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Panov’s theorem for weak Hopf algebras

Christian Lomp, Alveri Sant’Ana, and Ricardo Leite dos Santos

Abstract. Panov proved necessary and sufficient conditions to extend the Hopf algebra struc-

ture of an algebra R to an Ore extension R[x;σ, δ] with x being a skew-primitive element. In this

paper we extend Panov’s result to Ore extensions over weak Hopf algebras. As an application
we study Ore extensions of connected groupoid algebras.

1. Introduction

In [9], Panov found necessary and sufficient conditions for an Ore extension H = R[x;σ, δ]
over a Hopf algebra R, to have a structure of a Hopf algebra which extends the Hopf algebra
structure of R and such that x is a skew-primitive element, i.e. ∆(x) = g ⊗ x + x ⊗ h, for some
g, h ∈ R. Later in [4], Brown et al. extended Panov’s result by allowing x to be more general. In
this paper we extend Panov’s characterisation to Ore extensions of weak Hopf algebras, where by
weak Hopf algebras we mean a generalisation of Hopf algebras in the sense of Böhm et al. [1] see
also [5,8]. A weak Hopf algebra R is a (unital, associative) algebra and a (counital, coassociative)
coalgebra, with counit ε and comultiplication ∆, satisfying certain conditions. The difficulty for
Panov’s characterisation to carry over to weak Hopf algebras lies in the fact that the counit ε of a
weak Hopf algebra R is not multiplicative and that the comultiplication ∆ does not map 1 to 1⊗1.
Indeed it is well-known that a weak Hopf algebra is a Hopf algebra if and only if ∆(1) = 1 ⊗ 1
if and only if ε is an algebra map (see [1, page 391]). Hence if R is a weak Hopf algebra over
a field k and x is a primitive element (in the usual sense), i.e. ∆(x) = 1 ⊗ x + x ⊗ 1, then the
coassociativity implies

∆(1)⊗ x+ 1⊗ x⊗ 1 + x⊗ 1⊗ 1 = 1⊗ 1⊗ x+ 1⊗ x⊗ 1 + x⊗∆(x)

If x and 1 are linearly independent, then comparing the tensorands on both sides implies ∆(1) =
1 ⊗ 1, which shows that R is a Hopf algebra. Note that the counity implies ε(x) = 0. Hence
x and 1 are only linearly dependent if x = 0. Thus we will not be able of extending Panov’s
characterisation with the ordinary definition of a primitive element.

Recall that if R is a Hopf algebra, then R∗ is an algebra with the convolution product and R
is an R∗-bimodule with the left and right action given by f · a := a1f(a2) and a · f := f(a1)a2 for
any a ∈ R and f ∈ R∗. Let X(R) denote the set of characters of R, i.e. the set of χ ∈ R∗ that
are algebra maps. Following [3, I.9.25], the left (resp. right) winding automorphisms of R are the
automorphisms τ lχ (resp. τ rχ) given by τ lχ(a) = a ·χ = χ(a1)a2 (resp. τ rχ(a) = χ · a = a1χ(a2)), for
a ∈ R.

In [9, Theorem 1.3], Panov showed that an Ore extension H = R[x;σ, δ] of a Hopf algebra R
carries also a Hopf algebra structure which extends the one of R and such that x is skew-primitive
with ∆(x) = g⊗x+x⊗ 1 for some group-like element g ∈ R if and only if there exists a character
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χ : R→ k such that σ = τ rχ = Adgτ
l
χ and ∆(δ(a)) = ga1 ⊗ δ(a2) + δ(a1)⊗ a2 for all a ∈ R. Here

Adg is the conjugation by g, i.e. Adg(a) = gag−1 for all a ∈ R.
Note that while any element g in a Hopf algebra H that satisfy ∆(g) = g ⊗ g is a group-

like element, and hence invertible, the identity maps ex, for an object x of a groupoid G, satisfy
∆(ex) = ex ⊗ ex, but are not invertible elements in the groupoid algebra k[G] unless G has only
one object and hence k[G] is actually a group algebra and therefore a ordinary Hopf algebra. This
means that additional care has to be taken in defining group-like and skew-primitive elements for
weak Hopf algebras.

The paper is organised as follows. In Sections 2 and 3 we develop the necessary machinery
that will be used throughout the work. In section 4 we present our main results, Theorems 4.2
and 4.4. In the first one we show necessary and sufficient conditions to extend the structure of
a weak bialgebra to an Ore extension of it and in the latter we treat the same problem in the
case of a weak Hopf algebras. In both results we needed to assume certain additional hypotheses
that are trivially satisfied in the case of ordinary Hopf algebras, thus obtaining a generalisation
of Panov’s result announced above for the context of weak Hopf algebras. In the last section we
apply our results to the study of Ore extensions of connected groupoid algebras. Throughout the
text, k will denote a field and tensor products are taken over k. Automorphisms and derivations
of k-algebras are assumed to be k-linear.

2. Group-like elements in and characters of weak bialgebras

We start this section recalling the concepts of weak bialgebras and weak Hopf algebras. For
more details and properties of these structures we refer [1,8].

Definition 2.1. A weak bialgebra is a k-vector space R with the structures of an associative
unital algebra and a coassociative counital coalgebra with comultiplication ∆ and counit ε such
that:

(i) The comultiplication ∆ is a multiplicative k-linear map such that

(∆⊗ id)(∆(1)) = (∆(1)⊗ 1)(1⊗∆(1)) = (1⊗∆(1))(∆(1)⊗ 1);

(ii) The counit ε is a k-linear map which is weak multiplicative in the sense of

ε(abc) = ε(ab1)ε(b2c) = ε(ab2)ε(b1c), for all a, b, c ∈ R.
We recall the linear endomorphisms εt, εs, ε

′
t and ε′s on a weak bialgebra R:

εt(a) = ε(11a)12, εs(a) = ε(a12)11, ε′t(a) = ε(a11)12, ε′s(a) = ε(12a)11,

for all a ∈ R, where we are using the Sweedler notation without summation symbol ∆(a) = a1⊗a2,
for any a ∈ R. Moreover, any weak bialgebra R has the two subalgebras

Rs := Im(εs) = {a ∈ R | ∆(a) = 11 ⊗ a12}, Rt := Im(εt) = {a ∈ R | ∆(a) = 11a⊗ 12},
which are separable algebras over the base field k (see [5, 36.6, 36.8]).

