
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Visual Programming Language for
Orchestration with Docker

Bruno Piedade

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Filipe Figueiredo Correia, Assistant Professor

Second Supervisor: João Pedro Dias, Guest Assistant

July 31, 2020

c© Bruno Piedade, 2020

Visual Programming Language for Orchestration with
Docker

Bruno Piedade

Mestrado Integrado em Engenharia Informática e Computação

July 31, 2020

Abstract

With the widespread of cloud-based infrastructure and microservice architectures along with De-
vOps practices, development and operations have become fundamentally more intertwined. As
a response to the ever-changing requirements, a variety of tools emerged and among them, con-
tainers, were fundamental in providing a more light-weight alternative to virtualization. Docker is
currently one of the most adopted and used solutions for container implementation and manage-
ment in the software industry and Docker Compose supports the orchestration of multi-container
applications via text-based configurations files.

Even though the orchestration of simple architectures may be straight-forward, more advanced
concepts such as volumes for persistence storage of data can appear daunting for inexperienced
developers. Furthermore, the text-based nature of existing solutions allows naive mistakes and
decreases the readability of orchestration configurations as their complexity increases, either in
number or heterogeneity of services.

Visual programming approaches have been used to handle working with abstractions for domain-
specific or general-purpose programming. We can already find numerous instances of visual pro-
gramming approaches in the operations field. In particular, some which support Docker Compose
orchestration. However, these approaches are incomplete since the adopted visual notations do
not fully capture the underlying concepts of Docker Compose and therefore may fail to maximize
the potential gains of such an approach. Furthermore, there seems to be a lack of adoption of
these alternative approaches as suggested by the results of a survey we conducted to gauge what
challenges developers face when working with these technologies.

Thus, we see the definition of a complete visual programming approach for specifying and vi-
sualizing Docker-based architectures may provide a higher degree of abstraction with the potential
of easing the developer’s efforts and reducing the error rate and development time.

To this end, we developed a prototype named Docker Composer, functioning as the program-
ming environment for the complete visual approach, by leveraging knowledge from visual pro-
gramming and model-driven engineering. The prototype addresses the limitations of state-of-the-
art solutions by featuring rich visual notations that encompass all of the Docker Compose artifacts
and simplifies the management of stacks in a single environment.

The prototype was then used as a means to validate the approach in a controlled experiment
conducted among novice developers. The study considered two treatments and aimed to com-
pare the prototype with the conventional toolchain in regards to performance and the perception
of ease of use, usefulness, and intention to use. The results indicate that the prototype presents
some benefits in reducing the development time and error-proneness, primarily for stack definition
activities, and provides a more streamlined development experience, supporting our hypothesis.
Furthermore, the participants found the prototype easier to use, considered it useful, and mani-
fested willingness to use it in the future.

i

ii

Resumo

Com a disseminação da arquitetura baseada em nuvem e arquiteturas de microsserviços, junta-
mente com as práticas DevOps, o desenvolvimento e operações tornaram-se fundamentalmente
mais interligados. Como resposta aos requisitos em constante mudança, surgiram várias ferra-
mentas e, entre elas, containers, foram fundamentais para fornecer uma alternativa mais leve à
virtualização. Atualmente, Docker é uma das soluções mais adotadas e usadas para implemen-
tação e gestão de containers na indústria de software e Docker Compose suporta a orquestração
de aplicações com vários containers por meio de ficheiros de configurações textuais.

Embora a orquestração de arquiteturas de baixa complexidade possa ser simples, conceitos
mais avançados, como volumes para armazenamento persistente de dados, podem parecer intim-
idantes para programadores inexperientes. Além disso, a natureza baseada em texto das soluções
existentes permite erros ingénuos e diminui a legibilidade das configurações de orquestração à
medida que sua complexidade aumenta, tanto em número quanto em heterogeneidade de serviços.

As abordagens de programação visual têm sido usadas para trabalhar com abstrações para
programação específica de domínio ou de uso geral. Podemos já encontrar inúmeras instâncias
de abordagens de programação visual no campo de operações. Em particular, alguns que ofere-
cem suporte à orquestração com Docker Compose. No entanto, estas abordagens são incompletas,
pois as notações visuais adotadas não capturam completamente os conceitos subjacentes a Docker
Compose e, portanto, podem não maximizar os potenciais ganhos de tal abordagem. Além disso,
parece haver uma falta de adoção destas abordagens alternativas, conforme sugerido pelos resulta-
dos de uma investigação que realizamos para avaliar os desafios que os programadores enfrentam
ao trabalhar com estas tecnologias.

Desta forma, acreditamos que a definição de uma abordagem de programação visual completa
para especificar e visualizar arquiteturas baseadas em Docker pode fornecer um maior grau de
abstração com potencial de facilitar os esforços do programador e reduzir a taxa de erro e o tempo
de desenvolvimento.

Neste sentido, desenvolvemos um protótipo denominado Docker Composer, que funciona
como ambiente de programação para a abordagem visual completa, com base em conhecimen-
tos das áreas de programação visual e de engenharia orientada a modelos. O protótipo aborda as
limitações das soluções de estado da arte, apresentando notações visuais ricas que abrangem todos
os artefactos de Docker Compose e simplifica a gestão de stacks num único ambiente.

O protótipo foi então utilizado como meio para validar a abordagem numa experiência con-
trolada realizada com programadores principiantes. O estudo considerou dois tratamentos e teve
como objetivo comparar o protótipo com o conjunto de ferramentas convencionais em relação ao
desempenho e à perceção de facilidade de uso, utilidade e intenção de uso. Os resultados indicam
que o protótipo apresenta alguns benefícios na redução do tempo de desenvolvimento e propensão
a erros, principalmente para atividades de definição de stacks, e fornece uma experiência mais
fluída, o que suporta a nossa hipótese. Além disso, os participantes consideraram o protótipo mais
fácil de usar, útil e manifestaram vontade de usá-lo no futuro.

iii

iv

Acknowledgements

I thank my supervisor, professor Filipe Correia and my second supervisor, professor João Dias for
their guidance, collaboration, and criticism. Without their knowledge and ideas, this dissertation
would have not been the same.

My deepest gratitude to my family for their patience and support in my decisions through all
the years. I am who am today because of them.

Lastly, but not least, I thank everyone, colleagues and friends, who accompanied me through-
out this academic journey.

Bruno Piedade

v

vi

“Imagination means nothing without doing”

Charlie Chaplin

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation . 3
1.4 Main Goals . 3
1.5 Contributions . 4
1.6 Dissertation Structure . 4

2 Background 5
2.1 Cloud Computing and Infrastructure . 5
2.2 Virtualization and Containerization . 7
2.3 Software and Program Visualization . 8
2.4 Visual Programming Languages . 9

2.4.1 Key Concepts . 9
2.4.2 Categories . 11

2.5 Model-driven Software Engineering . 16

3 State of the Art 19
3.1 Model-driven Software Engineering . 19

3.1.1 MDSE Transformations . 20
3.1.2 Model-driven Cloud Infrastructure . 21
3.1.3 Discussion . 23

3.2 Visual Approaches in Operations . 24
3.2.1 Monitoring . 25
3.2.2 Services . 28
3.2.3 Infrastructure . 34
3.2.4 Discussion . 37

4 Preliminary Work 39
4.1 Motivation . 39
4.2 Specific Goal . 40
4.3 Research Questions . 40
4.4 Methodology . 40
4.5 Data Collection . 41
4.6 Data Analysis Methods . 41
4.7 Data Analysis . 42

4.7.1 Personal Context . 42
4.7.2 Working with Docker Technologies . 43

ix

x CONTENTS

4.8 Conclusions . 46

5 Problem Statement 49
5.1 Current Issues . 49
5.2 Research Statement . 50
5.3 Target Audience . 51
5.4 Solution Perspective . 51
5.5 Methodology . 52

6 Solution Prototype 53
6.1 Overview . 53
6.2 Architecture . 54
6.3 Technological Decisions . 55
6.4 Feature Design . 56

6.4.1 Visual Map . 58
6.4.2 Static Validation . 59
6.4.3 Supported Versions . 60
6.4.4 File Management and Serialization . 60
6.4.5 Executing Commands from the UI . 61
6.4.6 Visual Feedback . 61
6.4.7 Docker Hub Integration . 62

6.5 Practical Example . 62
6.6 Availability . 62
6.7 Discussion . 63

7 Empirical Study 65
7.1 Goals . 65
7.2 Design . 66

7.2.1 Participants . 66
7.2.2 Data Sources . 67
7.2.3 Environment . 67
7.2.4 Task Definition . 67
7.2.5 Procedure . 69
7.2.6 Data Collection . 69
7.2.7 Data Analysis . 71
7.2.8 Pilot Experiments . 71
7.2.9 Replication . 71

7.3 Data Analysis . 72
7.3.1 Background . 72
7.3.2 Task Performance . 75
7.3.3 Assessment Questionnaire . 84

7.4 Validation Threats . 91
7.5 Summary . 92

8 Conclusions and Future Work 93
8.1 Hypothesis Revisited and Contributions . 93
8.2 Future Work . 94

A Tools Listing 97

CONTENTS xi

B Preliminary Work Questionnaire 99

C User Study Materials 105
C.1 Control . 106
C.2 Experimental . 119

References 137

xii CONTENTS

List of Figures

1.1 High-level architectural overview. 3

2.1 Comparison of hypervisor and container-based deployments. 7
2.2 Visual programming and software visualization. 8
2.3 A program and its dataflow equivalent. 11
2.4 Sample of the Scratch programming environment UI. 13
2.5 Sample of the FlowHub programming environment UI. 14
2.6 Example of a Node-RED flow. 15
2.7 Diagram of models in software engineering . 16

3.1 Venn diagram of technology groups in Operations 25
3.2 Sample of Grafana’s dashboard. 26
3.3 Sample of Portainer’s main dashboard. 29
3.4 Sample from Admiral’s visual orchestrator. 30
3.5 Sample from Admiral’s template visual orchestrator. 31
3.6 Sample of CloudSoft Visual Composer’s interface. 35
3.7 Sample application map from CloudMap’s interface. 36

4.1 Distribution of answers to the Personal Context question group 42
4.2 Distribution of answers to the Personal Context question group 43
4.5 Distribution of participants who use plugins/tools for Docker Compose 46

6.1 Deployment diagram of the prototype. 54
6.2 High-level architecture of the prototype. 54
6.3 Layout of the prototype’s main view. 57
6.4 Visual representation of a service artifact node. 59
6.5 Visual representation of a volume, network, config and secret artifact nodes. . . . 59
6.6 Static validation notation example. 60
6.7 Comparison of the textual and visual representation of a stack 63

7.1 Distribution of Docker Compose YAML files on Github by size 68
7.2 Distribution of used orchestration frameworks by group. 74
7.3 Distribution of configured Docker Compose artifacts by group. 74
7.4 Distribution of completed tasks by group. 76
7.5 Distribution of the global times for each subject by context, by group 77
7.6 Distribution of times to completion for each subject by task, by group. 79
7.7 Distribution of execution attempts for each subject by task, by group. 81
7.8 Distribution of global context switches for each subject by group. 82
7.9 Percentage of subjects who answered the questions of task T1 correctly. 83

xiii

xiv LIST OF FIGURES

7.10 Mean of answers to related to environment factors for each subject, by question . 85
7.11 Mean of the answers to the PPU items of the assessment questionnaire 86
7.12 Mean of answers to the PEOU items for each subject 86
7.13 Mean of answers to the feature usefulness items for each subject 88
7.14 Mean of answers to the PU items for each subject 89
7.15 Mean of answers to the ITU items for each subject 90

List of Tables

3.1 Monitoring tools comparative overview. 27
3.2 Service level visual tools comparative overview. 34
3.3 Infrastructure level visual tools comparative overview. 37

4.1 Summary of the answers to the Personal Context question group 42
4.2 Distribution of the answers to the Personal Context question group 42
4.3 Distribution of the reading related answers to the WwDT question group 44
4.4 Distribution of the writing related answers to the WwDT question group 45

6.1 Summary of supported features by drawing framework 56
6.2 Summary of supported visual notations for Docker Compose artifacts by tool . . 63

7.1 Summary of the answers to background questionnaire 73
7.2 Summary of the number of orchestration frameworks used 73
7.3 Results of the McNemar test for used Docker Compose artifacts 75
7.4 Summary of the global task times by activity . 77
7.7 Summary of the times for each task across both groups 79
7.8 Summary of the execution attempts for each task across both groups 80
7.9 Results of MW-U test for global context changes 82
7.10 McNemar test for comparison of the answers of task T1 83
7.11 Summary of the answers to the ENV items of the assessment questionnaire . . . 84
7.12 Summary of the answers to the PPU items of the assessment questionnaire 85
7.13 Summary of the answers to the PEOU items of the assessment questionnaire . . . 87
7.14 Summary of the answers to the feature items of the assessment questionnaire . . 88
7.15 Summary of the answers to the PU items of the assessment questionnaire 89
7.16 Summary of the answers to the ITU items of the assessment questionnaire 90

A.1 Monitoring tools source . 97
A.2 Service tools sources . 97
A.3 Infrastructure tools sources . 98

xv

xvi LIST OF TABLES

Abbreviations

AI Artificial Intelligence
API Application Programming Interface
CLI Command Line Interface
CaaS Containers as a Service
DSL Domain Specific Language
DSML Domain Specific Modeling Language
GUI Graphical User Interface
IaC Infrastructure as Code
IaaS Infrastructure as a Service
IoT Internet of Things
LHS Left Hand Side
M2M Model-to-model
M2C Model-to-model
MDA Model Driven Architecture
MDE Model Driven Engineering
MDSE Model Driven Software Engineering
MW-U Mann-Whitney U
PIM Platform Independent Model
PLC Programmable Logic Controllers
PSM Platform Specific Model
PaaS Platform as a Service
QVT Query/View/Transformation
RHS Left Hand Side
SaaS Software as a Service
UML Unified Modeling Language
VM Virtual Machine
VMF Visual Programming Framework
VP Visual Programming
VPL Visual Programming Language
YAML YAML Ain’t Markup Language

xvii

Chapter 1

Introduction

1.1 Context . 1

1.2 Problem Definition . 2

1.3 Motivation . 3

1.4 Main Goals . 3

1.5 Contributions . 4

1.6 Dissertation Structure . 4

The goal of this chapter is to present an overview of this dissertation. It starts with the description

of context in which this dissertation fits (Section 1.1), followed by the definition of the problem

that it tries to tackle (Section 1.2), the motivation behind the solution (Section 1.3), the proposed

main goals (Section 1.4) and contributions (Section 1.5). Lastly, an outline of how the remainder

of the dissertation is structured is given (Section 1.6).

1.1 Context

As the user-base and complexity of applications grow the infrastructure upon which they are built

grows accordingly. This, in turn, results in huge challenges in managing and scaling such infras-

tructure. DevOps has emerged in the software engineering ecosystem as a set of practices with the

goal of combining development and operations seamlessly, shortening development life cycles,

and providing continuous deployment all the while ensuring high software quality [26]. At the

same time, cloud technologies have become commonplace, following the advent of cloud service

providers such as Amazon Web Services (AWS)1, Microsoft Azure2 and Google Cloud Platform3

1More information available at https://aws.amazon.com/
2More information available at https://azure.microsoft.com/
3More information available at https://cloud.google.com/

1

https://aws.amazon.com/
https://azure.microsoft.com/
https://cloud.google.com/

2 Introduction

offering unprecedented flexibility and deployment velocity through diverse hosting options suit-

able to satisfy a broad variety of consumer requirements and needs [7]. Automation is a core

principle of DevOps, targeting, among other challenges, infrastructure management [26]. Infras-

tructure as Code (IaC) is the practice of managing infrastructure through configuration files as

part of the code-base [34]. Although initially designed for configuring and managing bare-metal

infrastructure (popularized by configuration management tools such as Chef4 and Puppet5), this

practice is also used nowadays for managing and provisioning infrastructure resources in cloud

environments.

Alongside these developments, another key aspect was the appearance of containers, revolu-

tionizing the way systems are structured and enabling microservices architectures [3]. Containers

allow the virtualization of services and applications in a more lightweight way when compared to

virtual machines [38]. One of the key container implementation and management technologies is

Docker which currently plays a massive role in this context [51]. With the ever-growing scale and

complexity of the software engineering world, the need for efficient and useful tools for supporting

the developers whose daily job is to manage such systems and optimizing these tasks is critical.

1.2 Problem Definition

Docker Compose6 is a tool for defining and running multi-container Docker applications. Usu-

ally, the developer defines the intended configuration by editing a YAML file containing all the

information regarding the services that constitute the application, the corresponding images, and

how they are related to each other as well as volumes for data persistence and networks for the

connections between services. The stack can then be run, conventionally through the command-

line interface (CLI), resulting in the creation or execution of the declared resources, including the

container or set of containers for each of the declared services.

Although this process may be fairly straight-forward for the setup of low complexity service

stacks, the textual nature of the configuration files may present some challenges as the complexity

increases, be it in number or heterogeneity of services. In such cases, it is more clear that un-

derstanding dependencies between services becomes difficult as definitions begin to get scattered

within the file. Furthermore, some advanced aspects of the configuration such as port mapping

and volume management might be overwhelming and confusing for inexperienced users.

A complete visual approach for editing and visualizing such configurations might be valuable

in aiding the developer in successfully setting up comprehensive and complex applications by

providing a higher degree of abstraction in a friendlier and more intuitive environment. Thus, we

believe the increased understandability provided by a complete visual approach [14] may result in

higher efficiency, particularly, by speeding up development time and reducing error proneness. In

this sense, a complete visual approach has the potential to prove useful for a broad audience of

4Chef, available at https://www.chef.io/
5Puppet, available at https://puppet.com/
6More information available at https://docs.docker.com/compose/compose-file/

https://www.chef.io/
https://puppet.com/
https://docs.docker.com/compose/compose-file/

1.3 Motivation 3

end-users ranging from first-time developers who wish to understand how the technology works

to more experienced users who might take advantage of the visualization aspects to have a clearer

overview of the configuration.

1.3 Motivation

Historically, visual approaches have been used for numerous purposes, for example, in manufac-

turing industries when configuring programmable logic controllers (PLC) via ladder and sequential

function charts and usage of visual notations in software engineering such as the Unified Model-

ing Language (UML) while more recent applications can be found for educational purposes and

in the Internet of Things (IoT) area [23]. In fact, there are already numerous examples of visual

approaches found in the operations field for multiple purposes and tasks, for instance, the manage-

ment of cloud and container resources including some which focus on Docker technologies [46].

In this sense, there is evidence supporting the viability and usefulness of such an approach.

Additionally, there is currently a high concern with misconfigurations resulting from IaC

scripts following the widespread of this process to automate infrastructure provisioning and man-

agement [53]. Although Docker Compose configurations files do not fit precisely in this definition,

they are very similar to this notion, albeit applied to service orchestration. The previously identi-

fied benefits of visual approaches can be crucial in alleviating such misconfigurations.

1.4 Main Goals

Figure 1.1: High-level architectural overview.

The overall purpose of this dissertation is to explore and research the benefits of a visual

programming approach applied to the orchestration of service stacks based on Docker Compose

by evolving and expanding the efforts already made in this field. With this objective in mind,

we propose to design a more complete visual programming approach including the definition of

the associated graphical elements and visual notations for the artifacts and relations inherent to

Docker Compose. Next, the development of a prototype for leveraging the language. Finally, we

propose an experimental design for the validation and assessment of the practical usefulness of

4 Introduction

the proposed visual approach using the prototype to conduct experiments with the end-users by

measuring the efficiency (e.g. time of development and number of errors made by the developers)

between solutions.

Figure 1.1 shows a high-level perspective of the envisioned architecture. As can be observed,

the solution will leverage knowledge mainly from two fields: Visual Programming (VP) and

Model-Driven Engineering (MDE). Due to this, these areas are thoroughly explored in the fol-

lowing two chapters.

1.5 Contributions

The contributions of this dissertation are threefold:

• A study of the challenges of working with Docker Compose. A study conducted with

students to identify practical issues developers find when working with Docker technologies;

• A visual programming environment for orchestration with Docker Compose. A proto-

type serving as a visual programming environment was developed leveraging the proposed

complete visual approach for orchestration with Docker Compose;

• An experimental design to validate the approach. We have designed and conducted a

user study among students to empirically validate the complete visual approach.

1.6 Dissertation Structure

In this section, the remainder of the dissertation structure is outlined as follows:

Chapter 2, Background, compiles a collection of the most relevant concepts and issues that

are essential in understanding the rest of the dissertation.

Chapter 3, State of the Art, provides a review of the state-of-the-art related to the context of

this work.

Chapter 4, Preliminary Work, describes the research conducted to identify the issues devel-

opers face when working with Docker Compose technologies.

Chapter 5, Problem Statement, presents a focused and detailed view of the problem addressed

by this dissertation and solution prospects including the hypothesis and research questions.

Chapter 6, Solution Prototype, details the implemented prototype which illustrates the pro-

posed solution to the problem.

Chapter 7, Empirical Study, documents the experimental procedure and showcases the find-

ings for the user study conducted to validate the solution prototype.

Chapter 8, Conclusions and Future Work, briefly summarizes the main conclusions derived

from the research along with the main contributions and proposed future work.

Chapter 2

Background

2.1 Cloud Computing and Infrastructure . 5

2.2 Virtualization and Containerization . 7

2.3 Software and Program Visualization . 8

2.4 Visual Programming Languages . 9

2.5 Model-driven Software Engineering . 16

This chapter has the main purpose of defining key concepts, essential to the understanding of this

work and upon which it is built. The concepts are as follows: cloud computing and infrastructure

(Section 2.1), virtualization and containerization (Section 2.2), software visualization (Section 2.3,

visual programming languages (Section 2.4) and model-driven software engineering (Section 2.5).

2.1 Cloud Computing and Infrastructure

Cloud computing is a broad concept that has risen as a paradigm for hosting and delivering services

over the Internet [1]. In more detail, it can be defined as the combination of the Software as a

Service (SaaS) delivered over the Internet and the hardware and systems software data-centers

that provide those services, known as a cloud [7]. According to Abbasov [1], cloud computing

has five fundamental characteristics:

• On-demand self-service: A user should be able to acquire resources automatically without

human interaction with the service provider.

• Broad network access: The resources of the cloud should be available through the Internet

and accessed through diverse terminals.

5

6 Background

• Resource pooling: The physical and virtual computing resources (e.g. storage, processing)

are abstracted from the end-user and assigned as needed. The end-user has no control and

knowledge over the resources and may only be able to specify a location.

• Rapid elasticity: Resources scale elastically on demand giving the illusion of being infinite

and can be provisioned in any quantity at any time.

• Measured service: Resources are automatically controlled and optimized using appropriate

metering capabilities and its utilization is transparent for both the provider and consumer.

Another important characteristic of cloud computing is the type of services provided which

range in a large spectrum based on resource abstraction [1]. These include the following:

Software as a Service (SaaS). The infrastructure is abstracted from the consumer removing

control at this level. It aims to provide a hosting environment suitable for the deployment of

complete applications accessible through the Internet from diverse terminals. Management is

done in a single virtual environment for the optimization of resources in regards to availability,

speed, security, maintenance, and disaster recovery.

Platform as a Service (PaaS). Development platform for the full "Software Lifecycle". It

differs from SaaS because it provides support for both complete and in-progress applications.

Infrastructure as a Service (IaaS). Provides the consumer with direct control of resources at

the infrastructure level (e.g. processing and storage). Relies heavily on virtualization for integra-

tion and decomposition of physical resources to accommodate demand.

Finally, in regards to the deployment model, whose definition is based on the location of the

infrastructure and the entity responsible for managing it, this may be one of four [1]:

Private cloud. Operated by a single organization regardless of location. Reasons for adoption

include, among others, utilizing and optimizing in-house resources and ensuring data privacy.

Community cloud. Shared between multiple organizations under the same infrastructure and

core values. Can be hosted by a third-party or a member of the community.

Public cloud. Most common model. Allows consumers to pay on-demand based on the

provider’s policies and charging-model.

Hybrid cloud. A combination of two or more of the previous clouds connected by technolo-

gies that enable data and application portability.

One of the biggest benefits of cloud computing is its elasticity and pay-by-usage model, which

adapts to the needs of its consumers. This provides companies of all sizes the opportunity of

experimenting and take risks without the heavy burden of managing all required infrastructure and

hardware behind it, shifting the focus from management and maintenance to the core business.

Along with the widespread of cloud computing technologies and concerns nourished by the

DevOps community, the Infrastructure as Code (IaC) practice emerged. It is the practice of main-

taining system configurations and provisioning deployment environments using source code [34].

2.2 Virtualization and Containerization 7

Figure 2.1: Comparison of (a) hypervisor and (b) container-based deployments. From [10]

IaC scripts are handled much like the rest of the code-base and promote the participation of devel-

opers in operations.

2.2 Virtualization and Containerization

As established in the previous section, cloud computing presents several difficult challenges for

the providers of these technologies. For instance, achieving the proposed scaling elasticity and

seemingly infinite capacity requires the virtualization of the resources to hide the implementation

of how they are multiplexed and shared [7]. In fact, major aspects are heavily dependent on

virtualization. Current solutions include virtual machines (VMs) and containers.

Containers are lightweight and executable standard units of software which package up code

and all its dependencies [59]. Although containers and VMs try to solve an identical issue and

are indeed very similar, the main difference lies in the virtualization level utilized [48]. VMs aim

to emulate hardware while containers emulate operating systems, making them more lightweight

and portable all the while keeping the same resource isolation and allocation benefits [38]. In

fact, some sources claim the benefits of using containers in comparison to VMs, most notably, in

regards to the throughput and response time [40, 38].

Figure 2.1 displays the differences in the deployment of an application between hypervisor

(VM) and containers.

It is in this context that Docker currently stands as one of the most adopted container imple-

mentation and management technology [51]. Containers play an important role nowadays from

development to production and are crucial in enabling microservices architectures [3].

It is for this exact reason why Docker, more accurately Docker Compose, was chosen as the

container technology for which to develop the visual orchestrator being proposed in this work,

8 Background

Figure 2.2: Visual programming and software visualization. From [24]

that is, its current high adoption and relevancy in the software development and engineering space.

Taking into account existing container technologies, when compared to alternatives, Docker stands

as the most pertinent.

2.3 Software and Program Visualization

A substantial amount of research is found in the area of program visualization and the broader

area of software visualization. The distinction between both lies in what artifacts are considered.

In software visualization, besides the source code itself, other artifacts, namely requirements,

architectural design, and bug reports are also taken into account [24].

Software visualization and visual programming (discussed in the next section) are strongly re-

lated and complement each other, as shown in Figure 2.2. While the former usually produces static

visualizations for software systems the latter allows visual manipulation of elements to generate

software systems. When applied simultaneously round-trip visualization is achieved [24].

In general, these visualization approaches have the overall intent of increasing the compre-

hensibility of software systems by providing a method to visualize the code and its relationships

usually following some specific visual metaphor, resulting in a higher abstraction level by translat-

ing difficult concepts into more comprehensible equivalents. Furthermore, some explore liveness

concepts [62, 2] in an effort to improve the feedback provided to the developer. This approach is

particularly useful when applied to complex and large-scale systems for which a global view may

be valuable in understanding the system as well as debugging.

One of the most widespread is the Unified Modeling Language (UML). UML has been the

de facto standard for, among other purposes, visualizing software architectural designs and arti-

facts [11].

2.4 Visual Programming Languages 9

Another example is Cloudcity that aims to explore the benefits of model-driven engineering

techniques and a combination of live programming and software visualization approach applied to

cloud management through a city metaphor [43].

More software visualization approaches have adopted a city metaphor in the past, following

in CodeCity’s footsteps, originally developed by Wettel et al. The city metaphor was chosen

after several empirical studies validated its adequacy and efficiency in software visualizations.

According to this metaphor, software elements are mapped to city elements such as buildings

and districts. Additional efforts include CityVR, which experimented with virtual reality (VR)

integration to provide a higher engagement level [43, 44, 4].

2.4 Visual Programming Languages

Although the definition of a visual programming language (VPL) can be broad, vague and even

somewhat contradictory among distinct authors throughout its evolution, the main agreed-upon

characteristics are the reliance on and usage of graphical elements and visual notations, such as

icons and diagrams, for both conveying information and serving as the interaction medium with

the developer applied to some application, with the overall purpose of providing an abstraction

over some programming task. The major distinction between visual and text-based programming

languages lies in the exploration of multiple dimensions for semantic expression of the former

when compared to the latter [14, 15, 50]. Examples of such added dimensions include time rela-

tionships expressing "before-after" relations and spatial relationships.

Even though this definition may apparently imply the elimination of text on the surface, in

reality, this is a misconception as the overall goal is to strive for improvements in programming

language design in a multidimensional context. In fact, most VPLs include some textual elements

as an auxiliary dimension to provide a more complete and comprehensible view. Nevertheless,

to be classified as such, VPLs require significant parts of the program structure to be represented

graphically [14, 25].

2.4.1 Key Concepts

We’ll start by presenting and discussing some key concepts, characteristics, and features which

are shared across literature.

Purpose. VPLs are split between two purposes. General-purpose providing a visual approach

for software development, suitable for producing executable programs of reasonable size, with

equivalent freedom of a high-level text-based programming language and domain-specific when

applied to a specific area for a single or set of tasks (e.g. software engineering or scientific visual-

ization).

Visualization metaphor. A crucial characteristic of a VPL is its adopted visualization metaphor,

that is, how the domain concepts are mapped from the internal model to their corresponding vi-

sual representations [8, 24]. The overall goal of applying a visualization metaphor is to increase

comprehensibility over otherwise foreign and difficult notions by transposing these concepts into

10 Background

more understandable analogous concepts which are more familiar to the end-user. One example is

the city metaphor used for code visualization, mentioned previously.

Representation model. This is a broad topic, ranging from dimensionality, whether 2D or 3D,

to how the elements are distributed, organized, and connected on the screen, such as graph-based

and box-based diagrams.

