
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Data Modeling for the Internet of
Things

Bruno Rafael Leite Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ana Cristina Costa Aguiar

July 5, 2020

Data Modeling for the Internet of Things

Bruno Rafael Leite Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

July 5, 2020

Abstract

Internet of Things (IoT) has become more popular in recent years and it is expected that by 2022
there will be 75 billion IoT connected devices generating data. These devices include sensors,
mobile phones and other smart objects from areas ranging from home automation to healthcare and
smart manufacturing. One of the challenges in developing IoT applications is the representation
and storage of this data. Every IoT platform is creating its own model for modelling device
information, which makes interoperability between devices and data exchange in this environment
more difficult.

Accordingly, the main objective in this work is to define a meta data model which is compliant
with the current standards in the IoT area. Based on the exploration of these standards, a meta data
model was chosen, where it provides semantics on top of the raw data stored, in order to obtain
more information for the user.

The second objective is to create a mechanism to recognize sensor data without user input. The
system supports all the observation values from the disparate data sources with appropriate meta-
data, relating to the magnitude of a physical quantity denoted by a unit of measure. Consequently,
this work needs to have a semantically rich way of registering these properties.

Therefore, it is necessary to store the data correctly so it can be queried in an optimized manner.
Also, not only the data generated from the IoT devices, but also the metadata associated should be
stored. Thus, performance and a flexible database are important factors to consider.

Finally, an evaluation of the proposed meta-model and system architecture was conducted.
Different sensors were used to test the accuracy of the system, namely the possibility to register
different information and label it correctly.

Keywords: IoT, meta-model, interopatibility, semantics, data model, ontology, database, sensors

i

ii

Resumo

A Internet das Coisas (IoT) tornou-se predominante nos últimos anos e estima-se que em 2022
existam 75 bilhões de dispositivos IoT conectados gerando dados. Esses dispositivos incluem
sensores, dispositivos e outros objetos inteligentes, de áreas que vão da automação residencial a
cuidados de saúde e fabricação inteligente. Um dos desafios no desenvolvimento de aplicaçōes
de IoT é a representação e o armazenamento desses dados. Isto porque todas as plataformas de
IoT estāo a criar o seu próprio modelo para modelar informações de dispositivos, o que dificulta a
interoperabilidade entre esses e a troca de dados.

Consequentemente, o principal objetivo é definir um meta-modelo que seja compatível com os
padrões atuais na área de IoT. Com base na exploração desses padrões, modelos compartilhados
podem ser criados para permitir aos sistemas a troca de informaçāo, fornecendo também semântica
sobre os dados brutos e a correlação dos mesmos.

O segundo objetivo é criar um mecanismo para reconhecer os dados do sensor sem o utilizador
ter de fornecer informaçāo ao sistema. Isso significa que o sistema suporta todos os valores de
observação das fontes de dados diferentes com metadados adequados e precisos, relacionados
à magnitude de uma quantidade física indicada por uma unidade de medida. Desenvolveu-se e
aplicou-se uma metodologia consistente que produz uma maneira semanticamente rica de registrar
essas propriedades.

Portanto, é necessário otimizar o armazenamento e o acesso aos dados; não apenas os dados
gerados a partir dos dispositivos IoT, mas também a meta data dos mesmos. Assim, a escala-
bilidade dos dados e uma base de dados flexível são fatores importantes a serem considerados.
Finalmente, uma avaliação do meta-modelo proposto e da arquitetura do sistema foi feita. Difer-
entes sensores forāo usados para testar o desempenho do sistema, nomeadamente a possibilidade
de alterar a informaçāo e a escalabilidade dos dados.

Keywords: IoT, meta-model, interopatibility, semantics, data model, ontology, database, sensors

iii

iv

Acknowledgements

First, I would like to thank my supervisor, Ana Aguiar for all the help and guidance during all the
phases of the work. I would also like to express my gratitude to all the people in the Domatica
company for their orientation and more specifically to Pedro Santos and Ricardo Tavares.

To all my colleagues I met in the past five years, they helped me grow with their support,
motivation and good spirit.

To my family, I want to express my gratitude for their genuinely support, love and encourage-
ment.

To all the aforementioned, my sincerest thanks.

Bruno Rafael Leite Ribeiro

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goal . 2
1.3 Dissertation’s Structure . 2

2 Literature Review 5
2.1 Types of interoperability . 5
2.2 Communication Protocol . 6
2.3 Database Architecture . 7

2.3.1 SQL . 8
2.3.2 NoSQL . 8
2.3.3 TSDB . 9

2.4 Data Models . 9
2.4.1 Eclipse Vorto Project . 9
2.4.2 Fiware Initiative . 10
2.4.3 SensorThings API . 12

2.5 Ontologies . 12
2.5.1 SSN . 13
2.5.2 OneM2m Base . 14
2.5.3 SAREF . 15

2.6 QUDT ontology . 15
2.7 SensorThings API Implementations . 15

2.7.1 FROST-Server . 16
2.7.2 52North . 16
2.7.3 SensorUp . 16
2.7.4 GOST . 17
2.7.5 Mozilla . 17
2.7.6 CGI Kinota Big Data . 17

3 Problem Statement and Solution Proposal 19
3.1 Problem . 19

3.1.1 Choice and implementation of a meta data model 19
3.1.2 Autonomous registration . 20

3.2 Solution Proposal . 20
3.2.1 System Architecture . 21
3.2.2 InfoReceiver . 22
3.2.3 System Logic . 23
3.2.4 Discover Property . 23

vii

viii CONTENTS

3.3 Conclusions . 24

4 Choice and implementation of a meta data model 25
4.1 Meta Model Choice . 25
4.2 Sensor Things API implementations . 26
4.3 Structure . 26

4.3.1 Endpoints . 27
4.3.2 Register and give contextual information 28
4.3.3 Upload readings . 29
4.3.4 Filtering information . 29

4.4 Conclusions . 29

5 Autonomous Registration 31
5.1 QUDT . 31

5.1.1 Unit . 31
5.1.2 Quantity Kind . 32

5.2 Architecture . 32
5.3 String matching algorithms . 34

5.3.1 Hamming distance . 35
5.3.2 Levenshtein distance . 36
5.3.3 Jaro-Winkler . 38

5.4 Conclusions . 40

6 Evaluation 41
6.1 Experiment . 41
6.2 Dataset Description . 42
6.3 Perfomance Metrics . 43

6.3.1 Confusion Matrix . 43
6.3.2 ROC Curve . 44

6.4 Results . 45
6.4.1 Jaro-Winkler Algorithm . 46
6.4.2 Hamming Algorithm . 47
6.4.3 Levenshtein Algorithm . 47

6.5 Discussion . 49

7 Conclusion and Future Work 51

References 53

List of Figures

2.1 MQTT protocol with Domatica . 7
2.2 Different Types of Databases . 7
2.3 Eclipse Vorto Web Interface . 10
2.4 Fiware Platform . 11
2.5 SensorThings Data Model . 12
2.6 SSN Ontology . 13
2.7 oneM2M Base Ontology . 14
2.8 QUDT: basic structure . 16

3.1 System architecture . 21
3.2 Sequence diagram . 22
3.3 Finding entities not registered . 24

4.1 Frost relational model . 27
4.2 Server structure . 27
4.3 Register datastream . 28
4.4 Upload observation . 29

5.1 QUDT: Unit . 32
5.2 QUDT: QuantityKind . 33
5.3 Discover Property Flowchart . 34

6.1 Dataset head . 42
6.2 Unit Graph Bar . 43
6.3 Confusion matrix . 44
6.4 ROC Curve . 45
6.5 ROC Curve - Jaro-Winkler . 47
6.6 ROC Curve - Hamming . 49
6.7 ROC Curve - Levenshtein . 49

ix

x LIST OF FIGURES

List of Tables

4.1 Comparison of data models . 26

6.1 Results experiment . 45
6.2 Breakdown string matching units . 46
6.3 Results Jaro-Winkler . 47
6.4 Confusion matrix Jaro-Winkler . 48
6.5 Results Hamming . 48
6.6 Confusion matrix Hamming . 48
6.7 Results Levenshtein . 48
6.8 Confusion matrix Levenshtein . 50

xi

xii LIST OF TABLES

Abbreviations

API Application Programming Interface
FN False Negative
FP False Positive
FPR False Positive Rate
HTTP Hypertext Transfer Protocol
IoT Internet of Things
JSON JavaScript Object Notation
M2M Machine to Machine
MQTT Message Queue Telemetry Transport
NoSQL Not only SQL
OGC Open Geospatial Consortium
OSS Operations Support Systems
OWL Ontology Web Language
QUDT Quantities, Units, Dimensions and Types
REST Representational State Transfer
RDF Resource Description Framework
ROC Receiver Operating Characteristic
SAREF Smart Appliance REFerence
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSN Semantic Sensor Network
TN True Negative
TP True Positive
TPR True Positive Rate
TSDB Time Series Database
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
Wi-Fi Wireless Internet

xiii

Chapter 1

Introduction

1.1 Context

The term Internet of Things (IoT) was first mentioned by Kevin Ashton, around 1999 [5]. Since

then, Internet of Things had major developments and it is estimated that in 2022 there will be

around 75 billion devices generating information. This data is from the most varied areas, ranging

from health, transport, home automation or environment [28].

Nowadays, the IoT market is fragmented, because there is a high level of heterogeneity of

device protocols, network connectivity, application protocols, standards, data formats and so on.

Each IoT platform is creating its own data models to store that information [16]. The concept

of IoT is already established and implementations are multiple and there are a widely accepted

standard models to allow large-scale interoperability. Standardization projects are working on

defining standards and protocols and their adoption requires consensus from users and developers

through testing. Currently, there are several proposed open standard solutions already available,

each differing slightly in functionality, specialization and structure, but with interoperability as the

main objective.

This work was proposed and hosted by Domatica1, which is a portuguese company specialized

in IoT technology, focused on bridging the gap between the physical world and the logical world

of software. The company was created in 2002 and today there are 46 countries currently with

their technology. Currently, there are more than 1 million devices connected and more than 1

billion data stream per day, using the technology.

