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Abstract

Artificial Neural Networks (ANN) are powerful and flexible models that perform learning tasks
by considering examples, with a human-designed structure. However, architecture engineering of
neural network models is one of the most time-consuming tasks. It involves trial and error which
does not identify why a solution works and there are many hyperparameters to be adjusted.

Established networks like ResNet and DenseNet are in large part effective due to how they
are wired, a crucial aspect for building machine learning models. For this reason, there have been
some attempts to automate both the design and the wiring process. In this work, we study ap-
proaches for network generators, algorithms that bypass the human intervention in neural network
design.

From this starting point, we are looking for alternative architectures which in practice would
be more difficult to design by humans using randomly wired neural networks. We conduct an
empirical study to evaluate and compare the results of different architectures. With our findings,
while analyzing the network behavior during training, we hope to contribute to future work on this
type of neural network.

Our implementation of randomly wired neural networks achieves state of the art results, con-
firming their potential. Our empirical study involves a grid search for the best parameters in the
random graph models that are the foundation of these networks. The graph models generate ran-
dom graphs that define the wiring of the network in three of its stages. We also perform a search
for the best number of nodes present in the mentioned graphs. We find that a low number of nodes
is enough to achieve similar performance to the state of the art results in our datasets. The range
of parameters for the graph models is more extensive compared to the original study. The orig-
inal results are replicable but not reproducible in the sense that if the original experiments were
conducted in the same conditions, we suspect that the stochastic nature of the network generator
would yield distinct results.

Our optimization approaches lead us to conclude that the wiring of a network is important
to allow more operations but the weights in the connections are nearly irrelevant. Avoiding using
these weights, by freezing them, saves some training time while still reaching a good performance.

The final thoughts of this work conclude that the network generator is one to be explored
under the right resources and can contribute to the improvement of the field of NAS.

Keywords: Machine learning, Neural networks, Randomized search
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Resumo

As Artificial Neural Networks (ANN) são modelos poderosos e flexíveis que executam tarefas de
aprendizagem considerando exemplos, com uma estrutura definida por humanos. No entanto, ar-
chitecture engineering de modelos de redes neuronais é uma das tarefas mais complexas. Envolve
tentativa e erro, o que não permite identificar porque uma solução funciona e contém diversos
hiperparâmetros sujeitos a ajuste.

Redes já estabelecidas como ResNet e DenseNet são em grande parte eficazes devido à forma
como são conectadas, um aspecto crucial para a construção de modelos de machine learning. Por
esse motivo, houve algumas tentativas para automatizar o design e o processo de ligação. Neste
trabalho, estudamos abordagens para geradores de redes, algoritmos que ignoram a intervenção
humana no design de redes neuronais.

Deste ponto de partida, procuramos arquiteturas alternativas que, na prática, seriam mais difí-
ceis de obter por seres humanos, usando redes neuronais ligadas aleatoriamente. Realizamos um
estudo empírico para avaliar e comparar os resultados de diferentes arquiteturas. Com as nossas
descobertas, ao analisar o comportamento da rede durante o treino, esperamos contribuir para o
trabalho futuro neste tipo de rede neuronal.

A nossa implementação de redes neuronais randomly wired alcança resultados dentro do es-
tado da arte, confirmando o seu potencial. O nosso estudo empírico envolve uma grid search pelos
melhores parâmetros nos modelos de grafos aleatórios que são a base dessas redes. Os algoritmos
para modelar grafos geram grafos aleatórios que definem as ligações da rede em três dos seus está-
gios. Também realizamos uma busca pelo melhor número de nós presentes nos grafos menciona-
dos. Concluímos que um número baixo de nós é suficiente para obter desempenho semelhante
aos resultados de última geração nos nossos conjuntos de dados. A gama de parâmetros para os
modelos de grafos aleatórios é mais extensa em comparação com o estudo original. Os resultados
originais são replicáveis, mas não reproduzíveis, no sentido de que, se as experiências originais
fossem conduzidas nas mesmas condições, suspeitamos que a natureza estocástica do gerador de
redes produziria resultados distintos.

As nossas abordagens de otimização levam-nos a concluir que o wiring de uma rede é impor-
tante para permitir mais operações, mas os pesos nessas conexões são quase irrelevantes. Evitar o
uso desses pesos, ao congelá-los, economiza algum de tempo de treino e, ao mesmo tempo, atinge
um bom desempenho.

As considerações finais deste trabalho concluem que o gerador de redes deve ser explorado
com os recursos certos e pode contribuir para melhorias no campo de Neural Architecture Search.
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Chapter 1

Introduction

Machine Learning evolved from pattern recognition and the idea that computers could learn with-

out explicit programming [76]. Like with humans, or computers with machine learning, learning

comes from experience in a certain task. This experience stems from analyzing large amounts of

data and the quality of the data is important for the success of the machine learning model. Math-

ematical models are built by machine learning algorithms from training data. The model should

be able to generalize from experience and make successful predictions on new examples. Several

types of algorithms have been developed for machine learning and one of the most popular are

Artificial Neural Networks.

Artificial Neural Networks are inspired by biological neural networks [68], having simple

interconnected processing nodes. Nodes are usually organized into layers that are responsible for

operating at a specific depth. The input layer receives data and the output layer produces an output

given the information passed through the network. The hidden layers is usually where most of the

learning happens and our knowledge of the behavior is weaker. Each node has a set of weights

and biases for their inputs and computes an output using an activation function.

Deep learning, also known as deep neural learning, is too a subset of machine learning algo-

rithms that uses a connectionist approach to develop networks [86]. Higher-level features are pro-

gressively extracted from a dataset using multiple layers. The neural network phenomena success

has led to a focus transfer from feature engineering to a more abstract level, architecture engi-

neering. In other words, although feature engineering has become simpler through deep learning,

machine learning models architecture has become consequently more complex. Some problems

may require such a specific architecture that it becomes a task similar to past feature engineering

obstacles.

Current methods still significantly involve human effort and are short of achieving AutoML.

The goal is not to automatize ML but to show the potential in AutoML by bringing us a step closer

in its direction. Researchers are trying to automate the process of applying machine learning to

real-world problems, aiming for simpler solutions and faster creation of models. Neural networks
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2 Introduction

are built using building blocks that are usually small and manually designed, plus a set of con-

straints is applied to their architecture. We are a long way from having self-designed, adaptable

networks that cover the complete pipeline. Google provides a service, “Cloud AutoML” that aims

to fulfill these needs [29] [74], from the initial dataset to a fully working machine learning model.

A lot of work is being done towards that goal and we hope that this research contributes to the

field.

From the equation 4 and equation 6, we can see that
the standard convolution layer required 9× chout operations
where as depth-wise separable 3 × 3 convolution layer
followed by 1×1 convolutions required only 9+chout oper-
ations. In this study, we used MobileNet-v1 with 0.5x and 1x
channels multiplier with input size of 224× 224 for testing.
These models are denoted as MobileNet V 1 0.5 224 and
MobileNet V 1 1.0 224, respectively, in Table I.

5. MobileNet-V2: The newer version of MobileNet ar-
chitecture combines depth-wise separable 3× 3 convolution
with inverted ResNet architecture. In ResNet architecture, as
shown in Figure 1(a), the 3 × 3 convolution is performed
on the reduced number of channels whereas in MobileNet-
v2 [16] architecture the 3 × 3 convolution layer is replaced
with depth-wise separable 3 × 3 convolution layer and
increased number of channels, as shown in Figure 1(b). if
chin are the number of feature channels provided as an input
to the residual layer, resnet architecture extracts features at
3× 3 convolution on half of the input feature channels i.e.,
chin/2. Whereas in the case of MobileNet-V2, the feature
channels are increased by an expansion factor t i.e., chin ∗ t.
In our experiments, we used MobileNet-v2 with 0.5x and
1x channels multiplier with input size of 224 × 224 for
testing. These models are denoted as MobileNet V2 0.5 224
and MobileNet V2 1.0 224, respectively, in Table I.

6. NasNet-Mobile: Unlike other models presented in this
paper, this model has not been designed by hand. Instead,
a reinforcement learning technique known as AutoML[20]
was used to generate this model, and specifically designed
to perform well over Imagenet[19] dataset. AutoML searches
for the best convolutional layer (or cell) on a small dataset
and then transfer the block to a larger dataset. By changing
the number of the convolutional cells and number of filters
in the convolutional cells, different versions of NASNet[18]
were developed. In this paper, we considered the smallest
of all the NasNets, called NASNet-mobile, which is targeted
for mobile devices.

7. Proposed Model: Our custom model is based on
MobileNet-v2 architecture, as shown in Figure 1(d), where
we keep expansion factor t = 1. Table II show the complete
architecture of the proposed model. As it can be seen from
the Table II, the spatial resolution is dropped 4X with-
in first two layers to reduce the computational complexity.
The convolution layers conv2, conv3 and conv4 use the
residual module shown in Figure 1(d). At conv2b and conv3b
same module is used but without the skip connection to
reduce spatial resolution by half and to increase the number
of feature channels. The proposed model has only 672K
parameters and 256M MAdd operations. The feature size
and number of parameters in our proposed model are the
least among all the models (see Table I).

III. EXPERIMENTAL VALIDATION: A CASE STUDY ON
OCULAR BIOMETRICS

Dataset: VISOB [21] dataset consists of ocular im-
ages [22] from over 550 healthy subjects. This publicly
available dataset was collected using front-facing cameras

Fig. 1. (a) Resnet architecture (b) MobileNet-V2 architecture (c) DenseNet
architecture (d) Custom layer module similar to MobileNet-V2 architecture
with expansion factor t = 1 and with normalization and activation before
each convolutional layer.

of different mobile devices (iPhone 5s, Samsung Note 4
and Oppo N1) under varying lighting conditions (office,
daylight and dim indors). Participants’ data were collected
in two visits, visit 1 and visit 2, 2 to 4 weeks apart. During
each visit, participants took a selfie like captures in two
different sessions (session 1 and session 2) that were about
10 to 15 minutes apart, under all lighting conditions and
using all the three devices. From the collected data, eye
crops were generated using Viola-Jones based eye detector
and the cropped eye images were resized to 160 × 240
pixel resolution. Variations such as motion blur, specular
reflections, and different lighting conditions are captured in
this dataset. Figure 2 shows example ocular images from
VISOB dataset.

In our experiments, we divided VISOB dataset into three
sets as follows:

1) DATA-A: This set consists of ocular images from
200 participants from Visit 1 for all the devices, all

(a) ResNet [28] architecture [17]

From the equation 4 and equation 6, we can see that
the standard convolution layer required 9× chout operations
where as depth-wise separable 3 × 3 convolution layer
followed by 1×1 convolutions required only 9+chout oper-
ations. In this study, we used MobileNet-v1 with 0.5x and 1x
channels multiplier with input size of 224× 224 for testing.
These models are denoted as MobileNet V 1 0.5 224 and
MobileNet V 1 1.0 224, respectively, in Table I.

5. MobileNet-V2: The newer version of MobileNet ar-
chitecture combines depth-wise separable 3× 3 convolution
with inverted ResNet architecture. In ResNet architecture, as
shown in Figure 1(a), the 3 × 3 convolution is performed
on the reduced number of channels whereas in MobileNet-
v2 [16] architecture the 3 × 3 convolution layer is replaced
with depth-wise separable 3 × 3 convolution layer and
increased number of channels, as shown in Figure 1(b). if
chin are the number of feature channels provided as an input
to the residual layer, resnet architecture extracts features at
3× 3 convolution on half of the input feature channels i.e.,
chin/2. Whereas in the case of MobileNet-V2, the feature
channels are increased by an expansion factor t i.e., chin ∗ t.
In our experiments, we used MobileNet-v2 with 0.5x and
1x channels multiplier with input size of 224 × 224 for
testing. These models are denoted as MobileNet V2 0.5 224
and MobileNet V2 1.0 224, respectively, in Table I.

6. NasNet-Mobile: Unlike other models presented in this
paper, this model has not been designed by hand. Instead,
a reinforcement learning technique known as AutoML[20]
was used to generate this model, and specifically designed
to perform well over Imagenet[19] dataset. AutoML searches
for the best convolutional layer (or cell) on a small dataset
and then transfer the block to a larger dataset. By changing
the number of the convolutional cells and number of filters
in the convolutional cells, different versions of NASNet[18]
were developed. In this paper, we considered the smallest
of all the NasNets, called NASNet-mobile, which is targeted
for mobile devices.

7. Proposed Model: Our custom model is based on
MobileNet-v2 architecture, as shown in Figure 1(d), where
we keep expansion factor t = 1. Table II show the complete
architecture of the proposed model. As it can be seen from
the Table II, the spatial resolution is dropped 4X with-
in first two layers to reduce the computational complexity.
The convolution layers conv2, conv3 and conv4 use the
residual module shown in Figure 1(d). At conv2b and conv3b
same module is used but without the skip connection to
reduce spatial resolution by half and to increase the number
of feature channels. The proposed model has only 672K
parameters and 256M MAdd operations. The feature size
and number of parameters in our proposed model are the
least among all the models (see Table I).

III. EXPERIMENTAL VALIDATION: A CASE STUDY ON
OCULAR BIOMETRICS

Dataset: VISOB [21] dataset consists of ocular im-
ages [22] from over 550 healthy subjects. This publicly
available dataset was collected using front-facing cameras

Fig. 1. (a) Resnet architecture (b) MobileNet-V2 architecture (c) DenseNet
architecture (d) Custom layer module similar to MobileNet-V2 architecture
with expansion factor t = 1 and with normalization and activation before
each convolutional layer.

of different mobile devices (iPhone 5s, Samsung Note 4
and Oppo N1) under varying lighting conditions (office,
daylight and dim indors). Participants’ data were collected
in two visits, visit 1 and visit 2, 2 to 4 weeks apart. During
each visit, participants took a selfie like captures in two
different sessions (session 1 and session 2) that were about
10 to 15 minutes apart, under all lighting conditions and
using all the three devices. From the collected data, eye
crops were generated using Viola-Jones based eye detector
and the cropped eye images were resized to 160 × 240
pixel resolution. Variations such as motion blur, specular
reflections, and different lighting conditions are captured in
this dataset. Figure 2 shows example ocular images from
VISOB dataset.

