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Abstract  

The hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis plays a key role in responding to 

biotic and abiotic challenges in all vertebrates. Recent studies have shown that the apical 

response of the HPI axis to stressors in three-spined sticklebacks varies in proportion to the 

concentration of wastewater treatment works (WWTW) effluent to which the fish are 

exposed. This study was conducted to determine whether between-site variation in stress 

responsiveness among WWTW effluent-exposed sticklebacks is persistent or reversible. 

Sticklebacks from eight sites in north-west England affected by WWTW effluent and 

exhibiting between-population variation in HPI axis reactivity, were moved to a clean-water 

aquarium environment. After five months in the contaminant-free environment the 

responsiveness of these fish to a standardised stressor was determined, by measuring the 

rate of stress-induced cortisol release across the gills, and compared with the responses of 

fish newly sampled from the eight original capture sites. Inter-site differences in the 

reactivity of the HPI axis, proportional to the effluent concentration at each site, persisted 

among the translocated female sticklebacks for at least 5 months. In male fish however, the 

direct relationship between stress responsiveness and site-specific effluent was not evident 

5 months post-translocation. These results support previous observations that the HPA/I 

axis, a non-reproductive endocrine system, is vulnerable to modulation by anthropogenic 

factors in fish and show for the first time that, in female fish at least, this modulation is not 

transient. The mechanisms underlying these observations, and the implications for the 

fitness and resilience of affected populations, requires investigation.   

 

Keywords 

sewage, municipal wastewater, stress response, cortisol 
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Introduction 

 

There is worldwide concern regarding the effects of chemicals within the environment on 

wildlife and in particular those that cause adverse effects via interference with the normal 

function of endocrine-dependent processes (Trasande et al. 2015; Zoeller et al. 2012). Biota 

within the aquatic ecosystem are particularly vulnerable to chemical exposure given the 

range and quantity of anthropogenic contaminants introduced into watercourses, both 

deliberately and inadvertently (Henze and Comeau 2008; Marcogliese et al. 2015). 

Chemicals enter the aquatic environment via many routes but the discharges from 

wastewater treatment works (WWTW) constitute a widespread source of complex mixtures 

of natural and anthropogenic chemicals (Brooks et al. 2006). Effluents from WWTWs can 

comprise a significant proportion of the total flow in receiving waters (Keller et al. 2014) and 

therefore constitute a potentially substantial challenge to exposed organisms. Most 

research effort that addresses chemical interference with the function of endocrine-

dependent processes in aquatic, and terrestrial, vertebrates has focused upon chemicals 

with adverse effects on the function of the endocrine reproductive axis (Bergman et al. 

2013; Mills and Chichester 2005). Much less attention has been directed towards 

contaminant-related modulation of non-reproductive endocrine processes in aquatic or 

terrestrial vertebrates. This observation applies in particular to the hypothalamic-pituitary-

adrenal/interrenal axis (HPA/I axis; Bergman et al. 2013; Hinson and Raven, 2006). The 

HPA/I axis is part of a suite of adaptive responses in all vertebrates that plays a key role in 

responding to biotic and abiotic challenges and whose functional integrity is of great 

importance to the individual (Wingfield, 2013). In teleost fish, the HPI axis constitutes a 

neuroendocrine cascade which is activated by perception of a stressor, triggering the 
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release of corticotropin-releasing hormone (CRH) from the hypothalamus, which stimulates 

the release of adrenocorticotropic hormone (ACTH) by the pituitary and in turn initiates the 

synthesis and release of corticosteroids by the interrenal tissue (Barton, 2002). The 

magnitude of the apical response of the HPI axis, the release of cortisol from the interrenal 

tissue, is taken as a measure of the severity of the stressor. Cortisol itself has wide-ranging 

effects on growth, reproduction and the immune system which are believed to be adaptive 

in the short-term but may be harmful under conditions of prolonged stress (Sapolsky et al., 

2000).  