Control flow. As in traditional text-based programming languages, VPLs follow one of two

concepts for flow of control: imperative and declarative. In a imperative approach one or more

control-flow or dataflow diagrams are used to convey how the thread of control flows through the

program, being particularly useful for representing parallelism. On the other hand, in a declarative

approach, the developer is only concerned with what computations are performed and not how the

operations are carried out, avoiding explicit state modifications by the use of single assignment.

Abstraction. Two abstraction types are widely adopted: procedural abstraction and data

abstraction. On one hand, in regards to procedural abstraction, this type can be further subdivided

into two levels, high and low level. High-level VPLs are commonly found in domain-specific

applications but are not complete programming languages, meaning, it is not possible to write and

maintain an entire program from the ground up with these languages without the combined use

of additional underlying non-visual modules. In contrast, low-level languages, do not allow the

developer to combine fine-grained logic into procedural modules and are useful in domain-specific

applications as well. General-purpose VPLs usually feature both levels of abstraction to best suit

the distinct concepts of a general programming language. On the other hand, data abstraction

is exclusively applied in general-purpose VPLs and its definition is very similar to the one when

applied to conventional programming languages, that is, the idea of simplifying a body of data

into a reduced, yet more comprehensible, representation. However, when applied to the concept

of a VPL, this type of abstraction includes the added restrictions of being defined visually, have a

visual representation, and provide interactive behavior.

As previously established, the main purpose of VPLs is to provide an abstraction over some

programming tasks and allow the developer to work at this higher abstraction level, theoretically

presenting benefits when compared to traditional text-based programming. In particular, according

to Burnett [14], the most common goals include increasing the understandability for a certain target

audience, reducing error proneness, and increasing the development speed. This can be achieved

by exploring four common strategies:

• Concreteness. Allow the direct and visual exploration of data. One example is the effects

of some portion of a program being automatically displayed on a specific object or value.

• Directness. Reducing the number of steps between the intention and the goal. In practice,

it equates to minimizing the sequence of interactions required for the user to achieve some

objective. One example is the difference between having to navigate through multiple menus

in comparison to using a keyboard shortcut for the same task.

• Explicitness. Explicitly represent more data without the need of inferring it. For instance,

considering a graph-based visual notation and 3 elements a, b and c which follow a transitive

2.4 Visual Programming Languages 11

Figure 2.3: A program and its dataflow equivalent. From [37]

relation R such that if a R b and b R c, then a R c, the distinction lies between explicitly

displaying the relation between a and c and not.

• Immediate Visual Feedback. Automatically display up-to-date information whenever some

change occurs. This refers to the feedback loop between the programming environment and

the developer, therefore, it can be directly associated with liveness levels as defined by Tan-

imoto [62] according to Johnston et al. [37].

2.4.2 Categories

A very important subset of VPLs is those which follow the Dataflow Model [31, 37]. Its origin

dates back to the 1970s and was originally intended to exploit parallelism [37]. In this model, a

program is seen as a directed graph in which nodes correspond to primitive instructions or func-

tions (e.g. arithmetic operations) and arches represent data dependencies between the instructions

upon which units of data called tokens flow behaving as unbounded queues. Inbound arches cor-

respond to the input of a function, while outbound correspond to the data output. When all of its

inputs contain data, a function node, considered as fireable, is executed some undefined time af-

terward and the output is placed in some or all of its outbound arches. The main advantage of this

model lies precisely in its parallelism potential as multiple nodes can be fireable simultaneously.

Programming languages which follow this paradigm usually adopt a graph-like representation.

Figure 2.3 showcases a program snippet (a) and its equivalent in a dataflow notation (b).

During the 1990s, a surge of VPLs appeared [37] and its impact can still be felt today, as seen

with many recent VPLs, built for a wide array of tasks and domains. The representation as a graph

is very flexible and a fitting way of visually representing many concepts making it useful in many

applications whether for general-purpose purposes and domain-specific languages.

12 Background

Throughout the evolution of VPLs, multiple classification schemes have been proposed. One

of the most recent is the scheme proposed by Boshernitsan et al. [12] which results from the com-

bination and refinement of previous efforts made by important authors in the field, such as Chang

[20], Shu [58], and Burnett [16]. This scheme will be adopted henceforth for all classifications

of VPLs made during this work, particularly in the state-of-the-art review (Chapter 3). According

to these authors, based on their characteristics, including provided features and used paradigms,

VPLs can be organized in five non-mutually exclusive categories. Most VPLs belong to one of the

first two categories and both general-purpose and domain-specific languages can be found in each

category.

Purely visual languages. These VPLs are characterized by their strong reliance on visual

techniques, that is, interaction through the manipulation of visual elements. Additionally, they

allow direct compilation from the visual model, without the need for translation to some interme-

diate text-based language and support debugging and execution in the same environment.

Hybrid text and visual languages. Mix of text-based and visual languages. Considers both

languages which are fundamentally text-based but include complementary graphical elements and

fundamentally visual-based (similarly to purely-visual) but are afterward converted into a high-

level text-based language. Furthermore, some support edition of a program while alternating be-

tween two views for the visual and textual representation while maintaining consistency between

both.

Programming-by-example systems. Follows the programming-by-demonstration paradigm

allowing the user to create and manipulate visual objects to teach the system how to perform

tasks. This category considers two types: Programming by example systems that try to infer

the program from examples of input and output and Programming with examples systems that

remember programmer’s commands for later use, without inferring anything [50].

Constraint-oriented systems. Act on constraint scenarios or environments by the definition

of a set of rules. Examples include simulation design and graphical user interface (GUI) develop-

ment.

Form-based systems. Derived from spreadsheets for its visualization and programming pa-

radigm. Programming is done by changing a set of interconnected cells over time. Although

not explicitly specified in the definition by Boshernitsan et al., this category can be seen in a

more broad perspective to include languages which follow the Form-based and spreadsheet-based

paradigm in general [16]. This means that, besides languages that adopt a spreadsheet metaphor,

similar languages that generalize sheets into forms are also considered.

To more clearly illustrate the characteristics and concepts inherent to each VPL category as es-

tablished in the scheme proposed by Boshernitsan et al. [12], some examples are briefly discussed.

To note, even though much work can be found during past decades towards compiling surveys in

regards to this area, to the best of our knowledge, there is currently a lack of up-to-date examples

covering more recent advances in this field. As a result, the VPLs presented in this section were

chosen based on their popularity and relevancy. In particular, one or a combination of ranking

2.4 Visual Programming Languages 13

Figure 2.4: Sample of the Scratch programming environment UI. From the project Red Cube
available at https://scratch.mit.edu/projects/361704410

metrics on the hosting website, such as Github1’s star ranking system, when such a metric was

available. Otherwise, the criteria for the inclusion of the tool was the novelty of its approach or

metaphor adopted. In addition, some grey literature was also considered for review.

Purely visual languages. Scratch2 is an educational visual programming environment that

lets users create interactive and media-rich projects, primarily aimed at teaching young people

programming concepts [45]. It was developed by the MIT Media Lab and publicly launched

in 2007. It is built upon a block-like interface that allows the connection of command blocks

to express the program’s logic. Each block corresponds to some operator. The programming

environment consists of a single-window split into four main panes: a command palette containing

the available command blocks, a pane for the scripts, a staging area for the output, and a pane for

all the sprites in the project. It also features additional panels accessible by folder tabs to view and

edit the costumes and sounds owned by the selected sprite. It achieves level 4 liveness, allowing

the users to interact with the system at any time while it is running, encouraging tinkerability, in

other words, experimentation and self-discovery similar to how one may tinker with mechanical

or electronic components [45]. Figure 2.4 displays a sample of the UI.

Hybrid text and visual languages. Blockly3 is JavaScript library for VPL based on interlock-

ing logic blocks similar to the previously mentioned Scratch. However, it matches more closely the

syntax of traditional programming languages supporting common constructs such as if conditions

and loops. It can output the corresponding code in multiple languages including JavaScript and

Python. Many projects are built with Blockly mostly for educational purposes. One example is

Micro:Bit4. This project introduces a micro-computer programmable through the block notation

or with a traditional scripting programming language, namely JavaScript and Python. Most no-

tably, the web programming environment offered supports programming between the block-based

1https://github.com/
2Scratch, available at https://scratch.mit.edu/
3Blockly, available at https://developers.google.com/blockly
4Micro:Bit, available at https://microbit.org/

https://scratch.mit.edu/projects/361704410
https://github.com/
https://scratch.mit.edu/
https://developers.google.com/blockly
https://microbit.org/

14 Background

Figure 2.5: Sample of the FlowHub programming environment UI. From the React ToDo example
available at https://noflojs.org/example/

notation and the traditional text-based language in parallel for the same source code.

Another notable example is NoFlo5. NoFlo is an open-source JavaScript implementation of

Flow-Based Programming (FBP), a programming approach reminiscent of dataflow program-

ming [37, 49]. It is designed for general-purpose programming and applications can be found

in various domains and purposes, ranging from IoT to multimedia and even controlling a drone.

Figure 2.5 showcases an example of NoFlo’s FlowHub environment UI. In regards to the UI, some

noteworthy design considerations include:

1. Customization of blocks through user-defined icons and names as well as descriptions for

inputs and outputs, making the concepts more comprehensible, especially when interpreting

an unknown project for the first time. However, even though a more detailed description for

a component can be set in its definition, this description is not displayed in the corresponding

details panel.

2. Inclusion of a simplified mini-map for displaying an overview for the complete layout of

the diagram.

Finally, Node-RED6 is one of the most widespread tools used in IoT, originally developed by

IBM7 and currently part of open source OpenJS Foundation8. It works as a Flow-Based Program-

ming tool for wiring together hardware devices, APIs, and online services. Created flows can be

exported and are stored in JSON format. Figure 2.6 displays an example of a flow.

Programming-by-example. Pygmalion is usually considered as one of the first languages in

this category [12]. Additional examples include Chimera, Cocoa, and Rehearsal World [12, 14,

50].

5NoFlo, available at https://noflojs.org/
6Node-RED, available at https://nodered.org/
7Moreinformationavailableathttps://www.ibm.com/
8Moreinformationavailableathttps://openjsf.org/

https://noflojs.org/example/
https://noflojs.org/
https://nodered.org/
More information available at https://www.ibm.com/
More information available at https://openjsf.org/

2.4 Visual Programming Languages 15

Figure 2.6: Example of a Node-RED flow. Retrieved from Github https://github.com/
node-red/node-red

Based on the conducted research and to the best of our knowledge, no recent VPLs can be

found in this category.

Constraint-oriented systems. From a historical perspective, these systems have been mostly

used for performing simulations, quintessential examples being ThingLab and ARK, and devel-

oping GUIs [12]. A modern example is Bubble9 designed for enabling non-programmers to build

web applications. This tool includes, among other aspects, a GUI builder usable through a combi-

nation of drag-and-drop mechanisms and form-based definitions.

Another recent example is IFTTT10, a web-based service for connecting other web services

and some physical devices through simple conditional statements called applets. Common ser-

vices include Gmail, Facebook, and Instagram. When creating an applet, the user configures a

service and the trigger condition as well as the desired action to perform on the target service.

Applets can be shared among users of the application.

Form-based. Forms/3 is one of the progenitors in this category [12]. This general-purpose

VPL follows the spreadsheet metaphor of cells and formulas to represent data and computation

respectively [12].

To summarize, in the current landscape, among the visual programming language categories,

purely-visual and hybrid constitute the vast majority and most are domain-specific languages

rather than general-purpose. This is directly in line with practical experiences that support the

hypothesis that visual approaches are most useful when applied to a particular field since it takes

advantage of a clearer and direct communication style tailored for specific problems [14]. By a

large margin, the most common visualization notations were some variation of a graph-based ap-

proach. Moreover, recent advances in the education field have thoroughly explored block-based

representations, partially due to open-source libraries such as Blockly that facilitate the develop-

ment of tools in this programming style.

9Bubble, available at https://bubble.io/
10IFTTT, available at https://ifttt.com/

https://github.com/node-red/node-red
https://github.com/node-red/node-red
https://bubble.io/
https://ifttt.com/

16 Background

2.5 Model-driven Software Engineering

Model-driven Software Engineering is a software engineering paradigm in which the whole de-

velopment life-cycle is supported by high-level abstraction (models) representing different views

of the system, abstracting the underlying infrastructure and code. These models can be converted

in a (semi)automatic process (model transformation) between distinct abstraction levels from an

initial high-abstraction model down to its executable equivalent [22]. The potential benefits of this

approach include:

• Improved portability by separating the application knowledge from the specific implemen-

tation technology.

• Increased productivity through automated mapping.

• Improved quality through the reuse of proven patterns and best practices.

• Improved maintainability due to a better separation of concerns.

• Better consistency and traceability between models and code.

Figure 2.7: Diagram of models in software engineering. From https://researcher.
watson.ibm.com/researcher/files/zurich-jku/mdse-01.pdf

Figure 2.7 diagrams the concept of models in software engineering showcasing how a model

abstracts low-level concepts (usually code) but itself is an abstraction of a view in the real world.

Numerous initiatives can be found in the domain of MDSE. One of the most notable is Model

Driven Architecture (MDA) by the Object Management Group (OMG)11. The MDA standard

specifies the usage of the MetaObject Facility (MOF) language for modeling high-level Platform-

Independent Models (PIMs) which are mapped to low-level Platform Specific Models (PSMs)

used to generate artifacts usually code [28]. MDA considers a set of MOF-compliant trans-

formation languages such as the Model to Text Transformation (MOFM2T) language to enable

11More information available at https://www.omg.org/

https://researcher.watson.ibm.com/researcher/files/zurich-jku/mdse-01.pdf
https://researcher.watson.ibm.com/researcher/files/zurich-jku/mdse-01.pdf
https://www.omg.org/

2.5 Model-driven Software Engineering 17

model-to-code transformations and the Query/Views/Transformation (QVT) standard for model-

to-model transformations [39]. The QVT standard specifies three languages: the declarative QVT

Relation (QVTr) to design relations between models, the imperative QVT Operation (QVTo) to

write unidirectional transformations and the lower-level declarative QVT Core (QVTc). QVTr is

a higher-level language built on top QVTc [39].

OMG adopts a four-layered architecture based on model abstracting level ranging from layer

M0 to layer M3 [42]. M0 corresponds to actual real-world objects, that is, instances of business

objects; M1 is the model which abstracts the instances of M0; M2 to the meta-model to which M1

conforms and finally M3 as the meta-metamodel that defines the concepts in M2 [13].

As defined by Kleppe et al. [42], "A transformation definition is a set of transformation rules

that together describe how a model in the source language can be transformed into a model in

the target language. A transformation rule is a description of how one or more constructs in the

source language can be transformed into one or more constructs in the target language."

A transformation rule consists of two parts: a left-hand side (LHS) which accesses the source

model and a right-hand side (RHS) which expands in the target model. Both sides can be rep-

resented using any combination of three approaches: (1) variables, sometimes referred to as

metavariables, hold elements from the source and/or target models; (2) patterns, model fragments

with zero or more variables and (3) logic, computations and constraints on model elements.

At the top level, two types of transformations can be identified: model-to-model (M2M) and

model-to-code (M2C), more accurately model-to-text since non-code artifacts may be generated,

although both terms are often used interchangeably [22]. Model-to-code transformations, in par-

ticular, can be seen as a special case of a model-to-model transformation for which a metamodel

for the target programming language is provided and are in general very similar to what compil-

ers perform when translating a high-level programming language into a lower-level equivalent.

Although both types are identified, in actuality, based on the definition of a model, M2C is, in

fact, a subset of M2M transformations, as code can be seen as a model itself, although at a lower

abstraction level closer to machine operations [47].

Furthermore, Cabot et al. [18] identified a set of properties to determine whether a transfor-

mation behaves as a mathematical function. In particular, if a transformation is executable, total,

deterministic, functional, exhaustive, injective, and bijective. Furthermore, these properties, along

with others, are also applicable to individual rules.

Czarnecki et al. [22] proposed a taxonomy for the classification of model transformation ap-

proaches along with some applications exemplifying practical instances for each in the context

of MDA. This taxonomy will be adopted during this work for the state-of-the-art review on these

techniques and is briefly described below.

In regards to model-to-model, five approaches were identified: direct-manipulation approaches,

relational approaches, graph-transformation-based approaches, structure-driven approaches, and

hybrid approaches.

• Direct-manipulation. Is the most low-level approach. Offers an internal model representa-

tion and some API to manipulate it and requires the users to implement transformation rules

18 Background

and scheduling mostly from scratch using a programming language such as Java.

• Relational. Defines declarative constraints with executable semantics between the source

and target models, similar to logic-programming.

• Graph-transformation-based. Operates on graphs specifically design to represent UML-

like models. Rules are defined using graph patterns for both the LHS and RHS.

• Structure-driven. Split into two phases: (1) creating a hierarchical structure of the target

model and (2) setting attributes and references in the target. Scheduling and application

strategy are defined by the framework and rules cannot have side-effects.

• Hybrid. Combines techniques from previous approaches.

In summary and a less granular view, we find three main approaches: declarative and im-

perative, which function similarly to how traditional programming languages classified in these

paradigms behave, and graph-based which operate on graph-based models through graph alge-

bra [39]. Graph-based approaches are in general more complex but provide more flexibility, useful

in solving some complex problems such as bidirectional transformations.

In regards to model-to-code transformations, two main approaches were identified: visitor-

based and template-based.

• Visitor-based. Similar to direct-manipulation approaches in the sense that a simple visitor

mechanism is provided to access and traverse the internal representation of the model to

generate text for the source model components.

• Template-based. Templates are used, usually consisting of the target text containing splices

of metacode to access information from the source and to perform code selection and iter-

ative expansion. The LHS logic can either be direct manipulation of an API or declarative

queries. Usually offers user-defined scheduling. Because textual templates are independent

of the target language, the generation of any textual artifacts is simplified. Additionally,

templates promote re-usage and are in general more intuitive since their definition closely

matches the structure of the resulting artifact.

The majority of the available MDA tools support template-based code generation [22]. Code

generation is usually unidirectional, meaning that, no way to reverse-engineer the code and syn-

chronize with the model is provided. As a result, tools frequently warn the developer that code is

overridden on generation [33]. Moreover, some provide custom code protection measures such as

the separation between implementation edited by the developer and interfaces exclusively gener-

ated by the tool [39]. In comparison, visitor-based approaches are more basic and highly rely on

the programmer to formulate the complete logic behind code generation.

Chapter 3

State of the Art

3.1 Model-driven Software Engineering . 19

3.2 Visual Approaches in Operations . 24

This chapter is focused on reviewing and describing the existing state of the art relevant to the

context of the problem. The goal is to grasp the current landscape to not only understand what so-

lutions and approaches currently exist in the domain but also to extract knowledge and inspiration

for the proposed solution.

More precisely, this review is focused on achieving two primary goals: examining some trans-

formations techniques utilized in MDSE as well as their practical applications (Section 3.1) and

surveying existing visual solutions mainly within the Information Technology (IT) operations field

and in a broader sense DevOps, with a heavy focus on those concerned with services management,

particularly those which rely on or are built for Docker technologies (Section 3.2). Both objectives

contribute towards a clearer vision and understanding of what the current landscape is for the two

core areas from which knowledge will be leveraged for the solution. A summary is included at

the end of each section, presenting an overview, discussion, and main conclusions regarding the

previous analysis.

Both peer-reviewed publications and gray literature were considered for review.

3.1 Model-driven Software Engineering

This review covers the state of the art in regards to MDSE transformation techniques and how

these techniques are employed in practical cases. The former is useful to support informed imple-

mentation decisions by leveraging the accumulated experience in the field while the latter offers

insight into what the latest relevant practical contributions in the software industry have been as

well as what are the current concerns among the academic community.

19

20 State of the Art

3.1.1 MDSE Transformations

In this section, we explore some practical examples of transformations techniques utilized in

MDSE. The purpose of this review is to understand what the most appropriate approach or combi-

nation of techniques may be for the bidirectional transformation between the internal source-code

model of a Docker Compose configuration and its YAML equivalent. Therefore, this review tries

to answer the following question:

What approaches exist that can support a round-trip model to code transformation?

This issue is related to the implementation of the import/export feature as well as the syncing

mechanism between the two representations expected in the proposed solution. With this purpose

in mind, we will primarily focus on M2C transformation approaches, since this is where the central

issue lies.

We begin by reviewing practical tools for M2C approaches as identified by Czarnecki and

Helsen [22] to more clearly illustrate how tools cope with these issues. Unfortunately, many of the

examples have been discontinued and its documentation is no longer publicly available. Therefore,

at least for those, the only reference material left is what is presented in the original work and other

contemporary papers since no method is available to empirically test the tools. However, in 2015,

Kahani and Cordy [39] performed a comprehensive survey on MDE enabling tools outlining the

major differences between them.

Visitor-based. An example is Jamda1. This framework provides a set of classes to represent

UML models, an API for manipulating models, and a visitor mechanism to generate code. Ad-

ditional model element types can be introduced by subclassing existing Java classes [22]. In a

regular workflow, users use UML models usually in the XMI format most frequently manipulated

with some UML modeling tool such as MagicDraw2 or Modelio3. Currently, the only supported

language for the generated output is Java.

Template-based. Many tools can be found which adopt this approach. One example is An-

droMDA4 which uses this approach for code generation. It supports both .NET and Java as output

languages.

We will now focus on reviewing transformation approaches to enable round-trip synchroniza-

tion through, among other tactics, bidirectional transformations (BX). The study of this subject

expands beyond the scope of MDSE since these mechanisms are useful in solving problems found

in numerous other areas including databases and programming languages [21].

Initial efforts include work by Stevens [61]. The author discussed how bidirectional transfor-

mations could be achieved using the QVT standard, more specifically QVT Relational, including

the proposition of a framework for "coherent transformation". In the study, the author considers

transformations that are bidirectional but not necessarily bijective. Transformations are specified
1Jamda, available at http://jamda.sourceforge.net/
2MagicDraw, available at https://www.nomagic.com/products/magicdraw
3Modelio, available at https://www.modelio.org/
4AndroMDA, available at https://www.andromda.org/

http://jamda.sourceforge.net/
https://www.nomagic.com/products/magicdraw
https://www.modelio.org/
https://www.andromda.org/

3.1 Model-driven Software Engineering 21

in an appropriate language (e.g. QVTr) and can be interpreted both as the relation between two

models and as forwards or backwards transformations. A set of assertions are considered: (1)

transformations should be deterministic, (2) a transformation may depend on the current value

of the target and source models which will be replaced, reinforcing the notion that transforma-

tions may not be bijective and (3) transformations have to be total. This resulted in the following

definition:

"Let R be a transformation between metamodels M and N,consisting of a relation R⊆M×N

and transformation functions
−→
R : M×N −→ N and

←−
R : M×N −→ M. Then R is a coherent

transformation if it is correct, hippocratic and undoable."

In 2008, Angyal et al. [5] proposed a mechanism to maintain round-trip synchronization for

M2M and M2C transformations. Our interest lies primarily in M2C, that is, in the context of the

proposed solution, the transformation between the PSM, stored in memory as an Abstract Syntax

Tree (AST)), to code (e.g. some docker-compose.yml, which also has to be periodically

parsed and converted to an AST). Two ASTs have to remain in memory at all times, the internal

PSM (M) and the last synchronized code state (C0). The synchronization process, for a given

synchronization step, is achieved as follows:

1. The difference between C1 and the current code AST (C0), generated from the current state

of the code file, is computed (ε1).

2. The difference between C0 and M is also computed (D2).

3. ε1 is atomically propagated to M and ε2 is atomically propagated to C1, achieving consis-

tency.

4. C0 is updated to store C1.

In 2010. Hidaka et al. [30] were among the first to propose a solution for bidirectional transfor-

mation applied to graphs based on UnCAL, a graph algebra. The solution explores trace informa-

tion to achieve well-behaved transformations (i.e. consistent transformations in both directions).

A year later, the authors expanded upon their work by developing the framework GRoundTram,

leveraging the achieved solution [29].

Later, in 2015, Hoils et al. [33] explored the concept of higher-order transformations (HOTs)

to address the BX problem. The result was a framework based on bidirectional higher-order trans-

formations (B-HOTs). The framework is independent of the transformation language used due to

the usage of binding specifications.

3.1.2 Model-driven Cloud Infrastructure

Cloud computing has been the target of numerous model-driven approaches following its mas-

sive proliferation and evolution which promoted the need for new and better solutions. Such

22 State of the Art

approaches have surfaced in an effort to improve the way resources are managed in cloud environ-

ments by working at a higher abstraction level provided by high-level models as an alternative or

complement to conventional low-level configurations.

In 2012, Ardagna et al. [6] proposed the initial vision of MODAClouds, a framework to tackle

the challenges inherent to the lack of interoperability between cloud service providers and result-

ing lock-in to some provider. The goal was achieving a service-agnostic approach fit for running

applications in cross-provider multi-clouds settings, appropriate for strict high availability and

flexibility non-functional and business requirements. To this end, a model-driven approach was

proposed, allowing the design of software system model artifacts at distinct abstraction levels

which are ultimately transformed into code and automatically deployed in the target cloud plat-

forms. Furthermore, it leveraged common cloud design patterns and best practices to aid the users

in supporting decision making during the modeling process by offering mechanisms to measure

and check if the implementation satisfies the requirements and optimizes target cloud environment

selection based on the characteristics of the application.

In 2014, Ferry et al. [27] tackled the challenges of interoperability in multi-cloud settings as

part of the same programme as MODAClouds. The result was the Cloud Modelling Framework

(CloudMF), a model-driven approach for managing applications in multi-cloud environments tai-

lored with DevOps principles in mind. The approach was built on two components: the DSML

CloudMl to model the applications and the run-time environment models@run-time to manage the

systems.

In the end, this effort became part of the MODAClouds initiative along with two other sibling

projects PaaSage and ARTIST. PaaSage adopted the Cloud Application Modelling and Execution

Language (CAMEL) which integrates and extends existing Domain Specific Languages (DSLs)

including CloudML [55].

Also in 2014, Bergmayr et al. [9] explored a similar idea, although less ambitious in scope,

when proposing the cloud-specific extension to UML’s deployment language named Cloud Appli-

cation Modeling Language (CAML) tailored towards representing concepts in this domain devel-

oped in the context of the previously mentioned ARTIST project. The resulting extension follows

MDA’s principles by separating between cloud provider-independent and cloud provider-specific

deployment models, matching the PIM and PSM respectively. Working prototypes were devel-

oped for Eclipse5 and Enterprise Architect6. The authors also argue in favor of the usefulness of

CAML for blueprints definition, taking advantage of UML’s template reusability. When compared

to CloudML, CAML does not include a run-time component to effectively deploy the modeled ap-

plications.

Regarding more recent advancements, Sandobalin et al. [56] proposed ARGON (An infRas-

tructure modellinG tool for clOud provisioNing) in 2017, a DevOps support tool leveraging IaC

practices and its benefits for infrastructure provisioning while simultaneously minimizing its draw-

backs through a model-driven approach. The project defines a DSL to model infrastructure inde-

5More information available at https://www.eclipse.org/
6More information available at https://sparxsystems.com/

https://www.eclipse.org/
https://sparxsystems.com/

3.1 Model-driven Software Engineering 23

pendently of the provider, later used to generate the target tool script. It builds upon previous

efforts (such as the mentioned [9]) but innovates by operating on top of existing Configuration

Management Tools (CMTs) such as Chef and Puppet, creating a toolchain in which pipelines can

be configured to automatically update on change. Afterward, in 2018, the authors proposed an

extension to the DSL to support a more comprehensive set of resources.

In a follow-up work [57], the authors compared the practical effectiveness of ARGON in

comparison to the well-established scripting-based Ansible7. In this study, the authors conducted

a series of experiments with 67 Computer Science students. In summary, the results show that

ARGON was more effective for specifying cloud infrastructure resources and perceived as "easier

to use and more useful". Overall, the tool proved to be a success and the authors believe in its

usefulness for real-world applications in the industry.

Model-driven approaches have also been applied directly in the context surrounding Docker

containers. Paraiso et al. [52] explored the applicability of a model-driven approach to address

some of the drawbacks of these technologies especially in regards to, among others, deployment

processes and maintenance in production environments. The result was a modeling tool built in

a 3 component architecture: (1) Docker Model, a model for containers and their dependencies,

(2) Executing Environment, the target infrastructure hosting the containers and (3) the Connec-

tor working as the bridge and providing synchronism mechanics between the previous two. An

Eclipse-based prototype was developed named Docker Designer, featuring a GUI to work with

these technologies.

3.1.3 Discussion

To define what the most appropriate transformation approach should be, it is imperative to first

clearly state the requirements. These are:

• Bidirectional transformations. The internal model should be transformable to text (docker-

compose.yml) and changes made to the file are propagated back to the model so that both

are synchronized (i.e. allow round-trip).

• Technological. If some approach requires additional code or libraries (e.g. the need for a

templating engine in template-based methods) or is exclusively tied to some specific tech-

nology.

Both M2M and M2C approaches are viable, but in M2M a metamodel for the target language,

that is the YAML-based definition of a docker-compose, must be provided.

Based on the previously analyzed efforts, there are multiple possible approaches to achieve the

expected synchronism. In particular, we find tree-based and graph-based approaches according to

the internal structure of the models. Taking into account that docker-compose.yml files (and

YAML files in general) are structured as trees, it only seems natural to adopt a tree-based approach.

To this end, the algorithm proposed by Angyal et al. [5] appears to be an adequate fit. Both
7Ansible, available at https://www.ansible.com/

https://www.ansible.com/

24 State of the Art

the internal model and docker-compose.yml (after being parsed) can be represented as trees.

These trees can be manipulated in conjunction since both operate at a similar abstraction level.