In our experiments, we divided VISOB dataset into three
sets as follows:

1) DATA-A: This set consists of ocular images from
200 participants from Visit 1 for all the devices, all

(b) DenseNet [34] architecture [17]

Figure 1.1: Comparison between building blocks of ResNet and DenseNet.

Established networks, like ResNet [28] and also DenseNet [34] – compared in Figure 1.1, per-

form well because of their innovative connections. ResNet introduced skip connections to prevent

the degradation of the accuracy in deeper layers of the network. The method stacks additional

layers as residual blocks which are identity mappings, implying no extra parameters to train. This

process benefits the deeper layers to perform more similarly to the shallower ones. In DenseNet,

layers are connected to all their preceding layers. The final classifier will then have information

from all feature-maps because the information was preserved through these extra connections.

Thus, how the computational networks are wired is crucial for their performance. Just like the

human brain, where wiring and connectivity are important not only to prevent malfunction but to

achieve peak performance [30], we can have an immeasurable amount of wiring combinations.

1.1 Context and Motivation

Neural Architecture Search is a technique for automating the design of neural networks. One of the

first proposed algorithms [90], has a set of building blocks as a starting point and uses an Artificial

Neural Network(ANN) to assemble them and searches for the best neural network architecture for
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the problem at hand. The network is subject to training and testing, and, based on the results, the

blocks can be adjusted to obtain a better performing network.

The search space of NAS algorithms is too extensive to be explored manually [83], even though

researchers have discovered some successful designs. The idea is to evaluate the potential of

randomly wired neural networks to traverse the search space without human intervention to design

the architectures. One of the motivations is that researchers have found that state-of-the-art NAS

algorithms perform similarly to a random architecture selection [69] where it would be expected

that an effective search policy significantly outperforms a random one.

The authors in [86] proposed future work in this area to explore new network generator designs

that may yield new, powerful network designs. These network generators are inspired in classical

random graph models [5] from random graph theory, used to reduced bias. They are based in

different probabilistic distributions which could have predictable outcomes to some degree. The

use of other tools to generate random graphs is an option to do comparisons with the currently

used models.

This work extends the previous work in [86] through empirically testing their proposed ap-

proach and derive conclusions that could lead to the expansion of the NAS search space.

1.2 Objectives

The goal is to implement network generators by means of a random policy and use them to generate

several architectures. Collecting these architectures, we evaluate the performance, compare the

results with state-of-the-art solutions, and draw conclusions. From this empirical study, we attempt

to gather useful insights that might support new solutions for the NAS. We use machine learning

algorithms to predict part of the initial weights of the randomly wired networks before training to

boost training in duration or an earlier convergence.

1.3 Document Structure

Firstly, the document exposes the literature related to this study in Chapter 2, where we go through

definitions and related work. In Chapter 3, we describe our methods and different approaches to

study randomly wired neural networks. In Chapter 4 we present our results with graphical aid and

justify our thought process in the iterative experimental procedure. Finally, in Chapter 5 we submit

our conclusions from our study and give some final thoughts about the future in the research.



4 Introduction



Chapter 2

State of the Art

In this chapter, we start by giving a short introduction to how the field of Machine Learning evolved

through the years. Then we present some concepts to contextualize neural networks and how they

came to be. We focus on Randomly Wired Neural Networks in Section 2.3, providing an in-depth

description of how they are built. Furthermore, we review the state of the art of Neural Network

algorithms.

Neural architecture search (NAS) is, arguably, the next big challenge in the field of deep

learning [76]. With NAS, one can use a model to look for better architectures given a specific

type of data, rather than being limited to trial and error search. NAS algorithms can become

even more powerful when we look for alternative architectures which in practice would be more

difficult to design by humans. This has the potential for discovering truly novel architectures. In

this section, we present these concepts and the state-of-the-art of the field.

2.1 Introduction

Machine Learning (ML) has contributed to the success in the ongoing digital change across in-

dustries, like transportation, healthcare, finance, agriculture, and retail. This favorable outcome is

long overdue because machine learning is not new [52] since machine learning exists for over 70

years [40]. The explosion of computing power and hardware enhancement has allowed pursuing

ideas that have been around for decades but were not feasible before [3]. One of the ideas was to

make a machine learn: it performs a task by studying a set of examples – a training set. Then the

same task is to be performed using unseen data. This comes hand in hand with the Artificial Intel-

ligence (AI) definition where a machine can perceive its environment and takes action to achieve

its goals [63]. Other examples of important machine learning findings, involve activation functions

(Leaky ReLU [87]) and dropout, where some neurons are chosen at random to be ignored during

training.

5
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Since the early days of AI that problems have become ever complex, causing smaller subsets

of machine intelligence to appear. More recently, one of these subsets of ML emerged and is es-

tablishing itself in the field for solving a multitude of computer science problems, known as Deep

Learning (DL). It impacts areas including computer vision, speech recognition, robotics, network-

ing, and gaming. DL is a branch of Machine Learning using algorithms that aim to represent

high-level data abstractions by constructing – complex – computational models [19]. Deep neural

networks are one of the most familiar deep learning structures, characterized by having multiple

levels of non-linear mathematical operations [6].

Similarly to ML, deep learning can be categorized in unsupervised, supervised, or partially su-

pervised approaches [3]. The first, unlike supervised learning, does not make use of labeled data

and relies purely on its internal representation to discover patterns within the input data. As the

name suggests, partially unsupervised approaches rely on partially labeled data. Deep Reinforce-

ment Learning is a more recent development that successfully combines the Reinforcement Learn-

ing Paradigm of ML and artificial neural networks [57]. Supervised and Unsupervised Learning

includes the use of Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), and

Recurrent Neural Networks (RNN), which are the most common types. Reinforcement Learning

uses goal-oriented algorithms, operating in a delayed return environment, and allows us to solve

complex decision-making tasks [20].

2.2 Neural Networks

Neural networks are a powerful and important technique in Machine Learning. In the early ’40s,

using simple logic gate operations, it was proven that the combination of neurons can construct a

Turing machine [54]. In the late ’50s, Rosenblatt [65] shows that if the learning data can be rep-

resented, perceptrons will be able to converge. Here the neural networks appeared and since then

they have been around for decades. This was the earliest neural network and it was used for binary

classification. Because of this, there was a tremendous amount of investment and development in

neural networks for decades.

There was a common belief that these neural networks are mimicking some of the functionality

in biological systems and animals, like humans. Both the neuroscience and computer science

communities had an interest in what were the capabilities of these networks. Limitations in the

data (size and labeling) and the computational power at the time, caused a delay in research in the

late 70s and 80s in what is known as the "AI winter" [53]. Besides, in ’69, Minsky [55] exposes

the limitations of the neural network’s foundation, the perceptron, and the research is frozen for

almost a decade.

There were several developments in the ’80s, the backpropagation algorithm was proposed

by Hinton et al [1] which re-energizes the field. A couple of years later, the Neocognitron [21]

hierarchical neural network emerges and is capable of recognizing visual patterns. In 1999, back-

propagation is coupled with Convolutional Neural Networks and applied to image-based document
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analysis [45]. In 2006, the training problem for Deep Neural Networks is solved by the Hinton

Lab [31] using a greedy algorithm.

There was an overhyping of capabilities and the actual architectures could not deliver be-

cause of limitations of training time. These fell out of fashion until 2012, with the ImageNet [67]

challenge. Here, deep neural networks were trained on vast datasets in new computational archi-

tectures, GPUs (graphics processing units). The challenge evaluates algorithms for image clas-

sification and object detection at large scale, thus requiring complex solutions. This culmination

of big data, big label datasets, and much more powerful computers that could facilitate the train-

ing of deep neural network architectures was the reviving point for neural networks. In 2012 the

community was surprised by how significant the performance improvement in neural networks

had become. AlexNet [44] reduced the error rate by roughly half (from 26.2% to 15.3%) of the

previous state-of-the-art in this image classification challenge using Convolutional Neural Net-

works. Since then, in a very short period, neural networks have risen to the top of the performance

metrics [28] [34] in many challenges both in speech recognition, natural language processing, ma-

chine translation, and image classification. Now they are setting the standard for what is possible

in these and other applications where you have huge data sets and you want to do arbitrary function

approximation or interpolation based on your training data set.

Neural networks are inspired in principle by biological systems [68]. Human motion and deci-

sion making are controlled by its brain, with a network of neurons that are performing incredibly

complex tasks. There is a lot of research in neuroscience and computer science fields to see what

kind of connections and comparisons we can make. What can we learn from biological systems

that will help our neural networks? What can we learn when we build and design these neural

networks that can teach us about these biological systems? This is inspired by visual systems [21],

in particular this kind of multi-layered information processing architectures where you take very

high-resolution information and pass it through layers of abstraction [49]. Humans can easily

detect objects in motion and abstract what a certain collection of pixels represents, based on our

previous experiences and abstractions. That is the kind of process we want our neural network

to be able to do: take a complex input data and distill out through layers and processing different

abstractions that we can use to build models.

2.2.1 What they are

Neural networks are at the lowest level consisted of neurons. These units take two or more inputs,

perform mathematical operations using them – typically a weighted average – and produce one

output. Each input is affected by its weight and the result of the sum is tuned with a bias. The final

result is then used as an input to an activation function which normalizes it to a certain range. The

sigmoid function is commonly used:

which defines the output to be in the range [0,1]. This process is known as feedforward, where

the data flows in only one direction. This basic unit is called perceptron [55], a mathematical

model of the biological neuron. A neural network is a group of connected perceptrons. There

are an input and an output layer, and at least one hidden layer. Shallow neural networks have
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Figure 2.1: sigmoid function that is widely used in classification problems. It outputs values
between 0 and 1 and is nonlinear, so we can combine it with other sigmoid functions and stack
layers.

one hidden layer as opposed to Deep Neural Networks (DNN), which have several and often of

different types. Multi-layer Perceptrons (MLPs) are a basic type of feedforward neural networks

and are used for simple tasks. MLP can have several layers, whilst in DNN we assume there is a

considerable number of layers and perceptrons.

Neural Networks use the gradient descent method to find an objective function’s local min-

ima. Having a long training time has a drawback, we use optimizers to train these networks, for

example, the Stochastic Gradient Descent algorithm (SGD) [7]. Using backpropagation [66] the

neural network knows how every node is responsible for the total loss and takes action updating

weights accordingly [3]. The step size chosen during training is known as learning rate, it affects

how much the weights are updated.

The human visual processing system is more similar to Convolutional Neural Networks (CNNs)

than DNNs. They are mostly used for image/video tasks and use filters and pooling to extract fea-

tures from the raw data. They make use of the convolutional layer, where filters are applied to an

image in several windows, the sliding through the image is known as convolution. The pooling

layer – or down-sampling – is a layer in which the dimension of the feature maps is reduced, hav-

ing less computational demand and parameters. The final layer is the output layer, wherein the

case of classification, the score of each class is computed.

Some popular state-of-the-art CNN architectures include:

• AlexNet [44], a large, deep CNN introducing the dropping out of nodes to reduce overfitting;

• VGGNet [70] asserts the depth of a network as a critical aspect to achieve better performance

in CNNs;

• GoogLeNet [72] presented a less computational complex model with the concept of “In-

ception Layers” that within the same layer deploy in parallel multiple convolutions with
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multiple pooling and filters layers simultaneously;

• DenseNet [34] was named because of the dense connectivity between layers. The outputs

of each layer are connected with all successor layers;

• ResNet [28] is a traditional feedforward network with emphasis on the depth that uses resid-

ual functions concerning the layer inputs for learning, these blocks allow the flow of infor-

mation from initial layers to last layers;

• MobileNets [33] are lightweight deep neural networks, using hyperparameters to work on

different mobile phones while maximizing accuracy;

• EfficientNet [73] that creates a compound scaling hyperparameter affecting three dimen-

sions of a network: width, depth and resolution;

• Xception [11] uses depth-wise separable convolution layers, while being based on GoogLeNet

(also known as part of the Inception family of architectures);

• ResNeXt-50 [85] is related to ResNets and explores the concept of “cardinality” which

describes the repetition of a building block with the aggregation of transformations of the

same topology.

Human thinking has implicit previous knowledge drawn from the past. Traditional neural

networks are not prepared to handle historical information. Both their input and output are fixed-

size vectors and have their computational steps also fixed (number of layers). In Recurrent Neural

Networks (RNNs), a loop passes the information from one step of the network to the next [37].

To compute an output, they use processed information from previous time steps. They are mostly

used for sequential data, allowing input of any length. Plain RNNs suffer from the vanishing

gradient problem, where for very big sequences the gradient is too small to update the weights [60].

Different solutions have been proposed to solve this issue. The following examples are two of the

most commonly used:

• Long Short-Term Memory (LSTM) [23] is based on a cell that remembers values over dif-

ferent time intervals, using three gates to regulate information flow (input, output, forget

gates);

• Gated Recurrent Unit (GRU) [13] is similar to LSTM with fewer parameters and less com-

putationally expensive, using a simple update gate that combines the input and forget gates.

These are layers that can be combined with convolutional layers. Video analysis and text

processing are some of the applications.

