
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Towards a Live Refactoring
Recommender Based on Code Smells

and Quality Metrics

Sérgio António Dias Salgado

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ademar Aguiar

Co-Supervisor: Sara Fernandes

July 22, 2020

c© Sérgio Salgado, 2020

Towards a Live Refactoring Recommender Based on
Code Smells and Quality Metrics

Sérgio António Dias Salgado

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Carlos Viegas Martins Bispo

External Examiner: Prof. Eduardo Martins Guerra
Supervisor: Prof. Ademar Manuel Teixeira de Aguiar

July 22, 2020

Abstract

As software systems evolve throughout their development, they begin to lose structure and the
architecture starts to decay, leading to a decrease of code comprehension by current and future
developers of the system, which may end up severely crippling the development of new features
in it. By applying refactoring techniques, we are improving the internal structure of the system
without changing its behavior, allowing for software to remain easy to understand and, more
importantly, easy to extend. In the long run, this easiness of development leads to faster
programming, better software quality and lower development costs.

Although refactoring and quality metric analysis tools are not necessarily a novelty and are
implemented either by default in some mainstream IDEs such as Eclipse and IntelliJ in the form
of plugins, or in tools like Visual Studio Code in the form of extensions, little to none of the
existent tools unite these two concepts with the emerging concept of liveness, which aims to open
new challenges for agile software development, in terms of technical agility.

In order to provide developers with an environment that better fits the live software
development philosophy, we propose the development of a refactoring recommendation tool
targeting TypeScript and JavaScript systems, in form of a Visual Studio Code extension, which
provides the user with live visualization of a wide range of software quality metrics and the
possibility of executing optimal refactorings based on extraction, such as Extract Method, Extract
Class and Extract Variable (whose conditions are customizable by the user) to the source code,
allowing for live observation of the impact of these changes in the values of quality metrics.

To validate the developed tool, a survey on usability and feature set was performed, in order to
understand how the tool can impact the workflow of developers, via the information provided by
its interface. We tested the correlation between the agility of assessment by the developers and
their awareness for taking action. Another part of the validation was to run our tool on multiple
documents across various public repositories and versions, to understand if the usage of our tool
resulted in a more maintainable code. Hypothesis tests ran both on the correlation between
developer awareness and action and whether our refactorings lead to improvements in the source
code resulted in some of the null hypothesis not being rejected, thus not validating the main
hypothesis in its entirety.

We believe that providing developers, ranging from beginners to experts, with a live
environment with these characteristics will allow them to identify problems in the system faster
and stay aware of the impact the changes to source code actually have on quality metrics. By
providing the possibility of executing refactorings based on these metrics, it allows the
programmer to maintain certain quality metrics within limits, leading to a more sustainable
software system.

Keywords: agile software development, live software development, refactoring recommendation
system, software maintenance

i

ii

Resumo

À medida que os sistemas de software evoluem durante o seu desenvolvimento, estes
começam a perder estrutura e a sua arquitetura vai-se degradando, levando a um défice na
compreensão do código por atuais e futuros programadores do sistema, podendo levar à
incapacidade de desenvolvimento de novas funcionalidades neste. Através da aplicação de
técnicas de refactoring, estamos a melhorar a estrutura interna do sistema, sem alterar o seu
comportamento, permitindo a este se manter simples de compreender e, mais importante, simples
de extender. A longo prazo, esta facilidade no desenvolvimento leva a uma programação mais
rápida, melhor qualidade de software e redução nos custos de desenvolvimento.

Embora ferramentas de refactoring e análise de métricas de qualidade não sejam
necessariamente uma novidade e estão implementadas quer por defeito em IDEs tais como o
Eclipse ou o IntelliJ na forma de plugins, ou em ferramentas como o Visual Studio Code na forma
de extensões, poucas ou nenhumas ferramentas existentes unem estes dois conceitos com o
conceito emergente de liveness, cujo objetivo é abrir novos desafios para o desenvolvimento de
software ágil, em termos de agilidade técnica.

De modo a fornecer ao programadores um ambiente que melhor se encaixa na filosofia de
desenvolvimento software live, propomos o desenvolvimento de uma ferramenta de recomendação
de refactoring com alvo em sistemas em TypeScript e JavaScript, na forma de uma extensão de
Visual Studio Code, que fornece ao utilizador visualização ao vivo de uma ampla variedade de
métricas de qualidade e a possibilidade de executar refactorings ótimos, baseados na extração,
como o Extrair Método, Extrair Classe e Extrair Variável (cujas condições são customizáveis pelo
utilizator) ao código, permitindo observar ao vivo o impacto destas mudanças nos valores das
métricas de qualidade.

Para validar a ferramenta desenvolvida, foi feito um inquérito acerca da sua usabilidade e
funcionalidades, de modo a percebermos de que forma esta ferramenta impacta o trabalho dos
programadores, através da informação dada pela sua interface. Testamos a correlação entre a
agilidade de avaliação dos programadores e a sua consciência para tomar acções. Outra parte da
validação passou por correr a ferramenta em vários documentos pertencentes a vários
repositórios públicos em diferentes versões, para percebermos se o uso da ferramenta criada leva
a um código mais sustentável. Testes de hipóteses feitos à correlação entre perceção dos
programadores e a sua ação e se os nossos refactorings levam a melhorias no código resultaram
em algumas das hipóteses nulas não serem rejeitadas, levando assim a que a hipótese principal
não fosse inteiramente validada.