Therefore, the complexity is offset to calculating the difference between the trees as described in

the algorithm. Code generation is somewhat trivial and can be achieved through a template-based

or direct manipulation technique. A foreseeable challenge, however, is maintaining synchronism

between the additional meta-information in the internal model relative to visualization details (e.g.

the relative positioning of elements) and making this data persistent. This means that the PSM has

additional details that are not considered in the code.

In regards to applications of model-driven approaches, the bulk of the initial efforts were aimed

at resolving the vendor lock-in issue and facilitating work in multi-cloud settings. More recently,

contributions by Sandobalin et al.[56, 57] combine automation of IaC with high abstraction level

programming. This approach is very much in line with what is being proposed in this dissertation

where the goal is to provide a higher-level abstraction perspective to orchestrate services built

upon IaC like scripts (i.e. docker-compose.yml).

3.2 Visual Approaches in Operations

In this section, we present a review of visual tools geared towards IT operations and management

tasks, mostly focusing on container technologies, in particular, Docker technologies. The motiva-

tion behind this review is primarily to understand what state-of-the-art visual approaches exist in

this field and how they help users perform the intended tasks. Of most interest, to explore the tools

that adopt a visual approach to orchestrate Docker service stacks similarly to the approach being

proposed in this work. Therefore, the core question the review tries to answer is:

"What visual approaches are available to orchestrate and manage Docker service stacks?"

However, in actuality, the considered scope is extended beyond tools that directly work with

Docker technologies. This is because other visual solutions can be found in the broader field

of operations which try to solve comparable challenges through similar visual approaches. For

example, visual orchestrators for managing and provisioning cloud infrastructure resources.

Based on their purpose and subject matter, we can identify three major non-mutually exclusive

technology groups: monitoring, provisioning and management of services and of infrastructure.

Figure 3.1 displays a Venn diagram demonstrating how some of the surveyed technologies are

distributed among the three groups. The diagram includes only some examples for each category.

The tools that are displayed were chosen because they comprise a good representation of their

corresponding group. Each category is discussed in further detail during the following sections,

including a comprehensive table featuring all analyzed tools at the end of each section.

3.2 Visual Approaches in Operations 25

Figure 3.1: Venn diagram of monitoring, infrastructure management and service management
technology groups in operations

3.2.1 Monitoring

A large number of monitoring tools, 29 in total, were identified during the review. The research

approach was focused on searching for tools with container monitoring support. Out of the to-

tal, some of the solutions found were not considered for review because either a) were simple

tools focused on a single task (e.g. scheduling alerts), b) featured minimal container monitoring

support or none at all or c) only provided a technology stack composed of other technologies for

convenience. In the end, 12 tools were considered and are showcased in full in Table 3.1.

The main purpose of these tools is to provide meaningful feedback regarding the state of a

system at any given time. Although the scope varies, they frequently cover both the underlying

infrastructure as well as the services themselves, regardless of deployment (i.e. containerized or

legacy), to observe and verify the quality of the service provided over time.

Besides displaying textual data, most support the visualization of graph-based representations

for various performance metrics for both the hardware of the infrastructure and the services them-

selves such as memory usage and CPU load. In addition, some feature the visualization of the

network topology of the system even through automatic discovery from a single node. Another

common functionality is the inclusion of configurable alerts with the purpose of notifying the sys-

tem’s maintainers whenever some potentially dangerous event occurs. Specifically, if the estab-

lished target conditions were violated, for example, whenever some parameter or set of parameters

exceeds the established thresholds. Some even include artificial intelligence (AI), most commonly,

machine learning approaches, with the main goal of improving anomaly detection, for instance,

by automatic outlier identification and ultimately aid the system admins in their work.

The main interest in the study of such tools lies in, for the context of this dissertation and for

those that support it, the network topology visualization. This may serve as a basis for possible

26 State of the Art

Figure 3.2: Sample of Grafana’s dashboard. From https://grafana.com/

visual metaphors and notations applied to the visualization of configurations in the developed

solution.

Although numerous tools were surveyed, only the following couple are analyzed in more de-

tail. This is because they comprise a good representation for their purpose, that is, full-stack level

monitoring and container only monitoring, and support most features that define this category of

tools. Even though some minor differences can be identified between the remainder of the tools,

any further analysis would be mostly redundant and therefore unnecessary. This level of detail is

sufficient to answer the previously stated objective and a more extensive analysis would be outside

of the scope for container monitoring.

Prometheus8. One of the most proliferated open-source monitoring solution. Many other

monitoring solutions depend upon Prometheus for data metric retrieval such as Sysdig and Weavescope.

It is built for full-stack monitoring independently of architecture. Data is collected via a pull model

and is exposed as a web service which can be consumed, through the query-language PromQL by

clients including the integrated web UI and Grafana9 (displayed in Figure 3.2) for data visualiza-

tion. Additionally, it also includes an Alertmanager to handle and manage alerts.

Datadog10. Among the numerous existing monitoring tools, Datadog represents one of most

comprehensive example in this category, spanning a vast array of the previously noted features,

making it one of most complete tools available. Besides core functionalities such as text and graph-

based data feedback as well as support for alerts, the most notable feature is the ability to visualize

the infrastructure including all the nodes and how they are connected in the network along with

the corresponding throughput for each connection updated in short intervals. Each node can be

8Prometheus, available at https://prometheus.io/
9Grafana, available at https://grafana.com/

10Datadog, available at https://www.datadoghq.com/

https://grafana.com/
https://prometheus.io/
https://www.datadoghq.com/

3.2 Visual Approaches in Operations 27

expanded in further detail to the individual containers running in the node (when applicable) and

eventually to the processes being executed, whether in a container or directly in the host itself.

Therefore, it is usable both with containerized and non-containerized applications.

Weavescope11. Unlike most tools which target application monitoring regardless of how the

service is supplied, that is, whether it is containerized or not, Weavescope is primarily focused on

monitoring and troubleshooting container-based applications for Docker and Kubernetes. It allows

the visualization of the processes, containers, whether standalone or part of a stack identified

by matching colors, and Docker Swarm services present in the host, displayed in graph-based

diagrams with each element represented as a node and their dependencies as arrows. For each type,

a set of filters is provided as well as additional options such as displaying the Docker networks

connected to each container. Every node can be clicked and expanded, displaying a window with

detailed information, depending on its type, ranging from general data to performance metrics and

graphs. Additionally, it supports some limited container management operations such as restarting

and stopping containers and executing commands directly from the web page.

Table 3.1 shows an overview of the monitoring tools surveyed, capturing how the main features

are distributed across distinct tools. By partial monitoring, we consider feedback exclusively for

containers while full monitoring offers feedback for all levels of an application including network,

node, container, and process monitoring.

Name License
Target
Infrastructure

Topology
View

Alerts

cAdvisor Open-source Containers No No
Scout Proprietary Full No Yes
Data Dog Proprietary Full Yes Yes
Prometheus Open-source Full No Yes
Sysdig Proprietary Full Yes Yes
Sensu monitoring framework Open-source Full No Yes
Sematext Proprietary Full Yes Yes
Dynatrace Proprietary Full Yes Yes
Broadcom AIOps Proprietary Full No Yes
Site24x7 Proprietary Full No Yes
AppDynamics Proprietary Full Yes Yes
Weavescope Open-source Containers Yes No

Table 3.1: Monitoring tools comparative overview. Appendix A contains a full list of sources

Of the tools surveyed, most are proprietary with only four being open-source. Approximately

half support visualization of the topology and almost all include alerts.

Monitoring is a critical task in operations to maintain applications in production. Current so-

lutions are well developed and established, offering a wide variety of options fit for most require-

ments and use-cases. cAdvisor and Prometheus are the most prominent open-source monitoring

11Weavescope, available at https://github.com/weaveworks/scope

https://github.com/weaveworks/scope

28 State of the Art

solutions. Some projects aim to combine the strengths of both by providing convenient technology

stacks. Examples include dockprom12 and swarmprom13 for local and distributed environments

respectively.

3.2.2 Services

In this category, we consider tools built for container management and orchestration tasks. There-

fore, these tools operate at CaaS and PaaS levels. In particular, mainly those which support Docker

technologies. Due to the subject matter of this work, only tools which provide a true graphical user

interface (GUI) or at least some non-textual visualization component were considered.

We can subdivide this category into two groups: Docker GUIs and Orchestration Frame-
works.

3.2.2.1 Docker GUI

This group of tools provides a GUI for managing Docker resources, whether in local or remote

environments and usually for development purposes. The majority feature a visually interactive

method to manage Docker resources, namely, containers, images, volumes, and networks. In fact,

these work primarily as a straightforward wrapper for the CLI commands, from its most basic

level, that is, common functions such as container creation or deletion, to stack level orchestration

and management for multiple service-based applications via Docker Compose. Additionally, some

examples built purely for visualization were considered as well.

Kitematic14. Aims to provide a straight-forward form-based GUI for Docker container fo-

cused management. Besides container management actions such as creating, restarting, and delet-

ing a container, it supports the management of images, volumes, and networks. Furthermore, it

includes automatic port-mapping and integration with Docker Hub for direct image searching.

Overall, Kitematic presents a set of basic features mostly fit for users who do not require extensive

configuration options and is not optimized for configuration and management of service stacks.

It currently stands as one of the most common visual tools for Docker being part of the official

Docker Toolbox for Windows and Mac and is, as a result, frequently one of the first visual tools

Docker users experience.

Portainer15. A web-based GUI for the management of stacks, containers, images, networks

and volumes through a mostly form-based interface for both local and remote environments includ-

ing swarm clusters [46]. In addition, it also features access level management and templates built

on top of Docker Compose for service stack composition written in JSON. Regarding stack man-

agement, it supports a built-in textual editor for the definition of Docker Compose configurations

12dockprom, available at https://github.com/stefanprodan/dockprom
13swarmprom, available at https://github.com/stefanprodan/swarmprom
14Kitematic, available at https://kitematic.com/
15Portainer, available at https://www.portainer.io/

https://github.com/stefanprodan/dockprom
https://github.com/stefanprodan/swarmprom
https://kitematic.com/
https://www.portainer.io/

3.2 Visual Approaches in Operations 29

Figure 3.3: Sample of Portainer’s main dashboard. From https://www.portainer.io/

as well as the option of importing existing files stored either locally or in remote git repositories.

For each container, it is possible to inspect it, display its logs, visualize some statistics such as

CPU and memory usage and execute commands directly through the web client.

Figure 3.3 displays the main dashboard of Portainer’s web UI in swarm mode. This dashboard

functions as the hub to navigate to the corresponding page to inspect and interact with each Docker

artifact (e.g. containers).

Portainer currently stands as one of the most popular visual Docker management tool based on

its star rating on Github, providing a comprehensive set of features which wrap most Docker CLI

actions in a web environment. However, it is fully reliant on purely form-based stack definitions.

Dockstation16. Provides a GUI for the handling of Docker containers both in local and remote

environments aimed primarily for development purposes. It supports basic container management

such as creation and deletion of containers as well as some container monitoring utilities including

performance graphs, similarly to other tools such as the previously mentioned Portainer.

The most unique (and relevant) feature is related to what the tool defines as a "Project", es-

sentially a Docker Compose service stack specified in a docker-compose.yml file. After the

creation of a new project, during which an existing docker-compose.yml file can optionally

be imported, the developer has access to four main tabs: "General", "Scheme, "Editor" and "Set-

tings". In the "Scheme" tab, the developer can not only visualize the overall services scheme

featuring a visual representation of each service as well as their relationships and dependencies in

a graph-like diagram but also edit each service via forms for some of its properties, specifically,

environment variables, volumes, and ports. Whenever the user edits some property, the changes

are then reflected on the associated docker-compose.yml accessible in the "Editor" tab. In

addition, the opposite is also possible, that is, the direct edition of the docker-compose.yml

file with the changes reflected on the corresponding scheme.

16Dockstation, available at https://dockstation.io/

https://www.portainer.io/
https://dockstation.io/

30 State of the Art

Figure 3.4: Sample from Admiral’s visual orchestrator.

Figure 3.4 showcases the "Scheme" perspective in the "Project" tab for a simple stack and some

additional UI elements. To the left of the scheme lies the image palette selector, allowing the user

to search and select either local or remote images stored in the DockerHub registry. The top action

bar includes quick actions which trigger Docker Compose commands such as docker-compose up

for the start button. In the scheme itself, the boxes represent the services and the dotted arrows

represent the depends_on relation between the services. To add a service to the scheme, the user

can drag the intended image from the palette to the scheme area. In the current version, it is not

possible to visually add dependencies between services, requiring the user to instead use the editor

and add the dependency textually in the docker-compose.yml.

Currently, the visual orchestrator provided by this tool stands as the closest solution to what is

being proposed in this work, featuring the most complete visual approach available. However, we

can identify the following limitations regarding its approach:

• Lack of visual representation of volumes in the "Scheme" view. Volumes are strictly speci-

fied via the form for each service and have no visual notation.

• Lack of visual representation of networks in the "Scheme" view. Although custom net-

works can be specified in the "Editor" view, these do not feature any visual notation in the

"Scheme" view, both for the volume itself and in the service edition form. Therefore, it is

not possible to configure networks via visual interaction in which case the default network

is used instead.

• Low directness and liveness level. It requires the shift between the "Editor" and "Scheme"

views for either to update whenever the other is changed. Additionally, the user has to

explicitly click on a save button in the editor for the changes to persist whenever they switch

to a different tab, with no shortcut available.

3.2 Visual Approaches in Operations 31

Figure 3.5: Sample from Admiral’s template visual orchestrator.

Admiral17 Functions as a web-based GUI for container management and provisioning over

a cluster of infrastructure. Unlike Dockstation, this tool is mainly deployment and production-

oriented. Besides the provisioning of single containers, it supports the composition of multi-

container stacks by the definition of "Templates". These include four main components: con-

tainers, volumes, networks, and closures. Each can be created and configured via a form-based

interface for the specification of the corresponding details. It is then possible to visually con-

nect each container or closure with a network or volume by dragging the mouse from the source

component to the target element. Finally, each template can be either directly provisioned to a

configured cluster or exported in one of two formats: YAML Blueprints and Docker Compose

(version 2 exclusively). The opposite is also possible, that is, importing a template from a file in

either of the two aforementioned formats, upon which, the stack can be visualized and edited.

Figure 3.5 displays a simple template containing 3 services, 2 networks, and 1 volume. The

user can add a new component (container, network, volume, or closure) by hovering over the

empty box with the plus icon and clicking on the desired element. Upon which they are redirected

to the corresponding form to edit is properties. Each of the services contains a set of network

and volume anchor points, located at the bottom, for the total number of networks and volumes

declared in the configuration (3 in this instance). These allow the user to attach the services to

their corresponding volumes and networks. Dependencies between services, known as links, are

displayed and directly editable as a property located in the service itself. To edit more advanced

properties, the user must expand the service and access its edition form.

The main drawbacks of the provided visual editor are its limited graphical interaction, for

instance, the inability to rearrange any of visual elements (with the exception of network con-

nections) and lack of visual representation for the dependencies between containers (either de-

pends_on or links) which are instead text-based, specified via a drop-down located in the service

representation.

17Admiral, available at https://github.com/vmware/admiral.

https://github.com/vmware/admiral

32 State of the Art

3.2.2.2 Orchestration frameworks

The next set of technologies have the common goal of functioning as high-level orchestration

frameworks for automating deployment and management of distributed and microservices sys-

tems deployed in a cluster of nodes of infrastructure, whether in the cloud or bare-metal data-

centers. Orchestration frameworks usually provide essential features such as load balancing, fault

tolerance, and autoscaling [19, 41]. Although these frameworks are frequently container agnostic,

they often utilize Docker containers. Docker Inc. itself offers its alternative, Docker Swarm [63],

which is strictly controlled via a CLI. However, there are some third-party GUIs available which

primarily focus on providing a visual alternative, wrapping the commands offered, and providing

some additional features such as monitoring capabilities. Examples include Swirl and Swarmpit.

Swirl18. Web-based GUI for management of Docker, focused on swarm clusters. Provides

limited management options for local Docker resources (i.e. Images, Containers, and Volumes).

Namely, the ability to list all and search for some resource for each artifact type as well as inspect

and delete individual resources. Comparatively, Swarm management is at the core of the tool. It

supports the management of the nodes in clusters, networks, individual services, and complete

stacks. Stack definition is done textually either through the built-in editor or by importing an

existing docker-compose.yml. Other registries (besides Docker Hub19) can be configured

through the GUI and specified during the service or stack creation. Additionally, user permission

options are provided for restricting access to resources through an extensive configuration scheme

based on user roles, essentially user groups with a specific set of permissions. When creating a

user role, it is possible to pinpoint, for each artifact, what individual actions can be performed

(e.g. deleting and updating) and what properties can be visualized. Roles are then assigned to

users and users can have multiple roles. It also features some monitoring utilities by integrating

with Prometheus.

Swarmpit20. A web-based GUI for the management of a Docker Swarm cluster mainly fo-

cused on deployment. It supports visualization and management at the application level, namely,

services, volumes, and secrets and at the infrastructure level, in particular, nodes and networks. It

allows deployment of full Docker Compose based stacks specified in either a docker-compose.yml

file or through the built-in editor as well as individual services integrating multiple registries in-

cluding Docker Hub for image searching. Furthermore, it includes some standard monitoring

utilities for the nodes and their containers.

Kubernetes21. According to the official website, Kubernetes is a "portable, extensible, open-

source platform for managing containerized workloads and services, that facilitates both declar-

ative configuration and automation". In other words, it is a deployment and production focused

18Swirl, available at https://github.com/cuigh/swirl
19More information available at https://hub.docker.com/
20Swarmpit, available at https://github.com/swarmpit/swarmpit
21Kubernetes, available at https://kubernetes.io/

https://github.com/cuigh/swirl
https://hub.docker.com/
https://github.com/swarmpit/swarmpit
https://kubernetes.io/

3.2 Visual Approaches in Operations 33

management platform for applications built on container-based technology stacks, primarily Docker [38,

17] developed by Google [63]. It defines its own vocabulary and set of high-level concepts. Ex-

amples include Pods which refer to a group of containers that share an IP, namespace, and storage

volume and Services. Additionally, a web-based UI is offered for both resource management and

monitoring.

Apache Mesos22. Platform providing a common interface for integration with cluster comput-

ing frameworks [32]. Among the many frameworks available, Aurora23 and Marathon24, are some

of the most popular for container orchestration. These frameworks implement scheduling and job

management logic among other essential features such as rollbacks. Both frameworks feature a

GUI for inspecting jobs.

Hashicorp Nomad25. Minimalist general-purpose workload orchestrator for containerized

and legacy applications. Is architecturally more simple when compared to the previous approaches.

Works as a single binary for both the clients and servers and requires no external services for

coordination or storage. "Supports multi-datacenter and multi-region configurations for failure

isolation and scalability.

Rancher26. This tool primarily offers a solution for managing multiple Kubernetes clusters

independently of the underlying infrastructure, taking advantage of the benefits of Kubernetes and

promising an easier learning curve and improvements in three key areas: cluster operations and

management, intuitive workload management and enterprise support. It effectively adds an ab-

straction layer on top of Kubernetes, enabling system admins to manage all clusters from a single

location. Additionally, it provides its CI/CD pipeline, monitoring, and logging capabilities and

a GUI Although previous versions supported multiple orchestration frameworks such as Mesos

and Docker Swarm and even a custom orchestrator denominated "Cattle" based on Docker Com-

pose stacks [46], this feature was ultimately removed in favor of an exclusive focus on Kubernetes

technologies.

Many more orchestration frameworks are available in the market, both proprietary and open-

source.

Table 3.2 displays an overview of the surveyed tools concerned with services. Some tools are

included in addition to the ones previously analyzed in further detail in this section. As established

in Section 2.4, the category refers to the classification scheme proposed by Boshernitsan et al. [12].

Regarding the liveness level, the scale established by Tanimoto was adopted [62, 2]. We can

conclude that the majority of tools are form-based. The only exceptions, Dockstation and Admiral,

which are also classified as hybrid. The liveness level is consistent across the solutions.

22Apache Mesos, available at http://mesos.apache.org/
23Aurora, available at http://aurora.apache.org/
24Marathon, available at https://mesosphere.github.io/marathon/
25Hashicorp Nomad, available at https://www.nomadproject.io/
26Rancher, available at https://rancher.com/

http://mesos.apache.org/
http://aurora.apache.org/
https://mesosphere.github.io/marathon/
https://www.nomadproject.io/
https://rancher.com/

34 State of the Art

Name Environment Category
Monitoring
Features

Visual
Orchestration

Liveness
Level

Kitematic Desktop Form-based Text No 2
Dockeron Desktop Form-based None No 2
Seagull Web Form-based None No 2
Portainer Web Form-based Charts No 2
Docker Compose UI Web Form-based Text No 2
Swirl Web Form-based Charts No 2
Swarmpit Web Form-based Charts No 2

DockStation Desktop
Form-based,
Hybrid

Charts Yes 2

Admiral Web
Form-based,
Hybrid

Charts Yes 2

Rancher Web Form-based Charts No 2
Kubernetes Web Form-based Charts No 2
Mesos Web Form-based Charts No 2
Nomad Web Form-based Charts No 2

Table 3.2: Service level visual tools comparative overview. Appendix A contains a full list of
sources

3.2.3 Infrastructure

The focus of these tools lies in the orchestration and management of infrastructure resources.

These resources correspond to the base components of IT services, namely, physical (i.e. hardware

and facilities), software, and networks. They may either be maintained internally and deployed

in owned data-centers, externally within cloud computing environments or a combination of both,

known as a hybrid infrastructure.

Some well-established examples include Puppet and Chef originally for the management of

traditional data-centers and afterward supporting cloud and hybrid infrastructure. More recently,

the proliferation of cloud technologies promoted a surge of numerous tools built for managing

those resources. Some of the most notable, such as AWS CloudFormation27 and Terraform28,

are mostly text-based at their core and follow the Infrastructure as Code (IaC) practice which

in turn supports Infrastructure as a Service (IaaS). Although these tools operate at a level below

containers, there are some visual approaches which are, therefore, worth researching. In particular,

those that are hybrid, which very closely match the challenges inherent to a visual approach for

Docker Compose orchestration.

CodeHerent29. Visual development environment, leveraging a hybrid visual programming

language for the edition and visualization of Terraform configuration files. Although, initially,

this tool adopted a box-based representation in which the artifacts are hierarchically organized in

27More information available at https://aws.amazon.com/cloudformation/
28More information available at https://www.terraform.io/
29CodeHerent, available at https://codeherent.tech/home

https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://codeherent.tech/home

3.2 Visual Approaches in Operations 35

Figure 3.6: Sample of CloudSoft Visual Composer’s interface.

boxes, more recent iterations opt for a graph-based diagram for the representation of the distinct

artifacts and their relationships. It includes direct integration with git, supporting basic version

control. In essence, it tries to solve a very similar problem with a similar visual approach to the

one proposed in the solution.

CloudSoft Visual Composer30. Similarly to CodeHerent, this tool aims to provide a hybrid

visual approach for the configuration and provisioning of infrastructure. Unlike CodeHerent, how-

ever, it is exclusively focused on AWS technologies, in particular EC2 CloudFormation templates.

It follows a tree-like diagram for the representation of the distinct artifacts which make up the

infrastructure, with nodes corresponding to resources starting from a single root node representing

the application, upon which all others descend, and multiple types of connections such as arrows

for dependencies and references between resources. The user can add a node as a descendent of

other, be it the root or not, by either clicking on an icon underneath the node or by dragging a

resource from the palette to the parent node and edit its properties in a form-based interface. Fur-

thermore, it includes snippets of documentation directly accessible on each element by hovering

above help icons. Similarly to other hybrid visual approaches already discussed, it supports view

switching between the visual composer and a built-in textual editor of the corresponding YAML

file.

Cloudcraft31. Drawing tool for the creation of AWS cloud infrastructure diagrams mostly

for documentation purposes. It is possible to directly access any resource on the AWS Web Con-

sole by clicking on the corresponding graphical element. Additionally, it includes a monitoring

30CloudSoft Visual Composer, available at https://cloudsoft.io/software/cfn-composer/
31Cloudcraft, Available at https://cloudcraft.co/

https://cloudsoft.io/software/cfn-composer/
https://cloudcraft.co/

36 State of the Art

Figure 3.7: Sample application map from CloudMap’s interface. From [64]

component, allowing the connection between the diagram to the corresponding infrastructure once

provisioned, supporting the visualization of up-to-date data regarding the state of infrastructure.

CloudMap. According to authors, Weerasiri et al. [64], this tool "offers a refreshing “visual”

attempt at simplifying the way DevOps can navigate and understand cloud resource configurations,

as well as monitor and control such resources" [64]. In essence, it aims to provide a centralized

system for cloud management and monitoring by integrating crucial features usually found across

multiple independent technologies. In particular, the resulting visual notation is split between

three maps, each corresponding to some organizational pattern:

• Image Map. "Visualizes the recursive dependency of Images within a Registry."

• Application Map. "Visualizes the organization and inter- action of Hosting Machines

and/or Containers of an Application." Figure 3.7 showcases a sample of the interface in-

cluding an application map.

• Hosting-Machine Map. "Visualizes the organization of Containers and Applications within

a specific Hosting Machine."

The resulting visual notation is based on a graph-like diagram for representing resources and

their connections. The reasoning behind this choice and a more detailed description of what each

visual element represents is supplied by the authors in the source work [64].

Due to its nature, this tool fits in all of the 3 established categories, however, because its main

focus is on infrastructure management, it is featured in this category.

Table 3.3 displays an overview of the surveyed tools concerned with infrastructure. As previ-

ously established, the motivation behind the review of tools in this category was exploring highly

visual approaches concerned with infrastructure management. Two tools, CodeHerent and Cloud-

soft Visual Composer, offer a true visual orchestrator for provisioning cloud resources. These

3.2 Visual Approaches in Operations 37

tools closely match what is proposed in this work since they provide a visual orchestrator built

on top of textual-based technologies albeit applied to distinct yet closely related concepts. Even

though many other tools exist in this field, these fall outside of the defined scope for review.

Name Environment
Target
Infrastructure

Purpose

CodeHerent Web Cloud Provisioning
Visual Composer Web Cloud Provisioning
Cloudcraft Web Cloud Documentation

CloudMap N/a Hybrid
Monitoring &
Management

Table 3.3: Infrastructure level visual tools comparative overview. Appendix A contains a full list
of sources

3.2.4 Discussion

Based on the previous analysis, we can currently find numerous instances of visual approaches

to aid the developer in all aspects of software management and operations from infrastructure

provisioning to service management and monitoring. Some even consider the whole spectrum of

activities, serving as a single hub for all production-related tasks. A common pattern among all is

the inclusion of some sort of monitoring component.

Regarding the tools which are concerned with service management and provisioning, in partic-

ular, with containerized workloads, we find instances targeted towards deployment and production

environments as well as development environments. However, most tools heavily rely on form-

based or purely textual methods to define and orchestrate technology stacks, as seen in Table 3.2,

thus they do not feature a truly visual method for this purpose. Those that do (Dockstation and

Admiral) are still either underdeveloped or incomplete in working as visual orchestrators, often

overly relying on forms and lacking visual notations for certain artifacts and therefore do not offer

a complete visual approach. Moreover, the idea of a visual orchestrator for resource configuration

and provisioning tasks has also been explored for infrastructure provisioning and configuration in

cloud environments as seen in Table 3.3.

Additionally, in both domains, services and infrastructure, there is a severe lack of exploration

of distinct visual notations, with most adopting some variation of graph-based diagrams. Notwith-

standing the adequacy of such notations, we believe there may be potential in exploring others or

even visual metaphors which may be easier to understand, especially for inexperienced developers

that may have difficulty in understanding certain concepts.

38 State of the Art

Chapter 4

Preliminary Work

4.1 Motivation . 39

4.2 Specific Goal . 40

4.3 Research Questions . 40

4.4 Methodology . 40

4.5 Data Collection . 41

4.6 Data Analysis Methods . 41

4.7 Data Analysis . 42

4.8 Conclusions . 46

The purpose of this chapter is to describe and present the results of the preliminary research work

performed to identify the issues developers face when working with Docker and Docker Compose

technologies. For this purpose, a survey was devised and distributed among students.

First, we present the motivation (Section 4.1), then the specific goal (Section 4.2), research

questions of this survey (Section 4.3) and the chosen methodology (Section 4.4). We then describe

the data collection process (Section 4.5), present the data analysis method (Section 4.6), the results

of the data analysis (Section 4.7) and lastly draw the final conclusions (Section 4.8).

4.1 Motivation

The motivation behind this research was strongly related to the rest of the work developed in

this dissertation. On one hand to verify and strengthen the overall motivation by testing whether

developers truly feel difficulty when working with Docker Compose technologies, justifying the

need for an alternative solution to work with these technologies. On the other hand, to extract

useful knowledge for design considerations during future development steps.

In more detail, the motivation was threefold:

39

40 Preliminary Work

• Understanding if developers feel difficulty when working with Docker Compose in practice,

therefore substantiating the need for an alternative;

• If so, to understand what the biggest challenges are so that the solution is carefully tailored

to target, among others, these issues;

• Identifying if developers use existing ancillary or alternative tools and solutions for Docker

Compose development and, if so, what tools are used.

Although the motivation is highly tied to the overall goal of this work, we believe the results

may be of interest to other researchers looking for data related to the difficulties of working with

Docker Compose. For instance, the results might be useful in comparing how Docker Compose

performs in relation to other orchestration frameworks (e.g. Kubernetes).

4.2 Specific Goal

The goal was, on one hand, to identify current issues and challenges that developers face when

using Docker Compose by measuring the difficulty felt when working with this technology and

what strategies and possible solutions are adopted to overcome those difficulties. And on the other,

to identify what ancillary or alternative tools developers use when working with Docker Compose

in practical scenarios.

4.3 Research Questions

The established goal can be unfolded into the following research question:

RQ1 "What tasks take significantly longer than expected when working with Docker Compose?"

RQ2 "What strategies and approaches are adopted to solve problems?"