More recently, Temporal Convolutional Networks [4] (TCNs) have achieved good perfor-

mances in sequence modeling tasks. TCNs take a sequence of a given length and produce an

output of the same length whilst in RNNs it can also be larger or smaller. Even though they use
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1D convolutions, these are causal, which implies that the information from the future to the past

is not lost. These convolutions use elements from a moment in time m and earlier in the previ-

ous layer to operate. Because the filters are shared across a layer, parallelism is possible, and the

required memory for training is reduced. More recently, the Transformers [79] were shown to be

superior in quality, more parallelizable because they can process unordered sequential data and

require less time to train.

2.2.2 How they work

The learning part of the process is the training of the neural network. In this research, mostly su-

pervised learning methods with fully labeled data will be used so we focus on processes involving

those techniques. Firstly, the network is fed with training data, that traverses through the layers

until its final prediction is calculated.

2.2.2.1 Layers

All the neurons, or at least part of them, affect their respective inputs from the previous layer and

pass them to the next layer. At the end of this process, the final layer will output a prediction for

the input example.

Batch normalization [36] is a technique that for each mini-batch standardizes the inputs to a

layer. The reasons for the effectiveness to improve stability, speed, and performance of ANN’s

remain under discussion but the effect is evident.

2.2.2.2 Activation Functions

Activation functions define the output of a neuron. We have mentioned the sigmoid function 2.1

but there are more:

• linear: identity function;

• tanh: hyperbolic tangent function, is a rescaling of the sigmoid function with range [-1,1];

• softmax: probability distribution of classes where the sum is 1 and the range is [0,1];

• ReLU(rectified linear unit): activates a node if the input is above a certain threshold.

These functions are not very complex because they are computed at every neuron. Their

derivatives can also be used. This means activation functions have an impact on the computational

cost of the network.

2.2.2.3 Losses

A differentiable loss function is defined to estimate the error, to compare the prediction to the

correct result. An error of – in a perfect world – zero, means that our predicted values do not
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diverge from the real values. This is never the case in Machine Learning, although the goal is to

minimize this function. To improve the predictions, the weights of the neuron connections will

be fine-tuned during training. Once this loss is calculated, its value is propagated backward, thus

backpropagation.

The total signal of the loss is distributed according to the relative contribution of each neuron.

The weights of connections between neurons are adjusted based on this information using the gra-

dient descent technique. This helps detect which direction to shift the weight, using the derivative

of the loss function. The process can be applied to batches of data that we feed the network in

each iteration eventually passing through all the dataset – epoch.

2.2.2.4 Optimizers

To minimize the loss, we can use optimizers to adjust weights and biases. These parameters are not

solvable analytically but can be approached using optimization algorithms such as the mentioned

stochastic gradient descent where a few samples are randomly selected in each iteration to reduce

computational costs.

Parameters are configurations internal to the model whose values are estimated from the data

whilst hyperparameters are configuration variables external to the model and are specified by the

user. This is where the creation of architectures in Deep Learning becomes complex, but human

learning – or experience – is key. Some of these hyperparameters include activation functions,

number of neurons, and number of layers at the topology level. At the learning algorithm level for

example the number of epochs, the batch size, the momentum, and the learning rate.

The learning rate decay decreases the learning rate epoch by epoch, which allows earlier faster

learning. It is progressively fine-tuned to ease the training convergence to a loss function min-

imum. In real cases, this function is complex and the optimization process may be stalled on a

local minimum, leading to sub-optimal results. Momentum addresses this problem by taking a

weighted average – constant with range [0,1] determined by the user – of the previous steps to

determine the direction of the gradient.

Although not exactly a hyperparameter, the initialization of parameter weights is important to

reduce the number of epochs needed to train deep networks and stabilize the learning process.

2.2.3 Computer Vision

Computer Vision is a field of AI that makes use of computing systems to interpret the real world,

by locating and identifying objects accurately through images and video. Deep Learning is widely

used in Computer Vision [71] with applications in important areas like Medicine, Autonomous

Vehicles, Military, and Machine Vision. Before deep learning, traditional computer vision meth-

ods relied on hand-crafted features, which are not feasible for the current problems the field tries

to tackle.

Some Computer Vision problems approached by Deep Learning [80]:

• Image Classification: predict the probability of an object present in an image, labeling;
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• Object Detection: detecting instances of objects inside images and/or video;

• Image Retrieval: a collection of images having at least the one same object;

• Semantic Segmentation: linking each pixel in an image with one class label;

• Object Tracking: following a specific object in a scene;

• Action and Activity Recognition: sports and urban settings using input video sequences or

images;

• Various Biometrics Tasks: from how to recognize subjects, to pose estimation and tracking,

crowd counting, gaze estimation, etc.

These are some of the problems currently approached with deep learning. CNN’s are used

in most of them because of feature learning as a unique capability although they rely heavily on

labeled data [71]. Being one of the most popular fields to deal with real-world problems [80],

computer vision is an optimal field to one who studies neural networks. Their extensive use in the

field and the wide variety of datasets (Section 3.5) makes Computer Vision an interesting domain

to study.

2.3 Randomly Wired Neural Networks

Neural networks are inspired by the brain, although when we are young we lack the experience to

learn and we rely on innate behaviors that are already present at birth. This suggests that animals

are born with highly structured brain connectivity, enabling them to learn rapidly [89], hence

biologists suggest the importance of wiring when building Artificial Neural Networks.

Searching the possible space of wirings – or connectivity – of neural networks can lead to more

efficient solutions [83]. In [83], the typical notion of layers is relaxed and, although the wiring

is fixed, as weights are modified during training, the higher k weights are dynamically selected.

This threshold edge swap allows learning the connectivity as it learns the network parameters.

The importance of wiring is also emphasized when using randomly initialized weights in network

architecture, performing no training, and still achieving success [22] in simple tasks.

Randomly wired hardware and its implementation in software (i.e. artificial neural networks)

were an interest in the early stages of artificial intelligence. In the resurgence era of hardware,

engineers were inspired by randomly wired hardware to apply them in software. Alan Turing

proposed unorganized machine [75], a concept comparable to a model of randomly connected

neural networks. In the 1950s, Rosenblatt [65] built a visual recognition machine based on an

array of photocells that was randomly connected and Minsky [56], implemented, using vacuum

tubes, one of the first learning neural network machines.

Random graphs are also generally studied in graph theory because they show different proba-

bilistic behaviors that depend on the algorithm [5]. In graph theory, a general graph defines a triple
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G = (V,E,φ) where V and E describe vertices (nodes) and edges (links), respectively. φ is a func-

tion that maps edges to an unordered pair of vertices. They are linked to natural phenomena and

are thus an effective means to model real-world problems like a computer or social networks [86].

The Facebook AI Research team recently presented a study [86] exploring the design of

network generators based on graph theory algorithms to generate random graphs. Searching for

connectivity patterns at random is less design demanding than conducting a manual architecture

construction.

Previously the main direction with ANN studies would rely on network engineering and learn

millions of parameters (features, internal filters, and classifier weights) while this study uses net-

work generator engineering to learn the networks themselves.

2.3.1 Automatic generation of networks

A network generator is defined as g : Θ 7→N , where g is a mapping from a parameter space Θ

to a space of neural architectures N . The parameters θ ∈ Θ define a network instance. E.g., in a

ResNet [28] generator some of the parameters could be the depth, width, number of stages, etc.

For g(θ), mapping is deterministic, meaning we get a consistent output (network architecture

N) when introducing the same input (parameters theta). To build a random family of networks,

a seed s is introduced. It is obtained through a pseudo-random number generator and its value

is changed while keeping the parameters θ fixed. g(θ ,s) is referred to as a stochastic network

generator.

In [91] this type of network generators were explored but contained several generation rules

applied to the network mapping coupled with the use of LSTM and other hyperparameters. The

resulting network space is highly restricted by human design, involving a strong prior that reduces

the subset of all possible graphs.

The (stochastic) network generator encapsulates different operations:

• Generating random graphs;

• Mapping graphs into a neural network;

• Placing node and edge operations;

• Introduce heuristic rules.

A random graph helps reduce human design in a neural network. Usually, CNN follows a

sequential pre-determined order when performing its operations. In Figure 2.2, the different nodes

would follow this rule. The input, e.g. an image, is passed to the first node and follows an order

accordingly. Randomly wired neural networks have a different approach, where the network’s

flow is arbitrarily defined while still being sequential.
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Figure 2.2: 8 nodes that represent layers

2.3.2 Random Graph Models

To generate general graphs, three classic graph generating algorithms from graph theory are used:

ER (Erdős–Rényi) [18], BA (Barabási-Albert) [2] and WS (Watts-Strogatz) [81]. These random

graph models generate undirected graphs with certain probabilistic characteristics inherent to each

of them. Different graph output and network properties are expected using the same input. To

follow a probability distribution is considered to be a prior of the network generator even though

the neural networks are random.

The ER [18] model uses a probability p to (randomly) construct edges between pairs of nodes,

each edge being completely independent of all other edges. Iterating through all pairs of nodes,

any graph G with N nodes can be generated with this model, including disconnected graphs.

The BA [2] model adds new nodes sequentially. These are attached with m edges with a

preferential attachment for existing nodes with a high degree. The degree is the number of edges

linked to a node in a graph. Certain areas of the network might be heavily connected and can

quickly accumulate more connections. The degree distribution converges to a Poisson distribution,

unlike real-world scale-free networks that follow a power law.

The WS [81] algorithm receives as input an even number k. Each of the nodes in the ring

is connected to k/2 neighbors on both sides, meaning if k = 2 only the immediate neighbors

are connected. The graph G is then a ring lattice, having a regular wiring configuration. The

other input, p, represents the probability of rewiring. It traverses along the edges in a clockwise

direction, selects an edge with p probability, and randomly chooses where to rewire to.

Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks,
spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely
regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes.

Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of
disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call
them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the
worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world
networks.

Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In
particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ABSTRACT

To interpolate between regular and random networks, we consider the following random rewiring procedure.

This construction allows us to 'tune' the graph between regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate region 0 < p < 1,
about which little is known.

ALGORITHM

We start with a 
ring of n vertices

n = 12

where each vertex
is connected to its 
k nearest neighbors

k = 4

like so. We choose a vertex, and 
the edge to its nearest 
clockwise neighbour.

With probability p, we reconnect 
this edge to a vertex chosen 
uniformly at random over the

entire ring, with 
duplicate edges 
forbidden. Other- 
wise, we leave 
the edge in place.

We repeat this process by 
moving clockwise around 
the ring, considering each

vertex in turn 
until one lap 
is completed.

Next, we consider the 
edges that connect vertices 
to their second-nearest 
neighbours clockwise.

As before, we randomly 
rewire each of these 
edges with probability p.

We continue this process, 
circulating around the ring and 
proceeding outward to more 
distant neighbours after each 
lap, until each original edge 
has been considered once.

As there are nk/2 edges in 
the entire graph, the rewiring 
process stops after k/2 laps.

For p = 0, 
the ring is 
unchanged.

As p increases, the 
graph becomes 
increasingly disordered.

p=0.15

At p = 1, all 
edges are re- 
wired randomly.

We quantify the structural properties of these graphs by their characteristic path length L(p) and clustering coefficient C(p).
L(p) measures the typical separation between two vertices (a global property). C(p) measures the cliquishness of a typical neighbourhood (a local property).

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people.
Cv reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

METRICS

L is defined as the number 
of edges in the shortest 
path between two vertices

shortest path
is 1 edge

shortest path
is 3 edges

averaged over all 
pairs of vertices.

C is defined as follows. 
Suppose that a vertex v 
has kv neighbours.

kv = 4 neighbours

Then at most kv (kv – 1) / 2 edges 
can exist between them. (This 
occurs when every neighbor of

v is connected 
to every other 
neighbour of v.)

at most 6 edges between 4 neighbours

Let Cv denote the fraction of 
these allowable edges that 
actually exist. Define C as the

average of Cv 
over all vertices.

4 out of 6 edges exist. Cv = 4/6 = 0.67

SMALL
WORLDS

The regular lattice at p = 0 is 
a highly clustered, large world 
where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
neighbourhoods of neigh- 
bourhoods and so on.

5 hops to 
neighbourhood

shortcut to 
neighbourhood

By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.

The 4 neighbors of 
each vertex have 
3 out of 6 edges 
among themselves. 
C = 3/6 = 0.5

With shortcut, 
this is still true 
for almost 
every vertex.
C = 0.48

Collective dynamics of ‘small-world’ networks
Duncan J. Watts & Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Figure 2.3: The impact of probability p on the WS model [81].

Figure 2.3 shows the effect of p in the WS model when the value k is set to 2 (independent).

On the left p = 0, so the original ring remains unaffected. The middle graph has a p set to 0.15

and p = 1 for the one on the right. The graph becomes more tangled as we increase p, finally
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having all edges randomly wired with p set to one. Still, some of the edges might rewire to the

same node.

After a graph iteration, we have an undirected connected graph G . The nodes are sequentially

labeled to convert the graph into a directed acyclic graph, more akin to a neural network structure.

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

CONV-RELU-BN

Input Image

OUTPUT

0

1

2

6

3

5
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1 of 1 2020-02-08 12:07

Figure 2.4: WS random graph model generated undirected graph.

Using the WS algorithm on the nodes in Figure 2.2, we obtain a small randomly wired neural

network in Figure 2.4. We can observe that, regarding edge operations, the directed edges are

responsible for data flow and the output of one node can be shared with multiple nodes. WS was

the model that obtained the best results on the paper [86].

While BA can be described by preferential attachment, the WS model is limited by an un-

realistic degree distribution and a fixed number of nodes. The network is fairly homogeneous

topologically, where all nodes yield a kindred degree. Having these biases supports the six de-

grees of separation [81] theory, where an agent in a network is only 6 links away from any other

agent in the network. [47]. This model is described as a small-world network where most nodes

are not each other’s neighbors but any node’s neighbors are probably neighbors of each other, thus

one node can reach any other through a short number of sequential connections.