 

Recent studies have indicated that the magnitude of the apical HPI axis response of three-

spined sticklebacks (Gasterosteus aculeatus L.) to a standardised stressor, determined as the 

whole-body accumulation, or release to water, of cortisol, varies in proportion to the 

concentration of wastewater treatment works (WWTWs) effluent at the site at which the 

sticklebacks are resident (Pottinger et al. 2013; T. G. Pottinger, R. J. Williams and P. 

Matthiessen, unpublished). These findings strongly suggest that one or more regulatory 

sites within the HPI axis may be vulnerable to interference by factors associated with 

WWTW effluent. Several studies have shown that metals (e.g. Gagnon et al. 2006; Lacroix 

and Hontela 2004; Miller and Hontela 2011; Sandhu et al. 2014) and organic contaminants 

(e.g. Aluru and Vijayan 2006; Aluru et al. 2005; Bisson and Hontela 2002) affect the function 

of the stress axis in fish. However, although the effects of short-term exposure to 

wastewater have been investigated in fish (Ings et al. 2011) the mechanistic basis of effects 

on the stress axis associated with life-long exposure to WWTW effluent have not. As a next 

step to addressing this uncertainty we conducted the present study to determine whether 

between-site variation in stress responsiveness among three-spined sticklebacks with 
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lifelong exposure to WWTW effluent is persistent or reversible. Resolving this question will 

inform subsequent investigations into the nature and functional significance of effluent-

associated modification of the stress axis in fish. 

 

To address this objective a translocation experiment was conducted in which three-spined 

sticklebacks from eight sites contaminated by WWTW effluent were moved to a clean-water 

aquarium environment. After five months in this contaminant-free environment the 

responsiveness of the translocated fish to a standardised capture / confinement stressor 

was determined and compared with fish sampled from the eight original capture sites and 

tested for stress responsiveness at the time of capture. This allowed discrimination between 

reversible short-term effects of exposure to effluent and persistent alterations in the 

functioning of the stress axis.  

 

 

Materials and methods 

 

Selection of sample sites 

 

Eight sites downstream of wastewater treatment works (WWTWs) in north-west England 

were selected (Table 1) for this study. The distances between the WWTW discharge and the 

sample site varied between 100 m (Woolton, Huyton) and 2500 m (Blackburn). The effluent 

concentrations at each sample site were estimated using the Low Flows 2000 Water Quality 

eXtension model (LF2000-WQX) which combines hydrological models with water-quality 

models to make predictions on the concentration of a given chemical originating from a 
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point source (Williams et al. 2009). The percentage effluent was estimated as the 

concentration modelled for a conservative chemical discharged from all WWTWs in the 

river system at a fixed concentration of 100 ng/l (Pottinger et al., 2013). The magnitude of 

the apical response of the stress axis to a standardised stressor had been characterised in 

three-spined sticklebacks (Gasterosteus aculeatus L.) resident at these sites during previous 

studies (Pottinger et al. 2013; T. G. Pottinger, R. J. Williams and P. Matthiessen, 

unpublished) and found to be proportional to the percentage of WWTW-derived effluent at 

each sampling site. We were therefore confident that fish from these locations would 

provide a suitable range of variation in stress responsiveness for the present study.  

 

Translocated aquarium populations 

 

During October 2013 approximately sixty fish were collected from each of the selected sites. 

Fish were captured using a metal-framed 45 cm D-profile handnet, temporarily retained in 

buckets containing river water and then transferred to the CEH Lancaster aquarium in 20 

litre polypropylene containers. Here the fish were placed in 30 l glass aquaria, each supplied 

with a constant flow (800 ml/min) of untreated water from a nearby tarn with no history of  

sewage or any other direct discharge (Blea Tarn Reservoir, Hazelrigg, Lancaster; NGR SD 493 

585). Fish from each sample site were randomly distributed between two aquaria (approx. 

