to be executed. The program should be able to

translate a sequence of instructions into the final code by employing the necessary steps.

1.5 Hypothesis

In this work, we wanted to investigate if a conversational interface developed with the purpose of

generating webpages using a simple to understand domain-specific language is more pleasant to

utilise than the current forms to develop a prototype. We also wanted to analyse if front end and

back end developers would use such a tool.

1.6 Thesis Structure

Chapter 2 (p. 5) provides contact with the environment that supports this work. Chapter 3 (p. 13)

describes the current state of the art associated with the development of user interfaces through

natural language processing. Chapter 4 (p. 27) describes the issues and limitations of the existing

implementations and introduces the proposed solution and validation. Chapter 5 (p. 33) details

the tool that was developed. Chapter 6 (p. 49) describes the strategy that was used to validate the

work developed and the results obtained. At last, Chapter 7 (p. 65) addresses the current state of

the project, its goals and future work.

4 Introduction

Chapter 2

Background

2.1 Architecture of a Conversational User Interface 5
2.2 Live Software Development . 9
2.3 Web Development . 10
2.4 Summary . 11

This chapter introduces concepts that are fundamental to a good understanding of this thesis.

Section 2.1 explains the main techniques to experience a conversation with virtual software.

Section 2.2 addresses some methodologies whose objective is to give the users continuous feedback.

Section 2.3 presents the most relevant languages that developers use when developing a prototype.

Finally, Section 2.4 summarizes this chapter.

2.1 Architecture of a Conversational User Interface

The typical conversational user interface requires three components. The first is a Speech Recogni-

tion (SR) component that allows the software to convert the audio of the user into a text string. The

second is a Natural Language Processing (NLP) module that extracts the meaning of a text string,

and it is also able to generate a text string containing a response for the audio of the user. The last

piece is a Text Synthesis (TS) that transforms a text string into an artificial voice, doing precisely

the opposite of the SR component.

2.1.1 Speech Recognition

According to Yu et al. [YD16], Speech Recognition can be defined as the ability of a computer to

transform the audio of the user’s voice into a text string.

As shown in Figure 2.1 (p. 6), the underlying architecture of an Automatic Speech Recognition

(ASR) system is composed of four modules: Signal Processing and Feature Extraction, Acoustic

Model, Language Model and Hypothesis Search. These four items will be briefly addressed in the

next paragraphs.

5

6 Background

Figure 2.1: Architecture of an Automatic Speech Recognition System

The Signal Processing and Feature Extraction receives the audio signal as input and removes

the noises and channel distortions, enhancing the quality of the audio. Afterwards, it converts

the sound from the time-domain to the frequency-domain and obtains feature vectors that are

appropriate for the acoustic model. This component is a critical module in SR and has a notable

impact on the recognition performance.

The Acoustic Model incorporates information about acoustics and phonetics to create a score

for the variable-length feature sequence from the feature vectors that were generated by the previous

model.

The Language Model learns how words associate each other from a dataset and produces an

estimate of the probability of a hypothesised word sequence. This estimation can be more accurate

if the programmer knows the domain or task previously. Therefore, it is a probabilistic model that

is capable of predicting the next word on the sequence given the previous terms.

One way to improve the performance of ASR is to develop better language models. One of

the current methods to develop these models is to use Deep Neural Networks (DNNs), and more

specifically, Recurrent Neural Networks (RNNs). RNNs perform the same function for all inputs,

and the output of the current input will influence the next computation. So, to get a decision,

2.1 Architecture of a Conversational User Interface 7

the network takes into consideration the current input and the output from the previous input.

This property gives the RNN Language Models the potential to model long span dependencies.

Therefore, RNNs are becoming increasingly popular for language modelling purposes. However,

Sundermeyer et al. indicates that “recurrent networks are challenging to train and therefore are

unlikely to show the full potential of recurrent models.”

Finally, the Hypothesis Search merges the scores of the Acoustic Model and the Language

Model for the specified feature vector sequence and the hypothesised word sequence. The word

sequence that has the highest score is the output of this system.

2.1.2 Natural Language Processing

Figure 2.2: Natural Language Processing Components

According to Chowdhury [Cho03], developers face three crucial problems while creating

programs that understand natural language: the first one is associated to thought processes, the

second to the representation and meaning of the linguistic input, and the third to world knowledge.

Therefore, a pipeline for this type of programs can be defined. The pipeline starts by understanding

the morphological structure and nature of all the words. Afterwards, it can find the word order,

grammar and meaning of the entire sentence and then it will understand the overall environment of

the sentence. Certain words or sentences may have different meanings depending on the context

and can be related to other words or sentences in the given context.

Liddy [Lid98] and Feldman [Fel99] state that it is relevant to discern seven levels that people

utilise to understand natural languages. These levels are Phonetic Analysis, Morphological Analysis,

8 Background

Lexical Analysis, Syntactic Analysis, Semantic Analysis, Discourse Integration and Pragmatic

Analysis. A program that is capable of understanding natural language may use all or some of these

levels. The next paragraphs provide some details on these seven levels.

Phonetic Analysis handles pronunciation. It is utilised in speech recognition systems that

accept spoken queries or provide spoken documents. This process is crucial in voice recognition

systems. However, it is not essential for written text in information retrieval systems.

Morphological Analysis deals with the smallest parts of words that carry meaning, suffixes

and prefixes. Some examples are child (the stem for childhood, children and childish), the prefix

un- and the suffix -ation.

Lexical Analysis is used for part-of-speech tagging or the utilisation of lexicons. It is respon-

sible for the lexical meaning of words and parts of speech analyses. Therefore, it divides a text

into paragraphs, sentences and words. It also separates non word tokens such as punctuation from

words.

Lexical Analysis reads character streams from the source code, checks for legal tokens and

passes the data to the Syntax Analyser. This analysis is an essential part of NLP because it is in this

phase in which natural language is segmented into words. Therefore, the scanning and identification

of valid strings should be made by considering the language that is being used.

Usually, regular expressions are used in this step because they can express finite languages

by defining a pattern for finite strings of symbols. This method is viable because each pattern

corresponds to a set of strings.

Syntactic Analysis handles the grammar and structure of sentences. Thus, the focus of this

level is to find the correct order of words. The syntactic analysis of a text requires checking whether

the words in the text conform to the grammatical structure of the sentence.

A Syntax Analyser receives the part-of-speech tagging of the Lexical Analyser as input. It

analyses this input against the rules that integrate the grammar of the language to assign phrase and

clause brackets. This phase utilises Context-Free Grammars and outputs a parse tree.

Semantic Analysis deals with the meaning of words and sentences. Semantics understands

that several words can have different meanings that depend on the given context. Therefore, the

Semantic Analysis focuses on the literal meaning of words and sentences by abstracting the real

definition from the given context. Thus, a Semantic Analyser task aims at ensuring that the purpose

of the sentences is clear and consistent with the way they are supposed to be used. It can expand

the query by adding all synonymous equivalents of the query terms.

Discourse Integration handles with the structure of different kinds of text using document

structures. All different types of text have a defined structure. A newspaper article describes the

facts at the beginning and makes predictions about the effect of the events in the end. A technical

document starts with an abstract, detailing the contents of the paper. Discourse Integration utilises

this expected structure to recognise the specific role of a segment of information in a document.

Pragmatic Analysis addresses the knowledge that comes from the outside of the content of

the document. It tries to understand the user and his needs in the context and their goal. This can be

achieved by gathering all the knowledge we know about the world. However, this takes too long,

2.2 Live Software Development 9

and it is not easy to add new information quickly.

All these levels are interconnected. This interconnection means that, for example, the meaning

of a word in a sentence narrows the options of reasonable roles of the word within the sentence.

Context and syntax should cooperate for a better understanding of the meaning of words. For

instance, in the phrase "I watered the plant as soon as I got back to the house.", the word plant can

be either a noun or a verb. With Syntax Analysis, we understand that it is the object of the verb "to

water". However, we can narrow the meaning because it is unlikely that someone would water an

industrial plant.

2.1.3 Text Synthesis

Text Synthesis (TS) aims at generating an artificial speech from a given text. Rashad et al. [REBIM10]

explains that TS can produce this result in two steps. The first step is Text Analysis, where words are

transformed into a phonetic representation. The second step is the generation of speech waveforms,

where the phonetic representation from the previous step generates an acoustic output.

Text Analysis is typically composed of three components. The first module, Text Normalisation,

is responsible for pre-processing the input text, breaking it into sentences and dividing these

sentences into a sequence of tokens. The second component is Pronunciation which finds the

correct pronunciation for all the words. The majority of TS systems utilise a first pronunciation

lexicon and a name pronunciation lexicon. The combination of both lexicons enables the system to

find the correct pronunciations for all the words. The third component is a Prosodic Analysis that

makes the flow a sentence feel natural. Without this component, a speech would sound like reading

a list of words.

2.2 Live Software Development

Aguiar et al. [ARC+19] state that all development activities would benefit from increasing liveness

of the entire software. They continue saying that if there were smaller feedback loops between the

changes and the results, developers could accomplish better results in a quicker way.

Software development is known as the creation of software by the combination of several

tasks. This process is acknowledged as the software development lifecycle, and it includes several

functions as gathering and analysis of requirements, the design, implementation, verification and

maintenance of software.

Typically, the performers of these tasks are humans, which are likely to make mistakes. There-

fore, some methodologies propose quicker feedback to narrow the feedback loop between the

human and the software. Usually, these methodologies focus on programming and are in a category

known as Live Programming.

According to Burckhardt et al. [BFdH+13], Live Programming requires an environment where

the programmer can edit the code continuously with constant feedback. This methodology allows

developers to detect and solve problems in a quicker way compared with the common “edit-compile-

debug” style of programming. As claimed by Tanimoto [Tan13], in live programming, the program

10 Background

is running continuously, despite the occurrence of editing events. Tanimoto continues saying that

it is not necessary to execute everything in live programming because running the program can

distract the developer and it is not required to show intermediate states.

Spreadsheet software and visual languages usually provide live programming experience. In

spreadsheet software, data and formulas can be edit, and the consequence of these changes is

visualised immediately. Visual languages are programming languages that allow users to create

programs by adding, removing or editing program elements graphically. Several visual languages

are based on treating entities as boxes that can be related between themselves using arrows. However,

these languages are not expressive enough for more complex general-purpose programs.

Software that enables a developer to program with live programming requires at least a state

snapshot, a re-execution of the code that was changed and a re-displaying of the results. As

Burckhardt et al. says, it is difficult to determine what information to save, what code to re-execute

and which parts of the User Interface to maintain.

2.3 Web Development

In 1989, Tim Berners-Lee proposed to the European Organization for Nuclear Research an

idea [BLC90] that later would be known as the World Wide Web (WWW). During the following

years, Berners-Lee and his associates started working on the HyperText Transfer Protocol (HTTP),

on the HyperText Markup Language (HTML), on the first web browser and on the first web server.

Meanwhile, the first websites were also developed.

The first adopters of the WWW were mostly scientists, and at the beginning of 1993 there were

just fifty web servers in the world. During that year, the WWW was made available without any

royalties, which increased vastly the number of users. By the end of 1993, the number of web

servers increased to five hundred. Nowadays, the majority of humans can access the WWW with

their computers, laptops or smartphones.

Since the creation of the WWW, several programming languages were created aiming at

developing websites. Some of these languages are HTML, Cascading Style Sheets (CSS), JavaScript,

PHP and Structured Query Language (SQL). These languages are divided into two groups: the

languages that create (HTML) and change how the user sees and interacts with a website (CSS and

JavaScript) also known as front-end languages and the back-end languages that handle requests to

and from the webserver (PHP and SQL). To develop a prototype, developers normally just utilise

front-end languages.

HTML was the first language to be created to develop websites. The initial version, HTML

1.0, contained 18 elements1 which allowed developers to program the first websites. However,

these websites were not aesthetically pleasing, as it can be seen in Figure 2.3 (p. 11). Around 1994

several style sheet languages for website development were proposed. These languages enabled the

developer to change the aspect of the website. Due to the increase of style sheet languages, in 1996

the World Wide Web Consortium (W3C) released the first W3C CSS Recommendation. Therefore,

1http://info.cern.ch/hypertext/WWW/MarkUp/Tags.html

http://info.cern.ch/hypertext/WWW/MarkUp/Tags.html

2.4 Summary 11

the group of persons that were responsible for developing the standards of the WWW suggested

that developers should use CSS to alter the way that the websites look like.

Figure 2.3: First Website

CSS was proposed in 1994 by Håkon Wium Lie, and it differentiates from the other style sheet

languages because the HMTL elements are modified based on who specified the change, on the

specification of the component and its position. In 1996, it was released CSS 1, but it had several

limitations, and it was not supported by the majority of the browsers. Thus, the developers of CSS

started developing a new version, CSS 2, that was released in 1998. This new version solved many

of the problems of CSS 1 and added new functionalities that allowed changing the aspect of the

website. By 1999, almost every web browsers achieved near-full implementation of CSS 1, and

the same happened in 2003 for CSS 2. In 2011, it was published a revision of CSS 2 termed as

CSS 2.1. This revision fixed some errors of CSS 2 and added some extensions that were already

implemented in web browsers. Immediately after the publication of this revision, work on CSS 3

started. CSS 3 is divided into multiple documents called modules. Each one of these modules adds

new features or improves some functionalities of CSS 2.

A website is a collection of webpages, and the user can navigate from one webpage to another

using links. Websites are published on a server, and a user can access them using a web browser,

also called a client. Although the essential function of a server is to serve contents, they are also

capable of receiving contents from the clients. This functionality is used for submitting web forms,

including uploading of files.

2.4 Summary

This chapter described significant concepts that support the understanding of this thesis. The

knowledge of the components that are required for developing a Conversational User Interface

12 Background

was introduced. It was also presented the concept of Live Programming and described the main

languages to build a prototype.

Chapter 3

State of the Art

3.1 Interaction in Computer-aided Design Softwares 13
3.2 Conversational User Interfaces . 14
3.3 Hand-drawn mockup to Prototype . 19
3.4 Programming using Natural Language . 24
3.5 Conclusion . 25

This chapter describes the state of the art for the creation of a conversational interface that can

reduce the prototype development cycle. Section 3.1 introduces some methodologies to help

humans to design objects. Section 3.2 explains the leading implementations of conversational

user interfaces. Section 3.3 describes methodologies that transform hand-drawn mockups into

prototypes Section 3.4 details methodologies that enable developers to program using natural

language. Finally, Section 3.5 summarises the main conclusions from this analysis.

3.1 Interaction in Computer-aided Design Softwares

Computer-aided design (CAD) software helps designers to create, modify, analyse and optimise a

design. CAD software is utilised in several areas of engineering, such as electrical and mechanical.

AutoCAD 1, SolidWorks 2 and Blender 3 are some of the most well known CAD software tools of

this type.

This type of software typically allows the designer to add new components to the design and

change them in an iterative way, and the results of each action are shown almost immediately.

These functionalities enable the designer to verify if the design is according to the specifications. If

it is not, the designer can easily change the drawing. These features are the main reasons for the

popularity of this type of software because their use increases productivity, and it improves the

quality of the design.

1autodesk.com/autocad
2www.solidworks.com
3https://www.blender.org

13

autodesk.com/autocad
www.solidworks.com
https://www.blender.org

14 State of the Art

The users can easily create prisms, cylinders and spheres, for example, and add or remove

forms continuously. This process is the equivalent of fitting together several parts of one object or

cutting the object. An example of this process is shown in Figure 3.1.

Figure 3.1: Process of creating a complex object in a CAD software

Some CAD software allows the designer to create objects using a command line. This command-

line has a strict set of commands. This command-line shows possible instructions and options to

the user. However, this feature can not be classified as a conversational interface because it does

not provide any kind of feedback to the user. Furthermore, it is also not possible to write sentences.