Thus, a major challenge is the question of how to manage and store this data in a way that meets

the requirements of the applications in real time. There should be an emphasis in the performance

of the database, because this performance is directly related to the applications using this data.

1https://www.domatica.io

1

2 Introduction

1.2 Motivation and Goal

The motivation for this work is to advance a little further on the field of data modeling in IoT and

to look at potential open standard solutions in the IoT area.

This master thesis aims to allow the creation of a meta data-model compatible with these

standards, in order to allow objects to communicate, that is, interoperability between devices.

This will provide the existence of semantics, in order to obtain more information regarding these

devices and the data they provide. Having all of the data stored from the devices in itself doesn’t

satisfy all the necessities. In order to create a system where seamlessly all the devices seem to be

connected, there is the need to build a common structure that contains information about all the

other IoT devices and future developers can access this data.

The second objective is to create a mechanism to recognize sensor data without user input.

This means, the system supports and tries to find the physical quantity denoted by a unit of mea-

sure, from the data coming from the sensors. Removing the user from this process will increase

the system performance, allowing him to focus on other necessities and even gaining more infor-

mation about the data properties compared to a manual process.

At the end, the performance of the system was evaluated, by conducting some experiments

with sensors from Domatica and registering them into the system. The goal is to evaluate the

performance of the meta data model and to test the accuracy of the mechanism implemented in

registering these sensors.

1.3 Dissertation’s Structure

The dissertation is divided in the following chapters:

1. Introduction 1

The introduction chapter gives an overview of the overall context of the dissertation, moti-

vation and goal of the developed work.

2. Literature Review 2

This chapter refers to the state of the art of the work and it can be divided in two sections

regarding data modeling for internet of things. The chapter contains two ways that are

different but complementary approaches to solve the issue in question.

3. Problem Statement and Solution Proposal 3

In this chapter, the methodology of this work is presented. Furthermore, the solution to the

issues in question are shown, with the whole architecture of the project.

4. Choice and implementation of a meta data model 4

This refers to the data model standard chosen (SensorThings API) and it’s implementation.

Here, it is explained how it works and how it connects to the rest of the project.

1.3 Dissertation’s Structure 3

5. Autonomous Registration 5

The autonomous registration chapter contains the unit ontology used and its features. This

chapter contains a detailed architecture of the solution to the registration process and all the

algorithms used.

6. Evaluation 6

This chapter contains the experimental results obtained and how these experiments were

performed. These experiments will evaluate both of the two objectives of this work. Then,

a discussion of the results is presented.

7. Conclusion and Future work 7

The conclusion chapter will sum up the work done, and propose future additions to this

work, that could be made in the future, in order to improve the project.

4 Introduction

Chapter 2

Literature Review

This chapter is divided in two parts. First, it is important to look at how the main IoT organizations

present their data models and the main interoperability problems related. Afterwards, the topic of

ontologies will be focused and how they can be used to achieve semantic interoperability. In all of

them, examples will be provided and their specifications will be analysed.

2.1 Types of interoperability

The IEEE defines interoperability as “the ability of two or more systems or components to ex-

change information and to use the information that has been exchanged” [13].

However, this issue of interoperability can have different levels. Standard organizations and

open source communities have been working to address interoperability issues in different parts or

levels [22]. According to [23], interoperability in IoT can be divided in different categories: device

interoperability, network interoperability, syntactical interoperability, semantic interoperability,

and platform interoperability.

• Device interoperability

Device interoperability refers to enable the integration heterogeneous communication tech-

nologies and standards supported by different IoT devices. These devices can be separated

in two categories: “low-end” and “high-end”. The high-end IoT devices have more compu-

tational capabilities such as Raspberry Pi and smartphones. On the other hand, the low-end

IoT devices have less processing power. The standard communication protocols used for

smart devices are WiFi, 2G/3G/4G, LoRa ANT+, ZigBee. However, not all smart devices

can implement all these communication technologies.

• Network interoperability

5

6 Literature Review

Network interoperability relates to each system being able to exchange messages with other

systems through various types of networks. The network interoperability level should han-

dle issues such as addressing, routing, resource optimization, security, QoS, and mobility

support.

• Syntactical interoperability

This interoperability refers to operate between different data formats in IoT systems. This

happens, when the sender’s encoding rules are incompatible with the receiver’s decoding

rules. To solve this problem, web technologies such as HTTP, MQTT, REST and SOAP

architecture of the World Wide Web were proposed. The content of the messages need to be

serialized to be sent over the channel and the format to do so (such as XML or JSON).

• Semantic interoperability

The data models and schemas used by different sources are usually dissimilar and not al-

ways compatible. This is the main level of focus of the work. Semantic interoperability is

achieved when interacting systems assign the same meaning to part of the data exchanged.

To solve this, it is possible to use ontologies.

• Platform interoperability

Currently IoT providers like Amazon AWS IoT, Apple HomeKit, Google Brillo and others

are providing different operating systems (Oss), programming languages, and data struc-

tures. The consequence is that developers need to obtain skills and knowledge to deal with

each different platform specific APIs and information model, because they vary from each

other.

Even though, there are a great number of types of interoperability in IoT, the focus of this work

will be mainly regarding semantic interoperability. To accomplish this objective, it is possible to

use data models with context-awareness or use an ontology.

2.2 Communication Protocol

Communication is one of the main elements of IoT because there is the need to exchange informa-

tion between devices [24]. As stated before, the standard communication protocols used for smart

devices are WiFi, 2G/3G/4G, LoRa, ANT+, ZigBee. However, after the information is received

from these devices into the system, Domatica uses another protocol, namely MQTT.

The MQTT protocol implements many levels of Quality of Service and has a high level of

efficiency. This protocol is based on the concept of topics; to which clients can publish updates or

subscribe for receiving updates from other clients, in order to exchange information.

The interaction of the application with Domatica is represented in Figure 2.1. First, all the

sensors send their data to the Domatica, where the information is processed. Then, the application

2.3 Database Architecture 7

Figure 2.1: MQTT protocol with Domatica

takes the role of the subscriber receiving messages, containing the data processed, from a MQTT

broker from Domatica.

With increasing demand, MQTT libraries now support iOS and Android mobile platforms,

major IoT development platforms (eg Arduino) and different programming languages. The MQTT

community claims the concept of a publication/subscription protocol is the main component for

building the future of IoT [12].

This architecture provides a data-oriented protocol, which is more suitable for IoT and can

also reduce the burden on a restricted device when exchanging messages. Sometimes, as the pub-

lisher and the subscriber do not know each other, there is the need to implement an authentication

method, to secure the communication and validate the sender and recipient nodes [8].

2.3 Database Architecture

As referred before, IoT devices generate a large quantity of data, that needs to be saved. It is

then necessary to properly treat the storage and access of this data in an optimized way. There

are different ways to manage and store data in IoT, including a relational approach (SQL), non-

relational storage (NoSQL), which can be divided in four categories, and Time Series Database

(TSDB). As represented on Figure 2.2, it is possible to observe the different types of databases

with an example of each type.

Figure 2.2: Different Types of Databases

8 Literature Review

2.3.1 SQL

SQL is the standard language for dealing with relational databases. Some of the key advantages of

relational databases are that relational models structure the data in a table structure, a format that

most users are familiar with. This simplicity also helps users to retrieve certain data more easily

by querying through any table, combining related tables to filter out unwanted data and allowing

them to retrieve the data easier than navigating a pathway through a tree or hierarchy.

Another advantage of relational databases is that they have been the mainstream databases for

so long that most database managers are so used to them and take them for granted.

2.3.2 NoSQL

NoSQL ("not just SQL") is an approach to database design that includes a wide variety of data

models, including key-value formats, documents, columns and graphs; which are presented below.

This is an alternative to traditional relational databases in which data is placed in tables. These

database surged to tackle the issue of dealing with a lot of data types and having the need to build

powerful web and cloud applications for a distributed and quickly growing user base.

Many NoSQL stores compromise consistency in favor of availability, partition tolerance, and

speed. NoSQL databases are faster in completing simple tasks, but more time-consuming for

complex operations. These databases are more flexible and easily scalable.There are still some

disadvantages to this option, like the use of low-level query languages (instead of SQL, for in-

stance), lack of ability to perform ad-hoc joins across tables and lack of standardized interfaces.

• Key-Value Store

They represent the simplest type, where they basically store data following a unique key and

value model, where hash maps can be defined for these pairs of values.

• Document-Based Store

These types of databases, unlike the key-value type, have the characteristic of storing any

types of objects, which are called "documents". They use JSON to organize pairs containing

a unique document identifier and the document itself.

• Column-Based Store

Represent a model that works with lines and columns, where they are divided into multiple

nodes to provide scalability using hash functions.

• Graph-based

They represent a model that follows the graph theory, which works with nodes and edges,

and databases of this type deal with stored objects that are strongly interrelated, such as

when you want to discover the relationship between people in a social network

2.4 Data Models 9

2.3.3 TSDB

Time-series databases are designed to store data that changes with time and are collected over

time [2].

Initial uses of this technology were in industrial applications, which could efficiently store

measured values, but now it is used in support of a much wider range of applications.

These databases have an architectural design that makes them very different from other databases.

This includes storing and compressing data with timestamps and the ability to handle large time

series-dependent checks for many records and time series-aware queries.

2.4 Data Models

A data model can be described as an abstraction of real-world entities in an organized model of

data elements. A data model explains how these entities connect and relate between each other. It

also documents the way data is stored and retrieved.

Due to the diversity of data models, it becomes difficult to know each one to select and imple-

ment. To solve this, [19] proposed eleven criteria to better evaluate and compare alternative data

models. From these criteria, it was chosen in this work: simplicity, elegance and applicability of

safe implementation techniques and provision of schemas.

Data models vary from SDO (Standards Developing Organizations) to SDO. Some of the most

important SDO’s are HyperCat and Mozilla IoT.