Definition 2.2. A weak Hopf algebra is a weak bialgebra R with multiplication µ and comul-
tiplication ∆, such that there exists a linear map S : R→ R, named antipode, that satisfies

εt = µ(id⊗ S)∆, εs = µ(S ⊗ id)∆ and S(a1)a2S(a3) = S(a), for all a ∈ R.
Thus, if R is a weak Hopf algebra with antipode S, then εt(a) = a1S(a2) and εs(a) = S(a1)a2

holds for every a ∈ R. Moreover, using the weak counity property 2.1(ii) one easily deduces for
any a, b ∈ R:

(1) ε(ab) = ε(aεt(b)) = ε(aε′s(b)) = ε(ε′t(a)b) = ε(εs(a)b)

Hence if εt(b) = 1, then ε(ab) = ε(a) and if εs(a) = 1 then ε(ab) = ε(b). Using equation (1) and
induction one proves:

Lemma 2.3. Let R be a weak bialgebra and g ∈ R. Then:

(i) εt(g) = 1 if and only if ε(agn) = ε(a), for any a ∈ R and n ≥ 0;
(ii) εs(g) = 1 if and only if ε(gna) = ε(a), for any a ∈ Rand n ≥ 0.

The same is true if we change εt by ε′s in (i) and εs by ε′t in (ii) of Lemma above.
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2.1. Weak group-like Elements. As mentioned before, any element g in a Hopf algebra
H that satisfy ∆(g) = g ⊗ g is a group-like element, and hence invertible. However this might
not be anymore the case for weak Hopf algebras and therefore additional care has to be taken in
defining group-like elements for weak Hopf algebras.

Definition 2.4 (cf. [7, Definiton 4.1]). An element g of a weak bialgebra is called weak group-
like if ∆(g) = ∆(1)(g ⊗ g) and ∆(g) = (g ⊗ g)∆(1) hold. A group-like element is an invertible
weak group-like element.

If R is a weak bialgebra, then we denote the set of weak group-like elements of R by Gw(R).
Thus, G(R) := Gw(R)∩U(R), is the set of group-like elements of R, where U(R) denotes the unit
group of R. Note that 1 is always a group-like element in any weak bialgebra. Furthermore it is
easy to check that Gw(R) is a monoid with the multiplication of R and that G(R) is a subgroup
of U(R).

Example 2.5. Let G = (G0,G1) be a groupoid with |G0| finite. Let R = kG1 be its groupoid
algebra, which is a weak Hopf algebra. Then any element g ∈ G1 satisfies ∆(g) = g ⊗ g and as
∆(g) = ∆(1)∆(g) = ∆(g)∆(1), g is a weak group-like element. A particular groupoid algebra is
R = Mn(k), the n× n matrix ring over a field k. Here |G0| = n and for any i, j ∈ G0 there exist
exactly one morphism Eij from i to j. Clearly Eii are the identity maps and it is easy to check
that EijEst = δj,sEit satisfies the ordinary multiplication rule of the elementary units of the n×n
matrix ring Mn(k). Thus we can identify R = kG1 with Mn(k) such that

∆(Eij) = Eij ⊗ Eij , ε(Eij) = 1, and S(Eij) = Eji.

In particular, the monoid Gw(R) of weak group-like elements of R = Mn(k) is given by

Gw(Mn(k)) =

{∑
i∈I

Eiσ(i) | I ⊆ {1, . . . , n}, σ : I → {1, . . . , n} injective

}
.

The group-like elements are precisely the permutation matrices, i.e. the elements of the form
gσ =

∑n
i=1Eiσ(i) for some σ ∈ Sn. The assignment σ 7→ gσ is an isomorphism of groups between

the symmetric group Sn and G(Mn(k)).
To see the above equality, we take γ =

∑n
i,j=1 λijEij ∈ Gw(R). Since ∆(γ) = ∆(1)(γ ⊗ γ) we

have that
∑n
i,j=1 λijEij ⊗ Eij =

∑n
i,j,t=1 λijλitEij ⊗ Eit. Consequently, we obtain λ2ij = λij and

λijλit = 0 whenever t 6= j, for all 1 ≤ i, j, t ≤ n, and it follows that λij ∈ {0, 1}. Moreover, if
λij 6= 0 then λit = 0, for all t 6= j. Set I = {i ∈ {1, . . . , n} : ∃j : λij = 1}. Then we can define a
map σ : I → {1, . . . , n} by σ(i) = j if and only if λij = 1 and it follows that γ =

∑
i∈I Eiσ(i). The

reverse inclusion is clear.

Using the counity properties we have the following easy Lemma:

Lemma 2.6. Let g be a weak group-like element in a weak bialgebra R. Then g = εt(g)g =
gεs(g). If R is a weak Hopf algebra then εt(g) = gS(g) and εs(g) = S(g)g are idempotents.

It follows from the last lemma that for any weak group-like element g that has a right inverse
εt(g) = ε′s(g) = 1 holds, while εs(g) = ε′t(g) = 1 holds if g has a left inverse. Consequently, if R
is a weak Hopf algebra, then S(g) is a right inverse of a weak group-like element g if and only if
εt(g) = 1 as well as S(g) is a left inverse of g if and only if εs(g) = 1. The example of the matrix
units of R = Mn(k) shows that in general εt(g) might be different from 1 for a weak group-like
element g.

2.2. Weak Characters. A character χ of a Hopf algebra R is a (unital) algebra homomor-
phism χ : R → k. In particular, characters are group-like elements of the finite dual R◦ of a
Hopf algebra. One particular example of a character of a Hopf algebra is its counit ε ∈ R∗. In
the case of a weak bialgebra, the counit is not an algebra homomorphism as it is neither unital
nor multiplicative. However the notion of a left (respectively right) winding map τ lχ (resp τ rχ) as
mentioned in the introduction (see also [3, I.9.25]) makes sense for weak bialgebra.
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Definition 2.7. A weak right character of a weak bialgebra R is a linear map χ : R → k
such that τ rχ is a unital algebra homomorphisms. We denote the set of all weak right characters
by Xr

w(R).

Lemma 2.8. Let R be a weak bialgebra. Then Xr
w(R) is a submonoid of the multiplicative

monoid R∗. Moreover, for any χ ∈ Xr
w(R):

(1) τ rχ(a) = a for any a ∈ Rt and χ ∈ Xr
w(R).

(2) If χ is invertible in R∗ with inverse χ′, then τ rχ is an automorphism of R and χ′ ∈ Xr
w(R).

(3) If τ rχ is an automorphism of R, then χ has a left inverse χ′ in R∗.

Proof. Since R is a coalgebra, τ rε = id, i.e. ε ∈ Xr
w(R). Let χ and χ′ be any elements of R∗.