The users are only able to write the commands that were specified. Figure 3.2 (p. 15) shows the

command line feature in AutoCAD.

3.2 Conversational User Interfaces

A conversational interface is a system that allows a more natural interaction than a graphical

interface. Bieliauskas et al. [BS17] explains that this is due to the fact that conversational interfaces

enable the same interactions that humans have between each other. These software tools attempt to

3.2 Conversational User Interfaces 15

Figure 3.2: Command line feature in AutoCAD

understand natural language (speech or text) and to perform actions based on the input of the user.

There are two kinds of conversational interfaces: chatbots and assistant systems. Sections 3.2.1 and

3.2.2 describe the current state of chatbots and assistant systems, respectively. Section 3.2.3 details

some platforms where programmers can develop their own conversational interface.

3.2.1 Chatbots

A chatbot is a specification of an assistant system, in other words, a chatbot is designed for more

specific tasks instead of general ones like an assistant system. Typically, a chatbot can perform more

complex actions because it retains information about the interactions executed previously. This

system is generally integrated inside other platforms. Some of the most acknowledged platforms

that contain a chatbot are Slack and Skype.

Usually, chatbots accept text as input but, in some cases, voice can also be used. Furthermore,

chatbots are able to ask questions to the users and answer questions made by the user. According to

Abdul-Kader et al. [AKW15], a chatbot tries to reply with the smartest response to the input the

user entered, and this process continues until the conversation ends. This answer can be either text

or speech.

Abdul-Kader also indicates that the development of a chatbot can be divided into three parts:

the recognition and conversion from speech to text, the processing of the text and the response and

the execution of the corresponding action. The first component receives the digital signal captured

from the microphone. Then it converts this signal into text. The text translated in this step is used in

the second phase, where it is split into words. Afterwards, keywords can be extracted by removing

unwanted words. At last, a chatbot can give an answer to the input that was entered by the user.

The chatbot can also execute an action according to the input.

16 State of the Art

According to Klopfenstein et al. [KDMB17], some of the advantages of chatbots are the instant

availability because they run immediately as a conversation starts. Chatbots also have a gentle

learning curve. Typically, users write text which means that learning how to interact with the

chatbot is not hard if the chatbot provides sufficient advice of its features.

Rahman [RAMI17] divides the chatbot platforms into three categories:

Nonprogramming chatbots: This type of chatbots do not require advanced programming

skills. Their objective is to be not concerned about technical details. Chatfuel, ManyChat

and Motion.ai are some chatbots of this category;

Conversational-Oriented Chatbots: This type of chatbot is able to establish a more dy-

namic conversation with the users. This kind of chatbots use a specification language to

model their interactions;

Chatbots by tech giants: Google, Facebook, Microsoft, Amazon and IBM are developing

their own chatbots. These companies also provide platforms that enable programmers to

develop chatbots. These platforms are described in Section 3.2.3.

Rahman continues saying that there are two main challenges when developing a chatbot. One

of these challenges is Natural Language Processing. The chatbot must realise that “What is the

weather?” and “Could you check the weather?” are similar questions. The other challenge is that

the chatbot should learn the correct response for each of the possible questions. This learning can

be achieved by using artificial intelligence concepts. Rahman also concludes that developers should

consider the stability, scalability and flexibility of the chatbot system while developing it.

Shawar et al. [SA07] concluded that there should not be a standard evaluation methodology to

validate a chatbot system. Instead, the evaluation should check if the chatbot accomplishes the task

it is meant to achieve.

3.2.2 Assistant Systems

Assistant systems are software solutions that allow users to speak or write and can comprehend

the intentions of the user. Therefore, these systems must combine Speech Recognition (SR),

Natural Language Processing (NLP) and Text Synthesis (TS) to be able to do such actions. These

systems are designed to handle all types of questions. Consequently, they often integrate third-party

functions. Some of the world’s largest companies have developed their smart assistants such as

Google’s Assistante4, Apple’s Siri5, Amazon’s Alexa6 and Microsoft’s Cortana7 [LDF20].

As mentioned previously, these software tools enable the user to enter text as input and, at the

same time, they also allow voice as input. Although the user does not need to use any physical

4https://assistant.google.com/
5https://www.apple.com/ios/siri/
6https://developer.amazon.com/alexa
7https://www.microsoft.com/en-us/cortana

https://assistant.google.com/
https://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-us/cortana

3.2 Conversational User Interfaces 17

device, it is required a microphone to enable the interaction between the user and the system. This

feature is one of the main characteristics of the assistant systems because it gives an extra flexibility

to the users, and it provides a natural means of communication.

Each of the smart assistants developed by the world’s largest tech companies mentioned

previously has its specific features. Despite this, all of them are very similar: they respond to

questions based on information that can be found on the internet, they also execute simple tasks

and can utilise third-party services. Developers were able to implement in these bots the ability

to correlate individual phrases to extract a standard line of thinking or, in other words, assistant

systems have conversational awareness. Thus, developers were able to incorporate an essential

component of human communication to an assistant system.

With the advancement of conversational technologies, having a conversation with a smart

assistant is becoming very similar to having a conversation between two humans.

Currently, every mobile or computer user can have access to one good assistant system. The

most popular smart assistants are:

Google’s Assistant: The main focus of the Assistant is to give information to the user

without asking for it. It also aims at providing personalised recommendations with the data

gathered from the calendar events, the traffic to the user destination and other information. It

also enables users to make hands-free cellphone calls by integrating third-party services. The

Assistant is integrated into products that are related to Google such as Android smartphones,

Pixel laptops and Google Home hardware.

Apple’s Siri: Siri provides several hands-free features to its users. Apple integrates Siri

with their smart home products, which gives its users the ability to interact with their home

systems without touching it. Siri is embedded in all Apple mobile devices.

Amazon’s Alexa: Alexa enables users to search the web or the systems that are connected

with it. Alexa also connects with the Amazon marketplace. Therefore, users can purchase

items from other Amazon services. It is possible to communicate with Alexa through

Amazon’s hardware or mobile apps.

Microsoft’s Cortana: Cortana grants their users the ability to perform web searches, set

reminders, recognise music, and it can make predictions. Cortana was created for Windows

10, Windows 10 mobile, Windows Phone 8.1, Invoke smart speaker, Microsoft Band and

Xbox.

Smart assistants can be beneficial and easy to use. They also provide an alternative to standard

input devices due to their ability to utilise voice as an input method. Therefore, individuals with

accessibility constraints can utilise them. Thus, they can be handy when the objective is to develop

software that is planned to be used by persons with accessibility constraints.

18 State of the Art

3.2.3 Conversational Interface Development Platforms

The development of conversational interfaces can be executed by everyone that has the required

skills to do so, like all software applications. This development can be simplified if the developers

include open-source Application Programming Interfaces (APIs) and libraries that handle the main

difficulties of these systems, which are speech recognition and natural language processing.

Nowadays, several platforms help developers to create their chatbots. The most well known

conversational interface development platforms are Dialogflow8, Amazon Lex9, IBM Watson

Assistant10, Wit.ai11, Azure Bot Service12. All the bots that can be generated through these

platforms allow the user to interact through voice and text-based conversational interface. Except

for Wit.ai, all the development platforms mentioned before provide an easy way to use web

interfaces that allow the user to efficiently create and deploy bots. They are also able to understand

the intent, entities and meaning from the user’s input. The bot’s responses to the user input can

change based on the examples given by the developer.

The bots that are created in the platforms mentioned previously can be easily integrated

into applications such as Slack and Facebook Messenger. Therefore, developers can set aside

the development of an interface between the chatbot and the users and focus entirely on the

conversational component of the bot.

Focusing on Dialogflow, it is a product owned by Google that provides developers with a

platform to create conversational interfaces.

To develop a chatbot in this platform, the programmer must define the intents that stand for a

user query. As an example, to specify the intent of a user saying “hi”, the developer needs to create

an intent that allows “hi” as user input. Afterwards, the developer must specify the output response

for the intent that was created. Then, through machine learning, Dialogflow generates phrases that

are equivalent to the intents that were created. Thus, the bot can answer to a broader range of user

inputs.

The developer can also specify entities, which are structures that correspond to changeable

segments of user sentences that can have distinct values. The value of the entity can be useful if the

response of the bot depends on it, which means that the bot can accept even more user queries.

The web user interface of Dialogflow allows the developers to specify the intents and entities.

The processing of the user queries occurs in Dialogflow’s backend. Nevertheless, developers can

send queries to the bots through external APIs and manage them differently.

The sophisticated natural language features that are implemented in Dialogflow and the different

applications where the bot can be integrated, explain why it is one of the most used platforms for

chatbot development.

8https://dialogflow.com/
9https://aws.amazon.com/lex/

10https://www.ibm.com/cloud/watson-assistant/
11https://wit.ai/
12https://azure.microsoft.com/en-us/services/bot-service/

https://dialogflow.com/
https://aws.amazon.com/lex/
https://www.ibm.com/cloud/watson-assistant/
https://wit.ai/
https://azure.microsoft.com/en-us/services/bot-service/

3.3 Hand-drawn mockup to Prototype 19

Figure 3.3: Hand-drawn mockup of a webpage

3.3 Hand-drawn mockup to Prototype

One of the objectives of this work was to create a tool that permits designers to create prototypes

in a quicker way. This objective was addressed in several works such as Jain et al. [JAB+19],

Robinson [Rob19], Beltramelli [Bel18] and Ferreira et al. [dSF19]. These four works aim at

reducing the duration of the development of a prototype by transforming a hand-drawn mockup

into a prototype.

A hand-drawn mockup illustrates the content, features, and links that will be displayed on the

page. It also aids designers to generate a prototype of the web page and helps programmers to

understand the features and their working on the web page. Figure 3.3 shows a hand-drawn mockup

of a webpage.

After creating the hand-drawn mockup, designers generate a prototype of the webpage. A

prototype is a product that is created to test the different functions of the website before continuing

developing the website. It also permits to identify mistakes in an easier way. Clients can visualise

the website that is being created in a design more user-friendly. Figure 3.4 (p. 20) shows a prototype

of a web application.

20 State of the Art

Figure 3.4: Prototype of a web application

The works mentioned previously, transform a hand-drawn mockup into a prototype by utilising

Deep Neural Networks (DNNs) to detect the objects that were drawn in the mockup. Then, they

identify the corresponding User Interface (UI) element for each object. Finally, they generate a

prototype using the result obtained previously.

3.3.1 Sketch2Code: Transformation of sketches to ui in real-time using deep neural
network

Jain et al. [JAB+19] mentioned the main problem of generating a prototype from a sketch and

divided it into three sub-problems. The first one is to recognise the objects in the hand-drawn

mockup and to define bounding boxes for each detected object. The objects inside these bounding

boxes are associated to a corresponding User Interface (UI) component. The bounding boxes can

overlap some times, and the second sub-problem solves this issue. The last sub-problem is to

generate the prototype with the elements previously identified.

These authors utilise a DNN based object classifier to tackle the first sub-problem where they

map the input image with a set of elements. The training of the DNN can be done independently of

the language or platform because of this mapping. It is also in this phase in which the bounding

boxes are displayed in the image.

These authors utilised hand-drawn mockups from several persons as the dataset to train the

DNN. In these sketches, ten UI elements were used. According to Jain et al., these were identified

as the most common elements on several websites and UI applications.

Jain et al. continues saying that the built DNN was based on the RetinaNet object detection

architecture because of the better accuracy regarding other detection models as a result of the novel

loss function. This loss function, which is called focal loss, outperforms other loss functions when

training difficult to classify examples. Additionally, using Feature Pyramid Networks [LDG+17],

the DNN can classify the elements and define the bounding boxes in one stage.

3.3 Hand-drawn mockup to Prototype 21

The result of the first sub-problem is a list of coordinates for the bounding boxes that delimit

the UI elements on the mockup and a confidence score for each box. It is also added a prediction

for the component inside each bounding box.

The overlapping of bounding boxes can occur if two elements are near each other or if one

component is recognised as two different elements. The first case can typically happen if the sketch

contains a form because it is usual to have buttons near text. They also identified that specific

elements usually appear together. The DNN can misinterpret the image which originates the second

problem. One example of this case is a check-box with a label that can also be interpreted as a

check-box with a title.

The solution to this problem is to modify the output of the first sub-problem checking if the

overlap is lower than 50% or not. If it is, then it is verified if the two elements detected are present

in a dictionary containing pairs of common elements that overlap and if they usually are represented

through properties or parent components. In the case that a couple of elements is present in the

dictionary, the elements are represented as a component that contains both elements. In the case

that the pair of elements is not in the dictionary, the elements are expressed according to the result

of the dictionary. If the overlap is higher than 50%, it is just kept one of the components according

to a priority list.

The last sub-problem uses the list without conflicting bounding boxes to generate the prototype.

The notation utilised in the UI representation does not vary from the one utilised to develop

HyperText Markup Language (HTML) files. These authors deployed a UI parser using React13 in a

NodeJS server. The file containing the prototype is an HTML document.

Figures 3.5a, 3.5b, 3.5c show a hand-drawn mockup, the prediction of the DNN and the result

obtained. These figures were obtained from the website develop by Jain et al.14.

(a) Hand-drawn mockup (b) Prediction
(c) Result

Figure 3.5: From a hand-drawn mockup to prototype

3.3.2 pix2code: Generating Code from a Graphical User Interface Screenshot

Belmatrelli [Bel18] also divides the problem into three sub-problems. The first sub-problem is the

same as the first sub-problem of Jain et al., that is, identifying the objects present in the image and

their corresponding elements and positions. The second sub-problem is to define a domain-specific

13https://www.npmjs.com/package/react
14https://sketch2code.azurewebsites.net/

https://www.npmjs.com/package/react
https://sketch2code.azurewebsites.net/

22 State of the Art

language that easily describes the results obtained in the first sub-problem. The final sub-problem

is to combine the other sub-problems and generate a textual description of the objects detected in

the first sub-problem using the language of the second sub-problem.

Belmatrelli utilised a Convolutional Neural Network to solve the first sub-problem because this

Neural Network is capable of performing unsupervised feature learning by mapping an input image

to a learned fixed-length vector. First, they resize the input images to 256 x 256 pixels, and the

values of the pixels are normalised. Then, the images are fed in the Convolutional Neural Network.

They encode each image to a fixed-size output vector by using small receptive fields. Belmatrelli

continues saying that the width of the first convolutional layer is 32, followed by a layer having a

width of 64, and the last layer has a width of 128. The vision model is complete when two layers of

size 1024 are fully connected.

According to Belmatrelli, they utilised a domain-specific language to describe the UI. It was

selected a part of all elements that can be created to have a simple domain-specific language. The

defined language utilises brackets to establish a hierarchy. The children elements of one parent

element are inside a block. They used a Long Short-Term Memory neural architecture because

traditional Recurrent Neural Networks are not able of modelling relations as the one described

previously.

The model was trained by feeding an image and a contextual sequence of tokens as inputs.

The Convolutional Neural Network encodes the image into a vector. The series of inputs is

encoded by the Long Short-Term Memory language model into an intermediary representation.

The vision-encoded vector and the language-encoded vector are combined into a single vector

which is provided to a second Long Short-Term Memory model that decodes both representations.

Therefore, this decoder gains knowledge on the relationship between the objects present in the

image and the corresponding tokens present in the domain-specific language code. The output layer

of the second Long Short-Term Memory model contains the same number of cells as the size of the

vocabulary.

The get the domain-specific language code of an image, it is provided to the model the image

and a sequence containing 48 tokens which are empty. The last symbol of this sequence is a unique

token, < START >. The model utilises this token to start the prediction and uses the predicted token

to update the next series of symbols. This process is repeated until another unique token, < END >,

is generated by the model. The generated code can be compiled to the desired target language.

