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Abstract

A significant number of modern devices gather spatiotemporal data. This fact prompted the
need for data mining frameworks capable of processing spatiotemporal information and extracting
knowledge from it. In the more specific field of change detection, this knowledge comes from the
ability to automatically identify changes characterising spatiotemporal phenomena. Considering
that different users have different interests while consuming the retrieved information, it is essen-
tial to provide them with the means to express the degree of interest towards change detection.
However, state-of-the-art approaches have not addressed both retrieving the changes detected in
the phenomena and providing the users with the ability to express their interests. Therefore, in this
work, we analyse how to detect, extract and quantify user-relevant changes affecting a spatiotem-
poral phenomenon.

To answer this question, a conceptual framework is proposed, incorporating computation
methods for all of the change categories identified in the literature review. As input, and in order to
retrieve pertinent information to the users, the framework accepts user-defined thresholds describ-
ing their interests. Subsequently, to validate the proposed framework, a prototype was devised
and tested, in a variety of scenarios, that implements the base structure of the proposed concep-
tual framework and analysing a subset of the change features. To evaluate the results achieved,
two novel complementary quantitative metrics were proposed. These metrics allow assessing the
changes detected and their resemblance to the ground-truth. Supported by the prototype and the
evaluation metrics, experiments were performed towards assessing the solution capability for de-
tecting a singular change, sequences of changes and co-occurring changes. Additionally, tests also
assessed the impact of the prototype component responsible for detecting spatial changes in the
obtained performance.

Results showed that the proposed solution depends significantly on the accuracy of the compo-
nents responsible by detecting changes. It was verified that when the component detects changes
with high-precision, the prototype can successfully retrieve the changes of interest affecting the
analysed phenomenon (the worst obtained score when using high-precision components was 92.5%).
Therefore, the results obtained validate the proposed solution and provide the necessary informa-
tion to answer the raised research question. Moreover, the obtained results and evaluation methods
can also be employed as benchmarks for future frameworks with similar objectives.

Keywords: spatiotemporal data, data mining, change detection, features of interest
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Resumo

Um número significativo de dispositivos atuais recolhem dados espaciotemporais. Este facto in-
cita a necessidade de ferramentas de exploração de dados, capazes de processar informação es-
paciotemporal e extrair conhecimento desta. No campo mais específico de deteção de mudança,
este conhecimento advém da capacidade de automaticamente identificar as mudanças que carac-
terizam os fenômenos espaciotemporais. Considerando que diferentes utilizadores têm diferentes
interesses ao consumir a informação adquirida, é essencial providenciar os meios para que estes
possam expressar o seu grau de interesse em relação à detecção de mudança. No entanto, as abor-
dagens de vanguarda científica não analisam simultaneamente o retorno das mudanças detectadas
em fenómenos e como providenciar os utilizadores com a capacidade de expressar os seus inter-
esses. Assim, neste trabalho, nós analisamos como detectar, extrair e quantificar mudanças, de
relevância para o utilizador, que afectam os fenômenos espaciotemporais.

Para responder a esta questão, propomos uma solução conceptual, incorporando métodos de
computação para todas as categorias de mudança identificadas na revisão de literatura. Como
input, e de forma a retornar informação pertinente para os utilizadores, a solução aceita limites,
definidos pelo utilizador, que descrevem os seus interesses. Subsequentemente, para validar a
solução proposta, foi criado e testado, numa variedade de cenários, um protótipo que implementa
a estrutura base da solução conceptual proposta e processa um subconjunto das categorias de mu-
dança. Para avaliar os resultados alcançados, duas novas métricas quantitativas complementares
foram propostas. Estas métricas permitem aferir a mudança detectada e a sua semelhança com
o valor de referência. Suportadas pelo protótipo e pelas métricas de avaliação, foram realizadas
experiências com vista a aferir a capacidade da solução de detectar uma única mudança, uma se-
quência de mudanças e mudanças co-ocorrentes. Adicionalmente, os testes também aferiram o
impacto no desempenho obtido do componente do protótipo responsável por detectar mudanças
espaciais.

Os resultados demonstraram que a solução proposta depende significativamente da precisão
dos componentes responsáveis por detectar mudanças. Foi verificado que quando o componente
detecta mudanças com grande precisão, o protótipo consegue retornar com sucesso as mudanças
de interesse que afectam o fenômeno analisado (o pior resultado obtido quando utilizados com-
ponentes de alta precisão foi 92.5%). Assim, os resultados obtidos validam a solução proposta e
providenciam a informação necessária para responder à questão de investigação levantada. Ade-
mais, os resultados obtidos e os métodos de avaliação podem também ser empregados como refer-
ências para futuras soluções com objetivos similares.

Keywords: dados espaciotemporais, exploração de data, deteção de mundaça, características de
interesse
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Chapter 1

Introduction

Spatiotemporal data consist of data collected across space and time. Well-known spatiotempo-

ral data examples encompass the tracking of animal species or human movement, the monitoring

of the evolution of natural phenomena like tectonic movements, wildfires spreading or weather

changes, the surveyance of epidemic outbreaks, among others. Considering the fast development

and extensive usage of devices capable of gathering spatiotemporal data, like mobile phones, sen-

sors, GPS gadgets, satellites, etc., large amounts of raw data are collected and therefore avail-

able for analysis [54]. The main challenges when handling spatiotemporal data dwell on the vast

amounts of data available, the extraction of valuable information from raw data and the identifi-

cation of patterns. To tackle these problems, the spatiotemporal data mining domain studies the

identification of patterns and the attainment of knowledge from spatiotemporal data [41, 78]. The

knowledge extracted using spatiotemporal data mining processes can lead to significant benefits,

such as the prediction of hurricanes and volcano eruptions, the control of the dissemination of

diseases [48], the prevention of wildfires [20], the analysis of wildfire fronts to control changes of

direction, and so forth.

1.1 Motivation

Change detection represents a notable field of the spatiotemporal data mining domain [78]. This

field focuses on identifying the sequences of changes that affect spatiotemporal phenomena. When

a user utilises a visualisation tool to manually analyse simple sequences of raw spatiotemporal

data, identifying the change affecting a given phenomenon can be a simple and intuitive process.

However, when considering large amounts of data (e.g. historical data) identifying the changes

and the underlying spatiotemporal patterns can become infeasible as the spatiotemporal patterns

can be intricate and not intuitive to recognise, and the process of manually interpreting the data

can be very time-consuming. Hence, there is a need for systems capable of automatically de-

tecting changes on raw spatiotemporal data, with the intuit of tackling the issues associated with

human-made analysis. Moreover, by using automated frameworks, the process is accelerated, thus
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2 Introduction

permitting the detection of determinant changes in real-time [40], which, in extreme cases, can

make a difference in the phenomenon outcome.

Therefore, the motivation behind this work consists of studying automated frameworks that

allow the end-users to obtain valuable knowledge regarding the spatiotemporal changes affecting

a phenomenon, thus facilitating the data mining process.

1.2 Problem

Moving-object data, meaning data describing objects having a position in space that changes over

time [2], illustrated in Figure 1.1, are a notable kind of spatiotemporal data [41]. The most for-

ward manner of modelling moving-object data consists of describing the spatial disposition of the

objects, for example using shape descriptors (a simplified representation of a 2D or 3D shape in

the form of a vector that geometrically describes the shape [47]), at different timestamps.

t t+1 t+2
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0 1 2 3
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0 1 2 3

Figure 1.1: Spatial disposition, in three distinct timestamps, of a phenomenon being translated.

However, there are other ways of modelling spatiotemporal phenomena that do not require

describing every single timestamp, as illustrated in Figure 1.2. This figure shows three possible

manners of describing the phenomenon illustrated in Figure 1.1. The first approach is a spa-

tiotemporal representation where the spatial configuration at each instant is described using shape

descriptors. The second approach consists of the movement vectors of each of the phenomenon’s

vertices. Lastly, in a third approach, the phenomenon is modelled by the change wholly affecting

it — the desired output on spatiotemporal data mining frameworks. The latter approach can be

considered a change-based representation where not all timestamps are described.

Different users can also have different interests when it comes to the attainment of knowledge

through the process of spatiotemporal data mining. Moreover, on vast amounts of data, there may

occur the detection of various changes. However, from the end-users perspective, having many

detected changes can lead to them having to filter the retrieved information manually. Hence,

frameworks that take into account the user interest to retrieve the most appropriate changes prove

to be of additional usefulness.
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t: ((0, 0), (0, 1), (1, 0))

t+1: ((1, 1), (1, 2), (2, 1))

t+2: ((2, 2), (2, 3), (3, 2))

v1:  movement vector (2, 2), from [t, t+2[

v2: movement vector (2, 2), from [t, t+2[

v3: movement vector (2, 2), from [t, t+2[

translation (2, 2), from [t, t+2[

1. Raw data

3. Changes detected

2. Vertices movement vectors

Figure 1.2: Possible representations of the moving-object presented in Figure 1.1.

Therefore, the main problem addressed in this dissertation is how to build a change-based

representation, of interest to the end-user, by extracting the changes affecting the spatiotempo-

ral phenomena. From the performed literature review, a single framework exists that focuses on

extracting the changes affecting a spatiotemporal phenomenon from the original continuous rep-

resentation [98]. However, this framework is domain-specific and can only identify a subset of the

spatiotemporal changes affecting the phenomena.

1.3 Objectives

This work addresses the research of automated processes towards the identification, quantification

and representation of change in a spatiotemporal phenomenon. The input data consists of a single

spatiotemporal phenomenon, modelled by its 2D shape (shape descriptor) at different successive

timestamps.

The objective of this dissertation is to study, develop, test and conclude about a proposed novel

context-independent framework that processes the spatiotemporal data representing a phenomenon

and extracts and quantifies the change of interest to the end-user occurring in it. Given the pre-

sented context, in this domain, the change occurring in a phenomenon refers to the spatiotemporal

transformations affecting it. The main concerns focus on retrieving a change-based representation

that is authentic to the original representation as well as filtering and retrieving segments that are

of interest to the end-user.

1.4 Outline

This dissertation is structured as follows. Chapter 2 describes the performed literature review, fo-

cusing on the different forms of representing spatiotemporal data, the representation of change in



4 Introduction

the spatiotemporal domain, how to quantify that change and the analysis of approaches to similar

problems. Chapter 3 presents a detailed description of the problem being solved, as well as the

requirements a solution would have to solve the problem, and the associated research questions.

Chapter 4 details the guidelines of a conceptual framework for the automated quantification of

the change, of interest to the end-user, that affects a spatiotemporal phenomenon. Chapter 5 de-

scribes the performed implementation of the conceptual framework presented in chapter 4, while

explaining the overall architecture and technical aspects of the solution. Chapter 6 explains the

processes used for evaluating the developed solution, describes and discusses the results obtained,

and analyses if the solution satisfies the requirements established in chapter 3 and how it answers

the research questions. Finally, chapter 7 exposes the conclusions obtained in this dissertation and

presents future work.

This work follows the "Manuscript Fundamentals" writing guideline, presented by Elsevier1.

1Elsevier. Fundamentals of manuscript preparation. Available at https: https://researcheracademy.
elsevier.com/writing-research/fundamentals-manuscript-preparation. Accessed in 2020-02-
06.

https://researcheracademy.elsevier.com/writing-research/fundamentals-manuscript-preparation
https://researcheracademy.elsevier.com/writing-research/fundamentals-manuscript-preparation


Chapter 2

Change representation and
quantification on spatiotemporal
phenomena

This work is focused on the automatic detection of the change affecting spatiotemporal data. To

that end, it is necessary to research existing literature on how to represent change, what changes

can be detected, how to quantify the detected changes and what similar approaches exist that have

similar purposes. Therefore, section 2.1 starts by describing the existing data models for repre-

senting spatiotemporal data. After, section 2.2 identifies and describes the different spatiotemporal

change features that characterise a phenomenon’s change. Subsequently, section 2.3 presents sev-

eral methodologies for determining how to compute and quantify the identified features as well

as classify them as interesting to the end-user. Section 2.4 explores other approaches to similar

problems. Finally, a summary of this chapter’s contents is presented.

Before proceeding, it becomes relevant to recall that, as initially presented in chapter 1, the

scope of this work focuses on spatiotemporal data describing a single phenomenon, modelled

by its 2D shape at different successive timestamps. This is a result of this thesis having as an

underlying data provider the framework presented by Duarte et al. [25].

2.1 Spatiotemporal data representation

One of the primary challenges in dealing with spatiotemporal data is its representation. We start by

introducing different models for representing spatiotemporal data. Next, we present different data

decompositions, notably the different domains that constitute spatiotemporal data. We proceed

with the analysis of possible data models for an inherent topic of spatiotemporal data: move-

ment. Lastly, we focus on the differences between the continuous and discrete representations of

spatiotemporal data.

5
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2.1.1 Spatiotemporal data models

Worboys [97] identifies three interesting approaches when modelling dynamic geographic phe-

nomena: temporal snapshots, object change, and events and action. The first approach, temporal
snapshots, models phenomena as a succession of temporal snapshots containing the object’s spa-

tial configurations. Hence, a temporal snapshot represents the object’s status in a particular domain

at a timestamp. Figure 1.1 illustrates this approach by presenting three distinct temporal snapshots,

while Figure 1.2 shows a possible representation under the label ‘raw data’. This approach sam-

ples ‘dynamic phenomena at a sequence of temporal instants’. Thus, concepts such as timestamps

and temporal granularity link directly to it. It is also the most widely-used approach from the ones

being presented. Hornsby et al. first introduced the object change modelling approach [42]. In the

object change model, the represented entities are the changes that can happen, be it to objects, at-

tributes or relationships. The modelling focus shifts from the sequences of the phenomena’s states

to the changes occurring. Figure 1.2 shows a possible representation under the label ‘changes

detected’. The third and last approach, events and action, models phenomena occurrences and the

existing relationships between those and the objects participating in them. Events are from one of

three main classes: events as occupations of spatiotemporal regions, events identified according to

the cause-effect relation, and events as exemplifying a property or relationship at some time.

Shekhar et al. introduce a taxonomy of different spatiotemporal data types [78]. The rep-

resentation used in their work shares principles with Worboy’s work but focuses on the model

representation over the different spatiotemporal data types. They categorise data into three possi-

ble models: temporal snapshot, temporal change and event or process model. In the first category,

considering a set of points as the spatial layer, the temporal snapshot corresponds to the trajec-

tories of these points. Likewise, snapshots can also represent trajectories of lines and polygons,

among other types. The temporal change model describes a spatial layer at a given timestamp

and the incremental changes occurring from that moment onward. This model facilitates the rep-

resentation of displacement/motion (e.g. Brownian motion [46]), speed and acceleration on spatial

points and of motion, extension, rotation, deformations and split/merges on lines and polygons.

The last model represents spatiotemporal data using events or processes [99], where events rep-

resent entities whose properties do not change over time, while processes consist of entities that

can suffer changes over time (e.g., process that is accelerating).

Lohfink et al. present a ‘generic object-oriented model for representing evolving features’ [53].

The authors name it Feature Evolution Model (FEM). The authors identify the easiness to quickly

escalate complexity, when trying to represent change, as the major implementation problem of

spatiotemporal systems. For modelling change, FEM focuses on states (geographic equivalent

of versions) and occurrents, which are modelled using a three-layer hierarchy (see Figure 2.1).

States are then related to other states through transitions. Transitions aggregate occurrents. Thus,

transitions between states are associated with occurrents (object change representation).

In contrast to Lohfink’s work, Aydin et al. focus on the storage of spatiotemporal data using

non-relational and distributed database systems [6]. The authors focus on the nuances of storing
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Figure 2.1: UML of occurrents in FEM, presented by [53]

large-scale trajectory data using NoSQL.

As shown in the beginning of this chapter, the input for the current work consists of sequences

of temporally consecutive 2D representations of a polygon’s shape. Therefore, for the remainder

of this work, we will focus on spatiotemporal based on using polygonal data, over the remaining

data types. Furthermore, using the modelling methods already identified, we can affirm that our

objective is to transform data modelled through temporal snapshots to an object change represen-

tation, while quantifying and characterising the occurring change(s). Hence, the primary focus of

this work will be on these two modelling methods.

2.1.2 Spatiotemporal decomposition of changes

Blok identifies four distinct categories when describing changes over spatiotemporal data [8].

These can be listed as follows: changes in the spatial domain, changes in the temporal domain,

spatiotemporal patterns over long periods, and relative similarity of patterns.

In the first category, the author describes three basic concepts. The first is the existential
changes meaning the appearance/disappearance of a phenomenon. It is appropriate to describe

phenomena that can disappear over time. Natural phenomena, such as tornadoes or wildfires, are

presented as examples of this spatial change. Appearances and disappearances can also describe

split and merges of phenomena. Next, the mutation of phenomena, meaning the transformation

of either a phenomenon’s nominal attribute (e.g.: from rain to snow) or an ordinal change of an

attribute (e.g.: wind’s intensity increase). Lastly, the movement, which describes a change in

the spatial position or geometry of a phenomenon. This last concept includes both the movement

motion of the phenomenon along a path (encapsulating translations and rotations) or the phe-

nomenon’s boundary shift (encapsulates expansion/ shrinkage and deformations). Andrienko et

al. identify similar types of changes that can occur, over time, on spatiotemporal data [3].

Regarding changes in the temporal domain, Blok identifies five concepts [8]. The first, Mo-
ment in time, refers to the timestamp where a change starts occurring or occurs. Next, the Pace
concept quantifies change over time. Hence, any spatial characteristic has a pace. Duration is

the concept that characterises the period during which a change occurred. The Sequence concept
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refers to the order by which changes occur in the temporal domain. Lastly, Frequency refers to

the number of times that a change repeatedly occurs.

According to Blok, spatiotemporal patterns over long periods divide into cycles or trends [8].

Cycles represent spatial events repeated regularly in the same order. Trends are structured acyclic

patterns.

In the last category, Blok presents two different similarity categories of patterns: equality and

simultaneousness [8].

Shekhar et al. identify three distinct data attributes on spatiotemporal data: non-spatiotemporal

attributes, spatial attributes, and temporal attributes [78]. This decomposition corroborates the

one presented by Blok [8] since the decomposition is very similar. The first attribute type is

employed when describing an object’s features unrelated to the spatiotemporal context, such as

name, population, among others. Spatial attributes describe the spatial location (e.g. absolute

coordinates) and the shape of objects. Lastly, temporal attributes include both the timestamp and

duration of a process of a spatial object.

2.1.3 Modelling Movement

From the literature review already seen, we realise that movement emerges as a central area of

focus in spatiotemporal modelling. Therefore, we examine it with particular attention.

Eschenbach categorises movement into two types: trajectory-oriented motion and internal mo-

tion [30]. On the one hand, trajectory-oriented motion focuses on the progress of individual

bodies through space, denoted by successive spatial points. Consequently, the body’s shape and

spatial structure are irrelevant to the movement of the object. On the other hand, internal motion
comprises the motion of some part of the object, instead of the whole entity. Therefore, it becomes

necessary to consider the internal spatial structure. Growth, shrinkage, internal rotation and partial

motion are some of the internal motion subcategories. The author defines growth and shrinkage by

the gain or loss of area, respectively. Internal rotation consists of the motion of every object’s part

concerning an inner pivot. In partial motion, some parts of the object move while others do not.

Thus, deformations belong to this category. Furthermore, the two distinct kinds of movement are

not unrelated. Movements can result from a combination of other movements. Internal motions in

short intervals can be combined in trajectory motions in larger intervals.

Dodge et al. define moving objects as ‘entities whose positions or geometric attributes change

over time’ [23]. Furthermore, movement is defined as a change, occurring over time, in an object’s

location, while maintaining the objects’ identity.

Dodge et al. introduce a conceptual framework with the intuit of better understanding move-

ment, the parameters that define it, the external factors that influence it, and the possible types of

movement patterns [23]. Moreover, the authors also classify and review the identified movement

patterns. The authors also highlight the importance of defining movement in a relative sense. The

term relative sense refers to the relation between two or more moving object’s movements, and

therefore, does not apply to this work, which is focused on a single phenomenon.
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The conceptual framework presented considers three distinct movement parameters: primitive

parameters, primitive derivatives (parameters derived from the first parameters), and secondary

derivatives (derived from the primitive derivatives). This division of movement parameters has

its foundations on Differential Geometry, where vector arithmetic and derivatives are used for

computing movement patterns [36]. Additionally, the framework considers the existence of three

dimensions (similar to the ones presented by previous works, such as [8, 78]): spatial, temporal

and spatiotemporal. Figure 2.2 presents the different movement parameters that arise from the

combination of dimensions with the different groups of movement parameters.

Figure 2.2: Decomposition of movement parameters, as presented by [23].

Concerning the classification of movement patterns, the same three dimensions considered

in the conceptual framework are used. Movement patterns can either be generic or behavioural.

Generic patterns represent the simpler patterns that, in conjunction, form higher-level patterns.

Behavioural patterns correspond to the higher-level movement patterns and are associated with

the nature of the moving object. Generic patterns can also be decomposed in primitive or com-

pound. Primitive patterns represent the most basic movement patterns, meaning only a movement

parameter changes. Conversely, in compound patterns, several parameters change simultaneously.

Figure 2.3 presents the classification system proposed by the authors, according to the mentioned

dimensions and domain divisions.

Güting et al. use a sliced representation for representing deformable moving objects [32].

In this representation, moving objects consist of an ordered collection of units. Units represent

the continuous evolution of the object between two consecutive observations. For each unit, the

evolution of the moving object can be described using a time-dependent function f (t). Figure 2.4

consists of a visual representation of this modelling technique.

Andrienko et al. introduce a taxonomy for representing and analysing movement data [2]. In a

spatiotemporal analysis, they state the existence of three fundamental sets pertinent to movement:

space S, representing a set of locations; time T , representing a set of timestamps, and objects
O. Moving objects (also named movers) are objects having a position in space that changes over
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Figure 2.3: Classification system of movement patterns, presented by [23]

Figure 2.4: Sliced representation introduced by [32], as presented by [24].

time. Thematic attributes A, can be classified into static (when values do not change over time) or

dynamic (the opposite case). Movement is the change of spatial position of a moving object over

time. The authors represent Movements using the encoding: O×T → S (interpreted as: a given

mover, at a given unit, has a given spatial position) or the similar O→ (T → S). When considering

thematic attributes, the adequate encoding is O×T → S×A (interpreted as: a given mover, at a

given unit, has a given spatial position and thematic attributes’ values). Another possible encoding

is O→ T → S×A. Time units unrelated to locations are encoded as T → A. Furthermore, dividing

movement data into set of events is possible using the encoding O→ ((T1→ S)∪ (T2→ S)∪·· ·∪
(Tk→ S)), where T1,T2, · · · ,Tk represent non-overlapping subsets of the original T .
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2.1.4 Geometrical approach

As previously observed, we are trying to output an object change representation of the input

data. Consequently, we must identify the change that occurs, categorise it and give meaning

to it. Change is strongly intertwined with the notion of transformation, and, as already noticed, in

spatiotemporal data more specifically with geometrical transformations.

Furthermore, from the previous subsections, we can already see that spatiotemporal modelling

is associated with geometry, since many of the features lead to known geometric transformations,

such as translations and rotations.

Hence, it becomes relevant to understand the possible categories of geometric transformations

and the characteristics inherent to each of those categories. One of these characteristics is the

transformation invariance properties, meaning the object’s features that are left unchanged un-

der the transformation occurrence [35]. Below, we list the identified geometrical transformations

categories while providing a brief explanation of each. With this purpose in mind, we support

ourselves on the works of Wilkinson [95] and Galarza et al. [33].

1. Isometries are the group of transformations, belonging to euclidean geometry, that pre-

serves the distance between points, across transformations. Thus, metrics such as perime-

ters, areas, angles and the geometry’s shape created by the points are conserved (invariance

properties). Isometries can also be called rigid transformations.