For any a ∈ R we have

(2) τ rχ∗χ′(a) = a1χ ∗ χ′(a2) = a1χ(a2)χ′(a3) = τ rχ(a1χ
′(a2)) = τ rχ

(
τ rχ′(a)

)
.

Hence if χ and χ′ are in Xr
w(R), then τ rχ∗χ′ = τ rχ ◦ τ rχ′ is a unital algebra map.

(1) Let a ∈ Rt. Then ∆(a) = 11a⊗ 12 (see [5, 36.6]). Hence τ rχ(a) = 11aχ(12) = τ rχ(1)a = a,
since τ rχ is unital.

(2) This follows from equation (2), because if χ′ is a (two-sided) inverse of χ in R∗, then

τ rχ ◦ τ rχ′ = τ rχ∗χ′ = τε = id = τε = τ rχ′∗χ = τ rχ′ ◦ τ rχ.
Hence, τ rχ′ is the inverse function of the algebra map τ rχ and therefore itself an algebra map, i.e.

χ′ ∈ Xr
w(R).

(3) If τ rχ is an automorphism with inverse σ, then χ′ = εσ satisfaz

χ′ ∗ χ(a) = χ′(a1)χ(a2) = εσ(τ rχ(a)) = ε(a), ∀a ∈ R.
Hence χ′ is a left inverse of χ in R∗. �

Analogously to the definition of a weak right character, we can define a weak left character as
an element χ ∈ R∗ such that τ lχ is a unital algebra homomorphism. The set of such elements shall

be denoted by X l
w(R). It is clear that left and right characters are the same if R is cocommutative.

With an analogous proof as in the last lemma we have

Lemma 2.9. Let R be a weak bialgebra. Then X l
w(R) is a submonoid of the multiplicative

monoid R∗. Moreover, for any χ ∈ X l
w(R):

(1) τ lχ(a) = a for any a ∈ Rs and χ ∈ X l
w(R).

(2) If χ is invertible in R∗ with inverse χ′, then τ lχ is an automorphism of R and χ′ ∈ X l
w(R).

(3) If τ lχ is an automorphism of R, then χ has a right inverse χ′ in R∗.

Furthermore, we set Xw(R) = X l
w(R) ∩ Xr

w(R), whose elements are called weak characters
and X(R) = U(R∗) ∩Xw(R), whose elements are called characters.

Example 2.10. Let R = Mn(k) be the weak Hopf algebra from Example 2.5 and take χ ∈
Xw(R). As R is cocommutative, σ := τ lχ = τ rχ is a unital algebra homomorphism. For each i, j
there are elements λij := χ(Eij). In particular, σ(Eij) = λijEij and hence

∑
iEii = 1 = σ(1) =∑

k λiiEii, i.e. λii = 1 for all i. Moreover,

λilλljEij = σ(Eil)σ(Elj) = σ(EilElj) = σ(Eij) = λijEij .

Thus λij = λilλlj for all i, j, l. The case j = i shows that 1 = λii = λilλli, i.e. λil = λ−1li , for

any i, l. Thus λij = λilλlj = λ−1li λlj, which holds for any l. Fixing l = 1 one can show that
λ12, . . . , λ1n uniquely determine all such elements λij and hence the algebra map σ. Conversely, it
is clear that for any q1 = 1, q2, . . . , qn ∈ U(k) =: k× one can define a weak character χ by setting
χ(Eij) := q−1i qj. Note that any such weak character is actually invertible. Hence we have shown
that Xw(R) = X(R) ' (k×)n−1 as groups. Furthermore, if n > 1, then the characters χ defined
like this are not multiplicative, since χ(E11E22) = 0, while χ(E11)χ(E22) = 1.

The following Proposition is important for Panov’s theorem.

Proposition 2.11. Let R be a weak bialgebra and σ : R→ R a unital algebra homomorphism.
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(1) σ = τ rχ for some χ ∈ Xr
w(R) if and only if ∆σ = (id⊗ σ)∆.

(2) σ = τ lχ for some χ ∈ X l
w(R) if and only if ∆σ = (σ ⊗ id)∆.

In both cases χ = εσ.

Proof. (1) Let σ = τ rχ for some χ ∈ Xr
w(R). Then for any a ∈ R:

∆σ(a) = ∆(a1)χ(a2) = a1 ⊗ a2χ(a3) = a1 ⊗ τ rχ(a2) = (id⊗ σ)∆(a).

On the other hand if σ satisfies ∆σ = (id ⊗ σ)∆, then applying id ⊗ ε and setting χ = εσ ∈ R∗
yields for all a ∈ R:

σ(a) = (id⊗ ε)∆(σ(a)) = (id⊗ χ)∆(a) = a1χ(a2) = τ rχ(a).

The proof of (2) is similar to (1). �

Corollary 2.12. Let R be a weak Hopf algebra with antipode S, then for any χ ∈ Xw(R):

(i) S ∗ τ rχ = εsτ
r
χ and τ lχ ∗ S = εtτ

l
χ;

(ii) If χS is the inverse of χ in R∗ then S = τ lχSτ
r
χ = τ rχSτ

l
χ.

Proof. (i) For any a ∈ R: S ∗ τ rχ(a) = S(a1)a2χ(a3) = εs(a1χ(a2)) = εs(τ
r
χ(a)). Similarly

τ lχ(a) ∗ S = χ(a1)a2S(a3) = εt(χ(a1)a2) = εt(τ
l
χ(a)).

(ii) Suppose that χS is the inverse of χ. We calculate

τ lχ(S(τ rχ(a))) = S(a1)χ(S(a2))χ(a3) = S(a1)(χS ∗ χ)(a2) = S(a),

for any a ∈ R. Similarly τ rχ(S(τ lχ(a))) = χ(a1)χ(S(a2))S(a3) = (χ ∗ χS)(a1)S(a2) = S(a).
�

2.3. Tensor Products. The tensor product of two weak bialgebras (resp. weak Hopf al-
gebras) is again a weak bialgebra (resp. weak Hopf algebra). More precisely if A and B are
weak bialgebras with coalgebra structures (A,∆A, εA) and (B,∆B , εB), then the algebra A ⊗ B
has the coalgebra structure ∆(a ⊗ b) = flip(∆A ⊗∆B)(a ⊗ b) = (a1 ⊗ b1) ⊗ (a2 ⊗ b2) and counit
ε(a ⊗ b) = εA(a)εB(b). If A and B have antipodes SA and SB , respectively, then S(a ⊗ b) =
SA(a) ⊗ SB(b) defines an antipode on A ⊗ B. In particular Gw(A ⊗ B) = Gw(A) ⊗ Gw(B) and
Xw(A⊗ B) = Xw(A)⊗Xw(B) ⊆ A∗ ⊗ B∗, where for χ ∈ Xw(A) and χ′ ∈ Xw(B) one naturally
means by χ′′ = χ⊗ χ′ the map that sends a⊗ b to χ(a)χ′(b).