30 fish/tank). The fish were maintained under a short daylength (7.5h : 16.5h: L:D) and were 

fed bloodworm three times weekly. Water temperature during the period of the study 

(October 2013 – March 2014) ranged between 9.9oC and 13.8oC (11.4 ± 0.01oC, mean ± SE). 

Mortalities throughout the holding period were low (0 – 6%) for all populations with the 

exception of the fish captured from Netherley Brook (Woolton WWTW) in which total losses 
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during the holding period were 30%.  

 

Assessment of stress responsiveness in the translocated aquarium populations 

 

Because of the small size of the target species and the remote locations of the sampling 

sites the acquisition and processing of blood samples was impractical. Instead, the 

magnitude of the stress response was measured indirectly via the release of cortisol across 

the gill epithelium to the surrounding water (Scott and Ellis 2007) the rate of which varies in 

proportion with blood cortisol concentrations (Félix et al. 2013; Friesen et al. 2012; Gabor 

and Contreras 2012; Wong et al. 2008). During March 2014 five fish were transferred by 

handnet from a holding tank to a bucket containing 5 litres of water in which they remained 

for 30 mins before being transferred to individual Nalgene tubs (150 ml, 6.5 cm diameter, 

with screw-fit lids) containing 100 ml of artificial freshwater (deionised water containing 

0.33 g/l aquarium grade sea salt; Klüttgen et al. 1994). During exposure to the combined 

capture, handling and confinement stressor blood cortisol concentrations in three-spined 

sticklebacks plateau within 30 mins and remain stable for up to 60 minutes thereafter (T. G. 

Pottinger, unpublished data). After a further 30 minutes these fish were transferred to  

beakers containing an overdose of sedative (2-phenoxyethanol, 1:1000) and when 

unresponsive to a tail pinch were placed individually in labelled 12 ml polypropylene 

centrifuge tubes and snap-frozen by transfer to a dry shipper containing liquid N2 (Taylor-

Wharton CX 100). This procedure was repeated for all sixteen holding tanks (each of eight 

sites in duplicate). A total of 10 stressed fish was sampled in this way from each site 

population. The tubs containing the water samples were transferred to a freezer (-20oC) to 

await extraction and fish samples were also frozen to await dissection. In due course each 
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fish was thawed and weighed to the nearest mg. Total length was recorded to the nearest 

mm, and the sex of each fish was determined by macroscopic examination of the gonads 

after making a ventral incision.  

 

Field-testing of stress responsiveness in wild-caught fish 

 

During March 2014 the eight sites from which the translocated populations were obtained 

in October 2013 were revisited to obtain individuals for comparison with the aquarium-held 

translocated sticklebacks. At each site ten fish were captured and retained in a bucket 

containing river water for a period of up to 45 minutes before being transferred to 

individual capped Nalgene tubs (150 ml, 6.5 cm diameter) containing 100 ml of artificial 

freshwater in which they were confined for 30 minutes. As noted above, blood cortisol 

concentrations in three-spined sticklebacks plateau within 30 mins and remain stable for up 

to 60 minutes thereafter. Artificial FW, rather than the river water at each site, was used for 

the collection of water-borne cortisol to minimise the inclusion of suspended solids likely to 

interfere with the subsequent extraction procedure, and to allow the collecting vessels to be 

prepared in advance. The fish were then killed by transfer to a bucket containing an 

overdose of sedative (2-phenoxyethanol, 1:1000) and when unresponsive to a tail pinch 

were transferred to individually labelled 12 ml capped polypropylene test tubes which were 

placed into a small dry shipper (Taylor-Wharton CX 100) containing liquid nitrogen. The fish 

samples were subsequently transferred to a larger dry-shipper (Taylor-Wharton CX500) for 

transfer back to CEH Lancaster where samples were stored at -80oc prior to processing as 

described above. Water samples were held on ice in coolboxes until return to CEH Lancaster 

where they were transferred to a freezer (-20oC) for storage. 
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Extraction of water samples 