Acreditamos que fornecendo aos programadores, desde iniciantes a especialistas, com um
ambiente live com estas características permitir-lhes-á identificar problemas no sistema mais
rápido e manter-se conscientes do impacto que alterações em código realmente têm nas métricas
de qualidade. Ao oferecer a possibilidade de executar refactorings baseados nestas métricas,
permite ao utilizador manter-se entre limites destas, levando a um desenvolvimento de software
mais sustentável.

iii

iv

Acknowledgements

First of all, I would like to thank my supervisors, Ademar Aguiar and Sara Fernandes, for
all the guidance provided throughout this last year. This would not have been possible if not for
your expertise, brilliant ideas and out-of-the-box thinking, which played an essential role for the
outcome of this dissertation.

A very special thanks to my research colleague João Barbosa for his support, the productive
discussions and, despite the circumstances, his availability to help me overcome whatever obstacle
I had encountered that day.

To Matilde, my love, there are no sufficient words to thank you for the unwavering support,
caring and love you have given me for the last three years. If not for you, nothing of this would
have been possible.

My thanks to my friends on REDEFINE, which have provided countless hours of
entertainment, goofs and gaffs and were always there to hear about my endless rants and
frustrations, allowing me to stay sane throughout these years. Miguel Freire, Nuno Silva, Vítor
Domingos, Daniel Torre, Cristiano Monteiro, Francisco Mesquita, João Figueiredo, António
Gomes and countless others, this one is also for you.

To my family, friends and pets, thank you for all your support and for making me the person
I am today. Whilst not family, although as I consider part of it, a special thanks to José Emídio
Figueiredo for all the help provided and always pointing me towards the right direction, even
through dire times.

To my very special friend Miguel. Seeing you fighting for your life and almost being forced to
give up on your dreams has inspired me to be a better version of myself and give just a little bit
more every day, thank you for checking up on me throughout these years and I am glad to see you
back.

Lastly, to Byron. The world was robbed of one of the good guys too soon. May your kind heart
rest in peace knowing that you inspired thousands of people to be kinder and more understanding
of each other, myself included. I hope Everland turns out to be the legacy you rightfully so deserve.

Sérgio Salgado

v

vi

“Time’s up, let’s do this.”

Ben Schulz

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 Objectives . 2
1.5 Dissertation Structure . 2

2 Background 5
2.1 Software Engineering . 5
2.2 Software Refactoring . 6
2.3 Software Quality . 6

2.3.1 Code Smells . 7
2.3.2 Quality Metrics . 7

2.4 Live Programming . 8
2.4.1 Levels . 9
2.4.2 Criticism . 9

3 State of the Art 11
3.1 Live Software Development . 11

3.1.1 Live Development Environments . 12
3.1.2 Programming Languages . 14

3.2 Refactoring Recommendation Systems . 15
3.2.1 Refactoring Identification . 15
3.2.2 Sequencing Refactorings . 17
3.2.3 Tools . 21
3.2.4 Live Tools . 24

3.3 Quality Metrics Tools . 25
3.4 Results and Discussion . 28

4 Problem Statement 33
4.1 Open Issues . 33
4.2 Research Questions . 34
4.3 Proposal . 35
4.4 Validation . 35

5 Proposed Solution 37
5.1 Context . 37
5.2 Usage . 39

ix

x CONTENTS

5.3 Automated Refactoring . 39
5.3.1 Extract Method . 40
5.3.2 Extract Class . 42
5.3.3 Extract Variable . 44

5.4 Live Metrics . 45
5.4.1 Extract Class Metrics . 45
5.4.2 Extract Method Metrics . 46
5.4.3 Interface Metrics . 47

5.5 Visual Studio Code Extension . 50
5.5.1 Commands . 50
5.5.2 Settings . 51
5.5.3 Events . 51

5.6 Summary . 52

6 Empirical Validation 53
6.1 Methodology . 53

6.1.1 Survey . 53
6.1.2 Automated Analysis . 54

6.2 Results . 54
6.2.1 Survey . 55
6.2.2 Automated Analysis . 62
6.2.3 Discussion . 71

6.3 Threats to Validity . 73
6.3.1 Conclusion Validity . 74
6.3.2 Internal Validity . 74
6.3.3 Construct Validity . 75
6.3.4 External Validity . 75

7 Conclusions and Future Work 77
7.1 Conclusions . 77
7.2 Main Contributions . 78
7.3 Future Work . 79

References 81

A Survey 87

List of Figures

3.1 Circa’s introspection capabilities due to its dataflow-based model. 13
3.2 SuperGlue’s live characteristics when creating PacMan. 15
3.3 MaxFlow-MinCut algorithm showing results for an Extract Class. 17
3.4 Graph showing different code states when applied a different sequence of

refactoring operations. 18
3.5 Vector-based representation of a refactoring sequence. 20
3.6 JDeodorant identification of Feature Envy code smells. 22
3.7 Extract Method refactoring on DNDRefactoring tool. 23
3.8 Evolution over time of selected metrics. 26
3.9 Teamscale’s architecture. 27

5.1 LiveRefactoring’s user interface within Visual Studio Code. 39
5.2 LiveRefactoring’s user interface. 49
5.3 Impact on the interface due to code changes. 49
5.4 Supported commands on the Visual Studio Code’s Command Palette. 50