2. Similarity transformations conserve the shape of the object, while not ensuring the perse-

verance of the distance between points. Thus, the angles and collinearity are maintained.

Furthermore, parallel lines remain parallel after the transformation. Hence, these transfor-

mations are indicated for resizing.

3. Affine transformations maintain the ratios of distances between points belonging to a recti-

linear segment and collinearity. Additionally, as in similarity, parallel lines remain parallel

after the transformation. Hence, angles, distances between points, and consequently shapes,

are not necessarily preserved.

4. Projective transformations, also known as homographics transformations [14], have its

name deriving from the fact that they are able to represent projections. In this type of

transformation, straight lines are preserved, but angles can be modified. This group of

transformations is best visualised when thinking about the projection of light onto an object,

from different angles.

5. Conformal transformations’ main focus is conformal mappings, where there is the preser-

vation of local angles in graphics, but there might be distortions of the object’s global shape.

Thus, when under a conformal transformation, smaller objects conserve their shape, while

bigger objects are bent (making straight lines curve).

There is an inherent hierarchy to the enumerated transformations. For example, all rigid trans-

formations are also affine transformations. Figure 2.5 highlights the hierarchy identified by [95].
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Figure 2.5: Examples of some geometrical transformations. The CLASS column identifies the
category encompassing the transformation, according to the categories presented in sub-section
2.1.4. Image taken from [95].

There are still some transformations not mentioned by neither Wilkinson [95] nor Galarza

et al. [33]. We join these others under the General transformations group, in a similar fashion

to Burago et al. [11]. Therefore, general transformations encapsulate both diffeomorphisms [70]

and homeomorphisms [71]. Homeomorphisms consist of the mapping of two sets of points while

assuring continuity1 and bijectivity2. Hence, classical shape deformations relate to this collection.

Further ahead, in section 2.2, we provide an enumeration of the identified transformations for

each of the above categories.

1Absence of abrupt changes (discontinuities) [69].
2One-to-one mapping between the points of both point sets [68].
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2.1.5 Continuous and Discrete Models

Changes can be interpreted as discrete or continuous [30]. On the one hand, the concept of dis-

crete change represents the difference between an initial situation and the final situation, meaning

the state after the occurrence of the change without any intermediate positions. On the other hand,

the concept of continuous change focuses on the development of the situation while the change

is occurring, and on the change’s internal structure. Informally, continuous changes are smooth,

meaning neither interruptions nor inconsistencies may be noticeable.

2.1.6 Summary

In this section, we analysed different manners of modelling spatiotemporal data. In finer detail, we

discovered that several authors agreed on three different ways of modelling spatiotemporal data:

using temporal snapshots, modelling object change, and through events and processes. Seeing

that we receive a spatiotemporal phenomenon’s data in the form of temporal snapshots as our

input and that we intend to extract the changes that the phenomenon goes through, we mainly

work the temporal snapshots model and object change model.

We also verified how to decompose spatiotemporal data, highlighting three different types of

data attributes: non-spatiotemporal, spatial, and temporal attributes.

Considering that movement represents a significant component of change on spatial (and con-

sequently spatiotemporal) data, we scrutinised its representation. Movement is essentially divided

into two components: trajectory-oriented and internal motion.

After a more thorough analysis of movement, we verified the strong correlations with geomet-

ric modelling and geometric transformations. Therefore, we categorised and described different

types of geometrical transformations.

Lastly, we identified the differences between discrete and continuous models.

2.2 Spatiotemporal change features

For a better understanding of the work at hand, it becomes a priority to define the meaning of

spatiotemporal change features. In this work’s context, a spatiotemporal change feature is the

characterisation of an identifiable change occurring between two or more spatial representations

of a phenomenon (two temporal snapshots). Henceforth, the term change feature or simply feature

are other manners of referring to the afore presented concept.

Section 2.1 presented some of the available methods for modelling spatiotemporal data. Addi-

tionally, in order to make the user better understand the possible models, some examples of change

features were given. In this section, we thoroughly analyse each of the possible spatiotemporal

change features, defining each one and, when possible, visually representing them.

At the beginning of this chapter, we referred that our input consists of 2D representations

of a phenomenon’s shape. Hence, in this section, we focus on identifying related work towards

spatiotemporal change features in the 2D domain.
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We divide the identified features into five categories, based on the division/decomposition that

has been employed by other authors, as seen in section 2.1. First, we identify spatial-related

features. At its core, these features deal with shape changes. Since, in our case, we represent

shapes using shape descriptors, we focus on the possible changes that can affect the boundaries

of spatiotemporal phenomena. Therefore, essentially the first category aims at describing geomet-

ric transformations. Next, we describe the identified existence features, meaning features whose

concerns are the phenomena’s existence. Then, we analyse features that are mainly related to the

time domain. The succeeding set of features are derivative features: features computed from other

features previously identified. Lastly, we identify spatiotemporal patterns related features.

2.2.1 Spatial-related features

From the literature review, we identify geometrical transformations as the primary representation

of spatial change features. Therefore, this subsection focuses mainly on the analysis of these

transformations while employing algebraic notations.

In this subsection, the geometrical transformations presented, as well as the matrix notations,

are firmly based on the works of Wilkinson [95], Galarza et al. [33], and Gentle [35].

For the following transformations, whenever a transformation’s explanation refers to its effects

on a generic point (x,y), assume that for a polygon the same effects apply to its constituting set of

points.

Before initialising the listing of the identified features, it becomes relevant to introduce the

concept of homogeneous coordinates [81]. Homogeneous coordinates are the natural coordinate

system for projective geometry. For better explaining these, a comparison with cartesian coordi-

nates is established. Cartesian coordinates are a set of numbers indicating the position of a point

in space, relative to a fixed reference point named the origin, through the shortest distance to the

axes that intersect the origin at right angles (90 degrees) [55]. Consider a point defined by the

cartesian coordinates (x1,x2, ...,xn). In the homogeneous coordinates system, the same point rep-

resentation is (xh
0,x

h
1,x

h
2, ...,x

h
n) or, positioning the new coordinate at the end, (xh

1,x
h
2, ...,x

h
n,x

h
0). The

new coordinate, xh
0, represents a hyperplane in the cartesian coordinate system. It is frequent for

xh
0 to assume value 1, thus making the remaining coordinates map to their cartesian correspondent

(xh
n = xn) [35]. For exemplification, consider the point (2,4). Its correspondent using homoge-

neous coordinates, with xh
0 = 1, is (2,4,1). The MATLAB programming platform proves helpful

when determining homogeneous representations of geometrical transformations [58].

2.2.1.1 Translation

The translation is an isometric transformation. In translations, all of the polygon’s points are

moved by a distance ||~v||, with~v being the translation vector. Hence, translating a polygon means

moving it in a given direction without altering its shape, orientation or size.
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In another notation, consider the polygon represented by ((x1,y1),(x2,y2),(x3,y3)). After ap-

plying a translation of (a,b) to the polygon, we obtain ((x1+a,y1+b),(x2+a,y2+b),(x3+a,y3+

b)).

Figure 2.5 presents a translation example.

Using a matrix notation, and homogeneous coordinates, translations can also be represented

as:

[
xT yT 1

]
=
[
x y 1

]
.

 1 0 0

0 1 0

Tx Ty 1



2.2.1.2 Rotation

Rotation is an isometric transformation. Rotations around the origin, considering an angle θ ,

transform the coordinates of a generic point (x,y) into (x+ cosθ − ysinθ ,xsinθ + ycosθ). Since

rotations are isometric, they do not change the polygon’s shape.

Figure 2.5 presents a rotation example, where the image is rotated 45o.

Using a matrix notation, rotations can be portrayed as:

[
xR yR

]
=
[
x y

]
.

[
cosθ sinθ

−sinθ cosθ

]
Using homogeneous coordinates, the corresponding representation is:

[
xR yR 1

]
=
[
x y 1

]
.

 cosθ sinθ 0

−sinθ cosθ 0

0 0 1


Rotation, around a point — pivot — that is not the origin, is achieved by first performing a

translation that positions the pivot at the origin. Then, the regular rotation is performed, followed

by the inverse translation, thus repositioning the pivot at its initial position [27].

2.2.1.3 Reflection

Reflection is an isometric transformation. Reflections are often only considered regarding the axes.

In such cases, an horizontal reflection transforms the generic point (x,y) into (−x,y). A vertical

reflection transforms the same point into (x,−y).

Figure 2.5 presents a vertical reflection example.

However, in a more generic approach, reflections can be achieved over any straight line going

through the origin. For instance, consider a straight line Lφ , where φ represents the angle between

the line and the horizontal axis. Furthermore, assume that Lφ intersects the origin. In such cases,

and using a matrix notation, reflections can be represented as:
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[
xReLφ

yReLφ

]
=
[
x y

]
.

[
cos2φ sin2φ

sin2φ −cos2φ

]
Additionally, instead of cartesian coordinates, we can use homogeneous coordinates:

[
xReLφ

yReLφ
1
]
=
[
x y 1

]
.

cos2φ sin2φ 0

sin2φ −cos2φ 0

0 0 1



2.2.1.4 Uniform scaling

Uniform scaling, also known as dilation, represents a transformation belonging to the similarity

group since it preserves the object’s shape. Uniform scaling transforms the generic point (x,y)

into (sx,sy), where s represents the scaling factor. When the factor is smaller than one, the object

shrinks. Conversely, if this factor is higher than one, the object enlarges.

Figure 2.5 presents a uniform scaling example, where the object is shrunk by a scaling factor

of 0.5.

Vector notation can describe affine transformations as ~xA =~xL+~a, where L is a non-singular

linear transformation and ~xA, ~x, and ~a are row vectors. Considering this notation, in uniform

scaling,~a is null while matrix L is of the form (s represents the scaling factor):

[
xS xS

]
=
[
x y

]
.

[
s 0

0 s

]
And the correspondent homogeneous coordinates representation:

[
xS xS 1

]
=
[
x y 1

]
.

s 0 0

0 s 0

0 0 1



2.2.1.5 Anisotropic scaling

Anisotropic scaling is an affine transformation. Therefore, it is no longer assured the conservation

of the object’s shape under transformation.

Anisotropic scaling changes the object’s aspect ratio. It transforms the generic point (x,y) into

(sx, ty), where s and t represent the horizontal and vertical scaling factors, respectively. The same

scaling factor properties existent in uniform scaling apply to this transformation.

Figure 2.5 presents an anisotropic scaling example, where the object is enlarged by a factor of

2 in the vertical axis.

Once more, using the notation for affine transformations, presented in the previous spatial

feature, in anisotropic scaling,~a is null while matrix L is of the form:
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[
xAss xAst

]
=
[
x y

]
.

[
s 0

0 t

]
And using homogeneous coordinates:

[
xAss xAst 1

]
=
[
x y 1

]
.

s 0 0

0 t 0

0 0 1


2.2.1.6 Shear

The shear transformation is also an affine transformation. Shears transform a generic point (x,y)

into (ax+ cy,bx+dy), considering a,b,c, and d from the transformation matrix:

[
xS xS

]
=
[
x y

]
.

[
a b

c d

]
Using homogeneous coordinates:

[
xS xS 1

]
=
[
x y 1

]
.

a b 0

c d 0

0 0 1


Using the affine transformations’ notation, in the shear transformation, ~a is null while matrix

L is of the form presented above.

Figure 2.5 presents a shear, where a assumes the value 0.96, b assumes 0.3, c 0.95, and lastly

d the value 0.96.

2.2.1.7 Projection

Projections belong to the group of projective transformations. For projections’ matrix notation, we

use homogeneous coordinates (as the explanation becomes simpler). Both matrix L and ~a, from

the affine transformations’ notation, are combined into a single matrix A:

A =

a b p

c d q

u v s


Explaining matrix A values, elements a,b,c and d come from matrix L. Elements u and v

represent ~a. Lastly, p,q and s represent the projection. We can see the result of the application of

a projection to the generic point, in homogeneous coordinates (x,y,1), below:

[
ax+ cy+u bx+dy+ v px+qy+ s

]
=
[
x y 1

]
. A

Figure 2.5 presents a projection, using the coordinate transformation (x,y)→ (1
x ,

y
x).
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2.2.1.8 Conformal Mappings

Conformal mappings are conformal transformations. For representing this class of transforma-

tions, we need to make use of the complex plane. Due to the complexity of this transformation,

and the extensive correspondent explanation required, we only visualise the effects of this trans-

formation. Nonetheless, Wilkinson [95] provides a detailed analysis of this transformation. Figure

2.5 presents a conformal mapping, using the transformation w = 1−z
1+z , where z = x+ iy.

2.2.1.9 Deformations

Under deformations, we consider all the changes of shape that were not classified by the pre-

viously presented geometrical transformations. Therefore, deformations encapsulate all of the

transformations on the general transformations group identified in sub-section 2.1.4. Additionally,

other identified (in section 2.1) but uncategorised shape changes, such as partial motion, fit under

the deformations category.

Several classes further categorise, model and detail deformation itself, such as deformations

that arise from merging with a simple shape [21], free-form deformations [77], or wire modelled

deformations [80]. However, we will not further investigate the developments in this area, since

we manage deformations as a whole entity, not making distinctions of its subtypes.

Figure 2.6 presents an example of a deformation, more specifically a homeomorphism, of a

shape, between two consecutive timestamps. We expect to be working with the sort of deforma-

tions that this figure denotes.

Figure 2.6: Example of a geometric deformation.

2.2.2 Existential features

In this subsection, we analyse features that alter the existential state of phenomena. Thus, with

these features, we model the change that concerns the creation of new phenomena, or, conversely,

the destruction of existing phenomena. Moreover, we also model the merge of distinct phenomena

into a single phenomenon and, conversely, the split of phenomena. Unlike spatial-related features,

that may spawn over several timestamps, existential features have an exact timestamp at which
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they occur. This timestamp can either be the moment the phenomenon is created or destroyed.

Thus, there is a moment, in time and space, at which the phenomenon starts (and, later, may stop)

existing.

This subset of spatiotemporal features was identified in the works of both Blok [8] and Shekhar

et al. [78].

2.2.2.1 Appearance

The appearance of a phenomenon consists of the emergence of a new phenomenon (its "birth" [8]).

We verify this feature whenever in a given timestamp t the phenomenon is inexistent, but in the

next timestamp t+1 the phenomenon is present. Figure 2.7 presents a visual example of an ap-

pearance.

Figure 2.7: Example of a phenomenon appearance.

2.2.2.2 Disappearance

The disappearance of a phenomenon consists of the vanish of an existing phenomenon (its "death" [8]).

The identification of this feature consists of a scenario wherein a given timestamp t the phe-

nomenon is present, but in the next timestamp t+1 the phenomenon is no longer observable. It

stands as the inverse of the appearance feature. Figure 2.8 presents a visual example of a disap-

pearance.

Figure 2.8: Example of a phenomenon disappearance.
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2.2.2.3 Split

A split consists of the disaggregation of a phenomenon into two independent phenomena. The ini-

tial phenomenon that suffered the split can either disappear since the complete entity represented

the phenomenon (e.g., the collapse of a bridge); or continue existing as one of the resulting split

parts (as occurs in mitosis). Figure 2.9 presents a visual example of a split.

Figure 2.9: Example of a split of one phenomenon into two phenomena.

2.2.2.4 Merge

A merge consists of the aggregation of two phenomena into a single phenomenon. It stands as the

inverse of the split feature. Therefore, the initial phenomena that suffered the merge can either

disappear to be replaced by a new entity; or one of the original phenomena continues existing as

the merge result. Figure 2.10 presents a visual example of a merge.

Figure 2.10: Example of a merge of two phenomena into one phenomenon.

2.2.3 Temporal-related features

In this subsection, we focus on features that depend on the occurring changes’ temporal properties.

Thus, these features, identified in Blok’s work [8], rely upon the identification of other dynamic

changes, such as spatial-related features.

Figure 2.11 presents a visual representation of all the time-related features presented below.

The temporal features are:

1. Moment in time refers to the timestamp at which a given change starts occurring;
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Figure 2.11: Characteristics of change in the temporal domain, as presented by [8].

2. Duration consists of the period during which a change occurs;

3. Pace quantifies the rate at which changes occur over time. For instance, we can interpret

velocity as the pace of execution of a particular motion. Consequently, acceleration can be

seen as the change of pace in velocity;

4. Sequence refers to the order by which changes occur in the temporal domain;

5. Frequency consists of the number of times that a given change occurs, over the temporal

domain.

2.2.4 Movement-derived features

In this subsection, we focus on features that derive from other computed features, whether they

are primary features, like the spatial and temporal-related features we already identified, or other

derived features. We base this subset of features on the work of Dodge et al. [23]. This subset of

features has its foundation on physics fundamentals, specifically in the kinematics area. Thus, for

better explaining the identified features, we recur to Villate’s work [90].

2.2.4.1 Velocity

Consider the presence of an object in instant ti at position si and at instant ti+1 at position si+1,

where ti+1 = ti +∆ti. The motion through the trajectory, at the interval [ti, ti+1[, can be computed

as ∆si = si+1−si. Then, we can compute the average speed, for the interval [ti, ti+1[, as the motion

by unit of time, hence: v̄i =
∆si
∆ti

. The absolute value of velocity, |v̄i|, is the speed at which the object

moves. Units of speed are distance over time (e.g.: meters per second, m/s, or kilometre per hour,

km/h). If the time interval, ∆t, is too small (limit ∆t→ 0), the average velocity value approximates

to the instantaneous velocity value. This limit is the derivative. Hence, the velocity (implicit

instantaneous velocity) can be described as: v = δ s
δ t .
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This feature can be applied for computing the velocity of trajectory oriented movements such

as translations and rotations [30].

2.2.4.2 Acceleration

As stated by Villate [90], acceleration can be decomposed into two components: tangential ac-

celeration, the component dependent on the variation of trajectory; and the normal component,

unrelated to velocity variations but related to the trajectory’s curvature. For the remaining of this

work, whenever we mention acceleration, assume we are talking about tangential acceleration.

Acceleration measures velocity’s rate of change per unit of time. For an interval [t, t +∆t[, the

average acceleration is equal to the increase of velocity per unit of time: āt =
∆v
∆t . Conversely, we

obtain the instantaneous acceleration, at instant t, through the limit ∆t → 0. Hence, acceleration
at equals the derivative of velocity in order to time, thus being described as: at =

δv
δ t .

2.2.4.3 Change of direction

Change of direction is a secondary derivative feature that depends on a movement’s direction.

Thus, it becomes necessary to compute the phenomenon’s translations first. We believe this fea-

ture’s relevance is better explained through an example: consider a car on the road. The car is

moving forward. However, the driver decides to stop and inserts the reverse gear, consequently

making the car move backwards. If we decompose the movement into geometrical transforma-

tions, we identify two distinct translation vectors: one that represents the movement of the car

moving forward, and another when the car moves backwards. However, the car did not change its

orientation. Even though the car moves backwards, it still faces its initial direction.

The previous example highlights the importance of identifying the change of a movement’s

direction.

2.2.5 Spatiotemporal patterns

This subsection focuses on the recurrence of the previously mentioned features. In other words,

spatiotemporal patterns focus on identifying regular, repeatable and understandable sequences of

sets of changes.

The spatiotemporal patterns subset, identified in Blok’s work [8], are:

1. Cycles represent changes that repeatedly occur in the same order, meaning the periodical

return to a previous state of the phenomenon (e.g. changes in vegetation);

2. Trends represent structured acyclic patterns, meaning the tendency of a given change over

time (e.g. steady increase of a movement’s velocity).

2.2.6 Summary

In this section, we identified and categorised the spatiotemporal change features. We contemplate

five different categories: spatial-related features, existential features, temporal-related features,
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derivative features and spatiotemporal patterns. Observe that both the temporal features and the

derivative features are dependent on the spatial-related ones. Additionally, spatiotemporal patterns

are dependent on any of the other features. Figure 2.12 shows all of the identified change features

as well as the respective categories.

Figure 2.12: Identified spatiotemporal change features and respective categories.

2.3 Feature computation and interest

Next, we focus on the possible methodologies for computing the spatiotemporal change features

distinguished in the previous section. We start by analysing the point set registration algorithm:

an algorithm to estimate the geometric transformations occurring between two given temporal

snapshots of a phenomenon. Following, we examine different similarity measures and how to

compute each one. Both point set registration algorithms and similarity measures appear as suited

approaches for computing the spatial-related change features. Afterwards, we analyse the calcula-

tion of derived features. Subsequently, we identify possible methodologies for the computation of

spatiotemporal patterns. Next, we describe other authors’ possible approaches to the evaluation of

change features scenarios. Finally, we analyse methodologies to determine which change features

are of interest.

In this section, we do not analyse temporal-related features. Temporal-related features are

dependent on the identification of spatial-related features. Hence, whenever a spatial change is

identified, some temporal features are instantaneously computed (moment in time and the dura-

tion). Besides pace — which we already identified as being inherently correlated with derived
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features —, the remaining temporal features, sequence and frequency, seem somewhat trivial to

identify by looking at the identified features order.

2.3.1 Point set registration algorithms

Point set registration algorithms main focus is ‘to find correspondences and to estimate the trans-

formation between two or more point sets’ [100]. The algorithm consists of registering (aligning)

the source point set into the target point set. However, the point sets’ characteristics can create

challenges to the algorithm. Deformations such as changes in the object’s viewpoint or pose, or

noise such as the occlusion of some points or outliers, are some examples of the difficulties point

set registration algorithms encounter. Figure 2.13 presents these same challenges while making

use of visual examples to facilitate comprehension.

Figure 2.13: Main challenges of the point set registration algorithm, presented in [100].

To better understand the point set registration algorithm, figure 2.14 illustrates its application

in a 3D scenario. In this figure, the blue circles are being aligned onto the red dots. Each column

represents an iteration of the algorithm. The first row represents a scenario with occlusion of data

(missing points). The second row represents a scenario with less missing points but also outliers.

As already observed in sub-section 2.1.4, geometric transformations can be classified into

different categories. Section 2.2, provided us with the geometric transformations belonging to

each category. Rigid transformations preserve the distance between points, thus encapsulating

translations and rotations. Affine transformations conserve the ratios of the distances between

points, hence encasing scalings (both uniform and anisotropic) and shears. Regarding the nature

of the transformations that point set registration algorithms can detect, these are classified into rigid

and non-rigid transformations. However, this classification does not match the one we presented,

since, in the point set registration algorithm domain, rigid transformations include translations,

rotations, and uniform scaling [63, 100]. Non-rigid transformations refer to transformations that
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Figure 2.14: Example application of a point set registration algorithm, presented in [63].

are challenging to model and whose underlying model is often unknown. Affine transformations

constitute the simplest case of non-rigid transformations [63].

Henceforth, when considering point set registration algorithms, we consider rigid transforma-

tions to include uniform scaling, to match the domain language used in the point set registration

literature review.

Regarding the modelling methods in point set registration, they fit into one of two categories:

parametric or non-parametric models [100]. If the model is parametric, then it depends only on

a small set of parameters. Hence, on parametric models, the parameters provide insight regarding

the transformations affecting the point set as a whole. Otherwise, in non-parametric models, the

transformation cannot be represented by a set of parameters, implying the existence of deforma-

tions vectors for each point [73]. Thus, despite the registration being more precise, it is difficult to

understand the transformations affecting the point set.

Point set registration algorithms can be of two types: pairwise or groupwise [100]. In pairwise
registration, the algorithm receives two sets of points — the source and the target — as input.

Contrarily, groupwise registration handles more than two point sets simultaneously. Seeing that

our input consists of successive shape descriptors of a phenomenon, and our goal is understanding

the change occurring between two of those shape descriptors, we focus on a more in-depth analysis

of pairwise registration.