3.3.3 Generating a website from a paper mockup

The main objectives of Robinson’s work [Rob19] was to create an application which translates

a hand-drawn mockup into code and to compare classical computer vision techniques with deep

learning methods. The tool developed by Robinson required a dataset containing sketches of

websites, but such dataset was not available. Therefore, Robinson decided to find sites and

automatically sketch them.

Robinson focused on finding pairs of a sketch version of the website as well as the corresponding

code of the website. During this process, he identified six problems:

3.3 Hand-drawn mockup to Prototype 23

1. Hand-drawn mockups have a smaller element set than HTML;

2. In wireframes, the style does not vary while in a webpage there can be several styles for

elements;

3. Sketches are static, and the structure of a website can be modified using JavaScript;

4. Wireframes and webpages contain a structure. However, webpages also include content

which can modify the structure;

5. HTML sometimes is invalid or poorly formatted which reduces the quality of the dataset;

6. There can be several HTML representations for the same structure.

In order to address these problems, he developed a process to normalise the website where each

one of these problems was solved. The first problem was solved by grouping elements of the same

type. The second one was solved by replacing all styles from the elements with consistent values.

The third problem was tackled by merely disabling the JavaScript. He changed the width of the

elements to a fixed amount in order to solve the fourth problem. The extraction of the websites

consisted of normalising a webpage, screenshotting the normalised website, extracting the elements,

and deducing the structure of the webpage.

Afterwards, he created 18 sketches for each of the five classes of elements that were selected,

and for each website, he replaced all the elements by a corresponding mockup that was chosen

randomly. He also transformed the sketches by making a translation, rotation and scaling of the

element but not so large as to change the structure of the website. The dataset consists of 1750

sites which were normalised and screenshotted. Afterwards, the structure was obtained, and it was

generated the sketch for each website.

Then, he developed a framework that receives an image and removes the background from the

sketch. It also eliminates noise from the picture due to lighting and rotates the image to be ready

to feed the part of the pipeline where the objects of the image are identified and recognised. The

result of this step is a code in a domain-specific language that represents the wireframe, and it is

translated to HTML code. Afterwards, the website is updated.

He implemented two approaches to identify the objects and compared the results obtained by

both. The first method uses computer vision to detect the elements. This method is composed of

four phases. First, the elements are recognised and then their position, size and type are classified.

Secondly, it is generated a hierarchy tree from all elements. Thirdly, containers are identified to

create a correct structure. The last step is to correct errors that were made in the sketch. The second

approach utilises deep learning to translate a wireframe into a domain-specific language code. An

Artificial Neural Network was used to learn how an image of a wireframe relates to a picture of the

result. This Neural Network can be used to translate the image of a wireframe to a structured image

which is similar to a normalised website. This structured image is used to classify the elements and

containers.

24 State of the Art

3.3.4 Live web prototypes from hand-drawn mockups

As describe previously, DNNs need a large amount of data, and there are not available datasets

containing sketches. So, Ferreira [dSF19] implemented a synthetic mockup generator to fix this

problem. This generator can create images of hand-drawn mockups that simulate the drawing of a

human.

This simulation starts by creating a canvas that has a fixed width and height. Then, it is

calculated the width and height of cells by multiplying a fixed value by a random amount which

means that each sketch differs from the others. Afterwards, the canvas is divided into cells, and

since some space can be unused, this space is used to calculate an offset for the starting point of the

working area. The working area is composed by the space that all cells occupy in the canvas. The

next step is to assign containers to cells. These containers must contain at least two cells. Then, it

is defined the area for each element, and it is placed a random element. The last step is to draw the

corresponding elements in the assigned place. To make the mockup look like it was designed by a

human, the points that define the shape of the element can suffer a small translation. Additionally,

instead of having straight lines between the points, it is applied a distortion on some points of the

line.

A pipeline that acquires the image and then detects the elements presented in the picture was

created to transform the sketch into a prototype. After this step, the program makes a hierarchical

reconstruction and, finally, generates the HTML and CSS code. During the image acquisition phase,

the image obtained is transformed into a high contrast version due to the use of high contrast image

in the training of the DNNs. It was utilised You Only Look Once (YOLO)15 to detect the elements

of the mockup and a combination of Pix2Pix16 and YOLO to identify the containers.

The hierarchical reconstruction phase receives a list of objects detected as input without any

order. Firstly, the objects that are in the same container are aggregated and are set as children of the

container. Afterwards, the elements that the work classifies as annotations are joined together with

the associated container. Then, using overlapping techniques, check-boxes and radio buttons are

joined with the corresponding texts. Next, the pipeline identifies elements that are near each other

and that are of the same kind and groups them. Finally, the elements are aggregated into lists "to

generate a more concise and aligned hierarchy."

The last step of the generation of the prototype is to create the HTML and CSS code using the

hierarchy defined in the previous step. The creation of the code starts in the root of the hierarchy

and continues using a deep-first algorithm. If a container has annotations, CSS tags are generated

according to these annotations.

3.4 Programming using Natural Language

According to Rosenblatt et al. [RCHB18] and Arnold et al. [AMG00], it is necessary to develop

tools that enable users with upper-body restrictions to program. The solution to this problem is to

15https://pjreddie.com/darknet/yolo/
16https://phillipi.github.io/pix2pix/

https://pjreddie.com/darknet/yolo/
https://phillipi.github.io/pix2pix/

3.5 Conclusion 25

use speech recognition.

Rosenblatt et al. [RCHB18] developed an editor that allowed to program using code. According

to them, this editor allows users with upper-body restrictions to program quickly and precisely.

This editor is a web application that contains two components: an automatic speech recognition

and a syntax parser. The user speech is recorded and recognised by the editor. Afterwards, the

recognised speech is then passed to a syntax parser.

Arnold et al. [AMG00] developed a generator for voice recognition programming environments.

The input of this generator is the context-free grammar of a programming language. The generator

outputs a programming environment where the developer can use his voice to write programs. This

programming environment contains a voice recognition system that aids the programmer by giving

automatic completion of the program text.

Cozzie et al. [CK12] developed a non-deterministic version of a traditional natural language

programming system. This program generates all equivalents for the natural language input and

verifies if one of them passes in a unit test created by the developer. It also has a probabilistic model

that permits handling large problems with several rules. The system generated correctly 55 of the

69 test problems.

Price et al. [PRZH00] developed a program to understand the instructions that were given by

the user without having to know the exact syntax of the programming language. However, the

program only supports a subset of Java and only handles written natural language.

According to Begel [Beg04], most of the existing software that allows programming using

natural language require too much input to search and navigate in the program. He also says that

searching and navigating in this software is too slow and is more complicated than using a mouse

and a keyboard. Therefore, he developed a system that allows writing Java programs using a more

natural language. This language is semantically identical to Java.

3.5 Conclusion

Since the creation of the first CAD system, it dramatically changed how engineers and designers

work. These tools contributed to shorten the duration of the development of a product and also

lowered the product development costs. Some of these software permits the creation of objects

using a command-line such as AutoCAD.

Rahman [RAMI17] explains that there are three types of chatbots. The Nonprogramming

Chatbots that do not require advanced programming skills such as Chatfuel and ManyChat. The

Conversational-Oriented Chatbots have more dynamic conversations with their users because they

utilise a domain-specific language. Finally, there are the Chatbots developed by tech giants.

Nowadays, some of the largest technology companies in the world are developing their own

smart assistants, for instance, Google’s Assistant, Amazon’s Alexa and Apple’s Siri. Additionally,

some of these companies allow developers to create their bots by using the same system that the

companies use in their intelligent assistants. Some of these systems are Dialogflow, Amazon Lex

26 State of the Art

and IBM Watson Assistant. This strategy enables companies to gather more data to validate their

systems.

There are some works that aim at transforming sketches of webpages to prototypes. These

works aim at reducing the duration of the development cycle of a prototype. These works utilise

DNN’s to detect the objects that are present in the sketch.

Finally, speech recognition is being used to permit persons with upper-body restrictions to the

program. These works recognise the voice of the user and translate it into text. Afterwards, the text

goes through a parser that is able to determine the command that the user intended to execute.

Chapter 4

Problem Statement

4.1 Problem Summary . 27
4.2 Proposal . 28
4.3 Fundamental Challenges . 29
4.4 Thesis Statement . 30
4.5 Research Questions . 30
4.6 Validation Methodology . 31
4.7 Conclusions . 31

This chapter describes the limitations of the current solutions to improve the efficiency of the

developing cycle of a web page prototype and presents a possible approach to tackle these problems.

Section 4.1 details the problem definition. Section 4.2 presents the proposed solution. Section 4.3

explains the main challenges that are associated with the problem. Section 4.4 presents the thesis

statement. Section 4.5 details the research questions that were addressed in this work. Section 4.6

explains the validation methodology used to measure the impact of this work. Finally, Section 4.7

summarizes the problem statement and the solution that was implemented.

4.1 Problem Summary

The development of a prototype of a website is a time-consuming and challenging process. Design-

ers represent their ideas in hand-drawn mockups while communicating with the client. Then, the

designers transform these sketches into an intermediate representation that is used by programmers

to create the prototype of the webpage. Afterwards, the client evaluates if the prototype has the

functionalities he/she asked for and some adjustments may be included. The repetition of this cycle

means that resources and time are wasted. Therefore, reducing the duration of the development of a

prototype is essential both for the company and the client.

Despite this problem being addressed by transforming images of mockups into prototypes [JAB+19,

Bel18, Rob19, dSF19], this type of software uses a small portion of the elements that can be created

in a webpage. Furthermore, the designer still has to do a sketch of the website, and he/she can only

27

28 Problem Statement

change the appearance of the elements after the prototype being generated. Therefore, designers

should keep clarifying the mockups, which can be a tedious process.

4.2 Proposal

This project aimed at developing a conversational interface that allows the programmer to create a

prototype without requiring a mockup. This work also involved the creation of a program to enable

users to visualise the effect of their actions immediately.

The program should allow the user to add and eliminate HyperText Markup Language (HTML)

elements to the prototype that is being developed. Additionally, users should be allowed to change

the visual aspect of the elements. Therefore, the program should be able to change the position

of the elements easily. Another requirement is to permit the user to retrieve the final HTML and

Cascading Style Sheets (CSS) code. One possible sequence of interactions between the user and

the program is detailed below:

User: “Add a container”

Program: “Adding a container”

User: “Add a p”

Program: “Adding a p”

User: “Change text”

Program: “What is the text?”

User: “Lorem Ipsum is simply dummy text...”

Program: “Changing text to Lorem Ipsum is simply dummy text...”

User: “Go back to the container”

User: “Add an image”

Program: “Image added.”

User: “Change source to img.jpg”

Program: “Changing source to img.jpg”

User: “Go back to the container”

User: “Same row”

Program: “Changing same row”

User: “Download files as example”

4.3 Fundamental Challenges 29

Program: “Downloading files as example”

In this example, the program adds a container in the first place. Inside the container, there must

be a paragraph and an image side by side. There should be a text inside the paragraph, and the

source of the image is img.jpg. In the end, the program should download the HTML and CSS

files that contain the result of these interactions. The visual result of these operations is shown in

Figure 4.1.

Figure 4.1: Expected result of the interaction between the user and the system

Additionally, the result of these operations must be shown to the user almost immediately.

Otherwise, the user would not be able to evaluate and analyse the result of his actions quickly.

4.3 Fundamental Challenges

The ability that humans have to understand the meaning of a book, a paragraph, a sentence or even

a word is, nowadays, taken for granted. To utilise machines to do this intrinsic ability that humans

have means that some difficulties and challenges must be addressed and solved. The problem

becomes even more challenging because code must be generated from the user input in a way that

it gives the user immediate feedback. Therefore, this work required an understanding of various

areas and many decisions were assumed. The following paragraphs detail some of the challenges

that were addressed in this work:

1. The definition of a domain-specific language. A domain-specific language was defined

before implementing the software. This language should be easy to comprehend, and it

should not be ambiguous. It should also allow users to do the same operations that they can

do with a keyboard and a mouse.

2. Understanding the context of the user input. During a conversation between humans, it

is possible to comprehend sentences that require an understanding of the previous phrases.

However, machines do not easily perform this task.

3. The acceptance of operations that modify the aspect of elements. Users can easily add

and remove CSS code with conventional input devices. So, the software should allow

operations that result in changing the appearance of the elements.

30 Problem Statement

4. Show almost immediately the result of the operations. Live programming is difficult to

implement. However, this project should implement it to fulfil its objectives.

5. Non repetitive interaction. One of the most difficult aspects of creating a conversational

interface is to make it non-repetitive.

4.4 Thesis Statement

In this work, it was admitted that a conversational interface developed with the purpose of generating

webpages allows the creation of complex webpages in a short amount of time. Therefore, the

following hypothesis was proposed for this work:

“A conversational interface that allows the generation of complex webpages using an easy

to understand domain-specific language is more comfortable to utilise than the current forms of

developing a prototype.”

4.5 Research Questions

From the thesis statement specified above, there are some research questions that emerge. The

following list contains the research questions:

RQ1: Are users able to create a complex webpage using a conversational interface?

It is not clear that a conversational interface is adequate for the creation of complex web

prototypes. We addressed this question by developing a chatbot that permits the generation

of complex webpages and by evaluating this tool with developers.

RQ2: Is it possible to specify an easy to understand domain-specific language aiming at

generating webpages?

A domain-specific language is required to develop a conversational interface. This domain-

specific language should replicate the actions that developers can execute while writing

HTML and CSS code. We answered this question by creating a domain-specific language and

by executing an experience that permitted the participants to interact with the conversational

interface.

RQ3: Would front end developers use a conversational interface to develop webpages?

Front end developers can develop web prototypes by transforming manually or automatically

hand-drawn mockups. We assessed if front end developers would consider a conversational

interface to develop web prototypes instead of the forms described previously.

RQ4: Would back end developers use a conversational interface to develop webpages?

Back end developers usually do not develop web prototypes. One reason is that creating

prototypes is a time and resource-consuming task. We assessed if back end developers would

4.6 Validation Methodology 31

start developing prototypes if they used a conversational interface.

4.6 Validation Methodology

As previously described, the main goal of this project was to develop a conversational interface that

is capable of generating a prototype of a webpage.

Therefore, a domain-specific language that contains the possible actions that the user can do

in the conversational interface was defined. This language was evaluated in two phases, (1) get

possible descriptions of websites and compare them with the defined language and (2) determine if

the defined language is easy to comprehend.

The conversational interface was also evaluated to determine what is the opinion of the users

and if they would use it. This evaluation was done by testing the tool with users and ask them to

create some webpages in order to follow their actions and assess the obtained results.

4.7 Conclusions

The goal of this project was to propose a domain-specific language to be used to perform operations

on the layout of websites and a conversational interface where these operations can be executed.

The user executes these operations using a conversational interface that was developed. The result

of these operations must be shown almost immediately to the user.

As a result of this work, we developed a domain-specific language and a conversational interface

that when paired enables the creation of webpages.

32 Problem Statement

Chapter 5

Implementation

5.1 Overview . 33
5.2 Domain-Specific Language . 33
5.3 Chatbot Implementation . 37
5.4 Conclusions . 45

This chapter describes how the problem explained previously was addressed and details how the

fundamental challenges were overcome.

Section 5.1 outlines the main aspects of the implementation by introducing technologies

and strategies used to handle the various problems faced during the development of this project.

Section 5.2 explains the possible interactions between the user and the chatbot. Section 5.3 describes

how the chatbot was implemented and its details. Section 5.4 includes a number of comments on

the implementation.