After a general graph is generated there’s a conversion from an undirected graph to a DAG

(Directed Acyclic Graph). In this process, simple heuristics are used. All nodes in a graph are

assigned an index – indexing strategy varies with random graph model – and the direction of every
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edge is set accordingly from the smaller indexed node to the larger. This operation excludes the

possibility of having a cycle in the resulting DAG.

A. Appendix

Mapping a NAS cell to a graph. If one maps a combin-
ing op (e.g., addition, concatenation) to a node, and a unary
transformation (e.g., 3×3 conv, 5×5 conv, identity) to an
edge (Figure 7, right), then all cells in the NAS search space
share this property: internal nodes all have precisely input
degree 2 and output degree 1. This is an implicit prior in-
duced by the design.

The mapping from the NAS cell to a graph is not unique.
One may map both combining and unary transformations to
nodes, and data flow to edges (Figure 7, left). The above
property on the NAS search space can be instead described
as: internal merging nodes all have precisely input degree 2
and output degree 1.

hi

hi-1

...

hi+1

concat

sep
3x3

avg
3x3

avg
3x3

sep
5x5

sep
3x3

iden
tity

iden
tity

sep
3x3

sep
5x5

avg
3x3

add add add addadd

Figure 7. Mapping a NAS cell (left, credit: [56]) to a graph (right).

Converting undirected graphs into DAGs. ER, BA, and
WS models generate random undirected graphs. We convert
them to DAGs using a simple heuristic: we assign indices
to all nodes in a graph, and set the direction of every edge
as pointing from the smaller-index node to the larger-index
one. This heuristic ensures that there is no cycle in the re-
sulted directed graph. The node indexing strategies for the
models are — ER: indices are assigned in a random order;
BA: the initial M nodes are assigned indices 1 to M , and
all other nodes are indexed following their order of adding
to the graph; WS: indices are assigned sequentially in the
clockwise order.
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Figure 2.5: DAG mapping from a NAS cell [91]

In Figure 2.5 we see an example of a DAG on the right, containing no cycles and unique

input/output nodes. On the left, we have a NAS cell, where the data flow is mapped as edges, and

the transformations are mapped to nodes, akin to randomly wired neural networks.

2.3.3 Node Transformations

The node operations in the randomly wired neural networks include a weighted sum that combines

the input edges. A sigmoid function (Figure 2.1) is applied to keep the weights positive – aggre-

gation. Following, a ReLU-Conv-BatchNorm triplet transforms the previously aggregated data –

transformation. And finally, the output edges send out the same copy of the obtained transforma-

tion – distribution.

There are some desirable properties in these blocks. The additive aggregation compared to

concatenation along the channel axis makes sure that the focus of the architecture is on the wiring

rather than having a large input degree [83]. To allow data combination between nodes, there

should be the same output/input number of channels.

These blocks offer some fine properties:

• aggregation preserves the number of channels (input vs output), limiting the computation of

the following convolution. The importance of a node can increase with its input degree due

to computation, independent of wiring;

• transformation to allow distribution, the channel count is constant between input and output

so the number of FLOPs (floating point operations) is unchanged;

• direct parameter influence on aggregation and distribution is reduced.
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×w0

×w1

×w2

conv

Figure 2. Node operations designed for
our random graphs. Here we illustrate a
node (blue circle) with 3 input edges and
4 output edges. The aggregation is done
by weighted sum with learnable positive
weights w0, w1, w2. The transformation
is a ReLU-convolution-BN triplet, sim-
ply denoted as conv. The transformed
data are sent out as 4 copies.

emphasis added). To investigate how important the gener-
ator design is, it is not sufficient to compare different opti-
mizers (sophisticated or random) for the same NAS genera-
tor; it is necessary to study new network generators that are
substantially different from the NAS generator.

This leads to our exploration of randomly wired neu-
ral networks. That is, we will define network genera-
tors that yield networks with random graphs, subject to
different human-specific priors. To minimize the human
bias from us—the authors of this paper—on the prior, we
will use three classical random graph models in our study
([6, 1, 50]; §3.3). Our methodology for generating ran-
domly wired networks involves the following concepts:

Generating general graphs. Our network generator starts
by generating a general graph (in the sense of graph theory).
It generates a set of nodes and edges that connect nodes,
without restricting how the graphs correspond to neural net-
works. This allows us to freely use any general graph gen-
erator from graph theory (ER/BA/WS). Once a graph is ob-
tained, it is mapped to a computable neural network.

The mapping from a general graph to neural network op-
erations is in itself arbitrary, and thus also human-designed.
We intentionally use a simple mapping, discussed next, so
that we can focus on graph wiring patterns.

Edge operations. Assuming by construction that the graph
is directed, we define that edges are data flow, i.e., a directed
edge sends data (a tensor) from one node to another node.

Node operations. A node in a directed graph may have
some input edges and some output edges. We define the
operations represented by one node (Figure 2) as:

- Aggregation: The input data (from one or more edges) to
a node are combined via a weighted sum; the weights are
learnable and positive.3

- Transformation: The aggregated data is processed by a
transformation defined as a ReLU-convolution-BN triplet4

[12]. The same type of convolution is used for all nodes,
e.g., a 3×3 separable convolution5 by default.

3Applying sigmoid on unrestricted weights ensures they are positive.
4Instead of a triplet with a convolution followed by BN [17] then ReLU

[32], we use the ReLU-convolution-BN triplet, as it means the aggregation
(at the next nodes) can receive positive and negative activation, preventing
the aggregated activation from being inflated in case of a large input degree.

5Various implementations of separable convolutions exist. We use the

- Distribution: The same copy of the transformed data is
sent out by the output edges of the node.

These operations have some nice properties:
(i) Additive aggregation (unlike concatenation) main-

tains the same number of output channels as input channels,
and this prevents the convolution that follows from growing
large in computation, which may increase the importance of
nodes with large input degree simply because they increase
computation, not because of how they are wired.

(ii) The transformation should have the same number
of output and input channels (unless switching stages; dis-
cussed later), to make sure the transformed data can be com-
bined with the data from any other nodes. Fixing the chan-
nel count then keeps the FLOPs (floating-point operations)
and parameter count unchanged for each node, regardless
of its input and output degrees.

(iii) Aggregation and distribution are almost parameter-
free (except for a negligible number of parameters for
weighted summation), regardless of input and output de-
grees. Also, given that every edge is parameter-free the
overall FLOPs and parameter count of a graph are roughly
proportional to the number of nodes, and nearly indepen-
dent of the number of edges.

These properties nearly decouple FLOPs and parameter
count from network wiring, e.g., the deviation of FLOPs is
typically±2% among our random network instances or dif-
ferent generators. This enables the comparison of different
graphs without inflating/deflating model complexity. Dif-
ferences in task performance are therefore reflective of the
properties of the wiring pattern.

Input and output nodes. Thus far, a general graph is not
yet a valid neural network even given the edge/node opera-
tions, because it may have multiple input nodes (i.e., those
without any input edge) and multiple output nodes. It is de-
sirable to have a single input and a single output for typical
neural networks, e.g., for image classification. We apply a
simple post-processing step.

For a given general graph, we create a single extra node
that is connected to all original input nodes. This is the
unique input node that sends out the same copy of input
data to all original input nodes. Similarly, we create a sin-
gle extra node that is connected to all original output nodes.
This is the unique output node; we have it compute the (un-
weighted) average from all original output nodes. These
two nodes perform no convolution. When referring to the
node count N , we exclude these two nodes.

Stages. With unique input and output nodes, it is sufficient
for a graph to represent a valid neural network. Never-
theless, in image classification in particular, networks that

form of [5]: a 3×3 separable convolution is a 3×3 depth-wise convolution
followed by a 1×1 convolution, with no non-linearity in between.

Figure 2.6: Node operations for random graphs [86]. Input edges produce an (additive) aggrega-
tion, conv performs a Conv-ReLU-BatchNorm transformation block and the output edges repre-
sent the data flow distribution.

The deviation of FLOPs is≈2% between random network instances which are going to be dif-

ferent based on the pseudo-random generator’s seed. This means we can compare graphs indepen-

dent of their complexity and that the wiring pattern properties can be reflected in the performance.

2.3.4 Evaluation

We evaluate the predicted connection weights (labeled in Figure 2.6) with our machine learning

algorithms through the Root Mean Squared Error (RMSE) metric:

RMSE =

√
1
n

Σn
i=1

(di− fi

σi

)2
(2.1)

where a result closer to 0 suggests a better fit to the data. This is calculated using the scikit-

learn [61] Python library that also provides the methods for building the Random Forest Regressor.

Elastic net regularization and Support Vector Machines are also included in this library.

2.3.5 Structure Priors

Randomly wired neural networks are presented in two complexity regimes: small and regular. The

difference between these is the number of stages that are represented through a random graph: 3

for the small complexity regime and 4 for the regular complexity regime. In common they have

a softmax classifier that performs global average pooling and the first stage, a Conv-BatchNorm

convolutional block with an input size of 224 by 224 given the ImageNet [67] usage.

Maintaining the input resolution through the stages is not ideal. The different stages down-

sample the original signal progressively and the channel count is also doubled when passing

through each random graph.

Since the focus of the research in [86] relies on neural network’s connections, some restrictions

were applied:

• ReLu-Conv-BatchNorm triplet blocks are used;
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• weighted sum is performed in the aggregation of tensors, being always positive;

• network stages remain the same in every random network instance.

The structure is analogous to ResNet [28] and is one of the restrictions of these networks. In

Figure 2.7 we can see how the stages are connected by the generated random graphs and how the

connection between stages is done. Because a general random graph is not a valid neural network

– multiple input and/or output nodes possible, two extra nodes are added post graph generation.

One node is the unique input node, connected to all original input nodes, and the other is the

unique output node that aggregates all original output nodes. These are excluded on the node

count N and have no convolution. The input node sends copies of itself to the original input nodes

and the output node calculates the average of the original output nodes.

Exploring Randomly Wired Neural Networks for Image Recognition

Saining Xie Alexander Kirillov Ross Girshick Kaiming He

Facebook AI Research (FAIR)

Abstract

Neural networks for image recognition have evolved
through extensive manual design from simple chain-like
models to structures with multiple wiring paths. The suc-
cess of ResNets [11] and DenseNets [16] is due in large
part to their innovative wiring plans. Now, neural architec-
ture search (NAS) studies are exploring the joint optimiza-
tion of wiring and operation types, however, the space of
possible wirings is constrained and still driven by manual
design despite being searched. In this paper, we explore a
more diverse set of connectivity patterns through the lens of
randomly wired neural networks. To do this, we first define
the concept of a stochastic network generator that encap-
sulates the entire network generation process. Encapsula-
tion provides a unified view of NAS and randomly wired net-
works. Then, we use three classical random graph models
to generate randomly wired graphs for networks. The re-
sults are surprising: several variants of these random gen-
erators yield network instances that have competitive ac-
curacy on the ImageNet benchmark. These results suggest
that new efforts focusing on designing better network gen-
erators may lead to new breakthroughs by exploring less
constrained search spaces with more room for novel design.

1. Introduction

What we call deep learning today descends from the
connectionist approach to cognitive science [38, 7]—a
paradigm reflecting the hypothesis that how computational
networks are wired is crucial for building intelligent ma-
chines. Echoing this perspective, recent advances in com-
puter vision have been driven by moving from models with
chain-like wiring [19, 53, 42, 43] to more elaborate connec-
tivity patterns, e.g., ResNet [11] and DenseNet [16], that are
effective in large part because of how they are wired.

Advancing this trend, neural architecture search (NAS)
[55, 56] has emerged as a promising direction for jointly
searching wiring patterns and which operations to per-
form. NAS methods focus on search [55, 56, 33, 26, 29,
27] while implicitly relying on an important—yet largely
overlooked—component that we call a network generator
(defined in §3.1). The NAS network generator defines a
family of possible wiring patterns from which networks

classifier classifier classifier

conv1 conv1 conv1

Figure 1. Randomly wired neural networks generated by the
classical Watts-Strogatz (WS) [50] model: these three instances
of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0%
classification accuracy on ImageNet under a similar computational
budget to ResNet-50, which has 77.1% accuracy.

are sampled subject to a learnable probability distribution.
However, like the wiring patterns in ResNet and DenseNet,
the NAS network generator is hand designed and the space
of allowed wiring patterns is constrained in a small subset
of all possible graphs. Given this perspective, we ask: What
happens if we loosen this constraint and design novel net-
work generators?

We explore this question through the lens of randomly
wired neural networks that are sampled from stochastic
network generators, in which a human-designed random
process defines generation. To reduce bias from us—the
authors of this paper—on the generators, we use three clas-
sical families of random graph models in graph theory [51]:
the Erdős-Rényi (ER) [6], Barabási-Albert (BA) [1], and
Watts-Strogatz (WS) [50] models. To define complete net-
works, we convert a random graph into a directed acyclic
graph (DAG) and apply a simple mapping from nodes to
their functional roles (e.g., to the same type of convolution).

1

ar
X

iv
:1

90
4.

01
56

9v
2 

 [
cs

.C
V

] 
 8

 A
pr

 2
01

9

Figure 2.7: WS generated regular complexity regime networks [86]

The graphs included in the networks of Figure 2.7 were obtained using the same model, WS,

but with different seeds between each network. In one single network, with the same generator

parameters, the graphs are not similar to each other. This shows that even with the same param-

eters θ , including the seed s, a graph, and a network are not reproducible. Between the three

networks, the seed was different while the performance on ImageNet [67] was still almost identi-

cal – 79,1%, 79,1%, and 79,0% respectively. As the authors report [86], random search on the

seed s is unfruitful due to a minimal accuracy variation.