2.3.1.1 Pairwise registration

Jian and Vemuri described pairwise registration using the following mathematical representa-

tion [45]. Consider {M ,S } as the two finite sets of points, in a finite-dimensional real vector

space Rd , to be registered. M represents the moving "model" set — the source — while S rep-

resents the fixed "scene" set — the target. The point sets can have different sizes. The aim is to

find the mapping, from Rd to Rd , that produces the best alignment between the registered "model"

point set and the "scene" point set. As observed, this mapping can either be a rigid or non-rigid

transformation. Consider T to be the transformation mapping M into its registered representation
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T (M ). The goal can be rewritten as finding the transformation T that minimises dist(T (M ),S ),

where dist represents an algorithm for computing the distance between two point sets.

Hao et al. categorise pairwise registration methods into distance-based, filtering-based, or

probability-based [100]. Next, we describe each one of these categories, while supporting our-

selves in Hao et al.’s work.

Distance-based methods

Distance-based pairwise registration methods consist of two steps. First, compute the distance

for each point in M to each point in S to find the correspondence between the point sets. The

following step consists of attempting to minimise the distances between the corresponded points.

The iterative closes point (ICP) algorithm is a well understood and popular parametric distance-

based method, introduced by Besl and McKay [7]. The algorithm assumes that the correspondent

of a point in the M set is the closest point in the target S set. The algorithm consists of iteratively

computing the transformation T , using least-squares3 as the distance metric, and applying T (M ).

The algorithm stops when a particular criterion is met. Many ICP variants have emerged since the

publication of the original algorithm.

Another parametric distance-based algorithm is robust point matching (RPM), introduced by

Gold et al. [37]. In RPM, the registration proceeds by using deterministic 4 and soft-assign op-

timisation to converge into the best-alignment transformation. The thin-plate-spline robust point

matching (TPS-RPM) consists of an RPM variant, that enables non-rigid registration by parame-

terising the spatial transformation as a thin-plate spline5.

Kernel correlation (KC), introduced by Tsin and Kanade [85], represents another parametric

distance-based algorithm. In registration, the goal is to obtain the maximum kernel correlation of

the point sets. According to the original authors, KC ‘can be considered as a robust, multiply-

linked ICP’, since it is proven to be more robust in noisy scenarios.

Jian and Vemuri represented the point sets as Gaussian mixture models (GMM) [45]. The

registration consists of aligning the two models. Furthermore, they use parameterisation by thin-

plate splines to perform non-rigid registration.

Graph matching (GM) is a non-parametric distance-based algorithm. In this approach, the

point sets are represented using graphs that store information regarding both edges and vertices.

The registration consists of finding the correspondence between the two graphs, through the edges

and vertices modelling.

Filtering-based methods

3Approximation technique for regression analysis [76]. The objective is to minimise the sum of the squares of the
residuals of every equation.

4Deterministic variant of the Simulated Annealing technique [74]. Simulated Annealing is a probability-based
technique to approximate the global optimum of a function.

5Spline-based technique for both data interpolation and smoothing [26].
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For performing point set registration, filtering-based methods use state-space models (SSM).

State-space models consist of ‘models that use state variables to describe a system by a set of first-

order differential or difference equations’ [59]. There are no inherent subsets of algorithms, as

there are in distance-based methods. Nonetheless, there exist several variations of filtering-based

algorithms [100].

Probability-based methods

In probability-based methods, the alignment of the two point sets is addressed as a probabil-

ity estimation problem. The coherent point drift (CPD) consists of a robust pairwise registration

algorithm for both rigid and non-rigid transformations [63]. The authors propose an alignment

as a probability density estimation problem, more specifically a maximum likelihood estimation6

problem, using a Gaussian mixture model method. One of the point sets represents the GMM cen-

troids, while the other represents the data points to be fitted. Next, using an expect-maximisation

algorithm, they perform the maximum-likelihood optimisation. The CPD algorithm serves as the

scientific basis for many other registration algorithms, such as the CPD-GL [56] or the CPD-

Net [93].

Hao et al. chose some representative methods for pairwise point set registration and conducted

some performance experiments on them [100]. They compare six different algorithms with dif-

ferent configurations, being those: the ICP [34], a iterative closest point algorithm algorithm; the

TPS-RPM [17], a robust point matching algorithm; the KC [85], a kernel correlation algorithm;

the CPD [63], a coherent point drift algorithm; the CPD-GL [56], also a coherent point drift algo-

rithm; and the SCGF [91], a probability-based method. The authors run the experiments on two

scenarios, the fish and Chinese character datasets, while varying noise, occlusion, rotations and

object deformation. The algorithms ran until they converged or reached 50 iterations.

Figure 2.15 presents the results obtained. By the analysis of the results, Hao et al. verified

that the SCGF algorithm had better accuracy than the remaining algorithms. However, its average

runtime was, by a large margin, superior to the remaining algorithms — up to 74 times slower

than the second slower algorithm (TPS-RPM) in the fish dataset (SCGF took 37.04s while TPS-

RPM took 2.37s), and 37 times slower than the second slower (CPD-GL) in the Chinese dataset

(SCGF took 27.64s while CPD-GL took 0.73s). Additionally, they also confirmed that the CPD
algorithm proved to be the most time-efficient one (took 0.22s in both the fish and Chinese dataset).

Furthermore, the accuracy of the CPD-GL algorithm is very close to the SCGF. Therefore, even

though the SCGF had the best accuracy, the CPD-GL — Coherent Point Drift - Global Local —

proved to be the algorithm with the best accuracy-average runtime trade-off, since it was able to

achieve very similar results up to 37 times faster. The CPD-GL is a probability-based method,

with a parametric model, for non-rigid transformations registration.

6Estimation method that works by maximising a likelihood function (measures the fit of a statistical model into a
data sample) [76].
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Figure 2.15: Experiments run by Hao et al. [100]. Each column represents a different registration,
where the blue point set represents the "model", and the red point set represents the "scene". The
first row represents the points sets when no algorithm is applied. The following rows represent
the IPC, KC, ICP, TPS-RPM, CPD, CPD-GL, and SCGF results (meaning the "model" after ap-
plying the estimated transformation, superimposed on the "scene"), respectively. Original figure
from [100].

2.3.2 Similarity measures

Point set registration algorithms are not capable of directly determining the more complex spatial-

related features identified in section 2.2, such as conformal mappings or projections. Hence, simi-

larity measures appear as a complement (and also as a possible alternative) to point set registration

algorithms.

Veltkamp states that it is possible to use similarity measures for measuring the resemblance

between two shapes [89]. With two shapes and a similarity measure, it becomes possible to decide

whether the dissimilarity is smaller than a given threshold. Therefore, we can use similarity mea-

sures for computing the degree of deformation between two temporal snapshots. According to the

author, ideally, similarity measures respect a set of three properties. The first property affirms that

a distance function7 (i.e., the dissimilarity between shapes) satisfies identity — distance between

the shape and itself is zero —, uniqueness — if a distance between two shapes is zero then the

shapes are equal —, and triangle inequality — for any triangle built out of three points, the sum of

7Function that defines the distance between two points. A point set with a metric distance is dubbed a metric
space [13].
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any two sides must greater than or equal to the remaining side [31]. The second property relates

to continuity and robustness. A distance function should hold: perturbation robustness, crack ro-

bustness, blur robustness and noise and occlusion robustness. Lastly, a distance function should

be invariant (the property of remaining unchanged independently of variations in the conditions

of measurement8) under certain geometric transformations, such as isometric or affine transfor-

mations (see 2.1.4). However, not all the similarity measures described by the author respect

simultaneously the three properties.

Veltkamp also presents several similarity measures [89]. The following list presents the ones

that respect the above properties and suit our problem.

• Lp Distance / Minkowsky Distance [88]: this measure represents a generalisation of both

the widespread Euclidean distance and the Manhattan distance. Therefore, one can compute

the distance between two shape points and use it to infer the similarity between the shapes.

The formula for calculating the Minkowsky distance is (∑k
n=1 |xi− yi|p)1/p, where x and y

represent two points in Rk and p is a parameter of the formula. For the triangle inequality

property to hold, p must be greater than one. The Euclidean distance is the Minkowksy

distance with p = 2, while the Manhattan distance has p = 1.

• Bottleneck Distance: given two point sets, with the same size, the bottleneck distance finds

the one-to-one correspondence linking both point sets that minimises the maximum dis-

tance between the corresponded points [29]. For measuring the correspondences’ distance,

another metric must be used (e.g. the Minkowsky distance).

• Hausdorff Distance: represents the greatest distance of a shape’s point to the closest point

in the second shape. This metric is still valid in point sets without a one-to-one correspon-

dence, hence being robust to noise and occlusion. Figure 2.16 presents a visual example of

this metric application.

Figure 2.16: Example of the Hausdorff Distance, presented in [87].

• Turning Function Distance: given two shapes, map each one into the turning function of

its inner angles. Next, proceed with determining the distance between each of the obtained
8Dictionary.com. Definition of invariance. Available at https: https://www.dictionary.com/browse/

invariance. Accessed in 2020-02-08.

https://www.dictionary.com/browse/invariance
https://www.dictionary.com/browse/invariance
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turning functions. Narayanan presents a real-life application of this metric — analysis of

the seasonal deformation of a lake — and respective effectiveness validation [64]. Figure

2.17 presents an example of the application of this metric.

Figure 2.17: Example of a polygon’s mapping into its turning function, presented in [89].

• Fréchet distance: minimum distance existent between correspondences of two shapes. The

correspondences are obtained through increasing monotone parametrisations of both shapes.

Figure 2.18 presents an example of the Fréchet distance applied to two lines.

Figure 2.18: Example of the Fréchet distance, presented in [39].

• Template metric: considering two shapes (S1 and S2), the template metric assumes value

equal to area((S1 − S2)∪ (S2 − S1)). The centroids of both shapes must coincide when

calculating this metric.

• Transport Distance: metric equals the minimum amount of work (amount of energy to

move a mass) needed to transform a shape into another. This metric has its foundations

on physics. Su et al. present a more time-efficient variation and prove the efficacy and

efficiency of this measure [83].

Since Veltkamp’s work, other similarity measures have emerged, such as:

• Nasreddine et al. propose an approach based on shape geodesics [65]. A Geodesic line is

a line ‘denoting the shortest possible line between two points on a sphere or other curved

surface’9. This methodology is invariant to geometric transformations, such as translations,

rotations, and scaling. Furthermore, the similarity measure is robust to outliers.
9Lexico. Meaning of Geodesic by Lexico. Available at https: https://www.lexico.com/definition/

geodesic. Accessed in 2020-02-02.

https://www.lexico.com/definition/geodesic
https://www.lexico.com/definition/geodesic
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• Mémoli [60] presents a similarity measure based on the Gromov-Hausdorff distance [86],

a feature dependent on the already observed Haussdorf distance. Mémoli introduces a more

natural and general approach that can also be applied to unsmoothed datasets.

Besides the similarity measures already observed, Veltkamp also describes two more generic

algorithms for measuring shape similarity [89]. The first, voting schemes, consists of counting

votes to identify the target point set that maps to the given query point set. Geometric hashing [96]

is an example of a voting scheme algorithm for matching geometric features from a query point

set with a database (the hash) containing similar features.

The second algorithm is subdivision schemes. This algorithm consists of a geometric branch

and bound technique. A progressive subdivision of the transformation space decides against the

set of transformations occurring.

Similarity measures can also be used for finding the geometrical transformation that max-

imises the similarity between the two given shapes. In such cases, shape matching becomes an

optimisation problem — the goal is to find the transformation that presents the global minimum

for the dissimilarity measure computation. Since solving optimisation problems might lead to

time-inefficient solutions, approximate-optimisation approaches have also been devised. It is pos-

sible to use the Bottleneck distance metric to understand if there exists a translation between two

shapes whose dissimilarity measure is inferior to a given threshold [28, 29]. In a similar approach,

it is feasible to identify the rigid transformation between two shapes, using the Hausdorff dis-

tance [16]. Point set registration algorithms using distance-based methods make use of similarity

measures to evaluate the distance between the two scenes. For example, the original ICP algorithm

uses Euclidean distance (Minkowsky distance with p = 2) as its distance function [7].

2.3.3 Movement-derived features

Assuming the use of a point set registration algorithm that provides the affine transformations

affecting a phenomenon, in this subsection, we identify how to proceed for the computation of the

identified movement-derived change features: velocity, acceleration, and change of direction.

Regarding the velocity feature, in section 2.2 we verified that the average speed formula is

v̄i =
∆si
∆ti

[90]. Using the point set registration algorithm, the translation vector or the rotation

angle and pivot are obtained, while also knowing the timestamps corresponding to the shape de-

scriptors used in the algorithm. Therefore, it is possible to compute the average speed using

the previous methodologies. In translations, the travelled distance is computed by calculating

the translation vector’s length (also known as magnitude or Euclidean norm), using the formula:

||~v||=
√

v2
1 + v2

2 + ...+ v2
n, where~v = (v2

1,v
2
2, ...,v

2
n) [4]. Considering the two timestamps as ti and

t j, where t j > ti, velocity is ||~v||t j−ti
. For rotations, consider a rotation of an angle θ , in radians, and

with a radius R (computable as the distance separating the rotation pivot and the rotation start-

ing point). Velocity is computed as v = Rω , where ω = ∆θ

∆t [90]. Since the starting and finishing

timestamps (ti and t j, respectively) and the rotation angle are known, the velocity calculus is R θ

t j−ti
.
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As previously observed, acceleration is computed through ∆v
∆t . Hence, using the calculated

velocities and the corresponding timestamps, the acceleration for that interval is calculated.

For computing the change of direction, the dot product, also named scalar product [82],

appears as a valid approach. The dot product permits the discovery of the angle between two

vectors. In this work context, both vectors represent different translations, and the angle between

them represents the change of direction. The algebraic definition of the dot product is ~A · ~B =

∑
n
i=1 aibi, with ~A = [a1,a2, ...,an] and ~B = [b1,b2, ...,bn] [52]. The geometric definition of the dot

product is ~A ·~B = ||~A||||~B||cos(θ), where θ is the angle between the vectors [82]. Knowing both

vectors and using the above formulas, θ can be calculated as:

θ = cos−1

(
∑

n
i=1 aibi

||~A||||~B||

)

2.3.4 Spatiotemporal patterns

As seen in section 2.2.5, spatiotemporal patterns can be decomposed in cycles or trends.

In the most simple scenarios, where a single change feature is identified, and it repeatedly

occurs, either in cyclic or acyclic manner, the identification of spatiotemporal patterns is rather

trivial. By looking at the order of the identified change features, the spatiotemporal patterns can

be easily detected.

However, in more chaotic scenarios where several change features co-occur, for an extended

period, the problem of identifying spatiotemporal patterns becomes considerably more compli-

cated. Seeing that the problem consists of finding the set of change features that repeatedly occur,

a possible approach is to address it as a combinatorial problem where all possible combinations of

change features are tested as a spatiotemporal pattern [92, 18]. The main downside of this approach

is that combinatorial space directly increases with the number of change features. Another possible

approach is the usage of neural networks for the detection of spatiotemporal patterns [75, 22, 1].

2.3.5 Other approaches

In this subsection, we analyse other approaches, used by other researchers, for the identification

of spatiotemporal change features.

Change detection based on Artificial Intelligence is also a common approach for identifying

changes in spatiotemporal data [79]. However, machine learning approaches imply the existence

of previous datasets for training the prediction model. Moreover, these approaches are also fo-

cused on specific spatiotemporal contexts (e.g. [61, 62]), seeing that the data sources must be

homogeneous for the model to be able to predict the change features [79]. Furthermore, this is

also the reason why the analysis of point set registration algorithms focused on machine learning,

such as the CPD-Net [93] or the Deep Closest Point [94], has not been given further examination.

Bogaert et al. make use of a decision tree to determine which one of ten spatial processes,

based on pattern geometry, occurred in a landscape transformation [9]. Deformations, enlarge-

ments and creations are some of the few patterns the authors determine that are interesting to us.
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The Decision Tree algorithm receives as input the area, perimeter and number of patches regarding

the land-cover given as input. Furthermore, the authors do explain how the input parameters relate

to each one of the selected spatial processes. Figure 2.19 presents the decision tree used.

Figure 2.19: Decision Tree used in spatial processes classification, presented by [9]. Areas are
represented using the ak variable, perimeters with the pk, and number of patches with the nk
variable.

2.3.6 Determining features of interest

In section 2.2, we have determined a set of possible features identifiable in spatiotemporal phe-

nomena. However, we have not yet disclosed how a spatiotemporal change feature is considered

to be of interest to the user. In this section, we will focus on possible methodologies for classifying

features (also referred to as events) as interesting or not.

In large datasets, information hiding emerges as a relevant topic [84], since there will be irrel-

evant information to the user that must be filtered. The work presented in [84] focuses mainly on

spatiotemporal information visualisation and information hiding. Regarding information hiding,

the authors define an event-based approach where the user defines events of interest. To this extent,

users describe their events of interest using natural language operators. These operators are then

processed into a set of thresholds, thus allowing the quantification of events. The ones surpassing

the defined thresholds are considered interesting. The authors consider the existence of two types

of thresholds:

• the exceeding of a certain threshold, accumulated over different time steps;

• the exceeding of a certain increase of an attribute value, from one time step to another.
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The authors also consider the existence of different types of events of interest. Figure 2.20

presents these. Local events are events referring to one time step (temporal view) or a single

area (spatial view). Conversely, global events are events detected in the entirety of the temporal

continuum or the total spatial area.

Figure 2.20: Different type of events of interest, as presented by [84].

Similarly, to enable the user access to desired climatic data, Pederson et al. also employ

thresholds of interest [72]. In this work, the user can parametrise the average and maximum

temperatures.

2.3.7 Summary

In this section, we analysed the methods for computing the spatiotemporal change features identi-

fied in section 2.2.

Point set registration algorithms focus on finding correspondences between point sets and

estimating the transformation between them. We have already observed that our input consists of

shape descriptors as a list of points modelling the phenomenon — hence, point sets. Thus, the

pertinence of the point set registration algorithms, for mainly identifying spatial-related features.

Next, section 2.3.2 described different similarity measures for evaluating the resemblance be-

tween two shapes, while explaining each one of them. Furthermore, it also examined their possible

impact on determining spatial-related features.

Section 2.3.3 determined how to compute the derived features — velocity, acceleration, and

change of direction — using the data obtained from the previous feature computation techniques.

Afterwards, section 2.3.4 described several approaches to the computation of spatiotemporal

patterns.

Section 2.3.5 surveyed other possible approaches to the computation of spatiotemporal change

features.

Finally, section 2.3.6 examined a possible methodology for classifying change features as

interesting or not. This methodology is thresholds of interest. Thresholds of interest consist of

letting the end-user define what is interesting, through inputted numerical thresholds that quantify

change.
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2.4 Similar approaches

After having identified how to compute and classify as interesting the various spatiotemporal

change features, it becomes relevant to study which existing framework are capable of detecting

and quantifying change on a spatiotemporal phenomenon. Therefore, in this section, we explore

other approaches to similar problems and compare them to our problem.

Yi et al. present a framework for the study of spatiotemporal changes of dynamic geographic

phenomena [98]. The framework uses a three-layer hierarchical organisation for modelling dy-

namic phenomena. At the basis of this hierarchy, there are static structures, meaning an entity’s

geometric shape as well as other attributes. Therefore, the hierarchy input is similar to the tempo-

ral snapshots we receive as our input. The framework then processes the static structures to extract

spatiotemporal changes. In this work, the spatiotemporal changes consist only of what we refer

to as existential features (see section 2.2). Thus, they do not consider any spatial transformation.

For determining the existential features, the authors recur to image analysis of the phenomena,

using pixel colours and contours to determine the existence of change. The obtained knowledge

regarding the spatiotemporal changes is then stored in a database, where columns identify different

phenomena and rows timestamps. Figure 2.21 presents the architecture of the framework when

processing the example scenario of ocean eddies.

The framework presented by Yi et al. is unadaptable to our scenario since they only identify

existential features and the algorithm to do so does not suit our input.

Duarte et al. present a framework for the analysis of interpolation on deformable moving

regions [25]. The framework, SPT Data Lab, permits the end-user to visualise and refine 2D mov-

ing regions obtained from a set of temporal snapshots, through the use of interpolation methods.

Moreover, the framework also allows the user to visualise and compare the results of different

interpolation methods. For reporting and giving more insights to the user regarding the similarity

of the interpolated moving regions, the framework employs a set of similarity metrics, namely

Hausdorff distance and Jaccard Index [43].

Even though the input and domain of the framework proposed by Duarte et al. are similar to

ours, the framework does not fit our scenario since they do not identify nor categorise changes

occurring between moving regions.

2.5 Summary

In this chapter, we focused on the analysis of the literature related to the representation and quan-

tification of change on spatiotemporal phenomena.

In section 2.1, we analysed different manners of modelling spatiotemporal data. In finer de-

tail, we discovered that several authors agreed on three different ways of modelling and represent-

ing spatiotemporal data: using temporal snapshots, modelling object change, and through events

and processes. Seeing that we receive a spatiotemporal phenomenon’s data in the form of tem-

poral snapshots as our input and that we intend on extracting the change that the phenomenon
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Figure 2.21: Framework introduced by [98], in the example scenario of the evolution of ocean
eddies.

goes through, we work mainly on temporal snapshots and object change models. We also veri-

fied how to decompose spatiotemporal data, highlighting three different types of data attributes:

non-spatiotemporal, spatial, and temporal attributes. Considering that movement represents a sig-

nificant component of change on spatial (and consequently spatiotemporal) data, we scrutinised its

modelling. Movement is essentially divided into two components: trajectory-oriented and internal

motion. After a more thorough analysis of movement, we verified the strong correlations with

geometric modelling and geometric transformations. Therefore, we categorised and described dif-

ferent types of geometrical transformations. Lastly, we identified the differences between discrete

and continuous models.

In section 2.2, focused on spatiotemporal change features, we identified and categorised the
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spatiotemporal change features. We contemplate five different categories: spatial-related features,

existential features, temporal-related features, derivative features and spatiotemporal patterns. We

surveyed that both the temporal features and the derivative features are dependent on the spatial-

related ones. Additionally, spatiotemporal patterns are dependent on any of the other features.

Figure 2.12 shows all of the identified change features as well as the respective categories.

In section 2.3, on feature computation, we analysed the methods for computing the spatiotem-

poral change features identified in the previous section. Point set registration algorithms focus on

finding correspondences between point sets and estimating the transformation between them. We

have already observed that our input consists of shape descriptors as a list of points modelling the

phenomenon — hence, point sets. Thus, the pertinence of the point set registration algorithms, for

mainly identifying spatial-related features. Next, we described different similarity measures for

evaluating the resemblance between two shapes, as an alternative/complement to point set regis-

tration algorithms. We also explained each one of them. Furthermore, we examined their possible

impact on determining spatial-related features. We then determined how to compute the derived

features — velocity, acceleration, and change of direction — using the data obtained from the pre-

vious feature computation techniques. In the following section, we determined several approaches

for the computation of spatiotemporal patterns. Afterwards, we investigated other possible ap-

proaches to the computation of spatiotemporal change features. Finally, we examined a possible

methodology for classifying change features as interesting or not. This methodology is thresholds

of interest. Thresholds of interest consist of letting the end-user define what is interesting, through

inputted numerical thresholds that quantify change.

In section 2.4, we explored other approaches to similar problems and identified the nuances

that made it not viable to adapt their solution to our problem. Hence, from the literature review,

we verified that the identified approaches are incapable of determining the spatiotemporal change

features of interest. Therefore, in the following chapter, we detail the main dissertation problem

with the intent of addressing it.



38 Change representation and quantification on spatiotemporal phenomena



Chapter 3

Problem Statement

This chapter presents a detailed analysis of the problem initially described in section 1.2. Sec-

tion 3.1 details the problem and the features of the most similar approach of the literature review

is used as a benchmark. Next, section 3.2 details the research questions that this work intends to

answer. Following, section 3.3 describes the requirements a solution needs to fulfil to tackle the

problems presented in the first section. Finally, section 3.4 examines the scope of this work.