6.1 Survey participant’s age and education level. 55
6.2 Survey answers to questions TB2, TB3 and TB4. 56
6.3 Survey answers to questions TB1, TB5, TB6 and TB7. 57
6.4 Survey answers to questions regarding the tool’s interface. 58
6.5 Survey answers to questions regarding the tool’s post-changes interface. 59
6.6 Survey answers to questions regarding the tool’s implementation on the Visual

Studio Code’s UI. 59
6.7 Survey answers to questions regarding the tool’s workflow. 60
6.8 Survey answers to questions regarding the tool’s refactoring capabilities. 61
6.9 Survey answers to questions regarding the tool’s user settings. 62
6.10 Survey answers to the final section. 63
6.11 LiveRefactoring impact on number of statements and cyclomatic complexity metrics. 64
6.12 LiveRefactoring impact on the maintainability index. 65
6.13 LiveRefactoring impact on targeted metrics across five repository versions. . . . 67
6.14 LiveRefactoring impact on the maintainability index across five repository

versions of server.ts. 68
6.15 LiveRefactoring impact on the selected metrics across ten Extract Method

refactorings. 69
6.16 LiveRefactoring’s Extract Class impact on the LCOM metric across four files. . . 70

xi

xii LIST OF FIGURES

List of Tables

2.1 Fowler’s refactoring catalog. 7

3.1 Code smells identified and refactoring operations supported by an A* approach. . 19
3.2 Live environments comparison. 28
3.3 Refactoring proposals comparison. 29
3.4 Refactoring tools comparison. 30
3.5 Quality metric tools comparison. 30

5.1 Metrics and respective thresholds. 48

6.1 Hypothesis Tests related to the Extract Method refactoring. 66
6.2 T-test on the Extract Method refactoring impact on maintainability. 66
6.3 Hypothesis Tests related to the Extract Class refactoring. 70
6.4 T-test on the Extract Class refactoring impact on the LCOM metric. 71

xiii

xiv LIST OF TABLES

Abbreviations

IDE Integrated Development Environment
AST Abstract Syntax Tree
UI User Interface
NSGA Non-dominated Sorting Genetic Algorithm
QMOOD Quality-Model for Object Oriented Design
JDT Java Development Tools
JVM Java Virtual Machine
RMI Remote Method Invocation
LCOM Lack of Cohesion of Methods
VSCode Visual Studio Code

xv

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 Objectives . 2

1.5 Dissertation Structure . 2

In this chapter, the context, motivation, definition of the problem and the main objectives for

this study are presented. After a brief overview of the main topics covered in this study in

Section 1.1, the motivation leading this dissertation in Section 1.2 follows. The problem

addressed and the objectives of this work are next described in Sections 1.3 and 1.4, respectively.

Finally, Section 1.5 describes how this dissertation is structured.

1.1 Context

In the context of software, maintenance represents one of the main steps of the Software

Development Life-Cycle and concerns for software systems to stay maintainable across different

developers which consequentially ensure the system’s longevity. However, in systems where this

process is not enforced, source code rapidly starts becoming complex and hard to

maintain [Fow99], leading to high maintenance costs and inefficiency of developers’ work time

on the system.

Refactoring is one of the main tools to ensure that a system stays maintainable during its

lifetime, by turning, otherwise difficult to read by a developer, source code into a more readable

and comprehensible system to the human eye, without interfering with the system’s intended

behavior [Fow99].

1

2 Introduction

1.2 Motivation

Although software maintenance may pass as an unnecessary waste of time by some people, it

is a crucial step during development to ensure the longevity and expansion of a system, by making

it more comprehensible to both current and future developers of the system.

With the concept of live programming aiming to tighten the more traditional edit-compile-run

feedback loop [Tan13], there is potential for its philosophy to be applied to other areas of software

development, more specifically, software maintenance and refactoring [ARC+19].

By combining these two concepts, developers may access quality metrics computed in

real-time, and apply refactoring techniques tailored to tackle possible code smells commonly

characterized by the presence of certain quality attributes.

1.3 Problem

Refactoring is common practice in software development environments, as the need to adjust

to new product requirements is of utmost importance. To streamline refactoring, multiple tools

exist to aid the developer to create meaningful and impactful refactorings onto a system.

However, current tools operate under the assumption that the developer knows a refactoring is

due even before it starts, which is often not the case as developers realize a refactoring is being

manually performed while they are in the middle of it and, as a consequence, refactoring tools end

up being underused [MHPB12].

This dissertation explores the opportunity of adding liveness to the refactoring process, as we

believe its philosophy of continuous execution is a vital aid for developers during the practice of

refactoring, via refactoring recommendation systems.

1.4 Objectives

The main objective of this dissertation is to improve the liveness of refactoring recommendation

systems and increase user feedback during development via a refactoring recommendation system

operating on the analysis of quality metrics and which uses the concept of liveness to continuously

process and recommend semi-automatically possible refactoring operations to the user.

An empirical validation of this approach will be performed, to measure whether the existence

of a tool with such capabilities ends up proving itself of use for developers on the practice of

refactoring.

1.5 Dissertation Structure

For those who do not have a background in Software Engineering, it is recommended to start

reading from Chapter 2, where relevant concepts related to the contents of this dissertation are

1.5 Dissertation Structure 3

explained in detail, namely the concepts of software engineering, software refactoring, software

quality, live programming and minor concepts related to each of these themes.