5.1 Overview

The first step in developing a chatbot is to specify the domain-specific language. Afterwards, the

program that generates webpages using a chatbot can be developed. During the development of this

program, it is required to receive the commands written by the user and interpret and understand

the associated meaning. If the user does not provide all the necessary information for the chatbot

to perform a specific action, the chatbot must be able to ask for this information. When all the

required data is gathered, the chatbot should then execute the intended action.

5.2 Domain-Specific Language

Sections 5.2.1, 5.2.2 and 5.2.3 explain how the domain-specific language was defined. Section 5.2.1

details the operations that the user can perform. Section 5.2.2 explains the commands entered by

33

34 Implementation

the user for each operation as well as the questions and answers given by the chatbot. Section 5.2.3

describes some entities that were defined to aid defining the domain-specific language.

5.2.1 Defining the operations of the chatbot

There should be a corresponding command to the actions that programmers can perform while

writing a program. Thus, it can be assumed that the chatbot will be able to Add HTML elements

to the webpage. Since mistakes can occur when creating a webpage, the chatbot needs to have

intentions that allow us to fix these errors. So, a Remove intention has to be included to enable the

user to delete the element which is being edited, and a Undo intention can also be added to allow

the user to reverse the effects of the last command. In a computer program where a undo intention

is available, a Redo intention also exists.

At this point, the user can create an element in a webpage, but he/she can not change how

it looks like or add a text to it. Thus, the chatbot must be able to Change the appearance of the

elements or modify the text content of the element or if, it is an image, the source of this image.

Consequently, several intentions can be added to allow the user to change the margin or to change

the text content of the current element or to change the source of the image.

Now, the user can create a website, change the appearance of the elements and delete the current

elements. However, the user does not have a way to fix errors on an element after passing to a

new one. Therefore, the user should be able to change the element which is being edited to fix this

problem. An intention that can be defined as Select can be added. Programmers can also create

elements inside of other elements, generating a hierarchy. So, the chatbot must allow the user to

move from an element to its parent and vice-versa. This means that two more intentions called

Enter and Exit are included. One of the requirements is to get the final HTML and CSS files which

means that one more intention must be defined that can be termed as Download.

As of this moment, some commands that will aid the user during the creation of the website

can be added. Thus, we can have an intention that allows the user to Save the current webpage as a

project and one to Open a previously saved project. The chatbot can also have an Upload intention

that enables the user to change the webpage according to a provided HTML and CSS file and an

Upload Image intention that permits the user to upload an image to the server. It can also be added

an intention that allows the user to Make a certain number of copies of the current element as well

as an intention to show the possible commands that the user can write depending on the current

state termed as Help. It was also implemented a functionality that allows the user to distinguish the

created elements. This functionality can be enabled with the Show Borders intention and disabled

with the Hide Borders intention. Finally, it is necessary to include an intention that allows the user

to invalidate the current action in the case that the chatbot asks him for an entity that he/she did not

give in the initial command and he/she no longer wants to perform this action. This intention is

termed as Cancel.

5.2 Domain-Specific Language 35

5.2.2 Definition of the commands, answers and questions

After defining the intentions that determine what operations the chatbot can execute, it is necessary

to identify the commands entered by the user and the answers given by the chatbot for each

intention.

5.2.2.1 Add

So, for the Add intention, there are several possibilities for the instruction such as "Add h1" or "Add

navbar" or "Add image". These examples demonstrate that this command requires an entity that

determines the elements that the user wants to create. After deciding on the commands for the Add

intention, it must be chosen an answer for this command which can be "Adding ELEMENT", where

ELEMENT is the element specified by the user. This means that the answer changes according to

the element specified in the command. If the user does not provide the element in the instruction,

the chatbot must ask for it, and a possible question is "What element do you want to add?".

5.2.2.2 Select

The command for the Select intention can be "Select h1" or "Select navbar" or "Select image".

These alternatives depend on what the user wants to select. Since the elements that can be created

must be the same as the elements that can be selected, the Select intention utilises the same entity

as the Add intention.

The commands described previously only work to create one element of each type. So, the user

should provide an ordinal to pinpoint the element and the command changes to "Select ORDINAL

ELEMENT". The answer given by the chatbot will depend on the element and the ordinal provided

in the command and can be, for example, "Selecting ELEMENT ORDINAL". In the case the user

does not write an element, the chatbot should ask "What element do you want to select?". If the

user does not provide an ordinal, but there is only one element of the type he/she wants to select,

the chatbot should not request anything. However, if there are more than one, the chatbot should

make the question: "Which one?".

5.2.2.3 Change the Appearance

The commands that allow Changing the appearance of the webpage should be divided according

to the type of value they require. For example, to change the colour of the text in an element, it is

necessary to provide a hexadecimal code and to change the margin of an element. Several values

can be accepted to change the margin, such as 1em, 0.5px, 2rem and 1.5%. Therefore, one intention

can handle the attributes that require hexadecimal such as colour, background colour and border

colour. Another intention can take care of the attributes that need an URL, for example, the source

of an image and the logo of the navbar and another one can be used to manage the attributes that

require values such as margin, padding, width and height.

36 Implementation

Three more intentions were created, one to handle the attributes that require text like text-align,

border, the name for the navbar and the text for the elements. Another one allows the user to change

the links of the navbar. This intention must be different from the one associated with the text

attributes because the number of links can vary. And, finally, one intention for the attributes that

do not require any value such as a command that allows the user to have multiple elements on the

same row and another command that does the same but on the same column. For these intentions,

the command was the attribute that the user wants to modify, followed by its value. The answer

given by the chatbot can be "Changing ATTRIBUTE to VALUE", where the user provided the

ATTRIBUTE and the VALUE. If the user does not provide the value or the value provided does not

match the type of the attribute, the chatbot should ask for it, and the answer depends on the attribute

given by the user. If the type of value is colour, the chatbot asks "What is the hexadecimal of the

colour?". The chatbot asks "What is the URL of source?" if the type is an URL. If the user does

not provide value to the margin and padding attributes, a default value was adopted. The question

associated with the width attribute is "What is the value of the width?", and a similar one was used

for the height attribute. "What is the text of ATTRIBUTE?" is the question asked when the attribute

is of the text type. If the user wants to change the links of the navbar, it is first asked how many

links the user wants to specify and, afterwards, it is asked the text for the link as many times as the

number previously given.

5.2.2.4 Make

If the user wants to Make copies of the element he/she is currently editing, he/she can use the

command Make followed by the number of copies he/she wants to obtain. The chatbot answers

saying "Making NUMBER copies", where NUMBER is the number of copies. If the user does not

provide a number, the chatbot asks for it with the question "How many copies?".

5.2.2.5 Download, Save and Open

The Download, Save and Open intentions are almost the same because the user can give the name

of the intention followed by any word. If the user just gives the name of the intention, the chatbot

asks for the word with the question "What name to give to the files?", "What name to give to the

project?" and "What project do you want to open?" for the Download, Save and Open intentions

respectively. The answer given by the chatbot is "Downloading NAME", "Saving NAME" and

"Opening NAME" for the Download, Save and Open intentions accordingly, where NAME is the

word provided by the user.

5.2.2.6 Remaining intentions

The Enter, Exit, Undo, Redo, Clear, Upload, Upload image, Remove, Cancel, Help, Show
Borders and Hide Borders intentions are almost equivalent because the user does not need to give

any more details apart of the name of the intention. Therefore, there are not questions associated

with these intentions. The answer given by the chatbot is the name of the intention followed by the

5.3 Chatbot Implementation 37

suffix -ing with the exception of the Undo and Redo intentions where the answer equals the name

of the intention.

5.2.2.7 Alternative definition of the commands

The commands entered by the user can be the ones explained previously or phrases containing

these commands. For example, the user can write "change margin to 1em" instead of "margin

1em" or "edit margin". The commands "download files as example" and "download example" are

equivalent. This functionality approximates the conversation that a user can have with the chatbot

to the communication between two humans.

5.2.3 Entity Definition

From all elements that can be created in a webpage, the following ones were selected to be included

in the domain-specific language: h1, h2, h3, h4, h5, h6, navbar, p, button, div, container,

form, input, unordered list, ordered list, list item, image, label, span and

footer.

There are several attributes that enable changing the appearance of the elements, and just a part

of these attributes were selected which are: border, border style, type, text (lets the user

change the text of the element), text align, name (allows the user to change the name of the

navbar), logo (permits the user to change the logo of the navbar), source, margin, padding,

height, width, border width, colour, background colour, border colour, same

row, same column and links (allows the user to change the links of the navbar).

Finally, it is necessary to have an entity to handle all the values accepted by margin, padding,

width and height. This entity is termed value.

5.2.4 Domain-specific language Configuration file

Appendix A (p. 73) shows the file that contains the specification for the domain-specific language

defining the entities, specifying the intentions as well as the commands entered by the users,

detailing the questions asked by the chatbot and the given answers. This file is used to configure

the chatbot when the server is started.

5.3 Chatbot Implementation

The chatbot was divided into two parts, one that handles the recognition of the commands entered

by the user and returns the appropriate answer or question. This part was developed in a server using

NodeJS, and it was utilised a Node package called Node-Nlp1 to recognise the intention and other

vital information from the command entered by the user. This package enables the programmer

to classify the intent of an utterance and to get an answer from this intention. It can also return a

1https://www.npmjs.com/package/node-nlp

https://www.npmjs.com/package/node-nlp

38 Implementation

question if a piece of information is not in the utterance. The second part of the chatbot is an HTML

page that contains several Javascript files where there are functions that send the commands written

by the user to the server and receives the question or answer that was obtained by the Node-Nlp

package. In these files, it is also executed the intended action of the command written by the user.

The user can write the intended actions on a chat, where he/she can also see the questions of the

chatbot. In this conversation panel, it is also shown information that helps the user to understand

how the chatbot works.

Section 5.3.1 describes the implementation of the Server and the respective files. Section 5.3.2

explains how the JavaScript part of the chatbot was developed.

5.3.1 Server

As previously indicated, it was utilised a package called Node-Nlp to allow the developer to define

the intentions of the commands entered by the user, the phrases that determine a specific intention

and the answer for a particular intention. This package also permits to define entities which allow

the developer to establish a correlation between several words that have the same meaning for the

chatbot. The commands entered by the user and the answers given by the chatbot can contain

entities. The developer also can write questions in case the user enters a command, but the command

does not have an entity that is required.

After defining the domain-specific language, several functions were developed to read the

file with the domain-specific language and to add all the information to the Node-Nlp framework.

Then, it was done a validation in order to check if all the commands work as expected. When this

validation was finished, it was noticed that the Text attribute, the Link, the Download, the Save, the

Open, the Select and the Cancel intentions did not work as planned. In the next paragraphs, we will

detail the reasons for the detected problems and how they were fixed:

1. the Select was not working properly because this intention needs to access the webpage in

order to check how many elements of the type the user wants to select;

2. the Cancel intention was being recognised, but it did not behave as expected, so it was

necessary to alter the results obtained from the Node-Nlp in order to fix this problem;

3. the remaining intentions did not work properly due to the fact that the Node-Nlp was not

capable of recognising entities that can be any word. For example, when a user wants to

modify the text of an element, any word after the text command should be accepted. In

order to correct this problem, a number of checks were done after getting the result from

the Node-Nlp framework to assess if the intention obtained is equal to one of the described

previously. If so, the result obtained is modified according to the intention acquired.

Then, it was created a server whose primary function is to receive the commands written by the

user in the conversational panel and return the appropriated answer or question. When a command

5.3 Chatbot Implementation 39

is received, it is checked in the first place if the user wants to create an element or not. If he/she

wants to do so, then it is verified if the command contains the word "with". If so, the command

is split into two parts with the centre in the word "with". The first part of this split contains the

information for the Add intention, and the second part contains additional commands specified by

the user that are executed after the creation of the element. All the commands specified by the user

are pushed to a stack that contains the commands to be interpreted. If the user does not want to

Create an element or the Add command does not include the word "with", the command is simply

pushed to the stack. Subsequently, all the commands are interpreted, consecutively. If the result of

this interpretation is a question, the server returns the question to the client. Otherwise, the result is

pushed to a stack that contains all the results that were obtained. When this procedure finishes, the

stack with the results is sent to the client.

The server also needs to include functions to save projects and open them. When the server

receives an order to save a project, it creates a folder with the name of the project, and it also creates

two files with the HTML and CSS code that were sent by the chatbot. The uploaded images are also

copied to a folder inside the project. When the user requested to open a project, the server starts by

reading the HTML and CSS files inside the project with the name that was requested. Afterwards,

the server copies the images to the appropriated location and sends to the client the HTML and

CSS code.

When the server receives the order to upload the HTML and the CSS files, it uses a package

called htmlparser22 to interpret the HTML code and sends the result to the chatbot. When it is

requested to upload an image, the server saves the file in the proper folder.

5.3.2 Client

To allow a faithful representation of the actions that the user is able to perform in writing a webpage

in HTML and CSS, it was decided to create a webpage that would have an input where the user

could write the commands and a place where he/she can see all the messages of the conversation.

This conversational panel should not occupy any space of the webpage to develop, in other words, it

should allow the creation of elements that can fill the whole width of the page and should be at the

front regarding the elements of the webpage to develop. Otherwise, this conversational panel would

have an impact on the webpage to create. The user should be able to change this panel from one

side to another and to minimise it, to permit the user to have a better understanding of his actions.

Figure 5.1 (p. 40) shows the webpage created with the conversational panel on the right side of the

image.

As described previously, several Javascript functions were developed to send to the server the

commands entered by the user, to receive the responses and to execute the intended actions. When

the received response is a question, the chatbot writes it in the conversational panel immediately.

However, if the user wants to change the appearance of the element but he/she did not provide

the required value, the question is slightly modified to incorporate the name of the element that

2https://www.npmjs.com/package/htmlparser2

https://www.npmjs.com/package/htmlparser2

40 Implementation

Figure 5.1: Webpage with conversational panel

the user wants to change and then it is added to the conversational panel. As an example, if the

question is "What is the hexadecimal of colour?" and the current element is an h1, the question will

be changed to "What is the hexadecimal of colour for h1?". This slight difference gives a more

human aspect to the question.

Later, a series of checks were created to determine the correct action to be executed by the

chatbot from the result obtained from the server. This can be verified with the first word of the

result because it is different for all the intentions. Then, it was implemented a class using the

command pattern to allow the user to perform the Undo easily and Redo intentions. This pattern is

only implemented for actions that will change the webpage, which are the Add, Select, Remove,

Change, Make, Enter and Exit intentions. Then it was implemented another class that handles all

the functionalities of the chatbot. These functionalities include adding one element to the webpage,

changing the appearance of one element, removing one element, selecting one element and making

copies of one element.

The following sections describe how the operations that the user can execute were implemented.

5.3.2.1 Add and Remove

When adding an element to the webpage, the chatbot creates the element request using the Javascript

functionality to create elements and then appends this element to the element which the user is

currently editing. Afterwards, the current element is added to an array containing the path from

the central element of the webpage to the current element. The user is only permitted to interact

with the webpage inside of this primary element. While creating the new element, it is also added

an orange border to it, to identify better the element the user is working at the moment. It is also

5.3 Chatbot Implementation 41

created an object of a class responsible for storing all the CSS code of the elements, and this object

is added to an array. The process of removing an element from the webpage consists of removing

the child elements in the first place. The corresponding objects that store their CSS are also deleted.

Afterwards, the element the user requested to remove and the associated object with its CSS is

removed. The parent of the element which was removed becomes the element which the user is

editing.

Figure 5.2 shows the result of adding an element to the webpage and Figure 5.3 (p. 42) illustrates

the result of deleting this element.