Before presenting this work’s problem, it becomes necessary to establish the definition of three

principal concepts in this work’s context, extensively used henceforth, being those:

• Spatiotemporal change feature (also change feature), having already been presented in

section 2.2, meaning the characterisation of an identifiable change occurring between two

or more spatial representations of a phenomenon (two temporal snapshots);

• Spatiotemporal transformations (also transformations), which are spatiotemporal change

features that describe the occurrence of change related to the spatial domain, such as trans-

lations, rotations, and others (see section 2.2.1 for the full disclosure of the possible spatial

features);

• Features of interest (also changes of interest), which are spatiotemporal change features

that are of interest to the user.

3.1 Problem

According to the performed literature review, more specifically section 2.4, few approaches exist

that focus on extracting the spatiotemporal change features from the data original representation.

From the surveyed alternatives, none is capable of being applied to a multitude of scenarios and

extracting a variety of spatiotemporal features, related to the different domains inherent to spa-

tiotemporal data. From the available approaches, the one presented by Yi et al. [98] is the one that

more closely addresses our problem. Therefore, using Yi et al.’s approach as a benchmark, the re-

search problem can be succinctly defined as a combination of several more precise sub-problems:

39
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1. Context-agnostic: the inexistence of a context-agnostic spatiotemporal framework leads to

the appearance of overfitted context-designed tools. The framework presented by Yi et al.

uses an algorithm focused on the change of colours and contours; a characteristic that may

not be present in all spatiotemporal scenarios;

2. Analysis of spatiotemporal features: the lack of a framework capable of analysing all

the spatiotemporal features identified in section 2.2, leads to context and problem-oriented

tools. A context-independent framework has added value when providing the analysis of

the majority of the features that can be of interest to the end-user. The framework presented

by Yi et al. only examines a subset of the available spatiotemporal change features: the

existential features;

3. Retrieval of information of interest to the user: a generic framework should be customis-

able as to fit the context and goals of the end-user (and of its more specific scenario). When

working with spatiotemporal data, different users might have different analysis objectives

regarding the same data (e.g. a user is interested in the movement of the phenomenon while

other is interested in the object’s inner-motion). Therefore, the framework must actively

provide a manner to specify the data or results that best fit the user needs. The framework of

Yi et al. creates a database schema describing the change semantics of ocean eddies. How-

ever, this approach does not actively provide a manner for users to retrieve data of interest:

they must first understand the data to posteriorly create a database query that finds the data

that matches their interests.

3.2 Research Questions

Given the state-of-the-art solutions available, the main purpose of this work is to answer the fol-

lowing research question:

RQ: Considering a spatiotemporal phenomenon, how to automatically detect, extract and
represent the changes of interest that encompass equivalent knowledge to the original
representation? The change-based representation must not affect the end-user capability of

understanding the spatiotemporal change features occurring in the original representation.

Since the research question presented is considerably abstract and complex and implies ad-

dressing a plethora of thematics (e.g. automatic generation, equivalent representations, among

others), we chose to subdivide the research question into a set of research questions that comple-

ment each other. These research questions, as a result of the subdivision of the initial research

question, end up having a more specific domain, narrower contexts, and thus more direct answers.

The research questions resultant of the subdivision are:

RQ1: How to extract the spatiotemporal features occurring in the original representation?
The basis for building a change-based representation is the identification of the spatiotem-

poral transformations occurring between the successive continuous spatial configurations
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of the phenomenon (i.e. the temporal snapshots describing the phenomenon). While for a

human, the identification of a transformation can be intuitive and simple, for a machine, it is

not trivial to identify which transformations occur between two spatial configurations. On

the contrary, some other features can be imperceptible to humans (changes that were not

obvious) but detectable by a machine.

RQ2: How to find the spatiotemporal features that interest the user? Different users can have

different interests, and consequently, focus on different changes when consuming the origi-

nal representation. Different focuses lead to the attainment of different knowledge. Hence,

a change-based representation must be adjustable to the end-user interest, thus providing the

end-user with valuable information.

RQ3: How to assert if the two representations are equivalent? Having generated an inequiva-

lent change-based representation from the original representation, if an end-user consumes

the change-based representation, the knowledge obtained is not similar to the one obtained

when consuming the original representation. Therefore, it is crucial to assure that the gen-

erated change-based representation correctly identifies the changes in which the users are

interested, so that they can obtain equivalent knowledge to the one obtained when consum-

ing the original representation.

RQ4: How to automate the process? The original purpose of having end-users consuming a

change-based representation rather than the original representation is to more efficiently

and quickly provide them with knowledge (as seen in section 1.1). Thus, a process that

requires a minimal amount of human assistance will satisfy the identified requirements.

3.3 Solution requirements

The requirements that a solution needs to fulfil to address the entirety of the problems presented

in section 3.1, and thus, provide an answer to the research questions, are:

D1: Provide the end-user autonomy in dataset usage so that there are no constraints regarding

the used datasets, therefore contributing to context-independency;

D2: Choose the spatiotemporal features that are analysed so that the solution only retrieves

the features considered of interest (e.g. analyse transformations while not analysing uniform

scalings);

D3: For a spatiotemporal feature, define in which conditions the feature is of interest so

that only changes of significance are retrieved;

D4: Cover the whole temporal range queried so that all the changes of interest are described.

Covering the whole temporal range queried also ensures that the full original representation

is mapped into the change-based representation;
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D5: Retrieve changes that are considered of interest by the standards provided as an input by

the user;

D6: Retrieve the resulting values associated with the identified features of interest to be able

to recreate a continuum representation that covers the features of interest and their evolution.

3.4 Scope

Considering that the temporal horizon available for the development of a solution is limited, it

becomes relevant to establish which features of the solution have priority in terms of prototype

implementation, experiments, collection and analysis of results. The selected features with most

priority are (1) a solution capable of recognising the most elementary spatiotemporal features

(e.g. rigid transformations) and (2) a solution easily extendable and reusable. For the time being,

certain characteristics, such as better performance and more complex and unusual spatiotemporal

features, are considered having less priority.

It also becomes important to characterise the solution’s end-user, with the goal of understand-

ing who can benefit from such a solution. Therefore, the foreseen end-users are:

1. People using large amounts of spatiotemporal data in their work;

2. People needing to describe, using a change-based representation, the spatiotemporal features

of interest occurring over a temporal range;

3. In a more general way, anyone with basic knowledge regarding spatiotemporal data, which

may need to consume/analyse the behaviours of spatiotemporal phenomena.

3.5 Summary

Section 3.1 starts by presenting the problem as an aggregation of smaller issues and comparing

each of the issues to the approach adopted in the framework proposed by Yi et al. [98]. Next, sec-

tion 3.2 identifies the main research question, that is further subdivided into four complementary

narrower research questions, that this work intends to answer. Section 3.3 described a total of six

requirements that a solution needs to fulfil to address the identified problems. Lastly, section 3.4

examined the scope of the problem, established the features that had priority in the implementation

of a solution and identified the end-user of the developed solution.
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Features of interest quantification

This chapter presents the proposed solution for identifying and quantifying features of interest.

Section 4.1 presents the main guidelines and concepts of the devised solution. Next, section 4.2

provides a more in-depth analysis of each of the main components of the solution. Likewise,

section 4.3 details the secondary components that integrate the solution. Section 4.4 describes

the output of the solution’s processing pipeline. Finally, section 4.5 presents a summary of this

chapter’s contents.

4.1 Proposed solution

From the literature review (chapter 2) and to the best of our knowledge, currently, there is not

a single solution that addresses what we attempt to achieve: a framework for identifying and

quantifying change on spatiotemporal data that is of interest to the end-user.

Figure 4.1 visually describes our proposal of a conceptual framework and its functioning pro-

cess. The devised framework presupposes that the provided information is capable of representing

spatiotemporal phenomena (rather than a single phenomenon), as this information is necessary

for the computation of existential change features. Therefore, as input, the framework assumes a

sequence of temporal snapshots. Each snapshot, associated with a timestamp, contains a mapping

between a phenomenon ID and the phenomenon’s shape. The phenomenon’s shape is described

by a polygon, represented as an array of vertices. However, as already stated at the beginning of

chapter 2, in-truth the input data of the developed prototype (chapter 5) consists of spatiotemporal

data describing a single phenomenon.

Based on Figure 4.1, the general functioning guidelines of the proposed framework can be

briefly explained as:

1. The proposed framework starts by receiving as input a spatiotemporal dataset containing

an ordered sequence of temporal snapshots. Each snapshot describes the shape of the

phenomenon at the associated timestamp. Additionally, the user also provides various

thresholds characterising its interest over different spatiotemporal change features (similar

to [84]);
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tn tn+1 tn+2 tn+3 tn+4

. . . . . .

Time

Temporal snapshots containing spatial representation
Thresholds of Interest

User input

Extract the phenomenon's shape at
each temporal snapshot
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Compute spatial
 transformations Compute deformation

Processing
pipeline

Range Split Merge ...

t1; t2 (A, B) - ...

t2; t3 - - ...

t3; t4 - (B, C) ...

... .... ... ...

Range Translation ...

t1; t2 (2, 0) ...

t2; t3 - ...

t3; t4 (-1, 2) ...

... .... ...
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t1; t2 99% ...

t2; t3 100% ...

t3; t4 96% ...

... .... ...

Join all change features according to temporal range
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t4; t7 - ... (15, 0) ... 5 ... 3 ... T1 ...

t7; t8 (A,B) ... (1, 0) ... 1 ... 1 ... - ...

... .... ... ... ... ... ... ... ... ... ...

Filter identified features according to inputted thresholds

Compute movement
derived features

Compute temporal
related features

Filter temporal related features and derived
features using inputted thresholds

Compute spatiotemporal patterns

Filter spatiotemporal patterns according to inputted thresholds

Figure 4.1: Visual representation of the proposed conceptual framework.
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2. Having received the user input, the processing pipeline begins with the extraction of the

shapes of the phenomenon from the spatial representations present in the temporal snap-

shots;

3. For each snapshot pair [tn, tn+1], compute (identify and quantify) the existential features,

the spatial transformations and the similarity between shapes. Therefore, the object change

modelling approach, identified in section 2.1, is used for representing the computed spa-

tiotemporal change features. The calculation can be concurrent since the features being

computed are independent;

4. Filter the features parsed in the previous step according to the inputted thresholds. The

aggregation of sequential spatiotemporal change features can occur in order to trigger the

inputted thresholds (e.g., the aggregation of two sequential rotations of 5 degrees to surpass

a threshold of 10 degrees). Section 4.2.7 further explains the thresholds of interest workings;

5. Given the filtered features of interest, the processing proceeds with the computation of both

the movement-derived features and the temporal-related features. The newly identified fea-

tures are then also filtered according to the respective inputted thresholds;

6. Join the spatiotemporal change features of the five categories previously calculated. To

facilitate spatiotemporal analysis and interpretation of the data, index it by temporal range,

meaning having the mapping between the temporal range (key) and the occurring features

of interest (value);

7. Compute spatiotemporal patterns from the previous joint features of interest and filter them

according to the inputted thresholds;

8. Join the spatiotemporal patterns with the remaining features of interest. Concluding the pro-

cessing pipeline, the framework outputs the detected features of interest, once more indexed

by temporal range.

The retrieved data consists of a representation based on the spatiotemporal changes, of interest to

the user, affecting a phenomenon.

The proposed conceptual framework supports both 2D and 3D shape representations. When

implementing this conceptual framework, it is the responsibility of the developer to choose appro-

priate algorithms (that fit the intended spatial representation) for the computation of the spatiotem-

poral change features.

With this conceptual framework, we present a solution that we consider appropriate to tackle

the problem detailed in chapter 3.

More thoroughly, the problems defined in section 3.1 are handled in the following manner:

1. Context-agnostic: the devised solution is agnostic to the data context since as input, the

framework manages the temporal evolution of the shape of the object - a feature inherent to

all spatiotemporal datasets.
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2. Analysis of spatiotemporal features: as seen from figure 4.1, the devised framework can

support the different categories of change features identified. However, depending on the

implementation, some features may not be computable.

3. Retrieval of information of interest to the user: the end-user can express its interests by

defining the thresholds of interest (similar to [84]). When a threshold is defined, only spa-

tiotemporal change features that surpass the user-defined threshold are retrieved. Moreover,

by defining or omitting the thresholds of interest, the end-user can control which spatiotem-

poral features are processed. This process allows the conceptual framework to identify

features of interest.

4.2 Main Components

This section details the main components of the conceptual framework solution proposed in sec-

tion 4.1. We start by analysing the most appropriate methods for the computation of all of the

identified spatiotemporal change features categories. Next, we examine how to identify the spa-

tiotemporal change features of interest to the end-user. Subsequently, we present two novel spa-

tiotemporal features. Lastly, a summary of this section contents is presented.

It is worth mentioning that the devised solution and respective approaches for the computation

of the different modules are not the only methods for addressing the problem. However, from the

performed literature review, it was concluded that these were the most appropriate approaches.

4.2.1 Quantification of spatial change features

For the quantification of spatial transformations, meaning the estimation of the spatial transforma-

tions occurring between successive temporal snapshots, point set registration algorithms appear as

an appropriate solution. As verified in section 2.3.1, point set registration algorithms are capable

of modelling both rigid (in this context rigid transformations stand for translations, rotations and

uniform scaling) and affine (anisotropic scaling and shear) transformations.

However, to obtain such information, there must be a concern regarding the algorithm choice.

In this scenario, the point set registration algorithm must be pairwise and parametric, subsequently

employing affine registration. The algorithm is required to be pairwise since, as shown in sec-

tion 4.1, the extraction of the spatial change features occurs between two consecutive shapes

of the phenomenon. Groupwise registration is appropriate for situations where more than two

point sets are being registered, but in our case, we never compare more than two shapes. A non-

parametric algorithm makes it much harder to extract the underlying spatial transformations, as

the output is modelled as a set of deformation vectors (one for each point of the source point

set). Consequently, non-parametric algorithms, such as non-rigid algorithms, are not viable in this

scenario. Hence, the necessity for a parametric algorithm. Finally, there is the requirement for

the algorithm to support affine registration: from affine registration, we can obtain both the rigid
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and affine transformations, while from rigid transformations we can only obtain the rigid transfor-

mations. Therefore, algorithms that support both registrations (e.g. CPD algorithm [63] supports

rigid, affine and non-rigid registrations) facilitate the identification and quantification of the spatial

change features.

Regarding the most complex spatial features, such as projections and conformal mappings,

no appropriate methodology was found for their extraction from consecutive phenomenon shapes.

Henceforth, these spatial features are aggregated under deformations (the most generic category

of the identified spatial change features).

4.2.2 Similarity analysis

As reported in the previous subsection, point set registration algorithms are unable to identify

the most complex spatial change features. As such, these are aggregated under the category of

deformations. Moreover, many point set registration algorithms are resilient to deformations.

Thus, to identify and quantify deformations, the analysis of the similarity between the consecutive

phenomenon shapes emerges as an adequate methodology.

The detection of deformations also encompasses a primary module of the framework, seeing

that natural phenomena do not often perform spatial transformations that follow the exact function

of a transformation. In the example of the area modified in a landslide, depending on the soil

characteristics, some ground sections may advance faster than others [66]. Therefore, this phe-

nomenon can not be modelled as a single scaling, but possibly as a conjunction of scalings paired

with deformations.

In the performed literature review (specifically section 2.3.2), we verified that there are two

viable approaches for estimating the similarity between two shapes: usage of a single similarity

metric or of voting schemes (that can further utilise standalone similarity metrics). An approach

utilising voting schemes is naturally more resilient as the results obtained by several assessments

are crossed, with the most frequent assessment being chosen as the final one (voting system).

Moreover, the usage of a voting scheme, employing distinct metrics as the voters, provides differ-

ent perspectives over the occurred deformation.

4.2.3 Existential Features

For identifying existential features, as these can not be quantified since a phenomenon either exists

or it does not, we rely on the metadata associated with the different phenomena shapes described

in a temporal snapshot. Considering the presumption presented at the beginning of section 4.1,

that each shape object has an associated ID, the succession of temporal snapshots informs us of the

disappearance, appearance, split, or merge of phenomena. For exemplification, consider the exis-

tence of a temporal snapshot at instant t containing the phenomenon with ID A. However, if in the

next instant the phenomenon with ID A is no longer present, that corresponds to a disappearance

change feature.
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4.2.4 Temporal features

For the following spatiotemporal change features, namely temporal-related features (this section),

movement-derived features (section 4.2.5) and spatiotemporal patterns (section 4.2.6), their iden-

tification depends on the detection of the previously presented features. To justify this statement,

consider an example scenario in which a spatiotemporal pattern is identified without any other

underlying change feature. Users consuming the framework output will be able to recognise that

a pattern was identified. However, they can not understand which change features led to the iden-

tification of the spatiotemporal pattern. Moreover, it is also presumable that end-users will not be

interested in patterns constituted by change features that were not of interest to them.

Temporal change features are somewhat trivial to identify. The identification of one of the

previously mentioned change features instantaneously provides the moment in time as well as the

duration. Existential features stand as an exception since, as already seen, they occur in an exact

moment in time, thus not making sense to have an associated duration.

Furthermore, by looking at the sequence of identified change features, it is also trivial to

identify sequences — study the order by which the features were identified —, the frequency

of a given change feature — find how many times change features with similar characteristics

were identified —, and its pace — divide the value of the quantified temporal change over its

change duration.

4.2.5 Movement-derived features

Movement-derived patterns are computed by applying kinematics physics fundamentals (analysed

in section 2.3.3), using the travelled distance of trajectory-oriented movements, such as transla-

tions and rotations, and the duration of the respective movement. As implied by its naming, this

category of change features depends on the previous identification and quantification of spatial

change features.

4.2.6 Spatiotemporal patterns

Identifying the most simple spatiotemporal patterns can be achieved by analysing the order of the

identified change features. If a given change feature cyclically repeats itself, then it is a cycle.

Conversely, if a change feature repeats itself in an acyclic manner, then it is a trend.

For the identification of more complex scenarios, both combinatorial analysis and neural net-

works stand as viable solutions. However, both approaches have downsides that have to be taken

into account when implementing a solution. In combinatorial pattern finding algorithms, the pro-

cessing time increases with the number of identified change features, seeing that the number of

tested combinations also increases. Neural networks suffer from the same problem as every other

machine learning algorithm, meaning the dependability of the quality of the data used to train the

model. However, seeing that the framework needs to be agnostic to the data context and that the

machine learning algorithms require training the model in previous similar data, we propose the

combinatorial pattern finding algorithms as the most appropriate approach.
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4.2.7 Thresholds of interest

For the identification of spatiotemporal change features that are of interest to the user, the work

presented by Tominsky et al. [84] emerges as the most suitable method. In this work, the user

defines numerical thresholds that quantify change. If the quantification of a given spatiotemporal

change feature surpasses the respective thresholds, then the change feature is considered a feature

of interest. Hence, having this work as fundament, we identify two types of thresholds:

1. Delta thresholds, meaning the exceeding of a threshold by a change feature identified from

two sequential temporal snapshots;

2. Accumulated thresholds, meaning the exceeding of a threshold by the accumulation of

quantified change features over more than two sequential temporal snapshots.

In order to provide more control to the end-users utilising the application and making it eas-

ier to retrieve the features that are of real interest to them, the framework receives as input the

presented thresholds for all spatiotemporal change features (a delta threshold and an accumulate

threshold for each feature). The omission of a threshold leads to the framework not processing that

threshold. Moreover, the omission of all the thresholds of a change feature leads to the framework

not processing the change feature entirely. With this approach, we maximise the capability of the

end-user to retrieve information of its interest and discard irrelevant one.

However, numerical thresholds do not characterise all of the features. The user interest by

existential features, such as appearances, disappearances, splits, and merges, is defined through

boolean flags indicating its analysis. This approach is necessary since it is not possible to quantify

existential features: a phenomenon either exists, or it does not.

4.2.8 Additional Features

When employing thresholds of interest to obtain features of interest, the identification of features

of interest for all possible temporal ranges is not guaranteed. However, and in order to meet

the requirements presented in section 3.3, the devised solution must describe in totality the full

temporal range queried. It is erroneous to state that if no feature of interest was identified for a

given temporal range, then no spatiotemporal change features occur during that temporal range.

Not having a feature of interest identified for a given temporal range means that, for the duration of

that temporal range, no change occurred that was important enough to be considered interesting to

the end-user. Hence, and respecting the given explanation, temporal ranges without any associated

feature of interest are categorised as unimportant.
Even though the conceptual framework’s primary goal is to identify spatiotemporal change

features, we consider the total absence of motion (be it deformations or movement) as a particular

circumstance worth highlighting. Hence, the framework should also be capable of identifying

immutability. A distinct threshold of interest should be devised for this spatiotemporal feature,

thus allowing the user to retrieve it if interested. In this scenario, the threshold of interest is the

amount of time above which immutability is interesting.
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4.2.9 Summary

This section detailed the most appropriate methodologies for the computation of the identified

spatiotemporal change features, being these: point set registration algorithms for quantifying spa-

tiotemporal change features, voting schemes operating similarity metrics for quantifying deforma-

tions, database identifiers for existential features, kinematics physics fundamentals for both tem-

poral features and movement-derived features, and lastly, order analysis for simple spatiotemporal

patterns and combinatorial analysis for more complicated patterns. Moreover, this section also

presented the thresholds of interest as the mechanism for detecting features of interest. Finally,

two additional features were described.

4.3 Secondary components

This section details the secondary components of the proposed solution. Even though these com-

ponents do not perform essential steps in the processing pipeline presented in figure 4.1, they

significantly increase the quality of the returned features of interest. We start by describing noise

filtering of spatiotemporal change features and subsequently detail coalescing of features of inter-

est.

4.3.1 Noise Filtering

The approaches detailed in the previous section, section 4.2, are expected to identify and quantify

spatiotemporal change features with high-precision. Nonetheless, it is foreseen the production of

some small noise by these methodologies. For example, the application of a point set registration

algorithm in a phenomenon that is kept unchanged from one time step to another can result in the

algorithm retrieving a rotation of 0.003 degrees. The estimated rotation is incredibly precise but

not perfect.

Moreover, considering that this value is different from 0, which represents the absence of

rotation, it can lead to the framework starting accumulating rotations, and eventually surpass the

accumulated threshold.

Furthermore, such imprecisions can also result in the framework not being able to detect im-

mutability, since the point set registration algorithm detected a rotation.

Noise filters appear as an appropriate solution for the enumerated problems. By filtering the

noise produced by the employed methodologies, accumulated thresholds consider only significant

change features and the detection of immutability is possible. Noise filters should be defined

similarly to thresholds of interest — define a threshold, for each change feature, below which

quantified change is considered noise — thus granting the end-user the possibility to control what

information should be considered as noise. If the end-user does not define noise filter thresholds,

then no noise filtering occurs.

Considering the processing pipeline presented in figure 4.1, noise filters are applied before

filtering any change feature according to the inputted thresholds. However, this additional process
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is not needed if the solution components responsible for quantifying change features can do it with

perfect precision.

4.3.2 Coalescing

Coalescing is responsible for aggregating temporal ranges that encompass similar change features.

To better understand the utility of this component, consider that a user queries the framework

and as a result obtains 10 temporal ranges where each temporal range is solely constituted of

an accumulated translation of 0 units in the x-axis and 5 units in the y-axis. Seeing that the

transformations contained in the retrieved temporal ranges are identical, they can be coalesced

into a single temporal range. The coalesced result starts at the first temporal range start time, ends

at the last temporal range end time and is constituted by an accumulated translation of 0 units in

the x-axis and 50 units in the y-axis.

This solution permits retrieving to the end-user the result of the processing pipeline more

compactly and straightforwardly.

Considering the processing pipeline presented in figure 4.1, the coalescing process occurs after

having joined all change features according to temporal range.