2.3.6 Process automatization

Data analysis is an emerging tool in many organizations, which can be used to improve businesses

in several areas: products, decisions, personnel, and client evaluations[76]. Machine learning

models are frequently used for these tasks but require expert knowledge to be applied success-

fully, thus the automatization is a way to abstract difficult concepts. Automated Machine Learning
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(AutoML) aims to reduce as much as possible the human intervention in producing machine learn-

ing models, including deep learning models [29].

As the process of building machine learning models is fundamentally iterative, through hyper-

parameter tuning, feature selection, and performance comparisons, it can benefit a great deal from

automation [76]. With AutoML, a practitioner’s focus shifts from tedious and slow tasks to highly

creative tasks that deliver faster results, and allow earlier feedback of the architecture’s predictive

power [76].

2.4 Established Algorithms

Neural Architecture Search has been described as a joint optimization of both the operations in a

node and the way the nodes are connected [90]. Usually, these aspects of a network involve human

design and even in the NAS search space, e.g. NASNet [91], there is still a considerable bias from

the designers.

Randomly wired neural networks relax even more the priors by producing more flexible net-

works through the network generator g. They create families of architectures with a larger space

of possible neural networks by exploring the parameters of g.

Randomly wired neural networks [86] were partly created because of the success of the previ-

ously mentioned ResNet [28] and DenseNet [34] through their innovations in the wiring patterns.

2.4.1 NAS

NAS is categorized into two approaches: optimization algorithms and model structures [29]. For

completeness, we reference model structures where a combination of a pool of primitive operations

(pooling, convolution, concatenation, etc) generates a model. Representative structures include

the generation of the entire structure, a cell-based structure, a hierarchical structure (leveling a cell

structure), and network morphism by transferring a network’s information into a new one.

The state-of-the-art NAS research emphasizes optimization methods, although the search space

is not particularly widened in these approaches, thus the set of feasible solutions is limited [76].

The methods are useful for comparisons and further optimization but the search space is nonethe-

less defined by the network generator [91]. Some of those methods include:

• Reinforcement Learning [72] [62] [91] relies on RNNs to generate networks and a reward

network, that trains and evaluates generated networks, updating the controller according to

the reward (for example, accuracy);

• Progressive [50] using a sequential algorithm;

• Gradient-based [51] that can reduce hyperparameter search time [76];

• Weight-sharing [12] where filters are shared between parts of the image;
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• Evolutionary [62] [78] [64] use genetic based algorithms to achieve state-of-the-art perfor-

mance;

• Grid/Random Search [48] [69] being one of the most used methods when hyperparameter

search started [76];

• Bayesian Optimization [82] that builds a probability model to propose more efficient choices

in hyperparameters to evaluate [29].

In random wired neural networks, the focus turns to the grid and random search. Grid search

defines regular intervals – a grid – to divide the space of hyperparameters, choosing the best

performing values in model training. Random search can test more hyperparameters and since not

all parameters have the same level of importance [10], the search is more practical and efficient.

Grid search can be used for the exploration of the number of filters, nodes, and stages, which is

essentially trial and error. Random search is performed by exploring values for the random seed

of the network generator in [86] but was revealed to be unfruitful.

2.4.2 NAS state-of-the-art

Neural Architecture Search was first proposed in 2016 [90]. The main motivation for NAS is that

architecture engineering is often heavily necessary to build successful neural networks, which can

be hard to design. A Recurrent Neural Network with reinforcement learning was used to generate

model descriptions of neural networks in [90]. The RNN is then trained to maximize the accuracy

on a validation set, and it proved to rival the best hand-designed architectures.

NAS searches for the best possible neural network architecture from the pool of “building

blocks” available. These are defined manually and the algorithm searches for an ideal combination

that obtains a certain accuracy. It uses a gradient-based method to update the weights towards its

goal, adjusting the building blocks as necessary. This means that we have a limited search space,

and the networks end up being similar to the existing state-of-the-art.

In 2018 [91] appears an evolution of the previous algorithm where the idea is to, directly

on the dataset of interest, learn the model architectures. Being a computationally demanding

task, it is more feasible to search for a building block on smaller datasets. Later on, transfer

that architectural block to a larger dataset, thus exposing the “NASNet” search space that enables

transferability. With fewer parameters and fewer floating-point operations, it achieved state-of-

the-art performances.

Progressive Neural Architecture Search (PNAS) [50], instead of reinforcement learning, uses

a Sequential Model-based Optimization (SMBO). This could be viewed as a greedy algorithm,

where the building blocks are searched in increasing complexity order, making the search smarter

and it is significantly more efficient than the original although not reducing the search space.

Another approach is to use transfer learning. This means each time we train a model, we use

transfer learning to converge faster. Efficient Neural Architecture Search (ENAS) [62] is an exam-

ple, where the trained weights of each model are not wasted and instead are shared between models
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instead of training to convergence from scratch. The computational expense is also significantly

lower than the previously mentioned methods.

Li and Talwalkar [48] defined NAS as a problem of hyperparameter optimization. A competi-

tive baseline for this is random search, using early-stopping – removes the need to manually set the

number of training epochs by saving the best model at the end of each epoch – and weight-sharing,

achieving results comparable to ENAS. They point out the lack of experimental reproducibility as

an obstacle to the slow progress of the research in the field due to the complexity of algorithms

and computational costs.

2.4.2.1 Resources

AwesomeNAS [14] holds a select list of the NAS state-of-the-art, including paper references and

code, when available. NAS is a field that is fastly growing and this is a tool for following the

developments in the field. Recently, Google has created the NASBench [24] [88] dataset, which

holds ≈ 400,000 unique neural networks that obey certain constraints. It maps CNN architectures

to their performances on CIFAR-10[42]. This dataset is continuously being updated as the field

progresses, suffering its last update with NASBench201[16].

2.4.3 Other Definitions in Machine Learning

2.4.3.1 Machine Learning Algorithm - Random Forest

In a Random Forest, decision tree predictors are combined [8]. Decision trees define split nodes

that test a feature and have a tendency for overfitting to the training set. An ensemble of individ-

ual decision trees cast a vote for a prediction and the majority result is the output. Each tree is

uncorrelated and a large number of them outperform individual trees because they prevent each

other’s errors. Bagging allows each tree to sample from the dataset randomly with replacement.

The sample size is constant across all trees.

2.4.3.2 Meta-learning

Using metadata obtained from machine learning experiments to perceive how learning occurs is

part of the process of meta-learning. The goal is to improve an inner algorithm by inducing its

behaviour with an outer algorithm [32]. The process then includes a learning subsystem. The

learning instances of the learning subsystem provide the data necessary for the base learning algo-

rithm to learn.
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Chapter 3

Methodology

In this Chapter, we delve into the technical part of our work. First, we present the requirements and

the environment of development. Following, the implementation is then described, as well as the

datasets used in this study. Furthermore, we describe the experimental setup and the optimization

approaches performed.

An empirical evaluation implies a study conducted through experimental means instead of a

theoretical approach. A good study of this sort is sustained by proper design and execution of the

evaluation procedures. In our case, we aim for the quantitative results of our observations of the

behavior of the randomly wired neural networks.

The results will allow us to evaluate and compare with existing networks. The methodology

then starts by searching for the established networks (Section 2.4), defining datasets for training

(Section 3.5), and comparing those networks among themselves. We then implement a network

generator, generating neural network architectures whilst collecting metadata, and finally derive

conclusions. This metadata also involves gathering the weights and respective biases during train-

ing and other data that can help us understand better how these networks achieve the reported

results [86].

Transfer learning can also be applied, where a neural network is set up with pre-trained

weights, skipping the computational cost of training from scratch. The pre-trained model chosen

should be of the same domain as the one we want to train and their use helps network generaliza-

tion and speeds up convergence [76]. The technique involves freezing weights and/or decreasing

the learning rate.

3.1 Developing Environment

The experiments were conducted using a Graphical Processing Unit (GPU) for faster training.

Recent work shows methods in Neural Architecture Search that make efficient use of GPU’s, e.g.

in [15] four hours of GPU using a gradient-based approach achieved state-of-the-art results. In

23
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this research we use a NVIDIA GeForce GTX 1080 [59], with 8 GiB of Random-access Memory

(RAM) and a memory speed of 14 Gb/s.

The GPU is installed in a Ubuntu [77] machine remotely accessible via SSH (Secure Shell).

We use PyCharm on a local Linux machine for Python programming, bidirectional remote access

and version control.

3.2 Requirements

Developed by Facebook’s AI Research lab, as well as Randomly Wired Neural Networks [86],

PyTorch is the main machine learning library used in this work. PyTorch Tensors are operable

with CUDA, a parallel computing platform created by NVIDIA, supported by our GPU. Similar

to NumPy arrays, these tensors handle multidimensional number arrays but with powerful accel-

eration.

Other than Python (version 3.7) itself, another main library is NetworkX [26]. This is a Python

package for generating, manipulating, and studying networks on several levels – structure, func-

tion, and dynamics. It proves useful both at the implementation phase, where we use it to generate

random graphs that define the wiring of the networks, and in the empirical evaluation process to

obtain graph metrics that help us interpret the complexity of a network and are used as input to

our optimizations.

3.3 Implementation

Randomly Wired Neural Networks do not have a publicly available source from the original au-

thors [86]. Thus, we implement our own version based on third-party code available on GitHub [38].

In our code, we have different files to host different functionalities:

• graph.py - allows us to generate a random graph, independent of the model (WS/BA/ER)

and their parameters – see Section 2.3.2. It is possible in this file to obtain information

about a graph based on nodes and/or edges, convert from an undirected graph to directed

and vice-versa, and load/store a graph from memory;

• model.py - defines a full randomly wired neural network, receiving the necessary parame-

ters. Small and regular regime networks (see Section 2.3.5) are supported;

• preprocess.py - loads datasets from memory with the corresponding parameters for each and

applies the necessary transformations;

• randwire.py - describes a single randomly wired neural network, corresponding to one stage

of the full network. It generates a general random graph expanded with unique output and

input nodes whose edges correspond to the data flow. The nodes are a class by themselves

to host the node operations – Conv-ReLU- BatchNorm Triplets;
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• test.py - runs experiments as the command of its arguments, including optimizing options;

• train_utils.py - utility functions for training manipulation and user interaction.

To create a randomly wired neural network we simply instantiate a Model with the user-defined

parameters. These involve:

• number of nodes – fixed at 32 in the original study;

• input and output channel count;

• graph generation model to use – WS/BA/ER in 2.3.2.

• complexity regime – small has 3 randomly wired network stages (see Table 3.1) and regular

has 4;

• seed s for randomization;

• p probability, for ER and WS (also uses k mean node degree);

• m initially connected nodes in case of BA algorithm;

• name – a string to represent identity.

The Model instructs the RandWire class to generate random general graphs that are converted

to a Directed Acyclic Graph. After this, the extra input and output nodes that connect the stages

(different random graph based networks) are added and operations within the nodes are built with

the ReLU-Conv-BatchNorm computational blocks (see Section 2.3.5). The weights of node con-

nections are all initialized to the value of 1. The stride of the nodes that are directly connected to

each input node is 2 and the number of channels is progressively doubled through each stage.

When training a neural network, we record several aspects that are important for the study:

• the neural network object (including weights, biases, structure, etc). PyTorch allows us to

save and load the models. This is useful when we want to further train or observe a network’s

(internal) state. Besides this, the file that holds the model records the epoch number and

accuracy of the highest obtained test accuracy;

• a CSV (Comma Separated Value) file which holds training information for every epoch,

including test accuracy, training loss, training accuracy, and the timestamp;

• a text file generated by NetworkX to save the graph structure. This is useful for visualization

and to load a network because its structure is coupled with the graphs it contains.
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3.4 Metrics

Our implementation makes use of a random graph generator to create a set of different neural

networks. These networks are evaluated using several metrics:

• accuracy;

• loss;

• convergence rate;

• training time.

These metrics are recorded for every epoch of training for all our generated networks. The test

accuracy tells us the percentage of correct classifications on unseen examples, whilst the training

accuracy measures the accuracy on examples the model was constructed on. The training loss

calculates the prediction error of the neural network. This allows us to judge the parameters used

in each network but most of what happens within a neural network is still a black-box [48].

3.5 Datasets

We use image-classification datasets because this is one of the most interesting and challenging

fields in deep learning. We had further support in this field by collaborating with the Computer

Vision Laboratory at the Faculty of Computer and Information Science of the University of Ljubl-

jana.

We selected mostly smaller datasets to allow faster training in the computational resources

available. The datasets used in this work are:

• MNIST[46] is a widely used dataset for image classification models training and contains

images of handwritten digits;

• Fashion MNIST[84] similar to MNIST, featuring grayscale clothing images;

• CIFAR10 /CIFAR100 [42] [43]: 32x32 natural image dataset with 10/100 categories, this

allows to quickly try different algorithms;

• ImageNet [67]: image database organized in accordance with the WordNet hierarchy with

14M images;

• in the laboratory will also be available a more challenging multi classification dataset.

In Appendix C we expose image samples for each of the mentioned datasets. MNIST, CI-

FAR10 and CIFAR100 contain 60000 images each whilst Fashion-MNIST has 70000 images.

The training on ImageNet requires extensive training and was performed during the final stages

of this dissertation. We managed to train one network for 60 epochs, which is a fraction of the

orignal study – 250.
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3.6 Empirical Evaluation Experiments

Throughout our experiments, to make appropriate use of our computational resources we use the

network parameters that use a smaller amount of resources, in particular, we keep the initial chan-

nel count C at 78 and we use the small regime complexity (see Section 2.3.5). The network archi-

tecture is described in Table 3.1. This keeps our work comparable to the original randomly wired

neural networks [86], so we also use a constant number of nodes for every graph unless noted,

N = 32 – this number excludes the unique input/output nodes (see Section 2.3.5) that connect the

different random wire stages.

stage output operation
conv1 112x112 3x3 conv, C/2
conv2 56x56 3x3 conv, C

conv3 28x28
random wiring

N,C

conv4 14x14
random wiring

N,2C

conv5 7x7
random wiring

N,4C

classifier 1x1
1x1 conv, 1280-d

global average pool, 1000-d fc, softmax
Table 3.1: The general network architecture, as seen in the small regime [86].