 

Water samples within which single sticklebacks had been held post-capture for a period of 

30 mins were thawed at room temperature. Each sample was pumped (Watson Marlow 

202S multi-channel peristaltic pump, 10-20 ml/min, 12 active channels, 2.79 mm i.d. silicone 

tubing) through an inline 0.45 µm pre-filter (Pall Gellman Acrocap, Pall Life Sciences) and a 

Sep-Pak C18 cartridge (Waters Ltd). Sep-Pak cartridges were cleaned and conditioned by 

flushing with 5 ml of ethyl acetate, followed by 5 ml methanol, followed by 5 ml deionised 

water using a vacuum manifold. The cartridges were not allowed to dry out between 

conditioning and receiving the water sample. One blank (100 ml artificial freshwater only) 

and one recovery standard (100 ml artificial freshwater containing a 100 μl aliquot of a 

solution of cortisol in ethanol, 5 ng/ml) were included with each batch of ten water samples 

(100 ml). No spurious signal was detected in any of the blanks and recovery of added 

cortisol was consistently >85%. After extraction, cortisol was immediately eluted from the 

Sep-Pak cartridge with 2.5 ml ethyl acetate in a vacuum manifold. The eluate was dried in a 

heating block under a stream of air at 40oC and redissolved in 350 μl ethyl acetate. A 150 μl 

aliquot of the reconstituted extract was taken for assay. 

 

Cortisol radioimmunoassay 

 

The concentration of cortisol in water samples within which individual fish had been 

confined was determined by radioimmunoassay (Pottinger and Carrick 2001). Two minor 

adjustments were made to the published method. The antibody used in this study was IgG-
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F-2 rabbit anti-cortisol (IgG Corp; Nashville, TN, USA) and tracer ([1,2,6,7-3H]-cortisol, 2.59 

TBq/mmol; Perkin-Elmer, U.K.) was added in a 25 μl aliquot of buffer at the same time as 

the antibody was dispensed. 

 

Statistical analysis 

 

The relationship between effluent concentration and the cortisol response to confinement, 

and between effluent concentration and somatic data, was investigated using linear 

regression (Sigmaplot v. 12; Systat Software, Inc.). The relationship between stress-induced 

release of cortisol to water among fish held in the aquarium for 5 months and fish from the 

same sites tested immediately after capture from the river was investigated using Deming 

regression (Sigmaplot). Differences in somatic characteristics and in the cortisol response to 

confinement between wild-caught and aquarium-held fish, and between sexes, were 

assessed on log-transformed data+1 using two-way ANOVA (Sigmaplot). The coefficient of 

condition (K, Fulton’s condition index) was calculated as K = (100*weight)/(length3) (Bolger 

and Connolly 1989). 

 

 

Results 

 

Cortisol release rates in relation to effluent concentration 

 

The stress-induced rate of release of cortisol to water (WC) was significantly higher among 

the translocated fish than wild-caught fish (F (1,156) = 18.3, p < 0.001; Table 2) and the WC 
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release rates were overall higher in females than males (F (1,156) = 31.6, p < 0.001; Table 2). 

There was no significant interaction between these factors (F(1,156) = 3.1, p = 0.08). A 

significant positive relationship was evident between the stress-induced cortisol release rate 

and the estimated effluent concentration at the same site for wild-caught female 

sticklebacks subjected to a confinement stressor immediately after capture (Fig. 1a: r2 = 

0.13, p = 0.02, n = 43). A similar significant trend was apparent for male fish (Fig. 1c: r2 = 

0.24, p = 0.002, n = 37). When the translocated aquarium-held fish were tested for stress-

responsiveness in March 2014 the rate of release of cortisol to water by female fish was 

positively related to the effluent concentration at their sites of origin (Fig. 1b: r2 = 0.16, p = 

0.006, n = 46) but this relationship was not evident among the aquarium-translocated males 

(Fig. 1d: r2 = 0.00, p = 0.89, n = 34).   

