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Abstract

One of the biggest challenges in the context of software engineering is the avoidance of program
crashing. We know for sure that all programs eventually tend to fail, but we can always try to
avoid the presence of certain errors in the code that will produce failures on a piece of software.
This can be lessen through a continuous testing task, of manually defining testing examples that
try to catch the maximum number of failures in the program, before the program reaches the
end user. This process is not only tiresome but it is also unmanageable considering the ever
growing complex programs appearing in the market.

With this thesis we propose a different alternative, where test cases are automatically
generated to test properties of programs. If a test case fails during a test run, an output is
returned containing the smallest counter-example proving that the program does not comply
with a given property. For this to work, we only have to setup a model that mimics the same
part of the software that we want to test.

This methodology is called property based testing and it was used to test the entry gateway
of a financial market platform. We decided to test one specific property of the program, and
we found, after several test case runs, a failure in the program as it did not comply with the
property defined by us.
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Chapter 1

Introduction

Over the last 30 years, software has gradually become more complex and difficult to test.
Nowadays, it is easy to start developing an application or a program, but it is harder to ensure
that these programs do not end up crashing over time, especially, considering the multitude of
lines of code required for them to work and the errors that we, human beings, make.

Programs are no longer built from scratch these days. They are a mixture of modules and
components, each one built using other software components as well. This adds up to the
complexity of how a piece of software is built as well as to the challenge of testing it. So testing
has become one of the greatest challenges in the software development area. Tests are now part
of most programs, with each developer or tester defining customized tests in the software code,
making it more complex than ever. This solution is not the best one since it is not scalable as
programs grow, and also difficult for the programmers and testers to maintain.

With this thesis, we propose a suitable alternative to the test generation approach of software
testing. The approach followed in this project is based on the concept of property based testing
that relies heavily on automatic testing generation and program property assertion. The tests
were made on an European trading platform, targeting its gateway of market orders.

Over the next chapters we will cover the most important concepts of software testing as well
as the state of the art of automatic test case generation, with approaches like fuzz testing. Then
we will delve deep into the concept of property based testing, exploring some relevant frameworks
used for this type of testing. In the end we will explain how the tests on our test subject were
developed, and also detail the results obtained.

1





Chapter 2

Software Testing

Before diving into more detail on fuzzing methodologies and property based testing, lets begin with
by explaining what software testing is, and why is it so important for the software development
life cycle.

2.1 Definition

According to Ammann und Offutt (2016), testing is the most significant way industry has to
evaluate software during its development cycle. This necessity for testing software stems from the
fact that software itself is produced by humans, who sometimes make mistakes. These human
unintentional induced errors can lead to failures along the way of the software life cycle.

In order to catch and resolve these errors, software testing appears as a series of processes
which try to ensure that computer code does what it was designed to do and nothing more.
These tests help improve the consistency and predictability of software, by mimicking different
execution contexts, with various inputs, so as to detect unanticipated behavior early on in the
software development life-cycle (Myers u. a., 2004).

2.2 Terminology

In order to better understand the concept of software testing, one needs to grasp three major
concepts in the context of software development. These are the basic ideas of Error, Fault and
Failure.

In the previous section, we discussed that software testing is required because human beings
have a tendency to make mistakes. This idea applies to the concept of Error in software testing.
An error is the consequence of software development being made by humans. These errors
manifest themselves either in the software code, or even in the software specification. These
manifestations are called Faults, and they are commonly referred to as bugs. When a software

3



4 Chapter 2. Software Testing

fails, i.e produces an unexpected result, as consequence of one or more Faults, we call that a
software Failure.

Software testing tries to prevent failures from happening, by attempting to detect the faults
that caused them (Ammann und Offutt, 2016). This process is an integral part of the software
life cycle, and it is broadly deployed during its different phases (Pan, 1999), consuming up-to
50% of the time spent on the whole software development process (Myers u. a., 2004).

2.3 Testing Approaches

Software testing besides being a time consuming task, is also a complex one, composed of different
methodologies, each one with its pros and cons. Pan stated that software tests can be categorized
as correctness tests, performance tests, reliability tests and security tests, according to their
purpose, life-cycle phase where they are implemented and also according to their scope.

Correctness is the minimum requirement that we expect software to satisfy, thus being the
most important category of testing. Correctness testing requires the existence of an oracle in
order to differentiate between a right and a wrong behavior. There are two approaches that can
be followed depending on the tester’s knowledge of the software internals. These are commonly
known as "black-box" and "white-box" testing (Pan, 1999).

2.3.1 Unit testing

Unit testing follows the logic of splitting the target software code into small units, in order to
individually check each one. These units are usually program functions that are individually
tested with predefined inputs, and asserted for expected outputs.

Despite not detecting every single bug on the code, unit testing is most of the times easy
to implement and can detect faults in the code early on in the process of software development
life-cycle. This is extremely helpful since the effort put on finding and fixing these faults, found
during unit testing, is smaller compared to the overhead of fixing them later on in the development
process.

This type of testing comprises the first battery of tests to be performed against the developed
software. It precedes the integration testing approach, that checks the combination of the
individual bits of tested code.

2.3.2 Mutation testing

Mutation testing is a testing approach that focus on assessing the quality of test cases as well
as generating new ones. This is done through a process called mutation. The tester will create
several different programs, called mutants, based on the insertion of small faults on the original
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program. Each mutant will then be tested against the test cases, already developed by the
programmer. This way, we can have a better understanding of whether or not our test cases are
effective in detecting the small errors introduced in each mutant. The more tests fail with each
mutant the better the input test data is.

This method of testing can be categorized as a type of white-box testing, as it requires access
to the original source code in order to derive new mutants. One of the major downsides of this
type of testing is the fact that it is very time-consuming.

2.3.3 Black-box vs white-box testing

The black-box testing methodology (as the name hints) entirely disregards the internal workings
of the target component (Pan, 1999). The tester treats the software under test as a black box,
such that only the requirements, as well as the inputs and outputs are observable, and it is only
by observing these that we can determine certain functionality traits (Howden, 1980).

Considering that in this type of approach the software testers do not have access to the source
code of the program under test, the only way of being sure that all the faults are detected is
to test the program with all the possible inputs 1. If we think that even simple programs have
a large input space, the idea of exhaustive input testing of more complex programs becomes
impractical, as it is both extremely difficult as well as costly to implement (Myers u. a., 2004). To
illustrate this problem, lets consider a 6 argument function, with each argument being a 32 bit
integer. In order to be able to black-box exhaust this function it would be necessary to generate
26∗32 different inputs. A number that is way bigger than the number of atoms on the Earth 2.

Partitioning comes in hand as one common technique for facing this problem. This approach
partitions the input test domain in such a way that the input values in each sub-domain are
equivalent, thus enabling the exhaustive testing of each partition by selecting representative
value(s) in each domain (Sutton u. a., 2007). Another valid alternative is to have access to the
interior parts of the program and use that extra knowledge to guide the generation of input test
cases (Myers u. a., 2004). This is something the white-box testing approach does.

Contrary to the black-box testing approach, the white-box testing philosophy lets the tester
explore the building blocks of the software under test. Most of the times, this is achieved by
giving the tester 3 access to the source code of the software under test. Test cases will be then
derived from the examination of the program’s logic (Myers u. a., 2004).

The main goal of white-box testing is to cause every statement in the code to execute at
least once. This is considered to be a good heuristic of test completeness since a program is
considered to be completely tested, when all the possible control flow paths are executed 4 (Myers

1this idea is called exhaustive input testing
2approximately 1050

3here we call tester, the person who will execute the software tests. The person itself can be a dedicated tester
or even the software developer

4this is the concept of exhaustive path testing
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u. a., 2004). This concept is extremely useful not only for stressing all the different features of
a program but also for discovering the so called dead code, which is the code that never gets
executed (Pan, 1999).

But, as it happens with all testing methodologies, this one has also its downsides. The
drawback of the exhaustive path testing is centered on the considerably large number of unique
logic paths throughout the program’s execution, making it impractical, much like the exhaustive
input testing approach, to test every single one of them (Myers u. a., 2004). Furthermore, the
fact that every logic path is covered, does not necessarily removes the possibility of the program
containing faults. Exhaustive path test does not guarantee that a program complies with its
specification nor does it detect the absence of a necessary path in the program. Additionally,
this testing approach might also not uncover data-sensitive errors, where detection is dependent
on the input values used 5 and not on the execution of every logical path (Myers u. a., 2004).

2.3.4 Fuzzing

Fuzzing is a testing methodology whose sole purpose is to test the reliability of a program by
injecting it with random input data. According to Takanen u. a., the purpose of fuzzing is to send
anomalous data to a system in order to trigger undefined or erratic behaviour on it, therefore
revealing reliability problems. The only program specification that fuzz testing checks for is
whether or not a crash is provoked when a program is presented with a series of non-sense data,
as opposed to approaches like property based testing, where specifications are written by the
programmer/tester, and tests are generated to check whether those specifications are obeyed by
the software under test.

The term fuzzing was first used in a research project from the University of Wisconsin-
Madison, and has since been adopted to describe an entire methodology of software testing that
is implemented by the so called fuzzers (Sutton u. a., 2007).

We can categorize fuzzing software or fuzzing tools (as they are commonly called), depending
on how they generate input testing data. Fuzzers are either labelled as mutation-based or
generation-based fuzzers. The mutation-based ones, as the name suggests, apply mutations on
predefined data samples to create new test cases. On the other hand, the generation-based
fuzzers create test cases from scratch (Sutton u. a., 2007). These general fuzzing philosophies
have inspired other fuzzing methods such as the pre-generated fuzzing test cases or the automatic
protocol generation testing.

2.3.4.1 Pre-generated Test Cases

The first phase of this method tries to define all data structures and corresponding value ranges
of the specification under study. Consequently, all test cases are defined as hard-coded packets

5commonly known as input coverage
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or files (depending on the program’s input interface), that will try to test boundary conditions.
Fuzz testing in this manner is inherently limited since there is no randomness on the tests being
executed (Sutton u. a., 2007).

2.3.4.2 Random Test Cases

With the random testing approach, each test iteration will simply throw random data at the
target, while observing its behaviour. This method, although being the least effective, it can
sometimes pay off when detecting (with little complexity 6) vulnerabilities associated with
faulty input validation, by just sending rubbish input test data (Sutton u. a., 2007). One of the
downsides of this method is the cumbersome task of manually detecting the fault that caused the
failure that the fuzzer detected. This sometimes requires tracking back how, for instance, 500000
random bytes of random input sent by the fuzzer caused a server to crash (Sutton u. a., 2007).