• HyperCat - is an open, lightweight JSON-based hypermedia catalogue format for exposing

collections of URIs. Each HyperCat catalogue lists and annotates any number of URIs

(which typically identify data sources), each having a set of relation-value pairs (metadata)

associated with it. In this way, HyperCat allows a server to provide a set of resources to a

client, each with a set of semantic annotations.

• Mozilla IoT - The Mozilla IoT team created a Web of Things implementation, Mozilla

WebThings. This implementation is an open platform for monitoring and controlling de-

vices over the web and is composed by: WebThings Gateway and WebThings Framework.

WebThings Gateway is a software distribution for smart home gateways focused on privacy,

security and interoperability. WebThings Framework is a collection of reusable software

components to help developers build their own web things.

Therefore, there is a huge chance that one IoT device may have multiple data models, to cater

to each SDO. Next, it will be presented examples of some of the most used models [14] .

2.4.1 Eclipse Vorto Project

Eclipse Vorto 1 is an open source project, which has the goal manage abstract device descriptions

(information models). The models are mainly managed and shared in through a repository, called
1https://www.eclipse.org/vorto/

10 Literature Review

the Vorto Repository. Then, the users have the ability to upload models, search the repository for

what they need or to reuse these information models. An example of what this repository looks

like is presented in Figure 2.3. These models are written in Vorto Language, but they can be

exported in JSON.

Figure 2.3: Eclipse Vorto Web Interface

Moreover, device manufacturers upload their information models for users to download, us-

ing the Vorto Code generator. This is one of the main advantages of Eclipse Vorto, providing

interoperability and integrating the devices far more easily.

2.4.2 Fiware Initiative

The Fiware Initiative 2 is an open source platform created from a program called Future Internet

Private Public Partnership. The platform focus mainly in smart cities, however it is being also used

in industrial production cases and utilities projects. Here, the data models are divided in twelve

categories from the topic mentioned. Each data model is programmatically defined using a JSON

Schema. These data models are saved using a MongoDB database. It is open source and thus one

can improve the platform if necessary [26] .

The platform uses an IoT agent called NGSI to fix the problems of having different environ-

ments, where devices, containing different protocols, approach to a common format. The NGSI is

a standard set of rules to communicate with a RESTful API.

Another important component of the platform is the FIWARE Context Broker. This compo-

nent is responsible of the management of Context Information at large scale. This is used by the

applications or by potential consumers. It gathers and manages context information, processing

the information and informing external actors, which are enable them to actuate and therefore

change and improve the current context.

2https://www.fiware.org

2.4 Data Models 11

Figure 2.4: Fiware Platform

12 Literature Review

2.4.3 SensorThings API

The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect

the Internet of Things devices, data, and applications over the Web. The OGC SensorThings API

is an open standard, platform-independent, and perpetual royalty-free. [17]

The OGC SensorThings is different from the two IoT platforms mentioned above (Eclipse

Vorto Project and Fiware) because it is an abstract data model, instead of having a group of models

specific for the type of sensor. The data model consists of two parts: the Sensing and Tasking

profile. The first part (Sensing Profile) manages the IoT data and metada from heterogeneous IoT

sensor systems. The second part (The Tasking Profile) gives a standard manner for parameterizing

of task-able IoT devices, for example actuators or sensors.

Figure 2.5: SensorThings Data Model

Looking at Figure 2.5, it is possible to observe that the model is based on Observations and

Measurements.

2.5 Ontologies

Ontologies are defined as a “well-founded mechanism for the representation and exchange of

structured information” [27]. They are a set of objects and relationships, which represent an area

of concern. This way, they try to hide the heterogeneity of IoT. Ontologies extend the concept

of taxonomy, in order to capture relationships capable of supporting richer operations and higher

levels of reasoning, in a certain domain [20].

2.5 Ontologies 13

The goal of an ontology is to provide a semantic framework which can solve the problem of

heterogeneity and interoperability associated with domain ap- plications. This requires available

ontologies to be comprehensive, readable, extensible, scalable, and reusable [6].

In the context of IoT, many ontologies have been proposed. Some of those ontologies pro-

posed, are introduced as follows.

2.5.1 SSN

The W3C (World Wide Web Consortium), in 2012, proposed a standard ontology, SSN (Semantic

Sensor Network). This ontology describes the sensor resources and the data collected through

these sensors as observations [9].

However, there are some flaws to this ontology, namely it still fails to address several aspects

of the IoT data such as real-time data collection issues, dealing with the different standards for

measurement units and exposing sensors to services. Therefore, other ontologies derived from

this, have been proposed to overcome the flaws of SSN.

Figure 2.6: SSN Ontology

As observed in Figure 2.6 the SSN ontology can be seen from four main entities:

• Sensor: focusing on what senses, how it senses, and what is sensed;

• Observation: focusing on the observation data and related metadata;

• System: focusing on groups of sensors and their deployments;

• Feature and Property: focusing on particular properties or observations have were made

about a property.

This ontology takes a generously comprehensive perspective on what a sensor is: observes;

and permits such sensors to be portrayed at any degree of detail, for instance, permitting sensors

14 Literature Review

to not only be seen just as objects that assume a role of sensing, as well as allowing sensors to be

described in terms of their components and method of operation.

2.5.2 OneM2m Base

OneM2M base is an ontology that aims to provide a high level ontology for the IoT market.

Moreover, it has a minimal set of common knowledge that enable semantic interoperability. It is

designed using minimal number of classes, properties, and restrictions [10]. An example of the

oneM2M ontology is presented on Figure 2.7.

Figure 2.7: oneM2M Base Ontology

• Thing: a super class that refers to a device, platform, or service.

• Device refers to a device, which can have a particular task using its function.

• Service refers to the functions of a device in a communication network

• Function gives a meaning to a function of a device, for example, ‘turn on lights or turn off

lights’

• Operation refers to a procedure occurring in a communication network, for example, ‘pass

data to other device.’

• Command refers to the action that makes a function accomplish a particular task.’

• Aspect refers to metadata properties.

Several independent Open Source foundations and projects have been actively using oneM2M

standards: ATIS Open Source Internet of Things (OS-IoT) 3, OM2M4, etc.
3https://os-iot.org
4https://www.eclipse.org/om2m/

2.6 QUDT ontology 15

2.5.3 SAREF

SAREF (Smart Appliance REFerence) ontology exists in the domain of smart appliances and aims

to reuse and align concepts and relationships in existing appliance-based ontologies. The concept

of functions - one or more commands supported by devices (sensors) defined in SAREF - supports

modularity and extensibility of the ontology, and also helps in maintenance of the appliances [7].

The starting point for SAREF is the concept of a Device (for example, a led). Devices are

objects designed to perform one or more functions in different scenarios: homes, common public

buildings or offices. Then, a Device provides a Service, that represents a function to a network.

2.6 QUDT ontology

Ontologies provide the ability to reference the formal semantics of a model (i.e. a concept). This

in turn supports a level of interoperability and information exchange between systems and rep-

resentations of domain information [25]. In this case, a unit ontology provides a formal way of

specifying units explicitly, thereby avoiding tacit conventions that are prone to misinterpretation.

QUDT is an open source established to give semantic details to units of measure, quantity kind,

measurements and information types. QUDT is an ontology, which advocates for the usage of

norms to measure information communicated in RDF and JSON. A set of semantic web guidelines

is distributed by the World Wide Web Consortium (W3C) to encourage trade between frameworks.

The Resource Description Framework (RDF) gives the essential establishment. The RDF Schema

(RDFS) and the Web Ontology Language (OWL) give a lot of classes and properties that permit

different degrees of information portrayal, including Description Logic, to be expressed utilizing

RDF.

A set-up of semantic web standards is distributed by the World Wide Web Consortium (W3C)

to encourage exchange between frameworks. The Resource Description Framework (RDF) gives

the essential establishment. RDF Schema (RDFS) and the Web Ontology Language (OWL) give

a lot of classes and properties that permit different degrees of information portrayal, including

Description Logic, to be communicated utilizing RDF.

QUDT is comprised of several linked ontologies. QUDT ontologies are sorted out as assort-

ments of various kinds of diagrams, as recorded in the QUDT inventory. Jargon diagrams hold

various spaces of amounts and units, which import the fitting QUDT schemas [3]. The center plan

example of the QUDT philosophy appears in Figure 2.8.

2.7 SensorThings API Implementations

Regarding to SensorThings API, there are several implementations available as open source soft-

ware. Among the most popular are the following listed.

16 Literature Review

Figure 2.8: QUDT: basic structure

2.7.1 FROST-Server

FROST-Server (FRaunhofer Opensource SensorThings Server) 5 developed by Fraunhofer IOSB,

a German research institute, is an open source implementation of the SensorThings API stan-

dard [15]. This implementation addresses the need for an easy to use, standards-based data man-

agement and storage. It is written in the Java programming language. The application stores all

data in an extended PostGreSQL database extend with PostGIS.

2.7.2 52North

52North 6 provides an open source implementation containing a variety of interfaces. Therefore,

it has the OGC Sensor Observation Service (SOS) interface, and several other complementary

interfaces (for example, a non-standard REST API, specially optimized for the development of

lightweight client applications).

2.7.3 SensorUp

SensorUp 7, a Calgary-based startup, is considered a reference because it was the first to develope

a compliant SensorThings implementation. This implementation is Java-based and the data is

stored in a PostgreSQL database. In addition to server, SensorUp also provides documentation and

support to make SensorThings even easier to use for client developers, with a sandbox container.

5https://github.com/FraunhoferIOSB/FROST-Server
6https://52north.org
7https://sensorup.com

2.7 SensorThings API Implementations 17

2.7.4 GOST

GOST 8 developed by Geodan, an Amsterdam based geo-ICT company, is an open source imple-

mentation based on the programming language GO. However, GOST is still considered as alpha

software, meaning it is is not yet considered adequate for customer use.

2.7.5 Mozilla

Mozilla is has another open source implementation of SensorThings API standard and has al-

most passed all the OGC test suite tests. This implementation uses PostgreSQL for data storage.