Note that for any Hopf algebra H, the matrix ring Mn(H) = Mn(k) ⊗ H is a weak Hopf
algebra that is a Hopf algebra if and only if n = 1.

Going back to the example of a groupoid algebra R = kG, Example 2.5, we note that any
groupoid can be decomposed in its connected component, i.e. the partition of the vertices G0
such that between two different parts there does not exist any morphism. Then R decomposes
into a direct product of groupoid algebras of its connected components. Furthermore if G is
connected and e1 is any vertex in G0, then G = Aut(e1), the set of automorphisms of e1 is a
group. Suppose that G is connected and that G0 = {e1, . . . , en} is the set of vertices. For any
i > 1 fix a morphism αi from e1 to ei. Then any morphism β from ei to ej is of the form

β = α−1i gαj , where g = αiβα
−1
j ∈ G (where we write the composition of maps from left to right,

as in the case of going along the arrows in a diagram). Hence the map β 7→ gEij defines an algebra
automorphism from the groupoid algebra kG to the matrix ring Mn(kG) over the group algebra
kG. Hence we will identify R with Mn(kG) and as such R = Mn(k) ⊗ kG is a tensor product of
the Hopf algebra kG and the weak Hopf algebra Mn(k). In particular given any group character
ρ : G → k× and elements q1 = 1, q2, . . . , qn ∈ k× (see Example 2.10) we have a character χ of R
defined by χ(gEij) = q−1i qjρ(g).

3. Skew-primitive elements in and skew-coderivations of weak bialgebras

3.1. Skew-primitive elements. A weak Hopf algebra that contains a primitive element
in the usual sense must be a Hopf algebra, as mentioned in the introduction. We propose the
following definition.
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Definition 3.1. Let H be a weak bialgebra and g, h ∈ H two weak group-like elements. An
element x ∈ H is called (g, h)-primitive if ∆(x) = ∆(1)(g⊗x+x⊗h) and ∆(x) = (g⊗x+x⊗h)∆(1).
An element is called skew-primitive if it is (g, h)-primitive for some weak group-like elements g, h.

Remark 3.2. Let R ⊆ H be an extension of weak Hopf algebras, x ∈ H and g, h ∈ R such
that ∆(1)(g ⊗ x + x ⊗ h) = ∆(x) = (g ⊗ x + x ⊗ h)∆(1). Suppose R ∩ Rx = 0 = R ∩ xR. The
coassociativity of ∆ applied to the first equality shows that

∆2(1)(g⊗ g⊗x+ g⊗x⊗h+x⊗∆(h)) = (∆⊗ id)∆(x) = ∆2(1)(∆(g)⊗x+ g⊗x⊗h+x⊗h⊗h).

Hence comparing the coefficient of 1 ⊗ 1 ⊗ x in both expressions leads to ∆2(1)(g ⊗ g ⊗ 1) =
∆2(1)(∆(g) ⊗ 1). Applying id ⊗ ε yields ∆(1)(g ⊗ g) = ∆(g). Analogously, using the second
equality, one concludes ∆(g) = (g ⊗ g)∆(1) which shows that g needs to be a weak group-like
element. The same is true for h, i.e. x is (g, h)-primitive.

Lemma 3.3. Let R be a weak bialgebra and x a (g, h)-primitive element. Then

x = εt(g)x+ εt(x)h = gεs(x) + xεs(h).

Proof. This follows from the counity condition and the comultiplication of x. �

Remark 3.4. As a consequence from the last lemma one concludes that εt(x) = 0 if εt(g) = 1
and h is left Rt-torsion free, while εs(x) = 0 if εs(h) = 1 and g is right Rs-torsion free.

Moreover if R ⊆ H is an extension of weak bialgebras such that x ∈ H, g, h ∈ R and
R ∩ Rx = R ∩ xR = 0, then x = εt(g)x = xεs(h) and εt(x)h = gεs(x) = 0. Thus if x is left
Rt-torsion free, εt(g) = 1, which would imply that g has a right inverse in case R is a weak Hopf
algebra, by Lemma 2.6. Similarly if x is right Rs-torsion free, then εs(h) = 1, which would imply
that h has a left inverse in case of R being a weak Hopf algebra.

Example 3.5. Let H be a Hopf algebra and consider the weak Hopf algebra R = Mn(H) for
some n > 0. The coalgebra structure of R is given by (cf. Subsection 2.3)

∆(hEij) = ∆(h)(Eij ⊗ Eij), ε(hEij) = ε(h), S(hEij) = S(h)Eji,∀h ∈ H,∀i, j

Let x ∈ H be a primitive element. Then xEij is a (Eij , Eij)-primitive element of R since
∆(xEij) = Eij ⊗ xEij + xEij ⊗ Eij . Note that if n > 1, then neither is Eij invertible, i.e.
εt(Eij) 6= 1, nor is Eij a left Rt-torsion-free element. However ε(xEij) = 0.

3.2. Coderivations. A derivation δ that satisfies Panov’s condition is called a coderivation.
We briefly discuss basic properties of such maps. Given a coalgebra C, a coderivation on C is a
map δ : C → C such that ∆δ = (id⊗ δ + δ ⊗ id)∆ holds (see [6, p.44]). For any χ ∈ C∗ the map
δ := (id⊗ χ− χ⊗ id)∆ is a coderivation, since

∆δ(a) = ∆(a1χ(a2)− χ(a1)a2)

= a1 ⊗ a2χ(a3)− χ(a1)a2 ⊗ a3
= a1 ⊗ a2χ(a3)− a1 ⊗ χ(a2)a3 + a1χ(a2)⊗ a3 − χ(a1)a2 ⊗ a3
= a1 ⊗ δ(a2) + δ(a1)⊗ a2 = (id⊗ δ + δ ⊗ id)∆(a).

Any such coderivation is called inner. It follows from [6, Theorem 3] that any coderivation of a
coseparable coalgebra is inner. Thus δ = 0 is the only coderivation of a coseparable, cocommutative
coalgebra, e.g. C = Mn(k).

For an element a ∈ R of an algebra we denote by λa : R→ R the right R-linear map given by
left multiplication by the element a, i.e. λa(x) = ax.