2.3.4.3 Automatic Protocol Generation Testing

Fuzz testing 7 can be used to test communication protocols, relying heavily on the protocol being
implemented by the target program. It therefore requires a description of the type of input that
is sent, pinpointing the portions of the data (either a packet, a file or any other form of input)
that are to be fuzzed, as well as the ones that are to remain static (Sutton u. a., 2007). This
description is made through a grammar which the fuzzer parses to generate fuzzed data, that is
then sent to the respective target (Sutton u. a., 2007).
The quality of the fuzzer will greatly depend on the tester’s ability to describe the protocol
specification, with special relevance to the portions of it that are most likely to trigger a failure
on the target application (Sutton u. a., 2007).

2.3.4.4 Types of Fuzzers

Fuzzers can also be categorized based on the location of the software being tested. Thus, they
can either be defined as local, remote or in-memory fuzzers (Sutton u. a., 2007).

Local fuzzers are mainly comprised by the Command-Line Fuzzers and the Environment
variable Fuzzers (Sutton u. a., 2007). The Command-Line fuzzers, just like the name suggests,
pass malformed arguments to the target application, through the command line. One of the key
features this type of fuzzers try to exploit is the setuid file permission, present in Unix based
operating systems, which temporarily elevates the privileges of a normal user. Any vulnerability
on a setuid application will allow an user to permanently escalate privileges and execute arbitrary
code (Sutton u. a., 2007).

6the only complexity associated with this type of testing is associated with the random data generation
7or just fuzzing
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#include <string.h>

int main(int argc, char **argv){
char buffer[10];

strcpy(buffer, argv[1]);
}

Listing 2.1: Command Line Exploit

The snippet of code present in 2.1 is a good example of a vulnerable program that would
be of interest to a Command-Line Fuzzer, like the clfuzz 8, created by warl0ck, which tries to
exploit both buffer overflows and format string vulnerabilities in command line programs.

An additional type of local fuzzing methodology, that tries to exploit setuid applications, is the
Environment variable fuzzing approach. Lets consider the following example taken from (Sutton
u. a., 2007):

#include <string.h>

int main(int argc, char **argv){
char buffer[10];

strcpy(buffer, getenv("HOME"));
}

Listing 2.2: Environment Variable Exploit

The code snippet of 2.2 shows an attractive example of a program vulnerable to the
Environment variable attack vector.

Additionally, we can also include in this list of local fuzzers, the file format fuzzer. The idea
behind this type of fuzzing is based on the fact that several applications need (at some point) to
parse input files. These applications can be therefore susceptible to file parsing vulnerabilities,
which can be exploited via malicious files (Sutton u. a., 2007). The file format fuzzer will then
dynamically generate malformed files that are then passed on to the target application, monitoring
for any eventual crash (Sutton u. a., 2007).

Web browser fuzzing is a special type of file format fuzzing. The logic behind these fuzzers is
based on an Hypertext Markup Language (HTML) functionality that enables the automation
of all the fuzzing process. The fuzzer exploits the functionality of the <Meta Refresh> tag to
continuously parse the HTML of each test case. This type of fuzzing is not limited to HTML
parsing, as there are other fuzzing tools specialized in the test of other components of a web
page, such as Cascading Style Sheets (CSS) or the Component Object Model (COM) objects
that can be loaded into a web browser (Sutton u. a., 2007).

8https://github.com/tuwid/darkc0de-old-stuff/tree/master/clfuzz

https://github.com/tuwid/darkc0de-old-stuff/tree/master/clfuzz
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One of the most appealing targets for remote fuzzing is any application that listens on a
network interface. Most applications nowadays are web-based, which means they communicate
with other applications (either remotely or internally) through well known network protocols like
the HTTP, DNS and other application layer protocols. Remote fuzzers, also known as network
protocol fuzzers, can be split into two major categories: those whose targets are simple protocols
and the others that fuzz complex protocols (Sutton u. a., 2007).

Simple protocols are characterized by having a simple or even lacking an authentication
mechanism. Most of the times their communications are based on printable characters, like
ASCII text, and sometimes they do not even include control fields like length and check-sums.
An example of this type of protocols is the File Transfer Protocol (FTP) whose communications
are all made in clear text. On the other hand, the complex protocols use binary data as well as
encryption or obfuscation methods to enforce data confidentiality and integrity on the established
communications.

One key target of remote fuzzers is any web-based application. These fuzzers tend to explore
some of the well known vulnerabilities inherent to web-based applications, like SQL injections,
Cross Site Scripting (XSS) . . . . These vulnerabilities exist at the application layer and are
triggered by data sent on HTTP communications, meaning that the remote fuzzer must be able
to communicate with the target applications through this application protocol. Some useful tools
for web application fuzzing are (Sutton u. a., 2007):

– WebScarab 9 developed by OWASP. It is an open source web application auditing suit with
some fuzzing capabilities;

– Codenomicon 10 HTTP Test Tools.

In order to test a specific program’s process, one can make use of an in-memory fuzzer (a very
specific type of local fuzzer). This type of tools will freeze the process under test (by making a
snapshot of it) in order to inject faulty data into the process’s address space, so as to force any
type of crash on the program’s in-memory process (Sutton u. a., 2007).

This fuzzing process has the advantage of being fast in execution, as it runs at the memory
level, avoiding the overhead of data parsing. However, most of the times, when the process
crashes, it is hard to reproduce the same error via an outside source (Sutton u. a., 2007).

Typically used to fuzz a variety of targets, the frameworks used for fuzzing simplify the work
of the tester by including libraries for data representation on different targets. These include
libraries which can produce fuzzed data (strings, values, etc) in order to trigger exceptions on a
variety of targets (Sutton u. a., 2007).

These fuzzing frameworks also facilitate the fuzzing in networked environments, by providing a
set of routines for networked communication. One of the main advantages, of a fuzzing framework

9https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
10https://github.com/Codenomicon/defensics-contrib

https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://github.com/Codenomicon/defensics-contrib
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is the re-usability in different targets, provided that the respective framework is a generic one and
not tailored specifically for a target. The paradoxical downside of the fuzzing frameworks is also
related with the fact of them being generic, and thus not covering more specific targets (Sutton
u. a., 2007).

A very well known fuzzing framework is the Boofuzz 11 fuzzer, a successor to the also praised
Sulley framework 12, that provides its users with data generation, failure detection, target reset
after a failure as well as the recording of test data, all in one package.

2.3.5 Property Based Testing

Property based testing is a testing methodology that uses program property definition as well as
test data generation in order to find inconsistencies in software. This testing approach is well
known for its automatic generation of test cases that can only prove that a program does not
comply with certain properties, by showing counter-examples for when tests fail. It is important
to highlight that these properties are defined by the tester, either in the same language of the
property based testing tool or in any other language. Afterwards, they are passed on to the main
testing framework to generate test cases that will stress a certain program against those same
properties.

In the next chapter, several relevant experiences (made in the context of property based
testing) are introduced. These examples will help understand this complex concept, as well as
demonstrate the usefulness of frameworks like QuickCheck and Hypothesis, which implement the
property based testing methodology.

11https://boofuzz.readthedocs.io/en/latest/
12https://github.com/OpenRCE/sulley

https://boofuzz.readthedocs.io/en/latest/
https://github.com/OpenRCE/sulley


Chapter 3

Property based testing

Property-based testing is the concept of testing programs, modules or even functions, based on
properties. The goal here is to define properties and then generate test cases that test those
properties on the target software. We can define properties as characteristics that we want
our program to comply with. For instance, we can design and develop a small program that
only prints out even pseudo-random numbers. One major property that we can define for this
program might be that all printed output must be even. After defining this property, we can
start generating tests that will stress this specification. If for any reason the output return is not
even (but odd), the property fails and we can therefore conclude that our program is wrongfully
built.

In this chapter we will discuss some relevant work made in the field of property-based testing.
The examples given, try to illustrate the basic principals of property testing, so that in the next
chapter we can further detail the work done in the context of this thesis.

3.1 QuickCheck

QuickCheck was initially a library for testing properties of Haskell programs (Claessen und
Hughes, 2011). Nowadays, libraries similar to QuickCheck have been developed for other
programming languages (e.g. Erlang, Scala, Python), all of them implementing the concept of
property based testing. The properties to be tested are defined as Haskell functions and can
either be tested with random input data or with data produced by a custom test data generator.

One interesting aspect of the QuickCheck framework is that the properties for which the
programs are tested against, as well as the test case generators, are written in the host language 1,
using a small set of library functions of the programming language. This approach is also followed
by other such frameworks such as the Hypothesis tool, for Python.

1in this case, in Haskell

11
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According to its official documentation web page 2, Hypothesis is a modern implementation
of property based testing, designed for mainstream languages. Hypothesis generates and runs a
much wider range of tests cases than a human tester could, finding edge cases in the program that
a programmer alone would otherwise miss. It also applies a shrinking process on the examples
that make the program fail, making them as simple and short as possible in order to save time
and money during the testing phase.

The main objective of property based testing is to test universal properties, i.e properties
in the form forall x, y . . . P(x, y . . . ) = True. If the property holds for all the inputs, then
the we can say that our program complies with the property. But in order for the test case
generation to end we have to choose a partition in the input space, and that can be achieved with
random sampling, which, much like Hypothesis, QuickCheck is able to do. Considering this and
because random test generation can most of the times stress unknown edge cases, the tests are
not generated following a distribution similar to the one of the real input data 3. Because of this,
QuickCheck is ideal for testing reusable code, such as base libraries present in a variety of larger
systems, each one having its own distribution of input data 4. Regardless of which distribution
the generated test cases follow, it is the tester’s job to define a suitable test case distribution,
through a test data generation language, available within the Haskell syntax (Claessen und
Hughes, 2011).

3.1.1 Properties definition

In order for QuickCheck to work properly it is necessary for the tester to define properties that
the program must comply with in order to function correctly. These properties are most of the
times defined in the same programming language as the one used for developing the testing
framework.

3.1.1.1 Reverse example

As an example of property definition, lets have a look at the reverse Haskell standard function,
used to reverse lists. Ideally this function has to satisfy the following law 5 (Claessen und Hughes,
2011):

reverse (xs++ys) = reverse ys++reverse xs

In order to be possible to compute the aforementioned property, we consider that it holds
true, provided that it passes a finite set of tests (Claessen und Hughes, 2011). This law is then
defined as a Boolean Haskell function:

2https://hypothesis.works/
3the one that is passed on to the target system when it is on the production environment
4One good alternative would be to use a uniform distribution in the generation process.
5the ++ operator is used to concatenate lists

https://hypothesis.works/
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prop_RevApp xs ys = reverse (xs++ys) == reverse ys++reverse xs

This function is implicitly quantified, i.e the specification associated with it only holds
considering all possible lists. However, in order to be tested, it is only checked for a limited set
of lists. Thus, if the function returns True for every generated list of the finite input space, then
testing succeeds (Claessen und Hughes, 2011).