Figure 5.2: Adding an Element

5.3.2.2 Change the Appearance

When changing the appearance of the elements, in the first place, it is checked if the action can be

performed by all elements or it is specific for a type of element. For example, it is only allowed to

change the type property if the user is editing an input element and it is only permitted to change the

source of an image if the user is currently working in an image element. If it is a property that can

be modified by all the elements, it is changed the style property of the current element and added

the change to the object that stores the CSS. However, if the user wants to change the name, logo or

links of the navbar, it is necessary to change the HTML code of the navbar by adding or changing

a part of the HTML code of the navbar. If the user requested to change the type of input or the

source of an image, this property is modified. If the user wants to change the text of the element,

first the element must be one of the following: h1, h2, h3, h4, h5, h6, p, button, li, span and label.

Secondly, it is changed the property textContent of the element to the value written by the user.

42 Implementation

Figure 5.3: Removing an Element

Figure 5.4 (p. 43), Figure 5.5 (p. 44) and Figure 5.6 (p. 45) illustrate the result of changing the

text, the margin and the colour of an element, respectively.

5.3.2.3 Select

To select an element of the webpage, in the first place all the elements of the type that the user

wants to select are gathered. Then, if there is only one element or if there is more than one element

and the user specified the element he/she wants to select with an ordinal, the chatbot starts the

process of changing the current element. However, if there are several elements and the user did

not specify the element he/she wants, all the elements of the type the user requested are coloured

and then the user is asked which element he/she wants to select. As illustrated in Figure 5.7 (p. 46),

elements that have the same parent are coloured with the same colour but with a different colour of

its predecessors or successors, if they exist. After the user specifies the element he/she wants, the

chatbot starts the process of changing the current element. This procedure consists of changing the

orange border from the element that the user was editing previously to the selected element. It is

also modified the path from the central element of the webpage to the current element by iterating

the selected element until it is reached the main element.

5.3.2.4 Make

To make copies of the same element, in the first place it is created a copy of the element that the

user wants to copy, and then the id of the element and the child elements, if they exist, are changed.

Afterwards, the copy is added to the webpage. This process is repeated until the number of created

copies equals the number specified by the user. Then, the current element is changed to the last

created copy as well as the orange border.

5.3 Chatbot Implementation 43

Figure 5.4: Changing the text property of an Element

Figure 5.8 (p. 47) shows the result of making two copies of one element.

5.3.2.5 Exit and Enter

The Exit command allows the user to change the current editing element to the parent of the element

the user was working. In the first place, it is removed the orange border of the previous element,

and then it is updated the path that keeps track of the elements that exist from the current element

to the main element of the webpage. Then, it is added an orange border to the parent element. It is

also added a yellow background colour to the element that the user was previously working if the

user wants to enter inside this element again. Thus, the Enter action adds the element with a yellow

background colour to the path and then it modifies the colour of the borders of the element that the

user was working and of the element that the user will work onwards.

5.3.2.6 Cancel, Clear and Download

The Cancel action does not have any effect on the client-side. The Clear intention removes all the

elements created and resets the chatbot as if anything had happened. The Download action gets the

elements inside the main element and then returns an HTML file with a webpage containing these

elements inside of the body tag. It also retrieves all the CSS code stored in the objects detailed

previously and returns a CSS file containing this code.

5.3.2.7 Undo and Redo

As described previously, all the actions that change the webpage or the chatbot variables are

executed using the corresponding command. Using this approach simplifies the implementation of

44 Implementation

Figure 5.5: Changing the margin property of an Element

Undo and Redo actions. The Redo executes the same action with the same values, and the Undo

action does the opposite action of the previously performed action. So, for example, the Undo

action for the Add intention is to remove the element that was created, and the Undo action for

changing the appearance of the element is to change the same attribute to the previous value.

5.3.2.8 Show Borders, Hide Borders, Upload and Upload Image

A class from the main element is removed when the user requests to hide the borders of the elements.

The appearance of these borders is a default option that permits a better visualisation of the position

of the elements that were created. To enable this functionality, the class removed previously is

added. When the user wants to upload an HTML and CSS file, it is first asked the user to select the

two files, one at a time. Then, both files are read, and their content is sent to the server. When the

server sends its response, the CSS file is interpreted using a library named CSSJSON3. With these

results, the chatbot can add all the elements on the HTML file with the corresponding CSS code of

the element. The process of uploading an image is similar to the operation of uploading the HTML

and CSS file, but instead of sending a text containing the content of the file, it is sent a file with an

image.

5.3.2.9 Save and Open

When the user wants to Save the current project, the HTML and CSS codes of the current webpage

are sent to the server as well as the name for the project. When the user requests to Open a project,

3https://github.com/aramk/CSSJSON

https://github.com/aramk/CSSJSON

5.4 Conclusions 45

Figure 5.6: Changing the colour property of an Element

the project that the user wants to open is sent to the server. When the server responds, the chatbot

can easily recreate the webpage using the same functions of uploading an HTML and CSS code.

5.3.2.10 Help

It was also developed a Help functionality that allows the user to ask for aid and the answer obtained

from the chatbot depends on the element which is being edited. This functionality was implemented

using the Template Method pattern, which permits each category of elements to have their own

help function.

5.3.2.11 Speech Recognition

Finally, instead of writing the commands, it was added the ability to specify them in an oral way

using the Speech Recognition library in JavaScript. This functionality is enabled by clicking on the

microphone button on the conversational panel. This functionality allows the user to have a more

natural level of interaction with the chatbot.

5.4 Conclusions

This chapter described the details regarding the definition of the domain-specific language. It was

discussed the implementation details of the chatbot, which contains nineteen possible intentions.

This chapter also addressed some aspects that allow the chatbot to have some human characteristics

in its conversation as the help functionality that varies according to the current element, the ways

that the user has to write the same command and the possibility of interacting with the chatbot in

46 Implementation

Figure 5.7: Colouring when selecting an element

an oral way. There were some difficulties while developing the domain-specific language and the

tool. One of these difficulties was to develop a tool that would not have a repetitive interaction with

the users.

5.4 Conclusions 47

Figure 5.8: Making copies of an element

48 Implementation

Chapter 6

Validation

6.1 Validation Methodology . 49
6.2 Validation Threats . 60
6.3 Conclusions . 64

This chapter describes how the domain-specific language and the developed tool were validated, and

the results gathered in Section 6.1. Section 6.2 describes the threats of the validation methodology

that was utilised. Finally, Section 6.3 contains a number of final comments over the methodology

used and the results obtained.

6.1 Validation Methodology

This section explains how the domain-specific language and the developed tool were validated.

In the first place, a questionnaire was sent to programmers and designers to validate the domain-

specific language. Afterwards, a controlled experiment was executed to evaluate the tool that was

developed. With these two steps, we seek to answer the following research questions:

RQ1: Are users able to create a complex webpage using a conversational interface?

RQ2: Is it possible to specify an easy to understand domain-specific language aiming at

generating webpages?

RQ3: Would front end developers use a conversational interface to develop webpages?

RQ4: Would back end developers use a conversational interface to develop webpages?

Section 6.1.1 explains how the domain-specific language was validated and presents the obtained

results. Section 6.1.2 describes how the tool was evaluated and demonstrates the results that were

gathered.

49

50 Validation

6.1.1 Domain-Specific Language Validation

A questionnaire was developed to determine if the domain-specific language contained the most

common elements in a webpage as well as the properties that change the appearance of the elements.

With this questionnaire, it was also intended to identify what commands the participants would

use in a conversational interface and if these commands were present or had an equivalent in the

developed domain-specific language.

6.1.1.1 Experimental Paramaters

The questionnaire that was prepared aimed at determining if the language that was specified

contained the HyperText Markup Language (HTML) elements that the users usually create as well

as the Cascading Style Sheet (CSS) properties. Another objective was to identity what commands

the participants would use.

Experiment: A questionnaire was sent to the participants. The participants were asked to

write commands that would replicate a certain webpage.

Participants: Ten answers were obtained to this questionnaire. Nine of the participants

had a background in computer science, and the remaining one had a background in design.

Due to the short amount of time available to get the feedback, the participants were mainly

acquaintances or indicated/suggested by acquaintances.

Duration: The users were not required to complete the task in a certain amount of time.

Procedure: The users were divided into four groups. Each group had to replicate a certain

webpage.

Environment: All of the experiments were executed in a remote environment. The users

were not observed doing this experiment.

Data: All the commands written by the participants were gathered.

6.1.1.2 Task

The participants needed to analyse a webpage and write commands that the chatbot would be able

to comprehend in order to generate the webpage. Appendix B (p. 83) shows the questionnaire that

was sent to the participants. In this scope, four similar surveys were created. The only difference

between the four inquiries was the webpage that was requested to be replicated. The main reason to

create four questionnaires with one question each instead of one study with four questions was to

reduce the time needed to fill it. The four webpages that were asked to be replicated are shown

in Appendix C (p. 85). With the combination of these four webpages, a more extensive list of

commands was identified, turning this task more accessible and more efficient when compared with

the result if just one webpage was analysed by all the participants.

6.1 Validation Methodology 51

6.1.1.3 Results

Ten responses were received to this questionnaire, and each one of them was analysed. This

analysis was done by interpreting each one of the commands that were written by the participants

and identifying the elements that were used as well as the properties that change the appearance of

the elements. Finally, it was also determined:

1. If the functionality or element or CSS property was possible to be executed;

2. If there was an equivalent functionality or element or CSS property;

3. If it was not possible to execute that functionality or element or CSS property using the

domain-specific language described in Section 5.2, p. 33.

From the answers given to the questionnaire, 21 elements were identified. The following list

specifies these elements.

1. Paragraph or Text: The domain-specific language contains this element;

2. Div: The domain-specific language contains this element;

3. Input: The domain-specific language contains this element;

4. Title or Headings: The domain-specific language contains this element;

5. Button: The domain-specific language contains this element;

6. Br or Separator: The domain-specific language does not contain this element;

7. A or Links: The domain-specific language does not contain this element;

8. Footer: The domain-specific language contains this element;

9. Container: The domain-specific language contains this element;

10. Image: The domain-specific language contains this element;

11. Navbar: The domain-specific language contains this element;

12. Header: The domain-specific language does not contain this element;

13. List: The domain-specific language does not contain this element;

14. Card: The domain-specific language does not contain this element;

15. Carousel: The domain-specific language does not contain this element;

16. List Item: The domain-specific language contains this element;

52 Validation

17. Menu Item: The domain-specific language does not contain this element;

18. Section: The domain-specific language does not contain this element;

19. Slider: The domain-specific language does not contains this element;

20. Span: The domain-specific language contains this element;

21. Thumbnail: The domain-specific language does not contain this element;

22. Unordered List: The domain-specific language contains this element;

The following list details the 22 properties that change the appearance of the elements that were

identified from the answers given to the questionnaire.

1. Change element text The domain-specific language contains this property;

2. Type: The domain-specific language contains this property;

3. Colour: The domain-specific language contains this property;

4. Display: The domain-specific language does not contain this property;

5. Width: The domain-specific language contains this property;

6. Background Colour: The domain-specific language contains this property;

7. Name on Navbar: The domain-specific language contains this property;

8. Text Align: The domain-specific language contains this property;

9. Links on Navbar: The domain-specific language contains this property;

10. Font Size: The domain-specific language contains this property;

11. Height: The domain-specific language contains this property;

12. Border Radius: The domain-specific language does not contains this property;

13. Href: The domain-specific language does not contains this property;

14. Round Image: The domain-specific language does not contains this property;

15. Align Items: The domain-specific language does not contains this property;

16. Flex: The domain-specific language does not contains this property;

17. Flex Direction: The domain-specific language does not contains this property;

18. Float: The domain-specific language does not contains this property;

19. Image on Navbar: The domain-specific language contains this property;

6.1 Validation Methodology 53

20. Margin: The domain-specific language contains this property;

21. Source: The domain-specific language contains this property;

The following list contains the 17 functionalities that were identified from the answers given to

the questionnaire.

1. Add or Create elements: The domain-specific language contains this functionality;

2. Define where the elements are created: The domain-specific language does not contain

this functionality. This functionality allows specifying where the elements are created;

3. Specify the value for the CSS property while creating an element: The domain-specific

language does not contain this functionality. This functionality allows detailing the value

of the property while creating the element. In the domain-specific language, the user can

specify the properties that he wants to change while creating the element;

4. Several instructions on the same command: The domain-specific language does not

contain this functionality. It is only possible to execute one command at a time. However,

the user can specify the properties that he wants to change while creating the element;

5. Define id’s and classes: The domain-specific language does not contain this functionality;

6. Define columns or set element side by side: The domain-specific language contains an

equivalent to this command which is “same row”. The “same row” command permits the

user to change the position of the children of an element to the same row;

7. Bot asks if the user wants a certain element: The domain-specific language does not

contain this functionality;

8. Create elements on the navbar: The domain-specific language does not contain this func-

tionality;

9. Exit or Element is complete or Done: The domain-specific language contains this func-

tionality;

10. Save Project: The domain-specific language contains this functionality;

11. Change the appearance of the elements in the navbar: The domain-specific language

does not contain this functionality;

12. Invert position of two elements: The domain-specific language does not contain this

functionality;

13. Actions that require JavaScript: The domain-specific language does not contain this

functionality;

54 Validation

14. Loading a template without removing the existing code: The domain-specific language

does not contain this functionality;

15. Open Project: The domain-specific language contains this functionality;

16. Rows: The domain-specific language contains this functionality. The user is able to change

the position of the children of an element to the “same row” or to the “same column”;

17. Select a Element: The domain-specific language contains this functionality.

Appendix D (p. 93) shows the number of times that each participant utilised each one of the

components and in Figure 6.1 it is shown the ten most utilised components. Figure 6.2 (p. 55)

shows a box and whisker plot of the occurrences of the components mentioned before.

Questionnaire 1 Questionnaire 2 Questionnaire 3 Questionnaire 4
Component Answer 1 Answer 2 Answer 3 Answer 4 Answer 1 Answer 2 Answer 3 Answer 1 Answer 1 Answer 2
Add or Create elements 6 7 0 13 4 5 4 87 6 5
Define where the elements are created 3 0 0 1 2 0 2 94 2 2
Specify the value for the css command while creating element 4 1 0 4 3 2 2 60 0 1
Change element text 4 0 0 7 3 4 2 40 1 0
Paragraph or Text 1 2 1 4 2 2 1 33 3 2
Several instructions on the same command 3 5 0 10 1 4 3 13 6 3
Define id's and classes 0 0 0 0 1 0 0 32 0 0
Div 0 0 0 1 0 0 0 26 1 1
Input 0 0 0 0 0 0 0 19 0 0
Type 0 0 0 0 0 0 0 19 0 0

Figure 6.1: Ten most used components

As it can be seen, in the case of some components, the maximum number of uses by an user is

much larger than the associated average number. Therefore, some of these cases can be outliers.

To determine if they are outliers, it was used the Grubbs’ test1. The following components have a

significant outlier:

1. Paragraph or Text;

1https://www.graphpad.com/quickcalcs/grubbs2/

https://www.graphpad.com/quickcalcs/grubbs2/

6.1 Validation Methodology 55

Figure 6.2: Box and Whisker plot for all the components

56 Validation

2. Div;

3. Br or Separator;

4. Input;

5. Change element text;

6. Type;

7. Colour;

8. Display;

9. Background Colour;

10. Border Radius;

11. Add or Create Elements;

12. Define where the elements are created;

13. Specify the value for the CSS command while creating an element;

14. Define id’s and classes;

15. Bot asks if the user wants a certain element.

This suggests that in some cases, almost only one participant utilised these components.

Therefore, in these cases, if these elements are eliminated, then the number of occurrences of those

components get sharply reduced.

By examining Table 6.2 (p. 55), it can be seen that the most used elements can be created using

the domain-specific language. It also can be verified that the most used CSS properties by the

participants are present in the domain-specific language. The most used functionality, creating

elements, is already included in the domain-specific language.