 

In the absence of a clear relationship between stress-responsiveness and site-specific 

effluent concentration among the male fish we assessed whether similarities between the 

responsiveness of the river-caught and aquarium-reared fish from the same site were 

evident, irrespective of the effluent concentration at the original capture site. Because 

measurement error was associated with the data points on both axes of these plots, Deming 

regressions were conducted (Fig. 2). The Deming regression model coefficients indicated 

that there were no proportional differences between the two groups, for either male fish or 

female fish. For both males and females, there was no proportional bias between the river-

caught and aquarium-reared groups with the confidence interval (CI) for the slope 

coefficient (0.07 - 1.13 and 0.32 – 1.52 respectively) including 1, indicating that the 

hypothesis that the slopes equal 1 was not rejected. A similar outcome was obtained when 

the anomalous value (Altrincham, aquarium-reared males) was included. For males, there 
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was in addition no systematic difference between the two data sets with the confidence 

interval for the intercept (-197 - 1028) including 0 therefore accepting the hypothesis that 

the intercept was 0. For the female fish, however, the CI for the intercept (402 - 2022) did 

not include 0, an outcome consistent with the higher cortisol release levels shown for 

aquarium-reared female fish in Table 2. 

 

 

Cortisol release rates in relation to fish size 

 

Among the wild-caught fish a significant negative relationship was apparent between body 

mass and release of cortisol to water during confinement for both sexes (Fig. 3a: r2 = 0.26, P 

< 0.001, n = 43, Fig. 3c: r2 = 0.57, P < 0.001, n = 37) but this trend was absent in the fish 

sampled after five months in the aquarium environment (Fig. 3b, d: r2 < 0.1, p > 0.1, n = 46, 

34). 

 

Fish size in relation to effluent concentration 

 

The translocated aquarium-reared fish were heavier overall than the wild-caught individuals 

(F (1,156) = 9.1, p = 0.003; Table 2) and females were larger than males (F (1,156) = 4.4, p = 

0.04; Table 2). There was no interaction between these factors (F (1,156) = 0.8, p = 0.4). 

Length varied significantly in a similar fashion (Table 2). However, the coefficient of 

condition did not vary significantly with either sex or treatment. For wild-caught fish 

captured in March 2014 the body mass of both female and male sticklebacks was 

significantly and inversely related to the estimated concentration of effluent at the site of 
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capture (Fig. 4a: r2 = 0.19, p = 0.003, n = 43; Fig. 4c: r2 = 0.14, p = 0.02, n = 37) but for the 

translocated fish no significant relationship between body mass and the effluent 

concentration at their site of origin was apparent when the fish were sampled in March 

2014 (Fig. 4b,d: r2 < 0.1, p > 0.1, n = 46, 34). Similar trends were evident for the total length 

of fish of both sexes (data not shown, female wild-caught: r2 = 0.29, p < 0.001, n = 43; male 

wild-caught: r2 = 0.19, p = 0.007, n = 37; female and male aquarium-reared: r2 = 0.0, p > 0.3, 

n = 46, 34).   

 

 

Discussion  

 

Site-specific trends in stress responsiveness are retained in female sticklebacks after 

translocation to an uncontaminated environment 

 

Site-dependent trends in the stress-induced rate of release of cortisol to water (WC) were 

evident in three-spined sticklebacks of both sexes sampled from locations downstream of 

WWTW effluent discharges. Overall, WC release rates, which provide a surrogate for blood 

cortisol concentrations (Félix et al. 2013; Friesen et al. 2012; Gabor and Contreras 2012; 