RQ3 "What ancillary tools and software are used by developers when working with Docker Com-

pose in practice and what is their role?"

These research questions are directly in line with the defined goal and are roughly equivalent

to the two sub-objectives identified.

4.4 Methodology

The chosen approach was to develop an online survey. The survey was created in the Google

Forms service1 and took an estimated duration of approximately 5 minutes to fill in. The survey is

available in Appendix B in full.

1More information available at https://www.google.com/forms/about/

https://www.google.com/forms/about/

4.5 Data Collection 41

The survey was structured in two question groups: firstly the Personal Context group, with

the intent of gauging the current degree of experience with Docker Compose of each participant

and secondly the Working with Docker Technologies group, which focused on identifying and

measuring the difficulties themselves.

When possible, questions were formulated according to a five-point Likert scale [36], ranging

from strongly disagree to strongly agree. For the questions where this was not possible, free text

and multiple-choice answers were considered as well.

4.5 Data Collection

The survey was carried out by a total of 68 participants. The participants were 4th year students

enrolled in the Integrated Master in Informatics and Computing Engineering (MIEIC) degree pro-

gram at the Faculdade de Engenharia do Porto (FEUP). The students had at least some experience

with Docker Compose since they were finishing a subject in which they had to work with Docker

technologies. Taking this into account, we believe the sample is representative of novice Docker

users.

The data was collected in two steps: 1) initially through a procedure performed in person

during classes and 2) later distributed online to the same target audience. This approach had the

goal of reaching a wide number of participants but still keep within the defined time limit.

Regarding the first step, this was performed physically in 6 classes with an average of 24

students per class. The procedure started by writing the URL to access the survey on the class-

room’s whiteboard followed by a brief introduction of the survey, explaining the context, goal,

and motivation along with the filling procedure. This step took roughly 1 hour in total between all

classes.

The second step of data collection was done online to offer a chance for those that couldn’t

originally fill the survey (for some reason) to do so. An email, containing the URL to access the

survey, was distributed to the target students.

4.6 Data Analysis Methods

The first step in the analysis process was performing a global review of the collected data. This

process was facilitated since Google Forms automatically generates some graphs and statistics

which provided some insight into the results.

This preliminary review demonstrated that some participants did not have any prior experi-

ence manipulating a docker-compose.yml file themselves. With the intent of producing more

meaningful results, we felt that it was not useful to consider these answers. As a result, these en-

tries were excluded for the subsequent analysis of the Working with Docker Technologies question

group, which considered a total of 48 answers (instead of the initial 68).

Afterward, a set of additional statistics were calculated, in particular, the mean (x), median

(x̃), and interquartile range (IQR) range for the Likert scale questions and standard deviation (σ)

42 Preliminary Work

for the numeric scale questions. These statistics provide more insight into the distribution of the

answers and the most likely value.

The results of this analysis allowed us to extract the necessary conclusions for each of the

research questions. The answer to the first research question (RQ1) was evaluated through the

computed mean and additional statistics obtained from the Likert-scale questions which individ-

ually targeted common tasks and activities when developing a docker-compose.yml. The

second research question (RQ2) was evaluated directly through the analysis of the answers to the

open-ended question of what strategies were used to debug a malfunctioning Docker Compose

configuration. The third research question (RQ3) was evaluated directly through the analysis of

the answers to the open-ended question addressing what tools the participants had used and how

they helped them.

4.7 Data Analysis

In this section, we present the analysis of the collected data and demonstrate the achieved results.

4.7.1 Personal Context

We began by analyzing the results of the Personal Context questions group. These results provide

insight into the background of the participants.

x x̃ IQR
PC1 3.38 3.5 1

Table 4.1: Summary of descriptive statistics of the answers to the Likert scale questions in the
Personal Context question group.

Figure 4.1: Distribution of answers to the Likert scale questions (PC1) in the Personal Context
question group.

x σ

PC2 2.67 1.894
PC3 1.92 1.485
PC4 2.06 1.767

Table 4.2: Summary of descriptive statistics of the answers to the numeric scale questions in the
Personal Context question group.

4.7 Data Analysis 43

PC1 At this point in time I am experienced in writing a docker-compose.yml file for a software

system;

PC2 Number of projects which included a docker-compose.yml;

PC3 Number of projects with docker-compose.yml files created by others (colleagues or third

parties);

PC4 Number of projects with docker-compose.yml files created/updated by the participant.

List 4.1: Question identifiers for Table 4.1, Figure 4.1, Table 4.2 and Figure 4.2.

Figure 4.2: Distribution of answers to the numeric scale questions in the Personal Context question
group.

Figure 4.1 displays the distribution of answers to the Likert scale background questions. Con-

sidering this data and the corresponding statistics in Table 4.1, the students’ perception of their

experience suggests an intermediate level of skill. However, the quantitative results of the answers

related to the number of projects in which Docker Compose was used (displayed in Table 4.2

and Figure 4.2) reveal a contradiction. Particularly, when considering the low mean of projects in

which a participant edited a docker-compose.yml (BG4), we can confirm that the participants

generally had low experience and could be considered as novices. This outcome was expected

as, based on their academic path until that moment, the students only had limited exposure to this

technology. Thus, we believe that the students overestimated their skills.

4.7.2 Working with Docker Technologies

The questions in this group addressed two distinct activities: writing and reading a docker-compose.yml

file. This approach provided more granular insight into how the perception for both might differ.

44 Preliminary Work

x x̃ IQR
W1 3.29 3 1
W2 3.17 3 1
W3 3.60 4 1
W4 3.44 3 1
W5 3.27 3 1
W6 3.31 3 1
W7 3.31 3 1
W8 3.23 3 1

Table 4.3: Summary of descriptive statistics of the answers to the Likert scale questions for writing
related tasks in the Working with Docker Technologies question group.

W1 Finding out what are the keys that I need;

W2 Finding out what images are available;

W3 Trying to understand why the services are not working as intended;

W4 (Re)starting the services to confirm that they are working as intended;

W5 Configuring the properties of each service (e.g. port mapping, name, ...);

W6 Configuring the dependencies between the services (e.g. depends_on);

W7 Configuring volumes and how they are attached to the services;

W8 Configuring networks and how they are connected to the services.

List 4.2: Question identifiers for Table 4.3 and Figure 4.3. All statements are preceded by "I spend
a lot of time...".

Figure 4.3: Distribution of answers to the Likert scale questions for writing related tasks in the
Working with Docker Technologies question group

4.7 Data Analysis 45

x x̃ IQR

R1 3.02 3 1.25

R2 3.19 3 1

R3 3.17 3 1

R4 3.31 3 1
Table 4.4: Summary of descriptive statistics of the answers to the Likert scale questions for reading
related tasks in the Working with Docker Technologies question group.

R1 Trying to understand what the services are;

R2 Trying to understand the dependencies between services (e.g. depends_on);

R3 Trying to understand what volumes are used and how they are attached to the services;

R4 Trying to understand what networks are used and how they are connected to the services.

List 4.3: Question identifiers for Table 4.4 and Figure 4.4. All statements are preceded by "I spend
a lot of time..."

Figure 4.4: Distribution of answers to the Likert scale questions for reading related tasks in the
Working with Docker Technologies question group.

Figure 4.3 and Figure 4.4 display the distribution of the answers for both activities (writing and

reading). We can see that generally the answers focus around the neutral sentiment (3) and appear

slightly skewered towards agree sentiment (4). To better understand these results we looked at

other statistics.

Table 4.3 and Table 4.4 display the computed statistics for each question. We can conclude

that the answers are mostly consensual since the interquartile range does not differ significantly.

The medians also reveal that the general sentiment is neutral towards almost all of the tasks. The

only exception is the results to question related to debugging activities (W3) which point to an

agreement in the difficulty felt.

Taking into account these results, we can answer the question RQ1: the general sentiment is

neutral. A possible conclusion from this outcome is that the time spent on these tasks matches the

expectation of the participants of how much time they should spend to perform them. An alterna-

tive interpretation may be that the participants do not have stronger opinions because they feel that

46 Preliminary Work

working with this technology comprises a less meaningful part of the development process. Yet

another possibility is that the participants do not have enough experience to have a clearer opinion

as they have yet to fully explore the technology.

In any case, we did register a slight inclination towards an agreement sentiment. However, this

was not statistically significant.

Regarding the strategies adopted for debugging malfunctioning configurations, the most com-

mon was trial and error followed by searching online for a possible solution. Taking these results

into account, we can answer RQ2. The results suggest that the participants resort mostly to crude

and unrefined strategies which are usually inefficient. This behavior may be an indication that

current debugging options offered by Docker Compose could be too limited.

Figure 4.5: Distribution of answers to the question "Do you use any plugins/tools when developing
docker-compose.yml files?".

As displayed in Figure 4.5, the vast majority (93.8%) do not use any ancillary tool or software

when developing docker-compose.yml files and those that do (6.3%), reported only using

Visual Studio Code’s plugin for Docker2. This data provides the answer to RQ3.

4.8 Conclusions

The obtained results suggest that the participants do not particularly feel strongly about the exis-

tence or nonexistence about any of the potential issues the survey attempted to identify. However,

we still identified a slight inclination towards a sentiment of finding tasks time-consuming in gen-

eral. In particular, the most notable result is related to debugging activities. Based on these results,

it becomes difficult to more clearly pinpoint specific tasks which are the cause of bigger struggles

(or otherwise). Thus, we consider that the answer for question RQ1 to be inconclusive, at least for

the set of questions included in the survey.

In regards to the remainder of the research questions (RQ2 and RQ3), in summary, the fol-

lowing conclusions can be drawn:

2Visual Studio Code Docker Plugin, available at https://code.visualstudio.com/docs/containers/
overview

https://code.visualstudio.com/docs/containers/overview
https://code.visualstudio.com/docs/containers/overview

4.8 Conclusions 47

• There is a lack of usage of ancillary tools for supporting Docker Compose development.

• The most common strategy do debug a Docker Compose orchestration is by "trial and error".

48 Preliminary Work

Chapter 5

Problem Statement

5.1 Current Issues . 49

5.2 Research Statement . 50

5.3 Target Audience . 51

5.4 Solution Perspective . 51

5.5 Methodology . 52

In this chapter, we describe and discuss the problem in a more focused view, starting with the

identification of the main issues and limitations of current solutions (Section 5.1) followed by the

research statement (Section 5.2), intended target audience (Section 5.3), the solution perspective

(Section 5.4) and finally a description of the adopted research methodology (Section 5.5).

As previously established, the main goal of this dissertation is the conceptualization of a more

complete visual approach for definition and orchestration of service stacks then what is currently

available, including the development of a prototype for leveraging the approach.

5.1 Current Issues

Based on the state of the art review performed in Chapter 3, we can conclude that current visual

solutions which support orchestration of Docker Compose stacks, more specifically those which

feature a visual orchestrator (i.e. Dockstation and Admiral), have yet to fully explore the potential

of such an approach due to the following reasons:

• Incomplete visual notations. The most pressing issue found was the lack of visual rep-

resentations for some of the artifacts and dependencies supported in the Docker Compose

standard. Although, when looking in a broad perspective, most aspects are addressed be-

tween the various tools (considered individually, Admiral appears to be the most complete),

49

50 Problem Statement

there is no single one which features all simultaneously. Therefore, the abstraction pro-

vided by such notations is leaky [60], in other words, it does not fully hide the underlying

complexity, reducing its effectiveness.

• Limited visual editions. None of the solutions allows the edition of all properties sup-

ported in Docker Compose through the visual interface. This applies to Admiral, which is

not Docker specific and adopts a more generic nomenclature as well as Dockstation which

offers very restrictive options. While Dockstation circumvents this limitation through the in-

clusion of the parallel textual editor, we argue that the resulting workflow does not provide a

streamlined experience since a user must switch between the textual and visual perspectives

instead of being able to edit stack purely by manipulating the VPL.

• Sub-optimal directness. Current solutions present a higher degree of indirectness than

desired in regards to the steps required to manipulate a stack visually. For instance, the nav-

igation steps required to create or edit an artifact in Admiral. The user must first click on a

button which leads to a completely new page with the corresponding property inputs. After

altering the definition, the user must confirm their action for it to take effect. This indirect-

ness is not only inconvenient, hindering the workflow, but also hides invaluable information

which could otherwise always be visible.

The results of the research conducted in the previous chapter (Chapter 4) suggest that most

users do not use alternatives (visual or else) to work with Docker Compose. We postulate that

the lack of tools that support a complete visual approach may have an influence on the lack of

adoption of ancillary tools.

The research also revealed that, although no clear conclusions could be drawn in regards to the

issues, it is interesting to note the only exception was related to debugging activities for which the

participants expressed some difficulty. Although the objective of this dissertation does not directly

tackle this issue, we believe that the more complete and explicit notations of a visual approach

may aid in alleviating this difficulty by conveying certain concepts more clearly which could help

to pinpoint the source of bugs more efficiently.

Taking these issues into account, we believe there is room for improvement by addressing and

expanding upon these aspects.

5.2 Research Statement

The author claims the following hypothesis:

H: A complete visual programming approach for developing orchestration recipes improves

the overall developer experience and reduces the error proneness and development time.

By a complete visual approach, we assume an approach that aims to maximize the gain of

the visual notation through common visual strategies (Section 2.4) and minimize the "leakage

5.3 Target Audience 51

of the abstraction" [60] by leveraging graphical representations for all relevant concepts in the

domain of Docker technology. In particular, considering all of the artifacts, namely, containers,

images, volumes, networks, configs, and secrets as well as their relationships and dependencies

(e.g. depends_on).

By orchestration recipes we assume, text-based configuration files which describe the orches-

tration of service stacks. In particular, and for the scope of this dissertation, those specified ac-

cording to the Docker Compose YAML file format1.

By developer experience, we assume the overall ease-of-use and intuitiveness of the full ex-

perience, considering the steps and actions needed to successfully configure some orchestration

setup.

By error proneness and development time, we assume the number of errors and execution

attempts and the amount of time required respectively necessary to successfully configure some

orchestration setup when compared to existing solutions.

Based on the previous statement, we establish the following research questions:

RQ1 "Does a complete visual approach for the orchestration of (Docker) service stacks reduce

the development time?" In this question, we aim to understand if a visual approach is truly

useful in reducing the time of development of a Docker Compose configuration.

RQ2 "Does a complete visual approach for the orchestration of (Docker) service stacks reduce

the number of errors?" In this question, we aim to understand if a visual approach is truly

useful in reducing error proneness while orchestrating some Docker Compose configuration.

5.3 Target Audience

The proposed solution targets all developers who wish to utilize Docker technologies for their

needs regardless of their degree of knowledge and expertise in regards to these technologies since

all may benefit from the aforementioned potential advantages. However, we foresee added interest

for inexperienced users who can maximize its usefulness by taking advantage of the more intuitive

and friendly environment, resulting in a more linear learning curve and minimizing trial and error.

Nonetheless, even more experienced users can potentially benefit, particularly when working with

more complex configurations.

5.4 Solution Perspective

For the development of the proposed prototype we can identify some foreseeable key conceptual

and implementation challenges, in particular:

1More information available at https://docs.docker.com/compose/compose-file/

https://docs.docker.com/compose/compose-file/

52 Problem Statement

• Conceptualizing the most adequate visual metaphor and notations. It is essential to

extensively research and explore what visual notations to use for representing the distinct

Docker Compose elements (i.e. the artifacts, their properties and how they are connected

between each other) as well as how they can be graphically manipulated by the user. These

decisions play a key role in the readability and usability of the end result.

• Finding the optimal approach for the transformation from model to code and vice-
versa. The proposed solution requires an appropriate strategy applied to the model-to-text

and text-to-model transformations for exporting to and importing from docker-compose.yml

files respectively. This can be achieved by researching existing transformations approaches

found in MDSE.

5.5 Methodology

For the remainder of this dissertation, we will adopt the engineering research methodology. Ac-

cording to Zelkowitz and Wallace [65], this methodology is defined as follows:

"Engineers develop and test a solution to a hypothesis. Based upon the results of the test, they

improve the solution until it requires no further improvement."

With this definition in mind, we will begin with the development of a prototype leveraging the

proposed complete visual approach (Chapter 6). This prototype will then be used as the means to

empirically validate the approach. For this purpose, a parallel design user study will be conducted

with novice programmers in which relevant performance and perception-based metrics will be

evaluated to compare the approach with the conventional text-based solution. These metrics will

be subjected to statistical tests and ultimately used to test whether the established hypothesis holds

(Chapter 7). The results will be discussed and our findings documented along with the suggestions

for improvements and other unexplored ideas as proposed future work (Chapter 8).

Chapter 6

Solution Prototype

6.1 Overview . 53

6.2 Architecture . 54

6.3 Technological Decisions . 55

6.4 Feature Design . 56

6.5 Practical Example . 62

6.6 Availability . 62

6.7 Discussion . 63

In this chapter, we explore and describe the developed prototype solution including its architecture

and features as well as discuss the reasoning behind the major decisions we faced throughout the

development process.

6.1 Overview

The developed prototype is a visual programming environment featuring the designed complete

visual approach for visualizing and orchestrating service stacks with Docker Compose and Docker

technologies, named Docker Composer. The goal was to design an approach to allow users to

define Docker Compose stacks visually through the manipulation of an interactive model of a

stack in opposition to defining the stack textually as is conventional.

As initially planned, the resulting VPL is categorized as hybrid since the internal model of the

stacks is first translated into an intermediate textual representation, the Docker Compose YAML

file, and only afterward instantiated based on this textual definition.

The motivation to implement a prototype was twofold: (1) to serve as a reference implemen-

tation to demonstrate the approach in practice and (2) use the prototype as a means to empirically

validate the approach (documented in Chapter 7).

53

54 Solution Prototype

6.2 Architecture

The prototype was initially developed as a standard web application to be executed locally in

the browser. However, as development progressed, the prototype was eventually migrated to an

Electron application. This decision was made for multiple reasons but mainly due to the need to

access the file system and local Docker Engine of the host. Electron is a perfect fit for this end

since it not only solved these issues but retained the ability to use the rich environment of web

technologies and facilitated cross-operational distribution and portability. Although the option

sacrifices some performance, we firmly believe that we have more to gain than to lose with this

tradeoff.

Figure 6.1: Deployment diagram of the prototype.

Figure 6.1 displays a deployment diagram showcasing a high-level view of the prototype and

its interactions within and outside the host environment. Within the host environment, the proto-

type generates Docker Compose YAML artifacts and creates processes running shell instances for

the execution of Docker Compose CLI commands which in turn communicate with the Docker

Engine. Outside of the host environment, the prototype performs requests to the remote Docker

Hub’s public API in order to receive information about the images hosted on this service.

Figure 6.2: High-level architecture of the prototype. Displays the main technologies used and
developed modules.

6.3 Technological Decisions 55

The resulting architecture is fairly straightforward and is displayed in Figure 6.2. The proto-

type essentially equates to a single-page React1 web application running in an Electron2 environ-

ment. The application makes use of the diagramming library mxGraph3 along with the developed

extension to fit our requirements as well as an IO module to handle file management and other file

system related operations. In more detail, the developed extension configures and expands the li-

brary to achieve the desired behavior and includes a module for parsing docker-compose.yml

files and converting them to the model and writing the model back to a docker-compose.yml

file.

As a React application, the UI is built with a set of interconnected dynamic components. The

root component (App) renders a set of child components, each corresponding to the individual

panels of the main UI view, described in Section 6.4.

6.3 Technological Decisions

One of the first and most important decisions was defining how to render and manage the visual

components. Two options were considered: (1) using some existing visual programming/drawing

framework or (2) developing the engine from the ground up. The first step was exploring what

frameworks/libraries were available and whether these satisfied the expected requirements estab-

lished in the conceptual phase. The technological options in this domain are vast and to better

organize the technologies, these were split between three groups based on their purpose and de-

gree of freedom: visual programming frameworks (VPF, such as Rete.js4 and Scratch), diagram

drawing libraries and general drawing libraries. The issue then came down to finding the best

balance between the freedom and customization provided by drawing libraries and the established

conventions and control of frameworks. After a thorough evaluation, we concluded that the exist-

ing visual programming frameworks did not offer sufficient customization to achieve the desired

behavior as most were dataflow-oriented. In comparison, diagrammatic drawing libraries offered a

much more appealing tradeoff. Of the available technologies, and after careful consideration of the

pros and cons, we ultimately chose mxGraph as it appeared to be the most mature and feature-rich

of the open-source solutions.

Table 6.1 displays a summary of some of the considered libraries/frameworks and their sup-

ported features. Taking account that we prioritized open-source options since the aim was to

publish the tool with an open-source license as well, it becomes clear that the most feature-rich is

mxGraph as this library supports all of the considered features. Due to this reason as well as its

high degree of customization and maturity, this library was chosen.

Furthermore, React was chosen as the library to develop the remainder of the user interface.

React is a declarative, component-based Javascript library for building user interfaces, created

and maintained by Facebook. While we consider this decision ultimately useful in simplifying the

1More information available at https://reactjs.org/
2More information available at https://www.electronjs.org/
3More information available at https://jgraph.github.io/mxgraph/
4Rete.js, available at https://rete.js.org/

https://reactjs.org/
https://www.electronjs.org/
https://jgraph.github.io/mxgraph/
https://rete.js.org/

56 Solution Prototype

Name License Purpose
Seriali
-zation

Undo/
redo

Palette
(Dnd)

Zoom
Auto
layouts

Multiple
selections

Groups
Resizable
nodes

Mini
map

Context
menus

Tooltips

Rete.js Open-source VPF Yes No Yes Yes No No No No Yes Yes No
React-digraph Open-source Diagram Yes Yes No Yes No No No No No No No
React-diagrams Open-source VPF Yes No Yes Yes Yes Yes No No No No No
Draw2D Open-source Diagram Yes Yes Yes Yes No Yes Yes Yes Yes No Yes
JointJS Open-source Diagram Yes Yes Yes Yes No Yes Yes Yes Yes No No
mxGraph Open-source Diagram Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
GoJS Proprietary Diagram Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
jsPlumb
(community)

Proprietary Diagram No No No No No No No No No No No

Table 6.1: Summary of supported features of the considered frameworks/libraries.

development of the more dynamic UI components, there was an initial difficulty barrier to integrate

React with mxGraph and some additional challenges arose throughout development. For instance,

we wanted to render the nodes in mxGraph as React components. While this was eventually

achieved, it was not as trivial as expected and required additional mechanisms to maintain the

components in sync between the node components and the remainder of the UI, since the former

was declared outside of the scope of the main UI window component managed by React.

In actuality, the mxGraph library was more prescriptive than anticipated, sometimes more

closely resembling a framework. In particular, it includes its own internal model (essentially of a

graph) upon which the internal controller operates. It also features dedicated modules to facilitate

the development of external components commonly found in visual tools such as palettes and

toolbars. In practice, the usage of these modules is optional and these were left unused in the

prototype and were instead developed with React, as previously mentioned.

For the purposes of the prototype and due to time constraints, we opted to simplify the archi-

tecture and keep the model for Docker Compose directly as part of the UI model since the library

promoted this usage. However, it is important to recognize that this approach may not be ideal

or flexible enough for a more full-fledged application, since it directly ties the model to the UI

library, effectively locking-in the use of this library. A future improvement would be to achieve a

true Model-View-Controller (MVC) architecture in which the model would be fully independent

of the view. We believe this would be fairly straight-forward to achieve (although time-consuming,

hence why it was not accomplished for the purposes of a prototype) even while keeping the us-

age of mxGraph, through the development of an independent model for Docker Compose and a

custom controller to bridge the gap between the view and its own model.

6.4 Feature Design

This section is dedicated to exhibiting the main features implemented in the prototype as well as

discussing the design considerations.

Figure 6.3 displays a sample of the UI for the prototype’s main view. The view is split into five

panels (as labeled in Figure 6.3): the toolbar, image palette, properties editor, graph editor,

and terminal.

6.4 Feature Design 57

Figure 6.3: Layout of the prototype’s main view.

• Toolbar. Located at the top of the screen. Includes to the left an area dedicated to controlling

status LED which lights up different colors according to the state of the running stack and

a set of buttons to control the stack (such as starting and stopping) and on the right buttons

for file management. Lastly, in the settings menu, it is possible to set the working directory

and adjust some output preferences when exporting files.

• Image palette. Allows searching for images hosted on Docker Hub and the addition of new

services by clicking and dragging the target image and dropping it in the graph editor area.

Includes quick access links to the image page hosted on Docker Hub by clicking on the info

icon near the image.

• Graph editor. Split between the toolbar at the top and the canvas below. The toolbar is

used to perform actions such as adjusting the zoom level and clearing the graph editor. The

canvas displays an interactive visual map of the stack containing the various artifacts that

comprise the stack and their relationships.

• Properties editor. Useful to access and edit the various properties of the currently selected

object (artifact or connection) in the graph editor. It also provides quick access to some

helpful links such as the Docker Compose docs and image information on Docker Hub.

• Terminal. Displays the output produced by the services (containers) once created and

started. It contains a “General” tab with the combined output of all services and additional

logs (identical to the output of executing docker compose up) and individual tabs for the

output of services that comprise the stack.

58 Solution Prototype

6.4.1 Visual Map

The interactive visual map constitutes the core of the prototype and corresponds to the content

displayed in the graph editor’s canvas. This map corresponds to the visualization of the model

of a Docker Compose stack and closely matches its textual counterpart. All of the five artifacts

(declared in the top-level, e.g. services and named volumes) are represented visually as nodes, and

relationships and dependencies between artifacts are represented as directed connections between

nodes.

Visual Notation

In the end, a more straightforward graph-based visual notation was chosen as we felt that there

was a natural mapping between the stack and its YAML textual counterpart. We struggled to find

any value in using a more unorthodox metaphor adequate to this context that could potentially

make the underlying concepts more understandable. In addition, while a more unorthodox visual

metaphor might have had some benefits, we feel that such an approach might also obscure some

of the meaning behind the original concepts which we consider important to convey to users,

especially to beginners who are still learning.

This decision directly influenced the visual notation of each artifact and their relationships.

The visual design of nodes was also inspired by well-established VPLs. In particular, we used

Blender Nodes5 as the primary source of inspiration.

A color scheme was also established to more intuitively express the type of connections be-

tween artifacts.

Services

The services are the basic building block of a Docker Compose stack and arguably the most

important artifacts. For this reason, special attention was given to the visual notation of its node.

We carefully considered what the most useful properties were to be displayed explicitly in the

node and what could remain obscured in the properties editor. To keep the node size reasonable,

avoid visual clutter, and not overwhelm users with too much information we ultimately decided to

include inputs for image fields (name and tag) and visualization for port mappings.

Figure 6.4 displays the visual notation of a service node. The node includes a set of anchor

points located on the right edge. Each anchor point is used as the source point to set connections

between the service and some target artifact. This can be achieved by dragging left click with the

mouse from the source point to a compatible target artifact. These connections are typed, meaning

that only certain artifacts are expected as targets and the tool only allows this type of connection.

To make the type of the connection more explicit, the colors of the anchor points match the color

of the artifacts according to the defined color scheme, except for depends_on (yellow) and links

(blue) dependencies which connect two services.
5Blender Nodes, more information available at https://docs.blender.org/manual/en/2.79/render/

blender_render/materials/nodes/introduction.html

https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html
https://docs.blender.org/manual/en/2.79/render/blender_render/materials/nodes/introduction.html

6.4 Feature Design 59

Figure 6.4: Visual representation of a service artifact node.

Others

All the remaining artifacts (shown in Figure 6.5) are represented with a similar visual notation,

only differing in color, size, and labels which match the artifact type. All nodes include an input

to set the key for ease of use.

Figure 6.5: Visual representation of a volume, network, config and secret artifact nodes.

6.4.1.1 Map Layout

Importing a stack from a docker-compose.yaml file requires an automatic layout capability

to distribute artifacts. This imposed a challenge due to the unorthodox structure of the generated

map. The resulting map constitutes a directed graph where only some nodes can be connected

to others (i.e. service nodes) and nodes may not be connected to anything at all. The prototype

adopts a circular layout as it was deemed usable for the purpose of testing the approach.

6.4.2 Static Validation

The prototype provides some static validations while editing a stack. Examples include duplicate

key detection and invalid property value formats (e.g. values specified as time durations and

60 Solution Prototype

memory sizes). These are conveyed to the users through warning icons which appear near the

visual representation of artifacts. It is possible to hover over these icons to visualize a full summary

of the warnings. These inconsistencies are purely presented as warnings and are not enforced as

errors and ultimately provide additional feedback to users.

Figure 6.6: Example of the static validation notation. Both services include the warning icon
because they use define the same key (ser).

Figure 6.6 displays an example of static validation. The warning in this example results from

the use of the same key (ser) for both services.

Additionally, some property inputs are controlled to maintain the values consistent. One ex-

ample is the definition of port mappings which disallows setting host ports without first setting a

container port. This mechanism is achieved by controlling whether inputs are disabled or not.

6.4.3 Supported Versions

The goal was to support all 3.x versions of Docker Compose (up to 3.8 at the time of writing). For

this purpose, we had to include inputs for all available properties across 3.x versions and manage

parsing and writing according to syntax variations between versions. This addressed the limitation

identified with the state-of-the-art visual solutions in Section 5.1.

6.4.4 File Management and Serialization

Two complementary import and export options were implemented. One method allows importing

and exporting from and to Docker Compose YAML files while the other is useful for opening

and saving from and to a custom storage method managed by the prototype. The second method,

open and save, is useful to persist custom layouts of stacks designed in the tool and essentially

works by serializing the model in an XML file. Without this method, information related to layout

specifications such as node positioning would be lost between operations since a Docker Compose

YAML definition does not consider these specifications.