Regarding training details, we use an initial learning rate of 0.1 and progressively lower it by

1/10 every 30th epoch, as in [25]. The weight decay is 5e− 5 and the momentum is set to 0.9.

Regarding label smoothing regularization, the coefficient is set to 0.1. Our default batch size is

128.

The default optimizer is SGD (Stochastic Gradient Descent [7]). An optimizer updates the

weights after every training batch is processed. The optimizer takes the previously mentioned

momentum, weight decay, and learning rate as parameters. The momentum given in the original

study is 0.9, the weight decay is 5e−5 and the initial learning rate is 0.1.

3.6.1 Network generator evaluation

To evaluate randomly wired neural networks we vary the network generator g(θ ,s) parameters. In

θ we observe the random graph model parameters, including the pair (p,k) for WS, probability p

for ER akin to WS, and m initially connected nodes BA.

The authors in [86] report that random search on the seed s is not beneficial, so we do not pro-

cure results in this direction although our initial observations point towards the same conclusion.

We selected a range of values for the mentioned parameters that are similar yet broader than

the original study:

• WS has two parameters (k, p). We use the range 0 ≤ p < 1, with step 0.15 and k (even

number) with the range 2≤ k ≤ 10, with step 2;



28 Methodology

• BA has one parameter m(1≤m < N), where N is the number of nodes. We use the range of

1≤ m≤ 8, with step 1;

• ER has one parameter p. We use the range 0≤ p≤ 0.8, with step 0.1.

For each of these experiments, we replicate them in the four datasets mentioned before (Sec-

tion 3.5). The total number of experiments is (8∗5+8+9)∗4 which equals 228 neural networks.

These were evaluated through several metrics exposed in Section 3.4.

3.6.2 Node number evaluation

Since the number of nodes is constant, it becomes interesting to explore it as part of the parameters

in θ . Besides the authors not providing any explanation for this specific number, the datasets we

use are considerably smaller than ImageNet [67] so we might obtain similar results on a lower

node number.

We perform a grid search through N, using the values: 6,9,12,16,20,24,28 and 32. This will

result in a total number of 8∗4= 32 networks in this scenario. The knowledge obtained in this part

of the study attempts to reduce to some extent the complexity of randomly wired neural networks

while still maintaining its performance on larger datasets.

In this evaluation, we use the paper’s reported best parameters for each graph model:

Table 3.2: Default θ parameters used in the original study [86]

Model p k m
WS 0.75 4 -
ER 0.2 - -
BA - - 5

These values represent the best performance of the graph models in the experiments performed

prior to this study. A grid search involving the node number and the θ parameters would be too

extensive to be fit in the time frame of this work.

3.7 Optimization Approaches

Although the authors challenge researchers to explore the design of network generator within

Neural Architecture Search, we opted to use techniques to improve their methods which provides

additional insight into randomly wired neural networks. During the course of this dissertation, we

made several attempts to optimize this type of neural network.

We consider meta-learning (see Section 2.4.3.2), an outer algorithm that aims to improve the

outer objective by updating the model learned by the inner algorithm [32]. We use a machine

learning algorithm as an outer algorithm, namely Random Forest to support in the training of a

machine learning model (generated from randomly wired neural networks), or even, as is this case,

optimization.
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3.7.1 Prediction of connection weights

We try to predict the learnable weights seen in Figure 2.6 by using metadata from already trained

networks. First, we train 10 neural networks with 10 different seeds (s = [1,2,3, ...,10]) for 100

epochs. For the parameters θ of the network generator, we use, for all networks, the reported best

performing graph generating parameters in the paper – WS graph model, with (p = 0.75,k = 4).

By using different seeds, we can also observe how much the seed impacts the network generator.

The training on the first generation is made with the CIFAR-10 [42] dataset. We can then

observe if the connection weights are dependent on the problem by using the same model to

predict with other datasets.

A B

w0

w2

w1

w0

w1 w3

w0
w1
w2

w0

w2

Figure 3.1: Focus on a single node connection, between nodes A and B through weight w1

In Figure 3.1, we can see an example of a node in detail, where the graph edges wi represent

connections between several nodes and each edge has a weight and a bias associated with it. As

explained in Section 2.3.3, node B’s incoming weights are summed, passed into a ReLU function

and the result is the input to the convolutional block in B. Focusing on the edge labeled w1 that

connects node A and node B, we predict the weight w1 using graph metrics that involve node

A, node B and the connection between them within the context of the graph that represents the

current neural network stage. All weights with the same label are independent and were numbered

sequentially per node input/output. Please note that the input w0 and w1 on node A is different

from the output w0 and w1 of node B.

From these 10 networks, we extract their learned connection weights and build a dataset with

network information. Part of this dataset includes:

• the seed s;

• the connection label defined by a string with the two involved source and destination nodes,

e.g. node A and node B translate to connection “A-B”;

• the stage of the network the connection belongs to, in our case from 1 to 3 because we use

the small complexity regime (see Section 2.3.5).

The latter is important due to the type of representation earlier stage nodes learn comparing to

further in the architecture.

The rest of the dataset is built using network science metrics, either directly obtained from

the Graph class or by using NetworkX’s API. Some of those graph features include (full list in

Appendix B):
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• level - sequentially assigned number that describes the position of the graph in the network

with possible values 1,2 and 3;

• out_degree - the number of edges in the output end of a connection, i.e. the successor node’s

edge count;

• in_deg_c_b - represents the in-degree centrality of node b – the successor of the connection.

This value is the proportion of nodes its incoming links are connected to;

• edge_bet_cent - refers to the betweenness centrality of an edge. The value is obtained by

summing the fraction of the shortest paths of all pairs that pass through the edge evaluated;

• group_in_deg_cent - uses both nodes of a connection as a group to calculate the group’s

in-degree centrality. It represents the proportion of outer group members linked to group

members by incoming edges;

• edge_load_cent - constitutes the edge load in a graph. It counts the number of shortest paths

that include the edge in question;

• depth_a - using the first node as a reference, we determine the shortest path to the node in

question, a, which is the connection’s predecessor node. This is a simple heuristic to obtain

a node’s depth in a graph.

To predict the weights, we need to use a regression model. We have a target or dependent

variable – the connection weight – that is to be predicted from a set of predictors or the indepen-

dent variables – our network characteristics described above. We use a Random Forest, a simple

algorithm based on an ensemble of decision trees which is the most used off-the-shelf, ready to

use, ML algorithm.

Before training a new neural network, we use a regressor with knowledge from our previous

neural networks. This regressor predicts the weights for the new network, including all stages.

The neural network is then initialized with these predicted weights. The desire is to observe a

faster training process or to at least have higher initial accuracy.

In the features of the network, we do not use characteristics of the neural network because

characteristics such as activation function or regularization layers are constant in every node.

The optimizer and its parameters are explored to some extent. The momentum given in the

original study is 0.9 and we experiment with the default value of 0.0 whilst having our weight

prediction activated. Another subject to experimentation is Adam (Adaptive Moment Estima-

tion [39]). This algorithm also has a learning rate and weight decay as parameters, which we set

to the same values mentioned in Section 3.6.

3.7.2 Freezing weights

To observe the influence of the connection weights (Figure 3.1), we freeze these weights during the

training phase. This is a common term describing inhibiting the desired weights from changing
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during training, i.e. preventing them from learning. By freezing weights, we can observe how

much we can boost the training, by simplifying the backward pass.

It is also interesting to perceive the training evolution when we freeze predicted weights. In

this experiment, we hope to notice at least a slight initial improvement, with the best-case scenario

being an immediate boost of the accuracy.

3.7.3 Weight shuffling

Another way of testing the weights is to randomly shuffle them. We take all the connections of

a network and we reassign each of their weights to another connection in a stochastic fashion.

We can then tell if our predictions are accurate and/or evaluate if the order of the weights in the

network is important.

3.7.4 Weight distribution

Trying to track distribution in the aggregation’s learnable connection weights can help us avoid

the use of a machine learning algorithm. The weights can then be generated through the standard

deviation and the mean of just one previously seen network. The average of the 10 mentioned

networks in Section 3.7.1 could be seen as a stronger heuristic.

3.7.5 Node shuffling

In this experiment, we randomly access one of our 10 base networks and randomly extract one

of their nodes. We respect the stage the nodes are in, not to combine different feature extraction

properties that can be held in each of the stages. The depth of the network is respected but any

node of the 32 in one stage can be selected and they can be repeated.

The weights and biases of the chosen node are transferred to the current node in the new

network that is being subject to training. Similarly to previous experiments, we separately freeze

these weights. It is interesting to observe if the behavior is considerably worse when the new

network is training for a different problem.
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Chapter 4

Results and Evaluation

In this Section, we present the results of our empirical study. We cover the experiments described

in Section 3.6 and Section 3.7. Some of the experiments are omitted due to either repetition of

information or redundancy, and exposed on Appendix A.

4.1 Problem State of the Art

The four datasets used in this study have been extensively used in research. Despite the accuracy

being high, these are still relevant datasets in research and are regularly used as benchmarks for

performance. To put our results into perspective, we introduce the best results in each of them in

the preceding works:

Dataset Accuracy Reference
MNIST 99.84 Homogeneous Filter Capsules [9]

Fashion-MNIST 96.36 FMix [27]
CIFAR10 99 GPipe [35]

CIFAR100 93.51 Big Transfer (BiT) [41]
Table 4.1: Dataset SotA survey

These results were obtained without Neural Architecture Search and are the result of hand-

designed architectures.

4.2 Empirical Study

Our empirical study comprises searches in three different directions. Firstly we focus on the net-

work generator g(θ ,s), exploring the parameters separately. Inside the θ parameters, we evaluate

the performance of the random graph models displayed in Section 2.3.2. Secondly, we evaluate

the impact of the seed s and lastly the node count in each stage of the network.
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4.2.1 Network Generator Hyperparameter Tuning

In Section 3.6.1 we describe this section’s experiments. We perform grid search for the three

random graph models in our datasets (Table 4.1).
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Figure 4.1: network generator’s θ parameters variation impact on CIFAR10’s accuracy

The Watts-Strogatz model can be interpreted by analyzing its two arguments, and looking at

Figure 4.1:

• probability p: with a higher value of p, the performance of the network is progressively im-

proving and this improvement seems to be independent of k. With p = 0.0 we have a simple

network which does not randomize links between nodes which might cause a shallower

feature extraction process;

• number of initial connections k: defines the density of the ring at the random graph’s gen-

eration, which explains that the combination (p = 0.0,k = 10) holds an accuracy similar to

the highest accuracy obtained – parameter pair (p = 0.45,k = 2). This also explains why in

Figure 4.2 the time of execution is considerably smaller for lower values of k, being around

2.5x faster comparing p = 2 to p = 10.

In the Barabási–Albert random graph model, m is the initial number of nodes in the graph.

The nodes are progressively added until reaching the intended number of nodes C in a stage of the

network. When attaching a new node, m edges are assigned to it with a preference for higher de-

gree nodes. This discloses the increasing training time for higher values of m, seen in Figures 4.2,

4.4 and 4.6.

The neural networks generated with the BA model have an almost constant performance in

these datasets. Minimal differences in the accuracy can be observed, so it is preferable to use a

lower level of m since the training time is smaller.
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Figure 4.2: network generator’s θ parameters variation reflected on CIFAR10’s training time.
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Figure 4.3: θ network generator’s parameters variation impact on MNIST’s accuracy.

The Erdős–Rényi algorithm has only one parameter, probability p. This probability represents

the chance for each possible edge to exist. The graph is constructed randomly and the probability

of each new edge is independent of the others.

The higher the probability p in ER, the more likely it is for connections to be formed. With

p closer to 1, the graph becomes denser, implying more aggregation operations in the network.

The training times for ER increase with p, showing that the graph becomes more complex. The

duration is higher than the other models due to the superior number of operations in the network.

The graph generation algorithm is likewise complex, with O(n2).

The original study reports p = 0.2 as being ER’s best parameter, which is in line with the

results obtained with CIFAR10 and Fashion-MNIST, in Figures 4.1 and 4.5. This value should
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Figure 4.4: θ network generator’s parameters variation impact on MNIST’s training time.

represent a network with vaguely dense graphs that have a minimum amount of random connec-

tions which allows to obtain a high accuracy with moderate training times, comparable to other

models as seen in Figures 4.2 and 4.6.
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Figure 4.5: θ network generator’s parameters variation impact on Fashion-MNIST’s accuracy.

The MNIST dataset is the most undifferentiated one, as seen in Figure 4.3. The dataset is

considered an easy task for having small, gray-scaled images and containing no background. The

feature extraction is not a complex problem for any network we subjected MNIST to classification.

On CIFAR100 [43] we obtain a more diverse set of results. Being a more complex dataset,

using p = 0.0 implicates poor results. These networks contain graphs generated with no random-

ness and are too simple to learn how to extract features from the input well. With a p of 0.3 the
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network starts approaching its potential even with a low value of k.
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Figure 4.6: θ network generator’s parameters variation impact on Fashion-MNIST’s training time

In Figure 4.7, the best parameter combination for WS is (p = 0.6,k = 2). This network has

less initial connections because k is at a minimal value; p = 0.6 implies that the majority of those

initial connections will be rewired. This results in a fairly random graph that contributes to the

performance of the network that is based on 3 graphs generated with these parameters.
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Figure 4.7: θ network generator’s parameters variation impact on CIFAR100’s training time

For ER on the CIFAR100 dataset, the best values for p are 0.1 and 0.2. This is in line with the

original paper, reporting p = 0.2 (see Table 3.2) as the best ER performing network. BA recorded

a lower accuracy for lower values of m. This dataset is more complex than the previous ones,
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having 10 times more classes which explains the better performance on more complex (denser)

networks.