Almost all of the participants used commands that contain several instructions structured in a

single command. However, the developed framework does not support this possibility. Some of

the participants also specified the value for the CSS property while creating an element, but this is

not supported by the tool. However, it is permitted to indicate what are the CSS properties to be

changed while creating an element. There are also some commands that almost all the participants

used that have a similar command in the tool such as the definition of columns or setting elements

side by side or setting an element on the left and another on the right. The equivalent to any of

these actions in the tool is the command “same row”. This command modifies the position of the

children of one element allowing the children of the element to be on the same row.

It must be noticed that none of the participants used commands to remove elements. On the

other hand, only one of the participants defined a command to allow going back to another element

as the “select” command in the tool.

6.1 Validation Methodology 57

6.1.2 Tool Validation

An experiment as created to evaluate the developed tool. The objective of this test was to determine

if the domain-specific language was easy to understand. Other goals of this experiment were to

determine if front end developers and back end developers would use a conversational interface to

develop prototypes of webpages.

6.1.2.1 Experimental Parameters

In the first place, we developed this experiment and tested it with an user. This allowed identifying

some problems and correct them. The following parameters were adopted:

Experiments: The experiment consisted of replicating two webpages. The guide for this

experiment can be seen in Appendix E (p. 97)

Participants: The number of participants was eleven. One of the requirements was that

they needed to have a background in computer science or design. Ten of the participants

had a background in computer science, and the remaining one had a background in design.

Due to the short amount of time available to get the feedback, the participants were mainly

acquaintances or indicated/suggested by acquaintances.

Duration: There was a maximum duration of 60 minutes for the experience and a maximum

duration of 20 minutes for each problem. These two timeouts were set to provide an

appropriate time to conclude both problems and not to strain the participants.

Procedure: All the participants did the same experience. Before starting the experiences,

the participants were required to do two tasks in order to learn how to use the tool. These

two tasks focused on creating elements, changing their appearance, adding images, changing

from one element to another and making copies. Afterwards, the participants needed to

replicate two websites. During the experiment, it was provided to the participants a file

with all the commands that can be executed in the tool as well as the elements that can be

created and the properties that can be changed. This file can be seen in Appendix F (p. 103).

Due to some limitations of the tool, the expected results of the two problems differ slightly

regarding the images shown to replicate. The expected result of each problem can be seen in

Appendix G (p. 109).

Environment: All of the experiments were executed in a remote environment. A video

call software was utilised to explain the experiment to the participants and to observe and

record the actions they executed in the tool. Using this method enabled the participants to

ask questions about the problems.

Data: The time that each participant took was recorded as well as the actions that they

executed in the tool.

58 Validation

Post-test: After completing the two problems, the users need to fill a questionnaire about the

experiment. This questionnaire can be seen in Appendix H (p. 113).

6.1.2.2 Tasks

As none of the participants used the tool before, it was developed a tutorial to introduce them to the

more common commands. This tutorial included two tasks:

Task 1: Copying and pasting the commands that were written in the guide in order to

replicate an image. This task objective is to show how the tool works, how to create elements

and how to change their appearance.

Task 2: The participants needed to upload two images and change the image on the navbar

and the source of the image on the body of the webpage. This task main goals were to change

the element that the user is currently on using the “select” command and show how to upload

images to the webpage. Another goal was to familiarise the participants with the “help”

command and with the file that was given to them. Figure 6.3 shows the result of this task.

Figure 6.3: Webpage asked to upload in the second task of the tutorial

After completing this tutorial, the participants needed to replicate two webpages. Appen-

dix G (p. 109) shows the two webpages that were expected to be created. The next paragrahs

provide a brief explanation of what was required to do in each of the problems:

Problem 1: The participants need to create a navbar and change their name and links.

Afterwards, it was required to create a container with one heading, one paragraph and

6.1 Validation Methodology 59

eight buttons. The participants could create one button and then make seven copies of this

button. Afterwards, it was needed to create a container with a button and a paragraph. The

participants needed to change the property “text align” to centre the elements inside both

containers.

Problem 2: First, the participants were required to create a div. Then, they needed to create

another div, inside of the previous one, with an image, a paragraph and one more div. In this

last div, they needed to add two buttons and a paragraph and use the property “same row” to

align the elements in the same row. Afterwards, they needed to create two copies of the div

that contains the image. Next, it was required to use the property “same row” in the first div

created and make two copies of this div. Then, it was needed to create a footer with two div’s

and use the property “same row”. Finally, the left side div on the footer needed to have two

paragraphs and the right side div needed to have one paragraph.

6.1.2.3 Results

By analysing the eleven recordings of the participants that interacted with the tool, it was possible

to determine the time and the number of actions that the participants required to complete each of

the two problems. These results can be seen in the Appendix I (p. 117). In this appendix, it is also

shown how many commands of each type the participants used to complete each of the problems.

Afterwards, it was calculated the average time and the average number of commands that were

required to complete each of the two problems. These average values are shown in Table 6.1.

Mean Problem 1 Problem 2
Time (min:ss) 11:10 12:14

Number of Commands 35.63 53.81
Number of Add Commands 10.18 16.45
Number of Remove Commands 0.72 0.45
Number of Change Commands 12.27 13.63
Number of Undo Commands 2.09 3.36
Number of Redo Commands 0.00 0.27
Number of Select Commands 0.81 0.45
Number of Make Commands 1.27 2.81
Number of Enter Commands 0.27 0.54
Number of Exit Commands 6.81 13.9
Number of Cancel Commands 0.18 0.27
Number of Help Commands 1.00 1.45
Number of Clear Commands 0.00 0.18

Table 6.1: Mean time and mean number of commands taken to complete each problem

60 Validation

As expected the “add”, “change” and “exit” commands where the most utilised by the partici-

pants. This is because the elements of the webpage must be created, and their appearance can be

changed. To move in the hierarchy, the most common command is “exit” because this element

allows the users to go from an element to its parent. After executing a “exit” command, if a new

element is created, this new element is positioned before the element regarding which the user

executed the “exit” command. This interaction permits creating a webpage from top to bottom.

Users utilised the commands “remove” and “undo” do delete elements. The “undo” command could

be used to remove elements if the last action was the creation of an element. Two users restarted the

second problem from scratch using the command “clear”. The “open”, “save”, “upload”, “upload

image”, “download”, “hide borders” and “show borders” do not appear in Table 6.1 (p. 59) because

it was not required to use any of this commands to replicate the webpages.

The answers to the questions in the questionnaire about the experience are given in Fig-

ure 6.4 (p. 62).

By analysing these graphs, it can be concluded that most of the participants that developed

front end indicated that they would prefer using another tool. One reason that may explain this

type of answer is that it is more flexible in developing a prototype by writing code than using this

tool. This occurs because the participants are not allowed to create all HTML elements and change

all the CSS properties. Furthermore, the participants are certainly used to the way in which they

usually develop prototypes and might not be interested in learning a new tool.

In these graphics it is also clear that the participants that do not develop front end answered that

they would utilise this tool to develop a prototype. This preference can be related to the fact that

they are not used to develop web prototypes, and this tool gives them an easy and quick way to

develop them.

The participants also answered that the language was not hard to understand, which was one of

the main objectives of this work. Furthermore, they indicated that there was some conversational

degree provided by the tool (no answer below sometimes) which is a good result because this tool

was supposed to correspond to a conversational interface. Finally, the users said that the chatbot

was giving them useful information about how the tool works and about possible commands that

can be executed.

6.2 Validation Threats

To test a tool that aims at being used by persons, the best way to validate it is to do an experiment.

However, this method has some flaws. Section 6.2.1 details the threats that jeopardise the internal

validity and Section 6.2.2 describes the threats that jeopardise the external validity. Section 6.2.3

describes the threats that jeopardise the construct validity.

6.2.1 Internal Validity

Threats to internal validity can influence the independent variable with respect to causality. There-

fore, the conclusion about a possible relationship between a treatment and a result can be affected

6.2 Validation Threats 61

62 Validation

Figure 6.4: Results of the questionnaire about the experience

6.2 Validation Threats 63

[WRH+12].

Environment: All the experiments were done in a different environment because they were

executed in a remote way. This can mean that the time the participants took to complete

the problems could be influenced by distractions. However, this threat was mitigated by

recording the user actions during the experiment. Future experiments should try to control

these variables in a more rigorous manner;

6.2.2 External Validity

External Validity concerns the degree to which the findings of a study can be generalised to different

populations or settings.

Sample Characteristics: The participants may not have the skill set required to use this

tool because it is required some knowledge on webpage development. However, 10 of the

participants had a background in computer science, and the remaining participant had a back-

ground in webpage design. The participants were students at the Faculty of Engineering of

the University of Porto. Future experiments should try to increase the number of participants

and have a higher degree of heterogeneity in terms of the background of the participants;

1. Sample Size: The number of participants may not be sufficient to obtain a representative

set of results. The size of the sample was rather small, something that must be taken into

account when interpreting the findings of this study. In the future, this tool should be tested

using a higher number of participants;

2. Complexity of the Problems: The complexity of the two problems may not be adequate.

However, taking into consideration the average time and the average number of commands

taken to complete each of the problems, more difficult tasks can be time-consuming for the

participants;

3. Miscomprehension of the Problems: In this type of questionnaires, it is possible that the

participants can misunderstand what is asked to do in written instructions. In this case, this

issue was addressed, allowing participants to ask questions about the problems before starting

solving them.

6.2.3 Construct Validity

Construct Validity is related with the suitability of the conclusions made on the observations or

measurements, primarily if a test measures the intended construct.

1. Researcher expectations: The evaluator and creator of this experiment were the same

person. Therefore, the participants could be influenced on how to reach the final result. In

the future, an experiment should be done in which the evaluator of the experiment is different

from the creator.

64 Validation

6.3 Conclusions

This section detailed the validation processes used to evaluate the domain-specific language and the

conversational interface. The results obtained from the questionnaire to validate the domain-specific

language and from the experiment that was made were also presented. It was concluded that the

domain-specific language contains the most used elements that were utilised by the participants

as well as the most common CSS properties. It was also verified that some of the commands

used by the participants were specified in the domain-specific language. The participants of the

experiment felt that the language used was not hard to understand. Finally, the participants typically

not involved in front end tasks were more prone to use a tool like this one in the future.

Chapter 7

Conclusions and Future Work

7.1 Main Difficulties . 65
7.2 Main Contributions . 66
7.3 Summary Research Questions and Hypothesis 66
7.4 Future Work . 67

During this work, it was explained that one possible way to developed webpages is starting by

drawing a hand-drawn sketch of the webpage and then transforming it into a prototype. This

prototype is evaluated by the client, and if one of the requirements is missing, the whole process

must be repeated. The repetition of this process means that it is consumed more time and resources

than it was initially planned. Therefore, it was developed a tool that allows the designers to create

the prototype immediately, aiming at easing the process of creating prototypes.

In line with this global objective, in this work it was first explained the background concepts of

a conversational interface, live software development and web development. Afterwards, it was

described the current state of the art regarding the interaction in the computer-aided design software,

the conversational interface and works that transform hand-drawn mockups to prototypes. Later, it

was defined the problem as well as the adopted solution and what this work aimed at accomplishing.

Following, the implementation details of the solution described previously were detailed.

Section 7.1 describes the main difficulties faced during the development of this thesis. Sec-

tion 7.2 enumerates the main contributions of this work. Section 7.3 answers the proposed research

questions as well as the hypothesis. Finally, Section 7.4 introduces some improvements that could

be done in the future.

7.1 Main Difficulties

There were several difficulties while researching and developing this tool. The questionnaire that

at the end was used to validate the domain-specific language was, in fact, intended to be used to

create the domain-specific language itself. The initial objective was to obtain a number of answers

65

66 Conclusions and Future Work

from designers so that, based on them, the domain-specific language could be created. However, it

was only received one response until May thus turning it impossible to use it as initially intended.

Therefore, the domain-specific language was mainly developed by associating common actions

that programmers use to commands that can be executed in the tool, and it was finally subjected to

validation.

In addition, it was also challenging to develop a framework that would enable someone to

improve it in a natural way in the future. Another difficulty was to make the conversation non-

repetitive.

7.2 Main Contributions

The main contributions of this work are the specification of a domain-specific language and a

conversational interface that combined allow the generation of webpages. The most common

interactions that developers use to write code were identified as well as the most used elements.

Then, these two components were added to the domain-specific language. Afterwards, some

commands that can help creating webpages were included. Later, it was developed a conversational

interface using this domain-specific language. The developed tool includes functions designed for

each one of the commands present in the domain-specific language.

7.3 Summary Research Questions and Hypothesis

After detailing how the domain-specific language and the tool were developed as well as the results

that were obtained during their validation, the hypothesis and research questions detailed in (cf.

Chapter 4, p. 27) can be answered.

RQ1: Are users able to create a complex webpage using a conversational interface?

The webpages that were requested to replicate in the experiment were two complex webpages

because both of them required to create elements inside other elements and to modify the

appearance of some elements. Given that the users were able to replicate both of the webpages

successfully, it can be said that a conversational interface can be used to create complex

websites.

RQ2: Is it possible to specify an easy to understand domain-specific language aiming at

generating webpages?

One of the questions asked to the participants after completing the experiment was: “Do you

think the language used is easy to understand?”. As the results of this question were at least

Moderate, it can be concluded that the domain-specific language is not hard to comprehend.

RQ3: Would front end developers use a conversational interface to develop webpages?

The majority of the participants who said they usually developed front end answered that

they would not use this tool to develop prototypes. One of the reasons for this is that they

7.4 Future Work 67

may be used to the frameworks in which they develop prototypes and do not want to move to

a new framework.

RQ4: Would back end developers use a conversational interface to develop webpages?

The majority of the participants who said they usually do not develop front end answered

that they would use this tool to develop prototypes, if they needed. One of the reason can

be because they rarely develop front end, and this tool gives them a faster and easier way to

develop prototypes.

Hypothesis: “A conversational interface that allows the generation of complex webpages

using an easy to understand domain-specific language is more comfortable to utilise than the

current forms of developing a prototype.”

One of the objectives of the experience used to validate the tool was to verify if it was possible

to generate complex websites with a conversational interface. The participants successfully

replicated the webpages of both problems. They also answered in the questionnaire of the

experience that the domain-specific language was not difficult to understand. The majority of

participants that do not develop front end answered that they would use this tool to develop

a prototype. This can mean that it is easier to use the tool than develop a prototype using

the most common forms to develop them. However, most participants that develop front

end indicated that they would not use the tool. One reason for this answer can be due to the

current limitations of the tool. Another reason can be because they are used to the way they

develop prototypes and do not want to move to a new tool from scratch.

7.4 Future Work

In the future, more elements can be added to the domain-specific language as well as more properties

to change the appearance of the elements. Furthermore, some functionalities that were mentioned

by some participants in the validation process can be added in the domain-specific language, such

as enabling to specify the value of the property that the user wants to change while creating the

element. Another two possible functionalities to add is to create several elements in the same

command or to specify the number of copies while creating the element.

It is also possible to improve the help provided by the chatbot by including a command that

enables the user to see all the available commands, the properties that were changed in the current

element and the hierarchy of the developed webpage. It is also possible to improve how it is seen

the element that the user is currently on and how the messages appear in the conversational panel.

Another aspect that can be improved is the use of default values as it was done in the margin

and padding properties. Some examples are to add a default text if the user did not say he wanted a

text when creating a heading or to having a default colour for the properties colour and background

colour.

68 Conclusions and Future Work

Finally, the experiment that was conducted to validate the tool can be and should be repeated

but with a higher number of participants, a higher degree of heterogeneity in terms of participant

background and in an environment where the experiment variables can be controlled in a more

rigorous manner in order to have more representative feedback. This would ultimately enable

improving the developed tool turning it more useful to the developers.