May the reader be interested in the bibliographic findings acquired through a literature review

related to the topics of this dissertation, Chapter 3 presents the results, divided into the topics of

live software development, refactoring recommendation systems and quality metrics tools. These

results range from software tools and systems to theoretical implementations and proposals related

to liveness in software development.

Chapter 4 details the problem at hand and our respective approach, based on what was found

during our literature review, introducing the hypothesis and research questions of this dissertation

and the respective found solution and validation methodologies. Chapter 5 explains in great detail

how the proposed solution was designed and implemented, with Chapter 6 being dedicated to

further detail on the validation methodologies chosen to answer the proposed research questions,

our answers to them based on the results obtained and possible threats to validation encountered.

Finally, Chapter 7 summarizes the results obtained throughout this study, reflecting on the

lessons learnt, main contributions for the area of software engineering and possible future work

deriving from this dissertation.

4 Introduction

Chapter 2

Background

2.1 Software Engineering . 5

2.2 Software Refactoring . 6

2.3 Software Quality . 6

2.4 Live Programming . 8

In this chapter, background about concepts referred throughout this dissertation is explained,

allowing for readers who do not have a background in software engineering to get familiar with

these terms and their meaning.

Section 2.1 gives insight about some of the practices performed during software creation and

maintenance. Section 2.2 addresses how the practice of refactoring activities works and its

importance during software development, followed by Section 2.3 where software quality is

discussed and its importance when creating software. Section 2.4 describes an eminent field in

software development that has potential to further evolve common software engineering practices

and technical agility.

2.1 Software Engineering

Software engineering is a sub-field of engineering related with the creation, evolution, and

maintenance of software systems, formally defined by the ISO/IEC/IEEE 24765:2017 Standard

as:

“Systematic application of scientific and technological knowledge, methods, and

experience to the design, implementation, testing and documentation of

software.” [III17]

5

6 Background

The field of software engineering is composed by a wide array of domains and processes, each

of utmost relevance and importance during the life cycle of software development, ranging from

the analysis of requirements to the software design and its maintenance [BFS14].

The latter of the enumerated processes, Software Maintenance, is composed of a set of

practices and operations supporting the evolution of the software system when in the presence of

events such as requirement changes or feature introduction. It is a core process during the

software development life cycle and is performed with multiple objectives in mind, including

fault correction, design improvement, and enhancement implementation [BFS14].

2.2 Software Refactoring

Refactoring is a practice tied with the maintenance of software. It is defined by changes in code

which improve its internal structure, while not altering its external behavior [Fow99]. Its main

purpose is to oppose the loss of code structure, naturally occurring during software evolution,

usually due to unfamiliarity with the system. Developers unfamiliar with the system are often

willing to commit to short-term goals, such as the introduction of new features in the system,

trading off code structure in the process [Fow99].

The result of source code post-refactoring is easier maintainability and understanding

compared to the pre-refactoring code [Fow99]. This maintainability easiness snowballs towards

increased development agility, making refactoring a practice of utmost importance during

software development. Table 2.1 shows one of the first refactoring catalogs in the

literature [Fow99].

One of the fields of study related to refactoring optimization is search-based refactoring.

Search-based refactoring is a sub-field of search-based software engineering (SBSE), which

focuses on the use of meta-heuristic algorithms, such as genetic and hill-climbing algorithms, to

optimize refactoring. Refactoring optimization includes the analysis of identification, execution,

and sequencing of refactoring operations in source code.

2.3 Software Quality

Software quality refers to the ability to satisfy the needs, either stated or implied, of software

when used under certain conditions [III17]. Eight characteristics describe the quality properties

which categorize a quality model: functional stability, performance efficiency, compatibility,

usability, reliability, security, maintainability, and portability [II11].

The quality of a software artifact can be both externally and internally evaluated, based on

whether the software product enables the behavior of a system to satisfy its needs and whether the

set of static attributes of said product satisfies the referred needs, respectively [II11].

2.3 Software Quality 7

Table 2.1: Fowler’s refactoring catalog [Fow99].

Refactorings Catalog
Add Parameter Inline Method Replace Conditional with Polymorphism

Change Bidirectional Association to Unidirectional Inline Temp Replace Constructor with Factory Method

Change Reference to Value Introduce Assertion Replace Data Value with Object

Change Unidirectional Association to Bidirectional Introduce Explaining Variable Replace Delegation with Inheritance

Change Value to Reference Introduce Foreign Method Replace Error Code with Exception

Collapse Hierarchy Introduce Local Extension Replace Exception with Test

Consolidate Conditional Expression Introduce Null Object Replace Inheritance with Delegation

Consolidate Duplicate Conditional Fragments Introduce Parameter Object Replace Magic Number with Symbolic Constant

Convert Procedural Design to Objects Move Field Replace Nested Conditional with Guard Clauses

Decompose Conditional Move Method Replace Parameter with Explicit Methods

Duplicate Observed Data Parameterize Method Replace Parameter with Method

Encapsulate Collection Preserve Whole Object Replace Record with Data Class

Encapsulate Downcast Pull Down Field Replace Subclass with Fields

Encapsulate Field Pull Up Constructor Body Replace Temp with Query

Extract Class Pull Up Field Replace Type Code with Class

Extract Hierarchy Pull Up Method Replace Type Code with State/Strategy

Extract Interface Push Down Method Replace Type Code with Subclasses

Extract Method Remove Assignments to Parameters Self Encapsulate Field

Extract Subclass Remove Control Flag Separate Domain from Presentation

Extract Superclass Remove Middle Man Separate Query from Modifier

Form Template Method Remove Parameter Split Temporary Variable

Hide Delegate Remove Setting Method Substitute Algorithm

Hide Method Rename Method Tease Apart Inheritance

Inline Class Replace Array with Object

2.3.1 Code Smells

A bad smell in code, more commonly known as code smell, is defined by a certain structure

within code which does not comply with the system’s design principles [KA16] and is usually a

symptom of poor design choices [Pan19]. Unlike bugs, code smells do not introduce unwanted

behavior or failures in the system. However, they often indicate the presence of eventual

problems in the source code which can eventually lead to the introduction of bugs and loss of

code structure [KA16].