Definition 3.6. Let R be a weak bialgebra and g, h ∈ Gw(R). A map δ : R → R is called
(g, h)-coderivation if ∆δ = (λg ⊗ δ + δ ⊗ λh)∆. A skew-coderivation is a (g, h)-coderivation for
some g, h ∈ Gw(R).

Lemma 3.7. Let δ be a (g, h)-coderivation of a weak bialgebra R such that εs(g) = εs(h) = 1.
Then εδ = 0.
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Proof. For a ∈ R we have by Lemma 2.3

δ(a) = (ε⊗ id)∆δ(a) = (ε⊗ id)(ga1 ⊗ δ(a2) + δ(a1)⊗ ha2) = δ(a) + ε(δ(a1))ha2

Hence ε(δ(a1))ha2 = 0. Applying ε again and using equation (1) leads to 0 = ε(δ(a1))ε(ha2) =
ε(δ(a1))ε(a2)) = ε(δ(a)), using again Lemma 2.3. �

4. The main results

Before we present necessary and sufficient conditions to extend a weak Hopf algebra structure
from an algebra R to an Ore extension H = R[x;σ, δ] we would like to point out that it is possible
to apply Panov’s original characterisation for Hopf algebras to produce proper weak Hopf algebra
structures on Ore extensions.

Let A be any Hopf algebra with automorphism σ, σ-derivation δ and group-like element g.
Suppose that the Hopf algebra structure of A can be extended to the Ore extension A[x;σ, δ] such
that x is (g, 1)-primitive, e.g. if this data satisfies Panov’s criteria. Then given any weak Hopf
algebra R, the algebra R⊗A has a natural structure of weak Hopf algebra with group like element
g = 1⊗ g. Moreover, σ = idR⊗σ is an automorphism of R⊗A and δ = idR⊗ δ is an σ-derivation
of R ⊗ A. Since (R ⊗ A)[y;σ, δ] is isomorphic to R ⊗ A[x;σ, δ] with y 7→ 1 ⊗ x, the weak Hopf
algebra structure of R⊗A[x;σ, δ] can be lifted to a weak Hopf algebra structure on (R⊗A)[y;σ, δ]
which extends the weak Hopf algebra structure of R⊗A and would be an ordinary Hopf algebra
if and only if R was an ordinary Hopf algebra.

A particular example is the groupoid algebra H = Mn(kG) for some group G, field k and
n > 0. Since H = R ⊗ A with R = Mn(k) a weak Hopf algebra and A = kG an ordinary
Hopf algebra, we have that if kG[x;σ, δ] has a Hopf algebra structure extending the one of kG,

then Mn(kG)[y, σ, δ] becomes a weak Hopf algebra extending the weak Hopf algebra structure of
Mn(kG).

Proposition 4.1 (Necessary conditions). Let R be a weak bialgebra with automorphism σ,
σ-derivation δ and weak group-like element g, such that the weak bialgebra structure on R extends
to a weak bialgebra structure on H = R[x;σ, δ] with x an (g, 1)-primitive element. Then

(i) εt(g) = 1;
(ii) δ is a (g, 1)-coderivation;

(iii) σ = τ lχ, for some weak left character χ ∈ X l
w(R), which has a right inverse in R∗;

(iv) ∆(σ(a))(g ⊗ 1) = (g ⊗ 1)(id⊗ σ)∆(a) holds for any a ∈ R.

Proof. By Remark 3.4, εt(g) = 1. By equation (1) and Lemma 2.3 we have therefore
ε(Hx) = 0. For any a ∈ R we have:

∆(x)∆(a) = (g ⊗ x+ x⊗ 1)∆(a)

= (ga1 ⊗ σ(a2))(1⊗ x) + ga1 ⊗ δ(a2) + (σ(a1)⊗ a2)(x⊗ 1) + δ(a1)⊗ a2
= (ga1 ⊗ σ(a2))(1⊗ x) + (σ(a1)⊗ a2)(x⊗ 1) + ga1 ⊗ δ(a2) + δ(a1)⊗ a2

On the other hand using the multiplication rule in H:

∆(x)∆(a) = ∆(σ(a))∆(x) + ∆(δ(a)) = ∆(σ(a))(g ⊗ 1)(1⊗ x) + ∆(σ(a))(x⊗ 1) + ∆(δ(a))

Hence comparing the coefficients of 1⊗ x, x⊗ 1 and 1⊗ 1 we conclude

∆(σ(a))(g ⊗ 1) = ga1 ⊗ σ(a2)(3)

∆(σ(a)) = σ(a1)⊗ a2(4)

∆(δ(a)) = ga1 ⊗ δ(a2) + δ(a1)⊗ a2.(5)

The first of these equations is condition (iv), while the last equation shows that δ is a (g, 1)-
coderivation. By Proposition 2.11, the second equation yields σ = τ lχ for χ = ε◦σ ∈ X l

w(R). Since
σ is an automorphism, χ has a right inverse, by Lemma 2.9. �

For an invertible element g ∈ R the linear automorphism of R that sends an element a to
gag−1 is called the (left) adjoint map by g and denoted by Adg.
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Theorem 4.2 (Extending the weak bialgebra structure). Let R be a weak bialgebra with
automorphism σ, σ-derivation δ and group-like element g with ε(aδ(b)) = 0 for all a, b ∈ R.

Then the following statements are equivalent:

(a) The weak bialgebra structure on R extends to a weak bialgebra structure on H = R[x;σ, δ]
such that x is a (g, 1)-primitive element.

(b) There exists character χ such that σ = τ lχ = Adgτ
r
χ and δ is a (g, 1)-coderivation.

Proof. (a) ⇒ (b) By Proposition 4.1 δ is a (g, 1)-coderivation and there exists a weak left
character χ = εσ such that σ = τ lχ. Moreover by the same proposition, one has ∆(σ(a))(g ⊗ 1) =

(g⊗1)(id⊗σ)∆(a), for any a ∈ R. Multiplying g−1⊗1 from the right side yields ∆σ = (Adg⊗σ)∆
and applying (id⊗ε) to both sides from the right brings us to σ = Adgτ

r
εσ. Since εσ = ετ lχ = χ, we

have σ = Adgτ
r
χ or equivalently τ rχ = Adg−1σ, which shows that τ rχ is also an automorphism and

hence χ ∈ Xr
w(R) is also a weak right character and χ has a right inverse, i.e. χ is a character.

(b)⇒ (a): Suppose σ = Adgτ
r
χ, then for any a ∈ R:

∆(σ(a))(g ⊗ 1) = ∆(ga1χ(a2)g−1)(g ⊗ 1) = (ga1g
−1)⊗ (ga2g

−1)(g ⊗ 1)χ(a3) = ga1 ⊗ σ(a2).