References

[AKW15] Sameera A Abdul-Kader and JC Woods. Survey on chatbot design techniques in
speech conversation systems. International Journal of Advanced Computer Science
and Applications, 6(7), 2015. Cited on page 15.

[AMG00] Stephen C Arnold, Leo Mark, and John Goldthwaite. Programming by voice, vocal-
programming. In Proceedings of the fourth international ACM conference on Assistive
technologies, pages 149–155, 2000. Cited on pages 24 and 25.

[ARC+19] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira,
and João Pedro Dias. Live software development: tightening the feedback loops. In
Proceedings of the Conference Companion of the 3rd International Conference on Art,
Science, and Engineering of Programming, pages 1–6, 2019. Cited on page 9.

[Beg04] Andrew Begel. Spoken language support for software development. In 2004 IEEE
Symposium on Visual Languages-Human Centric Computing, pages 271–272. IEEE,
2004. Cited on page 25.

[Bel18] Tony Beltramelli. pix2code: Generating code from a graphical user interface screen-
shot. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pages 1–6, 2018. Cited on pages 19, 21, and 27.

[BFdH+13] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal
Moskal, Nikolai Tillmann, and Jun Kato. It’s alive! continuous feedback in ui
programming. In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, pages 95–104, 2013. Cited on page 9.

[BLC90] Timothy J Berners-Lee and Robert Cailliau. Worldwideweb: Proposal for a hypertext
project. 1990. Cited on page 10.

[BS17] Stefan Bieliauskas and Andreas Schreiber. A conversational user interface for software
visualization. In 2017 IEEE Working Conference on Software Visualization (VISSOFT),
pages 139–143. IEEE, 2017. Cited on page 14.

[Cho03] Gobinda G Chowdhury. Natural language processing. Annual review of information
science and technology, 37(1):51–89, 2003. Cited on page 7.

[CK12] Anthony E Cozzie and Samuel King. Macho: Writing programs with natural language
and examples. 2012. Cited on page 25.

[dSF19] João Carlos da Silva Ferreira. Live web prototypes from hand-drawn mockups. 2019.
Cited on pages 19, 24, and 27.

69

70 REFERENCES

[Fel99] Susan Feldman. Nlp meets the jabberwocky: Natural language processing in infor-
mation retrieval. ONLINE-WESTON THEN WILTON-, 23:62–73, 1999. Cited on page

7.

[JAB+19] Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh Kapoor, and Shashwat Gulyani.
Sketch2code: Transformation of sketches to ui in real-time using deep neural network.
arXiv preprint arXiv:1910.08930, 2019. Cited on pages 19, 20, and 27.

[KDMB17] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro Bogli-
olo. The rise of bots: A survey of conversational interfaces, patterns, and paradigms. In
Proceedings of the 2017 conference on designing interactive systems, pages 555–565,
2017. Cited on page 16.

[LDF20] André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. Conversational inter-
face for managing non-trivial internet-of-things systems. In International Conference
on Computational Science, pages 384–397. Springer, 2020. Cited on page 16.

[LDG+17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017. Cited

on page 20.

[Lid98] Elizabeth D Liddy. Enhanced text retrieval using natural language processing. Bulletin
of the American Society for Information Science and Technology, 24(4):14–16, 1998.
Cited on page 7.

[PRZH00] David Price, Ellen Rilofff, Joseph Zachary, and Brandon Harvey. Naturaljava: a natural
language interface for programming in java. In Proceedings of the 5th international
conference on Intelligent user interfaces, pages 207–211, 2000. Cited on page 25.

[RAMI17] AM Rahman, Abdullah Al Mamun, and Alma Islam. Programming challenges of
chatbot: Current and future prospective. In 2017 IEEE Region 10 Humanitarian
Technology Conference (R10-HTC), pages 75–78. IEEE, 2017. Cited on pages 16 and 25.

[RCHB18] Lucas Rosenblatt, Patrick Carrington, Kotaro Hara, and Jeffrey P Bigham. Vocal
programming for people with upper-body motor impairments. In Proceedings of the
Internet of Accessible Things, pages 1–10. 2018. Cited on pages 24 and 25.

[REBIM10] MZ Rashad, Hazem M El-Bakry, Islam R Isma’il, and Nikos Mastorakis. An overview
of text-to-speech synthesis techniques. Latest trends on communications and informa-
tion technology, pages 84–89, 2010. Cited on page 9.

[Rob19] Alex Robinson. Sketch2code: Generating a website from a paper mockup. arXiv
preprint arXiv:1905.13750, 2019. Cited on pages 19, 22, and 27.

[SA07] Bayan Abu Shawar and Eric Atwell. Different measurement metrics to evaluate a
chatbot system. In Proceedings of the workshop on bridging the gap: Academic and
industrial research in dialog technologies, pages 89–96, 2007. Cited on page 16.

[Tan13] Steven L Tanimoto. A perspective on the evolution of live programming. In 2013
1st International Workshop on Live Programming (LIVE), pages 31–34. IEEE, 2013.
Cited on page 9.

REFERENCES 71

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Science &
Business Media, 2012. Cited on page 63.

[YD16] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION. Springer, 2016. Cited

on page 5.

72 REFERENCES

Appendix A

Domain-Specific Language
Configuration file

This appendix includes the file where the domain-specific language is detailed.

1 {

2 "languages": ["en"],

3 "entities": [

4 {

5 "name": "element",

6 "language": "en",

7 "values": [

8 {"text": "h1", "options": ["H1"]},

9 {"text": "h2", "options": ["H2"]},

10 {"text": "h3", "options": ["H3"]},

11 {"text": "h4", "options": ["H4"]},

12 {"text": "h5", "options": ["H5"]},

13 {"text": "h6", "options": ["H6"]},

14 {"text": "navbar", "options": ["Navbar"]},

15 {"text": "button", "options": ["Button"]},

16 {"text": "div", "options": ["div"]},

17 {"text": "container", "options": ["Container"]},

18 {"text": "image", "options": ["Image"]},

19 {"text": "input", "options": ["Input"]},

20 {"text": "p", "options": ["P"]},

21 {"text": "unordered list", "options": ["Unordered List

"]},

22 {"text": "ordered list", "options": ["Ordered List"]},

73

74 Domain-Specific Language Configuration file

23 {"text": "list item", "options": ["List Item"]},

24 {"text": "label", "options": ["Label"]},

25 {"text": "span", "options": ["Span"]},

26 {"text": "footer", "options": ["Footer"]},

27 {"text": "form", "options": ["Form"]}

28]

29 },

30 {

31 "name": "attributeL",

32 "language": "en",

33 "values": [

34 {"text": "links", "options": ["Links"]}

35]

36 },

37 {

38 "name": "attributeT",

39 "language": "en",

40 "values": [

41 {"text": "name", "options": ["Name"]},

42 {"text": "border", "options": ["Border"]},

43 {"text": "border style", "options": ["Border Style"]},

44 {"text": "type", "options": ["Type"]},

45 {"text": "text", "options": ["Text"]},

46 {"text": "text align", "options": ["Text Align"]}

47]

48 },

49 {

50 "name": "attributeU",

51 "language": "en",

52 "values": [

53 {"text": "logo", "options": ["Logo"]},

54 {"text": "source", "options": ["Source"]}

55]

56 },

57 {

58 "name": "attributeV",

59 "language": "en",

60 "values": [

61 {"text": "margin", "options": ["Margin"]},

62 {"text": "padding", "options": ["Padding"]},

Domain-Specific Language Configuration file 75

63 {"text": "height", "options": ["Height"]},

64 {"text": "width", "options": ["Width"]},

65 {"text": "border width", "options": ["Border Width"]},

66 {"text": "font size", "options": ["Font Size"]}

67]

68 },

69 {

70 "name": "attributeH",

71 "language": "en",

72 "values": [

73 {"text": "color", "options": ["Colour", "colour", "

Color"]},

74 {"text": "background color", "options": ["Background

Color", "background colour", "Background colour"]},

75 {"text": "border color", "options": ["Border Color", "

border colour", "Border Colour"]}

76]

77 },

78 {

79 "name": "attribute",

80 "language": "en",

81 "values": [

82 {"text": "same row", "options": ["Same Row"]},

83 {"text": "same column", "options": ["Same Column"]}

84]

85 },

86 {

87 "name": "value",

88 "language": "en",

89 "regex": "(((([0-9])+(\\.[0-9]+)?((r?em)|(px))))(\\s((([

0-9])+(\\.[0-9]+)?((r?em)|(px))))){0,3})|^0\\%$|^100

\\%$|^[0-9]{1,2}\\%$|^[0-9]{1,2}\\.[0-9]{1,3}\\%$"

90 }

91],

92 "intents": [

93 {

94 "language": "en",

95 "intent": "add",

96 "commands": ["add %element%", "create %element%", "

append %element%"],

76 Domain-Specific Language Configuration file

97 "answers": ["Adding {{ element }}", "Creating {{ element

}}"],

98 "questions": [

99 {

100 "entity": "element",

101 "question": {"en": "What element do you want to add

?"}

102 }

103]

104 },

105 {

106 "language": "en",

107 "intent": "select",

108 "commands": ["select %element%", "pick %element%"],

109 "answers": ["Selecting {{ element }} {{ ordinal }}", "

Picking {{ element }} {{ ordinal }}"],

110 "questions": [

111 {

112 "entity": "element",

113 "question": {"en": "What element do you want to

select?"}

114 }

115]

116 },

117 {

118 "language": "en",

119 "intent": "enter",

120 "commands": ["enter", "go in", "get in"],

121 "answers": ["Entering"],

122 "questions": []

123 },

124 {

125 "language": "en",

126 "intent": "exit",

127 "commands": ["exit", "go out", "get out"],

128 "answers": ["Exiting"],

129 "questions": []

130 },

131 {

132 "language": "en",

Domain-Specific Language Configuration file 77

133 "intent": "attributeT",

134 "commands": ["%attributeT% %text%"],

135 "answers": ["Changing {{ attributeT }} to {{ text }}", "

Editing {{ attributeT }} to {{ text }}"],

136 "questions": [

137 {

138 "entity": "text",

139 "question": {"en": "What is the text of {{

attributeT }}?"}

140 }

141]

142 },

143 {

144 "language": "en",

145 "intent": "attributeV",

146 "commands": ["%attributeV% %value%"],

147 "answers": ["Changing {{ attributeV }} to {{ value }}",

"Editing {{ attributeV }} to {{ value }}"],

148 "questions": [

149 {

150 "entity": "value",

151 "question": {"en": "What is the value of {{

attributeV }}?"}

152 }

153]

154 },

155 {

156 "language": "en",

157 "intent": "attributeU",

158 "commands": ["%attributeU% %url%"],

159 "answers": ["Changing {{ attributeU }} to {{ url }}", "

Editing {{ attributeU }} to {{ url }}"],

160 "questions": [

161 {

162 "entity": "url",

163 "question": {"en": "What is the url of {{ attributeU

}}?"}

164 }

165]

166 },

78 Domain-Specific Language Configuration file

167 {

168 "language": "en",

169 "intent": "attributeH",

170 "commands": ["%attributeH% %hashtag%"],

171 "answers": ["Changing {{ attributeH }} to {{ hashtag }}"

, "Editing {{ attributeH }} to {{ hashtag }}"],

172 "questions": [

173 {

174 "entity": "hashtag",

175 "question": {"en": "What is the hexadecimal of {{

attributeH }}?"}

176 }

177]

178 },

179 {

180 "language": "en",

181 "intent": "attributeL",

182 "commands": ["%attributeL% %number%"],

183 "answers": ["Changing {{ attributeL }} to {{ number }}",

"Editing {{ attributeL }} to {{ number }}"],

184 "questions": [

185 {

186 "entity": "number",

187 "question": {"en": "How many {{ attributeL }}?"}

188 }

189]

190 },

191 {

192 "language": "en",

193 "intent": "attribute",

194 "commands": ["%attribute%"],

195 "answers": ["Changing {{ attribute }}", "Editing {{

attribute }}"],

196 "questions": []

197 },

198 {

199 "language": "en",

200 "intent": "make",

201 "commands": ["make %number%"],

202 "answers": ["Making {{ number }} copies"],

Domain-Specific Language Configuration file 79

203 "questions": [

204 {

205 "entity": "number",

206 "question": {"en": "How many copies?"}

207 }

208]

209 },

210 {

211 "language": "en",

212 "intent": "download",

213 "commands": ["download %text%"],

214 "answers": ["Downloading files as {{ text }}", "

Transfering files as {{ text }}"],

215 "questions": [

216 {

217 "entity": "text",

218 "question": {"en": "What name to give to the files?"

}

219 }

220]

221 },

222 {

223 "language": "en",

224 "intent": "save",

225 "commands": ["save %text%"],

226 "answers": ["Saving {{ text }}"],

227 "questions": [

228 {

229 "entity": "text",

230 "question": {"en": "What name to give to the project

?"}

231 }

232]

233 },

234 {

235 "language": "en",

236 "intent": "open",

237 "commands": ["open %text%"],

238 "answers": ["Opening {{ text }}"],

239 "questions": [

80 Domain-Specific Language Configuration file

240 {

241 "entity": "text",

242 "question": {"en": "What project do you want to open

?"}

243 }

244]

245 },

246 {

247 "language": "en",

248 "intent": "showBorders",

249 "commands": ["show borders"],

250 "answers": ["Showing Borders"],

251 "questions": []

252 },

253 {

254 "language": "en",

255 "intent": "hideBorders",

256 "commands": ["hide borders"],

257 "answers": ["Hiding Borders"],

258 "questions": []

259 },

260 {

261 "language": "en",

262 "intent": "undo",

263 "commands": ["undo"],

264 "answers": ["Undo"],

265 "questions": []

266 },

267 {

268 "language": "en",

269 "intent": "redo",

270 "commands": ["redo"],

271 "answers": ["Redo"],

272 "questions": []

273 },

274 {

275 "language": "en",

276 "intent": "clear",

277 "commands": ["clear"],

278 "answers": ["Clearing workspace"],

Domain-Specific Language Configuration file 81

279 "questions": []

280 },

281 {

282 "language": "en",

283 "intent": "upload",

284 "commands": ["upload"],

285 "answers": ["Uploading files"],

286 "questions": []

287 },

288 {

289 "language": "en",

290 "intent": "uploadI",

291 "commands": ["upload image"],

292 "answers": ["UploadingI"],

293 "questions": []

294 },

295 {

296 "language": "en",

297 "intent": "remove",

298 "commands": ["remove", "delete"],

299 "answers": ["Removing element", "Deleting element"],

300 "questions": []

301 },

302 {

303 "language": "en",

304 "intent": "cancel",

305 "commands": ["cancel"],

306 "answers": ["Cancelling operation"],

307 "questions": []

308 },

309 {

310 "language": "en",

311 "intent": "help",

312 "commands": ["help"],

313 "answers": ["Help"],

314 "questions": []

315 }

316]

317 }

82 Domain-Specific Language Configuration file

Appendix B

Domain-Specific Language
Questionnaire

The objective of this questionnaire is to ask participants to identify and write commands that can be

used to create a webpage. Therefore, four surveys were created, each of them having a different

link to the webpage to be analysed. This appendix contains one of the four questionnaires.

83

Appendix C

Webpages to Replicate in the
Questionnaires

Following is shown the four webpages that were requested to replicate in the questionnaire to

validate the domain-specific language.

85

92 Webpages to Replicate in the Questionnaires

Appendix D

Questionnaires Results

This appendix contains the number that each participant utilised each one of the components.