The presence of bad smells in source code more often than not indicate the need for

refactoring [Fow99]. Some code smell catalogs and consequent solving have been purposed

throughout the years. For example, Fowler, M. [Fow99] identified twenty-two code smells and

the appropriate refactoring operations to fix each one of these bad smells [Fow99] and later,

Lanza, M. et al. [LMD06] identified eleven code smells while suggesting options for removal of

said smells [LMD06].

2.3.2 Quality Metrics

A quality metric is a form of measure with the purpose of evaluating whether an artifact of

source code possesses certain properties. They can be important in order for developers and project

managers to monitor and detect the presence of underlying design problems within the project.

8 Background

Throughout the years, multiple software quality metric suites and catalogs were proposed with

object-oriented software design in mind, including:

• Halstead, Maurice H. [Hal77] used the number of total and unique operands and

operators to calculate metrics such as program length, difficulty to understand and write

code, effort and respective time to program and the amount of expected delivered bugs

during implementation [Hal77, Cou19];

• Chidamber, Shyam R. et al. [CK91, CK94] proposed the usage of metrics such as

Weighted Methods per Class (WMC), Coupling Between Objects (CBO), Response for a

Class (RFC) and Lack of Cohesion in Methods (LCOM) to evaluate object-oriented

design [CK91, CK94];

• Lanza, M. et al. [LMD06] listed twenty-four metrics including Locality of Attribute

Accesses (LAA), Coupling Intensity (CINT) and Access to Foreign Data (ATFD), and their

respective connection of detecting specific code smells present in the project [LMD06].

Quality metrics are used to describe design properties in a project which in turn can be used,

by weighting their values, to compute quality attribute values [BD02] that can be used as fitness

functions for refactoring recommenders to operate and recommend near-ideal refactoring.

2.4 Live Programming

Live Programming refers to the ability of programming environments to modify a running

system during execution, allowing developers to receive feedback about the impact of these

changes instantly [Tan13, ARC+19]. First introduced in live development environments such as

Smalltalk [ARC+19] and visual languages [Tan13, Tan90], it is a concept which aims to break

the more traditional edit, compile, link, run development cycle, by turning it into a single phase

cycle where the system is continuously running, despite edits occurring in the system [Tan13].

Working in a live environment is motivated by the following aspects [Tan13]:

• Minimizing the latency between a programming action and seeing its effect on program

execution;

• Allowing performances in which programmer actions control the dynamics of the audience

experience in real time;

• Simplifying the ’credit assignment problem’ faced by a programmer when some

programming actions induce a new run-time behavior (such as a bug);

• Supporting learning, hence the early connections between liveness with visual programming

and program visualization.

2.4 Live Programming 9

2.4.1 Levels

Having defined the first four liveness levels back in 1990 [Tan90], Tanimoto added two more

levels since [Tan13], making it a total of six possible levels of liveness.

The first level of liveness, the informative level, grants a visual representation of the program,

which serves as an aid for the programmer to understand the problem at hand, but is not used in

any form by the computer. It is followed by the informative and significant level, where the visual

representation is the specification of what the computer needs to execute, essentially being an

executable flowchart. The third level of liveness adds responsiveness to the system, (re-)executing

the program everytime a change is introduced, where the last level adds liveness as stream-driven

updates, continuously updating the display to show results of the changes done to the system

[Tan90].

The two recently added levels add tactically and strategically predictive layers, respectively,

with tactically predictive meaning the system stays a step ahead of the developer, by predicting

the next action to be performed. The last of defined liveness levels, the strategically predictive

level, aims to compute a prediction of the desired behavior and, with the aid of a large knowledge

base, adds gross functionality to the system [Tan13].

2.4.2 Criticism

Despite its obvious benefits to developers and programming environments, live programming

as a concept has gone under a lot of scrutiny in the past. For example, achieving liveness level 4

may be considered secondary in the vast majority of software systems, which Tanimoto refutes,

by considering liveness a straightforward evolution over the existent interactive debuggers present

in modern IDEs [Tan13].

Application of liveness to systems which either run for small intervals of time, in the order of

the milliseconds, or have a relatively large execution time, is also criticized. Editing a section of

the code which was already executed and to which the system will not return to will not benefit

from any aspect of liveness. Tanimoto suggests the existence of an auto-repeat mode, where either

the entire system (for the ones running for small intervals) or a section of the code is executed

repeatedly until the developer states otherwise [Tan13].

10 Background

Chapter 3

State of the Art

3.1 Live Software Development . 11

3.2 Refactoring Recommendation Systems . 15

3.3 Quality Metrics Tools . 25

3.4 Results and Discussion . 28

In this chapter, the results of a literature review performed on the topics of Live Software

Development, Refactoring Identification and Recommendation, and Quality Metric Tools are

presented and respective conclusions are discussed.