4.4 Output

As shown in section 4.1, the proposed framework retrieves the identified features of interest in-

dexed by temporal range. More concretely, the devised solution should return, for each temporal

range, the features of interest that co-occur. The temporal ranges are continuous and describe the

full temporal range queried.

Figure 4.2 presents an illustration of the designed desired output and how several features of

interest should be merged in order to satisfy the described output format. This figure illustrates

0 10

5 20

7 15

feature of interest A

feature of interest B

feature of interest C

0 105 207 15

A A, B A, B, C B, C B
indexing by temporal range

Figure 4.2: Example of the modelling of three features of interest, in temporal range 0 to 20:
indexed by change feature and indexed by temporal range.

three distinct features of interest, identified through accumulated thresholds (since they spawn over

more than one time step), resulting from the query that obtains the feature of interest occurring in
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the temporal range 0 to 20. The first feature of interest, A, occurs during temporal range 0 to 10.

The second one, B, during temporal range 5 to 20. The third one, C, during temporal range 7 to

15. This same features of interest, indexed by temporal range, can be described as: from time step

0 to time step 5, A occurs; from 5 to 7, A and B co-occur; from 7 to 10, A, B and C co-occur; from

10 to 15, B and C co-occur; and lastly, from 15 to 20, B occurs. If the temporal range queried was

from 0 to 25 rather than from 0 to 20, then there would be an extra unimportant feature of interest,

spawning from time step 20 to time step 25 (as introduced in section 4.2.8).

The example presented in figure 4.2 highlights a characteristic of indexing by temporal range:

features of interest detected by accumulation may have to be segregated in several temporal ranges

that on their own do not surpass the given thresholds.

4.5 Summary

In this chapter, we proposed a conceptual framework design that we consider effectively addresses

the problems that were identified in chapter 3. Section 4.1 presents the conceptual framework

and its general functioning guidelines. Section 4.2 introduces the different main components

that constitute the conceptual framework and what methodology to use to compute the associ-

ated change features. Some referred methodologies are point set registration algorithms, voting

schemes utilising similarity metrics, physics kinematics fundamentals, features of interest, among

others. Section 4.3 details noise filtering and coalescing: two secondary conceptual framework

modules that, despite not being essential, may significantly improve the quality of the returned

features of interest. Finally, section 4.4 describes the output format of the results retrieved by the

devised conceptual framework.



Chapter 5

Spatiotemporal Features Extractor

This chapter describes the prototype implementation of the conceptual framework detailed in the

previous chapter. Section 5.1 overviews the devised prototype while also presenting some key

considerations. Afterwards, section 5.2 details the prototype architecture. Next, section 5.3 de-

scribes the API while section 5.4 examines the deployment methods. Section 5.5 provides some

pointers on how to extend the devised prototype. Finally, section 5.6 presents a summary of this

chapter’s contents.

5.1 Overview

The SpatioTemporal Features eXtractor (stfX) [12] is the prototype implementation of the con-

ceptual framework detailed in chapter 4. Thus, the stfX focuses on the quantification of the features

of interest occurring over user-inputted spatiotemporal phenomena, while completing all the re-

quirements established in section 3.3. The stfX is capable of quantifying a subset of the spatiotem-

poral change features identified in the literature review, namely: translations, rotations, uniform

scaling, changes of direction, moment in time and duration.

The stfX receives as input the continuous representation of a spatiotemporal phenomenon mod-

elled as a sequence of temporal snapshots. Each temporal snapshot contains a shape descriptor,

meaning a simplified representation of a 2D shape in the form of a vector that geometrically de-

scribes the shape [47]. The choice of input (input format and analysis of a single phenomenon)

is justified by the usage of the framework presented by Duarte et al. [24], SPTDataLab, as the

provider of spatiotemporal datasets used for testing. Section 5.3 more thoroughly details the pro-

totype input data.

Considering the absence of a framework with similar capabilities to the one detailed in chap-

ter 4, the stfX represents the developed prototype of what is a pioneering research stream. Hence,

what we intend with this first version of the stfX is to establish a robust underlying foundation of

the sophisticated and complete framework that the stfX can one day be, provided further study is

performed as presented in section 7.3. Therefore, and considering future iterations over the stfX,

we determined as a priority developing extensible, loosely-coupled and easily-scalable code.

53
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The stfX can be utilised as a data provider in a plethora of situations: used as a standalone

framework whose output is further handled by end-user tools (e.g. applications in machine learn-

ing); used in conjunction with a visualisation tool, such as the one presented by Marques [57], to

visually narrate the retrieved features of interest; raw consumption of the outputted data by the

end-user; among others.

5.2 Architecture and Components

This section starts by analysing the architecture of the devised prototype, while also identifying

the implemented capabilities (in comparison to the conceptual framework). Next, it describes in

detail each of the developed microservices, while analysing its functionalities and implementation

aspects.

The SpatioTemporal Features eXtractor (stfX) is a server-side application utilising the mi-

croservices architectural approach, thus emphasising “self-management and lightweightness as

the means to improve software agility, scalability, and autonomy” [44]. In the stfX, each microser-

vice represents a module, presented in section 4.2, responsible for the quantification of a given

category of spatiotemporal change features.

Regarding the different functioning guidelines displayed in section 4.1, and establishing a

mapping with the proposed conceptual framework, the stfX current version complies with the

following:

1. Receives as input both the spatiotemporal dataset modelled as a sequence of temporal snap-

shots and the thresholds that express the end-user interests;

2. Extracts both the shapes and associated timestamps from each temporal snapshot;

3. For each temporal snapshot, quantifies the rigid transformations that occurred (translation,

uniform scaling and rotation);

4. From the identified movement derived features, computes change of direction (the mo-

tive behind solely considering the change of direction is explained further ahead in sec-

tion 5.2.2.1);

5. Filters the identified spatiotemporal change features according to the user-inputted thresh-

olds;

6. Computes, from the identified temporal features, duration and moment in time, even though

no thresholds are provided for these features of interest;

7. Indexes the identified features of interest by temporal range.

Considering the described stfX capabilities, figure 5.1 displays its microservices architecture.
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Figure 5.1: Visual representation of the stfX microservices architecture.

As presented in figure 5.1, the stfX presents two interfaces to the end-user: (1) a web applica-

tion, built with Swagger1, displaying the stfX API documentation and facilitating the usage of the

stfX API; (2) the stfX API proxied by a NGINX2 gateway. All requests are redirected to the core

service.

The core service represents, as its name suggests, the central microservice of the stfX. The core

service, built using spring3, is the service responsible for everything that is not the computation

of spatiotemporal change features (e.g. data storage, features of interest attainment, etc.). This

service is further detailed in subsection 5.2.2.

The other service displayed in figure 5.1, named PSR service, consists of the implementation

of a Point Set Registration (PSR) algorithm, the approach selected to quantify the spatial change

features. This service was built using Flask4. More details regarding this service are provided in

subsection 5.2.1.

Before proceeding with the architecture analysis, it becomes relevant to introduce the notion of

Storyboard. A Storyboard is the stfX internal representation of a dataset, the associated metadata

and the spatiotemporal change features that were computed using the dataset.

The stfX workflow is also slightly different from the one described in section 4.1. In sec-

tion 4.1, the end-users provided simultaneously the dataset, modelled as a sequence of temporal

snapshots, and the thresholds defining their interests. However, in the stfX, instead of devising

a single endpoint that handles both inputs, we chose to separate the input of the dataset and the

thresholds into two separate endpoints. The motive behind this decision is the fact that end-users

might want to tune the thresholds after obtaining the results of an initial search or even analyse the

same dataset later. When using a single endpoint approach, the end-user has to provide the dataset

every time and repeat the computation of the spatiotemporal change features between temporal

snapshots. This process is both time-consuming and unnecessary. With the usage of two separate

1SmartBear Software. Swagger. Available at https: https://swagger.io. Accessed in 2020-06-17.
2F5. NGINX. Available at https: https://www.nginx.com. Accessed in 2020-06-17.
3VMware. spring. Available at https: https://spring.io. Accessed in 2020-06-17.
4Pallets. Welcome to Flask - Flask Documentation (1.1.x). Available at https: https://flask.

palletsprojects.com/en/1.1.x/. Accessed in 2020-06-17.

https://swagger.io
https://www.nginx.com
https://spring.io
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
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endpoints, the user provides the dataset once, receives an ID representing the created Storyboard

and then uses the ID in conjunction with the thresholds to obtain the features of interest of the

respective Storyboard. Figure 5.2 shows the sequence diagram, between microservices, of loading

a dataset to the stfX. Naturally, an endpoint to delete a given loaded dataset has also been created.

Core Service PSR Service

load dataset and metadata
compute rigid transformations

rigid transformations value
Storyboard ID

Figure 5.2: Sequence diagram of loading a dataset in the stfX.

5.2.1 Point set registration service

The point set registration (PSR) service is responsible for quantifying spatial change features,

using point set registration algorithms.

There are a vast set of point set registration algorithms. However, as shown in chapter 4.2.1, the

algorithm employed must be pairwise, parametric and support affine transformations. Moreover,

considering that the stfX can be managed as a data provider to other applications, algorithms with

high accuracy to runtime trade-off present themselves as the most appropriate candidates. From

the performed literature review (specifically section 2.3.1), we identified SCGF [91] as having the

highest accuracy and CPD-GL [56] as having the best accuracy to runtime trade-off. However,

both algorithms are non-rigid and thus, non-parametric. Hence, neither SCGF nor CPD-GL are

suitable for the stfX. The next best option is CPD [63]. CPD is the most time-efficient algorithm

and, from the ones performing parametric registration, also the one with the best accuracy.

Hence, and after a first attempt, which proved futile, at extracting the rigid parameters from

the non-rigid algorithm CPD-GL, we chose CPD as our point set registration algorithm. Instead

of implementing CPD from scratch, we used pycpd5, a pure NumPy6 implementation of the CPD

algorithm. Seeing that pycpd is implemented in python, we chose to develop the server using

Flask. Henceforth, we might also refer to the PSR service as the CPD service.

The pycpd package allows for both rigid, affine and non-rigid registration. All registrations

require as input a source and a target point set, but other algorithm parameters can also be defined.

In rigid registration, CPD returns the uniform scaling factor, the rotation matrix and the initial

translation vector. In affine registration, CPD returns the affine transformations matrix and the

initial translation vector. Both the uniform scaling factor and the rotation angle can be extracted

5Python Software Foundation. pycpd 2.0.0. Available at https: https://pypi.org/project/pycpd/. Ac-
cessed in 2020-06-17.

6NumPy. NumPy. Available at https: https://numpy.org. Accessed in 2020-06-17.

https://pypi.org/project/pycpd/
https://numpy.org
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from the affine transformations matrix. As already seen, non-rigid registration does not fit our

problem and hence will not be further investigated.

5.2.1.1 Communication Protocol

As shown in section 5.2, the PSR service serves as a microservice in the stfX architecture. There-

fore, a communication protocol between microservices is necessary. In the current stfX architec-

ture, the PSR service receives requests from the core service and does not initiate any communi-

cation with other microservices. The PSR-service API is constituted by two endpoints:

• /cpd: Endpoint expecting a request with the post method. This endpoint’s purpose is to

analyse the rigid transformations between two point sets. Listings 5.1 and 5.2 show an

example of a request and respective response. As input, this endpoint receives the two point

sets, with "X" being the source and "Y" the target. The output consists of the identified rigid

transformations (translation vector, uniform scaling factor and rotation angle in degrees).

1 {
2 "X": [
3 [0, 1],
4 [1, 0],
5 [0, 0]
6 ],
7 "Y": [
8 [4, 5],
9 [5, 4],

10 [4, 4]
11 ]
12 }

Listing 5.1: Example body
of a request to the /cpd
endpoint.

1 {
2 "translation": [4, 4],
3 "rotation": 0,
4 "scale": 1
5

6 }

Listing 5.2: Example body of a
/cpd endpoint response.

• /cpd-all: Endpoint expecting a request with the post method. This endpoint’s purpose

is to analyse the rigid transformations between several pairs of point sets. Summarily, this

endpoint consists of the application of the /cpd process to all elements of a list. Listings 5.3

and 5.4 shows an example of a request and respective response. As input, the endpoint

receives a list of point set pairs. In each pair, "X" represents the source point set and "Y" the

target point set. The output is the list of identified rigid transformations, where an element

in the list corresponds to the rigid registration of the element in the same index in the input

list.
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1 [
2 {
3 "X": [
4 [0, 1],
5 [1, 0],
6 [0, 0]
7 ],
8 "Y": [
9 [4, 5],

10 [5, 4],
11 [4, 4]
12 ]
13 }, {
14 ...
15 },
16 ...
17 ]

Listing 5.3: Example body of
a request to the /cpd-all
endpoint.

1 [
2 {
3 "translation": [4, 4],
4 "rotation": 0,
5 "scale": 1
6

7 },
8 ...
9 ]

Listing 5.4: Example body of a
/cpd-all endpoint response.

5.2.2 Core service

The core service is the central service of the stfX architecture and the component bearing more

responsibilities, namely:

1. aggregation of the spatiotemporal change features computed by the remaining services;

2. storing temporal snapshots as well as the corresponding extracted spatiotemporal change

features;

3. filter the obtained spatiotemporal change features according to the user inputted thresholds,

thus obtaining the features of interest;

4. identification of immutability (feature presented in section 4.2.8);

5. filtering of noise produced by the utilised computation methods (explained in section 4.3.1);

6. indexing of spatiotemporal change features according to the temporal range (explained in

section 4.4);

7. identification of unimportant temporal ranges (feature presented in section 4.2.8);

8. coalescing of features of interest (explained in section 4.3.2).

The service follows the Model-View-Controller (MVC) architecture, reinforced by the spring

framework. Regarding storage, an H27 in-memory database is used.

7H2. H2 Database Engine. Available at https: http://www.h2database.com. Accessed in 2020-06-18.

http://www.h2database.com
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Following the MVC architecture, the following packages of the stfX represent the structural

foundation of the application:

• The Models package purpose is to provide a CRUD interface for the data entities managed

in the application. Models do not handle any business logic, solely entity self-contained

logic;

• Controllers are responsible for handling the stfX API endpoints and further delegate actions

to the other architecture components;

• Repositories specify persistence in the database using ORM;

• Services fetch data from the Models, handle it and then provide the processed data to the

Controllers. The majority of the business logic is implemented here.

The View, meaning the display of the application’s state [49], is represented by the JSON returned

by the API endpoints (further described in section 5.3).

In the following subsections, we examine the stfX most relevant components.

5.2.2.1 Directed accumulated threshold

While devising the stfX prototype, we identified a new threshold category — the directed accu-
mulated threshold. This new threshold represents the quantified change features accumulated

while not changing direction, over more than two sequential temporal snapshots. The reasons that

led to the identification of this new threshold category were:

1. From the analysis of the identified movement-derived change features, in section 2.3.3, we

verify that changes of direction have a unique computation nature: while velocity and accel-

eration depend on the travelled distance and the duration of the movement, change of direc-

tion depends on the angle between two movement vectors (a movement and its predecessor).

However, while in a translation this angle can have any value between -180 degrees and 180

degrees, on uniform scaling, for example, the angle can only be either 0 degrees (movement

maintained direction) or -180o degrees (movement considerably changed course by invert-

ing direction). Hence, it becomes intricate to establish a standard for defining thresholds for

the change of direction feature.

2. While analysing and developing the conceptual framework, we perceived that the accu-

mulated threshold (introduced in section 4.2.7) encapsulated a significant quantity of spa-

tiotemporal information. For example, considering an absolute threshold set to 10 and two

sequential rotations of 5 degrees and -5 degrees, the threshold is surpassed even though, in

the retrieved movement that surpassed the threshold, the phenomenon initial position and

the last position are the same.

Seeing that the directed accumulated threshold represents a subcategory of the initially defined

accumulated threshold, we decided to rename the accumulated threshold to absolute accumulated
threshold as to best describe the nature of the change features this threshold detects.
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5.2.2.2 Parsing features of interest

The detection of features of interest is an essential function of the stfX, that is highly dependent on

the thresholds inputted by the end-user. With the intuit of easing this section upcoming analysis,

Listing 5.5 shows a possible example of the thresholds inputted by the end-user.

1 {

2 "parameters": {

3 "translation": {

4 "delta": 3.1,

5 "directedAcc": 8,

6 "absoluteAcc": 10.2,

7 "noiseEpsilon": 0.02

8 },

9 "rotation": {

10 "delta": 3.1,

11 "directedAcc": 8

12 },

13 "immutability": 100

14 }

15 }

Listing 5.5: Example of thresholds inputted by the end-user.

In the input example shown in Listing 5.5, the end-user establishes thresholds for two transfor-

mations: translations and rotations. Hence, the remaining spatiotemporal change features are not

analysed. Regarding translations, the user defines the delta threshold as 3.1, the directed accumu-

lated threshold (directedAcc) as 8, and the absolute accumulated threshold as 10.2 (absoluteAcc).

Additionally, the user also defines the noiseEpsilon threshold. This threshold, identified as neces-

sary in section 4.3.1, represents the limit below which the spatiotemporal change feature identified

(in this case a translation) is considered noise. When noise is detected the stfX assumes that the

spatiotemporal change feature is null. The threshold naming refers to the feature purpose: examine

noise using the expectedly low (epsilon) threshold.

The stfX prototype capability of filtering features of interest is implemented in the Services

package, more concretely in the Parsers package. The ParserFactory is the entry point of this

package. It is responsible for starting the concurrent parsing of the features of interest, using the

user-inputted thresholds in conjunction with the respective spatiotemporal change feature parsers.

Listing 5.6 displays the features that are being detected (the parsing only proceeds if the respective

threshold is not null), in the current version of the stfX.

1 ITransformationParser[] concurrentParsers = {

2 new TranslationParser(thresholds.getTranslation()),

3 new RotationParser(thresholds.getRotation()),
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4 new UniformScaleParser(thresholds.getScale()),

5 new ImmutabilityParser(thresholds)

6 };

Listing 5.6: Change features being detected in the stfX.

As shown in Listing 5.6 there are a total of 4 non-abstract parsers, corresponding to the features

being detected that require thresholds: translations, rotations, uniform scalings and immutability.

Figure 5.3 illustrates the hierarchy between the parsers available in the Parser package.

«interface»
ITransformationsParser

ImmutabilityParser TransformationsParser

TranslationParser RotationParser UniformScaleParser

Extends Extends Extends

NoiseEpsilonParser

Extends

Figure 5.3: Parser classes hierarchy.

The NoiseEpsilonParser, displayed in figure 5.3, is responsible for parsing spatiotem-

poral change features and discarding those which are considered as noise. The parsing of noise

only occurs if the noiseEpsilon threshold is defined. For computing the limit below which change

features are considered noise, the stfX makes use of both the delta threshold and the noiseEp-

silon threshold. If the delta threshold is not defined, then the noise limit equals the noiseEpsilon

threshold. Otherwise, the noise limit is defined by the maximum value between the noiseEpsilon

threshold and one-hundredth of the delta threshold value. We opted for this approach, as a result

of experiments, where we verified that the usage of minimal noiseEpsilon thresholds would often

fail to detect noise. Nonetheless, future work includes studying appropriateness and alternatives

regarding the current approach for selecting the noise limit.

All change features parsers implement the ITransformationParser interface and, conse-

quently, the parse() function, i.e. the function responsible for identifying features of interest.

Figure 5.3 shows that two classes implement this interface: the ImmutabilityParser and the

TransformationsParser.

The ImmutabilityParser is the class responsible for identifying immutability. With this

intent, in its implementation of the parse() function, the list of spatiotemporal change features is

iterated. If there is a total absence of motion, for a temporal range superior to the value representing

the immutability threshold, then the parser detects an immutability of interest.
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The TransformationsParser is an abstract class representing the parsers that interpret

a set of thresholds similar to the one defined in the code excerpt above for the translation: con-

stituted by delta, directedAcc, absoluteAcc and noiseEpsilon thresholds. The parse() function

starts by applying the noiseEpsilon threshold first, thus discarding noise (this class extends the

NoiseEpsilonParser class). Next, the spatiotemporal change features are iterated, and each

of the remaining thresholds is verified, in the following order: delta, directedAcc, and absoluteAcc.

When a threshold is surpassed, the other thresholds’ counters are reset (e.g., reset the accumulator

of absolute translations values when a directed translation is detected). We opt to reset all thresh-

old accumulators since otherwise, several features of interest regarding the same change feature

could co-occur. Such an approach would introduce redundancy and raise difficulties to visuali-

sation tools (e.g. presenting several translations affecting simultaneously the same phenomenon),

like the solution proposed by Marques [57].

Classes TranslationParser, RotationParser and UniformScaleParser extend

the TransformationsParser class and represent the applications of the parser to the respec-

tive spatiotemporal change features.

We foresee that the introduction of the remaining spatiotemporal change features not being

identified in the current stfX version (e.g. existential features) implies the design of new parsers.

Furthermore, each of the current parser implementations can be replaced by upgraded versions

resulting from outcomes of future work.

5.2.2.3 Events and Data Types

In the previous subsection, we examined the implementation details regarding the method used

for obtaining the spatiotemporal change features of interest to the end-user. In this subsection,

we verify how the stfX internally manages features of interest. The package responsible for this

management is the Events package inside the Services package.

Internally, the stfX represents a feature of interest using the Event class. An Event stores:

the type of thresholds that identified the features as interesting (threshold triggers); the associ-

ated spatiotemporal change feature; a list of mappings between a timestamp and the associated

quantification of the spatiotemporal transformation (with the timestamps of the first and last list

elements we obtain the moment in time and duration features). Listing 5.7 demonstrates the pos-

sible threshold triggers and spatiotemporal change features.

1 public enum ThresholdTrigger {

2 DELTA,

3 DIRECTED_ACC,

4 ABSOLUTE_ACC

5 }

6 public enum Transformation {

7 UNIMPORTANT,

8 IMMUTABILITY,

9 TRANSLATION,
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10 ROTATION,

11 UNIFORM_SCALE

12 }

Listing 5.7: Possible threshold triggers and change features that an Event may store.

Different spatiotemporal change features have distinct forms of quantifying change. For ex-

ample, translations between temporal snapshots can be modelled using a translation vector, hence

a list of values. On the other hand, rotations can be represented using the angle rotated in degrees,

thus a single value where a rotation of 0 degrees denotes a null change. Lastly, uniform scales

can be modelled using the scaling factor – a unique value where a scale factor of 1 indicates the

absence of change.

Seeing the disparities between the different forms of quantifying change, we introduce the

TransformationDataType abstract class (Listing 5.8), with the purpose of establishing a

norm for the change quantifiers of the various features of interest.

1 public abstract class TransformationDataType<T> {

2 protected T value;

3 TransformationDataType(T value) {this.value = value;}

4 public abstract boolean verifyNull();

5 public abstract TransformationDataType<T> nullValue();

6 public T getTransformation() {return value;}

7 public abstract float numericalValue();

8 public abstract TransformationDataType<T> add(T value);

9 public abstract TransformationDataType<T> subtract(T value);

10 public abstract boolean changeDirection(TransformationDataType<T>

transformation);

11 }

Listing 5.8: TransformationDataType class.

The class template parameter T represents the underlying data type (e.g. on translations T is a list

of values, on rotations and uniform scales T is a single value).

Hence, each Event instance has an associated TransformationDataType (used in the

mapping between timestamps and quantified change previously referred), corresponding to the

feature of interest that the Event instance represents.

5.2.2.4 Index by temporal range

Previously, in section 4.4, we identified how the features of interest should be retrieved to the end-

user: indexed by temporal range rather than by feature of interest. However, the ParserFactory

class returns a list of Event instances, hence indexing by features of interest.
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The package Frames, inside the Services package, is responsible for converting the list of

Event instances into a list of temporal ranges containing the co-occurring features of interest.