Unfortunately, Mozilla development has not been active since February 2017.

2.7.6 CGI Kinota Big Data

CGI 9 developed a modular implementation of SensorThings called Kinota Big Data. Kinota is

designed to support different persistence platforms ranging from RDBMS to NoSQL databases.

The current implementation supports Apache Cassandra. Kinota implementation does not support

all the features and has only a subset of the SensorThings API requirements.

8https://www.gostserver.xyz
9https://github.com/kinota/kinota-bigdata

18 Literature Review

Chapter 3

Problem Statement and Solution
Proposal

The purpose of this chapter is to describe the problems that have been detected and how they are

planned to be resolved. The solution itself will be described in detail, as well as the definition of

the proposed architecture.

3.1 Problem

In this work, it is intended to build an application in order to store information from the sensors.

Moreover, not only the observations values are stored, but also the metadata associated to these

sensors needs to be stored. The system needs to provide semantics on top of the raw data, in order

to obtain more information. This means, future applications should be able to access the data in

a meaningful way, in order to make correlations even from different sensors. For example, in a

smart house the air conditioner, is only activated when a temperature sensor is below or higher

from a certain value.

The problem of this work can then be divided in two issues, namely Choice and implementa-

tion of a meta data model and Autonomous registration.

3.1.1 Choice and implementation of a meta data model

In the first step "Choice and implementation of a meta data model", a group of standard data

models, described in Section 2.4, need to be analysed and the one best fit for the project will be

chosen. These models will be compared against each other, with the criteria discussed previously.

After a data model is picked, the focus of the problem changes to choosing the best implemen-

tation for that choice. The choice has to have in count the information coming from the sensors.

This information comes in the form of data events, which need to be processed and stored in the

19

20 Problem Statement and Solution Proposal

database. A data event is an event coming from a broker, which has the value of the readings of a

sensor and all the information which identifies this sensor and metadata.

3.1.2 Autonomous registration

The second problem "Autonomous registration" represents a mechanism to recognize sensor data

without user input.

The capacity to support the annotation of observation values from various data sources with

sufficient and exact metadata is critical to accomplish interoperability; that is, depict unequivocally

the metadata the magnitude of a physical quantity indicated by a unit of measurement in a machine-

meaningful organization. Thus, it is imperative that when new data arrives, the observation values

are associated to an unique property, instead of creating a new one every time. Moreover, this

allows to comparing data with different units of measurement, but referent to the same properties.

The challenge is to develop a consistent methodology that could produce a semantically rich

way of registering these properties. When a new thing, sensor or property arrives in the form of

an event and they are not in the database, this system should be able to autonomously register

each of these entities. However, the system can not just create new entities, each time a new event

arrives because it will not only erase the concept of interoperability but also create problems of

performance. In this situation, there will be multiple entities for the same properties, and future

applications won’t be able to perform data correlation with this information.

In the event received, there is no property declared but only the observation value, the unit of

measurement of this observation and the name of the property of that specific sensor which varies

for the same properties. For example, event A may have:

"name": "Sensor 1 Temp"

"unit": "Kelvin (K)",

"symbol": "K",

and event B have:

"name": "Sensor Temperature"

"unit": "Celsius (oC)",

"symbol": "oC",

However, both of them are referring to the same property, which is Temperature, but the system

needs to find out that.

3.2 Solution Proposal

In order to solve the problems stated, it was created an application in NestJS1 to connect with

SensorThings API. Nest was developed by Kamil Myśliwiec and was designed as a framework to

1https://nestjs.com

3.2 Solution Proposal 21

rapidly build server-side applications. Myśliwiec was heavily inspired by Angular and it shows in

the structure of a Nest application.

This framework already facilitates further steps by defining the app architecture and providing

a standardized set of guidelines by defining an opinionated architecture. This architecture is com-

posed by a root module available, which will be used to configure database providers, to define

the controller, to add middleware, to add the pipe and guards, and to provide services.

Moreover, NestJS is a really well designed and even better-crafted framework. Nest abstracts

implementation details so that the same components can run across HTTP-based platforms, Web-

Sockets, and Microservices. This allows to the easy implementation of the MQTT protocol and

the other parts of this work.

3.2.1 System Architecture

The planned approach for this application can be summarized in the architecture in Figure 3.1. The

structure built is composed by several distinct components that interact with each other. There are

two components independent from the application, the Domatica Broker, which is responsible

for sending the events via MQTT and the SensorThings API, which contains as a database for

the data.

Figure 3.1: System architecture

However, it is still important to observe how the information coming from the broker is man-

aged in the application. Therefore, Figure 3.2, provides a sequence diagram an event. The three

components which shall be built in this application, as shown in Figure 3.2 are:

• InfoReceiver

• System Logic

• Discover Property

Accordingly, the breakdown of the event in the 3 components is presented in detail, following

the sequence diagram.

22 Problem Statement and Solution Proposal

Figure 3.2: Sequence diagram

3.2.2 InfoReceiver

This component is responsible for listening the events coming from the Domatica Broker. There-

fore, the InfoReceiver component will subscribe to the topic in which the events are coming. When

a new event arrives, it will contain several properties. These properties will be mapped and the

information is passed to the next component System Logic.

These events will be sent by the Domatica broker, via MQQT connection. The application

shall create a MQQT client, which will connect to the broker and receive the events. When an

event arrives, it is necessary to do a process of data cleaning and catalog the properties received

against the entities presented in the database.

An example of an event received is shown below:

"gateway": "23000A7E",

"device": "DEV0000004B",

"name": "INVERSOR 1 - CURRENT L2",

"interface": "iSTDInstMeter",

"unit": "Ampere (A)",

"symbol": "A",

"decimals": "4",

"unitMember": "instUnitID",

"\\n": "\\N",

"value": 5

And the breakdown of the important properties are the following:

• gateway refers to the gateway

• device refers to the device

3.2 Solution Proposal 23

• name refers the name of the property sent, this name can be different for same properties

• interface refers the interface

• unit refers the unit of measurement of the observation sent

• symbol refers the symbol of the unit of measurement

• decimals refers to the number of decimals cases the value of the observation contains

• value refers to value of the observation

Thus, each of these entities shall be matched against the database. This can be a simple process

in the case of the entities thing and sensor, but is more complicated in the entity property.

3.2.3 System Logic

This component handles the management of the events. However, the system needs to know if the

event is already previously registered in the database or is a new event. Therefore, the name of the

thing, name of the sensor, name of the property and the unit of measurement will be combined to

form and unique identifier to an event, which is named hashKey.

Furthermore, a request will be made to the SensorThings API server, to see if there is any

datastream with an identifier equal to this event. If this is true, it means all the entities related to

the event were previously registered and it is now possible to store the value of the reading sent.

The reading will be associated with this datastream and another request with the value can be sent

to the server.

Otherwise, some or all of the entities (Thing, Sensor, ObservedProperty) need to be registered.

To achieve this, three individual requests are sent to the server, in order to find the entities that are

not registered yet, as seen in Figure 3.3.

If the entity is registered, the request will return the identifier of the entity; otherwise a register

method will be called. The registration of the entities of a thing and sensor will be similar. Both

of them can be registered with POST HTTP requests to the SensorThings API.

The registration of an ObservedProperty is more complicated than the other two entities, be-

cause it is possible a property with the same characteristics is already stored in the database, but

not associated with the one in the event. Therefore, this step occurs in the Discover Property

component.

3.2.4 Discover Property

All the datastreams currently stored in the database will be analysed. In a first level of analysis,

the parameter of the symbol from the event will be searched in a unit ontology. In the second level,

it was used a string matching algorithm to query the ontology, by comparing the properties in the

event. A deep dive in this subject is made on Chapter 5.

24 Problem Statement and Solution Proposal

Figure 3.3: Finding entities not registered

3.3 Conclusions

This chapter focused on outlining the problem in question and the approach that was taken in

order to resolve it. Furthermore, it divided this problem into different issues, which are going to

be analysed more deeply in the following chapters.

The choice of a meta data model continues to be explained in Chapter 4, namely how it was

implemented and the features it provides. In Chapter 5, the autonomous registration topic and the

solution provided will be explored. Here, the algorithms used will also be explained, how they

interact with the system and some use case examples.

Chapter 4

Choice and implementation of a meta
data model

This chapter will describe the implementation details of the SensorThings API and the features it

provides to the application built. Also, some examples of these features being used are also shown

below.

4.1 Meta Model Choice

For this project, it is intended to have a meta data model, to store the information related to the

IoT paradigm. Eclipse Vorto Project provides different models for each device and the Fiware

Initiative also separates its models between categories. These alternatives might not be the best

option, due to the necessity of having a more abstract model.

One of the first ontologies created is the SSN ontology. This ontology still fails to address

several aspects of the IoT data such as real-time data collection issues, dealing with the different

standards for measurement units and exposing sensors to services, which is one of the main focus

of the project.

Another options are OneM2m and SAREF, which meet the criteria of being a simplicity model,

with minimal number of structure types, composition rules, and attributes and elegance, being as

simple as possible for a given direct modeling capability. However these data models are not well

suited to support storage of data generated through sensor activity. Thus, it fails in the criteria

of provision of schemas, which means a model should include structure schemas to permit data

definition.

Finally, the SensorThings API is a data model standard, which allows the storage of the data

from the sensors. It also passes the simplicity and elegance criteria, being a model easy to un-

derstand. Moreover, one of the benefits of this option is the documentation and support presented

25

26 Choice and implementation of a meta data model

Data models Simplicity Elegance Applicability
of safe im-
plementation
techniques

Provision of
schemas

OneM2m High High Medium Low
SAREF High High Medium Low
SensorThings
API

Medium Medium High High

Table 4.1: Comparison of data models

online, which allow to an easy implementation and integration and meeting the criteria of applica-

bility of safe implementation techniques. modeling uniqueness, simplicity, elegance.

4.2 Sensor Things API implementations

As explained before, the SensorThings API is an open standard, built on Web protocols and the

OGC Sensor Web Enablement standards, and applies an easy-to-use REST-like style. There are

several implementations of this standard, but the one chosen in this work was the FROST-Server.