6.4 Feature Design 61

We considered an alternative approach to achieve the same behavior by adding comments

describing the required specifications directly in the YAML file. While this approach presented

the benefit of keeping the stack always consistent since there was only one source of truth (i.e.

the YAML file), it also created other potential issues in collaborative scenarios. For instance,

considering a development team in which only some developers would use the visual solution

while the remainder opted for the conventional text-based toolchain, the developers who used the

textual toolchain could accidentally modify some of these comments and corrupt the expected

structure of the file, therefore invalidating this data. Moreover, this approach would also have

added more unnecessary clutter to the textual definition. Thus, we ultimately decided to maintain

the methods separate and include both management options.

This feature required the development of a Docker Compose YAML parser and generator. The

generator translates the internal model to code while and parser reads the contents of the YAML

file and converts it into the corresponding model. For the custom storage, we took advantage of

the existing serialization options provided by mxGraph and extended it to satisfy the requirements

and achieve the desired behavior.

A visitor-based approach was adopted for code generation. This decision was made due to two

main reasons: (1) the relatively low complexity of a Docker Compose YAML file syntax and (2)

the structure of the internal model which closely mirrors that of the output itself for each artifact.

6.4.5 Executing Commands from the UI

To streamline the full orchestration process in a single environment, the prototype featured a set

of buttons to manage and control the stack. These included three actions: start, stop, and down.

These actions are essentially equivalent to the Docker Compose CLI commands docker-compose

up, docker-compose stop and docker-compose down. We decided to keep executions directly tied

to prototype’s environment meaning that each execution is a dry-run and files produced (i.e. the

docker-compose.yaml file) and Docker artifacts instantiated (e.g. containers and volumes)

for this purpose are only temporary and deleted after exiting the tool or loading/importing another

stack.

In practice, this feature was achieved by running these commands in a new process generated

by the application, as demonstrated in Figure 6.1. The output of the commands is then parsed

accordingly in the application.

6.4.6 Visual Feedback

Visual feedback is provided for tracking the state of running stacks in real-time. Besides the output

displayed in the terminal area, LEDs display the status of each individual service and of the overall

stack. A color code was defined to represent the various states.

In practice, this feature was achieved by parsing the output of the commands and updating the

status accordingly. This approach was chosen because, although the Docker Engine API provides

endpoints which expose the current state of services (among other information), Docker Compose

62 Solution Prototype

includes some exclusive outputs during its execution which provide important insight into its be-

havior and this information is also relevant to maintain the state of the stack up to date. Thus,

since we had to parse the output regardless, we opted to achieve this behavior strictly through this

approach.

6.4.7 Docker Hub Integration

It is possible to search for images on Docker Hub repository directly from the image palette. Once

the target image is found, the user can then drag that image from the palette to the canvas in the

graph editor to directly create a new service node with the image field appropriately set. Quick

links to access the page on Docker Hub are also provided. This feature was partly inspired by other

state-of-the-art solutions and implemented in the prototype for ease of use. To achieve this effect,

we resorted to the Docker Hub’s public API. In practice, this proved more difficult to achieve than

anticipated since this API is not documented and partly restricts its usage from foreign sources.

6.5 Practical Example

In this section, we present a practical example to more clearly compare and demonstrate the dif-

ferences of representation between the conventional text-based approach and the designed visual

approach. The stack used in this example was adapted from the scenario designed for one of the

tasks which was part of the validation process (described in Chapter 7).

The stack follows a server-client architecture comprised of three services: a web frontend

service (client), a backend web service (server), and MongoDB database service (db). We also

include two custom networks, named private and public, to isolate the backend from the frontend

as well as a named volume, called mongo-data, for data persistence.

Figure 6.7 showcases a side-by-side comparison between the textual representation (a) and the

equivalent visual representation (b). While it may not be immediately clear, both representations

convey the same information. While the visual approach makes the artifacts themselves and their

connections more evident, some information becomes obscured, namely, the remaining properties

(e.g. stdin_open on the client service). To mitigate this limitation of the visual approach, it is

possible to hover on top of any artifact to visualize the full-textual output for that artifact.

6.6 Availability

The prototype is publicly available as open-source, under the MIT license and can be found on

Github at https://github.com/Kubix20/docker-composer. The repository contains

the source code, a release of the up-to-date version, and includes a Wiki containing more detailed

information about the tool itself, development setup instructions and, a simplified manual with

more in-depth descriptions for how to use the tool.

https://github.com/Kubix20/docker-composer

6.7 Discussion 63

(a) Textual (b) Visual

Figure 6.7: Comparison of the textual and visual representation of a stack

6.7 Discussion

This chapter was dedicated to exploring the developed solution prototype including its architecture

and implemented features along with the reasoning behind our choices.

The designed visual approach differs from other state-of-the-art solutions as none offers a

complete visual notation for the artifacts and dependencies considered in Docker Compose. This

was the primary goal during the conceptual stage and throughout the development process itself.

Name Services Volumes Networks Configs Secrets

Docker Composer 3 3 3 3 3

Dockstation 3 7 7 7 7

Admiral 3 3 3 7 7

Table 6.2: Comparison of supported visual notations for Docker Compose artifacts between the
developed prototype and state-of-the-art visual solutions, Dockstation and Admiral.

Table 6.2 displays the comparison of the visual notations featured in Docker Composer and

those of the more closely related state-of-the-art tools — Dockstation and Admiral.

Dockstation includes the most similar notation in design to that of the developed approach,

however, in its current state, is heavily limited in what it allows to define visually, lacking notations

for fundamental artifacts such as volumes and networks.

64 Solution Prototype

Admiral on the other hand is a more powerful and mature tool mainly for deployment pur-

poses. However it is not Docker Compose specific and, as a result, does not feature nomenclature

directly matching that of Docker Compose and limits its usage due to some unsupported proper-

ties. Nevertheless, it does indeed feature a rich visual notation spanning most artifacts. However,

it does not support the ability to configure configs and secrets visually.

To conclude, while other comparable state-of-the-art solutions support more features which

go beyond the immediate focus of this dissertation, we were successful in achieving the goal of

developing a more complete visual approach for orchestration with Docker Compose featuring a

rich visual notation for the concepts we considered essential. We also addressed the remaining

limitations identified in Section 5.1 while designing the prototype. More specifically the resulting

solution allows the visual edition of most properties considered in Docker Compose and the design

of the interface minimizes the indirectness of actions to manipulate a stack.

Chapter 7

Empirical Study

7.1 Goals . 65

7.2 Design . 66

7.3 Data Analysis . 72

7.4 Validation Threats . 91

7.5 Summary . 92

This chapter is dedicated to describing and documenting the experimental process and showcas-

ing the results for the user study conducted to empirically validate the designed complete visual

approach. The study considered two treatments — control in which participants solved a set of

orchestration-related tasks with Docker and Docker Compose technologies by using conventional

methodologies and toolchains (i.e. textual editor and terminal) and experimental in which partic-

ipants solved the same set of tasks but used the solution prototype (described in Section 6) instead

of the conventional toolchain.

7.1 Goals

The objective of this user study was to provide answers to the research questions that stem from

the hypothesis (Section 5.2). To answer RQ1, we will consider the times to completion for each

task. To answer RQ2, we will consider the execution attempts. In more detail, each question

will be answered in the context of three distinct activities, namely, interpreting, debugging, and

creating a Docker Compose stack.

Additionally, a set of perception-based questions (PBQ) was also considered for the study.

We believe that it is useful to evaluate these questions as it could provide more insight into the

overall value of the complete visual approach applied for this purpose. Otherwise, even if our

findings may suggest that the approach improves performance it would be somewhat meaningless

65

66 Empirical Study

if participants do not find the experience enjoyable or if they have no intention of using it in the

future at all. For this reason, we will also attempt to answer the following questions:

PBQ1 Do developers find a complete visual approach easier to use than the conventional method?

PBQ2 Do developers find a complete visual approach useful?

PBQ3 Do developers want to use a complete visual approach?

This set of questions are aligned with the definition of the development experience assumption

stated in the hypothesis (Section 5.2). The answers to these questions will allow us to test if the

designed approach satisfies this assumption.

This study also fits within the broader field of visual programming languages and more specif-

ically the subset of VPLs for orchestration. The results of this study should contribute to demon-

strating the viability and practical usefulness of visual approaches in this domain. This is partic-

ularly relevant as empirical work in this field is still fairly limited [54]. Although the theoretical

benefits have been thoroughly evaluated in the past, there is still a severe lack of studies to assess

whether these truly translate to practical scenarios.

7.2 Design

The evaluation focused on three basic activities in software engineering: interpreting and analyz-

ing, debugging, and implementing applied to (in this context) Docker Compose stacks. For each

activity, a task was prepared, featuring an illustrative scenario. Besides performance-based met-

rics such as effectiveness, completion times and execution attempts, the participants were asked to

fill a form after completing each task to evaluate the perception-based metrics not measurable or

quantifiable by other means, namely Perceived Ease of Use (PEOU), Perceived Usefulness (PU)

and Intention to Use (ITU). PEOU refers to how much effort would be required to use the pro-

totype, PU refers to how well the prototype satisfies the participant’s needs and expectations and

ITU refers to the degree that the participant wishes to use the tool in the future.

7.2.1 Participants

Recruitment was done among students, in parallel with the experimental sessions. Initially by

direct communication and later through a wide-spread e-mail invitation addressed to all potential

students (approximately 368). The goal was to recruit subjects who had at least some prior ex-

perience with Docker and Docker Compose, as tasks required at least some basic knowledge of

these technologies. We considered potential students as those which we knew a priori had had

exposure to these technologies based on their academic path. The main reason why we targeted

students was because of their availability and ease of reach since the experiment was conducted in

an academic setting. This strategy was also helpful in meeting time constraints.

In the end, a total of 16 5th year MSc in Informatics and Software Computing students partic-

ipated in the experiment.

7.2 Design 67

The participants were randomly distributed in half (8-8), between two groups corresponding

to the treatments: control (CG) and experimental (EG). Both groups were instructed to solve the

same set of tasks. On one hand, the participants in the control group were given access to a text

editor to edit the stack and to a command-line shell to access the Docker and Docker Compose

CLIs (i.e. the conventional toolchain). On the other, the participants in the experimental group

had access to the experimental prototype to manage the stack as well as a command-line shell to

execute additional commands if required (Docker related or not). In addition, both groups had

complete access to the official Docker and Docker Compose documentation as well as any other

resources on the internet for reference.

To verify the balance of skills between both groups, participants were asked to fill a back-

ground questionnaire which inquired them about their current experience with the technologies

of interest that we had foreseen to potentially have an impact on the results (i.e. confounding

factors). These included experience with visual programming tools, orchestration frameworks in

general and Docker and Docker Compose. The data collected was then used to check that the two

groups were in fact balanced in their skill sets.

7.2.2 Data Sources

The following data sources were used:

• The answers to the background questionnaire;

• Performance measurements during tasks, specifically global and individual task times, num-

ber of context switches, context times and number of execution attempts;

• Participant’s solutions and answers to the tasks;

• The answers to the assessment questionnaire.

7.2.3 Environment

The experimental sessions were conducted remotely. We opted for a remote workstation, set up in

advance with the required software and materials, made available to the participants to use for the

entirety of the experimental process accessible through TeamViewer 1. These resources included:

a browser with the form already opened (Firefox was chosen for this effect), a text editor set up in

the appropriate directory (Sublime Text was used for this effect), a command-line shell set up in

the appropriate directory for both groups and the prototype tool for the experimental group.

7.2.4 Task Definition

As previously stated, the goal was to evaluate the behavior of the tool for three basic activities:

analyzing, debugging, and implementing a stack. This effort was translated into 4 tasks each

1More information available at https://www.teamviewer.com/

https://www.teamviewer.com/

68 Empirical Study

featuring a corresponding scenario. In Task 1 (T1) a functioning stack was provided and the goal

was to analyze its structure and understand the overall behavior. In Task 2 (T2) a buggy stack was

provided and the goal was to debug and fix the faulty behavior. Task 3 focused on implementing

and was divided into T3.1 and T3.2. The goal of T3.1 was to build a simple stack from the ground

up and the goal of T3.2 was to alter the stack to use secrets. T3.1 and T3.2 correspond to an

implementation and increment activity respectively.

Figure 7.1: Distribution of Docker Compose YAML files on Github by size, expressed in kB.

One of the biggest concerns related to task definition was how to balance scale, complexity,

realism, and expected time to completion. To guide our choices, a brief research was conducted

to identify the scale distribution of Docker Compose stacks in real-life projects. The research

was performed by searching projects hosted on Github. Due to several limitations of Github’s

advanced search engine, the obtained results were merely a rough estimate, however, this was

deemed accurate enough for this purpose. The results (displayed in Figure 7.1) demonstrate that

approximately 75% of the considered projects include stacks with file sizes up to 1kB, which we

consider as low complexity (usually 1 to 2 services). As a result, we had more confidence in

including and designing relatively trivial scenarios. At the same time, we also believed we needed

some scenarios with a higher degree of complexity to take full advantage of (some of) the expected

benefits of the solution. As a result, the tasks featured scenarios with stacks of varying degrees of

complexity.

Another important consideration was how to communicate the purpose and inner-workings of

services since Docker Compose YAML stack definitions do not provide sufficient information to

demonstrate the behavior of individual services (which is hidden in the image definition). Three

approaches were considered, either documenting the images, providing the source code, or a mix

of both. In the end, the documentation approach was chosen as it seemed the most time-efficient

although less realistic. With this approach, we could steer the focus of the participants to the

aspects of interest while increasing the scale of the stack since it required less effort to understand

the expected behavior.

7.2 Design 69

7.2.5 Procedure

A full session took between 50 minutes to 2 hours per participant. Each session was conducted

individually with the researcher overseeing and observing the full procedure. Communication

between the researcher and the participant was done via a remote voice call. The subjects were

encouraged to think aloud throughout the session so that the researcher could more clearly under-

stand and follow along with their rationale. This strategy was also useful in identifying potentially

unforeseen issues with the experiment’s design.

Once the connection to the remote workstation was established, the participant had access to

the instructions for the full procedure in a Google Form available in the remote environment. The

procedure was organized in the following sections:

• Background questionnaire. This questionnaire contained a set of questions to assess the

current degree of experience with technologies which we had foreseen to potentially be

confounding factors.

• Tutorial. Before solving the actual tasks, the participants had to follow a simple tutorial

reviewing some basics of Docker Compose. This was mostly targeted to the experimental

group so that they had some prior hands-on experience with the prototype. However, to

maintain consistency between both groups, participants in the control group also had to

achieve the same goal with the conventional toolchain. The difference lied in the instructions

provided, which were adapted according to the toolchain being used.

• Tasks. Participants were instructed to solve a set of four orchestration-related tasks. To

maintain the total duration reasonable, time limits were set for each task. Participants were

asked to advance to the next task whenever this time limit was exceeded.

• Assessment questionnaire. After solving the tasks, participants were asked to fill a ques-

tionnaire to assess their experience and evaluate the procedure of working with the tools.

The questionnaire in the experimental group differed from the control since it included an

additional set of questions to specifically evaluate the solution prototype.

The materials used can be found in full in Appendix C, in particular, the Google Form con-

taining the description and instructions for the complete procedure.

7.2.6 Data Collection

The results of the background questionnaire were collected as a mix of answers to a 5-point Likert

scale, linear numeric scales, and multiple-choice questions directly from the results of the form

response sheet.

Performance measurements for tasks were recorded manually by the researcher. An applica-

tion named Turns Timer2 was used to simultaneously register the time spent on individual activities
2Turns Timer, is an Android application available at https://play.google.com/store/apps/details?

id=com.deakishin.yourturntimer

https://play.google.com/store/apps/details?id=com.deakishin.yourturntimer
https://play.google.com/store/apps/details?id=com.deakishin.yourturntimer

70 Empirical Study

and the number of changes between contexts. This was achieved by attributing a timer for each

context. The sum of all the timers was the total time spent on that task. The considered contexts

were as follows:

• Script. Time spent looking at the instructions and task description.

• Documentation. Time spent in the official Docker and Docker Compose documentation

and Docker Hub.

• Composer. Time spent in the solution prototype, Docker Composer (only applicable to the

experimental group)

• Browser. Time spent on the browser when accessing service’s UIs and other documentation

resources outside of those specified in the Documentation context.

• Editor. Time spent on the text editor to access and edit the materials.

• Terminal. Time spent on the terminal, mostly for executing Docker and Docker Compose

CLI commands.

Participants were asked to register the start and end time for each task in the form as a redun-

dancy precaution in case some data was lost or incorrectly recorded by the researcher. In addition,

the number of execution attempts was also registered by the researcher. These performance met-

rics, namely, durations and execution attempts, addressed RQ1 and RQ2.

Participants were also asked to save their solutions in the workstation. This was done for

subsequent review if needed. The solutions considered the answers given and the developed

docker-compose.yaml files as requested in the tasks.

PBQ1, PBQ2 and PBQ3 focused on perceptive-based metrics. For this purpose, the assess-

ment questionnaire was included in the procedure. This questionnaire mostly contained Likert

scale questions as well as a few open-ended questions. The former questions focused on three

perception-based metrics: Perceived Ease of Use (PEOU), Perceived Usefulness (PU), and Inten-

tion to Use (ITU). It is important to note that only PEOU was measured in both groups (through

a set of equivalent questions) while PU and ITU were exclusively measured in the experimental

group in regards to their opinion of the prototype. This approach was adopted for PU and ITU (in

opposition to measuring the same variables in both groups) because it was difficult to formulate

questions which would always produce consistent answers across both groups since these metrics

intrinsically assume some reference point which may be open to interpretation. We believe that,

without any guidance, while the participants in the CG would more likely compare their percep-

tion in comparison to the non-existence of Docker Compose, participants in the EG would most

likely compare it to the conventional method. Trying to enforce a uniform reference point would

also be somewhat unnatural since it would require the participants in the EG to compare their

perception to the non-existence of the prototype and Docker Compose itself. As an alternative,

the questions to evaluate PU were formulated as to compare the participant’s perception of the

7.2 Design 71

prototype in relation to the conventional method. In the latter open-ended questions, participants

could share any other observations and considerations outside of the scope considered from pre-

vious questions. These were primarily useful in detecting potentially overlooked issues with the

experimental procedure and even unforeseen validity threats.

A major concern was how to best collect and assess the perception-based metrics. For this

purpose, we opted to follow a similar approach to that of Sandobalin et al. [57]. The work con-

ducted by the authors closely matches the one being performed in this study since it is also an

empirical study to compare model-driven to code-centric approaches for IaC. The biggest benefit

of this choice was taking advantage of an already validated approach to evaluate a mostly subjec-

tive matter which is related to cognitive issues and, thus, difficult to assess quantitatively. As a

result, the formulated questions to evaluate these perception-based metrics are similar to the ones

used in that work, albeit adapted to the context of this user study.

7.2.7 Data Analysis

Data analysis was executed with the support of the SPSS (Statistical Package for the Social Sci-

ences) platform3. All of the data (resulting from the data sources) was first manually compiled

into a single spreadsheet. This spreadsheet was then loaded on the platform. A set of statistical

tests were performed primarily to assess the existence of significant differences between the two

groups. For this purpose, Mann-Whitney U (MW-U) and McNemar tests were performed on the

variables of interest according to its characteristics.

Some data processing was also executed in Excel, such as calculating sums of variables along

with most graph generation.

For all tests, a probability of 5% (ρ < 5%) was considered for accepting the alternative hy-

pothesis, in other words, a 95% level of confidence was set for the null hypothesis.

7.2.8 Pilot Experiments

Two pilot experiments were conducted to validate the quality and cohesion of the materials and of

the experimental procedure itself. The first pilot demonstrated that tasks were too complex to fit

within the target time-frame in the original design. As a result, the tasks were redesigned and sim-

plified to better match the expected estimates. In the second pilot, the materials closely matched

the ones used in the sessions themselves. The results of this pilot were useful in fine-tuning and

refining some minor details in the materials (such as typos and other small inconsistencies) as well

as streamlining the data collection process, in particular, the usage of the Turns Timer application

to register the individual context times.

7.2.9 Replication

We have compiled a pseudo replication package to facilitate and encourage the independent

replication of this experimental design. This package is available at https://github.com/
3SPSS, available at https://www.ibm.com/analytics/spss-statistics-software

https://github.com/Kubix20/docker-composer_user_study
https://github.com/Kubix20/docker-composer_user_study
https://www.ibm.com/analytics/spss-statistics-software
https://github.com/Kubix20/docker-composer_user_study
https://github.com/Kubix20/docker-composer_user_study

72 Empirical Study

Kubix20/docker-composer_user_study. It includes all of the materials, namely, the

Google Forms with the instructions and the materials provided to participants during the tasks

(for both groups) along with the raw and compiled datasets. We are designating this package as

pseudo since it is partly incomplete. For instance, it is difficult to share the exact operations to re-

produce the calculations as most data processing was performed with SPSS. However, we believe

that the data analysis described in this chapter is thorough enough to allow the replication of this

analysis. The same rationale applies to the remaining aspects left unaddressed in the package (e.g.

recruitment).

7.3 Data Analysis

The collected data was mainly quantitative and was the target of the statistical tests performed.

In particular, most of the hypotheses required a significance test and for this purpose, Mann-

Whitney U (MW-U) and McNemar tests were run against the variables of interest based on their

characteristics. The adopted notation during the analysis denotes H0 as the null hypothesis and H1

as the alternative hypothesis, u for the U statistic of Mann-Whitney U tests, and ρ as the probability

of rejecting H0. We also denote σ as the standard deviation and x as the mean.

7.3.1 Background

For this analysis, the answers to the background questionnaire were considered. The goal was to

assess whether participants in both groups were balanced in experience and skills to ensure that

differences in task performance could only be attributed to possible experience differences across

both groups.

Table 7.1 displays a summary of the obtained results for the Likert and numeric scale questions.

Considering the alternative hypothesis which states that the control group is different than the

experimental group (CG 6= EG) for every background question, the results demonstrate that there

is not a significant difference of experience and skills between both groups except for BQ6. We

believe we can disregard the disparity in BQ6 since it only applies to production scenarios which

were not the focus of scenarios featured in the tasks (which were instead in line with development).

Furthermore, the answers to BQ6 are based on the participant’s perception of their knowledge and

are always more subjective. The qualitative data which measures the number of projects (BQ7,

BQ8, and BQ9) suggests that there is not a significant difference and we argue this is a stronger

indicator of the participants’ experience.

To consolidate the previous data, in particular the answer to BQ2 (which is purely based on

the subject’s self-assessment of their skills), with more quantifiable data, the participants were also

asked to specify what orchestration frameworks (besides Docker Compose) they had used in the

past. Since it was difficult to analyze the data considering how the experience with different tools

might matter and what was the actual degree of experience with each tool (e.g. a subject may only

have used a tool once), we opted to compare the number of tools between participants in both

groups. For this purpose, we used a Mann-Whitney U significance test.

https://github.com/Kubix20/docker-composer_user_study
https://github.com/Kubix20/docker-composer_user_study
https://github.com/Kubix20/docker-composer_user_study

7.3 Data Analysis 73

CG EG MW-U
x σ x σ H1 u ρ

BQ1 2.88 0.398 3.13 0.398 6= 29.0 0.372
BQ2 2.13 0.581 1.63 0.263 6= 30.5 0.431
BQ3 4.00 0.189 4.13 0.350 6= 25.5 0.214
BQ4 3.25 0.412 3.13 0.389 6= 30.5 0.434
BQ5 3.25 0.412 2.75 0.458 6= 25.0 0.223
BQ6 2.88 0.295 1.63 0.263 6= 9.0 0.060
BQ7 4.38 0.822 4.88 0.515 6= 26.0 0.262
BQ8 2.88 0.895 2.63 0.925 6= 31.0 0.458
BQ9 3.50 1.052 3.75 0.675 6= 25.5 0.244
BQ1. I consider myself experienced with visual programming tools.
BQ2. I consider myself experienced with orchestration frameworks.
BQ3. I consider myself experienced with the Linux operating system.
BQ4. I consider myself experienced with Docker
BQ5. I consider myself experienced with Docker Compose for development
purposes.
BQ6. I consider myself experienced with Docker Compose in production
environments.
BQ7. Until now, approximately in how many projects have you worked on
which have used Docker Compose?
BQ8. Until now, approximately in how many projects have you
created/updated a docker-compose.yml file?
BQ9. Until now, approximately in how many projects have you
used docker-compose.yml files created by others (colleagues or third parties)?

Table 7.1: Summary of the answers to the Likert and numeric scale questions in the background
questionnaire. Contains the mean and standard deviation for each group and the results of the
Mann-Whitney U test.

CG EG MW-U

x σ x σ H1 u ρ

OF 0.25 0.463 0.38 0.518 6= 28 1.000

OF. Number of orchestration frameworks used

Table 7.2: Summary of the number of previously used tools specified in the background ques-
tionnaire. Contains the mean and standard deviation for each group and the results of the MW-U
test.

Figure 7.2 and Table 7.2 display the data and results respectively. Considering the alternative

hypothesis which states that the control group is different than the experimental group (CG 6=
EG) for the number of tools used, the results demonstrate that there is not a significant differ-
ence of experience and skills between both groups. The subjects reported having low experience

with orchestration frameworks (BQ2). This was to be expected, as the use of other orchestration

frameworks besides Docker Compose was not a requirement during their academic path and var-

ied case-by-case. However, it is interesting to note that for the few participants that had in fact

used another orchestration framework before, all specified Kubernetes.

Another question to complement the data obtained from the perceived experience with Docker

74 Empirical Study

Figure 7.2: Distribution of used orchestration frameworks by group. Note that some participants
specified Docker Compose but those results were not included in the graph since all subjects had
prior experience with Docker Compose.

Compose inquired subjects about what individual Docker Compose artifacts they had configured

in the past.

Figure 7.3: Distribution of configured Docker Compose artifacts by group.

The answers are displayed in Figure 7.3. At first glance, there does not seem to be a meaningful

difference. In fact, the same amount of participants reported having configured secrets and configs,

however, there is a small difference between volumes and networks. To confirm that there is not a

significant difference, we ran a McNemar test to test the disparity for volumes and networks.

7.3 Data Analysis 75

CG EG McNemar

Artifact % % H1 ρ

Volumes 37.5 62.5 6= 0.687

Networks 37.5 25.0 6= 1.000
Table 7.3: Summary of the results of the McNemar test applied to the answers to artifact config-
uration. Contains the percentage of subjects who have configured the artifact for each group and
the significance results of the McNemar test.

Considering the results displayed in Table 7.3 and the alternative hypothesis which states that

the control group is different than the experimental group (CG 6= EG), the results demonstrate that

there is not a significant difference of experience and skills between both groups. These results

further support the hypothesis that there was not a significant difference in experience with Docker

Compose between both groups. These results also give us more confidence that we can disregard

the previously identified discrepancy for BQ6 (Table 7.1).

To conclude the background analysis, taking into account all of the data collected and corre-

sponding analysis, we believe that we can confidently argue that the subjects were balanced across

both groups.

7.3.2 Task Performance

We will now focus on analyzing the results obtained from the tasks themselves. The following

statistics were considered during the analysis: task completion, overall time, overall time by ac-

tivity, time by task, the overall number of context switches, and the number of execution attempts.

Task Completion

First, we will analyze the effectiveness between groups. We consider effectiveness as the ratio be-

tween successfully completed tasks and the total number of tasks. A task is successfully complete

only if the subject finished within the allotted time limit and the solution was correct.

76 Empirical Study

Figure 7.4: Distribution of completed tasks by group.

Figure 7.4 displays the distribution of completed tasks by group. While all subjects finished

T1 and T3.2, there is a clear difference in T2 and T3.1. Almost all subjects in the EG finished

the tasks while only approximately half of the participants in the CG were able to finish. Note

that, for all instances, the participants were unable to complete some tasks due to time-out and no

case was registered in which the solution was incorrect. Considering this data, we can conclude

that fewer subjects in the CG finished the task T2 and T3.1. This in turn has an impact on the

metrics considered for the remainder of this analysis since the registered values were capped up to

the moment when the time limit was exceeded. If the time limit was not set the differences may

have been even sharper. However, as previously stated, this was a necessary sacrifice to keep the

overall time reasonable and manageable.

Context Times

As previously established, the times spent on each context were recorded for all tasks. These

measurements are useful as they provide more detailed insight into the behavior of the participants

while solving the tasks.

Figure 7.5 and Table 7.4 displays the global times spent on each context. To analyze this data,

let us start by looking at the common contexts used by the participants, that is the contexts which

were independent in both groups and do not intercept or replace each other in any way and can,

therefore, be directly compared. These include the Script, Documentation (Docs) and Browser.

By looking at the data in Figure 7.5, we can identify a large discrepancy in the time spent

on the Docs context for reading documentation. This is further supported by the discrepancy of

the time spent on the Browser context which was also mostly dedicated to reading other non-

official documentation resources. To confirm our suspicions we ran a Mann-Whitney U test for

the independent contexts.

7.3 Data Analysis 77

CG EG
Context ∑ x σ ∑ x σ

Script 2:06:04 0:15:46 0:06:10 1:29:40 0:11:13 0:03:52
Composer* - - - 3:50:08 0:28:46 0:10:29
Docs 1:51:36 0:13:57 0:06:25 0:18:59 0:02:22 0:02:15
Browser 0:41:44 0:05:13 0:04:02 0:11:36 0:01:27 0:01:53
Editor 2:52:17 0:21:32 0:03:57 0:04:51 0:00:36 0:00:29
Terminal 1:53:03 0:14:08 0:02:38 0:02:10 0:00:16 0:00:31
Stack Management 3:34:01 0:26:45 0:07:16 3:54:59 0:29:22 0:10:47

Table 7.4: Summary of the global time registered per activity for the sum of time taken in all
tasks. Contains the mean and standard deviation for each group. *The Composer context does not
contain data for the CG as this context was not available for this group and was exclusive to the
EG.

Figure 7.5: Distribution of the global times for each subject by context, by group. The Stack
Management context refers to the sum of time spent on the Editor and Terminal contexts for the
CG and the sum of time spent on the Editor and Composer contexts for the EG.