Section 3.1 describes existent implementations of liveness in development environments and

programming languages. Next, in Section 3.2, exposure to current refactoring identification

approaches and techniques is given, followed by approaches about sequencing of refactorings

and tools which employ said approaches in the formats of environment plugins or extensions and

ones who use the concept of liveness. Section 3.3 describes tools which grant insight and, in

some cases, exposure of quality metrics in a user-friendly format. Section 3.4 summarizes and

discusses the results obtained on each of the topics studied.

3.1 Live Software Development

Although a somewhat novel concept, some tools were already conceived with the application

of liveness in mind. Section 3.1.1 describes in detail results found during research related with

programming environments using liveness and Section 3.1.2 describes results related with new or

adapted programming languages which apply liveness philosophies.

11

12 State of the Art

3.1.1 Live Development Environments

Live development environments are designed with the liveness concept in mind, this is, the

employment of live programming [Tan13] aspects in development environments. This review

aims to pinpoint core aspects found in current live development environments and how differently

they interact with developers when compared with traditional environments.

Lemma, Remo et al. [LL13] presented a development environment which is being designed

in parallel to the live programming language, created by the same researchers, Moon [LL13].

Programming languages with live characteristics have their IDE designed as an afterthought or

are designed to fit into existent IDEs which were created without liveness as one of its objectives,

leading to technical constraints that can limit the live experience [LL13].

To combat these shortcomings, the created live programming language, Moon, is having its

IDE designed in parallel, with two prototypes developed: the first one using Pharo1 (a Smalltalk

implementation) and the second approach being web-based and written in JavaScript [LL13].

The main features of either implementation of the IDE are an entity visualization, state

visualization - where live feedback is received after every change, with the compiler being called

after every carriage return - and evolution visualization, allowing for developers to consult an

updated visualization of the system’s evolution [LL13].

Kanon [OMIA17] is a JavaScript-based live programming environment for data structures. It

provides the developers with two connected panels in parallel, one for editing and the other for

visualization, allowing for a quick connection between the visual elements and the respective code

[OMIA17].

The visualization of the data structures is done using basic shapes and forms such as ovals and

arrows [OMIA17]. Modifications to the program trigger its re-execution and are shown to the user

by either animating the program’s visual representation or by showing a summary about the effects

of these changes [OMIA17].

Fisher, Andrew [Fis13] presented Circa, an environment which is tightly connected with a

language of the same name [Fis13].

Its dataflow-based model is capable of powerful introspection as, for example, the developer

can click anywhere on a rendered scene and the language is able to determine which draw method

is related to the clicked position, which is possible due to code execution capable of skipping side-

effecting functions and the flow-based model allows for display of code sections directly related

to the input values of the referred method (Figure 3.1) [Fis13].

This introspection makes clever code manipulation possible, as the user might impose

restrictions, referred to as desires, to a result of a computation and a solver using a

backpropagation algorithm tries to produce a modification to the code which satisfies the

restrictions defined [Fis13].

1Pharo Project - http://www.pharo.org/, Last accessed on July 22, 2020

3.1 Live Software Development 13

Figure 3.1: Circa’s introspection capabilities due to its dataflow-based model [Fis13].

Euclase [OMB13] is a live programming environment which is tied to a visual programming

language aimed at interaction designers, who benefit from tools that allow for quick iteration

between interface behavior [OMB13].

Liveness in Euclase allows for a greater beginner friendliness, fast evaluation and quick

experimentation of the system, characteristics which designers cannot find in current tools aimed

at designing how an interface feels [OMB13].

Euclase’s primitives are powerful, low in number and simple to comprehend. Their usage as

one-way constraints that are updated throughout the system’s execution is similar to how a

designer thinks about relationships as constraint-based concepts, leading to simplification of

interface design [OMB13].

Current live development environments present a novel way to develop software and are

characterized by their rich feedback systems and continuous execution, inherited from the live

programming philosophy [Tan13].

Tools such as Moon [LL13], Circa [Fis13] and Kanon [OMIA17] provide developers with

powerful visual feedback of changes occurring in the system during development. This enhanced

feedback allows developers to explore and experiment with the system in a near-instant way,

allowing for a quicker iteration towards a more optimal system.

Another relevant aspect found in live environments is the user-friendliness. Euclase [OMB13]

uses liveness and applies towards interface interaction, a field often unrelated with traditional

14 State of the Art

programming. Despite not being connected with regular programming, Euclase [OMB13]

showcases liveness used in a user-friendly format with no programming background required.

3.1.2 Programming Languages

Similar to live development environments, it is important to study designed live programming

languages, their impact on software development and the main differences between the more

traditional programming languages and the ones operating live.

Fisher, Andrew [Fis13] introduced Circa, a dataflow-based language of the same name as its

environment, which allows for highly introspectable and understandable code [Fis13].

The dataflow-based model allows for rich visualization of the program and Circa is also capable

of tracing input origin and freely re-evaluate code [Fis13].

Code sections related to user interactions on the rendered scene are referred to as intermediate

states, and Circa allows for them to be manipulated as first class values and observing the impact

of the changes to that state in real-time [Fis13].

Burckhardt, Sebastian et al. [BFdH+13] redesigned TouchDevelop2, a programming

language aimed at UI design and programming, tasks where the traditional development cycle

gets tedious and exhausting, as they require multiple iterations [BFdH+13].