We can ask QuickCheck to test this property in the Haskell interpreter, through the following
call (Claessen und Hughes, 2011):

Main quickCheck prop_RevApp

OK: passed 100 tests.

The quickCheck function receives a property and runs it against a significant volume of
randomly generated arguments 6, returning ‘OK’ if for every test case the returned result is the
True value.

On the other hand, if for any reason the property fails for a given argument, QuickCheck
reports back the respective counter-example where the property prop_RevApp is incorrectly
defined (Claessen und Hughes, 2011). Take the below property definition as an example:

prop_RevApp xs ys = reverse (xs++ys) == reverse xs++reverse ys

Checking the (incorrectly) defined property the output returned is the following:

Main> quickCheck prop_RevApp Falsifiable, after 1 tests: [0] [1]

A possible counter example is choosing ’[0]’ as xs and ’[1]’ as ys. As we can see, this is the
smallest counter-example encountered by QuickCheck, meaning that the shrinking process was
applied on the test case generation.

In the QuickCheck framework, the values generated for testing each property are type driven,
meaning that the tester needs to declare the type of each property (just like in the below example).
This is only possible because the function quickCheck is already overloaded to handle properties
with a variety of parameters (Claessen und Hughes, 2011).

prop_RevApp :: [Int] -> [Int] -> Bool
6By default 100 test examples.
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3.1.2 Testing stateful programs

quickcheck-state-machine is an Haskell library for testing stateful programs (Andjelkovic, 2019).
As the name hints, it is based on the Erlang’s proprietary QuickCheck framework, however, what
sets it apart from the later is that it specifies the correctness of a program through pre- and post-
contiditions, much like a state machine based model.

The state machine mechanics are defined in such a way that the tester/developer is required
to model the internal states of the system as well as the transitions between states. A transition
is defined by a function that modifies the current state. To test the state machine we will
need a model that abstractly represents the internal state of the target program, pre- and post-
conditions that compare the model against the output of the target program, a state transition
function that advances the model to the next state, given the model itself and a transition 7, a
mechanism to generate a sequence of actions and another one to shrink them, whenever a failure
is found.

The test run is composed of a list of transitions and corresponding arguments (generated
by the quickcheck-state-machine) and an abstract model representing the program under test.
For each generated action, the library checks if the pre-condition holds. If so, the action gets
executed and the post-condition is also checked. In the end, the model gets updated using the
transition function (Andjelkovic, 2019). If, for some reason, one of the conditions is not satisfied,
the initial list of actions is shrunk until the minimal counter-example is found.

3.1.2.1 Shrinking process

The shrinking process takes effect when one of the conditions does not hold for a given action.
When QuickCheck detects this incongruity, it stops the generation of new actions, looks at the
list of actions/transitions leading to a failure and checks if the failure can still be obtained by a
structurally smaller list of actions. The reduction process includes removing actions from the list
as well as considering smaller action parameters, e.g. instead of testing with the an integer value
of 2, the test is made with the value 1. The process is repeated until the smallest example that
produces the failure is found.

3.1.3 Practical use of QuickCheck

As we could see in the previous two subsections, QuickCheck was developed to ease the process of
testing. Rather than having to design and develop individual tests, which can become a tiresome
task, QuickCheck automatically generates the tests, based on certain properties. This tool is
extremely helpful considering the complexity of most of the target applications. These programs
usually have a large amount of features, which is something that adds to the complexity of the
software, and consequently to the testing process.

7A transition is nothing more than the execution of the program under test
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3.1.3.1 Testing queue operations with Erlang’s QuickCheck

A good test subject for the Erlang’s QuickCheck tool, described in (Hughes, 2016), is the circular
integer queue structure, and its manipulation methods, implemented in C. Lets consider a
structure definition of a queue for storing integer data, placed in a C file (called q.c). This queue
structure is composed of a pointer to an integer buffer (int* buff), two index (int inp, outp),
holding the queue’s head and tail respectively, and an integer for storing the queue’s maximum
size (int size). The operations to test for are: the Queue* new(int n) function, which
returns a pointer to a new queue structure, containing an integer buffer of size n. It does this
by allocating the required amount of space for an integer buffer of size n, and then adding it to
a newly created Queue structure (with the two indexes starting at zero and the size variable
equal to n). In the end, it returns a pointer to the newly created Queue structure; the void
put(Queue* q, int n) function, that inserts an integer n into the integer buffer on the inp
index, adding one unit module size units to the same index afterwards; the int get(Queue*

q), which returns the value of the integer buffer stored in the outp index, increasing afterwards
its corresponding value by one unit module size; and lastly, the int size(Queue* q) function
that returns the difference between the inp and outp variables, modulo size.

Before using QuickCheck to automatically test the queue implementation, we can manually
test it by making them callable on the Erlang shell. This is done by compiling the C code through
the command eqc_c:start(q). After that, it is possible to call each function with any given
argument, just like the following examples (Hughes, 2016):

2> Q = q:new(5).
ptr, "Queue", 6696712
3> q:put(Q, 1).
ok
4> q:put(Q, 2).
ok
5> q:size(Q).
2
6> q:get(Q).
1
7> q:get(Q).
2

In this example, we just created a queue structure and executed a couple of actions, namely
the insertion and retrieval of a few values, as well as the calculation of the queue’s size, in order
to test (although poorly) if the functions work as expected. By looking at the results returned
we can see that the functions are working properly, however we cannot assume that they are
bug free, just by running them a few times. Instead of manually executing them and look at the
returned output, so as to check for any implementation mistakes, we can use QuickCheck to test
for certain properties that we want our C code to be compliant with.
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QuickCheck tests the code by randomly executing the defined functions and comparing each
result of each run, with the result of a parallel abstract model. This model will be defined in
other programming language, other than C. If both results (the result from the function under
test and also from the abstract model) are equal, the test passes (failing if not).

This model is just a clear representation of the testing target: a queue and its three major
operations/actions. Therefore we can model the queue as an Erlang’s list of integers, with the
C put and get functions modeled by the Erlang’s insertion and retrieval operations on the
integers list respectively. The size action is modeled by the size of the model’s list.

In addition to the creation of an abstract model, we have also to define the conditions that
we want to hold true before (preconditions), during and after (postconditions) each run of a C
function. These conditions are defined in the Erlang language, and QuickCheck will use them
during its tests. The properties checked on a get action are defined (in QuickCheck) in the
following way (Hughes, 2016):

get_pre(S) -> S#state.ptr /= undefined andalso

S#state.contents /= [].

get_next(S, _Value, _Args) -> S#state{contents=tl(S#state.contents)}.

get_post(S, _Args, Res) -> eq(Res, hd(S#state.contents)).

The get_pre statement represents the pre-condition of the model’s state before the get
action gets executed. This condition defines that the pointer to the queue cannot be undefined
and the queue must not be empty. this is followed by the get_next clause, which is the state
transition function, where the next model state contents will be the tail 8 (represented by the tl
keyword) of the contents of the current model state. Lastly, the get_post property, representing
the post-condition, checks whether the value returned from the get action is the same as the
head 9 (represented by the hd operator) of the model’s current list.

When running QuickCheck from the Erlang shell, there is a failure in the test run after four
successful tests. The test that fails contains the following calls and returned results (Hughes,
2016):

q:new(1) -> ptr, "Queue", 4003800
q:put(ptr, "Queue", 4003800, 1) -> ok
q:get(ptr, "Queue", 4003800) -> 1
q:put(ptr, "Queue", 4003800, -1) -> ok
q:put(ptr, "Queue", 4003800, -1) -> ok

8A tail corresponds to the values in the queue except the one that is retrieved
9The head is the first value on the queue
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q:put(ptr, "Queue", 4003800, 0) -> ok
q:get(ptr, "Queue", 4003800) -> 0
Reason: Post-condition failed: 0 /= -1

After this failure, QuickCheck will then initiate the shrinking process, trying to find the
smallest group of calls that will provoke the same failure. This process will remove unnecessary
calls and also simplify the arguments passed on to the calls (Hughes, 2016).

q:new(1) -> ptr, "Queue", 4027504
q:put(ptr, "Queue", 4027504, 0) -> ok
q:put(ptr, "Queue", 4027504, 1) -> ok
q:get(ptr, "Queue", 4027504) -> 1
Reason: Post-condition failed: 1 /= 0

Failures can happen either due to faulty implementations or flawed requirements specifications
of the target application or even, in some cases, as a consequence of a flawed model design. In
this particular case of the C queue, the defined model did not account for the case of adding
more elements when the queue is already full. This is solved by adding to the precondition the
following Boolean statement (Hughes, 2016):

length(S#state.contents) < S#state.size

After this tweak in the model, the default 100 tests from QuickCheck are completed successfully
without an error. However, when modeling the size C function, QuickCheck starts to fail in
the tests, only this time the problem resides on the C code, when computing the length of the
queue (in this case 1 unit, modulo 1), it returns 0 instead of 1 (according to the abstract model)
(Hughes, 2016).

q:new(1) -> ptr, "Queue", 4033488
q:put(ptr, "Queue", 4033488, 0) -> ok
q:size(ptr, "Queue", 4033488) -> 0
Reason: Post-condition failed: 0 /= 1

The test failures are caused by an algorithmic constraint, as we cannot store n values in a
circular array of n elements since the queue cannot be empty. One possible fix to this problem
would be to alter the new C function, making it increase (by one unit) the size variable of the
Queue structure, as well as giving one extra unit to the allocated space of the integer queue,
each time an n size queue is created. This will make the previous test successful, but eventually
QuickCheck will fail on the next test cases (Hughes, 2016).

q:new(1) -> ptr, "Queue", 5844232
q:put(ptr, "Queue", 5844232, 0) -> ok
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q:get(ptr, "Queue", 5844232) -> 0
q:put(ptr, "Queue", 5844232, 0) -> ok
q:size(ptr, "Queue", 5844232) -> -1
Reason: Post-condition failed: -1 /= 1

This time the error appears to be on the size function, when the q->outp index is subtracted
to the q->inp, resulting in a negative value, after the remainder (% q->size) is calculated . Once
again this can be fixed with a minor tweak of adding to the subtraction, the value of q->size,
returning the following result: (q->inp - q->outp + q->size) % q->size. With this change, the
code becomes correct in the eyes of QuickCheck.