The criteria in choosing an implementation option of the six options, exposed in Chapter 2, was

the available documentation and forums provided. Therefore, the options were reduced to FROST-

Server and SensorUp, because the others either lack documentation or the projects were not longer

being continued. However, SensorUp wasn’t a standalone application and FROST-Server was

chosen.

Looking, at the data model of the FROST-Server implementation in Figure 4.1, it is possible

to observe some differences to the original one. In this model, most of the entities contain an

attribute properties, which is a JSON object. This is a great advantage to the project, because it

allows to store the identifier hashKey in the Datastream entity, as explained in Chapter 3.

4.3 Structure

Firstly, it is necessary to understand how the data will be sent and organized within the Sensor-

Things API data model. A simple structure of this server can be shown in Figure 4.2.

In this structure, the application created will play the role of the client and will communicate

with RESTful HTTP methods with the server, in order to make requests and get the responses in

JSON format. The SensorThings API module will then be responsible of the management of the

data sent, which will be stored in the entities described.

The five SensorThings key components (Things, Datatreams, ObservedProperties, Sensors,

Observations) are interrelated, with the core entity linked with the rest being the Datastreams.

There is also two more components (Locations and HistoricalLocations), which can store metada

4.3 Structure 27

Figure 4.1: Frost relational model

Figure 4.2: Server structure

data for the locations of Things. In these entities of the database, only primary and foreign keys

have indexes on them.

4.3.1 Endpoints

Each entity in a SensorThings API has its unique ID and can be referred to by its unique URL

to create other entities, update their details and properties and also delete them. This makes data

management and system maintenance highly flexible and efficient [18].

Also, the data from the API can be easily viewed using a normal Web Browser. One can

simply navigate from one object to the next by clicking the URLs provided within the data. An

example of the view of the Datastream entities is provided in Figure 4.3, if the user went to the

url:

http://FROST-Server/v1.1/Datastreams

28 Choice and implementation of a meta data model

Therefore, the user, in order to manage these entities, must be aware of these endpoint ad-

dresses. After entering the endpoint address there will be issued a query in which it will retrieve

all the data referring to the ID exposed in the query.

4.3.2 Register and give contextual information

One of the most frequent queries is to save the value from an observation of a sensor. However, in

SensorThings API there is a decentralized architecture, which can make retrieve relevant informa-

tion easier that otherwise would not even be available. This type of architecture also creates the

need to have the values of observations associated with a Datastream, in order to access this meta

data.

In case a Datastream was not previously associated to an observation, it must be registered. As

stated before, the Datastream entity is also linked to 3 more entities (Things, Sensors, Observed-

Properties) and they also must be registered. In Figure 4.3, there is an example of a registration of

a datastream.

Figure 4.3: Register datastream

In order to add a new entry referring to a known Thing an HTTP POST request must be issued

to the target URL. The example JSON object creates a Thing with its mandatory properties (name,

4.4 Conclusions 29

description) and an additional field with properties if needed. For the other two entities (Sensors

and ObservedProperties), the same must be made.

When all the new entities are created, they are automatically assigned a unique ID. If an

entity is removed its ID remains stored in the system and cannot be used again. Furthermore,

some entities can be extended with their related entities as optional properties when creating them.

Therefore, when finally sending a request to register the new Datastream, the ID’s of the entities

related will also be in the body of the request.

4.3.3 Upload readings

After a datastream is associated to the observation in the server, it is possible to upload the value

of the reading. Accordingly, an HTTP POST request will be sent and the ID of that datastream

will also be in the body of the request. An example of this, is represented in Figure 4.4.

Figure 4.4: Upload observation

4.3.4 Filtering information

In many use cases, the response should only contain objects that pertain to some specific criteria.

The “filter” request parameter makes it possible to filter the data to be returned based on the values

of specific attributes of the requested data.

Thus, one could request all values above a certain threshold or measured between two specific

points in time. The following request returns all Observations where the result value is greater

than 5:

/FROST-SERVER/v1.1/Observations?$filter=result gt 5

Moreover, there are other filtering options such as (not equal, greater than, lesser than...) which

can also be used. Common logical operators like AND, OR, NOT are also available.

4.4 Conclusions

The functionalities described in this chapter focused mainly on the interaction of the application

with the server, presenting examples in how to operate with the SensorThings API. Moreover, it

was shown an overview of how the entities are stored in the SensorThings API database and how

they reference each other. In addition, the important features used in this work, were stated and

explained.

30 Choice and implementation of a meta data model

Chapter 5

Autonomous Registration

This chapter describes the mechanism, which provides interoperability for the user, namely in the

property of the sensors. First, an overview of the QUDT ontology is provided and later the system

architecture and the algorithms used are explained.

5.1 QUDT

In this work, it will be used two schemas from the QUDT ontology, namely qudt:Unit and qudt:QuantityKind.

QUDT contains 1537 units of measure implemented as instances of qudt:Unit, and 846 imple-

mented as instances of qudt:QuantityKind or its specializations. These schemas are provided by

two files, which are in Turtle format. A Turtle document allows writing down an RDF graph in a

compact textual form. It consists of a sequence of directives, triple-generating statements or blank

lines. Simple triples are a sequence of (subject, predicate, object) terms, separated by whitespace

and terminated by ’.’ after each triple [4].

5.1.1 Unit

A unit of measurement is a defined magnitude of a quantity, defined and adopted by convention or

by law, used as a standard for measuring the same kind of quantity.

QUDT recognizes variations of a given unit. For instance, "day", spoke to as a unit of estima-

tion, can allude to a normal sun based day, a sidereal day or a period identical to precisely 86,400

seconds. Every one of these alternatives to "day" shows up as a particular unit in cosmology.

In addition, QUDT recognizes units of various sorts that are usually alluded to with a same

name. For instance, "second" can allude to a proportion of time or an edge estimation. Once

more, each utilization shows up as a particular term in the cosmology, giving interoperability to

the system.

The vocabulary graph of units, currently contains 1537 instances and it is available as a Turtle

file. Each instance contains several parameters as described in the following example:

31

32 Autonomous Registration

Figure 5.1: QUDT: Unit

In this work, the properties symbol and label will be more relevant. These properties will be

compared against the ones received by the application and be used to match the unit of measure-

ment of an event to one in the ontology.

5.1.2 Quantity Kind

A QuantityKind characterizes the physical nature or type of a measured quantity. (E.g. length,

mass, time, force, power, energy, etc.). Then, derived QuantityKinds are defined in terms of a

small set known as Base Quantity Kinds using physical laws.

In the QUDT vocabulariy there are currently 846 instances of QuantityKind entities. An ex-

ample of an instance can be shown below:

In order to populate the ObservedProperty Entity of the SensorThings API, it will be used the

following match:

• name - qudt:label

• description - qudt:plainTextDescription

• definition - qudt:type

5.2 Architecture

The Discover Property component is responsible for the task of registering and labeling the Ob-

servedProperty of the data from the sensors.

5.2 Architecture 33

Figure 5.2: QUDT: QuantityKind

As stated before, two documents with the Unit and QuantityKind schemas are imported. This

component parses these files and queries them, in order to obtain the ObservedProperty associated

to an unit of measurement.

In Figure 5.3, there is a flowchart of how this mechanism works.

Firstly, the system will receive an unit of measurement(UoM) as an input, coming from an

event from a sensor. An example of an UoM could be:

"name": "INVERSOR 1 - CURRENT L1"

"unit": "Ampere (A),

"symbol": "A",

Then, the symbol of the UoM, in this case it is ’A’ will be compared against the property

qudt:symbol from all the instances of the Unit schema document. If there is a match this means

both the strings from the UoM and the an instance from the ontology are equal. Then, taking

advantage of the QUDT model, this instance will refer to a QuantityKind an it is possible to

access with the property qudt:quantitykind.

In case there is no direct match, the name of the UoM will be compared against the property

qudt:label from all the instances. This comparison will be made using string algorithms. These

algorithms explained in the following section, will give a score between 0-1, referring to the sim-

ilarity between the two strings. If the value of this score is greater than the value of the threshold

34 Autonomous Registration

Figure 5.3: Discover Property Flowchart

previously defined, then the quantity associated is added to the results list. When all the instances

were compared, the quantitykind with the highest value score from the results list is selected.

Finally, it is possible to populate the ObservedProperty and this component will return this

JSON. If there is no ObservedProperty found, the user will be notified and the component will

return a null value. Later, the user will have to manually enter in the server the correct values for

this event.

5.3 String matching algorithms

The problem of string matching is a recurrent problem in computer science, with applications to

spell checking, spam filtering, computational biology, etc [11].

The issue comprises in discovering strings that match a pattern approximately(as opposed to

precisely). The closeness of a match is estimated as far as the primitive operations important

to change over the string into a definite match [21]. This number is known as the edit distance

5.3 String matching algorithms 35

between the string and the pattern. The usual primitive operations are: insertion, deletion, substi-

tution.

Moreover, these algorithms can be classified in three different domains, based on the properties

of operations.

• Edit distance based: Algorithms falling under this category try to compute the number of

operations needed to transforms one string to another. More the number of operations, less

is the similarity between the two strings.

• Token-based: Here, the normal information is a set of tokens, as opposed to complete

strings. The thought is to locate the comparative tokens in the two sets.

• Sequence-based: In this category, The algorithms attempt to locate the longest grouping

which is available in the two strings, the a greater amount of these successions found, the

higher is the similitude score.

In this work, the objective is to compare individual groups of strings, which are very small and

consist of one or two words. The Token-based and Sequence-based domain are more appropriated

for longer texts. Thus, the algorithms used needed to belong in the Edit distance based domain.

Moreover, three algorithms were used and compared against each other: Hamming Distance, Lev-

enshtein distance and Jaro-Winkler.

5.3.1 Hamming distance

The Hamming distance between two strings of equivalent length is the quantity of positions at

which the comparing symbols are different. As such, this distance is figured by overlaying one

string over another and finding the spots where the strings differ. In a progressively broad setting,

the Hamming distance is one of a few string measurements for estimating the alter separation

between two arrangements. It is named after the American mathematician Richard Hamming.