Wong et al. 2008), were directly proportional to the estimated concentration of WWTW 

effluent at these sites. Female sticklebacks translocated from the same sites five months 

previously and subsequently held in pristine aquarium conditions continued to exhibit the 

same site-related trends in WC release rates as their more recently wild-caught 

counterparts. This relationship was not evident among male fish. Although stress 

responsiveness among the wild-caught males was positively related to the concentration of 
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effluent at their site of capture, the same relationship was not evident among the 

translocated males reared under aquarium conditions for 5 months. Counter-intuitively, 

there remained a positive and statistically significant relationship between the magnitude of 

stress-induced WC concentrations in the wild-caught males and in the translocated 

aquarium-reared male fish. These results suggest that in female fish at least, the alterations 

in stress axis function that are responsible for variation in stress-induced WC in sticklebacks 

are irreversible in the short- to medium-term, and do not require ongoing exposure to the 

home environment in order to be sustained.  

 

Variation in the estimated effluent concentration accounted for up to 25% of the between-

site variation in WC. This is a smaller proportion than reported in a related study across a 

greater number of sites in which up to 45% of the variation in WC was explained by effluent 

concentration (T. G. Pottinger and P. Matthiessen, unpublished). The lower proportion of 

variation in stress-induced WC explained by the effluent estimates in the present study may 

be a consequence of the generalisations that are unavoidably inherent in the effluent 

concentration estimates (Johnson et al. 2008), together with the possibility that effluent 

concentration itself does not precisely reflect between-site differences in the primary 

determinant(s) of variation in stress responsiveness, and that additional independent or 

interacting factors of which we are unaware may also be important. One such factor is the 

susceptibility of the HPI axis in male fish to modulation by endogenous androgens during 

the reproductive cycle (Pottinger et al. 1996), which, given the time of year at which 

sampling was conducted, probably accounts for the overall lower concentrations of WC 

released by males at each site compared with females from the same sites, and may have 

contributed to some degree to the loss of overt proportionality with the effluent 
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concentration. Nonetheless, the association between stress axis reactivity in translocated 

female fish and effluent concentration at their sites of origin does implicate effluent 

exposure as a contributory factor in determining these differences. Three mechanisms may 

be proposed to account for the persistence of site-dependent differences in WC release 

rates in females: (1) changes in HPI axis function that in themselves are not adaptive but are 

a consequence of effluent-driven adaptive processes which have led to genetic differences 

between populations (Bélanger-Deschênes et al. 2013; Lind and Grahn 2011; Williams and 

Oleksiak 2008) (2) epigenetic effects on regulatory elements within the stress axis (Hala et 

al. 2014; Vandegehuchte and Janssen 2014; Zhang and Ho 2011) arising from exposure to 

chemicals associated with WWTW effluent; or (3) chemical intervention at a key early 

developmental stage (Gore 2008; Hamlin and Guillette 2011) with consequences for HPI axis 

function in the adult. At present, we have insufficient data to speculate further as to which 

of these alternative explanations best accounts for the results of the study, or whether 

additional explanations must be sought.  

 

 

Effluent-related variation in fish size is eliminated by translocation 

 

For both male and female wild-caught sticklebacks, size (body weight and total length) was 

inversely related to the estimated effluent concentration at the sites of capture. This finding 

differs from previous studies which have reported a positive trend between WWTW effluent 

concentration and the size of resident fish (Pottinger et al. 2013; Tetreault et al. 2012) but is 

consistent with the results of a study in which the growth of sticklebacks downstream of a 

WWTW was improved following remediation of the effluent (Pottinger et al. 2011). WWTW 
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effluent contains nutrients likely to improve productivity of the downstream aquatic 

ecosystem and WWTW effluent discharges also tend to raise the water temperature in 

receiving waters (Brooks et al. 2006; Gücker et al. 2006), both of which are factors that have 

a positive effect on the growth of fish (Beardsley and Britton, 2012; Graham and Harrod 

2009). However, WWTW effluent also contains chemicals with the potential to exert a 

negative effect on the growth of fish via direct effects on physiological or endocrine 

processes, or because the fish need to divert resources to coping with a toxicological 

challenge (Forbes and Calow 1998). The interplay between these growth-promoting and 

growth-suppressing factors may result in different outcomes across different contexts. 