This simple example, showed not only that sometimes the faults occur as a consequence of a
bad model definition, but also that one property can find different bugs in the code, provided
that the model is well defined. We can also praise the advantage of the test case shrinking done
by QuickCheck, as it takes away unnecessary steps that produce overhead during the debugging
task.

3.1.3.2 A case study: testing AUTOSAR software for Volvo

One of the biggest projects to use the features of Erlang’s QuickCheck was the acceptance testing,
made by QuviQ 10, of the AUTOSAR Basic Software for Volvo Cars (Hughes, 2016). Since
modern cars have a lot of software components from different providers, which need to comply
with a standard (the AUTOSAR standard) in order to prevent any system integration problems,
there is the need to test these suppliers code against the compliance specifications.

One of the major errors found by QuickCheck in this project was related with the Controller
Area Network (CAN) bus and its message priority system. The CAN bus is used to integrate
almost every known component in a car (the brakes, the stereo, etc.), through a messaging
system that uses a CAN identifier in each message, which is also interpreted as a priority. The
smaller the identifier the higher the priority assigned to a message.

The original CAN standard used 11 bits to identify each message, meaning that there was a
total of 2048 different messages (as well as priorities) that could be sent through the CAN bus.
Most cars nowadays require a bigger variety of messages to be sent through the bus, forcing
the number of bits to be increased from 11 to 29, with the addition of the extended CAN
identifier. This upgrade on the number of bits did not restrict the message format used on the
bus, meaning that the older (11 bits) messages could also continue to be sent, as long as the bus
knew which format was being used prior to sending the message. Consequently, the CAN bus
implementation stored the messages’ identifier on a 32-bit unsigned integer, using the higher
order bit to differentiate between the extended and not extended messages.

When this protocol was tested by QuickCheck a failing test case was found, with the following
10A company specialized in software testing, that first developed and marketed the Erlang version of QuickCheck
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sequence of messages:

send a message with CAN identifier 1 and check whether it was inserted on the bus;
send a message with CAN identifier 2 which should not be inserted yet as the bus is
busy;
send message with CAN identifier 3 which should also not be sent;
confirm the transmission of message 1 and the insertion of message 2 to be delivered
next

This test failed because message 3 was sent before message 2. This happened because message
2 used an extended CAN id whilst message 3 used the 11 bit format. When calculating the
priorities, there was a bug in the code that made the priority of message 2 to be 231 + 2. This
bug appeared because bit 31 (set to 1 for extended identifiers) was not being masked off during
the priority calculation, affecting the prioritization of the messages sent through the CAN bus.

This bug had not yet been detected by the software supplier, even though several manual tests
had already been made by the same supplier. The problem was that those tests did not consider
this scenario of mixing together extended IDs with old IDs. This example clearly demonstrates
the advantages of using a property based testing methodology, through libraries like QuickCheck
which significantly help on the automatic generation of test cases, for testing the correctness of
complex programs.

In the next chapter we are going to discuss another property based testing framework, called
Hypothesis, that was used in the context of this project.

3.2 Hypothesis

In this project we will be using the Python framework called Hypothesis, that lets developers
and testers define properties, as well as automatically generate data for testing those properties,
following a property based testing approach.

One important concept in Hypothesis is the idea of a strategy. Strategies can be used to
describe the sort of data that we want to generate in order to test our programs. Hypothesis has
a rich strategy library that avoids the manual built of generators of data, thus saving the tester
a lot of time (MacIver, 2016a).

3.2.1 Generators

The framework provides generators, also known as strategies, for most built-in types, e.g.
if you want to generate integer data, you just use the strategy integers(min_value=X,

max_value), specifying the range of values through the min_ and max_ arguments. These
generators can be customized through parameters in order to constrain or adjust the output
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returned by the strategy. For more complex generators/strategies, Hypothesis enables the
composition of strategies to generate more intricate types. For instance, to generate a list of
floats, the strategy lists(floats()) can be used (MacIver, 2016a).

3.2.2 Shrinking

One major point in using Hypothesis as a property based testing framework is the fact that it
incorporates the shrinking process in its strategies. This means that when Hypothesis finds
a failure, it will not immediately print out the randomly-generated counter example where
the target program fails to comply with a given property. Instead, it will try to reduce the
group of examples generated in order to find the smallest sequence that will also produce a
failure 11 (MacIver, 2016b).

3.2.3 Composite strategies

In order to combine strategies so as to create one complex custom generator, Hypothesis provides
the @composite decorator. With this decorator one can create a function that returns a strategy
for generating custom data (MacIver, 2016b).

The composite functions receive as the first argument, a special function named draw. This
function is intended to be used inside the composite function in order to generate different types
of data which can be mixed together, so as to create a complex type returned by the function.
The following example makes use of a composite function to return a tuple, containing a list and
an index (MacIver, 2016b):

@composite
def list_and_index(draw, elements=integers()):

xs = draw(lists(elements, min_size=1))
i = draw(integers(min_value=0, max_value=len(xs) - 1))
return (xs, i)

Listing 3.1: Composite example

3.2.4 Stateful testing

Besides being able to randomly generate different types of data, the framework also enables
the random automatic execution of tests. In order to implement that, a tester can make use
of the Hypothesis’s stateful testing, by defining a number of primitive actions, which are then
combined together to find a sequence of those same actions that will produce a failure in the
system 12 (MacIver, 2016b).

11Any failure, regardless whether it is the same one found initially
12A failure in this type of testing is any erroneous state of the system that does not comply with the defined

requirements
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The logic behind stateful testing in Hypothesis is based on the same principles followed by
the quickcheck-state-machine Haskell library, already discussed in the later chapter.

3.2.4.1 Rule based state machines

Rule based state machines is the most common mechanism, offered by Hypothesis, to construct
state machines (MacIver, 2016b). A rule is nothing more than a state transition, with each test
case being specified as a post-condition evaluation inside a rule based function. A single test
run can be comprised of several rule invocations that may or may not have inter dependency
between each other, e.g. one rule cannot be executed until another rule triggers. Each rule based
function can be executed once, twice or even multiple times 13 in a randomly manner, depending
on how Hypothesis generates each sequence of test cases.

The rules are defined inside a class derived from the superclass RuleBasedStateMachine (Ma-
cIver, 2016b).

1 class hypothesis.stateful.RuleBasedStateMachine

In order to mark a function as a rule, the tester must apply the @rule() decorator on the
functions that represent a single test case (MacIver, 2016b).

1 @rule(data = strategies.data())
2 def function_test_case(self, data):

3.2.4.2 Initializes

Initializes is another feature of the Hypothesis stateful testing. With the @initialize() decorator,
a function will run at most once at the beginning of a test set run, before any normal rule is
invoked. If more than one initialize function is defined, all the functions will be run at the
beginning, but randomly (MacIver, 2016b).

1 @initialize(data = st.data())
2 def send_first_logon(self, data):

3.2.4.3 Preconditions

Preconditions is a mechanism of the Hypothesis framework to filter out rule decorated functions
based on a boolean function. The @precondition() decorator receives as an argument, a Boolean
function. If the function passed on to the decorator returns True the rule decorated function

13It can also not trigger during a test run
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below will execute, if not, the below function is neglected and will not run.

1 class MyTestMachine(RuleBasedStateMachine):
2 state = 1
3
4 @precondition(lambda self: self.state != 0)
5 @rule(numerator=integers())
6 def divide_with(self, numerator):
7 self.state = numerator / self.state

Listing 3.2: Precondition example

3.3 First use case

An experimental test was developed to experiment with the stateful testing functionality of the
Hypothesis framework. This first example (adapted from (Hughes, 2016)) will test a subset of
the POSIX file manipulation API as a state machine in Hypothesis. This experiment illustrates
how can we test a small but realistic software component, by using an abstract model, rules,
input data generators and assertions.

3.3.1 Testing the C file input/output Python API

The purpose of the TestCFileAPI rule based class is to test the read, write and seek functions
from the C standard file library for Python, to manipulate local files. In order to simulate the
same changes happening to a real file when one these functions are evoked, a model is defined
inside of the class. We model a single file as a string of bytes (characters), initialized empty in
every run test, and an index offset of the current position on the real file.

Each time there is a write action over the real file 14, the model is modified accordingly, thus
the string is appended with the characters that were also added to the file, and the variable
representing the cursor is incremented by the amount of characters added. Before writing any
bytes to the file, the C function appends a certain amount of zero’s to the file, provided that the
cursor position exceeds the EOF. Because of this, the write rule function has to mimic such
behavior by appending as much zeros as the number of bytes the cursor position exceeds over
the EOF. Only after the zeros are added can the random bytes be inserted both in the file and
in the model.

After each action, we assert that the number of characters written to the real file are the
same as the ones written to the model. Moreover it is also asserted that the positions on both
cursors (real and model based ones) are also the same. All this actions occur inside the write
rule based function which is randomly called in each run test.

14represented by the execution of the rule based function write
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1 def __init__(self):
2 super(TestCFileAPI, self).__init__()
3 open(’foo.txt’, ’w’).close()
4 self.fo = os.open("foo.txt", os.O_RDWR | os.O_CREAT)
5 self.pos = 0
6 self.model = ’’

Listing 3.3: File model initialize

1 @rule(rand_bytes=st.text(alphabet=st.characters(whitelist_characters=
string.ascii_letters, whitelist_categories=()),min_size=0, max_size=
None))

2 def write(self, rand_bytes):
3 zeros_to_write = max(0, (self.pos - len(self.model)))
4 self.model += ’\0’ * zeros_to_write
5
6 bytes_written = os.write(self.fo, rand_bytes.encode(’ascii’))
7 self.model = self.model[0:self.pos] + rand_bytes + self.model[self.pos

+ len(rand_bytes):]
8
9 self.pos += len(rand_bytes)

10 assert len(rand_bytes) == bytes_written
11 assert self.pos == os.lseek(self.fo, 0, 1)

Listing 3.4: Write rule function

Besides the rule based write function, there are also the read and the seek functions, that
simulate the corresponding actions of the related C functions. The read function will read a
random number of bytes from the file, mirroring this on the model. In order to simplify the tests,
the read function considers that nothing is read after the EOF character. This is reflected on
the actual_read variable 15 that will either store zero, if the cursor is beyond the EOF, or the
minimum between the random number of bytes to be read and the remaining number of bytes to
read until the EOF is reached.

Before terminating, this function asserts that the number of bytes read, both in the real file
and in the model, are the same, and that the cursor positions (both real and simulated) are also
equal. Lastly, the seek function only proceeds with the action of moving the cursor a certain
random number of positions in the file, and also in the model. This function does not assert any
post-conditions.