For example, the Hamming distance between:

• "Text" and "Test" is 1, only change happens in the third character

• "Arow"and "Arrow" is 3, even though the string is only missing one ‘r’, the ‘row’ part is

offset by 1, making the edit distance 3.

In order to adapt the algorithm to this work, some changes were made. Firstly, both of the

strings being compared, were changed to upper case, to improve the accuracy. Second, the original

algorithm had some problems, namely: the algorithm measures the distance, while it is wanted the

similarity; both of the strings needed to be same length; and the final score is not provided in a

scale of 0-1.

1 hammingDistanceNormalized(str1, str2) {

2 // String to upper case.

36 Autonomous Registration

3 let s1 = str1.toUpperCase(),

4 s2 = str2.toUpperCase();

5 // String lengths.

6 const s1Length = s1.length,

7 s2Length = s2.length;

8 // Absolute distance between ‘s1‘ & ‘s2‘.

9 let distance;

10 // Helper variables.

11 let i, imax;

12 let dividend;

13 // Initialize stuff and may have to swap ‘s1‘/‘s2‘.

14 if (s1Length < s2Length) {

15 // Swap ‘s1‘ and ‘s2‘ values.

16 s1 = [s2, s2 = s1][0];

17 // Initialize distance as the difference in lengths of ‘s1‘ & ‘s2‘.

18 distance = s2Length - s1Length;

19 imax = s1Length;

20 // Initialize dividend by the larger string length.

21 dividend = s2Length;

22 } else {

23 // No need to swap, but do initialize stuff.

24 distance = s1Length - s2Length;

25 imax = s2Length;

26 dividend = s1Length;

27 }

28 // Compute distance.

29 for (i = 0; i < imax; i += 1) {

30 if (s1[i] !== s2[i]) distance += 1;

31 }

32 // Normalize the distance & return.

33 return 1-((dividend) ? (distance / dividend) : 0);

34 }

Listing 5.1: Hamming Algorithm

To fix the issues mentioned, a normalization of the algorithm occurred. In case strings are of

different sizes, the result is divided by the larger string length. The result is then subtracted to 1,

in order to obtain the similarity and not the distance. Therefore, the results to the examples used

before are:

• "Text" and "Test" is 0.75.

• "Arow"and "Arrow" is 0.4.

5.3.2 Levenshtein distance

Levenshtein distance is a measure of the closeness between two strings, the source string (s) and

the objective string (t). Levenshtein distance is named after the Russian researcher Vladimir Lev-

5.3 String matching algorithms 37

enshtein, who formulated the calculation in 1965. The distance is the number of deletions, inser-

tions, or substitutions required to change s into t. For example:

• "Text" and "Test" is 1, because one substitution (change "x" to "s") is sufficient to trans-

form s into t.

• "Arow"and "Arrow" is 0.4, because one insertion (add "r") is sufficient to transform s into

t.

1 levenshteinDistanceNormalized(str1, str2) {

2 str1 = str1.toUpperCase();

3 str2 = str2.toUpperCase();

4 if(str1.length == 0) return str2.length;

5 if(str2.length == 0) return str1.length;

6

7 const matrix = [];

8

9 // increment along the first column of each row

10 let i;

11 for(i = 0; i <= str2.length; i++){

12 matrix[i] = [i];

13 }

14

15 // increment each column in the first row

16 let j;

17 for(j = 0; j <= str1.length; j++){

18 matrix[0][j] = j;

19 }

20

21 // Fill in the rest of the matrix

22 for(i = 1; i <= str2.length; i++){

23 for(j = 1; j <= str1.length; j++){

24 if(str2.charAt(i-1) == str1.charAt(j-1)){

25 matrix[i][j] = matrix[i-1][j-1];

26 } else {

27 matrix[i][j] = Math.min(matrix[i-1][j-1] + 1, // substitution

28 Math.min(matrix[i][j-1] + 1, // insertion

29 matrix[i-1][j] + 1)); // deletion

30 }

31 }

32 }

33 return 1-(matrix[str2.length][str1.length]/Math.max(str1.length,str2.length

));

34 }

Listing 5.2: Levenshtein Algorithm

38 Autonomous Registration

As the Hamming distance, this algorithm also suffers some changes to adapt to the work.

Accordingly, both strings are changed to upper case, improving accuracy. Then, a normalization

also occurs to cater different size strings and the result of this distance is subtracted to 1, to obtain

the value of similarity. This results in:

• "Text" and "Test" is 0.8.

• "Arow"and "Arrow" is 0.8.

5.3.3 Jaro-Winkler

The Jaro–Winkler distance is a string metric measuring an edit distance between two sequences.

It is a variation proposed in 1990 by William E. Winkler of the Jaro separation metric. In order

words„ this calculations gives high scores to two strings if, (1) they contain same characters, but

within a certain distance from one another, and (2) the order of the matching characters is same.

The Jaro similarity formula between two strings is:

sim =
1
3
(

m
s1

+
m
s2

+
m− t

m
) (5.1)

Where,

• m s the number of matching characters (characters that appear in s1 and in s2)

• s1 is the length of the first string

• s2 is the length of the second string

• t is half the number of transpositions (compare the i-th character of s1 and the i-th character

of s2 divided by 2)

The only modification this algorithm suffered was the change of both strings to upper case.

1

2 jarowinkler(str1, str2){

3 let m = 0;

4 str1 = str1.toUpperCase();

5 str2 = str2.toUpperCase();

6 // Exit early if either are empty.

7 if(str1.length === 0 || str2.length === 0){

8 return 0;

9 }

10 // Exit early if they’re an exact match.

11 if (str1 === str2){

12 return 1;

13 }

14 const range = (Math.floor(Math.max(str1.length, str2.length) / 2)) - 1,

15 s1Matches = new Array(str1.length),

5.3 String matching algorithms 39

16 s2Matches = new Array(str2.length);

17 for (let i = 0; i < str1.length; i++){

18 const low = (i >= range) ? i - range : 0,

19 high = (i + range <= str2.length) ? (i + range) : (str2.length - 1);

20 for (let j = low; j <= high; j++) {

21 if (s1Matches[i] !== true && s2Matches[j] !== true && str1[i] ===

str2[j]){

22 ++m;

23 s1Matches[i] = s2Matches[j] = true;

24 break;

25 }

26 }

27 }

28 // Exit early if no matches were found.

29 if (m === 0){

30 return 0;

31 }

32 // Count the transpositions.

33 let k = 0;

34 let ntrans = 0;

35 for (let i = 0; i < str1.length; i++){

36 let j;

37 if (s1Matches[i] === true){

38 for (j = k; j < str2.length; j++){

39 if (s2Matches[j] === true){

40 k = j + 1;

41 break;

42 }

43 }

44 if (str1[i] !== str2[j]){

45 ++ntrans;

46 }

47 }

48 }

49 let weight = (m / str1.length + m / str2.length + (m - (ntrans / 2)) /

m) / 3,

50 l = 0;

51 const p = 0.1;

52 if (weight > 0.7){

53 while (str1[l] === str2[l] && l < 4){

54 ++l;

55 }

56 weight = weight + l * p * (1 - weight);

57 }

58 return weight;

59 }

Listing 5.3: Jaro-Winkler Algorithm

40 Autonomous Registration

If this algorithm is used in the same examples, the results are:

• "Text" and "Test" is 0.95.

• "Arow"and "Arrow" is 0.88.

5.4 Conclusions

This chapter gave a detailed explanation of how the process of registering and finding a prop-

erty occurs. The objective of this chapter was to propose and implement algorithms to solve the

registration of these properties. This goal was completed and in the diagram shown there is the so-

lution implemented about how the information coming from the sensors is handled and the return

property of this component.

Another key aspect is the different string matching algorithms utilized. There were three

algorithms implemented, but the accuracy of them still needs to be tested with real data, in order

to provide the best algorithm to this work. Moreover, a value of threshold for the algorithms

implemented still remains undefined. This parameter will be numerical defined in the next chapter.

Chapter 6

Evaluation

This chapter analysis the solution implemented in order to evaluate the goals initially established,

by conducting some experiments and analysing the results.

6.1 Experiment

For the correct validation of the proposed solution, an experiment was carried out focusing on

the evaluation of the handling of receiving events from a dataset from Domatica. The experiment

relates to the Discover Property component, which means it will test how well the system can

identify new properties, coming from new sensors. Here, all three algorithms will be compared

against each other, and a correct value of a threshold can be chosen. After all the experiments are

completed, a discussion of the results obtained is presented.

The experiment, done to evaluate the system built, consists in registering every entry of the

dataset in the SensorThings API server.

To achieve this, an application was built to simulate the Domatica Framework. It was also

created a Mosquitto Broker, to simulate the Domatica Broker. Mosquitto is a lightweight open

source message broker that Implements MQTT and is very easy to implement. This application

client will parse the CSV file with the dataset. For every entry, the application will create a request

and send it to the Mosquitto Broker, where the original application will be listening.

The objective is to test if the application can correctly store every event coming from the

dataset, without user input. By analysing the results of the experiment it is possible to check if

all entities were stored in the SensorThings API database, even the properties the system could

not recognize. As the experiment, sends multiple HTTP requests to the SensorThings API, if all

properties from the dataset are stored, it validates the web application.

Moreover, it was tested which entries were stored using only the unit symbol and which ones

needed to used the string algorithms. In this last case, the accuracy of the three algorithms is

41

42 Evaluation

evaluated, to later decide the best one to use. An entry is incorrectly stored, if the system can not

find a property associated with his unit of measurement or it associated to an incorrect property.

6.2 Dataset Description

The dataset which will be used to do the experiments, was provided by the Domatica company

and contains data about real devices and sensors, they are currently using. This dataset contains

692 entries and 9 attributes/features:

• gateway - id of the gateway

• device - id of the device

• name - name of the property of the sensor

• interface - type of interface

• unit - name of the unit of measurement

• symbol - symbol of the unit of measurement

• decimals - number of decimal cases in the observation value

• unitMember - type of unit

• \n - this feature is not relevant

In Figure 6.1, there is a sample of the first 5 entries of this dataset.