Whatever the cause of the between-site differences in size that were evident among the 

wild-caught fish, the absence of size differences among the translocated fish suggest that 

the innate scope for growth of the fish was not affected by prior exposure to effluent and 

that the differences in the size of fish among sites in the March 2014 wild-caught sample 

arose due to proximate factors. The absence of between-site differences in fish size among 

the translocated fish eliminated the significant inverse relationship between body mass and 

stress-induced water cortisol release that was apparent among the wild-caught fish.  

 

The absolute magnitude of the stress response is altered by translocation 

 

Overall the WC response to confinement was greater among the aquarium-reared fish than 

the wild-caught fish. Water temperature can affect the magnitude of the cortisol stress 

response in fish (Pottinger et al. 1999) but here the average river temperatures at the time 

of capture in March 2014 (10.8oC) were close to the average water temperature in the 

aquarium at the same time (10.9oC). It is of course possible that stress responsiveness of the 
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fish at the time of testing was influenced by the temperature regime experienced across the 

preceding weeks or months. The annual temperature range seen in the field sites (e.g. 

Sinderland Brook: 2oC – 20oC: data taken from the U.K. Environment Agency's Water 

Information Management System) was greater than that experienced by the translocated 

fish (aquarium water temperature range 10oC – 14oC). Given the array of variables that 

differed between the translocated and river-resident fish it is impossible to identify the 

specific cause of these differences.  

 

Conclusion 

 

In female three-spined sticklebacks the relationship between HPI axis reactivity and the 

effluent concentration at their sites of origin, remained intact after translocation and 

prolonged rearing in an unpolluted environment.  In male fish this relationship did not 

persist after translocation: although a significant relationship between stress-induced 

cortisol release rates in wild-caught and translocated males was apparent, release rates in 

the translocated fish were not directly associated with site-specific effluent concentration. 

These findings suggest that the variation in stress response seen across sites receiving 

WWTW effluent is, in female fish at least, a robust trait that reflects either the indirect 

consequences of local adaptations at a genetic level, persistent effects on the stress axis 

arising from contaminant exposure during early development, or is the result of epigenetic 

mechanisms. The outcomes of this study provide more evidence that non-reproductive 

endocrine systems in fish are vulnerable to modulation by anthropogenic factors but raise 

questions regarding the sex-dependent specificity of the effect. Further work, including 

investigation of the trans-generational persistence of these effects, laboratory-based 
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effluent exposure studies and targeted transcriptome analysis, is needed to identify the 

underlying mechanism and critically, to determine the implications for the fish in terms of 

their overall fitness and resilience to further challenges.  
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Tables 

 

Table 1. Sites sampled to provide fish for aquarium-reared v. wild-caught comparison. DS – 

downstream, US – upstream. Effluent concentrations were calculated with the Low Flows 

2000 Water Quality eXtension model (LF2000-WQX; Williams et al., 2009) using flow data 

for the period 1960-1991. NGR – National grid reference, U.K. Ordnance Survey. 

 

 

 

 

 

WWTW 

name 

Discharge 

location 

(NGR) 

Sample site 

location (NGR) 
Receiving water 

Effluent 

concentration (% 

of river flow) 

Leyland SD 521 208 SD 517 200 River Lostock 19 

Blackburn SD 605 294 SD 590 282 River Darwen DS 30 

Altrincham SJ 750 904 SJ 738 905 Sinderland Brook 31 

Darwen SD 690 243 SD 690 246 River Darwen US 34 

Huyton SJ 452 879 SJ 452 877 Netherley Brook 39 

Denton SJ 921 935 SJ 919 937 River Tame 54 

Woolton SJ 450 875 SJ 448 874 Netherley Brook 73 

Hillhouse SD 350 056 SD 353 047 
Maghull Hey Cop 

Drain 
95 
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Table 2. A summary of somatic data and WC results for the aquarium-reared population 

(caught October 2013 and held in the aquarium until March 2014) and wild-caught 

population (caught March 2014) at the time of testing in March 2014.  