Considering the results in Table 7.5 and the alternative hypothesis which states that the time

spent in the Docs and Browser contexts is higher for the CG, the results do indeed confirm that

the CG spent significantly longer than the EG reading documentation. At the same time, we can

conclude that there is not a significant difference between the groups in the time spent on the

Script context for reading the script.

When considered individually, it is difficult to draw any other useful information from the

78 Empirical Study

Context H1 u ρ

Script > 17 0.065
Docs > 2 <0.001
Browser > 9 0.007

Table 7.5: Result of the Mann-Whitney U equality test for the sum of time spent on three contexts.
Contains the mean and standard deviation for each group.

remainder of the variables as these were either exclusive to some group (i.e. Composer for the

EG) or partly replaced the purpose of one another across both groups. However, we can consider

the sum of time spent on editor and terminal (ET) in the CG to be roughly equivalent to the sum

of time spent on the solution prototype Composer and the textual editor (EC) — which mostly

equates to the time spent accessing other textual materials such as configuration files which were

used in tasks — for the EG. We can assume this to be true as no participant in the EG used the

terminal to execute any other Docker or Docker Compose CLI commands besides those that were

available in the prototype. We refer to this composite context as Stack Management. This approach

provides a clearer comparison point between the activities across both groups.

Context H1 u ρ

Stack Management > 29 0.399
Table 7.6: Result of the Mann-Whitney U equality test for time differences in the Stack Manage-
ment context.

Table 7.4 displays the results of the sums of the variables for both groups in the row named

Stack Management. Upon closer inspection, the time difference does not appear to be very high.

To test this hypothesis, a Mann-Whitney U test was performed. The results displayed on Table 7.6

do indeed confirm that the participants in the EG did not significantly spend less time managing

the stack than those of the CG.

From this analysis, it seems reasonable to argue that the biggest impact in the overall times

was the time spent looking at documentation resources. This reduction was expected as we believe

that the solution promotes a more exploratory approach in which users converge to the solution by

searching the available options provided by the prototype. In fact, this was the effect of a major

goal of the approach, to streamline the orchestration process by presenting the underlying concepts

more explicitly and making them more understandable and intuitive.

Task Times

While analyzing the times per context provides more detailed insight into the behavior of the

participants, we will now look at the time spent globally (i.e. the total sum of time spent on each

activity) to assess the overall speed. This metric directly answer RQ1.

7.3 Data Analysis 79

CG EG MW-U
Task x σ x σ H1 u ρ

T1 0:13:05 0:05:51 0:12:12 0:05:19 > 31 0.480
T2 0:22:59 0:04:55 0:14:41 0:05:59 > 11 0.014
T3.1 0:24:56 0:07:04 0:13:47 0:06:57 > 3 0.001
T3.2 0:09:35 0:04:26 0:04:01 0:01:56 > 6 0.002

Table 7.7: Summary of the times for each task across both groups. Contains the mean and standard
deviation for each group and the results of the one-tailed MW-U test.

Figure 7.6: Distribution of times to completion for each subject by task, by group.

Figure 7.6 displays the distribution of times by task for each group. We can identify that the

participants in the EG have generally finished tasks T2, T3.1, and T3.2 sooner than the participants

in the CG. In contrast, for task T1, both groups are more balanced.

Table 7.7 summarizes the results obtained for the times of each task along with the results

of the MW-U significance test performed to compare both. By considering this data and the

expected alternative hypothesis which states that the participants in the EG would finish tasks

faster than those of the CG (i.e. CG > EG) for all tasks, the results demonstrate that EG did indeed

finish task T2, T3.1 and T3.2 significantly faster than the CG. These tasks evaluated debugging,

implementing, and updating a stack activities respectively. Particularly, it is interesting to note

the significant difference in T3.2. The scenario in this task required the participants to use a

somewhat uncommon feature of Docker Compose — secrets — with which most did in fact not

have any prior experience. In practice, the workflow to utilize this feature in the prototype was

80 Empirical Study

very similar to that of other artifacts, such as volumes and networks. These results support that

the prototype was sufficiently intuitive for participants to learn how to use this new feature, after

having some experience with it, simply by following a similar rationale and without the need to

consult additional documentation.

These results in conjunction with the overall times allow us to answer RQ1. The prototype

was successful in reducing the overall time required to develop and debug stacks. While there

was not a meaningful improvement for task T1 (in which participants had the goal of analyzing a

stack), overall, the prototype managed to reduce the time for the remainder of tasks. Some of the

questions in T1 required a deeper knowledge of concepts that were not immediately conveyed by

the prototype. We suspect that, taking into account that although the participants in EG already

had some hands-on experience with the prototype during the tutorial, T1 being the first task in

conjunction with the more complex questions contributed towards the longer durations since the

participants spent some time exploring the features of the prototype searching for answers.

Execution Attempts

In addition to the task times, the execution attempts were also registered for each task, that is, the

number of times a participant tried to run the stack (in practice, executing the command docker-

compose up). This metric is useful in measuring the error-proneness during the development

process and directly answers RQ2.

CG EG MW-U
Task x σ x σ H1 u ρ

T1 0.38 0.518 0.50 0.535 > 28.0 0.500
T2 7.00 3.928 5.63 2.560 > 21.5 0.134
T3.1 10.13 4.357 5.25 4.097 > 11.5 0.014
T3.2 3:50 1.690 1.75 0.463 > 13.0 0.016

Table 7.8: Summary of the execution attempts for each task across both groups. Contains the
mean and standard deviation for each group and the results of the MW-U test.

7.3 Data Analysis 81

Figure 7.7: Distribution of execution attempts for each subject by task, by group.

Figure 7.7 displays the distribution of execution attempts by task for each group. We can

identify that the participants in the EG have generally performed fewer execution attempts in tasks

T2, T3.1, and T3.2 than the participants in the CG. In contrast, for task T1, both groups are more

balanced. However, it is important to note that the results for T1 are not very revealing as the

execution of the stack was completely optional for this task.

Table 7.8 displays the results for execution attempts. Considering this data and the expected

alternative hypothesis which states that the EG would need fewer execution attempts than the CG

(i.e. CG > EG) for all tasks, the results demonstrate that EG did indeed require significantly fewer
execution attempts for T3.1 and T3.2.

These results are in line with the time difference established above. Overall, the participants

in the EG were more efficient and did not spend as much time restarting the stacks. This behavior

was also expected as in practice many execution attempts in the CG resulted from syntax errors.

The prototype avoided most syntax errors simply due to the more strict form inputs (with stronger

validation) and subsequent automatic code generation which was free of errors. We believe that

this was the biggest factor to contribute to the non-significant difference in T2 since in this task a

partially working stack was provided and few changes were required.

Context Switches

In addition to the context times, the context switches were also recorded, that is, the number

of times the participant accessed each of the contexts. To keep this metric uniform across the

82 Empirical Study

participants we will consider the context switches per minute (s/m) as opposed to the total count

of context switches. Although this metric does not provide a direct answer to any of the stated

goals, it is useful in evaluating the degree of focus of participants which has a substantial impact

on its usability. We argue that, in general, a higher number of context switches translates into a

less optimized experience since a user has to shift their attention more frequently, therefore being

more distracting.

We will analyze the global context switches during the full session, that is, the total sum of the

switches between all contexts for all tasks.

Figure 7.8: Distribution of global context switches for each subject by group.

CG EG MW-U

s/m x σ x σ H1 u ρ

Global 4.628 0.912 3.479 0.929 < 10 0.010
Table 7.9: Results of MW-U test for global context changes. Contains the mean and standard
deviation for each group and the results of the test.

By analyzing the data in Figure 7.8, it seems that the participants in the EG performed fewer

context switches than those of the CG. To confirm our suspicions, we ran a MW-U test.

The results of the test are displayed in Table 7.9. Considering this data and the alternative

hypothesis which states that subjects in the EG would execute fewer context switches than those

in the CG (i.e. CG > EG) overall, the results demonstrate that the participants in the EG did, in

fact, execute significantly fewer context switches than those in the CG. These results support

that the process was more streamlined for participants in the EG and thus more optimized. This

outcome is directly in line with the results of the task time analysis performed previously.

7.3 Data Analysis 83

Task 1 Results

In task T1, subjects were asked to answer a set of questions to assess their interpretation of a

Docker Compose stack which was provided for this end. In this section, we analyzed the score

results for these questions. The questions were split between two exercises: (1) considered true or

false statements and (2) short answers in a specific format. For the answers in exercise 2, a strict

all-or-nothing correction criterion was adopted in which an answer would only be considered as

correct if it fully matched the expected solution and incorrect otherwise.

CG EG McNemar

% % H1 ρ

Q2 50.0 75.0 > 0.313

Q7 25.0 37.5 > 0.500
Table 7.10: Summary of the results of the McNemar test applied to the answers of questions Q2
and Q7 of task T1. Contains the percentage of subjects who have answered correctly for each
group and the significance results of the McNemar test.

Figure 7.9: Percentage of subjects who answered the questions of task T1 correctly. Q1.

Figure 7.9 displays the percentage of participants which answered correctly for each of the 8

questions considered in both exercises. We can see that there is only a minor difference between

Q2 and Q7, in which more subjects of the EG answered correctly. To test if this difference is

significant we will run a Mcnemar test for both questions (Q2 and Q7).

Table 7.10 summarizes the result of the McNemar test. Considering this data and the expected

alternative hypothesis which states that more participants in the EG would answer the questions

correctly than those of the CG (CG < EG), the results demonstrate that not significantly more
subjects of the EG answered questions correctly than those of the CG for any of the ques-

tions. Taking into account these results, we can conclude that the prototype was not successful

84 Empirical Study

in increasing the correctness of answers. We believe that these results are partly attributed to the

design of the questions. Some required a deeper knowledge of Docker Compose including some

concepts which were not directly conveyed by prototype while others required a higher level of

indirectness such as searching for the answer on the image documentation in Docker Hub. De-

spite this, it is still interesting to note that the results were similar across groups even though the

participants in the EG relied far less on documentation resources. These results may suggest that

the knowledge gained from the information conveyed by the prototype was comparable to that of

reading documentation resources, at least for the concepts addressed in the task.

7.3.3 Assessment Questionnaire

Similarly to the analysis performed for the background questionnaire, MW-U tests were used

to assess potentially significant differences between both groups. As previously mentioned, the

contents of this questionnaire differed between groups. It featured a set of identical questions

to evaluate possible environmental deviations and procedure understandably along with a set of

equivalent questions to assess PEOU (except for 1 question to the EG since it was not applicable

to the CG). The questionnaire provided to EG featured an additional set of questions to evaluate

the perceived usefulness of individual features and overall PU as well as ITU sentiment towards

the prototype. The questions which focused on PU were formulated to compare the usefulness of

prototype in relation to the participant’s perception of the conventional method and toolchain.

Environment

The goal of this set of questions was to assess possible deviations resulting from the effect of

external environmental factors. We had extra attention in this regard as the sessions were being

conducted remotely.

CG EG MW-U
x σ x σ H1 u ρ

ENV1 4.13 1.356 3.75 1.282 6= 25.5 0.231
ENV2 1.88 1.356 2.13 1.458 6= 29.0 0.367
ENV1. It was easy working in the remote machine.
ENV2. The environment was distracting.

Table 7.11: Summary of the the answers to the common Likert-scale questions in the assessment
questionnaire. Contains the mean and standard deviation for each group and the results of the
MW-U test.

7.3 Data Analysis 85

Figure 7.10: Mean of answers to the Likert scale questions related to environment factors for each
subject, by question.

By analyzing the data in Table 7.11 and considering the alternative hypothesis which states that

the perception of the CG of environment factors differs from the EG for all environment-related

questions, the results demonstrate that there is not a significant difference between both groups.

These results support the hypothesis that the influence of environmental factors on performance

during tasks was balanced across both groups and therefore did not have a meaningful impact on

the results.

Perceived process understandability

The goal of this set of questions was to assess possible bias between groups resulting from

deviations in the understandability of the provided materials and instructions.

CG EG MW-U

x σ x σ H1 u ρ

PPU1 2.25 1.282 1.25 0.463 6= 17.0 0.080

PPU2 3.00 0.926 1.50 0.756 6= 6.5 0.005
PPU1. I found the procedure instructions complex and difficult to follow.
PPU2. I found the task descriptions complex and difficult to follow.

Table 7.12: Summary of the results of the answers to the common Likert-scale questions in the
assessment questionnaire. Contains the mean and standard deviation for each group and the results
of the MW-U test.

It is important to note the discrepancy of the PPU between both groups. As demonstrated

in Table 7.12, there is a significant difference for the PPU in regards to the task description

across both groups. In particular, by analyzing the means (Figure 7.11) we can conclude that the

participants in the EG reported finding the task descriptions more understandable than those of the

CG. Although this discrepancy could potentially imply a threat to validity since it could entail that

differences in performance could be related to the difficulty in understanding the instructions, we

86 Empirical Study

Figure 7.11: Mean of answers to the Likert scale questions related to perceived process under-
standability for each subject, by question.

argue that it may have been the result of the more pronounced difficulties felt by the participants

of the CG, who generally struggled more to complete tasks, therefore, influencing their judgment.

Another possibility is that the participants interpreted the questions wrong and mistook the intent

of the statement with ease of implementation. In contrast, the prototype used by the participants

in the EG provided a more streamlined and focused experience (as supported by the lower context

switching) which helped participants to concentrate more clearly on the provided instructions and

were as a result less fatigued by the end of the sessions.

Perceived Ease of Use

The goal of this set of questions was to assess the perceived ease of use (PEOU) and answer

the question PBQ1.

Figure 7.12: Mean of answers to the Likert scale questions related to perceived ease of use for
each subject

7.3 Data Analysis 87

CG EG MW-U

x σ x σ H1 u ρ

PEOU1 2.64 1.188 1.00 0.000 > 8.0 0.002

PEOU2 2.63 0.916 1.13 0.354 > 5.5 0.001

PEOU3 3.63 0.744 5.00 0.000 < 4.0 0.001

PEOU4* - - 4.88 0.354 - - -
PEOU1. Overall, I found the tool difficult to use.
PEOU2. I found it difficult to understand stacks with the tool.
PEOU3. I found it easy to define stacks with the tool.
PEOU4. Overall, I found the tool easy to learn.

Table 7.13: Summary of the results of the answers to the Likert-scale questions related to perceived
ease of use (PEOU) in the assessment questionnaire. Contains the mean and standard deviation
for each group and the results of the MW-U test. *PEOU4 does not contain data for the CG as this
question was exclusive to the EG.

By analyzing the data in Table 7.13 and considering the hypothesis which states that partici-

pants in the EG would find the prototype easier to use (i.e. CG > EG for PEOU1 and PEOU2 and

CG < EG for PEOU3) for all equivalent PEOU questions, the results demonstrate that the EG did

indeed find that it was significantly easier to work with the prototype. Therefore we can answer

question PBQ1 with some confidence that participants did in fact find the prototype easier to use

than the conventional method. Additionally, the exclusive question PEOU4 also demonstrates that

the participants in EG strongly agreed the tool easy to learn.

Features

The following sections focus on the questions which were exclusive to the questionnaire provided

to the EG.

The questionnaire provided to the EG contained a section dedicated to evaluating the per-

ceived usefulness of individual features, namely, the visual map of artifacts (VM), Docker Hub

integration (DHI), visual feedback (VF), and executing commands on the UI (UIC). The goal

of these questions was to assess the perceived usefulness with a higher degree of granularity so

that we could better understand the impact of each feature in the overall perception. Table 7.14

summarizes the obtained results.

88 Empirical Study

VM DHI VF UIC

x σ x σ x σ x σ

ULE 4.88 0.354 4.00 1.195 4.50 0.756 - -

UQ 4.75 0.463 4.00 1.195 4.75 0.707 - -

DLE 4.88 0.354 4.00 1.195 - - 4.75 0.707

DQ 4.88 0.354 4.00 1.195 - - 4.75 0.707
ULE. Understand stacks with less effort.
UQ. Understand stacks more quickly.
DLE. Define stacks with less effort.
DQ. Define stacks more quickly.

Table 7.14: Summary of the results of the answers to the Likert-scale questions related to perceived
usefulness of features in the assessment questionnaire. The cells marked with - signify that the
questions on the corresponding row(s) was not part of the questionnaire.

Figure 7.13: Mean of answers to the Likert scale questions related to perceived usefulness of
features for each subject of the EG.

Considering the data displayed in Table 7.14, we can conclude that the feature considered most

useful was the visual map of artifacts (VM) while the least was the Docker Hub integration (DHI).

These results matched our expectations as the DHI feature was secondary and mostly added for

ease-of-use and convenience. Moreover, the designed tasks did not take full advantage of this

feature since subjects were able to copy and paste the image names and tags from the provided

script without the need to locate them manually. In contrast, the VM feature was the direct result

of the hypothesis of this dissertation and corresponded to the most novel and premeditated feature.

Regardless, the response was positive for all features.

Perceived Usefulness

7.3 Data Analysis 89

The goal of this set of questions was to assess perceived usefulness (PU) and answer ques-

tion PBQ2.

x σ

PU1 5.00 0.000

PU2 5.00 0.000

PU3 1.50 0.756

PU4 1.00 0.000

PU5 4.88 0.354
Table 7.15: Summary of the results of the answers to the Likert-scale questions related to the
overall perceived usefulness in the assessment questionnaire.

PU1 I believe this tool would reduce the effort required to define Docker Compose stacks.

PU2 Overall, I found the tool useful.

PU3 A Docker Compose stack visualized with the tool would be more difficult to understand.

PU4 Overall, I think this tool does not provide an effective solution to define Docker Compose

stacks.

PU5 Overall, I think this tool makes an improvement to the stack definition process.

List 7.1: Question identifiers for Table 7.15 and Figure 7.14.

Figure 7.14: Mean of answers to the Likert scale questions related to Perceived Usefulness for
each subject of the EG.

Taking into the account the combined feedback of the usefulness of individual features (Ta-

ble 7.14 and Figure 7.13) and overall usefulness (Table 7.15 and Figure 7.14), we can answer the

question PBQ2 with some confidence, that subjects did indeed find the tool useful.

90 Empirical Study

Intention to Use

The goal of this set of questions was to assess intention to use (ITU) and answer ques-

tion PBQ3.

x σ

ITU1 4.50 0.535
ITU2 4.75 0.463
ITU3 5.00 0.000
ITU4 4.50 0.756
ITU5 4.75 0.463

Table 7.16: Summary of the results of the answers to the Likert scale questions related to the
overall perceived usefulness in the assessment questionnaire.

ITU1 This tool would make it easier for practitioners to define Docker Compose stacks.

ITU2 Using this tool would make it easier to communicate the stack architecture to other practi-

tioners.

ITU3 I would recommend this tool to work with Docker Compose.

ITU4 I would like to use this tool in the future.

ITU5 It would be easy for me to become skillful in using this tool to work with Docker Compose.

List 7.2: Question identifiers for Table 7.16 and Figure 7.15.

Figure 7.15: Mean of answers to the Likert scale questions related to Intention to Use for each
subject of the EG

Taking into account the results displayed on Table 7.16 and Figure 7.15, we can answer the

question PBQ3 with some confidence, that subjects do indeed intend to use the tool in the future.

7.4 Validation Threats 91

Overall, the results demonstrate that the response to the prototype was overwhelmingly posi-

tive and generally very consistent across participants. The participants found the approach easier

to use than the conventional method, generally useful, and were interested in using it in the future.

7.4 Validation Threats

This section is dedicated to identifying and discussing threats which might hinder the soundness

of the obtained results. The following threats were identified:

• Psychological bias. For the results to be unbiased, it is important to ensure that participants

are unaware of what group they belong to. However, in practice, this was hard to achieve for

all cases due to the design of the experiment which made it somewhat obvious to the par-

ticipants in the experimental group. Nevertheless, all possible efforts were made to mitigate

this threat, particularly, by preparing the materials as to omit any information and avoiding

any verbal exchange during the experiments themselves which could allude to this fact.

• Scarce sample size. The somewhat small sample size was mostly attributed to time con-

straints in part because of the need to execute each session individually and lack of avail-

ability of some participants which hampered recruitment. To confirm the findings with more

confidence, it is important to rerun the experiment with a larger sample size to mitigate this

threat.

• Experience differences. It is crucial to ensure that the results are independent of possible

skills and experience differences between groups. For this reason, the background question-

naire was part of the process and the data analysis supports that both groups were balanced.

Therefore, we believe we can discard this threat.

• Environment influences. Performing the sessions remotely raised additional concerns in

regards to possible deviations due to uncontrolled external factors. However, we believe

that with the remote workstation approach we were able to virtually achieve a consistent

environment for all participants. In addition, the researcher’s constant observation during

the sessions was also useful in identifying any unforeseen anomalies. The results in the as-

sessment questionnaire further support that there was not any significant difference between

groups. Thus, we believe we can discard this threat.

• Sample bias. The participants were all students with similar backgrounds. While this

helped to ensure that there was not a significant experience disparity between groups, it may

have caused a possible bias in the results and therefore fail to fully represent the more het-

erogeneous population. However, the research conducted by Host et al. [35] concluded that

5th students can be appropriate subjects, if properly trained, as they represent the future gen-

erations of developers. Thus, we believe the results are meaningful. In spite of this, further

studies are required, featuring a more heterogeneous sample with more diverse backgrounds

to achieve results with more confidence and mitigate this threat.

92 Empirical Study

• Auto-layout inefficiencies. As described in Chapter 6, the prototype implemented an auto-

matic layout algorithm to position artifacts when loading a stack from a YAML file. How-

ever, the results achieved were sub-optimal. To mitigate possible deviations resulting from

this limitation, the stacks provided to the experimental group were prepared in advance to

a more readable format and were loaded using the custom storage feature. In practice, this

did not seem to influence the results as no participant suggested this improvement, therefore

we can discard this threat.

We made an effort to mitigate validation threats throughout experimental planning and de-

sign phases. We argue that the overall balance is positive as we were able to offset most in this

experimental design.

7.5 Summary

In this chapter, the design and results of the conducted user study were described and discussed.

To summarize, our findings support the hypothesis that a complete visual approach for orches-

tration does indeed generally reduce development time and error-proneness significantly. How-

ever, although the overall balance was positive, the improvements are not reflected in all activ-

ities. In particular, the biggest benefits were recorded during implementation-based tasks (T3.1

and T3.2). We can also conclude that in regard to time-related improvements, the results suggest

that the observed gains were mostly due to reductions of time spent on reading documentation.

Additionally, the analysis of the context switches suggests that the experience was overall more

streamlined when using the prototype.

The findings related to perception-based metrics, although less objective, were positive as

well. The participants overwhelmingly felt that the prototype was easier to use, was generally

useful, and manifested strong intention of using it in the future. These results demonstrate that the

prototype was successful in satisfying the established definition of development experience in the

hypothesis.

While the obtained results are promising, additional research would be useful to further con-

solidate and confirm our findings with more confidence. In this sense, rerunning the study in

other contexts (in which some of the most dangerous validity threats were offset) would be highly

useful. In particular, we consider essential testing the approach with a bigger and more diverse

sample, especially with members of the industry.

Chapter 8

Conclusions and Future Work

8.1 Hypothesis Revisited and Contributions . 93

8.2 Future Work . 94

Cloud computing is an evolving paradigm and has become the de facto hosting solution. Simulta-

neously and partly as a reaction to the cloud revolution, microservices architectures are gradually

becoming the preferred way to build software, replacing traditional monolithic systems, by pro-

viding low coupling and high cohesion. These architectures are heavily dependent on containers

and these require comprehensive tools to manage them throughout their life-cycle.

The state of the art review demonstrated that the field surrounding cloud computing is a focal

point of academic research and is already rich in technologies and tools. In fact, some progress

has already been made towards solutions that allow the developer to manage systems at higher

abstraction levels through model-driven and visual programming approaches. Working at high ab-

straction levels points to achieving faster development velocity, higher productivity, and improved

maintainability.

In this dissertation, we aimed to contribute to a piece of the puzzle that comprises the current

complex cloud ecosystem by expanding upon existing efforts in container orchestration technolo-

gies. This aim led us to explore the potential of a complete visual approach for the orchestration

of technological stacks. In practice, we have limited the scope to Docker Compose and Docker

technologies as the basis technologies for our research.

8.1 Hypothesis Revisited and Contributions

We have started with the following hypothesis:

93

94 Conclusions and Future Work

H: A complete visual programming approach for developing orchestration recipes improves

the overall developer experience and reduces the error proneness and development time.

We then designed and developed a prototype using a complete visual approach by combining

techniques from model-driven engineering and visual programming. The prototype was after-

ward used to empirically validate the approach in a user study conducted among students and the

results of this user study allowed us to test the hypothesis. We concluded that the results gener-

ally support the hypothesis, both in terms of performance improvements (development time and

error-proneness) and user experience (as defined in the stated hypothesis).

To summarize, the contributions of this dissertation are as follows:

• A study of the challenges of working with Docker Compose. The study conducted with

students to identify practical issues developers find when working with Docker technologies

(Chapter 4). Although the findings of this study were mostly inconclusive for the purposes

of this work, the results are still meaningful and we believe they may also be of interest to a

wider scientific community.

• A visual programming environment for orchestration with Docker Compose. A proto-

type serving as a visual programming environment was developed leveraging the designed

complete visual approach for orchestration with Docker Compose as described in Chapter 6.

• An experimental design to validate the approach. We have designed and conducted a

user study to empirically validate the visual approach and test the hypothesis (Chapter 7).

The resulting experimental design is fully documented and can be replicated. We believe

this design may be used not only to validate this approach in other contexts but even to

validate alternative approaches (visual or otherwise) in this field applied to Docker and

Docker Compose technologies.

8.2 Future Work

As is common in research projects, new ideas are always on the horizon. We dedicate this section

to documenting ideas for expansions and improvements which go beyond the immediate objective

of this dissertation and propose them as future work to further consolidate and complete the work

develop thus far. We will address three topics: the visual approach, the developed prototype and

empirical validation.

Visual Approach

As previously stated, the scope was limited to Docker Compose. As a result, the designed visual

approach is, as expected, highly tied to the underlying concepts of Docker Compose. However,

we believe that similar visual approaches are applicable in a broader context, in particular, to other

orchestration technologies. It would be interesting to explore domain-specific visual notations

8.2 Future Work 95

for other orchestration technologies (e.g. Kubernetes). Furthermore, one can even consider the

possibility of a more generic and technology agnostic model-driven approach, useful for a wider

set of use-cases. The positive results obtained in this work in conjunction with the swift paradigm

shift in software engineering towards microservices architectures provide strong motivation to

promote research in this field.

Prototype

We also propose evolving the prototype to a full-fledged application by expanding upon existing

features as well as exploring other ideas which go beyond the immediate objective of this disser-

tation which we believe may further improve the orchestration process. Some of these ideas stem

from the conceptual stages of the implementation but were ultimately not realized as they did not

directly contribute towards our goal while others are the result of how we foresee the prototype

could evolve.

• Textual editor. This idea explores the inclusion of a textual editor which would work in

parallel with the graphical editor, similarly to the feature offered in Dockstation. How-

ever, unlike Dockstation, we propose the simultaneous view of both perspectives in a single

screen. This would require real-time sync mechanisms to maintain both views consistent

on change in either one and could be achieved through MDSE bidirectional transforma-

tion techniques as demonstrated in the state of the art review. We consider this as one of

the most significant improvements since it could impact the potential target audience of

the prototype, as many developers (especially more experienced) seem to prefer working

with textual methods. This addition would mean that the solution would not substitute the

conventional method and would instead complement it with more information and options.

However, in the end, this feature was deemed as secondary since it did not directly im-

pact the hypothesis and its exclusion contributed towards making the validation between the

VPL and text-based method clearer. Additionally, some tools identified in the state of the art

analysis (Chapter 3) already achieve a similar behavior (e.g. Micro:Bit), meaning there was

reduced scientific value in replicating it. Regardless, we strongly believe this would have

been a great addition, allowing a more complete experience which takes advantage of both

edition methods simultaneously.

• Automatic layout. As previously noted the automatic layout feature was sub-optimal and

requires further research to better distribute the artifacts. The approach should preferably

consider the stack definition itself to optimize placement based on artifact type rather than

using a pre-existing generic graph node distribution algorithm.

• Visual feedback. This is a broad subject which considers minor changes such as more de-

tailed status LEDs to fully match the notation used by Docker to more substantial improve-

ments, for instance, optimizing feedback for Docker Swarm and its multiple containers per

service.

96 Conclusions and Future Work

• Static validation. While the prototype considers validations for some property fields, there

is the potential to further enrich this feature with even more. These include, among others,

validations for ports across the complete stack which take into account the available host

ports.

• Exploring liveness. While the previous two points already contribute towards a more live

experience, we can see the possibility of exploring this concept more exhaustively. Particu-

larly by addressing more substantial concerns such as the need to manually restart stacks on

change. We believe that increasing the liveness level can further improve the orchestration

process.

Empirical validation

As stated in the conclusions of Chapter 7, although the findings obtained in the conducted

user study are promising, further research is needed to consolidate and increase the confidence

level of these results. For this purpose, we believe it is essential to perform similar experiments

in other contexts to offset outstanding threats to validity identified. In particular, we suggest

industrial settings to complement the data obtained in a purely academic environment. With this

in mind and to encourage other researchers, we have compiled a replication package as described

in Section 7.2.9.

While controlled user studies are powerful in identifying isolated cause-effect relations, they

fail to fully capture the intricacies of real-world scenarios. To complement the research we believe

that case studies may serve as another invaluable source of insight into the actual behavior of the

approach in more realistic scenarios.

Appendix A

Tools Listing

This appendix contains a complete list of the tools identified in section 3.2 of the state of the art

review.