Before proceeding, it becomes necessary to introduce two main classes of the Frames package:

• Frame is the class responsible for representing the set of features of interest associated with

a temporal range. Therefore, a Frame stores a temporal range, the associated list of features

of interest co-occurring in that temporal range, as well as the phenomenon representation

for each timestep of the temporal range;

• FramedDataset represents the list of Frame instances that describe the queried temporal

range of the Storyboard. It is also responsible for converting the list of Event instances

into a list of Frame instances.

The methodology used to parse the list of Event instances into a list of Frame instances

consists of an event-oriented algorithm. For each Event instance, two events are created: the

beginning of the Event and its ending. Then, using a priority queue sorted by the event associated

timestamp, we iterate over the created events. Whenever an event (or several events on the same

timestamp) is polled from the priority queue, a new Frame instance is created.

Figure 5.4 presents the mapping between the described classes and the output example pre-

sented in section 4.4. As shown in the figure, when indexing by temporal range, feature of interest

A is divided into three different segments belonging to three different temporal ranges. This divi-

sion leads to the change quantified in each of the produced segments not being enough to surpass

the provided thresholds. However, when observing the full extent of feature of interest A, the

end-users verify that the sum of the quantified change on all segments is superior to the thresholds

provided by them.

0 10

5 20

7 15

feature of interest A

feature of interest B

feature of interest C

0 105 207 15

A A, B A, B, C B, C B
indexing by temporal range

FramedDataset

Frame

Event

Figure 5.4: Mapping between the illustration elements presented in Figure 4.2 and some of the
stfX classes.
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Another aspect of this approach is that a Frame resulting from an Event fragmentation might

contain segments with no change, which might be counter-intuitive to the end-user. For example,

consider that a rotation that surpassed a directed accumulated threshold of 8 degrees gets seg-

mented into three frames with equal temporal ranges: a rotation of 5 degrees, a rotation of 0 de-

grees and lastly a rotation of 3 degrees. The middle frame is contemplated as a feature of interest

despite bearing no change.

5.2.2.5 Unimportant temporal ranges and Coalescing

To compute the unimportant temporal ranges (section 4.2.8), we iterate over the list of Frame

instances obtained in the FramedDataset class. Seeing that there are no Frame instances with

overlapping temporal ranges, the process of identifying unimportant temporal ranges consists of

iterating over the list and verifying if there are any time gaps. A time gap is identified if the end

timestamp of a Frame does not match the beginning timestamp of its successor. Moreover, it

is also necessary to verify the beginning timestamp of the first Frame with the beginning of the

range queried. The process is also repeated for the last Frame and the end timestamp of the range

queried.

To proceed with coalescing (section 4.3.2), we once more iterate over the list of Frame in-

stances and aggregate sequential features of interest that are identical. Two Frame instances are

considered identical if both contain the same number of features of interest and if, for each feature

of interest of a Frame, its successor has a feature of the same type and triggered with the same

threshold. For features of interest triggered with the directedAcc threshold, the feature and its

correspondent need to have the same direction. Coalescing two Frame instances means replacing

them by a single Frame that has aggregated temporal range, aggregated phenomenon represen-

tations and summed identical features of interest. For example, having a frame A with temporal

range 0 to 30 and a 10 degrees rotation, triggered by a directedAcc threshold, and a successive

frame B with temporal range 30 to 45 and a 30 degrees rotation, also triggered in the same way,

results in a coalesced frame with temporal range 0 to 45 and a 40 degrees rotation. Figure 5.5

illustrates this example.

0 30

A

45

B
10º rotation
trigger: directedAcc

30º rotation
trigger: directedAcc

Coalescing

0

coalesced frame

45

40º rotation
trigger: directedAcc

Figure 5.5: Coalescing example.
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To facilitate the inclusion (or removal) of these capabilities to the stfX, we implement them

using the Decorator design pattern [19], as shown in Listing 5.9.

1 return new CoalescedFramedDataset(

2 new FramedDatasetWithUnimportantFrames(

3 new FramedDataset(storyboard, thresholds)

4 .restrictInterval(initialTimestamp, finalTimestamp)))

5 .getFrames();

Listing 5.9: Coalescing and Unimportant temporal ranges implementation, using the Decorator

design pattern.

5.2.2.6 Components Interaction

In order to understand how the previously presented components of the stfX interact, figure 5.6

illustrates the sequence diagram for getting the frames of interest. This sequence diagram refers

only to core service components.

FramedDatasetWith
UnimportantFrames

Storyboard
Controller Repository

Get Frames request
find storyboard by ID

storyboard

framed dataset as JSON

Framed
Dataset

index by
temporal range

Parser
Factory

created framed dataset

return list of frames (framed dataset)

get list of Events

The ParserFactory
triggers the concurrent
parsing of all features
of interest using the
thresholds inputted by
the user

get features of interest

Coalesced
FramedDataset

add unimportant frames

framed dataset containing unimportant frames

coalesce framed dataset

coalescing result

Figure 5.6: Sequence diagram of getting the frames of interest in the stfX core service.
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First, the StoryboardController starts by receiving the end-user request. This request

contains the ID of the referred Storyboard, the thresholds determining which spatiotemporal

change features are interesting and the temporal range queried. Using the received ID, the stfX

finds the corresponding Storyboard. Afterwards, the FramedDataset corresponding to the

queried temporal range is created. This process starts with the extraction of the features of interest,

using the ParserFactory in conjunction with the inputted thresholds. The ParserFactory

triggers the concurrent parsing of the various change features using the different parsers intro-

duced in section 5.2.2.2. When the parsing is done, a list with all the identified features of interest

(modelled as Event instances) is retrieved. Next, a list of Frame instances (a FramedDataset)

is created, by indexing the previous array of features of interest by temporal range. Having the

FramedDataset, the unimportant temporal ranges are added to it, and subsequently, the stfX co-

alesces identical frames. Lastly, the resulting FramedDataset, coalesced and containing unim-

portant temporal ranges, is retrieved to the end-user as a JSON object. The retrieved JSON is

further analysed in section 5.3.

5.2.3 Summary

In this section, we detail the architecture of the stfX and analyse how the different components

of the various services interact. The stfX is a server-side application utilising the microservices

architectural approach. In the current version, the stfX is composed of two services: the PSR-

service and the Core service.

Subsection 5.2.1 describes the PSR-service: the service responsible for computing the spatial

change features occurring in a phenomenon. Moreover, the communication protocol between the

two services is also specified in this subsection.

Subsection 5.2.2 analyses the Core service: the central service of the stfX and the one respon-

sible for several tasks, such as storing data in an in-memory database and filtering the features

of interest. This subsection presents a new accumulated threshold named directed accumulated

threshold (directedAcc). Moreover, it also examines how the identification of features of inter-

est occurs in the stfX and describes the methodologies for (1) indexing by temporal range, (2)

identifying unimportant temporal ranges and (3) coalescing identical Frame instances. Lastly, it

determines how the distinct core service components interact to retrieve the features of interest.

5.3 API

In section 5.2, we identified stfX as a server-side application with an exposed REST API. Hence, in

this section, we describe the REST API while also analysing template responses for each endpoint.

For more details, refer to the API documentation8.

The endpoints composing the stfX API are:

8SwaggerHub. stfX API. Available at https: https://app.swaggerhub.com/apis/EdgarACarneiro/
thesis/2.1.1. Accessed in 2020-06-21.

https://app.swaggerhub.com/apis/EdgarACarneiro/thesis/2.1.1
https://app.swaggerhub.com/apis/EdgarACarneiro/thesis/2.1.1
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• POST /storyboard: endpoint responsible for loading the dataset and the respective meta-

data to the stfX. Expects to receive in the request body an object containing the fields dataset

and metadata. The dataset must be modelled as an array of the phenomenon shape descrip-

tors. A phenomenon shape is modelled as an array of points, where each point is represented

by an array containing the point coordinates. The metadata field, regarding the dataset, must

contain two properties: startTime, indicating the timestamp, in milliseconds, corresponding

to the dataset first temporal snapshot; and timePeriod, the number of milliseconds separating

each dataset temporal snapshot. Moreover, a third metadata parameter can also be provided:

the dataset name. After processing, the stfX returns the ID of the Storyboard created using

the provided data. Listing 5.10 displays an input example.

1 {

2 "dataset": [

3 [

4 [0, 1],

5 [1, 0],

6 [0, 0],

7 ], [

8 [4, 5],

9 [5, 4],

10 [4, 4]

11 ],

12 ...

13 ],

14 "metadata": {

15 "startTime": 1593730800000,

16 "timePeriod": 86400000,

17 "name": "ExampleDataset"

18 }

19 }

Listing 5.10: Example body of a request to the POST /storyboard endpoint.

• POST /storyboard/file: endpoint identical to /storyboard that receives the input

through a JSON file, rather than the request body.

• POST /storyboard/{id}: endpoint responsible for retrieving the frames of a particular

Storyboard. The path parameter {id} indicates the Storyboard from which the features of

interest will be retrieved. Through the request body, the stfX expects to receive a json object

describing the thresholds that shall be used to identify features of interest. Listing 5.5 is a

valid example of a set of thresholds. If the thresholds regarding a feature are not provided

(.e.g in Listing 5.5 no thresholds are provided for uniform scales) then that change feature

is not analysed. If part of the thresholds regarding a feature are not provided (e.g. in List-

ing 5.5, thresholds absoluteAcc and noiseEpsilon) then those thresholds are not analysed.
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Additionally, two query parameters can also be introduced by the user: initialTimestamp,

meaning the timestamp above which temporal snapshots are parsed (if none is given the

stfX assumes the timestamp associated to the Storyboard first temporal snapshot); final-

Timestamp, meaning the timestamp below which temporal snapshots are parsed (if none is

given the stfX assumes the timestamp associated to the Storyboard last temporal snapshot).

Listing 5.11 displays an example response given by the stfX.

1 [

2 {

3 "events": [

4 {

5 "threshold": "DIRECTED_ACC",

6 "type": "TRANSLATION",

7 "trigger": {"transformation": [1,0]}

8 }, {

9 "threshold": "ABSOLUTE_ACC",

10 "type": "ROTATION",

11 "trigger": {"transformation": 15}

12 }

13 ],

14 "temporalRange": [84, 99],

15 "phenomena": [

16 {

17 "representation": [...],

18 "timestamp": 84

19 },

20 ...

21 ]

22 }, {

23 "events": [

24 {

25 "type": "IMMUTABILITY",

26 "trigger": {"transformation": 6}

27 }

28 ],

29 "temporalRange": [99, 105],

30 "phenomena": [...]

31 }, {

32 "events": [

33 {"type": "UNIMPORTANT"}

34 ],

35 "temporalRange": [105, 120],

36 "phenomena": [...]

37 }

38 ]

Listing 5.11: Example body of a POST /storyboard/{id} endpoint response.
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The example shown in Listing 5.11 contains a total of three Frame instances (subsec-

tion 5.2.2.4). Each Frame is composed by (1) a list of the identified co-occurring features

of interest (named as events), (2) a temporal range, indicating when the features of inter-

est occur, and (3) the phenomenon representation, as a succession of objects containing the

phenomenon shape descriptors (similar format to the one used for the dataset in the POST

/storyboard endpoint) and the associated timestamp.

1. The first Frame, from timestamp 84 to timestamp 99, encompasses two different fea-

tures of interest: a translation of 1 unit in the x-axis, triggered by a directed accumu-

lated threshold; and a rotation of 15 degrees counterclockwise; triggered by an abso-

lute accumulated threshold. The impact of having distinct TransformationDataType

(subsection 5.2.2.3) is perceivable in this example, as a list of values quantifies the

translation while a single value quantifies the rotation.

2. The second Frame, from timestamp 99 to 105, is composed by a feature of interest

of the immutability type, that lasts six milliseconds. Features of interest of the im-

mutability type do not have an associated threshold type.

3. The third Frame, from timestamp 105 to 120. This temporal range is considered

unimportant (a concept introduced in section 4.2.8) since it contains a single feature

of interest of the unimportant type. Features of interest of the unimportant type do

not have an associated threshold type, nor an associated trigger transformation as no

thresholds detected this feature.

• DELETE /storyboard/{id}: endpoint responsible for deleting a storyboard and all

of its associated information (e.g. change features computed). The path parameter {id}

indicates the Storyboard to be deleted.

• GET /storyboard/metadata/{id}: endpoint responsible for retrieving the dataset

metadata initially submitted in the Storyboard creation. The path parameter {id} indicates

the Storyboard from which the user is requesting to get the dataset metadata. This endpoint

response follows the same JSON schema as the metadata object provided in endpoint POST

/storyboard.

5.4 Deployment

To ease the stfX usage and also facilitate future deployments, the stfX has been containerised. With

this intent, we used both Docker9 and Docker Compose10. The docker-compose developed for the

stfX is responsible for orchestrating a total of four containers:

1. the cpd-service container is responsible for running the PSR service (section 5.2.1);

9Docker Inc. Docker. Available at https: https://www.docker.com. Accessed in 2020-06-22.
10Docker Inc. Overview of Docker Compose. Available at https: https://docs.docker.com/compose/.

Accessed in 2020-06-22.

https://www.docker.com
https://docs.docker.com/compose/
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2. the stfx-core container is responsible for running the Core service (section 5.2.2);

3. the swagger container purpose is to serve the web application displaying an API interface

and documentation (built with Swagger), connected to the Core service;

4. the nginx container purpose is to proxy the requests from /stfx to the stfx-core service and

the requests from /stfx/api-docs/ to the swagger web application.

5.5 Extension

Seeing the pioneering nature of the current study, we foresee that future developments will most

likely start with improving or extracting other change features from spatiotemporal data. Hence, in

this section, we provide some guidelines for the extension of the stfX current capabilities, towards

new change features detection:

1. Start by developing the spatiotemporal change features extractor as a separate microservice;

2. The StoryboardController should call the developed microservice and store the re-

trieved information, similarly to the spatial change features already implemented;

3. Adapt the threshold models so that the stfX can receive thresholds relative to the new change

features;

4. For each new change feature, create a new TransformationDataType class that accu-

rately represents its quantification, if one does not already exist;

5. Create a class implementing ITransformationParser that is capable of parsing the

extracted spatiotemporal change features, using the previously defined thresholds;

6. Add the new parser to the ParserFactory.

7. Update both the ThresholdTrigger and Transformation enumerations, in the Event

class to support the newly defined change features.

5.6 Summary

In this chapter, we provided the most significant details of the prototype developed in this dis-

sertation for implementing the conceptual framework detailed in chapter 4: the SpatioTemporal

Features eXtractor (stfX). Section 5.1 presented an overview of the stfX, followed by section 5.2

which detailed the architecture of the stfX and analysed how the different components of the vari-

ous services interact. The stfX is a server-side application utilising the microservices architectural

approach, composed of two services: the PSR service (subsection 5.2.1) and the Core service (sub-

section 5.2.2). The PSR service is responsible for computing the spatial change features occurring

in a phenomenon. The Core service is the central service of the stfX and the one responsible for
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several tasks, such as storing data in an in-memory database, filtering the features of interest, in-

dexing them by temporal range, coalescing similar temporal ranges and identifying unimportant

ones. Moreover, this section also describes a new accumulated threshold named directed accumu-

lated threshold (directedAcc). Following, section 5.3 examined the stfX API while also presenting

template requests and responses to the identified endpoints. Section 5.4 described the containeri-

sation approach adopted, using Docker, in order to ease future deployments. Finally, section 5.5

provided some guidelines for the extension of the stfX.



Chapter 6

Validation and Results

This chapter describes the methods utilised to validate the devised prototype, as well as analy-

ses the validation results. Section 6.1 outlines the developed unit tests while also determining

which prototype components they validate. Afterwards, section 6.2 details the methodology used

to assess the results obtained. Subsequently, section 6.3 presents the conducted experiments while

also analysing and discussing the results obtained. Finally, section 6.4 assesses whether the de-

signed prototype satisfies the established requirements and determines the answers to the research

questions raised in chapter 3.

Before proceeding, it is relevant to recall the meaning of frame in this work’s context (firstly

introduced in subsection 5.2.2.4): a frame represents an entity aggregating a temporal range, as

well as the identified features of interest and phenomenon representations for that temporal range.

Moreover, it also becomes pertinent to highlight that in this section, the concepts of change feature

and of transformation are used interchangeably, as a consequence of the features of interest that

the stfX is capable of identifying.

All python scripts, resources needed to run the experiments described and the obtained results

are available in [12].

6.1 Validation through unit testing

In order to ensure the stfX proper behaviour, validate the implementation and make future ex-

tensions easier, we developed a set of unit tests that verify the correct operation of the stfX core

functionalities. These unit tests represent 45% of the code lines developed and have a code cov-

erage of 92% (line coverage). Since many tests share the same validation purpose, we decided

to aggregate them accordingly. The validation purpose of each of the aggregated set of unit tests,

along with the respective section that represents the associated stfX functionality in chapter 5, are

as follows:

UT1: Validate all routes in the API, the ability to deal with erroneous input and the correct func-

tioning when proper input is given.

73
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UT2: Test the ability to receive and deal with the query parameters that control the temporal range

of the Storyboard from which the stfX will extract the features of interest (feature presented

in 5.3).

UT3: Test the ability to coalesce frames, in situations in which they can and cannot be coalesced

(feature presented in 5.2.2.5).

UT4: Validate if noise filtering effectively filters noise produced by the services responsible for

computing spatiotemporal change features (feature presented in 5.2.2.2).

UT5: Assert that when a given threshold regarding a spatiotemporal change feature is not pro-

vided, the corresponding feature is not analysed (feature presented in 5.3).

UT6: Verify that even though a given set of thresholds did not identify features of interest for the

full temporal range, the temporal range is fully described, with frames that have no features

of interest being classified as unimportant (feature presented in 5.2.2.5).

UT7: Validate that the stfX can partition features of interest to aggregate all co-occurring change

features in a given temporal range together (feature presented in 5.2.2.4).

UT8: Validate that the stfX can successfully retrieve all the features of interest indexed by temporal

range, rather than by the features of interest themselves (feature presented in 5.2.2.4).

The developed unit tests are useful to assert the stfX capability of handling simple test sce-

narios (e.g. generate an unimportant temporal range if no features of interest were detected).

However, for more complex scenarios and to assert the stfX efficiency regarding the retrieved fea-

tures of interest (i.e., verify if they accurately describe the Storyboard), a more elaborate approach

is necessary.

The presented unit tests are used in continuous integration (CI), meaning that every new com-

mit to the repository containing the stfX code is tested, thus facilitating the detection of errors in

the stfX functioning.

6.2 Validation methodology on experiments

This section describes the experiments pipeline and validates the solution presented in chapter 4

by running the experiments. For these experiments, we used synthetic test datasets with the goal

of using the known ground-truth to validate the experiments. Section 6.2.1 starts by analysing the

process used to generate the synthetic test datasets, in a way that we can guarantee the integrity of

the datasets. Next, section 6.2.2 describes how the validation, using the test datasets, is done and

which metrics are used to assert the solution efficacy.
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6.2.1 Test datasets generation

The first step of the validation process consists of building synthetic spatiotemporal datasets. We

chose to use synthetic datasets seeing that it granted us complete control over the changes affecting

a phenomenon. Therefore, the change features utilised to create the datasets are used as the ground

truth necessary for measuring the efficiency of the developed solution.

The datasets generation process consists of creating a polygon, animating it by applying a set

of transformations S, and computing the temporal snapshots to feed to the system. To help in this,

it is useful to use an animation tool that can handle a shape description in a known format and

output the animation results also in a treatable format. We chose to use the obj file format for the

shape description, and the animation tool Blender1. Blender is an open-source 3D software, used

for modelling, animation, simulation, rendering, among other functionalities. Using Blender’s

animation mode, whose purpose is to make an object move or change shape over time, we create

the keyframes of the animation. The keyframes represent the application of spatial transformations

to the loaded phenomenon. Additionally, it is also possible to change the interpolation mode

between keyframes. At last, we export the developed animation as an ordered set of obj files (one

per animation frame).

Considering Blender’s output format and stfX input format, we then parsed the directory con-

taining the animation modelled as obj files into a valid JSON file. With this intent, a python

script was developed. Afterwards, the metadata object is added manually, thus composing a viable

dataset to the stfX server. Figure 6.1 illustrates the test generation pipeline.

.obj file example

Transformation example

The resultant keyframes

Blender interface, animation mode

Load file into
 Blender

1.obj

Directory containing the .obj files
exported by Blender. Each file

corresponds to an animation frame

2.obj 3.obj 4.obj

...

Export animation

dataset.json

.json file in a valid
format to stfX

Script that parses the
directory content into

a single .json file

Figure 6.1: Test generation pipeline.

1Blender. Blender. Available at https: https://www.blender.org. Accessed in 2020-05-18

https://www.blender.org
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6.2.2 Validation Metrics

The validation is performed through automatic processes that are developed specifically for the

purpose. The main goal of using automated validation is to dismiss the necessity of integrating a

user in the validation process. By employing automatic validation, objectivity, rigour, scalability

and process control are assured, while discarding possible errors that derive from perceptual sub-

jectivity. Furthermore, automated validation makes recreation and revalidation of the developed

tests more feasible.

For validation, we use a python script that outputs the efficiency of the solution in the test

scenarios. An experiment consists of a dataset, a set of defined thresholds and the expected result.

The latter consists of the ground truth modelled in a format similar to the one returned by the

server. For each experiment, the dataset is loaded into the stfX server. Using the ID retrieved by

the server and the thresholds previously defined, the features of interest are obtained. To validate

the solution, we compare the features of interest returned by the server with the expected result.

Furthermore, we also compare the spatial disposition of the phenomenon at the end of the ground

truth animation with the one resulting from the features determined by the stfX.

Seeing that few frameworks with identical goals exist (Yi et al. [98] being the one with most

resemblances), validation metrics were researched in domains with similar problems. In Yi et al.’s

work [98], the validation is achieved by applying the framework in a well-documented study of

oceanic eddies [15] and verifying if the output is similar to the one obtained in previous studies.

Regarding Point Set Registration algorithms, that aim at discovering the transformation between

two point sets, the validation metric is an average distance function between a point in the warped

model shape and the ground truth corresponding point (e.g. mean squared error distance [100],

average Euclidean distance [63, 56]). However, these metrics have increased value for validating

a solution when there are benchmarks and other performances for comparison. Otherwise, in the

absence of comparison, a distance metric gives fewer insights into the solution performance (e.g.

the distance metric has different meanings on shapes of different size). Considering the absence

of similar frameworks and, consequently, of datasets and results for comparison, the validation of

our novel solution suffers from the lack of a reference metric that can ascertain its efficiency.

To validate our tool, we present two original distinct metrics we studied, based on well under-

stood and widespread distance functions. The metrics are:

M1: metric that consists of comparing the ground truth final representation with the representa-

tion obtained by applying the transformations outputted by the stfX. The goal is to identify if

the transformations recognised by the stfX result in equivalent representations to the ground

truth. With this goal in mind, distance functions emerge as the first approach. However, as

already referred, without a benchmark for comparison, this approach has decreased value.

Therefore, we devised a solution inspired by the ratio between areas of polygons and convex

hulls [38], that follows the distance function principle of penalising more distant polygons.

However, this metric is agnostic to the transformations that led to the final representation
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(e.g. a translation followed by a change in rotation might give the same result as a rotation

followed by a translation).

To compute this metric, we use the following procedures:

(a) Start by retrieving the final phenomenon representation (last representation of the last

frame of the response body returned) and the transformations that the stfX identified.

Apply the identified transformations to the first representation of the first frame of

the response body (initial phenomenon representation), obtaining the estimated final

phenomenon state.

(b) Having both the real final representation, PR, and the estimated final representation,

PE , we can proceed with their comparison. We start by identifying the minimum area

between the convex hull of PR and the convex hull of PE . Next, we obtain the area

of the convex hull including the points from both representations (joint convex hull).