Assuming ε(aδ(b)) = 0 for all a, b ∈ R, we also calculate for all a ∈ R:

(†) (g ⊗ x+ x⊗ 1)∆(1)∆(a) = ga1 ⊗ σ(a2)x+ ga1 ⊗ δ(a2) + σ(a1)x⊗ a2 + δ(a1)⊗ a2
= ∆(σ(a))(g ⊗ x) + ∆(σ(a))(x⊗ 1) + ∆(δ(a))

where we also used that δ is a (g, 1)-coderivation, together with Proposition 2.11. In particular for
a = 1 we obtain (g⊗x+x⊗ 1)∆(1) = ∆(1)(g⊗x+x⊗ 1). Moreover, by the universal property of
the Ore extension we obtain a (non-unital) algebra homomorphism ∆ : H → H ⊗H that extends
the comultiplication of R and satisfies ∆(x) = ∆(1)(g ⊗ x + x ⊗ 1) since the equation (†) shows
that ∆(x)∆(a) = ∆(σ(a))∆(x)+∆(δ(a)) holds for all a ∈ R. In order to prove the coassociativity
of ∆, we show (∆ ⊗ id)∆(x) = (id ⊗∆)∆(x) since then by the uniqueness part of the universal
property of the Ore extension both maps (∆⊗ id)∆ and (id⊗∆)∆ are equal. As a shorthand we
write ∆2(a) = (∆⊗ id)∆(a) for any a ∈ R. Note that

∆2(a)(∆(1)⊗ 1) = ∆2(a)(1⊗∆(1)) = ∆2(a).

Hence we calculate:

(∆⊗ id)∆(x) = ∆2(1)(∆(g)⊗ x+ ∆(x)⊗ 1)

= ∆2(1)(g ⊗ g ⊗ x+ g ⊗ x⊗ 1 + x⊗ 1⊗ 1)

= ∆2(1)(g ⊗∆(x)⊗ x+ x⊗∆(1))

= (id⊗∆)∆(x).

This shows the coassociativity of ∆.
For the counity, we define a linear map ε : H → k by ε

(∑n
i=0 aix

i
)

= ε(a0) for any ai ∈ R.
The map ε is well defined since the powers of x form a basis of H over R. Note that for all a, b ∈ R:
ε(axb) = ε(aσ(b)x)+ε(aδ(b)) = 0, where we use our additional assumption that ε(aδ(b)) = 0 holds
for any a, b ∈ R. By induction it is easy to prove ε(HxH) = 0.

It is enough to verify the property of the counit for elements of the form axn with n > 0. A

short induction argument shows that for any n > 0, there exist elements C
(n)
i,j ∈ R such that

(6) (g ⊗ x+ x⊗ 1)n =

n∑
i,j=0

C
(n)
i,j x

i ⊗ xj ,

where C
(n)
n,0 = 1 and C

(n)
i,0 = 0 for any i < n, as well as C

(n)
0,n = gn and C

(n)
0,j ∈ span{aδ(b) : a, b ∈ R}

for any j < n. Then

(id⊗ ε)∆(axn) =

n∑
i,j=0

a1C
(n)
i,j x

iε(a2x
j) =

n∑
i=0

aC
(n)
i,0 x

i = axn,

since C
(n)
i,0 = 0 for i < n and C

(n)
n,0 = 1. Moreover,
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(ε⊗ id)∆(axn) =

n∑
i,j=0

ε(a1C
(n)
i,j x

i)a2x
j = ε(a1g

n)︸ ︷︷ ︸
=ε(a1)

a2x
n +

n∑
j=1

ε(a1C
(n)
0,j )︸ ︷︷ ︸

=0

a2x
j = axn.

where we use Lemma 2.3 for ε(agn) = ε(a), since εt(g) = 1 by Lemma 2.6, and ε(a1C
(n)
0,j ) = 0 as

by equation (6), a1C
(n)
0,j ∈ span{aδ(b) : a, b ∈ R} and ε(aδ(b)) = 0, by our additional assumption

for (b)⇒ (a). Hence H is coalgebra.

Now, we are going to show the weak counity property. Let α = α̃x + a, β = β̃x + b and
γ = γ̃x + c ∈ H. Using ε(HxH) = 0, what we have mentioned earlier, it is easy to check that

ε(αβγ) = ε(abc). Note that ∆(β) = ∆(β̃)(g ⊗ x+ x⊗ 1) + ∆(b). Thus

ε(αβ1)ε(β2γ) = ε(αβ̃1g) ε(β̃2xγ)︸ ︷︷ ︸
=0

+ ε(αβ̃1x)︸ ︷︷ ︸
=0

ε(β̃2γ) + ε(αb1)ε(b2γ) = ε(αb1)ε(b2γ) = ε(ab1)ε(b2c)

Similarly ε(αβ2)ε(β1γ) = ε(αb2)ε(b1γ) = ε(ab2)ε(b1c). Since R is a weak bialgebra we have

ε(αβ1)ε(β2γ) = ε(ab1)ε(b2c) = ε(abc) = ε(ab2)ε(b1c) = ε(αβ2)ε(β1γ).

This shows that H is a weak bialgebra extending the structure of R.
�

Remark 4.3. The extra condition ε(aδ(b)) = 0, for all a, b ∈ R in the Theorem, seems to
be strange and it is not clear to the authors whether it is really needed. If g a group-like element
and hence invertible, then εs(g) = 1 by Lemma 2.6. Moreover, if δ is a (g, 1)-coderivation and
εs(g) = 1, then εδ = 0 by Lemma 3.7. If we had δ(Rs) = 0 and σ = τ lχ for some weak left character

χ ∈ X l
w(R), then for all a, b ∈ R:

ε(aδ(b)) = ε(εs(a)δ(b)) = ε(σ(εs(a))δ(b)) = ε(δ(εs(a)b))− ε(δ(εs(a))b) = 0,

where we use equation (1) in the first equality, the Rs-linearity of τ lχ in the second equality (see
Lemma 2.9 ) and δ(Rs) = 0 and εδ = 0 in the last one. Clearly δ(Rs) = 0 for an arbitrary Hopf
algebra, or for δ = 0, i.e. in case R is a coseparable, cocommutative weak Hopf algebra like a
groupoid algebra.