Figure 6.1: Dataset head

An interesting analysis to be made in this dataset refers to the unit attribute, because is this

feature that will affect the Discover Property component. With the bar graph in Figure 6.2, it is

possible to conclude there are 35 unique units, and the most frequent is the State Unit unit with 84

entries.

6.3 Perfomance Metrics 43

Figure 6.2: Unit Graph Bar

6.3 Perfomance Metrics

The first test, which is related to the web application, is evaluated by measuring the number of

errors, it occurs in registering every entry of the dataset.

In the second part it is measured the perfomance of the three algorithms. Therefore, this

problem was modeled as a binary classification problem. Thus, the algorithms will classify each

string comparison and if the score of the comparison is greater than the threshold, the classification

is a match. Otherwise, the classification is no match.

6.3.1 Confusion Matrix

To measure the perfomance for this problem, a confusion matrix will also be used. Each column

of the matrix represents the instances in a predicted class while each row represents the instances

in an actual class (or vice versa). Figure 6.3 represents the structure of a confusion matrix.

• True Positive (TP = The algorithm predict a unit was a match and it was a correct.

44 Evaluation

Figure 6.3: Confusion matrix

• True Negative (TN) = The algorithm predict a unit was not a match it was correct

• False Positive (FP) = The algorithm predicted a unit was a match and it was not a match.

• False Negative (FN) = The algorithm predicted a unit was not a match and it was a match.

Once the confusion matrix is made, some metrics can be applied:

• Accuracy = (1 – Error) = (TP + TN)/(PP + NP) = Pr(C), the probability of a correct classi-

fication.

• TPR/Recall/Sensitivity = TP/(TP + FN) = TP/PP = the ability of the classifier to detect a

match in a group of correct strings.

• Specificity = TN/(TN + FP) = TN / NP = the ability of the test to correctly rule out a match

in group of wrong strings.

• Precision = TP/(TP + FP) = how precise the model is out of those predicted a match, how

many of them are actual a match.

• F1 score = 2*(Precision*Recall)/(Precision+Recall) = is a measure of the accuracy and

considers both the precision and the recall of the test to compute the score.

6.3.2 ROC Curve

A Receiver Operating Characteristic (ROC) curve is a performance measurement for classification

problem at various thresholds settings. This curve is equal to the plot of TP (sensitivity) against FP

(1 – specificity) for each threshold used. ROC curves were developed for use in signal detection

in radar returns in the 1950’s, and have since been applied to a wide range of problems [1].

For an ideal classifier the ROC curve will go straight up the Y axis and afterward along the

X axis. A classifier with no power will sit on the diagonal, meaning this classifier is equiva-

lent to random. An intermediate classifier has the curve similar to the curve Intermediate in the

Figure 6.4.

A ROC curve can be utilized to choose a threshold for a classifier which boosts the true posi-

tives, while limiting the false positives.

6.4 Results 45

Figure 6.4: ROC Curve

6.4 Results

After running the experiment, it is possible to concluded that all the entities were stored in the

SensorThings API database correctly.

Furthermore, it is also possible to conclude that of the 35 unique units, 16 properties were

stored only based on the symbol as seen in table 6.1.

Some properties are not present in the unit ontology, so even though the system will com-

pared them using string algorithms, it will not find any match. These properties are: Power Factor

(cos&phi), FAIL/OK, DateTimestamp, OFF/ON/FAIL, ALARM STATUS, StateInteger, State Vol-

ume flow rate (m³/h/kg), ON/OFF. Although, these properties are not in the ontology, the

system will stored them with a default NULL property and notify the user.

Therefore, before applying the string matching algorithms to the 11 units; it is important to

look at them closer to know the units, which the system will compare.

By observing table 6.2 containing the symbols not found in the ontology, there is a comparison

between the symbol and unit coming from the sensors against the symbol and label from the

ontology. In the last column, it is represented the quantity the system is suppose to find.

Symbols Found String Matching Algorithms Not in ontology
16 11 8

Table 6.1: Results experiment

46 Evaluation

Symbol Unit QUDT symbol QUDT label QUDT QuantityKind
VAr Volt-Ampere Reactive V-A_Reactive V A Reactive ReactivePower
VA Volt-Ampere V-A V A ApparentPower

kWh Kilowatt Hour KiloW-HR KiloWattHour Energy
kVArh Kilo Volt-Ampere Reactive Hour KiloVA-HR KiloV A HR ReactivePower

h Hours HR Hour Time
m Minutes MIN Minute Time
s Seconds SEC Second Time
% Percent PERCENT Percent DimensionlessRatio

ppm Parts per million PPM Parst per million DimensionlessRatio
kg Kilogram Flow KILOGM Kilogram Mass
oC Temperature DEG_C Degree Celsius Temperature

Table 6.2: Breakdown string matching units

6.4.1 Jaro-Winkler Algorithm

For every unique unit, belonging to the list of 11 units presented,the Jaro-Winkler algorithm was

used. This means, each unit was compared to the 1537 instances of the unit ontology, plus 11

headers of the file, which are meaningless. These headers are included in the file and represented

information about the ontology, but are not instances of units. However, as they could not be

removed the algorithm will also compare them.

As discussed, the values of FPR (False positive rate) and TPR (True Positive Rate), were

calculated for the different values of threshold, varying between 0 and 1. Also, the value of the F1

scored was computed, in order to determine the best value for the threshold. The results are shown

in table 6.3.

Moreover, for each threshold value, a confusion matrix was built. It is expected the values of

TP (True Positive) + FN (False Negative) of the confusion matrix, to be equal to 11; representing

the total number of units. Also, the number of correct properties is very low, because for each

property, there is only one correct match.

It is now possible to plot the ROC curve, for the values of the table as seen in Figure 6.5.

This curve is very close to an ideal ROC Curve. The values of the TPR (True Positive Rate),

are always 1, for thresholds smaller than 0.6, which means the algorithm correctly detects all

matches. However, it is important to look at the FPR, because even with very small values, it

represents a large number of properties being incorrect matched.

In conclusion, looking at the best F1-score (0,58) , the best threshold is at 0.9 and it is generates

the confusion matrix in table 6.4.

With this threshold, the number of correct properties the system found is 7, and the number of

false positives is 7.

6.4 Results 47

Threshold FPR TPR F1 score
0 1 1 0

0.1 1 1 0
0.2 1 1 0
0.3 0,88 1 0
0.4 0.65 1 0
0.5 0.26 1 0.01
0.6 0.04 0.91 0.03
0.7 0 0.82 0.19
0.8 0 0.73 0.24
0.9 0 0.64 0.58
1 0 0 -

Table 6.3: Results Jaro-Winkler

Figure 6.5: ROC Curve - Jaro-Winkler

6.4.2 Hamming Algorithm

In this algorithm, the same approach was taken: the values of FPR (False positive rate), TPR (True

Positive Rate) and the F1 score were calculated and it is shown in table 6.5.

In sequence, the ROC graph was plotted and is represented in Figure 6.6.

According to the value of the F1 score (0.56), the confusion matrix in table 6.6 is built. The

best value for the threshold is 0,7. With this value, the number of correct properties is 5, but the

number of false positives is only 2.

6.4.3 Levenshtein Algorithm

In the Levenshtein algorithm the same methodology was made. The results are in table 6.7 and it

produces the ROC curve in Figure 6.7.

48 Evaluation

Match No Match
Property correct 7 4
Property wrong 6 17011

Table 6.4: Confusion matrix Jaro-Winkler

Threshold FPR TPR F1 score
0 1 1 0

0.1 0.18 1 0
0.2 0.04 1 0
0.3 0.01 0.82 0.06
0.4 0 0.64 0.24
0.5 0 0.64 0.52
0.6 0 0.45 0.5
0.7 0 0.45 0.56
0.8 0 0.36 0.5
0.9 0 0.09 0.17
1 0 0 1

Table 6.5: Results Hamming

Match No Match
Property correct 5 6
Property wrong 2 17015
Table 6.6: Confusion matrix Hamming

Threshold FPR TPR F1 score
0 1 1 0

0.1 0.8 1 0
0.2 0.3 1 0
0.3 0.07 0.9 0.02
0.4 0.02 0.82 0.06
0.5 0 0.82 0.28
0.6 0 0.54 0.46
0.7 0 0.54 0.6
0.8 0 0.45 0.56
0.9 0 0.09 0.17
1 0 0 -

Table 6.7: Results Levenshtein

6.5 Discussion 49

Figure 6.6: ROC Curve - Hamming

Figure 6.7: ROC Curve - Levenshtein

The highest value for the F1 score (0.6) is when the value of the threshold is equal to 0,7. With

this value, the number of correct properties is 6 and the number of false positives is 3, according

to table 6.8.

6.5 Discussion

In summary, it is possible to observe the approach taken to solve the problem of autonomous

registration was successful.

The SensorThings API component was validated and no errors occurred. From the 35 uniques

units, 16 of them are correctly stored in the first step of the method. It is also stated from the be-

ginning, 8 units were registered as NULL properties, because they are not present in the ontology.

In regards to the 11 units being compared using the three different algorithms, the success

rate varies between 5-7 properties, using the best values of the thresholds. The algorithm which

provides the best results was the Levenshtein algorithm, with a value of F1-score equal to 0.6.

50 Evaluation

Match No Match
Property correct 6 5
Property wrong 3 17014

Table 6.8: Confusion matrix Levenshtein

However, the results may have been differ if the current dataset was bigger and a different algo-

rithm might have been better because they results were very similar. In this situation, there is a

lower sample size of units being compared, against the extremely large sample of the ontology.

Chapter 7

Conclusion and Future Work

This chapter summarizes the general work produced during the development of this dissertation.

In addition, it also contains a description of the future work, which could be done to improve this

thesis and a reflection on the difficulties and problems that emerged.