By testing (with Hypothesis) these properties of the C file API for Python, the final result is
an assertion error caused by a sequence of actions. Apparently, if an empty file is sought by 1
position, written 0 bytes, sought back to the original position and then read by one byte, the
number of bytes read in the end are not the same in the real file (1 byte) as in the model (0 bytes).
This happens because the API specification was not complete. Apparently this specification
lacked the zero padding of the write function, when the cursor exceeds the length of the file.

15this variable stores the value that will be added to the model cursor position, representation the change of
cursor when a read is made
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1 @rule(rand_num=st.integers(min_value=0, max_value=1000))
2 def read(self, rand_num):
3 current_pos = self.pos
4 bytes_read = os.read(self.fo, rand_num)
5 size = len(self.model)
6
7 actual_read = min(rand_num, size - self.pos) # actual_read becomes

negative if self.pos is bigger than size
8 actual_read = max(0, actual_read) # in order to avoid negative numbers
9

10 self.pos += actual_read
11
12 assert len(bytes_read) == actual_read
13 assert self.pos == os.lseek(self.fo, 0, 1)

Listing 3.5: Read rule function

1 @rule(offset=st.integers(min_value=0, max_value=1000))
2 def seek(self, offset):
3 os.lseek(self.fo, offset, 0)
4 self.pos = offset

Listing 3.6: Seek rule function

For that reason, Hypothesis found an error not in the API itself, but in our specification. If we
correct the specification to consider the zero padding, the tests run successfully.

1 TestCapi02.py:38: AssertionError
2 -------------- Hypothesis ---------------
3 Falsifying example: run_state_machine(factory=TesCFileAPI, data=data(...))
4 state = TestCFileAPI()
5 state.seek(offset=1)
6 state.write(rand_bytes=’’)
7 state.seek(offset=0)
8 state.read(rand_num=1)
9 state.teardown()

Listing 3.7: C file API violation



Chapter 4

Testing a market platform

In this chapter we will be exploring how can we apply property based testing to validate certain
properties of an European stock exchange market platform, mostly referred to as trading chain.

4.1 Trading chain platform

The Trading Chain (TC) is a complex multi-market platform, composed of three main modules:

• the Order Entry Gateway (OEG), responsible for receiving and parsing the messages sent
by the clients that connect to the platform;

• the Matching Engine that (as the name implies) is the engine responsible for matching
orders, e.g. buying and selling orders;

• the Market Data Gateway (MDG), a component in the trading platform that provides
real-time public market data.

The image in figure 4.1, extracted from (trading company, 2019), presents a diagram of the
components and the inter-dependency between each one of them.

According to the figure 4.1, each client, also known as broker, that connects to the trading
chain, can send several private 1 inbound 2 messages to OEG. Depending on whether it is an
application or an administration message, the order gateway will then process 3 those messages
and deliver the ones that are destined to the Matching Engine.

Whenever two orders are matched, the Matching engine will send a public message to
the MDG so as to notify the market that a specific match has happened. Each broker can
also individually query (through a public application message) the MDG for a specific public

1A private message is a message that is sent from one broker or component to another broker or component.
2An inbound message is a message that enters the trading platform. An outbound one is the opposite.
3The process includes (but is not limited to) the parsing and consequent discarding of malformed messages.

25
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Figure 4.1: High level architecture of the trading platform (trading company, 2019)

information, for which the MDG will reply back with that specific information. Brokers and
TC components can also send and receive private messages to and from each other respectively.
For instance, a broker can send a private administrative message to OEG in order to check its
session status with it, or it can also send a private message to terminate the current session. In
the next session we will be explaining in more detail the OEG module of the TC, which is by
itself a convoluted system.

4.2 Order Entry Gateway

The trading chain OEG module provides an entry point to the markets platform, through a high-
speed and real-time connection (trading company, 2019). The OEG is the software component
that manages the access to the markets by acting as the private interface between the clients
and the TC matching engine.

The communication between clients and the TC’s OEG is based on sending and receiving of
messages. A message is a discrete unit of communication, with a predefined format (based on
the protocol used), containing information for the trading inside the platform.

A message can either be of the administration or application type. An administration type
message is an instruction from a client or a response from the OEG itself, containing non-trade
related information, i.e. used to setup and maintain connectivity between both parties (the
broker and the OEG). An application message is also an instruction, used to exchange order and
trade related information (trading company, 2019). An order is used by a firm to buy or sell an
instrument. These orders are then matched upon arrival or placed in an order book, waiting for
a match. A trade is an electronic agreement between the clients that submit matching orders.
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4.2.1 Session management

In order to establish a session with the TC, clients/brokers have to initiate a TCP/IP connection
with OEG, followed by a Logon administrative message. The logon session is always initiated
by the client, meaning that the Logon message must be the first message sent by the client,
otherwise the OEG will instantly terminate the connection.

After a session is successfully established between both parties, application messages can
start being exchanged between the client and the TC.

4.2.1.1 Heartbeats and TestRequests

The OEG uses the administrative Heartbeat and TestRequest messages to ensure that the
connection between the client and the TC is functioning properly. OEG sends an Heartbeat
message after a given delay of inactivity on its side, i.e. after it has not sent out any messages for
a fixed number of seconds. This ensures the client that the OEG is up and running properly. On
the other hand, OEG sends a TestRequest message to the client, after a given period of inactivity
on the client side. The client, after receiving the TestRequest message, has another equivalent
time window to reply, by sending back to OEG an Heartbeat message. If the client does not
reply to OEG within the given period, the connection is immediately closed by the OEG. The
TestRequest message can also be sent (at any moment) by the client to OEG, which will then
have to reply with an Heartbeat message.

4.2.1.2 Logout

The Logout message is used to proceed with the normal termination of the message exchange
session between the client and OEG.

4.2.1.3 Message sequence numbers

TC messages are identified by a unique sequence number. The sequence numbers are initialized at
the start of each session, starting at 1 and increasing (one unit) throughout the session. Sequence
numbers enable each party to identify missed messages and are also used for synchronization
when re-connections occur.

Each session establishes an independent incoming and outgoing sequence series. Both the
client and the OEG maintain two separate sequence series: one assigned to outgoing messages
and the other to incoming messages, so as to detect sequence gaps. If an incorrect sequence
number is sent to OEG, the associated message can either be ignored or may trigger a Logout
message, stating that the message sequence number is incorrect, while at the same time the TCP
connection is automatically terminated.
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4.2.2 Message formatting

Every message that is sent to OEG is composed of an header, followed by a body and a
message trailer. The message formatting follows the convention of the Financial Information
eXchange (FIX) protocol (Lamoureux, Robert and Morstatt, Chris, 2019) (version 5.0), where a
collection of "<Field tag>=<Field value>", separated by a well defined delimiter, defines the
structure of data of a single message. Each FIX field has an associated data type that limits the
range of values to fill in the field. According to FIX 5.0 all tags (if present on the message) must
have a value specified.

4.2.2.1 Data types

The FIX protocol specifies the following data types (trading company, 2019):

Alphanumerical: with the authorized characters being: ’0’..’9’ ’a’..’z’ ’A’..’Z’ ’"’ ’#’ ’$’ ’&’ ’(’ ’)’
’+’ ’-’ ’.’ ’,’ ’/’ ’;’ ’<’ ’=’ ’>’ ’@’ ’*’ ’ˆ’ ’_’ ’`’ ’~’ ’ ’

Numerical: ASCII characters ’0’..’9’ and the decimal separator ’.’;

String: Any character or punctuation, except the delimiter character. All String fields are case
sensitive. Certain message fields have type String, but are restricted to numerical values
(’0’. . . ’9’), meaning that OEG will reject the message in case other character appears on
the field;

Float: Sequence of digits with optional decimal point and sign character (ASCII characters
"-", "0".."9" and "."); the absence of the decimal point will be interpreted as the float
representation of an integer value. All float type fields must accommodate up to fifteen
significant digits;

MultipleCharValue: A string field built in such a way that allows the sending of multiple
values in just one field. The string solely contains one or more space delimited ’1’s and
’0’s, representing different values and/or flags (e.g. 18="0 1 0"). The represented values
are identified by the index number on the string, with each value having an odd index
(provided that the index count starts at 1) and either a ’1’ or a ’0’ character, representing
the active and inactive states of the value respectively.

4.2.3 Structural nuances

Some messages may contain a subset of consecutive fields, called a repeating group, that can
be repeated a variable number of times. The repeating number is specified by the numerical
field preceding the group. Additionally, there can be groups of fields repeated within another
repeating group. Such groups are called nested repeating components (trading company, 2019).
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Moreover, optional and conditional fields can be set to null as defined by the FIX stand-
ard (Lamoureux, Robert and Morstatt, Chris, 2019).

4.3 Testing the OEG with Hypothesis

In order to properly test this specific part of the trading platform, one cannot simply try to crash
it by blindly sending arbitrary data at it. Though it can provoke an erroneous behavior on the
program side, the TC will most likely ignore the randomly input sent, terminating most of the
communications established. Instead of following a fuzzing approach (like the one just described),
we propose to test the OEG using the state-machine approach discussed in chapter 3. Because
of time constraints, we will not try to cover all the specification of the OEG software, but rather
focus on a specific set of properties that can be checked against a property based test framework.

The properties that we want to check are intrinsically related with the messages exchanged
between a broker and the trading gateway. Each interaction between each party must follow certain
rules, defined by a specification that tells how each message should be composed, considering
different trading scenarios. The purpose of the property based tests is to automatically explore
some of these different scenarios, by sending a random sequence of messages, automatically
generated by the test data generators, and assert relevant properties that the program under
test must comply with. The table below 4.1 presents a brief description of each message type
used for testing the trading gateway.

When the messages are modeled in the testing framework we can start defining property
checks for the test runs. One of the most useful checks that we defined is the validation of whether
or not the OEG sends back an Heartbeat message as a reply to a well formed TestRequest
message. Other properties can also be checked, such as validating if the message sequence
numbers returned on the OEG messages are higher than the last sequence number received.
Another example is checking if the checksums returned from OEG were correctly calculated.
These validations do not cover all the FIX specification of the OEG component but are a good
starting point for testing a complex solution such as this one.

The next subsections will detail the testing process of the Order Entry Gateway component of
the TC. We tested this interface using the stateful testing library of Hypothesis, which implements
a rule based state machine, already explained in previous sections.

Each message that is sent to the OEG in each run test is built with composite functions, which
are complex data generators made of simpler ones. In each test run, several rules are randomly
called to send and receive messages to and from the TC’s entry point (OEG). Certain rules
assert post-conditions that are expected to hold. If the assertion holds, the program continues
the battery of tests, whilst if not, it stops the test generation and tries to shrink the sequence of
transitions to a minimal failing example (cf. Shrinking section on 3.1.2.1).