At last, the ratio between the minimum area and the area of the joint convex hull is

calculated. To compute the areas of the convex hulls we employ the surveyor’s formula

(also known as shoelace formula or Gauss’s area formula) [10]. Therefore, M1 can, in

a simplified manner, be described as:

M1 =
min(area(convex_hull(PR)),area(convex_hull(PE)))

area(convex_hull(PR,PE))

where PR and PE stand for polygons, modelled as ((x1,y2),(x1,y2), · · · ,(xn,yn)). PR

represents the real final representation, while PE represents the estimated final repre-

sentation. Figure 6.2 illustrates the convex hulls used in the computation of metric M1.

For figure 6.2, and for all figures depicting similar information to it, the red area con-

sists of the joint convex hull. In contrast, the blue area consists of the polygon with the

minimum area (between the real representation, PR and the estimated representation,

PE). Therefore, the area depicted in purple represents the overlapping between the two

previously introduced areas. Regarding the drawn polygons, the blue polygon contour

line depicts the real representation, PR, while the red polygon contour line depicts the

estimated representation, PE .

M2: metric that consists of analysing the similarity between the set of transformations outputted

by the tool and the ground truth transformations. The goal is to identify how similar are both

sets of transformations and, therefore, how effective is the devised solution. To do so, we

base ourselves on the longest common subsequence distance [67, 5] (allows insertions and

removals, costing 1), a distance function deriving from the widespread Levenshtein distance

(often named edit distance) [51]. However, M2 is agnostic to the identified transformations’

values and, consequently, to the representations resultant of applying the transformations.

To compute this metric, we use the following procedures:
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Figure 6.2: Example of visual application of metric M1.

(a) Parse the obtained result and the expected result so that both representations have the

same number of identified transformations, with matching temporal ranges. Achiev-

able by splitting temporal ranges.

(b) For each temporal range of the estimated result, and the correspondent temporal range

in the real result, find the minimum number of operations (only insertions and re-

movals) that allow transforming the estimated set of transformations into the real set

of transformations. Employing set theory [50], and considering the estimated set of

transformations as SE and the real set of transformations as SR, the minimum num-

ber of operations transforming SE into SR can be modelled as |(SE −SR)∪ (SR−SE)|,
where SE − SR represents the necessary removals, SR− SE the necessary insertions,

and where |S| represents the cardinality of set S. As the worst-case scenario, occur

|SE |+ |SR| operations: the removal of all elements from SE and insertion of all ele-

ments from SR.

(c) The metric is then obtained by computing the ratio between the weighted average of

the minimum distance between sets and the worst-case scenario. The weighted average

takes into account the set temporal range and the total temporal range. Therefore, the

metric can be modelled as:

M2 = 1−

N

∑
n=1

|(An−Bn)∪ (Bn−An)| ∗Rn

|An|+ |Bn|

N

∑
n=1

Rn

where A and B are arrays of sets of equal size where ∀An ∈ A : An ⊆ T and ∀Bn ∈ B :

Bn ⊆ T , where T is the set of possible transformations, and R is an array containing the

temporal ranges duration. Figure 6.3 shows an example computation of this metric. In
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this figure, the elements inside the square brackets are representative of the transfor-

mations, while the proceeding round brackets indicate the associated temporal range.

stfX result:

expected result:

[ [T, R, U] (0, 100), [T] (100, 120), [R, U] (120, 150) ]

[ [T, R] (0, 120),  [R, U] (120, 150) ]

stfX result:

expected result:

[ [T, R, U] (0, 100), [T] (100, 120), [R, U] (120, 150) ]

[ [T, R] (0, 100), [T, R] (100, 120), [R, U] (120, 150) ]

equal intervals

The edit distance for the first element is the
removal of a U.
For the second element it is the addition of a R.

Figure 6.3: Example computation of the M2 metric.

The objective with the identification of the two referred metrics is to evaluate the several

characteristics that comprise an effective solution. Hence:

• Metric M1 evaluates the outputted features of interest transformations values, and the re-

semblance of the actual representation with the representation resultant of the application

of the stfX identified features of interest. Therefore, this metric focuses on the final result,

rather than on the process that led to the outcome. As a consequence, both the frames order

and the temporal ranges are neglected, leading to the possibility of erroneous sequences of

features of interest being highly rated.

• Metric M2 evaluates the sequence of transformations (extracted from the frames), as well

as the respective temporal ranges, while disregarding the transformation values. Hence, this

metric focus on the sequence of features of interest leading to the result, rather than the

result itself. As a downside, transformations with disproportionate values (in comparison to

the actual ones) still score high.

Therefore, metrics M1 and M2 should be employed together, as they are complementary: suc-

cessful test scenarios imply that both metrics have a high score (we consider values above 0.7 as

satisfactory and above 0.9 as exceptional).

From our analysis, we identified a circumstance that can elude the conjunct application of these

metrics. This circumstance is verified when the sequence of transformations is correctly identified

but with unexpected trigger values that, nonetheless, still lead to the correct final representation. A
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possible example is a scenario in which the stfX identifies a rotation of 10o degrees followed by a

rotation of -10odegrees. However, the ground-truth rotations are of 50o and -50o, respectively. In

this example, both metrics would get a perfect score, even though the sequence of change features

did not correctly describe reality. This circumstance results from metric M2 not taking into account

the values of the transformations (as stated at the beginning of metric M2 description).

Nonetheless, we still believe that the exhibited metrics present a valid methodology for validat-

ing the developed solution, as the stfX is based on previously studied methods [63] and, therefore,

is not expected to give results so discrepant from reality.

6.2.3 Summary

This section describes the validation methodology used in the experiments. Subsection 6.2.1 de-

tails the pipeline used to generate the test datasets. Summarily, it consists of defining the transfor-

mations over a phenomenon utilising Blender keyframes and then exporting to a format that the

stfX can interpret. Subsection 6.2.2 introduces two novel metrics to evaluate the results obtained

in the experiments. Metric M1 evaluates the resemblance between the obtained phenomenon and

the ground-truth final representations, while metric M2 evaluates the correctness of the identified

features of interest and respective temporal ranges. The presented metrics are complementary and

should be utilised in conjunction to obtain more reliable results.

6.3 Experiments and results

In this section, we describe the experiments used for validating the proposed solution. Moreover,

we analyse each of the obtained results and discuss them.

Throughout the experiments presented in this section, we use the polygon shown in figure 6.4.

We chose to use this polygon as it is non-convex, asymmetric and synthetically generated.

Figure 6.4: Polygon used in the experiments presented in section 6.3.

For all the performed tests, we present the score obtained using the metrics defined in sec-

tion 6.2.2. Furthermore, in cases demanding more insights on the metrics, we identify for metric
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M1 the convex hulls used in the ratio computation (as depicted in figure 6.2), and for metric M2

the differing insertion and removals, as well as the associated temporal ranges.

For the remaining of this section, each subsection outlines an experiment with a different goal.

An experiment can be composed of various tests, as long as these contribute to the same purpose.

6.3.1 Single change features

The goal of this experiment is to evaluate if the stfX is capable of identifying individual trans-

formations when given appropriate thresholds. An appropriate threshold stands for a threshold

matching the exact change in the ground-truth (e.g., if a rotation of 50o occurred, we define the

directed accumulated threshold — directedAcc — as 50). We ran a test for each of the spatiotem-

poral change features capable of being identified, meaning that a total of four tests were performed.

The different tests consist of:

• a translation of 500 units in the x-axis and 200 units in the y-axis, during 60 time units;

• a final rotation of 10o clockwise, resultant of a first rotation of 20o counterclockwise, during

30 time units, followed by a second rotation of 30o counterclockwise, also during 30 time

units;

• a uniform scale with value 2.52, resultant of the accumulation of three distinct uniform

scales: a scaling of 1.4 in the first 20 time units, a scaling of 1.2 in the next 20 time units,

and a scaling of 1.5 in the last 20 time units;

• the phenomenon remains immutable during 60 time units.

All transformations progress linearly2, meaning that the rate of change is equal throughout the

entire transformation.

Results

The results obtained are presented in Table 6.1. Additionally, figure 6.5 presents the obtained

visual representation for metric M1 in the rotation test. This figure is presented with intuit of

highlighting the complete overlapping when metric M1 has a maximum score.

Table 6.1: Score obtained for each of the fundamental transformations.

Transformation M1 score M2 score
Translation 1.0 1.0

Rotation 1.0 1.0
Scale 1.0 1.0

Immutability 1.0 1.0

2Blender Manual. F-Curves Introduction. Available at https: https://docs.blender.org/manual/en/
latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode. Accessed in
2020-05-31.

https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode
https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode
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Figure 6.5: Metric M1 visual representation in a maximum score.

Discussion

From the analysis of the performed tests, we can conclude that the stfX is capable of effectively

identifying singular transformations when the thresholds are appropriate. Despite also having

defined the remaining thresholds, no other features of interest were identified, besides the ones

supposed to. Therefore, in these experiments, no relevant noise was produced by the service re-

sponsible for quantifying the spatial change features between temporal snapshots, the PSR service

(introduced in section 5.2.1).

6.3.2 Sequence of change features

The goal of this experiment is to evaluate if the stfX is capable of identifying the occurrence of sev-

eral different sequential transformations. In this experiment, the transformations vary, and there

are no multiple transformations (meaning that there are no co-occurring spatial change features).

Additionally, appropriate thresholds are once more employed. The ground-truth sequence of trans-

formations consists of: immutability, from time unit 0 to time unit 30; a translation of 1000 units

in the x-axis and minus 400 units in the y-axis, from time unit 30 to time unit 90; a rotation of 50o

counterclockwise, from time unit 90 to time unit 120; a rotation of 50o clockwise, from time unit

120 to time unit 150; a uniform scaling of 1.3, from time unit 120 to time unit 180; immutability,

from time unit 180 to time unit 210; and a uniform scaling of approximately 0.377, from time unit

240 to time unit 270.

Results

The obtained results consist of the maximum classification for both metrics, meaning the score for

M1 and M2 is 1.0. Figure 6.6 presents representation estimated by the stfX, using the visualisation
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framework proposed by Marques [57]. In this visualisation framework, Marques uses the real

representation to draw the polygons, while displaying the transformations identified by the stfX.

Figure 6.6: Estimated representation obtained for experiment 6.3.2, using the visualisation frame-
work proposed by Marques [57].

Discussion

From the performed experiment, we can conclude that the stfX is capable of correctly identify-

ing the sequence of transformations, using appropriate thresholds. For all transformations, only

directedAcc thresholds were defined, as well as noiseEpsilons (introduced in subsection 5.2.2.2).

Therefore, only the accumulation of directed transformations can trigger the thresholds. It is also

important to highlight that some thresholds are defined slightly below the ground-truth value (e.g.,

the directedAcc threshold of rotations is defined as 49.5, even though all ground-truth rotations

are of 50o). The necessity for this minor tweak is further analysed in the next experiment (subsec-

tion 6.3.3).

6.3.3 Sequence of change features, with modified thresholds

This experiment’s goal is similar to the previous one (subsection 6.3.2). However, some modifi-

cations regarding the thresholds were made. These modifications consist of: for translations, we

use the absoluteAcc thresholds instead of the directedAcc threshold; for rotations, the directedAcc

threshold is set to 50, rather than 49.5. Therefore, by our definition of appropriate thresholds,

presented in subsection 6.3.1, the chosen thresholds are still appropriate. The dataset used in this

experiment is the same utilised in the experiment described in section 6.3.2.

Results

When running this experiment, the score obtained for metrics M1 and M2 was, respectively, 0.476

and 0.740. Figure 6.7 and Listing 6.1 present, in a more thorough manner, the obtained results.

Figure 6.7 represents the overlapping of convex hulls obtained for metric M1, while Listing 6.1

represents metric M2 report, meaning the edit distance between the obtained sequence of features

and the expected one. Therefore, the JSON displayed in Listing 6.1 is interpreted as: identified

an unexpected translation in the temporal range of 90 to 120; identified an unexpected translation
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and did not identify an expected rotation in the temporal range of 120 to 150 and so on. If a given

temporal range does not appear in the M2 report, then all the features of interest pertaining to this

temporal range were correctly identified.

Figure 6.7: Metric M1 details in experiment 6.3.3.

1 [
2 {
3 "temporalRange": [90, 120],
4 "removals": ["TRANSLATION"]
5 }, {
6 "temporalRange": [120, 150],
7 "removals": ["TRANSLATION"],
8 "insertions": ["ROTATION"]
9 }, {

10 "temporalRange": [150, 180],
11 "removals": ["TRANSLATION"]
12 }, {
13 "temporalRange": [180, 240],
14 "removals": ["TRANSLATION"]
15 }
16 ]

Listing 6.1: Metric M2 details in
experiment 6.3.3.

Figure 6.8 presents the result obtained from the stfX, using the visualisation framework pro-

posed by Marques [57].

Figure 6.8: Estimated representation obtained for experiment 6.3.3, using the visualisation frame-
work proposed by Marques [57].

Discussion

From the results obtained in this experiment, we can conclude that the small modifications made,

in comparison to the previous experiment, deeply affected the stfX performance (considering as

the performance the metrics score).

On the one hand, the change of the directedAcc threshold to absoluteAcc threshold, in trans-

lations, led to the identification of unexpected translations, accumulated from time unit 90 to time

unit 240. However, from the ground-truth, it is known that there occurs a single translation (that



6.3 Experiments and results 85

is successfully identified). Therefore, all the unexpected translations are the result of the accu-

mulation of significant random noise produced by the stfX PSR service. Hence, we can conclude

that the absolute accumulator defined by the AbsoluteAcc is most propitious to accumulate noise

since in no case is this accumulator reset. Contrarily, the directed accumulator, defined by the

directedAcc threshold, is reset when the direction changes.

On the other hand, the change of the directedAcc threshold, on rotations, from 49.5 to 50, led

to the clockwise rotation of 50o, from time unit 120 to time unit 150, not being identified. This

circumstance is the consequence of the stfX PSR service being very precise but not exact. Conse-

quently, minor errors can be accumulated throughout the processing, thus causing the accumulated

value to be inferior to the defined threshold. Therefore, we can conclude that as a measure of pre-

caution, it is good practice to establish the threshold slightly below the transformation value of

interest.

6.3.4 Co-occurring transformations

In this experiment, the objective is to determine whether stfX is capable of successfully identifying

co-occurring transformations (multiple transformations) in a simple test scenario. Furthermore, by

applying three different sets of thresholds to the same test dataset, we also determine the impact

of the choice of thresholds in the quality of the results.

The ground-truth transformations consist of, simultaneously, a translation of minus 200 units

in the x-axis and 40 units in the y-axis; a rotation of 45o clockwise; and a uniform scaling of scaling

factor 2. All the transformations co-occur in a smooth manner (the first and last transformations

are smaller, thus causing the transformation to be smoother3) during the temporal range 0 to 60.

Figure 6.9 illustrates the described transformations.

0 60

Translation

Rotation

Uniform Scaling

[200, 40]

-45º

2

Figure 6.9: Visual representation of the transformations of the dataset used in experiment 6.3.4.

Regarding the three different sets of thresholds, they all contain the same noiseEpsilon thresh-

old for all transformations, the same delta threshold and the same immutability threshold value.

However, they differ in the remaining parameters, in the following manner:

3Blender Manual. F-Curves Introduction. Available at https: https://docs.blender.org/manual/en/
latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode. Accessed in
2020-05-31.

https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode
https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#interpolation-mode
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T1: The first set of thresholds consists of appropriate thresholds, meaning that thresholds are

equal to the exact values of the occurring ground-truth transformations. Therefore, abso-

luteAcc on translations is set to 203.9, directedAcc on rotations to 45 and directedAcc on

uniform scaling is set to 1.

T2: The second set of thresholds takes into account the conclusion obtained from experiment 6.3.3.

Hence, the thresholds are set to slightly smaller values, namely: translation absoluteAcc is

set to 202, rotation directedAcc to 44 and uniform scaling directedAcc to 0.9.

T3: The third set of thresholds is based on the stfX capability of coalescing similar frames, as

shown in subsection 5.2.2.5. Thus, the thresholds are set to minimal values. As a conse-

quence, in an initial stage, the stfX identifies many distinct frames. Later, these frames are

merged into smaller coalesced ones. Regarding the threshold values, those are: on trans-

lations, absoluteAcc is set to 1; on rotation, directedAcc is set to 1; on uniform scaling,

directedAcc is set to 0.02.

Results

The results obtained are shown in Table 6.2. Through its analysis, it is perceivable that the usage of

thresholds with values equal to the ground-truth values (T1) leads to the worst-performance. Even

more, metric M2 was 0.0, meaning that no features of interest were correctly identified, for any

temporal range. The approach using minimal threshold values (T3) obtained the best score, in both

metrics. Moreover, the metric scores are both high and similar, thus showing that this approach is

the most cohesive and adequate one. Comparing the results obtained by the set of thresholds T2

and T3, we verify that the most significant discrepancy in the score is on metric M2. While metric

M1 increased 0.073 (increase of 10%), metric M2 increased 0.24 (increase of 35%).

Table 6.2: Score obtained by the application of each set of thresholds.

Set of thresholds M1 score M2 score
T1 0.247 0.000
T2 0.768 0.685
T3 0.841 0.925

Discussion

The results obtained in this experiment, namely the comparison between the scores of the set

of thresholds T1 with the set of thresholds T2, further corroborate the conclusion obtained in

experiment 6.3.3 that establishing the thresholds slightly below the desired transformation value

is an appropriate approach.

The main takeaway from this experience is that the usage of minimal threshold values leads

to better performance. The increasing granularity in the search for features of interest, and con-

sequently, the more detailed retrieved features, justify the increased performance. The downside
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of this approach is the retrieval of many frames, thus causing the visualisation process for a user

(e.g., using the framework of Marques [57]), to be very time-consuming. Seeing that the stfX ap-

plies coalescing to the retrieved frames (see 5.2.2.5), this downside is handled. By using minimal

thresholds, the inclusion of noise (with values superior to the noise filter) in the solution is also

facilitated, as it becomes easier to trigger the thresholds. Nonetheless, in this experiment, this

approach outperforms the remaining possible methods.

Regarding the comparison of the results obtained by the set of thresholds T2 and T3, we ver-

ify that the usage of minimal thresholds increases mostly metric M2 score. As already referred,

the usage of minimal thresholds leads to the identification of more detailed transformations. As

a consequence, these transformations have a low impact in the spatial configuration of the phe-

nomenon, thus explaining why the increase of the metric M2 score does not lead into a significant

increase of the metric M1 score. Moreover, we can also verify that by using thresholds slightly

below the ground-truth value, the stfX is capable of grasping the core transformations affecting the

phenomenon (only missing the more subtle ones).

Concerning the stfX ability to identify co-occurring transformations, when employing minimal

thresholds, these transformations are successfully detected.

6.3.5 Impact of the service used for quantifying spatial transformations

Throughout the previously performed experiments, we verified that the stfX module responsible

for quantifying the spatial transformations — the PSR service (introduced in section 5.2.1) — can

output noise (experiment 6.3.3). Besides, it was also verified that despite the results being very

precise, they are not exact (experiment 6.3.3). As a consequence, to obtain better scores, the usage

of thresholds slightly below the ground-truth value or the use of minimal thresholds is required

(experiment 6.3.4). Hence, in this experiment, we analyse the stfX performance in a scenario in

which the module responsible for quantifying the spatial transformations returns perfect results.

For this purpose, we developed a simulation server that returns the exact set of transformations

occurring between temporal snapshots (known from the ground-truth data). We then re-run the

previous experiments using this server and compare the obtained scores with the ones previously

collected. This experiment’s objective is to assert how the quality of the quantified spatiotemporal

transformations affects the stfX performance.

In this experiment, we mimicked the transformations occurring in the datasets used in exper-

iments described in sections 6.3.3 and 6.3.4 using the open-source tool json-server4, that allows

mocking a REST API quickly. For every test in those experiments, the same dataset, thresholds

and expected results files were employed.

4GitHub. JSON Server. Available at https: https://github.com/typicode/json-server. Accessed in
2020-05-31.

https://github.com/typicode/json-server
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Results

The results obtained are shown in Table 6.3. By its analysis, we observe that the scores obtained

using the mock API were improved for all metrics, except for the metric M2 score in the test using

the set of thresholds T3.

Table 6.3: Comparison of the scores obtained using stfX module responsible for quantifying spatial
transformations and using a mock REST API.

Original Scores Scores with mock API
Experiment Set of thresholds M1 score M2 score M1 score M2 score

6.3.3 - 0.476 0.740 0.985 0.996

6.3.4
T1 0.247 0.000 0.250 0.500
T2 0.768 0.685 0.915 0.902
T3 0.841 0.925 0.938 0.925

Regarding experiment 6.3.3, using the mock API, the error — maximum score (1.0 for both

metrics) minus the actual score — associated with both metrics greatly diminished, reaching min-

imal values (0.015 for metric M1 and 0.004 for metric M2). Moreover, the metric M1 score

increases 106% while the metric M2 score increases 35%.

Regarding experiment 6.3.4, we verify that in the set of thresholds T1, using the mock API,

the score for metric M2 increased from 0.0 to 0.5. This value is explained by the fact that stfX

was able to identify the occurring translation correctly. However, the score of metric M1 only

suffered a small change of 0.003 (an increase of 1%). Figure 6.10 shows the motive behind such

a small increase. Despite the translation being correctly identified, the real representation PR still

majorly encapsulates the resultant estimated representation PE . Thus, since the translation that

occurs remains contained in the real representation PR, the score for metric M1 remains almost

unaltered.

Figure 6.10: Visual representation for metric M1, for experiment 6.3.4 using the set of thresholds
T1, on the original scenario (left) and on when using the mock API (right).

By the analysis of the test scores using the set of thresholds T2, we verify an increase of

performance that makes the accuracy of this test very similar to the test using the set of thresholds
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T3. In the original scores, the difference between the scores was 0.073 (increase of 10%) for metric

M1 and 0.24 (increase of 35%) for metric M2. Then employing the mock API, the difference

between the scores was, for both metric M1 and metric M2, of 0.023 (increase of 1%).

Discussion

From the results obtained in this experience, we can conclude that the usage of a service capa-

ble of quantifying the spatial transformations with high precision majorly increases the quality of

the results retrieved by the stfX. Additionally, since inadequate quantification of spatiotemporal

transformations leads to poor stfX performance and precise quantification leads to good stfX per-

formance, we can conclude that the stfX performance highly depends on the performance of the

underlying PSR service. Hence, when looking to increase the stfX’s overall performance, a central

concern is the search for an algorithm quantifying spatial transformations with high precision.

Regarding all the obtained results, when using the mock API that retrieves the exact transfor-

mations occurring, it could be expected that the score for both metrics would be 1.0 (since the

transformations are perfectly identified and retrieved by the simulation server). However, this is

not the case. For experiment 6.3.3, the choice of thresholds explains the scores obtained. Never-

theless, it is worth mentioning that the difference to the maximum score is minimal. For experi-

ment 6.3.4, noise filtering is the explanation for the results not being maxed out. Seeing that all

transformations occur smoothly, the initial and last transformations are not significant enough to

surpass the imposed noise thresholds. As a consequence, both the initial and final motions are not

detected, thus affecting the scores obtained. Listing 6.2 that displays the output of metric M2 for

the test using the set of thresholds T3 further corroborates this circumstance since all the missing

transformations focus on the temporal ranges 0 to 3 and 52 to 60.

1 [

2 {

3 "temporalRange": [0, 1],

4 "insertions": ["UNIFORM_SCALE", "ROTATION"]

5 }, {

6 "temporalRange": [1, 3],

7 "insertions": ["UNIFORM_SCALE"]

8 }, {

9 "temporalRange": [52, 55],

10 "insertions": ["UNIFORM_SCALE"]

11 }, {

12 "temporalRange": [55, 59],

13 "insertions": ["UNIFORM_SCALE", "ROTATION"]

14 }, {

15 "temporalRange": [59, 60],

16 "insertions": ["TRANSLATION", "UNIFORM_SCALE", "ROTATION"]

17 }

18 ]
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Listing 6.2: Detailed representation of the metric M2 obtained using the set of thresholds T3, using

the mocked API.