The training times for CIFAR100 can be seen in Figure A.1 and are similar to the other

datasets. Since in the best network k = 2, the complexity of the network is lower, thus the train-

ing duration is short compared to other values of k. The training is completed in just around 70

minutes.

As expected, we can then conclude that the training duration is closely related to the complex-

ity generated in the random graph models. This defines the number of connections and conse-

quently, the number of values and operations computed.

4.2.2 Random Search

In the 10 original networks described in Section 3.7.1, we use 10 different seeds for the parameter

s of the network generator g(θ ,s). The authors of the randomly wired neural networks [86] report

no random search due to small differences between the networks. When detailing their best set of

network generators they overlook the seed s due to its ineffective contribution.
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Figure 4.8: Seed variation impact on CIFAR10’s accuracy. These are the first generation networks
used on the optimization approaches in Section 3.7

In our implementation, we use NetworkX [26] to create the graphs. The functions allow us

to use an argument seed to generate the graph. Unless the argument is passed, a global random

number generator is used. We describe it if a specific seed is used in our networks.

In Figure 4.8 we confirm that the seed s is not substantial enough to make a difference in the

performance nor to motivate further analysis. The network generator described has g(θ ,s) is not

entirely accurate because its randomness stems mostly from the random graph models generating

the network, present in the θ parameters.
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4.2.3 Node Grid Search

We perform a grid search to evaluate the node count C in every dataset 3.5 as described in Sec-

tion 3.6.2. The parameters θ are constant through all experiments, respective to the graph model

in observation. The seed is not studied in this evaluation, the value given is s = 1.
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Figure 4.9: CIFAR10’s node count C study: accuracy (left) and time (right)

CIFAR10 holds a consistent performance except with 6 nodes, especially using the WS model.

The model in that scenario does not have enough nodes to generate sufficient edges to provide

a decent number of operations. The superior graph model is traded between the three models

throughout the different C values. ER dominates lower values of C whilst BA the higher values on

the left side of Figure 4.9.

On the right side of the same Figure ( 4.9), we can see the training times. These are very similar

in all datasets, where the time increases with the size of the network. Note that each network has

3 graphs with the specified node count C.

BA’s training time is consistently higher than the other graph models, except for 6 nodes.

Having such a low number of nodes, with m= 5 initial nodes, translates into a very simple network

of only 5 connections per stage. This occurs because only one node is added to the algorithm. As

the node count C increases, so does the difference C−m, which implies a growth in the number

of connections and, consequently, the complexity of the network rises.

MNIST has a homogeneous accuracy through all tested node counts C, achieving a virtual

state of the art performance. This result was expected in a simple dataset. The number of nodes

is then inconsequential in this scenario if we disregard the training time. In Figure 4.10b, the

duration of the learning process grows along with the increase of C.

Using 6 nodes in MNIST translates to a small, 18 node (plus 3 unique nodes to connect stages)

network that achieves 99.6% accuracy with a training time of around 17 minutes. Although the

dataset is not the hardest, this shows the potential of this type of network considering the wiring

of each stage is defined randomly.
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Figure 4.10: MNIST’s node count C study: accuracy (left) and time (right)
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Figure 4.11: Fashion-MNIST’s node count C study: accuracy (left) and time (right)

Analyzing the node count variation behavior in the Fashion-MNIST dataset, the BA graph

model is trailing slightly behind its counterparts. The optimal combination is using ER with just 6

nodes, having both the least training time and the highest attained accuracy.

Has mentioned before MNIST is an easy dataset and Fashion-MNIST is an attempt to replace

it. While images still have gray-scale images, no background, and 10 classes, the content requires

a more complex feature extraction process. Figure 4.11a shows that our networks can still obtain

results just 2 percentage points below the state of the art.

In Fashion-MNIST we start observing a tenuous dominance of the ER model, where p = 0.2.

WS shows an almost identical effort but its training time is higher for a small number of nodes.

Having k = 4 as the number of initial connections (2 on each side) to form a ring and a p = 0.75

results in a denser network than BA for a small number of nodes. This implies that the number of

connections will be higher, hence the more complex network with a longer time for learning.

On CIFAR100 [43] we have a more complex dataset, portraying 100 classes that contain 600

images each. The state of the art within NAS is 86.4%, obtained with XNAS [58]. In that study, the



4.3 Optimization results 41

61.08

66.48

65.85

65.79

65.5

66.36

66.28

66.16

67.17

66.91

67.35

67.95

65.33

66.81

66.18

66.59

64.37

65.88

65.65

66.51

66.79

66.51

66.05

66.71

6 9 12 15 18 21 24 27 30 33
0

10

20

30

40

50

60

70
WS
ER
BA

CIFAR100 node number accuracy evaluation

Number of nodes

Ac
cu

ra
cy

 [
%]

(a) Accuracy (%)
1086.0

1472.6

1805.7

2276.1

2889.7

3230.3

3761.9

4198.2

994.2

1309.1

1658.5

2103.6

2717.0

3316.9

3993.3

4610.7

1034.4

1502.4

1964.4

2659.9

3234.5

3858.9

4529.9

5156.8

6 9 12 15 18 21 24 27 30 33
0

1000

2000

3000

4000

5000 WS
ER
BA

CIFAR100 node number time performance

Number of nodes

Ti
me

 [
s]

(b) Time (s)

Figure 4.12: CIFAR100’s node count C study: accuracy (left) and time (right)

networks are trained for 1500 epochs (30 times as much as our method) and perform optimization

for the learning rate. Our best node study network obtained 67.95%, which is within the top-30

reported results on the dataset. Considering our low network complexity and short training, this is

still a decent result.

In Figure 4.12a, ER’s dominance is asserted throughout the different number of nodes, except

for when C = 20. ER creates every edge with an independent probability p, which in this case is

equal to 0.2. The algorithm applies this probability to every edge possible, using all nodes. When

C is low, the connection possibilities are scarce and combined with a low p, the network has a

shallow complexity. This explains the low training times up until C = 20, where ER surpasses WS

and coincidentally its performance is also lower.

The higher number of nodes might overwhelm the low probability p, outputting more complex

networks, increasing training times. The WS parameters define a smoother curve in training times

than ER, which has a steeper increase. The BA model describes a similar curve which is influenced

by the increase of C.

The training durations are akin in every dataset, leading us to believe that the problem’s context

is independent and the graph generation model used and resulting network complexity are mostly

responsible for the training time.

4.3 Optimization results

In this Section, we present our results for the optimization approaches described in Section 3.7.

This was an iterative process, where the previous result defined the next step. We acknowledge

that at each step there were numerous directions we could have taken.

4.3.1 Weight prediction

We first use a machine learning algorithm to predict the weights of the connections, shown in

Figure 3.1. We use Grid Search to build our Random Forest Regressor. This tests the model with
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several parameters that we specify and returns the best one. The process can be done many times

for parameter tuning. The parameters involved include:

• n_estimators: number of trees in the random forest;

• max_features: when splitting, this describes the number of features to be considered;

• max_depth: the limit for the tree expansion;

• min_samples_split: when in a node, this is the minimum number of samples needed to split;

• min_samples_leaf : the number of samples required for a node to be a leaf node;

• bootstrap: defines if the whole dataset is used.

In Figure 4.13 the importance of the main features is described, importances under 0.005 are

not regarded and listed in Appendix B. Feature importance is a score assigned to input features

that represents their usefulness in predicting the target variable. This score is obtained by permu-

tation and reevaluation of the model. The highest importance is for group in-degree centrality,

which evaluates a connection’s relation to the rest of the graph. These features are described in

Section 3.7.1.
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Figure 4.13: Considering features with an importance larger than 0.005

The regression model seems to favor features related to the flow of the connection, but also

its role on the network. The level of the connection, i.e. its origin stage is important due to the

different feature extraction tasks in each stage which result in a variation on the weights as scalars.

Exploring other Machine Learning algorithms like ElasticNet and Support Vector Machines

yielded a higher Mean Root Squared Error. We opt to use Random Forest for the following exper-

iments.

We first evaluate the model’s performance on the same context problem, CIFAR10, while eval-

uating the optimizer in Figure 4.14. The default weight initialization is using 1.0 for all weights,

its curve represents a normal training process. We compare this to three different optimizers, SGD

with default 0.9 momentum, SGD with momentum = 0.0, and Adam.
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These three curves use the model to predict their connection weights. The weights are placed

in their respective connections and the training is done ordinarily.

We notice a convergence around the 30th epoch in all networks, this coincides with the learning

rate scheduled to decrease. This is where the highest accuracy section is achieved and suggests that

the learning rate and the learning rate schedule are strong candidates for hyperparameter tuning.

The learning rate does not appear to be too low, the convergence rate is not slow, reaching a good

performance in just 30 epochs. The scheduling of the learning rate is open to discussion, in this

case, it may be too far apart. Using e.g. annealing could be an option but the behavior is not

predictable and schedulers are not adaptable dataset-wise.

The SGD optimizer with default momentum is very similar to the default training (see Sec-

tion 3.6). There are some “above the original curve” moments but in general it seems that there is

no advantage in using predicted weights. The final accuracy has minimal differences.
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Figure 4.14: Optimizer influence on accuracy on the CIFAR10 [42] dataset

The absence of momentum encourages the optimizer to make slower progress along the local

optima, resulting in a slower evolution. SGD with no momentum struggles to learn as quickly

but still reaches a high accuracy. Performing a (grid) search on the momentum would be another

possible hyperparameter to search on.

In this section we have now seen some training limitations defined by human design:

• learning rate;

• learning rate schedule;

• momentum.

Even though the authors do not mention directly the optimizer used, it is also another limitation

to the original study. To perform hyperparameter tuning on these parameters would be an extensive

task, which we do not have resources to perform.
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4.3.1.1 Weight shuffling

To further evaluate the prediction of connection weights, we conduct an experiment where we

create a new model for CIFAR10 and evaluate it. Then, we replace the weights with predicted

weights and evaluate the model. Lastly, we run 100 iterations where we shuffle the same predicted

weights throughout the connections and evaluate each combination.
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Figure 4.15: Evaluation for shuffling a connection weight prediction for 100 iterations in CI-
FAR10. The standard deviation in the shuffled bar is 0.25.

Figure 4.15 shows that the prediction evaluation is underperforming slightly compared to the

trained network. The 100 shuffled instances have an almost identical performance as the predicted.

The order of the weights is perhaps unimportant and their influence on the network minimal.

If we perform untrained evaluations on the models, the predicted weights have no advantage

compared to a network with default initialization of 1 in the connection weights as shown in

Figure A.5. This supports the statement that the impact of the connection weights in the model is

insubstantial.

4.3.2 Weight variation

Our networks have on average about 180 connections, between the 3 graphs present which are

dissimilar. The weights can vary between [−1,1] and their distribution might be different from

graph to graph inside the same network. An aspect that influences the weight is its depth, i.e. the

stage it belongs to. The features learned in each stage are distinct, so the weights between them

cannot be compared.

In Figure 4.16 we have an histogram of the weights. They follow an approximately normal

distribution with a mean of 0.109 and a standard deviation of 0.283. Using a normal distribution,

we can initialize a network’s connection weights with the generated values.
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Figure 4.16: Example of weight distribution in a network, with standard deviation of 0.283 and
mean of 0.109

The weights with a value equal to 1.0 represent the input connections of the unique output

node. Since this node performs no convolution, its edges simply perform data flow. The weight

1.0 works as an identity function and when either using a normal distribution or shuffling the

weights through all connections we keep these specific connections with weight equal to 1.0.

4.3.2.1 On the original dataset

Predicting weights for the same problem as the regression model was trained for is expected to

have analogous results. In Figure 4.17 we observe just that. While most of the training has

variations, after the learning rate update the curves are nearly indistinguishable.
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Figure 4.17: Accuracy evolution of several approaches on the CIFAR10 [42] dataset

The networks observed in Figure 4.17 are subject to weight freezing except the “default weight

training”. The connection weights (predicted or not) are not learned throughout the training. The

networks present are:
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• default weight training: a normal training procedure is carried;

• predicted_sgd_default: connection weights are predicted and placed before training with a

default SGD optimizer (momentum = 0.9);

• default weight initialization: connection weights are frozen in their default initialization of

1.0;

• normal distribution: connection weights are initialized from a normal distribution generator

extracted from the first generation networks described in Section 3.7;

• shuffled weights: connection weights are taken from the first generation networks and are

randomly shuffled and assigned.

The shuffled weights have a vague training variation compared to the others, which can be

justified by existing the possibility of mixing weights from deeper stages with shallower stages.

Other than that, we note no distinguishable differences in the training. We conclude that predicting

the connection weights has a small impact on the network:

• random weight variation methods can still perform compared to weight prediction;

• frozen weights achieve good results, which means the influence of the connection weights

on the network is minimal.
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Figure 4.18: Training time of several approaches on the CIFAR10 [42] dataset

Considering the training times in Figure 4.18, we notice that the networks where we freeze the

connection weights have a 10% drop. The presence of these weights in the network is fractional.

Coupling this with their original operation, data flow, where no convolution is performed, the

values of the weights are practically irrelevant. Either using random, predicted, or 1 value weights,

the networks have equivalent training duration.