30 Chapter 4. Testing a market platform

Message type Description
Logon Used by the market members and also the order gateway to establish

a session with the TC. It must be the first message sent by the client,
otherwise the OEG will terminate the connection.

ResendRequest Can be issued either by the Client or the OEG when a gap in the
messages sequence numbers is detected by one of the parties.

SequenceReset This message can either be sent by the Client or OEG, containing the
sequence number of the next message that will be sent by one of the
parties.

Logout This message is used to terminate the connection between a client and
the OEG. It can also be sent by either one.

Heartbeat Sent after n seconds of inactivity, to notify the opposite side that the
session is still active. It can also be sent in response to a TestRequest
sent by either party, containing the same ID present in the TestRequest
message.

TestRequest Used to check whether the other party is still connected, after n seconds
of inactivity on the opposite side.

NewOrderSingle Used by the brokers to create new market orders
MassQuote This message is used to send several quotes on different instruments in

an unique message.
OrderCancelRequest A message solely sent by the broker to cancel the remaining quantity

of an active order in the order book.

Table 4.1: Trading chain message specification

4.3.1 PropertyTesting class

This is the main class, derived from the super class RuleBasedStateMachine, where the rule
functions are defined. There are a total of 10 rule functions, with 7 being used for sending
administrative messages and the remaining ones for sending application messages.

The __init__ function of the class is used to setup the testing world, i.e. the trading chain
where the messages are sent to and processed by the OEG. This is done by spawning a child
process that will run a setup script to activate the trading chain. Once the trading chain is up
and running in a dedicated process, a TCP session is established through the reconnect()
method. In the end, when the test run is teared down on the teardown() function, the trading
chain process is killed with a SIGKILL signal sent by the parent process. This mechanism of
setting up the target environment as well as destroying it after each battery of tests is made to
eliminate the inter-dependency between test-runs, i.e. when a battery of test cases is executed
and the environment destroyed, we ensure that the state machine starts with a clean state, that
is without having received any messages nor communication attempts. This is also important for
the shrinking process since we want to test each smaller sequence of actions, after a failure is
detected, starting the state machine with a clean slate.

After the TCP session is successfully established with OEG, the first and only message that
OEG will process (according to the FIX specification), in order to setup a trading session, is the
Logon message. Every other message will be ignored until this session is established.
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1 class PropertyTesting(RuleBasedStateMachine):
2
3 def __init__(self):
4 self.session = TradingChainSession()
5
6 #invoke the trading chain process
7 self.trading_chain_arguments = [SCRIPT_PATH, TRADING_CHAIN_BIN,

TRADING_CHAIN_ENV]
8
9 with open(os.devnull, ’w’) as fp:

10 self.trading_chain_process = subprocess.Popen(self.
trading_chain_arguments, preexec_fn=os.setsid, stdout=fp)

11
12 time.sleep(3)
13 self.session.reconnect()
14
15 super(PropertyTesting, self).__init__()

Listing 4.1: PropertyTesting class

In code terms, this is achieved through the use of the@initialize decorator on the send_first_logon()
function. This function generates a logon message, sends it to the OEG and parses its reply.
According to the FIX specification, if the OEG replies back with a logon message, the session is
successfully established. The OEG can also reply with a logout message, which means that the
Logon message did not have any effect and that the TCP session is now closed.

1 @initialize(data = st.data())
2 def send_first_logon(self, data):
3 logon = data.draw(gen_logon(self.session))
4
5 try:
6 self.session.oeg_connection.sendall(logon.encode(’utf-8’))
7 self.session.update_msg_sent(logon)
8 print("First Logon sent: ", logon)
9

10 # Parse the OEG response
11 reply = receive_stream(self.session)
12
13 self.session.update_oeg_reply(reply)
14 self.session = fix_parse_reply(self.session)
15
16 except socket.error as exc:
17 sys.exit("Caught a Socket Exception during First Logon : ",

exc)

Listing 4.2: First logon of the run test

When the OEG replies back with a Logon message, an internal session flag (logon_status)
is set to True, meaning that messages besides the Logon can now be sent. This is achieved
with the @precondition decorator and the logon_status session object attribute. For instance, a
ResendRequest message can now be sent after a successful logon.
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1 @precondition(lambda self: self.session.logon_status is True)
2 @rule(data = st.data())
3 def send_resend_request(self, data):
4 resend_request = data.draw(gen_resend_request(self.session))
5 try:
6 self.session.oeg_connection.sendall(resend_request.encode(’utf

-8’))
7 self.session.update_msg_sent(resend_request)
8 print("Resend Request sent: ", resend_request)
9

10 # Parse the OEG reply
11 reply = receive_stream(self.session)
12
13 self.session.update_oeg_reply(reply)
14 self.session = fix_parse_reply(self.session)
15
16 except socket.error as exc:
17 sys.exit("Caught a Socket Exception during Resend Request : ",

exc)

Listing 4.3: Resend request rule

On the other hand, if the OEG replies back with a Reject message, or even a Logout message,
a new Logon message must be sent so as to attempt to establish a new trading session. If a
Logout message is received, the TCP connection must be re-established, using the function
reconnect(), which opens a new socket connection with OEG.

The function reconnect() belongs to the TC_Session class that establishes the necessary
attributes and functions to manage a stable OEG session. This class represents the abstract
model required for the property based testing of OEG.

4.3.2 TC_Session class

1 class TC_Session:
2
3 def __init__(self):
4 self.oeg_connection = socket.socket(socket.AF_INET, socket.

SOCK_STREAM) # socket to communicate with OEG
5 self.oeg_connection.settimeout(1.0) # Sets the socket to timeout

after 2 second of no activity
6
7 self.seq_num = "1"
8 self.oeg_seq_num = "0" # last OEG message sequence number

processed
9 self.first_seq_num = 0 # first sequence number to be sent at the

beginning of each run test
10
11 self.logon_status = False
12 self.socket_status = False

Listing 4.4: TC_Session class
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The class TC_Session contains the necessary constructs to save and manage a session with
the trading chain. The main (__init__) constructor initializes the socket for the OEG TCP
connection (with a timeout of 1 second) as well as the sequence numbers: the one to be sent to
OEG and the one expected to be received from OEG. Besides those attributes, the __init__
constructor also initializes some important flags, like the flag for controlling the session status
with OEG 4, named logon_status, as well as the flag that mirrors the TCP session status, i.e.
the socket connection state 5, named socket_status..

As mentioned in the previous section, the method reconnect() is defined inside this class.
Here a socket connection with OEG is attempted, having into account the configurations posted
on a json file, whose path is saved inside the global variable JSON_PATH. This file contains
the hostname and network port where the trading chain is listening 6. If for some reason, the
connection cannot be established (returning any particular error) the run test is aborted.

1 def reconnect(self):
2 self.oeg_connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM

)
3 self.oeg_connection.settimeout(1.0) # Sets the socket to timeout after

1 second of no activity
4
5 try:
6 with open(JSON_PATH) as json_file:
7 data = json.load(json_file)
8 if data[’ip’] and data[’port’]:
9 try:

10 # socket connection
11 self.oeg_connection.connect((data[’ip’], data[’port’])

)
12 self.socket_status = True
13 print("Socket connection established")
14 except socket.error as exc:
15 print("caught exception socket.error : ", exc)
16 exit(1)
17 except IOError:
18 exit(1)

Listing 4.5: OEG reconnect function

Additionally, the class defines two more flags: the heartbeat_rcv and the reject_rcv flags.
These flags are particularly useful during the assertion of whether the OEG returns an heartbeat
or not, after a test request message is sent. If the OEG replies with a message type other than
an Heartbeat or a Reject message 7, a violation on the FIX specification of the OEG module is
found.

Besides the flags declaration and definition, the instance of the TC_Session class also saves,
in two specific attributes, the last message sent to OEG as well as the last reply received from it.

4Representing the state of being logged on or logged out.
5Either established or terminated.
6In this particular case, it is listening on the localhost, port 11002.
7OEG automatically rejects a Test Request message when it is badly formatted.
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These attributes are the msg_sent and oeg_reply, immediately defined after the heartbeat and
reject flags, inside the __init__ constructor.

Finally, in order to update all the flags and attributes, some auxiliary functions are defined
within the TC_Session class:

update_seq_num: to update the new sequence number to be sent to OEG;

update_oeg_seq_num: to update the last sequence number received by OEG;

update_msg_sent: to update the last message sent to OEG;

update_oeg_reply: to update the last message received by OEG;

logon: update the logon_status to True, meaning that a successful session was established with
OEG;

logout: update the logon_status to False, meaning that the session established with OEG has
been terminated;

4.3.3 Reply parser

One important set of auxiliary functions is defined on the parser.py file. These functions were
defined to assist the parsing of the OEG replies, after a message is sent to it. The core parsing
activity is defined inside the fix_parse_reply function. This function starts by checking
whether or not there was any reply from the OEG, stored on the oeg_reply attribute of the
session argument. If there was not, the session sequence number is increased by one, so as to
synchronize with the sequence number expected by the OEG. Otherwise, the function proceeds
with the following steps: starts by retrieving all the messages (sequentially concatenated) and
placing each one inside of an array, for further processing. This is all achieved with the help of
the retrieve_messages function. Inside it, the concatenated reply messages are split by the
pattern "8="+FIX_VERSION+"\x01", which is the beginning of every message header, with the
global variable FIX_VERSION storing the version of the FIX protocol being used; afterwards,
it is only necessary to remove the empty string present at the beginning of the messages array.
When all the reply messages are all placed inside the array, each one will be transformed into an
ordered dictionary, with each key being a tag of the original message, as well as with each value.
This rearrange on the data structures is performed inside the function message_to_dict;
when the message dictionary is created, the value of the key representing the type of reply given
by the OEG is checked against a list of possible replies. Once the reply type is found, some
processing is made depending on the type of message returned by the OEG. For instance, if
the reply is of type ’A’ (Logon type message), the logon status flag is set to True by calling
the session logon method. At the end of each message processing cycle, the session sequence
numbers are all updated.
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1 def retrieve_messages(messages):
2 message_array = messages.split("8="+FIX_VERSION+"\x01")
3 message_array = message_array[1:] # remove the empty string (

message_array[0])
4
5 return message_array

Listing 4.6: Messsages string to array

Another important function inside the parser python file is the heartbeat_assert. This
function is very similar to the core parsing function fix_parse_reply but it is used solely
for parsing the OEG replies of the Test Request messages sent. The function differs from the
main parsing one in that it parses the reply, searching for any Heartbeat message. If the OEG
reply happens to be an Heartbeat, the heartbeat session flag is set to True, otherwise it will
remain with the False value. The same applies to the reject session flag, whether or not a reject
message is received. In the end, equally to what happens in the fix_parse_reply function,
both sequence numbers are updated.