93

Questionnaire 1 Questionnaire 2 Questionnaire 3 Questionnaire 4
Component Answer 1 Answer 2 Answer 3 Answer 4 Answer 1 Answer 2 Answer 3 Answer 1 Answer 1 Answer 2
Paragraph or Text 1 2 1 4 2 2 1 33 3 2
Div 0 0 0 1 0 0 0 26 1 1
Input 0 0 0 0 0 0 0 19 0 0
Title or Headings 1 2 1 3 0 1 1 4 2 2
Button 1 2 0 3 1 0 1 1 3 1
Br or Separator 0 0 0 0 0 1 1 3 1 1
Footer 1 1 0 1 1 1 0 0 1 1
Navbar 1 1 0 1 1 0 1 0 1 1
A or Links 1 1 0 2 0 1 0 0 1 0
Container 1 0 0 1 1 0 0 0 2 0
Image 0 0 0 0 0 0 0 0 2 2
Header 0 1 1 1 0 1 0 0 0 0
List 0 0 1 0 0 0 0 0 2 0
Card 0 1 0 0 0 1 0 0 0 0
Carousel 0 0 0 0 0 0 0 0 0 1
List Item 0 0 0 1 0 0 0 0 0 0
Menu Item 0 0 0 0 0 0 0 0 1 0
Section 1 0 0 0 0 0 0 0 0 0
Slider 0 0 0 0 0 0 0 0 1 0
Span 0 0 0 0 0 0 0 1 0 0
Thumbnail 0 1 0 0 0 0 0 0 0 0
Unordered List 0 0 0 1 0 0 0 0 0 0
Change element text 4 0 0 7 3 4 2 40 1 0
Type 0 0 0 0 0 0 0 19 0 0
Colour 0 0 0 2 0 0 0 8 3 0
Display 0 0 0 2 0 0 0 7 0 0
Width 2 1 0 1 1 0 0 0 1 1
Background Colour 0 0 0 1 0 0 0 4 1 0
Name on Navbar 0 0 0 1 1 1 1 0 1 0
Text Align 2 1 0 1 0 0 0 0 1 0
Links on Navbar 0 0 0 0 1 1 1 0 1 0
Font Size 0 0 0 1 1 1 0 0 0 0
Height 0 0 0 1 0 0 0 0 1 1
Border Radius 0 0 0 0 0 0 0 2 0 0
Href 0 1 0 1 0 0 0 0 0 0
Round Image 0 0 0 0 0 0 0 0 1 1
Align Items 0 0 0 0 0 0 0 1 0 0
Flex 0 0 0 0 0 0 0 1 0 0
Flex Direction 0 0 0 0 0 0 0 1 0 0
Float 0 0 0 0 0 0 0 1 0 0
Image on Navbar 1 0 0 0 0 0 0 0 0 0
Margin 0 0 0 0 0 0 0 1 0 0
Source 0 0 0 0 0 1 0 0 0 0
Add or Create elements 6 7 0 13 4 5 4 87 6 5
Define where the elements are created 3 0 0 1 2 0 2 94 2 2
Specify the value for the css command while creating element 4 1 0 4 3 2 2 60 0 1
Several instructions on the same command 3 5 0 10 1 4 3 13 6 3
Define id's and classes 0 0 0 0 1 0 0 32 0 0

Define columns or set element side by side 3 2 0 2 1 1 1 0 4 2
Bot ask if the user wants a certain element 0 0 8 0 0 3 0 0 0 0
Create elements on the navbar 1 0 1 1 1 0 1 0 1 1
Exit or Element is complete or Done 1 0 2 0 0 0 0 0 0 0
Save Project 0 0 0 0 0 1 1 0 1 0
Change the appearance of the elements in the navbar 0 0 0 0 1 1 0 0 0 0
Invert position of two elements 0 0 0 0 0 0 0 0 1 1
Actions that require JavaScript 0 0 0 1 0 0 0 0 0 0
Loading a template without removing the existing code 0 0 0 0 0 0 1 0 0 0
Open Project 0 0 0 0 0 1 0 0 0 0
Rows 0 1 0 0 0 0 0 0 0 0
Select a Element 0 0 0 0 0 0 0 0 1 0

96 Questionnaires Results

Appendix E

Experiment Guide

This appendix contains the guide used for the experimentation and a text file that was provided in

the experiment. This file details the commands that the participants can execute on the chatbot.

97

A Conversational Interface for
Webpage Code Generation

This chatbot allows designers to create a prototype of a webpage without having to resort to
hand-draw mockups by recognizing the intention of the commands entered. These
commands can be written or spoken.

As this tool is novel and it takes some time to get used to the domain-specific language, let's
start with a tutorial.

At any time, you can enter the command “help” to receive advice from the chatbot. This
advice will vary according to the situation you are. The chatbot will also give some
information without you asking.

Tutorial

Task 1
In this task, you will learn how to create several elements and change their appearance by
copying and pasting the following commands:

1. "add a navbar"
2. "change name to Album"
3. "change links" ("add a navbar with name links" would have been equivalent to these

three first commands)
4. “three”
5. “Follow on Twitter”
6. “Add on Facebook”
7. “Email me”
8. “exit”
9. “add container”
10. “change padding” (“add container with padding” would have been equivalent to the

9th and 10th commands)
11. “add h1”
12. “change text to Album example”
13. “exit”
14. “add p with text”
15. “Something short and leading about the collection below—its contents, the creator,

etc. Make it short and sweet, but not too short so folks don't simply skip over it
entirely.”

16. “exit”
17. “add p”

18. “add button with text margin color background color”
19. “Main call to action”
20. “#ffffff”
21. “#007bff”
22. “make 1 copy”
23. “change text to Secondary action” (“text Secondary action” would have been a

equivalent to this command)
24. “change background color to #6c757d” (“background color #6c757d” would have

been equivalent to this command)
25. “exit”
26. “exit”
27. “text align center”
28. “save project as task1”

The final result should be similar to the following image.

Task 2
In this task, you will learn how to handle projects and how to load an already developed
website to the chatbot. You will also be asked to upload images to the website and to get the
final HTML and CSS code.

1. Upload the HTML file name tutorial2.html and the CSS file tutorial2.css;
2. Upload the image navbar.jpg;
3. Select the navbar;
4. Change the navbar image to the one previously uploaded;
5. Upload the image task2.jpg;
6. Select the image and change it to the one previously uploaded.

Problem 1
In the following steps, you will be asked for you to create a part of the Medium initial
webpage.

1. Try to replicate the webpage shown below:

2. Download the HTML and CSS code as problem1.

Observations: The Get started button in the navbar should be equal as the other links. The
grey buttons can have the same text and they should not have an image. The buttons should
also be rectangular.

Problem 2
In the next steps, you will be asked to continue an existing project by adding new elements
to the webpage.

1. Open the project you saved in Task 1;
2. Try to replicate the webpage shown below;

3. Download the HTML and CSS code as problem2.

Observations: The image source can be img.jpg; The text inside the cart is “This is a wider
card with supporting text below as a natural lead-in to additional content. This content is a
little bit longer.” The texts in the footer are “Album example is © Bootstrap, but please
download and customize it for yourself!” and “New to Bootstrap? Visit the homepage or read
our getting started guide.”

Questionnaire
https://forms.gle/hCQnsSRXoDM4qSTA9

Appendix F

File with the Commands

This appendix contains the text file containing the commands that the users can execute as well as

the elements that can be created. This file was given to the participants of the experiment.

1 # Commands

2

3 - Add <Element>: Creates an element;

4 - Remove: Deletes an element;

5 - Select <Element>: Selects an element;

6 - Make <Number>: Creates copies of the element;

7 - Enter: Changes the element that is currently being modified;

8 - Exit: Changes the element that is currently being modified;

9 - Cancel: Invalidates the command that is being executed;

10 - Undo: Reverses the last command executed;

11 - Redo: Reverses the action of the undo;

12 - Clear: Removes all the elements;

13 - Hide Borders: Borders are removed on all the elements;

14 - Show Borders: Borders are revealed on all the elements;

15 - Download <Name>: Downloads a HTML and CSS code;

16 - Upload: Uploads a HTML and CSS code;

17 - Upload Image: Uploads an image;

18 - Save <Name> Saves the HTML and CSS code in the server;

19 - Open <Name>: Opens a HTML and CSS code that is located in the

server;

20 - CSS Commands: Commands that change the appearence of the elements;

21

22 ## Add

23

103

104 File with the Commands

24 Allows the user to create an element. If an element is not provided,

the chatbot will ask.

25

26 - Add, Create, Append

27

28 ## Remove

29

30 Deletes the element (the one with orange border).

31

32 - Remove, Delete

33

34 ## Select

35

36 Allows the user to change the selected element. If an element is not

provided, the chatbot will ask.

37

38 If there are more than one element that can be selected, the chatbot

colors all the possible elements and asks which one to select. (

The user must respond with an ordinal).

39

40 - Select, Pick

41

42 ## Make

43

44 Allows the user to make x copies of the selected element. If a

number is not provided, the chatbot will asks.

45

46 - Make

47

48 ## Enter

49

50 Changes the selected element to the last element added (the element

with yellow background-color).

51

52 - Enter, Go in, Get in

53

54 ## Exit

55

56 Changes the selected element to the parent of the current element.

57

File with the Commands 105

58 - Exit, Go out, Get out

59

60 ## Cancel

61

62 Allows the user to stop the current action. For example: the user

says "add", the chatbot will ask What element do you want to add

?" and the user now says "Cancel" to not add any element.

63

64 - Cancel

65

66 ## Undo

67

68 Allows the user to reverse to the previous state. For example, if

the last action of the user was to add an element but now he

realizes that it is not as he wants. He can utilise undo to

recover the previous state.

69

70 - Undo

71

72 ## Redo

73

74 Allows the user to reverse the action of the undo.

75

76 - Redo

77

78 ## Clear

79

80 Allows the user to remove all the elements.

81

82 - Clear

83

84 ## Hide Borders

85

86 Allows the user to remove all the borders that are shown to help to

visualize the elements.

87

88 - Hide borders

89

90 ## Show Borders

91

106 File with the Commands

92 Allows the user to reveal all the borders to help to visualize the

elements.

93

94 - Show borders

95

96 ## Download

97

98 Allows the user to download a html and css file.

99

100 - Download

101

102 ## Upload

103

104 Allows the user to upload a html and css file.

105

106 - Upload

107

108 ## Upload Image

109

110 Allows the user to upload an image.

111

112 - Upload image

113

114 ## Save

115

116 Allows the user to save a project in the server.

117

118 - Save

119

120 ## Open

121

122 Allows the user to open a project that is located on the server

123

124 - Open

125

126 ## CSS Commands

127

128 Allows the user to change the appearence of the selected element.

129

130 ### Possible CSS Commands

File with the Commands 107

131

132 - text ...: allows to change the text inside of the element (only

for H1, H2, H3, H4, H5, H6, Button and P elements).

133 - name ...: allows to change the name in the navbar (only for navbar

element).

134 - logo ...: allows to change the logo in the navbar (only for navbar

element).

135 - links: allows to change the links in the navbar (only for navbar

element).

136 - source ...: allows to change the url in the image (only for image

element).

137 - type ...: allows to change the type of the input (only for input

element).

138 - text align ...: allows to change the text align of the element.

139 - color ...: allows to change the color of the element.

140 - background color ...: allows to change the background color of the

element.

141 - margin ...: allows to change the margin of the element and as the

default value of 1em.

142 - padding ...: allows to change the padding of the element and as

the default value of 1em.

143 - border ...: allows to change the border of the element.

144 - border width ...: allows to change the border width of the element

.

145 - border style ...: allows to change the border style of the element

.

146 - border color ...: allows to change the border color of the element

.

147 - width ...: allows to change the width of the element.

148 - height ...: allows to change the height of the element.

149 - font size ...: allows to change the size of the text.

150 - same row: the childs of the current element will be on one row.

151 - same column: the childs of the current element will be on one

column.

152

153 If the user did not provided a value for the command, the chatbot

will ask for it.

154

155

156 ## Elements

108 File with the Commands

157

158 - navbar

159 - h1

160 - h2

161 - h3

162 - h4

163 - h5

164 - h6

165 - p

166 - button

167 - div

168 - container

169 - image

170 - footer

171 - form

172 - input

173 - unordered list

174 - ordered list

175 - list item

176 - span

177 - label

178

179 ## Multiple Commands

180

181 When adding a new element it is possible to execute multiple

commands.

182

183 Examples:

184

185 - If the user enters the command ’add navbar with name logo links’,

the bot will ask for the name, the url of the logo and how many

links and the text for each link.

186 - If the user enters the command ’add h1 with margin text’, the bot

will ask for the value of margin and what is the text.

187

188 # Voice Recognition

189

190 You can click in the microphone button and say the command you want

to perform that the bot will try to understand what you said.

Appendix G

Expected results of the Experiment
Problems

This appendix contains the expected results of the two problems that were asked to resolve in the

experience.

109

112 Expected results of the Experiment Problems

Appendix H

Experiment Questionnaire

This appendix contains the questionnaire that was sent after the participants completed the experi-

ment.

113

116 Experiment Questionnaire

Appendix I

Experiment Results

This appendix contains one table and two figures. The first one details the time and the number

of commands the each participant required to solve each problem of the experiment. The figures

tables contain the number of commands of each type that the each participant needed to complete

the first and second problem of the experiment.

Problem 1 Problem 2
Participant Time (min:ss) Number of commands Time (min:ss) Number of commands
1 11:17 38 10:07 45
2 11:28 38 10:13 73
3 10:19 47 9:50 62
4 10:57 35 14:13 46
5 12:23 26 13:17 50
6 8:23 29 10:21 55
7 11:37 44 19:34 51
8 13:21 30 10:13 47
9 13:15 34 13:08 52
10 8:58 45 11:24 58
11 10:51 26 12:15 53
Table I.1: Time and number of commands that each participant required to complete each problem

117

118 Experiment Results

Figure I.1: Number of commands of each type that the each participant needed to complete the
Problem 1

Figure I.2: Number of commands of each type that the each participant needed to complete the
Problem 2

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Problem
	Goals
	Hypothesis
	Thesis Structure

	Background
	Architecture of a Conversational User Interface
	Speech Recognition
	Natural Language Processing
	Text Synthesis

	Live Software Development
	Web Development
	Summary

	State of the Art
	Interaction in Computer-aided Design Softwares
	Conversational User Interfaces
	Chatbots
	Assistant Systems
	Conversational Interface Development Platforms

	Hand-drawn mockup to Prototype
	Sketch2Code: Transformation of sketches to ui in real-time using deep neural network
	pix2code: Generating Code from a Graphical User Interface Screenshot
	Generating a website from a paper mockup
	Live web prototypes from hand-drawn mockups

	Programming using Natural Language
	Conclusion

	Problem Statement
	Problem Summary
	Proposal
	Fundamental Challenges
	Thesis Statement
	Research Questions
	Validation Methodology
	Conclusions

	Implementation
	Overview
	Domain-Specific Language
	Defining the operations of the chatbot
	Definition of the commands, answers and questions
	Entity Definition
	Domain-specific language Configuration file

	Chatbot Implementation
	Server
	Client

	Conclusions

	Validation
	Validation Methodology
	Domain-Specific Language Validation
	Tool Validation

	Validation Threats
	Internal Validity
	External Validity
	Construct Validity

	Conclusions

	Conclusions and Future Work
	Main Difficulties
	Main Contributions
	Summary Research Questions and Hypothesis
	Future Work

	References
	Domain-Specific Language Configuration file
	Domain-Specific Language Questionnaire
	Webpages to Replicate in the Questionnaires
	Questionnaires Results
	Experiment Guide
	File with the Commands
	Expected results of the Experiment Problems
	Experiment Questionnaire
	Experiment Results