6.3.6 Noise filtering impact

In the discussion section of experiment 6.3.5, we determined that noise filtering was the reason

why the scores were not maxed out when using the mocked API. Hence, as a follow-up experiment,

we strive to assert the impact of using noise filtering as well as demonstrate its usefulness. With

this intent, we repeat the tests performed in experiment 6.3.2 and experiment 6.3.5 (namely, the

one using the mock API and the set of thresholds T3) but without applying noise filters.

Results

Table 6.4 shows the results obtained. From its analysis, we verify that in experiment 6.3.2 the

removal of the noise filters led to a decrease of 33% in the metric M2 score, while in experi-

ment 6.3.5 led to an increase of 5% in metric M1 and 4% in metric M2. In a more in-depth

analysis of the score obtained for metric M2, in the first test, we discovered that without noise

filters, the immutability transformations are not identified.

Table 6.4: Comparison between the scores of experiments 6.3.2 and 6.3.5 (with mock API, thresh-
olds T3), with and without noise filters.

With noise filters Without noise filters
Experiment M1 score M2 score M1 score M2 score

6.3.2 1.000 1.000 1.000 0.665
6.3.5 (with mock API, thresholds T3) 0.938 0.925 0.987 0.960

Discussion

Regarding the first test conducted in this experiment, we conclude that the removal of noise filters

led to the stfX not being able to identify immutability transformations. This circumstance, already

foreseen in section 4.3.1, explains why metric M1 remains unaltered while metric M2 score de-

creases. In a scenario in which smaller thresholds are used (e.g., when using minimal thresholds),

the absence of noise filtering can also lead to the accumulation of the noise surpassing thresholds,

thus resulting in the identification of erroneous transformations. However, in this test, this is not

verified as we are employing appropriate thresholds and none of the accumulations of noise is

significant enough to surpass the thresholds.

Lastly, in the case of a service capable of perfectly quantifying spatial transformations (repre-

sented as the second test of this experiment), we conclude that noise filters are not needed since no

noise is produced. Using noise filters in such cases only leads to losing detailed transformations.
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6.3.7 Co-occurring transformations and non-linear animations

The objective of this experiment is to study how the stfX performs when given more complex

and chaotic scenarios. To test the stfX in such a scenario, we produced a ground-truth dataset

that consists of: a time-consuming translation, of 20 units in the x-axis and minus 10 units in the

y-axis, from time unit 1 to time unit 190; simultaneous to the described translation, a rotation

of 10o clockwise, from time unit 110 to 120, and a rotation of 10o counterclockwise, from time

unit 150 to 160; immutability, from time unit 190 to time unit 210; a quick-paced change, from

time unit 210 to time unit 225, where a translation of -30 units in the x-axis and 10 units in the

y-axis and a uniform scaling of factor 0.4 co-occur; simultaneously, a translation of 5 units in

the x-axis and a uniform scaling of factor 3, in the temporal range 225 to 255; and, at last, a

rotation of 85o counterclockwise, in the temporal range 255 to 275, with a uniform scaling of

factor 0.95 also occurring, from time unit 260 to time unit 265. All the transformations occur

smoothly (applying Blender’s sinusoidal interpolation5). Seeing that the set of transformations is

reasonably complicated, Figure 6.11 illustrates the described transformations.

1 110 120 150 160 190 210 225 255
260

265
275

Translation

Rotation

Uniform Scaling

[20, -10] [-30, 10] [5, 0]

-10º 10º

0.4 3 0.95

85º

Immutability

Figure 6.11: Visual representation of the transformations of the dataset used in experiment 6.3.7.

Throughout the previous experiments, we verified that the selection of thresholds has a high

impact on the quality of the outputted results. Hence, we attempt to use the possible best thresholds

with the intent of demonstrating the stfX full capabilities. Using the mock REST API, introduced

in experiment 6.3.5, we determined the set of thresholds that maximised the obtained scores.

Results

Table 6.5 presents the obtained scores, for both metrics, with and without employing the mock

API. The scores are not maxed out (in the test using the mock API) as noise filters are preserved

seeing that the unmocked stfX version manages the same set of thresholds.

5Blender Manual. F-Curves Introduction. Available at https: https://docs.blender.org/manual/en/
latest/editors/graph_editor/fcurves/introduction.html#easing-by-strength. Accessed in
2020-05-31.

https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#easing-by-strength
https://docs.blender.org/manual/en/latest/editors/graph_editor/fcurves/introduction.html#easing-by-strength
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Table 6.5: Scores obtained for experiment 6.3.7, using thresholds that max out the scores with the
mock API.

Scores with mock API Original Scores
M1 score M2 score M1 score M2 score

0.998 0.974 0.496 0.954

From Table 6.5, we verify that the most significant difference between the scores when using

the mock API and the original scores subsides in metric M1: while in metric M2 the scores are very

similar (difference of 0.02 corresponding to a decrease of 2%), in metric M1, when using the mock

API, the obtained score more than doubles the original score (difference of 0.458 corresponding

to a decrease of 50%).

Figure 6.12 shows the visual representation for both metrics when using the original scores.

From the analysis of this figure, we verify that the stfX identified several translations that in the

ground-truth did not exist. The accumulation of these several translations is the motive behind the

obtained metric M1 score.

1 [
2 {
3 "temporalRange": [190, 210],
4 "removals": ["TRANSLATION"]
5 }, {
6 "temporalRange": [255, 260],
7 "removals": ["TRANSLATION"]
8 }, {
9 "temporalRange": [260, 265],

10 "removals": ["TRANSLATION"]
11 }, {
12 "temporalRange": [265, 275],
13 "removals": ["TRANSLATION"]
14 }
15 ]

Figure 6.12: Detailed representation of the metrics, for the original scores, obtained in the first set
of experiment 6.3.7.

Seeing that in the obtained results the identification of translations stemming from noise led to

a low score on metric M1, we repeated the same test, while using higher thresholds on translations

(including the noise filter thresholds). To assert a measure of comparison, we also ran these same

thresholds while operating the mock API. Table 6.6 presents the obtained results.

From Table 6.6, we verify that the disparity between the scores with mock API and the original

scores is no longer existent (difference of 0.009, corresponding to an increase of 2%, for metric

M1 and difference of 0.005, corresponding to a decrease of 1%, for metric M2). Comparing these

scores with the original scores of Table 6.5, we verify that the metric M1 score increased 0.062

(increase of 12%), while metric M2 decreased 0.154 (decrease of 16%). Nevertheless, the disparity
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Table 6.6: Scores obtained for experiment 6.3.7, using thresholds that maximise the filtering of
noise.

Scores with mock API Original Scores
M1 score M2 score M1 score M2 score

0.567 0.805 0.558 0.800

between the scores of both metrics was decreased, while improving one of the metrics. Regarding

the content of the identified transformations, the previously detected noise was no longer included.

However, some translations — the less significant ones — also got filtered as noise. Hence, only

the most relevant transformations are detected.

Discussion

From the results obtained in this experience, we can conclude that:

1. The usage of minimal thresholds and noise filters allows the inclusion of more detail in

retrieved identified transformations (as already shown in 6.3.5). However, in scenarios in

which the quantification of transformations produces noise, lower thresholds also facilitate

retrieving the noise as a significant transformation (thus corroborating the obtained con-

clusions in experiment 6.3.6). The usage of higher thresholds — that lead to discarding

detailed transformations and possible noise — makes the stfX only grasp the most signifi-

cant transformations (core transformations), thus corroborating the conclusions reached in

experiment 6.3.4;

2. The initial and final moments of a smooth transformation are often considered to be noise.

The impact in the scores of its non-detection is minimal;

3. In conjunction with experiments 6.3.3, we verified that in the rare cases where the stfX PSR

service introduces noise, it frequently affects translations;

4. The stfX is capable of analysing and correctly detecting the majority of the transformations

in complex and chaotic scenarios. However, the inclusion (or not) of noise in the quantifica-

tion of the occurring spatiotemporal transformations plays one of the most important roles

in the framework’s efficiency. When noise is produced, higher thresholds and noise filters

should be employed.

6.3.8 Summary

Sections 6.3.1 to 6.3.7 detail the performed experiments, while also analysing the obtained results

and discussing them. Experiment 6.3.1 determines the stfX capability of detecting singular trans-

formations. Afterwards, experiment 6.3.2 ascertains that the stfX can correctly identify the trans-

formations in a sequence of non-multiple change features (no two features of interest co-occur).

Subsequently, experiment 6.3.3 we studied how small changes in the thresholds (like choosing a
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value slightly below the transformation of interest) impact the results obtained. Experiment 6.3.4

studied the stfX performance on a scenario with co-occurring transformations. The results showed

that choosing minimal thresholds led to a significant improvement in the quality of the frames

retrieved by the stfX. Next, experiment 6.3.5 identifies the quality of the results retrieved by the

service responsible for quantifying spatial change features as a fundamental impact factor on the

scores obtained. After, experiment 6.3.6 ascertains that the absence of noise filters decreases the

stfX performance. Finally, experiment 6.3.7 helped corroborate many of the conclusions previ-

ously achieved while also determining that the stfX can correctly detect the features of interest in

chaotic and complex scenarios, if the spatial features quantification service retrieves high-quality

results.

6.4 Assessment

In this section, and using the performed evaluation, we assess the work developed and analyse

to what extent the research objectives have been accomplished. Hence, we start by examining if

the devised solution satisfies all of the defined requirements. Next, we determine if the proposed

solution answers the identified research questions.

6.4.1 Solution requirements

Previously, in section 3.3, we defined the requirements that a solution needs to fulfil to address the

entirety of the problems presented in section 3.1. Therefore, and with the intuit of validating our

proposed solution, we analyse whether the presented requirements were fulfilled:

D1: Provide the end-user autonomy — By the usage of the API routes, validated through

unit tests UT1, the user can load its desired dataset. The dataset needs only to be defined

in JSON, and contain the attributes dataset and metadata (section 5.3). Moreover, when

retrieving the features of interest, the users can also set the thresholds parameters to express

their interests (validated through unit tests UT2 and UT5).

D2: Choose the spatiotemporal features that are analysed — By not including the thresholds

of a given transformation, the transformation is not analysed by the stfX. Unit tests UT5

validate this capability.

D3: For a spatiotemporal feature, define in which conditions the feature is of interest —
Achieved by the usage of thresholds. The values of the thresholds define the condition

for considering a spatiotemporal change feature as interesting. Experiments 6.3.3, 6.3.4

and 6.3.7 study how the usage of different thresholds affects the retrieved results.

D4: Cover the whole temporal range queried — ensured by the stfX capability of identifying

unimportant temporal ranges (subsection 5.2.2.5). Validated by unit tests UT6.
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D5: Retrieve changes of interest — All the experiments performed end up validating this re-

quirement. However, the ones with a primary focus on examining the retrieved features of

interest are experiments 6.3.1, 6.3.2, 6.3.4 and 6.3.7.

D6: Retrieve the values associated with the identified features of interest — To compute

metric M1, the values of the retrieved transformations are needed. Thus, since all experi-

ments make usage of metric M1 to evaluate the stfX performance, all experiments validate

this requirement.

Concluding, the proposed solution satisfies all of the identified requirements. It also becomes

relevant to highlight that not all of the unit tests and experiments are directly correlated to a re-

quirement. For instance, experiments 6.3.5 and 6.3.6 study the impact of distinct circumstances

on the stfX, without directly mapping to any requirement.

6.4.2 Research Questions

Through the development of the solution proposed in chapter 4, validated throughout the previous

sections of this chapter, we obtained the results that support the answers for the research questions

raised in section 3.2.

Contrary to the order by which they were presented in section 3.2, in this section, we start by

analysing the most specific research questions first.

RQ1: How to extract the spatiotemporal features occurring in the original representation?
By resorting to the solution presented in chapter 4, more specifically to section 4.2, spa-

tiotemporal features can be extracted from the original representation by quantifying the

spatiotemporal transformations occurring between successive temporal snapshots. With this

intent, in the stfX, for quantifying the core spatial transformations, such as translations, ro-

tations, and uniform scalings, a point set registration algorithm is used (subsection 5.2.1).

RQ2: How to find the spatiotemporal features that interest the user? Using the thresholds

mechanism, described in subsection 4.2.7 with a detailed explanation of the stfX approach in

subsection 5.2.2.2, the end-users can determine when a given transformation interests them.

A transformation, or set of transformations when considering accumulated thresholds, is

considered of interest if its value is superior to the threshold inputted by the end-user. With

this approach, by changing the values of the thresholds, end-users are capable of reflecting

their interests.

RQ3: How to assert if the two representations are equivalent? The change-based represen-

tation and the original representation are equivalent when the knowledge obtained by the

analysis of both representations is also equivalent. Considering the problem domain ad-

dressed in this work, the knowledge obtained from the original representation consists of

the spatiotemporal transformations that affect the phenomenon. Hence, to be able to assert

if the two representations are equivalent, we propose two complementary scoring metrics



96 Validation and Results

that analyse the correctness of the spatiotemporal transformations identified in the change-

based representation when having the original representation as ground-truth. The scoring

metrics are further detailed in section 6.2.2.

RQ4: How to automate the process? An automated process is a process that requires minimal

human assistance. Therefore, by making agnostic to the end-user the process of quantifi-

cation of spatiotemporal transformations, the verification of thresholds and other processes

like coalescing and noise filtering, the human interaction is reduced to the minimum. So, to

automate the process, user interaction must be reduced to situations where it is indispens-

able, namely, to provide the necessary input.

Having answered the more specific research questions, we answer the broader research ques-

tion.

RQ: Considering a spatiotemporal phenomenon, how to automatically detect, extract and
represent the changes of interest that encompass equivalent knowledge to the original
representation? The main actions necessary to generate a change-based representation

that encompasses equivalent knowledge to the original representation are: (1) to extract the

spatiotemporal transformations occurring between temporal snapshots and (2) to filter the

extracted transformations accordingly to the inputted thresholds of interest. The performed

experiments, namely experiments 6.3.3, 6.3.4, 6.3.5 and 6.3.7, proved that both the service

responsible for quantifying the spatial transformations between snapshots, as well as the

inputted thresholds, represent the factors that mostly impact the quality of the resulting

change-based representation. Consequently, these are the factors that have the most impact

on how equivalent is the change-based representation to the original representation.

6.5 Summary

In this chapter, we presented the validation methodology employed, described the performed ex-

periments as well as the obtained results and assessed if the requirements and research questions

raised in chapter 3 have been satisfied/answered.

Section 6.1 describes the unit tests performed and the component of the stfX that each intends

to validate.

Section 6.2 presents the pipeline for generating the experiments as well as two complemen-

tary novel metrics utilised to evaluate the results obtained: metric M1 evaluates the resemblance

between the obtained phenomenon and the ground-truth final representations. In contrast, metric

M2 evaluates the correctness of the identified features of interest and respective temporal ranges.

Section 6.3 details the performed experiments, while also analysing the obtained results and

discussing them. A total of seven distinct experiments were performed, with various intents: (1)

validate the stfX capability of the detecting singular transformations; (2) ascertain that the stfX can

correctly identify the transformations in a sequence of non-multiple change features; (3) study how
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small changes in the thresholds impact the results obtained; (4) examine the stfX performance on a

scenario with co-occurring transformations; (5) determine how the quality of the results retrieved

by the service responsible for quantifying spatial change impacted the results; (6) ascertain that the

absence of noise filters decreases the stfX performance; and (7) determine if the stfX can correctly

detect the features of interest in chaotic and complex scenarios.

Finally, section 6.4 verified that the devised solution and corresponding prototype successfully

satisfy all the requirements established in section 3.3. Moreover, the research questions raised in

section 3.2 have also been answered.
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Chapter 7

Conclusions

This chapter presents this dissertation’s conclusions. Section 7.1 describes the findings obtained

at each step of the research pipeline. Next, section 7.2 describes the most significant contributions

resulting from this work. Finally, section 7.3 details the identified research lines of potential value

stemming from the developed work.

7.1 Conclusions

The fast development of technological devices capable of collecting spatiotemporal data leads

to the necessity of spatiotemporal data mining frameworks, capable of automatically extracting

information of interest to the end-user, from ever-growing data. Considering the vast domain of

spatiotemporal data mining, we focus on the more specific field of change detection, where the

knowledge comes from being able to detect, extract and represent changes affecting phenomena.

From the literature review, we determined that the currently available frameworks were not suited

to address this dissertation’s main problem: the identification of the changes that are of particular

interest to the end-user, occurring on spatiotemporal phenomena. Hence, with the intent of further

examining the problem, we mapped it into the research question: how to automatically detect,

extract and represent the changes of interest that encompass equivalent knowledge to the original

representation?

Through the literature review performed, presented in chapter 2, we distinguished a plethora

of spatiotemporal change features that can possibly be identified when detecting changes between

successive temporal snapshots. Spatial transformations, like translations, rotations and so forth,

are the more basilar change features on which many other features build upon. Moreover, for each

identified spatiotemporal change feature, we also identified an adequate method for its computa-

tion. Once more, considering the case of spatial transformation detection, point set registration

algorithms appeared as the most appropriate approach. To distinguish the change features of

interest, thresholds of interest — limits imposed by the end-user above which features are con-

sidered as interesting — appeared as the most suitable approach. Regarding similar frameworks,

99
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we concluded that the approaches most closely addressing the problem were either too restric-

tive regarding the spatiotemporal data domain or only able to identify a subset of spatiotemporal

changes.

Seeing that the state-of-the-art frameworks analysed are unable to solve this dissertation’s

problem and provide the answer to the respective research question, we proposed a conceptual

framework that we consider effectively addresses these issues. This original conceptual framework

focuses on the computation of different spatiotemporal change features, using methods like point

set registration algorithms for spatial features, similarity measures for deformation, kinematics

physics fundamentals for movement-derived features, among others. Thresholds of interest are

employed to distinguish the spatiotemporal change features of interest.

With the intent of verifying if the proposed conceptual framework effectively answers the

identified research question, thus presenting a viable solution for this dissertation’s problem, we

developed the SpatioTemporal Features eXtractor (stfX): a context-agnostic prototype capable of

identifying spatiotemporal change features of interest. The stfX can detect rigid transformations

and changes of direction and further filter them using thresholds of interest provided by the end-

user. Moreover, the stfX provides some additional capabilities, namely noise filtering and coalesc-

ing of similar temporal ranges, with the intent of improving the quality of the results retrieved.

Towards assessing the stfX efficacy and ability to comply with the established requirements,

we validated it using unit testing as well as various experiments. To the best of our knowledge,

there is not a single framework with a similar nature to ours. Therefore, finding a method to

evaluate the experiment’s results proved a challenge. Hence, we designed two novel validation

metrics, metrics M1 and M2, that when employed in conjunction can provide a comprehensive

analysis of the results retrieved. Each experiment was then scored using both metrics. The results

obtained allowed us to conclude that the stfX is highly dependent on the accuracy of the point

set registration algorithm chosen to compute the spatial transformations. When the algorithm

provides high-accuracy estimates of the transformations occurring, the stfX is capable of detecting

the change features correctly on all tested scenarios. Moreover, noise filtering and coalescing

proved to have a significant impact on the quality of the retrieved results.

From the obtained results, we conclude that the stfX meets all of the established requirements

as well as answers this dissertation’s main research question (for the presented test scenarios,

for the features that the stfX can compute). The main actions necessary to generate a change-

based representation of interest encompassing equivalent knowledge, include first computing the

spatiotemporal change features and then filtering those according to the provided thresholds of

interest. The quality of the resulting change-based representation is strongly impacted by both

the provided thresholds as well as the accuracy of the modules responsible for computing the

spatiotemporal change features.
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7.2 Contributions

With this work, we aimed at contributing to the spatiotemporal data mining domain and laying out

a foundation for others to work upon. As such, the main contributions of this dissertation are the

following:

• Conceptual framework: a solution that presents the general guidelines for implementing a

system capable of retrieving all of the spatiotemporal change features identified in chapter 2,

according to the provided user interests;

• SpatioTemporal Features eXtractor (stfX): an open-source implementation of a proto-

type, built to be easily extensible, that defines an underlying foundation for the conceptual

framework proposed;

• Metrics M1 and M2: Novel evaluation metrics that, when used in conjunction, can provide

a comprehensive analysis of the accuracy of the methods employed to generate the change-

based representation of interest.

• Benchmarks: Considering the absence of similar frameworks, the results obtained by the

stfX can be utilised as benchmarks for future frameworks having similar objectives.

The stfX open-source implementation, the resources necessary to run the experiments de-

scribed in chapter 6, as well as the stfX results are available at [12].

7.3 Future work

Seeing that this work represents a pioneering approach to the development of a framework capa-

ble of quantifying the spatiotemporal change features of interest to the end-user, there is a vast

set of research streams that can be further explored or examined. Hence, possible future work

encompasses:

1. Test the stfX on real-world datasets: In order to further corroborate the proposed solution

and the respective prototype, it is appropriate to study the stfX performance in non-synthetic

datasets;

2. Extend the stfX: As shown in chapter 5, the current stfX version does not implement all

of the features of the framework proposed in chapter 4. Hence, the remaining spatiotem-

poral change features can be implemented using the methodologies identified in chapter 4,

such as: voting schemes manipulating multiple similarity metrics for deformation analysis,

combinatorial analysis for identifying spatiotemporal patterns and trends, and so forth;

3. Support new input data types: As shown in section 5.3, the current stfX version only

accepts JSON as input. Therefore, other spatiotemporal data formats, like shapefile (.shp)

or well-known text geometry (.wkt), could be directly included in the framework;
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4. Add support for handling multiple phenomena: The current stfX version accepts a JSON

describing the evolution of a single phenomenon. However, this approach limits the spa-

tiotemporal change features that can be identified, as it does not support existential change

features. By extending stfX with the capability to handle multiple phenomena, it becomes

possible to detect this subset of spatiotemporal change features.

5. Study noise filtering: In the current stfX version, noise filtering is achieved using thresholds

of interest. However, it is yet to be assessed if this is the optimal approach;

6. Further explore point set registration algorithms and compare results: To support the

selected point set registration algorithm, we based ourselves in the study performed by Hao

et al. [100]. However, considering our restriction of pairwise and parametric algorithms

supporting affine registration (as shown in section 4.2.1), a more detailed study over that

family of algorithms could prove beneficial;

7. Test using 3D data: Augment the prototype to support 3D data. Many of the stfX com-

ponents already support the additional dimension (e.g. point set registration algorithm).

However, going from 2D to 3D is not straightforward, and further study is necessary to

ensure prerequisites, conditions and correct handling of 3D data;

8. Investigate thresholds of interest representation: All of the spatiotemporal change fea-

tures being parsed by the stfX are mapped into a single threshold value (e.g. rotation into the

rotation angle, uniform scaling into the scaling factor, etc.). However, for certain spatiotem-

poral change features (e.g. shear), the modulation into a single threshold value is non-trivial.

We foresee describing thresholds using preponderance vectors as a viable possibility. How-

ever, this is an area needing further investigation;

9. Examine parsing of thresholds: Despite making sense from a conceptual point-of-view,

the logic for parsing thresholds being currently employed in the stfX (e.g., resetting the

other thresholds’ accumulators upon surpassing a threshold), presented in section 5.2.2.2,

needs further testing and experimentation, with the intent of determining if it is the optimal

approach;

10. Interdependent thresholds: Allow the definition of more complex thresholds, by using

interdependencies between change features (e.g. only retrieve uniform scalings that co-

occur with rotations);

11. Automatic parameter tuning: With the inclusion of additional spatiotemporal change fea-

tures, the number of parameters to be defined by the end-user will vastly increase. Hence,

studying a mechanism for the automatic tuning of the thresholds of interest stands out as a

promising research stream. For the automatic tuning of thresholds, metric M1 can represent

the loss function used for optimising the parameters, as it does not require any previous

knowledge of the occurring change features.
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