1 def heartbeat_assert(session):
2 if not session.oeg_reply:
3 session.seq_num = str(int(session.seq_num) + 1)
4 session.heartbeat_rcv = False
5 else:
6 reply_messages = retrieve_messages(session.oeg_reply)
7 heartbeat_flag = False
8 reject_flag = False
9

10 for reply in reply_messages:
11 reply_blocks = message_to_dict(reply)
12 reply_type = reply_blocks[’35’]
13
14 if reply_type == ’0’:
15 print("Heartbeat message received")
16 msg_sent_blocks = message_to_dict(session.msg_sent)
17 if reply_blocks[’112’] == msg_sent_blocks[’112’]:
18 heartbeat_flag = True
19
20 elif reply_type == ’3’:
21 print("Reject message received")
22 reject_flag = True
23
24 session.update_seq_num(str(int(reply_blocks[’369’]) + 1))
25 session.update_oeg_seq_num(reply_blocks[’34’])
26
27 #assert heartbeat_flag is True
28 session.heartbeat_rcv = heartbeat_flag
29 session.reject_rcv = reject_flag
30
31 return session

Listing 4.7: Parsing for an heartbeat reply
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4.3.4 Rule decorated functions

After establishing a successful session with OEG, a new sequence of messages (both administrative
and application related) can now be sent to OEG. Each new message corresponds to a state
transition implemented by a @rule-decorated method. There are nine rule based functions defined
inside the PropertyTesting class. Each one of these functions has two decorators prefixed 8, one
@precondition decorator for checking the status of the session flag logon_status and a @rule
decorator, representing a rule state machine.

Parameters for each rule are generated using custom composite strategies that respect the
required message fields. The build of each message is done through the use of composite strategies,
which are complex generators made up of simpler ones. Each composite strategy is evoked when
passed as an argument of the draw function, which is a method of the data strategy. When
the message is generated, it is then sent to OEG, through the open socket connection already
established in the beginning of each run test. After the message is sent, the client tries to obtain
a reply from the trading chain by evoking the receive_stream function with the session
object passed as an argument. The receive_stream function collects every reply from OEG
and concatenates them into a string that returns in the end. The function attempts to read a
maximum of 1024 characters in each read attempt 9, saving them in a temporary variable. The
temporary variable, storing the whole reply 10, is returned and the function finishes.

1 def receive_stream(session):
2 reply = ""
3 aux = ""
4
5 try:
6 aux = (session.oeg_connection.recv(1024)).decode(’utf-8’)
7 while len(aux) > 0:
8 reply += aux
9 aux = (session.oeg_connection.recv(1024)).decode(’utf-8’)

10
11 except socket.timeout:
12 return reply
13 except socket.error as exc:
14 sys.exit("Caught a Socket Exception while reading the OEG reply :

", exc)
15
16 return reply

Listing 4.8: Receive reply from OEG

When the reply is received it is then stored in the session object attribute oeg_reply and
passed on to the parser of the OEG replies.

8With the exception of the function send_extra_logon, which has only one decorator
9Until a socket timeout is raised.

10Sometimes an empty string because OEG ignored the message sent by the client
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4.3.5 Message building blocks

As for what is defined by the TC OEG client specification, each message sent to the OEG needs
to have a header, a body and a trailer. These message components are themselves built by
composite functions, with each function using several different composite functions to construct
the building blocks, i.e. the "<tag>:value" blocks present in each message.

The gen_header composite function, as the name implies, is used to construct a message
header for every message that is sent to OEG. This composite function starts by inserting
the message type, passed on as a parameter, followed by the message sequence number block
(returned by the composite function gen_msg_seq_num). Afterwards, the function uses a
couple of other composite functions to construct the rest of the header building blocks.

Some of the header fields are labelled as optional or conditional, meaning that OEG will not
reject the whole message if one them does not appear, as they are not critical for the processing
of the rest of the message. A json file, stored in the global variable JSON_PATH, declares the
fields that are either optional or conditional and maps them with a value between 0 and 1. Each
value is then compared against a pseudo-random number, in the range of 0 and 1, generated by
a composite function (called roll_the_dices). If the generated number is less than or equal
to the one in the json file, the optional/conditional value is inserted on the message, otherwise it
is not. Some conditional values are not only dependent on the presence of another fields, but
also on the values contained by them, thus they are only generated provided that a specific field,
or a specific value of a field, is also present in the message.

1 from messages.skeleton.fields_gen import roll_the_dices
2 from messages.skeleton.fields_gen import gen_msg_seq_num
3 from messages.skeleton.fields_gen import gen_sender_comp_id
4 from messages.skeleton.fields_gen import gen_target_comp_id
5 from messages.skeleton.fields_gen import gen_on_behalf_of_comp_id
6 from messages.skeleton.fields_gen import gen_deliver_to_comp_id
7 from messages.skeleton.fields_gen import gen_poss_dup_flag
8 from messages.skeleton.fields_gen import gen_poss_resend
9 from messages.skeleton.fields_gen import gen_sending_time

10 from messages.skeleton.fields_gen import gen_orig_sending_time
11 from messages.skeleton.fields_gen import gen_last_msg_seq_num

Listing 4.9: Composite functions for generating an header

1 if data[’last_msg_seq_num’] and draw(roll_the_dices()) <= data[’
last_msg_seq_num’]:

2 last_msg_seq_num = gen_last_msg_seq_num(session)

Listing 4.10: Optional Header block

The gen_header composite function will be used on every composite function that gen-
erates a complete message 11 to be sent to OEG. Much like the gen_header function, the

11A message containing an header, a body and a trailer.
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gen_trailer will also appear on every composite function that assembles a whole administrative
or application message. The gen_trailer function receives the message without the BeginString
and the BodyLength fields, calculates its length, prefixes the message with the missing fields,
calculates the message checksum and appends it to the message. The checksum calculus is
made on the auxiliary function fix_checksum in the following way: first, the message string
is transformed into an array of bytes; after that, all the bytes of the array are summed and
stored on a variable; in the end the function will return the string representation of the variable
modulo 256.

1 def gen_trailer(msg):
2 message_length = len(msg)
3 message = "8=FIXT.1.1" + DELIMITER + "9=" + str(message_length) +

DELIMITER + msg # message without the checksum
4 message = message + "10=" + fix_checksum(message) + DELIMITER
5
6 return message

Listing 4.11: Trailer generator

1 def fix_checksum(data):
2 bytes = bytearray(data, ’utf-8’)
3
4 i = 0
5 sum = 0
6 while i < len(bytes):
7 sum = sum + bytes[i]
8 i += 1
9

10 return (str(format(sum % 256, "03")))

Listing 4.12: Checksum calculus

4.3.6 Fields generators

The composite functions for generating message blocks like the Header and the body of the
message, and ultimately the whole message, require the use of simpler generators in order to
define the basic elements common to every message sent, i.e. the "<tag>=value" units. These
basic blocks are defined in a different file (called fields_gen.py) and are then imported for helping
construct more complex parts of a message. These simpler generators make use of simpler
strategies of the Hypothesis framework, namely:

strategies for generating text (strategies.text()), based on an alphabet range defined by
the characters strategy (strategies.characters(min_codepoint=X,
max_codepoint=Y)), and with a minimum and maximum size (min_size, max_size);

strategies for generating integers (strategies.integers()), with an upper and lower limit
(min_value and max_value respectively);



4.3. Testing the OEG with Hypothesis 39

strategies for drawing from a specific sample (strategies.sampled_from(<sample>)),
where <sample> is a tuple of values;

strategies for generating floats (strategies.floats()), with a minimum and maximum
range (min_value and max_value), an option to generate NaN numbers (allow_nan),
infinite floats (allow_infinity). Besides that, it is also possible to specify the number of bits
used to define the float values (width=16, 32 or 64) as well as the inclusion or exclusion of
the upper and lower limits (exclude_min=False or True, exclude_max=False or True);

strategies for generating dates between a time window (in between a start and end date).
For this it is used the strategies.datetimes() with a minimum and maximum
dates (min_value and max_value), as well as a specification of the timezones to be used
(timezones);

Based on these strategies, each tag value pair can be defined as well with the use of composite
functions. Some of the more relevant composite functions used to generate individual pairs are:

gen_test_req_id , used to generate the TestReqID field for the administrative messages
Heartbeat and TestRequest. This function makes use of the strategies.text() strategy
to generate an identifier containing the characters defined on the strategy strategies.
characters(min_codepoint=X, max_codepoint=Y);

gen_poss_dup_flag that returns either the character ’N’ or ’Y’ (through the use of the
strategies.sampled_from((’Y’, ’N’)) strategy), for filling the PossDupFlag field
of the Header section of each message;

roll_the_dices for determining whether or not an optional/conditional value will be included
in the final generated message. This composite function makes use of the strategies.
floats(min_value=0, max_value=1, allow_nan=False, allow_infinity=

False, width=32, exclude_min=False, exclude_max=False) strategy to gen-
erate a not NaN nor Infinite float value between zero and one;

gen_orig_sending_time used for the OrigSendingTime conditional field of the Header,
returns a date generated by the strategies.datetimes(min_value=datetime.
datetime(1, 1, 1, 0, 0, 0), max_value=datetime.datetime(9999, 12,

31, 23, 59, 59), timezones=none())) strategy;

1 @composite
2 def gen_test_req_id(draw):
3 return "112=" + draw(st.text(alphabet=st.characters(min_codepoint=48,

max_codepoint=57), min_size=1, max_size=24)) + DELIMITER

Listing 4.13: TestReqID generator
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1 @composite
2 def gen_poss_dup_flag(draw):
3 return "43=" + draw(st.sampled_from((’Y’, ’N’))) + DELIMITER

Listing 4.14: PossDupFlag generator

1 @composite
2 def roll_the_dices(draw):
3 return draw(st.floats(min_value=0, max_value=1, allow_nan=False,

allow_infinity=False, width=32, exclude_min=False, exclude_max=
False))

Listing 4.15: Roll the dices

1 @composite
2 def gen_orig_sending_time(draw):
3 time = draw(st.datetimes(min_value=datetime.datetime(1, 1, 1, 0, 0, 0)

, max_value=datetime.datetime(9999, 12, 31, 23, 59, 59), timezones
=none())).strftime("%Y%m%d-%H:%M:%S")

4 time += "." + draw(st.datetimes(min_value=datetime.datetime(1, 1, 1,
0, 0, 0, 0), max_value=datetime.datetime(9999, 12, 31, 23, 59, 59,
999999), timezones=none())).strftime("%f").zfill(9)

5
6 return "122=" + time + DELIMITER

Listing 4.16: Original sending time
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Experiment and results

Our tests to the OEG were conducted on a remote machine, inside the company’s domain,
through the execution of the main application (PropertyTest.py) using the pytest framework.
Only one application needs to be executed since the property based testing tool takes care of
setting up and tearing down the target program, as explained in the last chapter.