Theorem 4.4. Let R be a weak Hopf algebra with antipode S, σ an automorphism of R, δ
an σ-derivation of R and g a group-like element. Suppose that δ(Rs) = 0. Then the following
conditions are equivalent:

(a) The weak Hopf algebra structure of R extends to a weak Hopf algebra structure on H =
R[x;σ, δ], such that x is (g, 1)-primitive element and S(x) = −S(g)x.

(b) The following statements are satisfied:
(i) σ = τ lχ = Adgτ

r
χ, for some character χ of R;

(ii) δ is a (g, 1)-coderivation;
(iii) AdgS = σSσ;
(iv) δSσ = λgSδ, where λg denotes the left multiplication by g.

Proof. (a) ⇒ (b) By Proposition 4.1, σ = τ lχ for some weak left characters χ and δ is a
(g, 1)-coderivation. Hence by Remark 4.3, ε(aδ(b)) = 0 for all a, b ∈ R. Thus, we can apply
Theorem 4.2 to obtain that χ is a character. Under the assumption that S(x) = −S(g)x and
using the commutation rule in H = R[x;σ, δ] we calculate for any a ∈ R:

S(a)S(g)x = −S(xa)

= −S(σ(a)x)− S(δ(a))

= S(g)xS(σ(a))− S(δ(a)) = S(g)σ(S(σ(a)))x+ [S(g)δ(S(σ(a)))− S(δ(a))]

Comparing the coefficients of x and 1 leads to the equations S(a)S(g) = S(g)σ(S(σ(a))) and
S(g)δ(S(σ(a))) = S(δ(a)) for all a ∈ R. Hence AdgS = σSσ, since S(g) = g−1 by Lemma 2.6,
and δSσ = λgSδ.
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(b)⇒ (a): Let σ = τ lχ for some character χ. Using the assumptions δ(Rs) = 0 and ε ◦ δ = 0,
we have ε(aδ(b)) = 0 for all a, b ∈ R, by Remark 4.3. Hence by Proposition 4.2 the weak bialgebra
structure of R extends to H = R[x;σ, δ] with x being (g, 1)-primitive and ε(Hx) = 0. Since
ε(axb) = ε(aσ(b)x) + ε(aδ(b)) = 0 for all a, b ∈ R we also have ε(HxH) = 0.

Let γ = −S(g)x. Using properties (iii) and (iv) we calculate for all a ∈ R:

S(a)γ = −S(a)S(g)x− S(δ(a)) + S(δ(a))

= −S(g)σ(S(σ(a)))x− S(g)δ(S(σ(a))) + S(δ(a))

= −S(g)(xS(σ(a))) + S(δ(a))

= γS(σ(a)) + S(δ(a))

Hence by the universal property of the Ore extension, there exists a unique unital anti-algebra
homomorphism S : H → H that extends S and sends x to S(x) = γ = −S(g)x. We will verify the
antipode axioms of a weak Hopf algebra. It is clear that a1S(a2) = εt(a), S(a1)a2 = εs(a) and
S(a1)a2S(a3) = S(a) holds for all a ∈ R. For any h ∈ H we have εt(hx) = ε(11hx)12 = 0, since
ε(Hx) = 0. Therefore

(hx)1S((hx)2) = h1gS(h2x) + h1xS(h2) = −h1gS(g)xS(h2) + h1xS(h2) = 0 = εt(hx),

as gS(g) = εt(g) = 1 by assumption (b.i).
Similar, εs(hx) = ε(hx11)12 = 0, since ε(HxH) = 0. Furthermore note that the elements of

Rs commute with x, because σ = τ lχ is Rs-linear by Lemma 2.9 and δ(Rs) = 0 by assumption,
i.e. xa = σ(a)x + δ(a) = ax for any a ∈ Rs. Hence using S(x) = −S(g)x and S(a1)a2 ∈ Rs we
calculate for any a ∈ R: S((ax)1)(ax)2 = S(a1g)a2x + S(a1x)a2 = S(g)(εs(a)x − xεs(a)) = 0.
Suppose that S(h1)h2 = 0 for all h = axn with a ∈ R and some n ≥ 0. Then we also calculate:
S((hx)1)(hx)2 = S(h1g)h2x+ S(h1x)h2 = S(g)S(h1)h2x+ S(x)S(h1)h2 = 0. Hence by induction
on n we have that S(h1)h2 = εs(h) for any h = axn with a ∈ R and n ≥ 0. In particular we have
that Hs = εs(H) = εs(R) = Rs, i.e. all elements of Hs commute with x in H.

Finally we will show

(7) S(h1)h2S(h3) = S(h)

for all h ∈ H. Again it is enough to show this only for the monomials h = axn with n ≥ 0. For
n = 0 and h = a ∈ R we have S(h1)h2S(h3) = S(h) since S extends the antipode of R. Suppose
that (7) holds for all elements h = axn for some n ≥ 0. Then

S((hx)1)(hx)2S((hx)3) = S(h1g)h2gS(h3x) + S(h1g)h2xS(h3) + S(h1x)h2S(h3)

= S(g)S(h1)h2gS(x)S(h3) + S(g)S(h1)h2xS(h3) + S(x)S(h1)h2S(h3)

= −S(g)εs(h1)gS(g)xS(h2) + S(g)εs(h1)xS(h2) + S(x)εs(h1)S(h2)

= −S(g)xεs(h1)S(h2) + S(g)xεs(h1)S(h2) + S(x)S(h)

= S(x)S(h) = S(hx)

�

Remark 4.5. Condition (b.iii) is automatically satisfied in case g is invertible and the inverse
of χ is of the form χS, which is always true for an ordinary Hopf algebra. This is so, because in
this case, by Corollary 2.12, one has that S = τ rχSτ

l
χ. Since by condition (b.i), σ = τ lχ = Adgτ

r
χ,

we have AdgS = σSσ, i.e. gS(a)S(g) = σ(S(σ(a))), for all a ∈ R.

We present now an example of an Ore extension R[x;σ] which extend the structure of a weak
Hopf algebra R and that was not obtained by tensoring a Hopf algebra that admits a Hopf-Ore
extension (in the sense of Panov) by a weak Hopf algebra.

Example 4.6. (cf. [2, Example 9]) Let k be a field and N a positive integer not divisible by
the characateristic of k. The algebraic quantum torus is defined as the algebra

R = k
〈
U, V, V −1 | UN = 1, V U = qUV

〉
.
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where q ∈ k satisfies qN = 1. It is well known that R is a weak Hopf algebra with structure given
by

∆(UnV m) =
1

N

N∑
i=1

(U i+nV m ⊗ U−iV m), ε(UnV m) =

{
N, Un = 1
0, Un 6= 1

,

and S(UnV m) = V −mUn.
Now consider the automorphism σ : R → R given by σ(U) = U and σ(V ) = UV . Then

σ = τ lχ = τ rχ for the weak character χ ∈ R∗ defined by χ(UnV m) = Nqm−1 if N divides n + m
and zero otherwise. Then, by Theorem 4.4 R[x;σ] is a weak Hopf algebra extending the structure
of R, with x being a (1, 1)-primitive element.