 

 

 

 

1K – coefficient of condition. 

2WC – rate of release of cortisol to water. 

 

 

 

 

 

 

 

 

   Mass (mg) Length 
(mm) 

K1 WC2 
(pg/g/h) 

Sex Population n mean ± SE mean ± SE mean ± SE mean ± SE 

female 
river 43 1651 ± 156 51.0 ± 1.6 1.100 ± 0.02 1883 ± 256 

aquarium 46 1670 ± 67 53.9 ± 0.7 1.043 ± 0.02 2880 ± 194 

       

male 
river 37 1246 ± 106 47.3 ± 1.5 1.073 ± 0.02 1169 ± 161 

aquarium 34 1537 ± 96 51.9 ± 0.8 1.056 ± 0.02 1357 ± 151 
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Figures  

 

 

Figure 1. Mean cortisol released to water during exposure to a standardised confinement 

stressor by: (a) female () and (c) male () sticklebacks captured and tested at the sites 

shown in Table 1 during March 2014; (b) female and (d) male sticklebacks captured at the 

sites shown in Table 1 during October 2013, transferred to the CEH aquarium, and tested 

during March 2014. In (d) the mean value for fish from Sinderland Brook (Altrincham 

WWTW) is shown in grey for comparison with Fig. 2b. Best-fit regression lines are shown. 

The regressions were conducted using the raw data, but means ± SEM are shown for clarity, 

n = 3-7. Fig. 1a: r2 = 0.13, p = 0.02, n = 43; Fig. 1b: r2 = 0.16, p = 0.006, n = 46; Fig. 1c: r2 = 

0.24, p = 0.002, n = 37; Fig. 1d: r2 = 0.00, p = 0.89, n = 34. 
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Figure 2. Scatter plots showing the relationship between stress-induced cortisol release to 

water in (a) female and (b) male sticklebacks captured from the wild at eight sites 

downstream of WWTW discharges (see Table 1) and immediately exposed to a standardised 

confinement stressor (wild-caught fish; x-axes) and sticklebacks captured at the same sites 

in October 2013, transferred to the CEH aquarium, and tested in March 2014 (aquarium-

held fish; y-axes). The mean value for male fish from Sinderland Brook (Altrincham WWTW) 

is shown in grey and was excluded from the regression shown. Deming regression outcomes 

are reported in the text. 
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Figure 3. Scatter plots showing the relationship between body mass and the stress-induced 

release of cortisol to water for: (a) female () and (c) male () sticklebacks captured in 

March 2014; and (b) female and (d) male fish captured at the same sites in October 2013 

and measured in March 2014 after 5 months captivity. The best-fit linear regression lines 

are shown. Fig. 3a: r2 = 0.26, P < 0.001, n = 43; Fig. 3b: r2 = 0.00, p = 0.67, n = 46; Fig. 3c: r2 

= 0.57, P < 0.001, n = 37; Fig. 3d: r2 = 0.08, p = 0.1, n = 34. 
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Figure 4. Scatter plots showing the relationship between the estimated effluent 

concentration (as % of total river flow) at the capture sites and the body mass of: (a) female 

() and (c) male () sticklebacks captured in March 2014; and (b) female and (d) male fish 

captured at the same sites in October 2013 and measured in March 2014 after 5 months 

captivity. Best-fit regression lines are shown. The regressions were conducted using the raw 

data, but means ± SEM are shown for clarity, n = 3-7. Fig. 4a: r2 = 0.19, p = 0.003, n = 43; Fig. 

4b: r2 = 0.00, p = 0.76, n = 46; Fig. 4c: r2 = 0.14, p = 0.02, n = 37; Fig. 4d: r2 = 0.06, p =0.18, n 

= 34. 
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