Changes to the existent language include the addition of live editing, characterized by a

continuous recompilation and re-execution of the system during editing which is achievable due

to a clear separation between views and models [BFdH+13].

Another added feature is bi-directional interaction between code and UI and its direct

manipulation, allowing for the user to select code by selecting a UI element and vice-versa, while

also allowing for the user to directly edit variable values. This is possible as a mapping between

code and the respective UI element is created by the language [BFdH+13].

SuperGlue [McD07] is a live programming language based on a reactive data-flow

programming model that allows for program building using existent components which are

connected through signals and form a data-flow graph [McD07].

When a change occurs and leads to valid code, the edit is incorporated into the program in

execution (Figure 3.2) and, in order to stay responsive, SuperGlue supports error recovery in the

background of the execution [McD07].

The used data-flow based model is supported by the existence of five different constructs:

signals - data-flow values which ease inter-component communication; classes - encapsulate

behavior; connections - connect two signals so that values stay equal; extensions - cause signals

to extend classes; conditions - gate when connection and extension rules are applied [McD07].

As expected, we found that live programming languages thrive on the fast iteration, powerful

visualization and live manipulation they are characterized by.

2TouchDevelop - https://www.microsoft.com/en-us/research/project/touchdevelop/, Last accessed on July 22, 2020

3.2 Refactoring Recommendation Systems 15

Figure 3.2: SuperGlue’s live characteristics when creating PacMan [McD07].

This fast iteration is easily visible on the redesigned TouchDevelop [BFdH+13], showing the

benefits of applying liveness in tasks which would otherwise be considered tedious and exhausting.

All studied live programming languages [Fis13, BFdH+13, McD07] allow for a live

visualization and value manipulation of the system being developed, with Circa [Fis13] and

TouchDevelop [BFdH+13] allowing for a bi-direction interaction between the rendered

visualization and the respective code.

3.2 Refactoring Recommendation Systems

Refactoring is common practice during software development and, as such, a vast array of

approaches and tools have been crafted with the sole purpose of achieving optimal and effortless

refactoring for developers and teams.

Proposals to identify refactoring opportunities are described in Section 3.2.1, while proposals to

sequence refactoring operations are presented in Section 3.2.2. Later, in Sections 3.2.3 and 3.2.4,

refactoring tools, either implementing liveness characteristics or not, are described.

3.2.1 Refactoring Identification

Identifying refactoring opportunities is the core of any refactoring recommendation system. As

such, it is essential to study how refactorings are identified and the main algorithms used to do so.

Bavota, Gabriele et al. [BOD+10] proposed a perspective to identify Extract Class

refactoring opportunities based on the usage of game theory, with the objective of balancing

contrasting goals [BOD+10].

Using the post-extraction classes being players and the selection methods of the original class

being the plays to be made as a metaphor for the game, each new class starts with one of the two

16 State of the Art

least cohesive methods and play to select methods which are the most related to the ones they

already possess, until all methods have their new class assigned [BOD+10].

The Nash equilibrium [Nas51] in this game, while not providing solutions as optimal as its

Pareto front [Deb01] counterparts, provides a fair compromise between coupling and cohesion,

the two contrasting goals in play, achieving a better identification of Extract Class opportunities

than the Pareto optimum. [BOD+10].

Pantiuchina, Jevgenija et al. [PBTP18, Pan19] proposed a tool capable of identifying

refactoring opportunities by predicting the need for refactoring with the usage of a code smell

predictor - COSP [PBTP18, Pan19].

COSP operates with the objective of preventing the introduction of code smells, more

specifically the God or Complex Class code smells, by identifying problematic classes and

sections of code in the need of refactoring operations [PBTP18, Pan19]. It uses a machine

learning approach, using quality metrics as predictor variables and taking as an input current,

historic and recent code quality trends to classify each class [PBTP18].

To avoid flooding developers with false positives when detecting smelly classes, COSP uses

a confidence value, alerting developers once a defined threshold is crossed [PBTP18]. Future

iterations of COSP aim to employ deep learning to learn about changes made by developers and

perform refactoring operations actually performed by developers, using information mined from a

large set of refactoring operations [Pan19].

Bavota, Gabriele et al. [BDO11] suggested the identification of Extract Class opportunities

with measures related to structural and semantic cohesion in mind [BDO11].

The approach takes a class previously selected by a developer and, after extracting

information about characteristics such as method calls and attribute references, a weighted graph

representation of the class is created, where each node is a method of the class and the weight of

each edge represents a value related with how the relationship between the two methods impacts

class cohesion [BDO11]. This value is computed using metrics such as the Structural Similarity

between Methods and Call-based Dependence between Methods [BDO11].

Once the weighted graph is created, a MaxFlow-MinCut algorithm, shown on Figure 3.3 is

used with the objective of dividing the original graph in two sub-graphs, representing the two new

classes with improved cohesion between methods [BDO11]. This uses a semi-automatic approach,

requiring developer approval or, in case the developer does not agree, changes to what classes are

moved can be performed [BDO11].

Tsantalis, Nikolaos et al. [TC09] suggested an approach to identify Move Method

opportunities using the concept of distance between entities as the core of the approach [TC09].