Name Source

cAdvisor https://github.com/google/cadvisor
Scout https://scoutapm.com/
Data Dog https://www.datadoghq.com/
Prometheus https://prometheus.io/
Sysdig https://sysdig.com/
Sensu monitoring framework https://sensu.io/
Sematext https://sematext.com/
Dynatrace https://www.dynatrace.com/solutions/application-monitoring/
Broadcom AIOps https://www.broadcom.com/info/aiops/application-monitoring
Site24x7 https://www.site24x7.com/
AppDynamics https://www.appdynamics.com/
Weavescope https://github.com/weaveworks/scope

Table A.1: Monitoring tools source

Name Source

Kitematic https://kitematic.com/
Dockeron https://github.com/dockeron/dockeron
Seagull https://github.com/tobegit3hub/seagull
Portainer https://www.portainer.io/
Docker Compose UI https://github.com/francescou/docker-compose-ui
Swirl https://github.com/cuigh/swirl
Swarmpit https://github.com/swarmpit/swarmpit
DockStation https://dockstation.io/
Admiral https://github.com/vmware/admiral
Rancher https://rancher.com/
Kubernetes https://kubernetes.io/
Mesos http://mesos.apache.org/
Nomad https://www.nomadproject.io/

Table A.2: Service tools sources

97

https://github.com/google/cadvisor
https://scoutapm.com/
https://www.datadoghq.com/
https://prometheus.io/
https://sysdig.com/
https://sensu.io/
https://sematext.com/
https://www.dynatrace.com/solutions/application-monitoring/
https://www.broadcom.com/info/aiops/application-monitoring
https://www.site24x7.com/
https://www.appdynamics.com/
https://github.com/weaveworks/scope
https://kitematic.com/
https://github.com/dockeron/dockeron
https://github.com/tobegit3hub/seagull
https://www.portainer.io/
https://github.com/francescou/docker-compose-ui
https://github.com/cuigh/swirl
https://github.com/swarmpit/swarmpit
https://dockstation.io/
https://github.com/vmware/admiral
https://rancher.com/
https://kubernetes.io/
http://mesos.apache.org/
https://www.nomadproject.io/

98 Tools Listing

Name Source

CodeHerent https://codeherent.tech/home
Visual Composer https://cloudsoft.io/software/cfn-composer/
Cloudcraft https://cloudcraft.co/
CloudMap [64]

Table A.3: Infrastructure tools sources

https://codeherent.tech/home
https://cloudsoft.io/software/cfn-composer/
https://cloudcraft.co/

Appendix B

Preliminary Work Questionnaire

This appendix contains the questionnaire used during the user-study performed as described in

Chapter 4.

99

Challenges with Docker technologies
This survey was developed under the scope of Preparação da Dissertação (PDIS) in
regards to two dissertations related to Docker technologies. The objective is to identify
and gauge the challenges developers encounter when working with Docker technologies
namely dockerfiles and docker compose.

*Obrigatório

Personal context

1. Before LDSO I was experienced in … *

Marcar apenas uma oval por linha.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

writing a dockerfile for a
software system
writing a docker-
compose.yml file for a
software system

2. At this point in time I am experienced in... *

Marcar apenas uma oval por linha.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

writing a dockerfile for a
software system
writing a docker-
compose.yml file for a
software system

Until now, approximately in how many projects have
you ...

3. ... worked on that had a Dockerfile? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

1 of 5

4. ... worked on that had a docker-compose.yml file? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

5. ... used Dockerfiles created by others (colleagues or third parties)? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

6. ... used docker-compose.yml files created by others (colleagues or third
parties)? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

7. ... created/updated a Dockerfile? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

8. ... created/updated a docker-compose.yml file? *

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

9. In the Dockerfiles I've developed, I've specified...

Marcar tudo o que for aplicável.

... arguments/variables (ARG instruction).

... volumes (VOLUME instruction).

... the user (USER instruction).

... the working directory (WORKDIR instruction).

... environment variables (ENV instruction).

2 of 5

10. In the docker-compose.yml files I've developed, I've configured...

Marcar tudo o que for aplicável.

... volumes.

... networks.

Working with Docker technologies

11. When I write a Dockerfile, I spend a lot of time... *

Marcar apenas uma oval por linha.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

finding out what parent
image is the most
suitable.
finding out what are the
dependencies of the
system that must be
added to the docker
image.
finding out what are the
Dockerfile commands
that I need.
trying to understand if
the resulting container is
working as intended
(e.g., running
commands and tests on
the container).
trying to understand why
the resulting container is
not working as intended.
finding out which
commands are
responsible for the
container misbehaviour.
rebuilding the image and
re-running the container
to confirm that it is
working as intended.

12. What steps or strategies do you usually follow in order to diagnose and fix
bugs in the creation of Dockerfiles?

3 of 5

13. Do you use any plugins/tools when developing Dockerfiles? *

Marcar apenas uma oval.

Yes

No

14. If so, which ones and how do they help you?

15. When I write a docker-compose.yml file, I spend a lot of time… *

Marcar apenas uma oval por linha.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

finding out what are the
keys that I need.
finding out what images
are available.
trying to understand why
the services are not
working as intended.
(re)starting the services
to confirm that they are
working as intended.
configuring the
properties of each
service (e.g. port
mapping, name, ...).
configuring the
dependencies between
the services (e.g.
depends_on).
configuring volumes and
how they are attached to
the services.
configuring networks
and how they are
connected to the
services.

4 of 5

Com tecnologia

16. What steps or strategies do you usually follow in order to diagnose and fix
bugs in the creation of docker-compose.yml files?

17. Do you use any plugins/tools when developing docker-compose.yml files? *

Marcar apenas uma oval.

Yes

No

18. If so, which ones and how do they help you?

19. When I read a docker-compose.yml file, I spend a lot of time trying to
understand … *

Marcar apenas uma oval por linha.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

what the services are.

the dependencies
between services (e.g.
depends_on).
what volumes are used
and how they are
attached to the services.
what networks are used
and how they are
connected to the
services.

5 of 5

Appendix C

User Study Materials

This appendix contains the materials used in the user study, namely, the Google Forms provided

to the control and experimental groups.

105

Background
questionnaire

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 5 𝘮𝘪𝘯𝘴

Please answer the following questions about your current
experience.

1.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Stronly Agree

2.

Outra:

Marcar tudo o que for aplicável.

Node-RED

Blender Nodes

Unreal Engine Blueprints

Scratch

Simulink

Excel

3.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Stronly Agree

Empirical Study in So�ware Engineering
Welcome! Thank you for your availability to participate in this study. You will be asked to
perform a set of orchestration tasks using Docker and Docker Compose technologies. The
experiment should take between 50 minutes to 1 hour and 30 minutes in total.
*Obrigatório

I consider myself experienced with visual programming tools. *

What visual programming tools have you used in the past?

I consider myself experienced with orchestration frameworks. *

106 User Study Materials

C.1 Control

4.

Outra:

Marcar tudo o que for aplicável.

Ansible

Chef

Puppet

Salt

Kubernetes

5.

Marcar apenas uma oval por linha.

Until now, approximately in how many projects have you ...

6.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

What orchestration frameworks have you used in the past?

I consider myself experienced with...

Strongly
Disagree

Disagree Neutral Agree
Stronly
Agree

...the Linux operating system.

...Docker.

...Docker Compose for
development purposes.

...Docker Compose in
production environments.

...the Linux operating system.

...Docker.

...Docker Compose for
development purposes.

...Docker Compose in
production environments.

...worked on which have used Docker Compose? *

C.1 Control 107

7.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

8.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

9.

Marcar tudo o que for aplicável.

...volumes

...networks

...configs

...secrets

10.

Outra:

Marcar tudo o que for aplicável.

Portainer

Kitematic

Admiral

Dockstation

... created/updated a docker-compose.yml file? *

... used docker-compose.yml files created by others (colleagues or third parties)?
*

In the docker-compose files I’ve written, I’ve configured…

What software have you used to manage Docker or Docker Compose
resources?

108 User Study Materials

General
instructions

𝗥𝗲𝗮𝗱 𝘁𝗵𝗲 𝗳𝗼𝗹𝗹𝗼𝘄𝗶𝗻𝗴 𝗶𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 𝘃𝗲𝗿𝘆 𝗰𝗮𝗿𝗲𝗳𝘂𝗹𝗹𝘆.

During the experiment you should use the following resources:

All the required material (code and other files) you will need can be accessed from
the root directory located at ~/𝘋𝘦𝘴𝘬𝘵𝘰𝘱/𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴. 𝗬𝗼𝘂 𝘀𝗵𝗼𝘂𝗹𝗱 𝗻𝗼𝘁 𝗮𝗰𝗰𝗲𝘀𝘀
𝗮𝗻𝘆 𝗼𝘁𝗵𝗲𝗿 𝗰𝗼𝗻𝘁𝗲𝗻𝘁 𝗯𝗲𝘀𝗶𝗱𝗲𝘀 𝘄𝗵𝗮𝘁 𝗶𝘀 𝗶𝗻𝗰𝗹𝘂𝗱𝗲𝗱 𝗶𝗻 𝘁𝗵𝗶𝘀 𝗱𝗶𝗿𝗲𝗰𝘁𝗼𝗿𝘆.
Moreover, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗼𝗻𝗹𝘆 𝗮𝗰𝗰𝗲𝘀𝘀 𝘁𝗵𝗲 𝗺𝗮𝘁𝗲𝗿𝗶𝗮𝗹𝘀 𝗶𝗻 𝘁𝗵𝗲 𝗿𝗼𝗼𝘁 𝗱𝗶𝗿𝗲𝗰𝘁𝗼𝗿𝘆
𝗼𝗻𝗰𝗲 𝗽𝗿𝗼𝗺𝗽𝘁𝗲𝗱 𝘁𝗼.

You will also have access to the following tools:

 ⚫ Firefox to access the internet.
 ⚫ The system’s default shell to execute necessary commands.
 ⚫ Your preferred editor (installed in the machine) to access the contents of the
root directory.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Tutorial
on
Docker
Compose

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 10 𝘮𝘪𝘯𝘴

Start by following along this tutorial covering some basic concepts of Docker
Compose.

The example in this tutorial defines a service stack, comprising a 𝘄𝗲𝗯 𝗮𝗽𝗽 and a
𝗿𝗲𝗱𝗶𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. The web app service just outputs whether it has successfully
connected to the database or not. To check the connection status, you can send a
GET request to the root (/) endpoint at port 80. Both services should execute locally
(i.e. 𝗻𝗼𝘁 Swarm) meaning that each service runs in a single container (i.e. two
containers in total).

In summary, the resulting stack should include:
 ⚫ A 𝘄𝗲𝗯 service (web - kubix20/webapp_redis:latest - 80).
 ⚫ A 𝗿𝗲𝗱𝗶𝘀 database (redis - redis:alpine - 6379).

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘬𝘦y - 𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The resulting stack should also consider the following:

 ⚫ Services must set the keys and images as specified above.
 ⚫ The web app container should start after the database container.
 ⚫ A volume named storage to persist the redis data.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

C.1 Control 109

11.

Marcar tudo o que for aplicável.

1. Create a file in the tutorial folder located in the root directory named 𝘥𝘰𝘤𝘬𝘦𝘳-
𝘤𝘰𝘮𝘱𝘰𝘴𝘦.𝘺𝘮𝘭.

2. Set the version to "3.6".

3. Add the top level “services” declaration.

4. Add a service with the key web.

5. Set the image to kubix20/webapp_redis:latest.

6. Open the image page on Docker Hub to learn more about the service.

7. Expose port 80 of the container to 4000 on the host.

8. Add a service with the key redis.

9. Set the image to redis:alpine.

10. Add a depends_on property from the redis to the web service.

11. Set the the environment variable REDIS_HOST = redis on the web service.

12. Add the top level "volumes" declaration.

13. Add a volume with the key storage.

14. Mount the storage volume on /data in the redis service.

The stack should now look like this:

Next, it's time to test the stack.

Follow along these next steps. Tick each step as you complete it.

110 User Study Materials

12.

Marcar tudo o que for aplicável.

15. Ensure you've saved the file.

16. Run 𝘥𝘰𝘤𝘬𝘦𝘳-𝘤𝘰𝘮𝘱𝘰𝘴𝘦 𝘶𝘱 from the tutorial folder in the terminal.

17. Check the output in the terminal and verify that the message “Connected to DB” is
printed by the web container, indicating that the web service has successfully connected to
the database.

18. Make a GET request to localhost:4000 (using your preferred method, e.g. curl or
browser) and verify the response “Connected to db” is received.

19. Ctrl+C in the terminal to stop the running stack.

If you've ticked all the boxes, advance to the next section.

Tasks

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 30 𝘮𝘪𝘯𝘴

𝗥𝗲𝗮𝗱 𝘁𝗵𝗲 𝗳𝗼𝗹𝗹𝗼𝘄𝗶𝗻𝗴 𝗶𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 𝘃𝗲𝗿𝘆 𝗰𝗮𝗿𝗲𝗳𝘂𝗹𝗹𝘆.

You will be asked to perform a set of orchestration tasks with Docker Compose.

In the root directory, you will find folders containing the material for each task named t*,
where * is the task number (e.g. t1 for task 1). 𝗙𝗼𝗿 𝗲𝗮𝗰𝗵 𝘁𝗮𝘀𝗸, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗼𝗻𝗹𝘆 𝗮𝗰𝗰𝗲𝘀𝘀
𝘁𝗵𝗲 𝗰𝗼𝗻𝘁𝗲𝗻𝘁𝘀 𝗼𝗳 𝘁𝗵𝗲 𝗰𝗼𝗿𝗿𝗲𝘀𝗽𝗼𝗻𝗱𝗶𝗻𝗴 𝗳𝗼𝗹𝗱𝗲𝗿 𝘄𝗵𝗶𝗹𝗲 𝗽𝗲𝗿𝗳𝗼𝗿𝗺𝗶𝗻𝗴 𝘀𝗮𝗶𝗱 𝘁𝗮𝘀𝗸.
Moreover, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗲𝘅𝗲𝗰𝘂𝘁𝗲 𝘁𝗮𝘀𝗸𝘀 (𝗮𝗻𝗱 𝘀𝘂𝗯𝘁𝗮𝘀𝗸𝘀) 𝘀𝗲𝗾𝘂𝗲𝗻𝘁𝗶𝗮𝗹𝗹𝘆, meaning that
you cannot change your answers for previous tasks.

All tasks are preceded by a section labeled T* - Setup, where * is the task number (e.g. T1 -
Setup), containing instructions you must follow before advancing to the actual task. These
ensure that you abide by the guidelines described in this section.

When starting a task, carefully read the description once, in full. Once you’ve read the
description and before you start solving the task, register the current time on the input
labeled Start time. Likewise, once you finish the task register the current time on the input
labeled Finish time. You can find both inputs below the description of the task.

Some tasks require the creation/edition of a Docker Compose stack. Keep in mind that the
focus of the exercise is on the orchestration process and not in the development of the
components that are part of the stack. In this sense, the requirements must be satisfied
𝘀𝘁𝗿𝗶𝗰𝘁𝗹𝘆 𝘁𝗵𝗿𝗼𝘂𝗴𝗵 𝘁𝗵𝗲 𝗲𝗱𝗶𝘁𝗶𝗼𝗻 𝗼𝗳 𝘁𝗵𝗲 𝘀𝘁𝗮𝗰𝗸.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

T1 -
Setup

Before proceeding, follow the next steps:

 1. Navigate to the folder named 𝘁𝟭 from the root directory. You must exclusively access
the contents of this folder while performing this task.
 2. Open the stack in this folder named 𝘥𝘰𝘤𝘬𝘦𝘳-𝘤𝘰𝘮𝘱𝘰𝘴𝘦.𝘺𝘮𝘭.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Follow along these next steps. Tick each step as you complete it.

C.1 Control 111

T1 -
Analyzing
a stack

In this task you will analyze a Docker Compose stack for a 𝘃𝗼𝘁𝗶𝗻𝗴 𝗮𝗽𝗽.

Begin by carefully examining the contents of the stack. You can also start the app and
access the services through their exposed ports to visualize it in action.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: You can learn more about each service in the corresponding image page
on Docker Hub.

When you’re ready, answer the following questions.

13.

Exemplo: 08:30

Exercise 1

14.

Marcar apenas uma oval por linha.

Exercise 2

15.

Start time *

Answer true or false to the following statements: *

True False

Some services use the default network.

The votes are stored in the redis service.

The named volume db-data is used to
provide configurations to the postgres
service at runtime.

The redis service always exposes port 6379
on the host.

The vote service uses a locally built image.

Some services use the default network.

The votes are stored in the redis service.

The named volume db-data is used to
provide configurations to the postgres
service at runtime.

The redis service always exposes port 6379
on the host.

The vote service uses a locally built image.

What services depend on the redis service? (Answer in the format [services],
e.g. ser1, ser2,...) *

112 User Study Materials

16.

17.

18.

Exemplo: 08:30

T2 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the folder named 𝘁𝟮 from the root directory. You must exclusively access
the contents of this folder while performing this task.
 4. Open the stack in this folder named 𝘥𝘰𝘤𝘬𝘦𝘳-𝘤𝘰𝘮𝘱𝘰𝘴𝘦.𝘺𝘮𝘭.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

T2 -
Fixing
a
stack

Consider the stack for a simple app to register and view TODO notes.

The stack architecture is as follows:
 ⚫ A mongoDB database to store the TODOs (mongo:4.2.0 - 27017)
 ⚫ A backend server to expose an API to… (kubix20/todoapp_server - 3000)
 ⚫ A client frontend for viewing and registering TODOs (kubix20/todoapp_client - 3000)

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The backend server looks for the mongoDB service running on the host 𝗺𝗼𝗻𝗴𝗼 and port
27017 without authentication required.

The frontend client proxies all API requests to the server service which is expected to be
running on the host 𝘀𝗲𝗿𝘃𝗲𝗿 and port 3000.

Unfortunately, the app isn’t currently working as expected as users are unable to register
new TODOs. Locate and fix the bugs so that the app behaves as expected.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: You must achieve the expected behaviour 𝘄𝗶𝘁𝗵𝗼𝘂𝘁 𝗮𝗱𝗱𝗶𝗻𝗴 𝗼𝗿
𝗿𝗲𝗺𝗼𝘃𝗶𝗻𝗴 𝗮𝗻𝘆 𝗼𝗳 𝘁𝗵𝗲 𝗲𝘅𝗶𝘀𝘁𝗶𝗻𝗴 𝗮𝗿𝘁𝗶𝗳𝗮𝗰𝘁𝘀 (services, networks and volumes).

𝗡𝗼𝘁𝗲: The issue is unrelated to the stdin_open property on the client. It must be set to
true for the client to execute properly.

𝗛𝗶𝗻𝘁: Run the stack to observe the faulty behavior.

What ports are exposed to the host by which services? (Answer in the format:
service-[ports], e.g. container-123,124) *

What networks are used and what services are attached to each one? (Answer
in the format: network-[services], e.g. net1-ser1, ser2,...; net2-ser1) *

Finish time *

C.1 Control 113

19.

Exemplo: 08:30

20.

Exemplo: 08:30

T3.1 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the directory named 𝘁𝟯.𝟭 from the root directory. You must exclusively
access the contents of this folder while performing this task.
 4. Open the stack in this folder named 𝘥𝘰𝘤𝘬𝘦𝘳-𝘤𝘰𝘮𝘱𝘰𝘴𝘦.𝘺𝘮𝘭.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Start time *

Finish time *

114 User Study Materials

T3.1 -
Creating
a stack

Create a stack comprised of a 𝘄𝗲𝗯 𝗮𝗽𝗽 and a 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. The web app
outputs whether it has connected to the database or not. To check the connection
status, you can send a GET request to the root endpoint (/) at port 80.

In summary, the stack should include:

 ⚫ A 𝘄𝗲𝗯 𝗮𝗽𝗽 service (web - kubix20/webapp_postgres:latest - 80)
 ⚫ A 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲 (db - postgres:9.4 - 5432)

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘬𝘦y - 𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The web service accepts the following environment variables:

 ⚫ DB_USER (default value ""), to specify the user when connecting to the postgres
database.
 ⚫ DB_PASSWORD (default value ""), to specify the password when connecting to the
postgres database.

You must use the configuration files provided in the folder 𝘁𝟯.𝟭. More specifically:

 ⚫ /postgres contains an environment file named credentials with variables to set the
credentials in the 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. Note that you must set these variables by
referencing the file and 𝗻𝗼𝘁 by setting the individual environment variables within it.

The resulting stack should also consider the following:

 ⚫ Services should set the keys and images as specified above.
 ⚫ The web service should be exposed to the host on port 4000.
 ⚫ The web container should start 𝗮𝗳𝘁𝗲𝗿 the database container.
 ⚫ A named volume called db-data to persist the database data mounted at
/var/lib/postgresql/data.
 ⚫ A custom network named my-net to which both services should be attached.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

The task is successfully complete 𝗼𝗻𝗹𝘆 𝗶𝗳 the expected behavior is achieved 𝗮𝗻𝗱 all
other requirements satisfied.

21.

Exemplo: 08:30

22.

Exemplo: 08:30

Start time *

Finish time *

C.1 Control 115

T3.2 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the folder named 𝘁𝟯.𝟮 from the root directory. You must exclusively
access the contents of this folder while performing this task.
 4. Open the stack in this folder named 𝘥𝘰𝘤𝘬𝘦𝘳-𝘤𝘰𝘮𝘱𝘰𝘴𝘦.𝘺𝘮𝘭.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

T3.2 -
With
secrets

Alter the stack (as defined in T3.1) so that the database credentials are provided to the
𝘄𝗲𝗯 service through secrets instead of environment variables.

You must use the configuration files provided in the folder 𝘁𝟯.𝟮. More specifically:

 ⚫ /postgres/secrets contains two files (user and password) with matching credentials
to the ones in the credentials file (used in the db service). The content of these files
should be used as secrets, named db_user and db_password respectively.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

The task is successfully complete 𝗼𝗻𝗹𝘆 𝗶𝗳 the expected behavior is achieved 𝗮𝗻𝗱 all
other requirements satisfied.

𝗡𝗼𝘁𝗲: The results service expects the credentials as secrets 𝗼𝗿 environment variables.
This means that the app will work as expected if the environment variables are correctly
set, even if the secrets are not. Ensure that the environment variables are not set in the
𝘄𝗲𝗯 service to test the stack.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: Ensure that you (re)start the stack with the --force-recreate option since
docker-compose doesn't automatically detect changes to secret related properties to
recreate the appropriate containers.

23.

Exemplo: 08:30

24.

Exemplo: 08:30

Post-experiment
questionnaire

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 3 𝘮𝘪𝘯𝘴

You’ve completed all the tasks and have reached the last step of
the experiment.

Please answer the following questions in regards to your
experience.

Start time *

Finish time *

116 User Study Materials

25.

Marcar apenas uma oval por linha.

26.

End

Congratulations! You have completed the experiment.

Thank you for your participation!

Mark the answers that best reflect your opinions. *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

It was easy working in the
remote machine.

The environment was
distracting.

I found the procedure
instructions complex and
difficult to follow.

I found the task descriptions
complex and difficult to
follow.

Overall, I found the toolchain
difficult to use.

I found it difficult to
understand stacks with the
toolchain.

I found it easy to define
stacks with the toolchain.

It was easy working in the
remote machine.

The environment was
distracting.

I found the procedure
instructions complex and
difficult to follow.

I found the task descriptions
complex and difficult to
follow.

Overall, I found the toolchain
difficult to use.

I found it difficult to
understand stacks with the
toolchain.

I found it easy to define
stacks with the toolchain.

Any comments? (about your experience, the experiment process, ...)

C.1 Control 117

Este conteúdo não foi criado nem aprovado pela Google.

 Formulários

118 User Study Materials

Background
questionnaire

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 5 𝘮𝘪𝘯𝘴

Please answer the following questions about your current
experience.

1.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Stronly Agree

2.

Outra:

Marcar tudo o que for aplicável.

Node-RED

Blender Nodes

Unreal Engine Blueprints

Scratch

Simulink

Excel

3.

Marcar apenas uma oval.

Strongly Disagree

1 2 3 4 5

Stronly Agree

Empirical Study in So�ware Engineering
Welcome! Thank you for your availability to participate in this study. You will be asked to
perform a set of orchestration tasks using Docker and Docker Compose technologies. The
experiment should take between 50 minutes to 1 hour and 30 minutes in total.
*Obrigatório

I consider myself experienced with visual programming tools. *

What visual programming tools have you used in the past?

I consider myself experienced with orchestration frameworks. *

C.2 Experimental 119

C.2 Experimental

4.

Outra:

Marcar tudo o que for aplicável.

Ansible

Chef

Puppet

Salt

Kubernetes

5.

Marcar apenas uma oval por linha.

Until now, approximately in how many projects have you ...

6.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

What orchestration frameworks have you used in the past?

I consider myself experienced with...

Strongly
Disagree

Disagree Neutral Agree
Stronly
Agree

...the Linux operating system.

...Docker.

...Docker Compose for
development purposes.

...Docker Compose in
production environments.

...the Linux operating system.

...Docker.

...Docker Compose for
development purposes.

...Docker Compose in
production environments.

...worked on which have used Docker Compose? *

120 User Study Materials

7.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

8.

Marcar apenas uma oval.

0 1 2 3 4 5 6 7 8 9 10

>10

9.

Marcar tudo o que for aplicável.

...volumes

...networks

...configs

...secrets

10.

Outra:

Marcar tudo o que for aplicável.

Portainer

Kitematic

Admiral

Dockstation

... created/updated a docker-compose.yml file? *

... used docker-compose.yml files created by others (colleagues or third parties)?
*

In the docker-compose files I’ve written, I’ve configured…

What software have you used to manage Docker or Docker Compose
resources?

C.2 Experimental 121

General
instructions

𝗥𝗲𝗮𝗱 𝘁𝗵𝗲 𝗳𝗼𝗹𝗹𝗼𝘄𝗶𝗻𝗴 𝗶𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 𝘃𝗲𝗿𝘆 𝗰𝗮𝗿𝗲𝗳𝘂𝗹𝗹𝘆.

During the experiment you should use the following resources:

All the required material (code and other files) you will need can be accessed from
the root directory located at ~/𝘋𝘦𝘴𝘬𝘵𝘰𝘱/𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴. 𝗬𝗼𝘂 𝘀𝗵𝗼𝘂𝗹𝗱 𝗻𝗼𝘁 𝗮𝗰𝗰𝗲𝘀𝘀
𝗮𝗻𝘆 𝗼𝘁𝗵𝗲𝗿 𝗰𝗼𝗻𝘁𝗲𝗻𝘁 𝗯𝗲𝘀𝗶𝗱𝗲𝘀 𝘄𝗵𝗮𝘁 𝗶𝘀 𝗶𝗻𝗰𝗹𝘂𝗱𝗲𝗱 𝗶𝗻 𝘁𝗵𝗶𝘀 𝗱𝗶𝗿𝗲𝗰𝘁𝗼𝗿𝘆.
Moreover, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗼𝗻𝗹𝘆 𝗮𝗰𝗰𝗲𝘀𝘀 𝘁𝗵𝗲 𝗺𝗮𝘁𝗲𝗿𝗶𝗮𝗹𝘀 𝗶𝗻 𝘁𝗵𝗲 𝗿𝗼𝗼𝘁 𝗱𝗶𝗿𝗲𝗰𝘁𝗼𝗿𝘆
𝗼𝗻𝗰𝗲 𝗽𝗿𝗼𝗺𝗽𝘁𝗲𝗱 𝘁𝗼.

You will also have access to the following tools:

 ⚫ Firefox to access the internet.
 ⚫ The system’s default shell to execute necessary commands.
 ⚫ Your preferred editor (installed in the machine) to access the contents of the
root directory.
 ⚫ The 𝗗𝗼𝗰𝗸𝗲𝗿 𝗖𝗼𝗺𝗽𝗼𝘀𝗲𝗿 app to access, manipulate and manage Docker
Compose stacks.

You can find the executable for Docker Composer (named Docker-Composer-
1.0.0.AppImage) in the desktop. The app is already running but if for any reason
you have to (re)start it, double-click on the executable.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Tutorial on
Docker
Composer

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 10 𝘮𝘪𝘯𝘴

Start by following along this tutorial to familiarize yourself with the 𝗗𝗼𝗰𝗸𝗲𝗿
𝗖𝗼𝗺𝗽𝗼𝘀𝗲𝗿 tool. The overall purpose of Docker Composer is to provide a visual
alternative to edit and visualize stacks defined in Docker Compose. You can find an
in-depth guide detailing how to use the tool as well as other useful documentation in
the wiki available at:

⚫ https://github.com/Kubix20/docker-composer/wiki

Start by carefully reading the guide to learn the basics of the tool, paying close
attention to the introduction and "How to use" sections. You can always refer to the
wiki when in doubt.

The example in this tutorial defines a service stack, comprising a 𝘄𝗲𝗯 𝗮𝗽𝗽 and a
𝗿𝗲𝗱𝗶𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. The web app service just outputs whether it has successfully
connected to the database or not. To check the connection status, you can send a
GET request to the root (/) endpoint at port 80. Both services should execute locally
(i.e. 𝗻𝗼𝘁 Swarm) meaning that each service runs in a single container (i.e. two
containers in total).

In summary, the resulting stack should include:
 ⚫ A 𝘄𝗲𝗯 service (web - kubix20/webapp_redis:latest - 80).
 ⚫ A 𝗿𝗲𝗱𝗶𝘀 database (redis - redis:alpine - 6379).

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘬𝘦y - 𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The resulting stack should also consider the following:

 ⚫ Services must set the keys and images as specified above.
 ⚫ The web app container should start after the database container.
 ⚫ A volume named storage to persist the redis data.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

122 User Study Materials

11.

Marcar tudo o que for aplicável.

1. Open the Docker Composer tool (already running on the machine).

2. Add a new service by right clicking in the graph area and selecting ‘New service’ in
the context menu. This will be the 𝘄𝗲𝗯 service.

3. Set the key field to web and image to kubix20/webapp_redis either in the artifact or
in the properties editor.

4.Open the Docker Hub page for the image kubix20/webapp_redis by clicking on the
icon above the image input on the properties editor to learn more about the service.