Conclusion

In this study, several components were used to solve the arising problems in an heterogeneous

IoT environment. SensorThings API was select as the most competent data model model to solve

the problems presented. FROST implements the standard SensorThings full data model and func-

tionalities as a back-end server instance. The API is scalable, flexible and follows modern web

development trends. It contains the essential functionality needed in an IoT environment, while

providing interoperability and semantics to the system. The data is stored in compact JSON en-

coding and can be easily inserted, updated and removed via HTTP requests.

The process of registration was intended to have no user input, so the application uses a unit

ontology to resolve the process of autonomous registration. This solution produced produce a

semantically rich way of registering these properties. In this process, three string matching algo-

rithms were considered: Hamming Distance, Levenshtein Distance and Jaro-Winkle. The objec-

tive was to compare the name of the units from the event to the ones in the ontology. In summary,

these algorithms produced quite good solutions, being the Levenshtein Algorithm considered the

best one. However, of the difficulties of this work, was the small sample size of units being com-

pared, due to the dataset. This means, Hamming Distance might have been the best option to this

dataset, but with a larger dataset, the results might have been different.

Finnaly, it was also proved that the application could perform the required operations related

with the management of entities, creating, deleting or updating, meeting all the goals of this work.

51

52 Conclusion and Future Work

Future Work

Looking at the work done, there are some features that could be added that could improve and

enhance the application. Although, it was not in the scope of the project, it would be useful to add

a dashboard of the application, where the user could see in a visual way the entities present in the

database and have a better understanding of the management of the events.

Moreover, in regards to the process of autonomous registration, there are two feature, which

could had more value. First, is , as referred before, a bigger dataset, in order to test the string

matching algorithms. Secondly, it would also be interesting to improve the process of autonomous

registration, by utilizing the values of the observations. This process, would imply the system

would look in the database, and did a comparison to the readings from the event. This second

layer to the mechanism implement, could protect the system from mislabeling the properties and

improving the overall accuracy.

References

[1] Assessing and comparing classifier performance with roc
curves. https://machinelearningmastery.com/
assessing-comparing-classifier-performance-roc-curves-2/. Ac-
cessed: 2020-06-10.

[2] An introduction to time series databases. https://severalnines.com/
database-blog/introduction-time-series-databases/. Accessed: 2019-12-
10.

[3] Qudt ontologies overview. http://www.qudt.org/pages/QUDToverviewPage.
html. Accessed: 2020-05-23.

[4] Turtle - terse rdf triple language. https://www.w3.org/2010/01/Turtle/. Ac-
cessed: 2020-05-30.

[5] K. J. Ashton. That ‘internet of things’ thing. page 97–114, 1999.

[6] Garvita Bajaj, Rachit Agarwal, Pushpendra Singh, Nikolaos Georgantas, and Valérie Issarny.
A study of existing ontologies in the iot-domain. 07 2017.

[7] Garvita Bajaj, Rachit Agarwal, Pushpendra Singh, Nikolaos Georgantas, and Valérie Issarny.
A study of existing ontologies in the iot-domain. 07 2017.

[8] A. Bhawiyuga, M. Data, and A. Warda. Architectural design of token based authentica-
tion of mqtt protocol in constrained iot device. In 2017 11th International Conference on
Telecommunication Systems Services and Applications (TSSA), pages 1–4, 2017.

[9] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García Castro, Oscar Corcho, Si-
mon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang,
Krzysztof Janowicz, David Kelsey, Danh Phuoc, Laurent Lefort, Myriam Leggieri, Holger
Neuhaus, Andriy Nikolov, Kevin Page, and Kerry Taylor. The ssn ontology of the w3c se-
mantic sensor network incubator group. Web Semantics: Science, Services and Agents on
the World Wide Web, 17, 12 2012.

[10] Sheik Fattah, Nak-Myoung Sung, Il-Yeup Ahn, Minwoo Ryu, and Jaeseok Yun. Building iot
services for aging in place using standard-based iot platforms and heterogeneous iot products.
Sensors, 17, 10 2017.

[11] Dan Gusfield. Algorithms on strings, trees and sequences: Computer science and computa-
tional biology. 1997.

[12] Chih-Yuan Huang and Cheng-Hung Wu. A web service protocol realizing interoperable
internet of things tasking capability. Sensors, 16:1395, 08 2016.

53

https://machinelearningmastery.com/assessing-comparing-classifier-performance-roc-curves-2/
https://machinelearningmastery.com/assessing-comparing-classifier-performance-roc-curves-2/
https://severalnines.com/database-blog/introduction-time-series-databases/
https://severalnines.com/database-blog/introduction-time-series-databases/
http://www.qudt.org/pages/QUDToverviewPage.html
http://www.qudt.org/pages/QUDToverviewPage.html
https://www.w3.org/2010/01/Turtle/

54 REFERENCES

[13] A. Geraci J. Radatz and F. Katki. IEEE standard glossary of software engineering terminol-
ogy. IEEE Std, 1990.

[14] Antonio J. Jara, Martin Serrano, Andrea Gomez, David Fernandez, Germán Molina, Yann
Bocchi, and Ramón Alcarria. Smart Cities Semantics and Data Models, pages 77–85. 01
2018.

[15] Alexander Kotsev, Katherina Schleidt, Steve Liang, Hylke van der Schaaf, Tania Khalafbeigi,
Sylvain Grellet, Michael Lutz, Simon Jirka, and Mickael Beaufils. Extending inspire to the
internet of things through sensorthings api. 05 2018.

[16] Chao-Hsien Lee, Yu-Wei Chang, Chi-Cheng Chuang, and Ying Lai. Interoperability en-
hancement for internet of things protocols based on software-defined network. pages 1–2,
10 2016.

[17] Steve Liang, Chih-Yuan Huang, and Tania Khalafbeigi. OGC SensorThings API Part
I:Sensing. 08 2016.

[18] Daniel Marsh-Hunn. Interoperability enhancement of iot devices using open web standards
in a smart farming use case. 2019.

[19] William C. McGee. On user criteria for data model evaluation. ACM Trans. Database Syst.,
1(4):370–387, December 1976.

[20] Paul Murdock, Louay Bassbouss, Andreas Kraft, Martin Bauer, Oleg Logvinov, Mahdi
Alaya, Terry Longstreth, Rajdeep Bhowmik, Patrica Martigne, Patrica Brett, Catalina
Mladin, Rabindra Chakraborty, Thierry Monteil, Mohammed Dadas, John Davies, Philippe
Nappey, Wael Diab, Dave Raggett, Khalil Drira, and Imran Khan. Semantic interoperability
for the web of things. 08 2016.

[21] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, March 2001.

[22] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in Internet
of Things Infrastructure: Classification, Challenges, and Future Work: Third International
Conference, IoTaaS 2017, Taichung, Taiwan, September 20–22, 2017, Proceedings, pages
11–18. 01 2018.

[23] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in internet of
things: Taxonomies and open challenges. Mobile Networks and Applications, 07 2018.

[24] Maria Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Grieco, Gen-
naro Boggia, and Mischa Dohler. Standardized protocol stack for the internet of (important)
things. IEEE Communications Surveys and Tutorials, 15, 01 2013.

[25] Bruce Simons, Jonathan Yu, and Simon Cox. Defining a water quality vocabulary using qudt
and chebi. 12 2013.

[26] Charles Steinmetz, Greyce Schroeder, Alexandre Roque, Carlos Pereira, Carolin Wagner,
Philipp Saalmann, and Bernd Hellingrath. Ontology-driven iot code generation for fiware.
07 2017.

REFERENCES 55

[27] JUAN YE, LORCAN COYLE, SIMON DOBSON, and PADDY NIXON. Ontology-
based models in pervasive computing systems. The Knowledge Engineering Review,
22(4):315–347, 2007.

[28] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. In-
ternet of things for smart cities. Internet of Things Journal, IEEE, 1, 01 2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goal
	1.3 Dissertation's Structure

	2 Literature Review
	2.1 Types of interoperability
	2.2 Communication Protocol
	2.3 Database Architecture
	2.3.1 SQL
	2.3.2 NoSQL
	2.3.3 TSDB

	2.4 Data Models
	2.4.1 Eclipse Vorto Project
	2.4.2 Fiware Initiative
	2.4.3 SensorThings API

	2.5 Ontologies
	2.5.1 SSN
	2.5.2 OneM2m Base
	2.5.3 SAREF

	2.6 QUDT ontology
	2.7 SensorThings API Implementations
	2.7.1 FROST-Server
	2.7.2 52North
	2.7.3 SensorUp
	2.7.4 GOST
	2.7.5 Mozilla
	2.7.6 CGI Kinota Big Data

	3 Problem Statement and Solution Proposal
	3.1 Problem
	3.1.1 Choice and implementation of a meta data model
	3.1.2 Autonomous registration

	3.2 Solution Proposal
	3.2.1 System Architecture
	3.2.2 InfoReceiver
	3.2.3 System Logic
	3.2.4 Discover Property

	3.3 Conclusions

	4 Choice and implementation of a meta data model
	4.1 Meta Model Choice
	4.2 Sensor Things API implementations
	4.3 Structure
	4.3.1 Endpoints
	4.3.2 Register and give contextual information
	4.3.3 Upload readings
	4.3.4 Filtering information

	4.4 Conclusions

	5 Autonomous Registration
	5.1 QUDT
	5.1.1 Unit
	5.1.2 Quantity Kind

	5.2 Architecture
	5.3 String matching algorithms
	5.3.1 Hamming distance
	5.3.2 Levenshtein distance
	5.3.3 Jaro-Winkler

	5.4 Conclusions

	6 Evaluation
	6.1 Experiment
	6.2 Dataset Description
	6.3 Perfomance Metrics
	6.3.1 Confusion Matrix
	6.3.2 ROC Curve

	6.4 Results
	6.4.1 Jaro-Winkler Algorithm
	6.4.2 Hamming Algorithm
	6.4.3 Levenshtein Algorithm

	6.5 Discussion

	7 Conclusion and Future Work
	References