The abstract model was developed based on the FIX specification of the OEG and with the
help of a business analyst, specialized in the mechanics of the trading chain. This analyst helped
on the modeling of the interaction between the client and the OEG, specifically on the logic
behind the message sequence numbers processing and the checksum calculation. The analyst
helped as well in the understanding of each interaction between the broker and the OEG, by
explaining what is expected from each part when a given message is sent by one of the parties.

5.1 Testing the Heartbeat post-condition

When the model is correctly defined, one post-condition we can assert for is whether OEG returns
an Heartbeat message as a reply to a TestRequest message. Moreover, we can also check if the
Test Request ID returned by OEG on the Heartbeat reply, is the same as the one sent on the
TestRequest message.

This property test is executed inside the rule based function send_test_request, using
the auxiliary heartbeat_assert function to detect if an Heartbeat message was sent as a reply
to the TestRequest message previously sent. If an Heartbeat is detected 1, another validation is
made against the TestReqID, in order to validate if the one that was sent and the one that was
received are equal. If they are, the session flag for the Heartbeat reply is set to True, otherwise
is set to False. The same logic applies to the detection of a Reject message from the OEG, only
this time it is solely required to check if the MsgType of the reply is equal to ’3’. We check if the
OEG reply is a Reject message because the initial Test Request sent to OEG can have a field

1This is done by checking if the MsgType field of the OEG reply message is equal to ’0’
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with malformed data (due to the randomness of the fields generators), leading OEG to reject it.

1 @precondition(lambda self: self.session.logon_status is True)
2 @rule(data = st.data())
3 def send_test_request(self, data):
4 test_request = data.draw(gen_test_request(self.session))
5 try:
6 self.session.oeg_connection.sendall(test_request.encode(’utf-8

’))
7 self.session.update_msg_sent(test_request)
8 print("Test request sent: ", test_request)
9

10 # Parse the OEG reply
11 reply = receive_stream(self.session)
12
13 self.session.update_oeg_reply(reply)
14
15 #self.session = fix_parse_reply(self.session)
16 self.session = heartbeat_assert(self.session)
17
18 if not self.session.reject_rcv:
19 assert self.session.heartbeat_rcv == True
20
21 self.session.heartbeat_rcv = False
22 self.session.reject_rcv = False
23 """
24 except AssertionError as error:
25 print("Caught an assertion error: ", error)
26 sys.exit(1)
27 """
28 except socket.error as exc:
29 sys.exit("Caught a Socket Exception during Test Request : ",

exc)

Listing 5.1: Send Test Request message

The initial tests took too much time, requiring to force stop the tests through a SIGKILL
signal. We were unable to verify, but we think that this was happening due to the shrinking
process, together with the randomness of the field data generation. There are some messages
that have a significant number of fields, e.g. the New Order message. Furthermore, some of
the fields are not mandatory, meaning that they are not required to be on the message. The
message generation process randomly determines which optional (and conditional) fields are
going to appear on the message to be sent to OEG. The field values have also a random factor in
their generation, despite being restrained by the FIX specification, e.g. the PossDupFlag Header
field, representing the duplication status of a given message, can either have the value ’N’(not
a duplicated message) or ’Y’ (a duplicated message). This means that one message can either
be rejected or accepted by OEG provided that it contains or not a specific field or a specific
value. This factor has an impact on the shrinking process because each time a smaller sequence
of messages is defined, there is a possibility of a given message not containing the right fields as
well as the right values to provoke another failure.
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One possible alternative to this problem is to eliminate the randomness of the fields appearance
on each message. We thus manually define which optional and conditional fields are going to
appear on each message, letting the randomness stay solely on the values generation. This can
be achieved by changing the json configuration files for the message Header as well as for the
body of each message type defined. Since each configuration file contains the probabilities for
each optional/conditional field of a specific message, we can modify the values to be either ’0’, if
we do not want the field to appear on the message, or ’1’ if we want the field to appear every
time the message is generated. 5.2 is an example of the configuration file for the optional fields
on the Header section.

1 {
2 "firm_id": "00000101",
3 "on_behalf_of_comp_id": 1,
4 "deliver_to_comp_id": 0,
5 "poss_dup_flag": 0,
6 "poss_resend": 0,
7 "last_msg_seq_num": 0
8 }

Listing 5.2: Optional fields configuration

Another optimization tweak to decrease the tests duration, is to comment out some of the
defined rule based functions 2. This process despite filtering out some message sequences that
might lead to a failure during tests, it will definitely reduce the duration of the test runs.

After these changes were implemented, Hypothesis detected a violation of the post-condition
defined on the send_test_request rule based function. The failure is detected approximately
after two hours of test runs, with the framework returning a sequence of messages sent to OEG.
This failure is triggered on the assertion that the Heartbeat flag of the session is set to True (and
the Reject flag set to False), after a Test Request message is sent to OEG.

The returned falsifying example, as it can be seen on listing 5.3, is a counter-example for
the specification that OEG always sends an Heartbeat message whenever a well formatted Test
Request message is sent. In this case, by checking the logs produced by the run tests, we can
see that after the New Order message is sent (through the send_new_order() rule based
function invocation) with a message sequence number equal to ’1’, the OEG replies back with a
Reject message, containing the LastMsgSeqNumProcessed field 3 equal to ’0’. Afterwards, when
the TestRequest is sent with a message sequence number equal to the last one processed by
OEG plus one, the OEG replies back with a Logout message, containing the field SessionStatus
with the value ’9’, meaning that the received message sequence number was too low. The TCP
connection is immediately closed afterwards.

According to the business analyst of the European trading company, the OEG should never
return the value ’0’ on the LastMsgSeqNumProcessed Header field. This test demonstrated, with

2We have to be aware to not comment the rule based function where the post-condition is evaluated
3Last message sequence number processed.
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1 PropertyTesting.py:192: AssertionError
2 -------------------- Hypothesis ----------------------
3 Falsifying example: run_state_machine(factory=PropertyTesting, data(...))
4 state = PropertyTesting()
5 state.send_first_logon(data=data(...))
6 Draw 1: FIXT.1.1\x019=127\x0135=A\x0134=1\x0149=00000101\x0156=Market\

x01115=00000101\x0152=20190907-21:09:22.000476133\x01108=60\x0198=0\
x0121019=1\x0121021=3\x01789=1\x0121020=0\x011137=9\x0110=120\x01

7 state.send_new_order(data=data(...))
8 Draw 2: FIXT.1.1\x019=218\x0135=D\x0134=2\x01\x0149=00000101\x0156=Market\

x01115=00000101\x0152=20190907-21:09:23.000479423\x0160
=20190907-21:09:23.000479453\x0111=0\x0148=0\x0122=8\x0120020=1\x0138
=0\x0140=1\x0159=0\x0129=7\x01453=1\x01448=0\x01447=D\x01452=1\x012376
=22\x0121018=0\x0121800=0\x01552=1\x0154=1\x016399=1\x0110=238\x01

9 state.send_test_request(data=data(...))
10 Draw 3: FIXT.1.1\x019=84\x0135=1\x0134=2\x0149=00000101\x0156=Market\

x01115=00000101\x0152=20190907-21:09:24.000484172\x01112=0\x0110=149\
x01

11 state.teardown()

Listing 5.3: Heartbeat assert violation

a simple sequence of messages, that the OEG fails to correctly process every message sequence
number, especially in cases where a malformed message is rejected.
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Conclusions and future work

The aim of this thesis project was to apply property-based testing (namely the model, data
generators, post-conditions and a state update function) in the context of a real problem, i.e.
a financial market platform. With this in mind, we started developing a model, based on the
existent FIX specification of the OEG module that we wanted to test. In order to properly test
the market platform, more precisely the message entry gateway, we had also to develop test data
generators as well as a post-condition that we wanted to verify.

6.1 Discussion

We achieved this objective by developing a test framework, divided into three major sections,
representing the different dimensions of the property based testing methodology. The first section,
and also the most import one, refers to both the message fields generators and the modules for
generating an entire message. The fields generators are all grouped up in one single python file,
imported by each python module responsible for generating a specific type of message. These
generators, and the modular way they were built, ease the creation of new message types, in the
future.

The tool has also 10 modules: one for generating an Header section for each message, six for
the administration messages and three for the generation of application messages. The second
main part of the tool is made by the model definition. The tool uses a specific class that stores
the necessary states, e.g. the message sequence numbers, to emulate what is happening on the
trading chain side.

Finally, on the main python class, the tool defines the state transition functions, also known
as rule based state machines in the Hypothesis framework, each one updating the state machine of
the testing environment. An effort metric is present on the table 6.1, reflecting the programming
effort of each module of the property based testing tool developed.
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Table 6.1: Effort metric for each section
Code section Lines of Code (LOC)
Fields generator 551
10 message modules 659
Main class 280

In the end, we managed to achieve our main goal which was applying property based testing
in a critical infrastructure that is a financial market platform. The tests made on the target
revealed that the program did not comply with the post-condition that we initially defined, based
on the FIX specification. This failure would not be possible to detect if the test approach had
been a fuzzing one. This type of methodologies can only scratch the surface of a program, by
testing for failures in the parsing of data, e.g. memory corruption errors like buffer overflows.
When facing failures derived from the logic of a program, the fuzzing methodology is not the
best approach to take.

6.2 Future work

With this modular infrastructure, if we want to add more message types to the testing environment,
we only have to create one new python module and one rule based function, for each new type of
message added. If we wish to test other post-conditions, and depending on the type of messages
each post-condition is focused on, most of the times we only need to add new assertions on the
rule functions already created.

There are a couple of post-condition validations that can be added with minimum overhead.
These are the checksum and sequence number fields validation. We can validate whether the
checksum returned from OEG is valid, by calculating each checksum value of an OEG message
and then check it against the value that appears on the message. The sequence number field
assertion can be achieved simply by asserting that the sequence numbers, present on the OEG
message replies, are at least higher than the sequence numbers that we have already received from
OEG. This type of validation can also be applied to the Header field LastMsgSeqNumProcessed,
returned by OEG, which enables another way of detecting the failure mentioned.

There are many post-conditions that can be further validated as well as many message
structures that can also be added to the framework in order to increase the complexity of the
tests. This is eased by the modularity of the developed program that demonstrates one of the
biggest advantages of defining properties rather than defining individual test cases.
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