5. Add a port entry in the properties editor mapping port 80 on the container to 4000
on the host.

6. Using the image palette search for the official redis image and drag it onto the graph
area. This will be the 𝗿𝗲𝗱𝗶𝘀 service.

7. Set the key to redis and image tag to alpine.

8. Add a depends_on dependency from the web service to the redis service by
dragging an arrow from the depends_on anchor point on the web service.

9. Add the environment variable in the properties editor REDIS_HOST=redis in the web
service.

10. Add a volume via the context menu and set the key to storage.

11. Connect the redis service to the volume through the corresponding volume anchor
point (green).

12. Select the connection and set the target to /data in properties editor. This is the
path where the volume will be mounted in container.

The stack should now look like this:

Follow along these next steps. Tick each step as you complete it.

C.2 Experimental 123

Next, it's time to test the stack.

12.

Marcar tudo o que for aplicável.

13. Click on the Start button in the toolbar to run the app.

14. Check the output in the terminal and verify that the message “Connected to DB” is
printed by the web container, indicating that the web service has successfully connected to
the database.

15. Make a GET request to localhost:4000 (using your preferred method, e.g. curl or
browser) and verify the response “Connected to db” is received.

16. Click on the Stop button to stop the running stack.

17. Export the stack and save it in the tutorial folder located in the root directory with
the name 𝘵𝘶𝘵𝘰𝘳𝘪𝘢𝘭.𝘺𝘮𝘭.

If you've ticked all the boxes, advance to the next section.

Tasks

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 30 𝘮𝘪𝘯𝘴

𝗥𝗲𝗮𝗱 𝘁𝗵𝗲 𝗳𝗼𝗹𝗹𝗼𝘄𝗶𝗻𝗴 𝗶𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 𝘃𝗲𝗿𝘆 𝗰𝗮𝗿𝗲𝗳𝘂𝗹𝗹𝘆.

You will be asked to perform a set of orchestration tasks with Docker Compose.

In the root directory, you will find folders containing the material for each task named t*,
where * is the task number (e.g. t1 for task 1). 𝗙𝗼𝗿 𝗲𝗮𝗰𝗵 𝘁𝗮𝘀𝗸, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗼𝗻𝗹𝘆 𝗮𝗰𝗰𝗲𝘀𝘀
𝘁𝗵𝗲 𝗰𝗼𝗻𝘁𝗲𝗻𝘁𝘀 𝗼𝗳 𝘁𝗵𝗲 𝗰𝗼𝗿𝗿𝗲𝘀𝗽𝗼𝗻𝗱𝗶𝗻𝗴 𝗳𝗼𝗹𝗱𝗲𝗿 𝘄𝗵𝗶𝗹𝗲 𝗽𝗲𝗿𝗳𝗼𝗿𝗺𝗶𝗻𝗴 𝘀𝗮𝗶𝗱 𝘁𝗮𝘀𝗸.
Moreover, 𝘆𝗼𝘂 𝗺𝘂𝘀𝘁 𝗲𝘅𝗲𝗰𝘂𝘁𝗲 𝘁𝗮𝘀𝗸𝘀 (𝗮𝗻𝗱 𝘀𝘂𝗯𝘁𝗮𝘀𝗸𝘀) 𝘀𝗲𝗾𝘂𝗲𝗻𝘁𝗶𝗮𝗹𝗹𝘆, meaning that
you cannot change your answers for previous tasks.

All tasks are preceded by a section labeled T* - Setup, where * is the task number (e.g. T1 -
Setup), containing instructions you must follow before advancing to the actual task. These
ensure that you abide by the guidelines described in this section.

When starting a task, carefully read the description once, in full. Once you’ve read the
description and before you start solving the task, register the current time on the input
labeled Start time. Likewise, once you finish the task register the current time on the input
labeled Finish time. You can find both inputs below the description of the task.

Some tasks require the creation/edition of a Docker Compose stack. Keep in mind that the
focus of the exercise is on the orchestration process and not in the development of the
components that are part of the stack. In this sense, the requirements must be satisfied
𝘀𝘁𝗿𝗶𝗰𝘁𝗹𝘆 𝘁𝗵𝗿𝗼𝘂𝗴𝗵 𝘁𝗵𝗲 𝗲𝗱𝗶𝘁𝗶𝗼𝗻 𝗼𝗳 𝘁𝗵𝗲 𝘀𝘁𝗮𝗰𝗸.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Follow along these next steps. Tick each step as you complete it.

124 User Study Materials

T1 -
Setup

Before proceeding, follow the next steps:

 1. Navigate to the folder named 𝘁𝟭 from the root directory. You must exclusively access
the contents of this folder while performing this task.
 2. Load the stack in this folder with Docker Composer by clicking on the 'Open' button
and selecting the folder t1.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

T1 -
Analyzing
a stack

In this task you will analyze a Docker Compose stack for a 𝘃𝗼𝘁𝗶𝗻𝗴 𝗮𝗽𝗽.

Begin by carefully examining the contents of the stack. You can also start the app and
access the services through their exposed ports to visualize it in action.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: You can learn more about each service in the corresponding image page
on Docker Hub.

When you’re ready, answer the following questions.

13.

Exemplo: 08:30

Exercise 1

14.

Marcar apenas uma oval por linha.

Start time *

Answer true or false to the following statements: *

True False

Some services use the default network.

The votes are stored in the redis service.

The named volume db-data is used to
provide configurations to the postgres
service at runtime.

The redis service always exposes port 6379
on the host.

The vote service uses a locally built image.

Some services use the default network.

The votes are stored in the redis service.

The named volume db-data is used to
provide configurations to the postgres
service at runtime.

The redis service always exposes port 6379
on the host.

The vote service uses a locally built image.

C.2 Experimental 125

Exercise 2

15.

16.

17.

18.

Exemplo: 08:30

T2 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the folder named 𝘁𝟮 from the root directory. You must exclusively access
the contents of this folder while performing this task.
 4. Load the stack in this folder with Docker Composer.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

What services depend on the redis service? (Answer in the format [services],
e.g. ser1, ser2,...) *

What ports are exposed to the host by which services? (Answer in the format:
service-[ports], e.g. container-123,124) *

What networks are used and what services are attached to each one? (Answer
in the format: network-[services], e.g. net1-ser1, ser2,...; net2-ser1) *

Finish time *

126 User Study Materials

T2 -
Fixing
a
stack

Consider the stack for a simple app to register and view TODO notes.

The stack architecture is as follows:
 ⚫ A mongoDB database to store the TODOs (mongo:4.2.0 - 27017)
 ⚫ A backend server to expose an API to… (kubix20/todoapp_server - 3000)
 ⚫ A client frontend for viewing and registering TODOs (kubix20/todoapp_client - 3000)

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The backend server looks for the mongoDB service running on the host 𝗺𝗼𝗻𝗴𝗼 and port
27017 without authentication required.

The frontend client proxies all API requests to the server service which is expected to be
running on the host 𝘀𝗲𝗿𝘃𝗲𝗿 and port 3000.

Unfortunately, the app isn’t currently working as expected as users are unable to register
new TODOs. Locate and fix the bugs so that the app behaves as expected.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: You must achieve the expected behaviour 𝘄𝗶𝘁𝗵𝗼𝘂𝘁 𝗮𝗱𝗱𝗶𝗻𝗴 𝗼𝗿
𝗿𝗲𝗺𝗼𝘃𝗶𝗻𝗴 𝗮𝗻𝘆 𝗼𝗳 𝘁𝗵𝗲 𝗲𝘅𝗶𝘀𝘁𝗶𝗻𝗴 𝗮𝗿𝘁𝗶𝗳𝗮𝗰𝘁𝘀 (services, networks and volumes).

𝗡𝗼𝘁𝗲: The issue is unrelated to the stdin_open property on the client. It must be set to
true for the client to execute properly.

𝗛𝗶𝗻𝘁: Run the stack to observe the faulty behavior.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: Once you have finished the task, export the stack and save it in the t2 folder
with the name docker-compose.yml.

19.

Exemplo: 08:30

20.

Exemplo: 08:30

T3.1 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the directory named 𝘁𝟯.𝟭 from the root directory. You must exclusively
access the contents of this folder while performing this task.
 4. Load the stack in this folder with Docker Composer. Once loaded, the graph area
should be empty.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

Start time *

Finish time *

C.2 Experimental 127

T3.1 -
Creating
a stack

Create a stack comprised of a 𝘄𝗲𝗯 𝗮𝗽𝗽 and a 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. The web app
outputs whether it has connected to the database or not. To check the connection
status, you can send a GET request to the root endpoint (/) at port 80.

In summary, the stack should include:

 ⚫ A 𝘄𝗲𝗯 𝗮𝗽𝗽 service (web - kubix20/webapp_postgres:latest - 80)
 ⚫ A 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲 (db - postgres:9.4 - 5432)

𝗡𝗼𝘁𝗲: The details specified above are in the format (𝘬𝘦y - 𝘪𝘮𝘢𝘨𝘦 - 𝘦𝘹𝘱𝘰𝘴𝘦𝘥 𝘱𝘰𝘳𝘵𝘴).

The web service accepts the following environment variables:

 ⚫ DB_USER (default value ""), to specify the user when connecting to the postgres
database.
 ⚫ DB_PASSWORD (default value ""), to specify the password when connecting to the
postgres database.

You must use the configuration files provided in the folder 𝘁𝟯.𝟭. More specifically:

 ⚫ /postgres contains an environment file named credentials with variables to set the
credentials in the 𝗽𝗼𝘀𝘁𝗴𝗿𝗲𝘀 𝗱𝗮𝘁𝗮𝗯𝗮𝘀𝗲. Note that you must set these variables by
referencing the file and 𝗻𝗼𝘁 by setting the individual environment variables within it.

The resulting stack should also consider the following:

 ⚫ Services should set the keys and images as specified above.
 ⚫ The web service should be exposed to the host on port 4000.
 ⚫ The web container should start 𝗮𝗳𝘁𝗲𝗿 the database container.
 ⚫ A named volume called db-data to persist the database data mounted at
/var/lib/postgresql/data.
 ⚫ A custom network named my-net to which both services should be attached.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

The task is successfully complete 𝗼𝗻𝗹𝘆 𝗶𝗳 the expected behavior is achieved 𝗮𝗻𝗱 all
other requirements satisfied.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: Once you have finished the task, export the stack and save it in the t3.1
folder with the name docker-compose.yml.

21.

Exemplo: 08:30

22.

Exemplo: 08:30

Start time *

Finish time *

128 User Study Materials

T3.2 -
Setup

Before proceeding, follow the next steps:

 1. Confirm that the stack is properly stopped.
 2. Close all resources from previously used folders.
 3. Navigate to the folder named 𝘁𝟯.𝟮 from the root directory. You must exclusively
access the contents of this folder while performing this task.
 4. Load the stack in this folder with Docker Composer.

𝗢𝗻𝗰𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗿𝗲𝗮𝗱𝘆 𝘁𝗼 𝘀𝘁𝗮𝗿𝘁, 𝗮𝗱𝘃𝗮𝗻𝗰𝗲 𝘁𝗼 𝘁𝗵𝗲 𝗻𝗲𝘅𝘁 𝘀𝗲𝗰𝘁𝗶𝗼𝗻.

T3.2 -
With
secrets

Alter the stack (as defined in T3.1) so that the database credentials are provided to the
𝘄𝗲𝗯 service through secrets instead of environment variables.

You must use the configuration files provided in the folder 𝘁𝟯.𝟮. More specifically:

 ⚫ /postgres/secrets contains two files (user and password) with matching credentials
to the ones in the credentials file (used in the db service). The content of these files
should be used as secrets, named db_user and db_password respectively.

𝗘𝘅𝗽𝗲𝗰𝘁𝗲𝗱 𝗯𝗲𝗵𝗮𝘃𝗶𝗼𝘂𝗿: The web app successfully connects to the database.

The task is successfully complete 𝗼𝗻𝗹𝘆 𝗶𝗳 the expected behavior is achieved 𝗮𝗻𝗱 all
other requirements satisfied.

𝗡𝗼𝘁𝗲: The results service expects the credentials as secrets 𝗼𝗿 environment variables.
This means that the app will work as expected if the environment variables are correctly
set, even if the secrets are not. Ensure that the environment variables are not set in the
𝘄𝗲𝗯 service to test the stack.

𝗜𝗺𝗽𝗼𝗿𝘁𝗮𝗻𝘁: Once you have finished the task, export the stack and save it in the t3.2
folder with the name docker-compose.yml.

23.

Exemplo: 08:30

24.

Exemplo: 08:30

Post-experiment
questionnaire

𝘌𝘴𝘵𝘪𝘮𝘢𝘵𝘦𝘥 𝘵𝘪𝘮𝘦: 8 𝘮𝘪𝘯𝘴

You’ve completed all the tasks and have reached the last step of
the experiment.

Please answer the following questions in regards to your
experience.

Start time *

Finish time *

C.2 Experimental 129

25.

Marcar apenas uma oval por linha.

Mark the answers that best reflect your opinions.

Mark the answers that best reflect your opinions. *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

It was easy working in the
remote machine.

The environment was
distracting.

I found the procedure
instructions complex and
difficult to follow.

I found the task descriptions
complex and difficult to
follow.

Overall, I found the tool easy
to learn.

Overall, I found the tool
difficult to use.

I found it difficult to
understand stacks with the
tool.

I found it easy to define
stacks with the tool.

It was easy working in the
remote machine.

The environment was
distracting.

I found the procedure
instructions complex and
difficult to follow.

I found the task descriptions
complex and difficult to
follow.

Overall, I found the tool easy
to learn.

Overall, I found the tool
difficult to use.

I found it difficult to
understand stacks with the
tool.

I found it easy to define
stacks with the tool.

130 User Study Materials

26.

Marcar apenas uma oval por linha.

27.

Marcar apenas uma oval por linha.

I find the visual map of artifacts.... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...helpful to understand
stacks with less effort.

...helpful to understand
stacks more quickly.

...helpful to define stacks with
less effort.

...helpful to define stacks
more quickly.

...helpful to understand
stacks with less effort.

...helpful to understand
stacks more quickly.

...helpful to define stacks with
less effort.

...helpful to define stacks
more quickly.

I find the integration with Docker Hub (image palette and links to the docs)... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...helpful to understand
stacks with less effort.

...helpful to understand
stacks more quickly.

...helpful to define stacks with
less effort.

...helpful to define stacks
more quickly.

...helpful to understand
stacks with less effort.

...helpful to understand
stacks more quickly.

...helpful to define stacks with
less effort.

...helpful to define stacks
more quickly.

C.2 Experimental 131

28.

Marcar apenas uma oval por linha.

29.

Marcar apenas uma oval por linha.

I find the visual feedback of running stacks (service and stack LEDs)... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...helpful to understand the
state of a stack with less
effort.

...helpful to understand the
state of a stacks more
quickly.

...helpful to understand the
state of a stack with less
effort.

...helpful to understand the
state of a stacks more
quickly.

I find executing commands in the UI (start and stop)... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...helpful to define stacks
with less effort.

...helpful to define stacks
more quickly.

...helpful to define stacks
with less effort.

...helpful to define stacks
more quickly.

132 User Study Materials

30.

Marcar apenas uma oval por linha.

In comparison to the conventional procedure (editing a docker-compose.yml
file and docker cli)... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...I believe this tool would
reduce the effort required to
define Docker Compose
stacks.

...overall, I found the tool
useful.

...a Docker Compose stack
visualized with the tool would
be more difficult to
understand.

...overall, I think this tool does
not provide an effective
solution to define Docker
Compose stacks.

...overall, I think this tool
makes an improvement to the
stack definition process.

...I believe this tool would
reduce the effort required to
define Docker Compose
stacks.

...overall, I found the tool
useful.

...a Docker Compose stack
visualized with the tool would
be more difficult to
understand.

...overall, I think this tool does
not provide an effective
solution to define Docker
Compose stacks.

...overall, I think this tool
makes an improvement to the
stack definition process.

C.2 Experimental 133

31.

Marcar apenas uma oval por linha.

32.

Mark the answers that best reflect your opinions *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

This tool would make it easier
for practitioners to define
Docker Compose stacks.

Using this tool would make it
easier to communicate the
stack architecture to other
practitioners.

I would recommend this tool
to work with Docker
Compose.

I would like to use this tool in
the future.

It would be easy for me to
become skillful in using this
tool to work with Docker
Compose.

This tool would make it easier
for practitioners to define
Docker Compose stacks.

Using this tool would make it
easier to communicate the
stack architecture to other
practitioners.

I would recommend this tool
to work with Docker
Compose.

I would like to use this tool in
the future.

It would be easy for me to
become skillful in using this
tool to work with Docker
Compose.

What do you think can be improved upon in the tool?

134 User Study Materials

33.

End

Congratulations! You have completed the experiment.

Thank you for your participation!

Este conteúdo não foi criado nem aprovado pela Google.

Any comments? (about your experience, the experiment process, the tool itself,
...)

 Formulários

C.2 Experimental 135

136 User Study Materials

References

[1] Babak Abbasov. Cloud computing: State of the art reseach issues. 8th IEEE International
Conference on Application of Information and Communication Technologies, AICT 2014 -
Conference Proceedings, 2014.

[2] Ademar Aguiar, André Restivo, Filipe F. Correia, Hugo Sereno Ferreira, and João Pedro
Dias. Software Development. Programming ’19: Proceedings of the Conference Companion
of the 3rd International Conference on Art, Science, and Engineering of Programming, pages
1–6, 2019.

[3] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in microservice
architecture. Proceedings - 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications, SOCA 2016, pages 44–51, 2016.

[4] Diogo Amaral, Gil Domingues, João Pedro Dias, Hugo Sereno Ferreira, Ademar Aguiar,
Rui Nóbrega, and Filipe Figueiredo Correia. Live software development environment using
virtual reality: A prototype and experiment. In Ernesto Damiani, George Spanoudakis, and
Leszek A. Maciaszek, editors, Evaluation of Novel Approaches to Software Engineering,
pages 83–107, Cham, 2020. Springer International Publishing.

[5] László Angyal, László Lengyel, and Hassan Charaf. A synchronizing technique for syntactic
model-code round-trip engineering. Proceedings - Fifteenth IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems, ECBS 2008, pages 463–472,
2008.

[6] Danilo Ardagna, Elisabetta Di Nitto, Parastoo Mohagheghi, Sébastien Mosser, Cyril Bal-
lagny, Francesco D’Andria, Giuliano Casale, Peter Matthews, Cosmin Septimiu Nechifor,
Dana Petcu, Anke Gericke, and Craig Sheridan. MODAClouds: A model-driven approach
for the design and execution of applications on multiple clouds. 2012 4th International
Workshop on Modeling in Software Engineering, MiSE 2012 - Proceedings, pages 50–56,
2012.

[7] Michael Armbrust, Anthony D Joseph, Randy H Katz, and David A Patterson. Above the
Clouds: A Berkeley View of Cloud Computing. Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, 28(13):25, 2009.

[8] V. L. Averbukh. Visualization metaphors. Programming and Computer Software, 27(5):227–
237, 2001.

[9] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti Kappel.
UML-based cloud application modeling with libraries, profiles, and templates. CEUR Work-
shop Proceedings, 1242(317859):56–65, 2014.

137

138 REFERENCES

[10] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, 1:81–84, 09 2014.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Object Technology Series), volume 10. Addison-
Wesley Professional, 05 2005.

[12] Marat Boshernitsan and Michael Downes. Visual Programming Languages: A Survey. Com-
puter Science Division (EECS), 2004.

[13] M Brambilla, Jordi Cabot, and M Wimmer. Model-driven Software Engineering in Practice.
Morgan & Claypool, 2012.

[14] Margaret Burnett. Visual programming. Wiley Encyclopedia of Electrical and Electronics
Engineering, 32(1-3):275–283, 1999.

[15] Margaret Burnett. Software Engineering for Visual Programming Languages. Handbook of
Software Engineering & Knowledge Engineering, Volume 2, 2:77–92, 2002.

[16] Margaret M. Burnett and Marla J. Baker. A Classification System for Visual Programming
Languages. Journal of Visual Languages & Computing, 5(3):287–300, 1994.

[17] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes Up & Running. O’Reilly
Media, Inc., 2019.

[18] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification and validation
of declarative model-to-model transformations through invariants. Journal of Systems and
Software, 83(2):283–302, 2010.

[19] Emiliano Casalicchio. Container Orchestration: A Survey. Systems Modeling: Methodolo-
gies and Tools, pages 221–235, 2019.

[20] Shi Kuo Chang. Visual Languages: A Tutorial and Survey. IEEE Software, 4(1):29–39,
1987.

[21] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and
James F. Terwilliger. Bidirectional transformations: A cross-discipline perspective. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 5563 LNCS:260–283, 2009.

[22] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-
proaches. Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Con-
text of the Model Driven Architecture, 45(3):1–17, 2003.

[23] J. P. Dias, J. P. Faria, and H. S. Ferreira. A reactive and model-based approach for devel-
oping internet-of-things systems. In 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), pages 276–281, 2018.

[24] Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution
of Software. Springer-Verlag Berlin Heidelberg, 2007.

[25] M H Ebell. Visual programming languages. M.D. computing : computers in medical prac-
tice, 10(5):305–311, 1993.

REFERENCES 139

[26] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. DevOps. IEEE
Software, 33(3):94–100, 2016.

[27] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym Lushpenko, and
Arnor Solberg. CloudMF: Model-driven management of multi-cloud applications. ACM
Transactions on Internet Technology, 18(2):1–24, 2018.

[28] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood. Transforma-
tion: The missing link of MDA. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2505:90–105,
2002.

[29] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke Nakano.
GRoundTram: An integrated framework for developing well-behaved bidirectional model
transformations. 2011 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2011, Proceedings, pages 480–483, 2011.

[30] Soichiro Hidaka, Kazuhiro Inaba, Zhenjiang Hu, Hiroyuki Kato, Kazutaka Matsuda, and
Keisuke Nakano. Bidirectionalizing graph transformations. ACM SIGPLAN Notices,
45(9):205–216, 2010.

[31] Daniel D. Hils. Visual languages and computing survey: Data flow visual programming
languages. Journal of Visual Languages and Computing, 3(1):69–101, 1992.

[32] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,
Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, page 295–308, USA, 2011. USENIX Asso-
ciation.

[33] Bernhard Hoisl, Zhenjiang Hu, and Soichiro Hidaka. Towards Bidirectional Higher-Order
Transformation for Model-Driven Co-evolution. Communications in Computer and Infor-
mation Science, page 15, 2015.

[34] Jezz Humble and David Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, 2010.

[35] Martin Höst, Björn Regnell, and Claes Wohlin. Using students as subjects—a comparative
study of students and professionals in lead-time impact assessment. Empirical Software
Engineering, 5:201–214, 11 2000.

[36] Susan Jamieson. Likert scales: How to (ab)use them. Medical Education, 38(12):1217–1218,
2004.

[37] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow pro-
gramming languages. ACM Computing Surveys, 36(1):1–34, 2004.

[38] Ann Mary Joy. Performance comparison between Linux containers and virtual machines.
Conference Proceeding - 2015 International Conference on Advances in Computer Engi-
neering and Applications, ICACEA 2015, pages 342–346, 2015.

[39] Nafiseh Kahani and James R Cordy. Comparison and Evaluation of Model Transformation
Tools. Software and Systems Modeling, 24(3):1–42, 2015.

140 REFERENCES

[40] Babu Kavitha and Perumal Varalakshmi. Performance Analysis of Virtual Machines and
Docker Containers. Communications in Computer and Information Science, 804:99–113,
2018.

[41] Asif Khan. Key Characteristics of a Container Orchestration Platform to Enable a Modern
Application. IEEE Cloud Computing, 4(5):42–48, 2017.

[42] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained; The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Professional, 2003.

[43] Pedro Lourenço, João Pedro Dias, Ademar Aguiar, and Hugo Sereno Ferreira. Cloudcity:
A live environment for the management of cloud infrastructures. ENASE 2019 - Proceed-
ings of the 14th International Conference on Evaluation of Novel Approaches to Software
Engineering, pages 27–36, 2019.

[44] Pedro Lourenço, João Pedro Dias, Ademar Aguiar, Hugo Sereno Ferreira, and André
Restivo. Experimenting with liveness in cloud infrastructure management. In Ernesto
Damiani, George Spanoudakis, and Leszek A. Maciaszek, editors, Evaluation of Novel Ap-
proaches to Software Engineering, pages 58–82, Cham, 2020. Springer International Pub-
lishing.

[45] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. The
scratch programming language and environment. ACM Transactions on Computing Educa-
tion, 10(4):1–15, 2010.

[46] Russ McKendrick and Scott Gallagher. Mastering Docker - Second Edition. Packt Publish-
ing, 2017.

[47] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science, 152(1-2):125–142, 2006.

[48] Dirk Merkel. Docker: lightweight Linux containers for consistent development and deploy-
ment. Linux Journal, 2014(239):2, 2014.

[49] J. Paul Morrison. Flow-Based Programming, 2nd Edition: A New Approach to Application
Development. CreateSpace, Scotts Valley, CA, 2010.

[50] Brad A. Myers. Taxonomies of visual programming and program visualization. Journal of
Visual Languages and Computing, 1(1):97–123, 1990.

[51] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud Container Tech-
nologies: a State-of-the-Art Review. IEEE Transactions on Cloud Computing, 7161(c):1–14,
2017.

[52] Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, and Philippe Merle. Model-driven
management of docker containers. IEEE International Conference on Cloud Computing,
CLOUD, pages 718–725, 2017.

[53] Akond Rahman, North Carolina, Chris Parnin, North Carolina, Laurie Williams, and North
Carolina. Gang of Eight : A Defect Taxonomy for Infrastructure as Code Scripts. Accepted
submission for the International Conference on Software Engineering (ICSE) 2020.

REFERENCES 141

[54] Akond Rahman, Rezvan Mahdavi-hezaveh, and Laurie Williams. A systematic mapping
study of infrastructure as code research. Information and Software Technology, 108, 12
2018.

[55] Alessandro Rossini. Cloud application modelling and execution language (CAMEL) and the
PaaSage workflow. Communications in Computer and Information Science, 567:437–439,
2016.

[56] Julio Sandobalin, Emilio Insfran, and Silvia Abrahao. ARGON: A Tool for Modeling Cloud
Resources. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 10797 LNCS(November):393–397,
2018.

[57] Julio Sandobalin, Emilio Insfran, and Silvia Abrahao. On the Effectiveness of Tools to
Support Infrastructure as Code : Model-Driven versus Code-Centric. IEEE Access, 8, 2020.

[58] Nan C. Shu. Visual Programming Languages: A Perspective and a Dimensional Analysis.
Visual Languages, pages 11–34, 1986.

[59] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for soft-
ware orchestration on the cloud. In Proceedings of the 22nd Conference on Pattern Lan-
guages of Programs, PLoP ’15, USA, 2015. The Hillside Group.

[60] Joel Spolsky. The Law of Leaky Abstractions. Joel on Software, pages 197–202, 2004.

[61] Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 4735 LNCS:1–15, 2007.

[62] Steven Tanimoto. A perspective on the evolution of live programming. International Con-
ference on Software Engineering, 41(10):31–34, 2013.

[63] James Turnbull. The Docker Book. James Turnbull, 2016.

[64] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, and Cao Jian. CloudMap: A
Visual Notation for Representing and Managing Cloud Resources. 28th International Con-
ference, CAiSE 2016, pages 427–443, 2016.

[65] Marvin Zelkowitz and Dolores Wallace. Experimental models for validating technology.
Computer, 31:23 – 31, 06 1998.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation
	1.4 Main Goals
	1.5 Contributions
	1.6 Dissertation Structure

	2 Background
	2.1 Cloud Computing and Infrastructure
	2.2 Virtualization and Containerization
	2.3 Software and Program Visualization
	2.4 Visual Programming Languages
	2.4.1 Key Concepts
	2.4.2 Categories

	2.5 Model-driven Software Engineering

	3 State of the Art
	3.1 Model-driven Software Engineering
	3.1.1 MDSE Transformations
	3.1.2 Model-driven Cloud Infrastructure
	3.1.3 Discussion

	3.2 Visual Approaches in Operations
	3.2.1 Monitoring
	3.2.2 Services
	3.2.3 Infrastructure
	3.2.4 Discussion

	4 Preliminary Work
	4.1 Motivation
	4.2 Specific Goal
	4.3 Research Questions
	4.4 Methodology
	4.5 Data Collection
	4.6 Data Analysis Methods
	4.7 Data Analysis
	4.7.1 Personal Context
	4.7.2 Working with Docker Technologies

	4.8 Conclusions

	5 Problem Statement
	5.1 Current Issues
	5.2 Research Statement
	5.3 Target Audience
	5.4 Solution Perspective
	5.5 Methodology

	6 Solution Prototype
	6.1 Overview
	6.2 Architecture
	6.3 Technological Decisions
	6.4 Feature Design
	6.4.1 Visual Map
	6.4.2 Static Validation
	6.4.3 Supported Versions
	6.4.4 File Management and Serialization
	6.4.5 Executing Commands from the UI
	6.4.6 Visual Feedback
	6.4.7 Docker Hub Integration

	6.5 Practical Example
	6.6 Availability
	6.7 Discussion

	7 Empirical Study
	7.1 Goals
	7.2 Design
	7.2.1 Participants
	7.2.2 Data Sources
	7.2.3 Environment
	7.2.4 Task Definition
	7.2.5 Procedure
	7.2.6 Data Collection
	7.2.7 Data Analysis
	7.2.8 Pilot Experiments
	7.2.9 Replication

	7.3 Data Analysis
	7.3.1 Background
	7.3.2 Task Performance
	7.3.3 Assessment Questionnaire

	7.4 Validation Threats
	7.5 Summary

	8 Conclusions and Future Work
	8.1 Hypothesis Revisited and Contributions
	8.2 Future Work

	A Tools Listing
	B Preliminary Work Questionnaire
	C User Study Materials
	C.1 Control
	C.2 Experimental

	References