One take away from this experiment is that by freezing weights with value 1, which requires

no previous computation or knowledge, can lead to a decent network. Bearing in mind that in the

original study we have 250 epochs, reduced training time can have more impact than in our study.
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4.3.2.2 On another problem

To test further our machine learning algorithm, we use the same procedure in all the datasets

mentioned in Section 3.5. Here we present results for Fashion-MNIST, while the results of the

other datasets are in Appendix A.

Compared to CIFAR10, in Fashion-MNIST we also obtain a result, after the 30th epoch (learn-

ing rate update), parallel in all approaches. The earlier training stages are quite varied.

5 10 15 20 25 30 35 40 45 50

84

86

88

90

92

94

default weight training
predicted_sgd_default
default weight initialization
normal distribution
shuffled weights

Connection weights experiments

Epoch

Ac
cu

ra
cy

Figure 4.19: Training accuracy evolution of several approaches on the Fashion-MNIST [84]
dataset

In Figure 4.19, all the techniques have a cut above start than the default weight training. For

the most part, the training has homogeneous accuracy variations. Surprisingly, the default weight

initialization of 1 weight values holds the best start. Although converging eventually, our regres-

sion model underperformed in the first 10 epochs. The fact that this approach still converges to a

good performance confirms the small influence of the weights of the connections in the network.

The shuffled weights had an improvement compared to its performance in CIFAR10, which

is interesting considering the weights used were trained on CIFAR10 with the 10 first generation

networks. Similarly, the normal distribution curve has an “ordinary” performance, strengthening

our deduction that the connection weights are innocuous.

Figure 4.20 supports the previous claim on CIFAR10 that the presence of connection weights

on the networks is fractional, again around 10%. It is counterproductive to predict weights for

a fragmentary time gain. Likewise, other approaches as the normal distribution and the weight

shuffling require previous knowledge. Nevertheless, using a default initialization and freezing the

connection weights we obtain good results anyway.

In Table 4.2 we list the results obtained from the 4 datasets combined with the 4 techniques

plus the default network training. The results quote the last epoch’s accuracy (50th) and not the

highest attained accuracy during training. We can see that in each dataset the differences between

each approach are almost negligible. Having good results in other datasets should not happen
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Figure 4.20: Training time of several approaches on the Fashion-MNIST [84] dataset

approach MNIST Fashion-MNIST CIFAR10 CIFAR100
default weight training 99.68 94.13 90.93 67.52

predicting weights 99.60 93.72 90.60 66.95
default weight initialization 99.55 94.06 90.73 67.22

weight distribution 99.65 94.14 91.08 66.63
shuffled weights 99.68 94.20 90.72 67.09

Table 4.2: Performance of several attempted optimization approaches

in theory, however, this supports the statement that the influence of the connection weights is

unimportant.

The default weight initialization proves to be the most efficient method if we bear in mind that

it requires no previous computation like predicting the connection weights.

4.3.3 Weight sharing

In this experiment, we reuse nodes from CIFAR10 into the networks. The nodes match each stage

of the network to prevent to some extent the differences in the learned features. We call these

networks “cooked” weights.

For Fashion-MNIST, in Figure 4.21, we freeze connection weights in all networks except

“cooked” weights and default weight training. The other datasets hold the same approaches and

are present in Appendix A.

The “cooked” network does not have an evolution comparable to the other networks although

obtaining a similar final score. This indicates that the network still learns the node weights (con-

volutional blocks) despite the learning process in the first generation network.

Freezing these node weights results in a significantly worse training evolution and outcome.

This is represented by the yellow line, where the only trained weights are the first two stages in

the Table 3.1 and the connection weights in the random wiring stages. The (poor) evolution in

training is mostly influenced by the first two stages which perform convolutions. The influence of

the connection weights in this case is also minimal.
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Figure 4.21: Training evolution of shared weights on the Fashion-MNIST [84] dataset

4.3.4 Main results

At the network generator level, we can conclude that parameters that make the network more

complex translate into extensive training. Less complex and faster-trained networks can achieve a

state of the art performance in our datasets. Some of the best parameters we found differ from the

original study in [86]. We believe using different datasets has an influence but if their experiments

were reproduced in the same conditions, the stochastic nature of the network generator would

result in different best-performing parameters.

Regarding the node study in Section 4.2.3, due to the size of our datasets, we show that a small

fraction of the original node number C = 32 can achieve the same results. The training time is also

significantly smaller because the complexity of the networks is also reduced. We believe, since

there is no foundation for the original node number, that the number of nodes in a stage should be

explored in ImageNet. The training time would be reduced and we would be able to determine an

optimal node number for randomly wired neural networks.

Our optimizations did not improve the accuracy or convergence rate of the neural networks

but they reduced slightly the training time. Similar performance using different techniques, in-

cluding randomly generated weights for the connections, lead us to believe that the weights of the

connections have a negligible influence on randomly wired neural networks.

In this final version of the document, we would like to report that combining these conditions:

• connection node weight prediction;

• ER graph generator model because it was the most consistent in our study;

• C = 6 nodes for a lower complexity network;

we have obtained 54% accuracy on the ImageNet [67] dataset in just 61 epochs, which is a

fraction of the 250 epochs of the original study. We will try to continue to obtain results on this
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dataset and write a paper. The training is still extensive because due to low GPU memory we can

only use a batch size of 32 – considerably low than the original 128.



Chapter 5

Conclusions and Future Work

The base work is embedded in one of the several NAS techniques – random search –, taking a

different direction. Instead of using established NAS algorithms as baselines, different “truly”

random generator designs are implemented – the network generator is based on random graph

models from graph theory. In line with those approaches, the goal is to design networks that learn

features instead of designing features. The networks are not random from scratch, only the wiring

design suffers variation while the other aspects are fixed. The complete randomization is far from

being an achievement. However, the search space is less constrained than in other works.

5.1 Conclusions

The NAS network generator constraints wiring patterns to a small subset of possible graphs. The

research we evaluate explores the design of new network generators by loosening that constraint

using randomly wired neural networks sampled from a random generation process. The desire is a

shift from the traditional network engineering to a network generator engineering, which requires

less effort in the overall design process.

The method proposed obtained interesting results [86] considering the low human intervention,

thus we first and foremost reproduce and confirm those results and, through our experiments,

improve our knowledge on why and how they happen. It is still hard nowadays to understand how

neural networks work, how they make decisions, and how they learn.

Our empirical study has results that differ from the authors, in terms of which parameters to

use for the graph generating models. There is an influence of the datasets because we do not

make observations on ImageNet [67]. However, we used datasets that are mostly alike in size and

difficulty and we concluded that the best performing parameters also vary between them. Thus, the

randomness of the graph models is not predictable and the results reported by the authors could

have been achieved by chance, i.e. if reproduced several times the high-performing parameter

combination could be inconsistent.

51
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Our node study touches one of the weak points of the design, where the default node count is

32 for all networks. In our datasets, we observe that with a significantly reduced number (6, 9, or

12 nodes) we obtain the same performance as we do with 32. Certainly, using smaller datasets has

a role in this conclusion however, we expose the weakness in the original study where the node

count is not explored.

Our optimization approaches help us understand how the networks function internally. We

conclude that the connection weights in Section 3.1 have a reduced impact on the network. The

nodes or computational blocks conduct the majority of the important tasks in the network. The

wiring is however still important because from our empirical study we see that networks containing

graphs with small complexity and little to no randomness do not perform well. We conclude then

that the weights in the connections are not relevant, as using a value of 1 achieves identical results

as a normal training process.

5.2 Contributions

Our research gave us a different feeling from the original paper, where the authors emphasize how

constraints are loosened in randomly wired neural networks. The node operations are uniform and

do not affect the input size. The heaviest constraint is the definition of stages. Although having

two regimes, this process is manual and has an implicit bias from the authors. Exploring another

set of regimes could reveal different results.

As we concluded before, the residual connections are the only true relaxation offered by this

type of network. The graph generation model used and consequent wiring patterns is the only

real degree of freedom. We explored it and conclude that the results may vary in function with

the context of the problem. Nevertheless, being a stochastic network generator suggests that any

results we obtain are hard to reproduce.

5.3 Future Work

Firstly, we recommend exploring the node count C for the ImageNet [67] dataset. Using a lower

number of nodes reduces the training time while keeping a similar performance to the reported

achievements.

Additional hyperparameter optimization should also be considered and we believe it would be

beneficial. This would be an extensive study that we do not have the resources to perform but we

believe the outcome to be worthy.

Regarding our optimization approaches, several investments can be made:

• we can use optimizer characteristics and the optimizer itself as a feature for the machine

learning algorithm. This can affect the weight to optimize;

• evaluating the dataset influence (the domain of the problem) could see the domain liable to

use as a feature.
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Attempting to expand the machine learning algorithm to the nodes themselves could be a

possibility. Trying clustering as a classification problem to extract types of kernels present in the

nodes. This would have a larger impact on the network and a significant boost in training would

be expected, at least in the same domain.

Exploring the behavior of the network by removing 1 and/or 2 of the random wire stages would

help define new regimes or at least give new knowledge about how these networks learn.

Even though our primary focus is on Computer Vision, we acknowledge that other scientific

fields can be influenced by this research and we could have made use of them. On a similar

note, other types of neural networks beyond CNN’s can be focused on, such as the mentioned 2.2

Recurrent Neural Networks and Feedforward networks.

Regardless of limitations, we confirm that the use of a network generator with less human

design involved is a viable solution. To the best of our knowledge this is the first known study in

this direction, the research is still fresh but the results are encouraging. The continuous exploration

of the concept of a network generator has the potential to yield constant state of the art results in

the future.
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Appendix A

Appendix 1

In this Appendix, we present some extra results we have obtained.

A.1 Empirical Study
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Figure A.1: θ network generator’s parameters variation impact on CIFAR100’s accuracy
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Figure A.2: Training accuracy evolution of several approaches on the MNIST [46] dataset
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Figure A.3: Training accuracy evolution of several approaches on the CIFAR10 [42] dataset
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Figure A.4: Training accuracy evolution of several approaches on the CIFAR100 [43] dataset
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Figure A.5: Evaluation for shuffling a connection weight prediction for 100 iterations in CIFAR100
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Figure A.6: Untrained valuation for shuffling a connection weight prediction for 100 iterations in
CIFAR100
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Figure A.8: Training evolution of shared weights on the CIFAR10 [42] dataset
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Appendix 1

In this Appendix, we present the full features used in our Random Forest regressor, mostly calcu-

lated using NetworkX [26].

B.1 Graph Metrics
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Feature Description NetworkX
Level Stage of the connection

In-degree Input degree of node A
Out-degree Output degree of node B

Degree centrality A Proportion of nodes node A is connected to x
Degree centrality B Proportion of nodes node B is connected to x

Closeness centrality A Average distance from the shortest path to node A x
Closeness centrality B Average distance from the shortest path to node B x

Betweenness centrality A Number of paths that use node A x
Betweenness centrality B Number of paths that use node B x
Current flow centrality A Electrical-current model for closeness in node A x
Current flow centrality B Electrical-current model for closeness in node B x

Current flow betweenness centrality A Electrical-current model for betweenness in node A x
Current flow betweenness centrality B Electrical-current model for betweenness in node A x

Eigen centrality A Measure the influence of node A in the graph x
Eigen centrality B Measure the influence of node B in the graph x
Katz centrality A Measure the influence of node A in the graph through neighbours x
Katz centrality B Measure the influence of node B in the graph through neighbours x

Communicability betweenness centrality A Centrality of node A rooted on communicability betweenness x
Communicability betweenness centrality B Centrality of node B rooted on communicability betweenness x

Load centrality A Proportion of shortest paths that use node A x
Load centrality B Proportion of shortest paths that use node B x

Page rank A Evaluates quantity and quality of connections to node A x
Page rank B Evaluates quantity and quality of connections to node B x
Dispersion Evaluates the connection between node A and node B x

Communicability Number of different cycles possible between node A and node B x
Node connectivity Number of nodes needed to be removed to disconnect the graph (node A: source, node B: target) x
Edge connectivity Number of edges needed to be removed to disconnect the graph (node A: source, node B: target) x

Average neighbor degree A Computes the average degree of node A’s neighborhood x
Average neighbor degree B Computes the average degree of node B’s neighborhood x

In-degree centrality A Proportion of nodes node A’s incoming edges are connected to x
In-degree centrality B Proportion of nodes node B’s incoming edges are connected to x

Out-degree centrality A Proportion of nodes node A’s outgoing edges are connected to x
Out-degree centrality B Proportion of nodes node B’s outgoing edges are connected to x

Edge betweenness centrality Edge frequency in shortest paths x
Edge current flow betweenness centrality Electrical-current model for betweenness in the edge A-B x

Group betweenness centrality Proportion of pairs shortest path passing through vertexes in group (A,B) x
Group closeness centrality Measures how close group (A,B) is to other nodes x

Group degree centrality Proportion of outer group elements connected to group (A, B) members x
Group in-degree centrality Proportion of outer group elements connected to group (A, B) members by incoming edges x

Group out-degree centrality Proportion of outer group elements connected to group (A, B) members by outgoing edges x
Edge load centrality Adds the number of shortest paths which cross edge (A, B) x
Simrank similarity Metric that computes if two nodes are similar (A,B) by analyzing their references x

Volume Sum of the out-degrees of group (A,B) x
Depth A Distance from input node to A
Depth B Distance from input node to B

Table B.1: This table describes the features used in the machine learning algorithm. The features
marked with “x” in the NetworkX column were directly obtained from the NetworkX library [26].
The remaining features were calculated.
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Appendix 3

In this Appendix, we present some image samples from the datasets we used.

C.1 Dataset Samples

Figure C.1: CIFAR10’s [42] image samples
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Figure C.2: CIFAR100’s [43] image samples

Figure C.3: MNIST’s [46] image samples
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Figure C.4: Fashion-MNIST’s [84] image samples
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