5. Ore extensions of connected groupoid algebras

We finish by discussing the Ore extensions of the groupoid algebra kG of a “connected”
groupoid G, by which we mean a groupoid such that any two objects are connected by a morphism.
We furthermore assume that the set of objects is finite. Then R = kG = Mn(kG), for some n > 0
and some group G. Panov characterised such Ore extensions for the case n = 1 (see [9, Proposition
2.2]).

Proposition 5.1. Let R be a cocommutative weak Hopf algebra, with automorphism σ and
σ-derivation δ such that the weak Hopf algebra structure of R extends to one of H = R[x;σ, δ]
with x being an (g, 1)-primitive element, for some group-like element g, such that S(x) = −S(g)x,
δ(Rs) = 0 and the inverse of χ is χS, then g is central.

Proof. Since σ(a) = τ lχ(a) = Adgτ
r
χ(a) by Theorem 4.4, we have

a = χ(S(a1))σ(a2) = Adgσ(σ−1(a)) = Adg(a).

Hence ag = ga, for all a ∈ R. �

The Proposition generalises [9, Corollary 1.4]. Moreover, the last proposition applies in partic-
ular to groupoid algebras kG of a connected groupoid with finitely many objects, i.e. R = Mn(kG)
for some n > 0 and group G. Generalising Example 2.5, any weak group-like element is of the
form γ =

∑
i∈I giEi,σ(i) for some subset I ⊆ {1, . . . , n} and injective map σ : I → {1, . . . , n}

and elements gi ∈ G. Moreover, if γ has a left inverse, then I = {1, . . . , n} and σ has to be a
bijection. In particular γ has also a right inverse which is S(γ) =

∑n
i=1 g

−1
i Eσ(i),i. Furthermore

the characters χ ∈ Xw(R) of R = Mn(kG) are of the form χ(gEij) = p−1i pjρ(g), where ρ ∈ kG∗
is a group character and p1, . . . , pn ∈ k× are non-zero scalars. Clearly χS is the inverse of χ.

Let R be a cocommutative weak Hopf algebra, χ ∈ X(R) and g a central group-like element
of R. Suppose that α ∈ R∗ satisfies

(8) α(ab) = α(a)ε(b) + χ(a)α(b), ∀a, b ∈ R.

Then τ lα satisfies

(9) τ lα(ab) = α(a1b1)a2b2 = α(a1)a2ε(b1)b2 + χ(a1)a2α(b1)b2 = τ lα(a)b+ τ lχ(a)τ lα(b).

Define the map δ : R → R, by δ(a) := (1 − g)τ lα(a), for all a ∈ R. Since 1 − g is central, we
have δ(ab) = δ(a)b + τ lχ(a)δ(b), i.e. δ is an τ lχ-derivation. Furthermore δ is a (g, 1)-coderivation,
because

∆δ(a) = α(a1)∆(1− g)∆(a2)

= α(a1)((1− g)⊗ 1 + g ⊗ (1− g))∆(a2)

= α(a1)(1− g)a2 ⊗ a3 + ga1 ⊗ (1− g)α(a2)a3

= δ(a1)⊗ a2 + ga1 ⊗ δ(a2) = (δ ⊗ id + λg ⊗ δ)∆(a)

where we use the cocommutativity in the third equation. Note that Adg = id as g is central and
τ lχ = Adgτ

r
χ = τ rχ, as R is cocommutative.
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Theorem 5.2. Let G be any group, n > 0, R = Mn(kG), χ ∈ X(R) and g a central element
of G. Suppose that there exists α ∈ R∗ such that α(ab) = α(a)ε(b) + χ(a)α(b) holds for any
a, b ∈ R and α(Eii) = 0 for any i. Let σ = τ lχ and δ(a) := (1− g)τ lα(a), for all a ∈ R. Then δ is

a σ-derivation and a (g, 1)-coderivation such that R[x; τ lχ, δ] becomes a weak Hopf algebra with

∆(x) = ∆(1)(g ⊗ x+ x⊗ 1), ε(HxH) = 0, S(x) = −g−1x.

Proof. We first observe that δ(Rs) = 0. In fact, since every element of Rs is of the form∑
i λiEii, with λi ∈ k, we have δ (

∑
i λiEii) =

∑
i λiδ(Eii) =

∑
i λi(1 − g)α(Eii)Eii = 0. Hence,

in order to obtain our result, it is enough to check the conditions of the implication (b) ⇒ (a)
of Theorem 4.4. Conditions (i) and (ii) hold by the preceding discussion and because g is an
invertible central element. Also, since χS is the inverse of χ, condition (iii) follows by Corollary
2.12. Thus, the only work to do is to prove condition (iv).

We begin by noting that under our hypotheses we have α(gijEij) = −χ(gijEij)α(g−1ij Eji). In
fact, because

0 = α(Eii) = α(gijEijg
−1
ij Eji) = α(gijEij)ε(g

−1
ij Eji) + χ(gijEij)α(g−1ij Eji)

= α(gijEij) + χ(gijEij)α(g−1ij Eji).

Let a =
∑
i,j gijEij ∈ R. Then we obtain

S(g)δ(S(σ(a))) = g−1
n∑

i,j=1

χ(gijEij)δ(S(gijEij)) = g−1
n∑

i,j=1

χ(gijEij)δ(g
−1
ij Eji)

= g−1
n∑

i,j=1

χ(gijEij)δ(g
−1
ij Eji) = g−1

n∑
i,j=1

χ(gijEij)(1− g)α(g−1ij Eji)g
−1
ij Eji

= (g−1 − 1)

n∑
i,j=1

χ(gijEij)α(g−1ij Eji)g
−1
ij Eji = (1− g−1)

n∑
i,j=1

α(gijEij)g
−1
ij Eji

=

n∑
i,j=1

α(gijEij)(g
−1
ij Eji − g

−1g−1ij Eji) =

n∑
i,j=1

α(gijEij)S((1− g)gijEij)

=

n∑
i,j=1

S((1− g)α(gijEij)gijEij) = S(δ(

n∑
i,j=1

gijEij))

= S(δ(a)).

Multiplying by g on the left yields δ(S(σ(a))) = gS(δ(a)) and the proof is complete.
�
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