This concept of distance between entities, which are essentially attributes and metrics, takes

into account the accesses between each entity to create sets that are compared in order to identify

the degree of similarity between entity sets [TC09]. A list of opportunities for Move Method is

3.2 Refactoring Recommendation Systems 17

Figure 3.3: MaxFlow-MinCut algorithm showing results for an Extract Class [BDO11].

sorted based on the number of entities a certain method accesses from each target class and the

value of the distance between the same method and each target class [TC09].

If a target method preserves all the compilation, behavior-preservation and quality

preconditions, it is suggested to the developer to perform the Move Method refactoring operation

semi-automatically, as this approach is not aware of conceptual and design criteria, requiring

developer input for situations as refactoring classes in a Model-View-Controller design

pattern [TC09].

During this study, we found that the identification of refactoring opportunities can be performed

in multiple ways. Despite identifying different kinds of refactorings, all studied approaches rely

on quality metrics to identify sections in need of refactoring.

We found that different approaches can be used to identify the same refactoring, as shown by

Bavota, Gabriele et al. [BOD+10, BDO11], who identifies Extract Class opportunities using both

game theory [BOD+10] and a MaxFlow-MinCut algorithm [BDO11].

On approaches taking a more practical format [PBTP18, Pan19, TC09], it is worth noting their

interaction with the user. Pantiuchina, Jevgenija et al. [PBTP18, Pan19] only inform the user

about potential refactorings if the metrics value exceeds a certain threshold [PBTP18]. Tsantalis,
Nikolaos et al. [TC09] suggests the semi-automated execution once the compilation, behavior-

preservation and quality preconditions and checked [TC09].

3.2.2 Sequencing Refactorings

Execution of a single refactoring operation is sometimes not enough and eliminating a certain

smell from a system often takes the application of a variety of refactoring operations.

It is important to study how current approaches sequence these refactoring operations, given

their impact on the quality metric values and the importance of their ordering.

Meananeatra, Panita [Mea12] proposed the identification of an optimal sequence of

refactorings based on the four main criteria developers take into consideration when refactoring

18 State of the Art

code: number of removed bad smells, system maintainability, size of the refactoring sequence

and number of modified system elements [Mea12].

The main focus of this approach is to identify the optimal sequence to remove the Long

Method code smell using a pool of six refactoring operations [Mea12]. Using the bad code and

the developer’s objective as an input to the algorithm, it applies refactoring operations iteratively,

creating new code states which branch out in a graph, with each path created relating to a

sequence of refactoring operations as shown on Figure 3.4 [Mea12].

This work expands on previous work by Meananeatra, Panita et al. [MRA11], which

computes maintainability metrics to sequentially find new code states, selecting the end state

which provides the best maintainability values found [MRA11].

Once the metric value relative to the objective input by the developer is met, the unfolding

process stops, outputting the optimal refactoring sequence, which maximizes both the number of

removed smells and the maintainability value, while minimizing the number of modified program

elements and the size of the sequence, with this last characteristic being further optimized by

considering commutative and equivalent paths [Mea12].

Figure 3.4: Graph showing different code states when applied a different sequence of refactoring
operations [Mea12].

Tarwani, Sandhya et al. [TC16b] proposed the usage of a greedy algorithm to identify possible

refactoring sequences relying on local optimal solutions to reach a global solution, based on the

fact that different refactorings result in different maintainability values and, as such, reaching an

optimal solution allows for a higher maintainability value [TC16b].

It operates in two different ways: One-way analysis, resulting in the identification of a single

refactoring operation, evaluated based on the most positive impact to metric values; Multi-way

analysis, which results in a sequence of refactorings which aim to maximize maintainability

values [TC16b].

The multi-way analysis takes combinations of refactoring operations on the same code, creating

a path originating from the original code to the final sequence [TC16b]. On each level of the

resultant tree, it tries to minimize the metric values (the local optimum) which eventually suggests

a possible sequence which maximizes the maintainability values of the system [TC16b].

3.2 Refactoring Recommendation Systems 19

Chug, Anuradha et al. [CT17] identified optimal refactoring sequences by applying A*

algorithm to search for the sequence of refactoring operations to use, after prioritizing system

classes using the amount of detected code smells as criteria [CT17].

This approach prioritizes classes in need of refactoring actions by evaluation of their respective

Quality Decline Factor (QDF) metric [TC16a], as a higher value of this metric usually corresponds

to the class with the highest amount of detected code smells [CT17, TC16a].

Once the classes are sorted by their QDF metric, the most critical class is selected to

determine a possible sequence of refactoring operations to apply in order to bring the class to a

more maintainable state [CT17].

A* algorithm is then applied, taking both the tree level the current solution being analysed is

present and the value of a set of nine metrics is calculated in order to maximize the maintainability

attribute [CT17]. Code smells and respective refactoring operations sequenced by this approach

are described in Table 3.1.

Table 3.1: Code smells identified and refactoring operations supported by [CT17].

Code Smell Refactoring Operation
God Class Extract Class

Long Method Extract Method

Type Checking Replace Type Code with State/Strategy

Long Parameter List Extract Parameter

Dead Code Inline Class/Remove Parameter

Data Class Encapsulated Field

Class Hierarchy Problem Push Down

Dummy Handler Re-throw with Exception

Nested Try Statement Extract Method

Careless Cleanup Throw Exception in Finally Block

Mkaouer, Mohamed Wiem et al. [MKB+16] proposed the usage of multiple quality

attributes to achieve optimal software refactoring using a multi-objective search-based approach,

as this is a practice which usually takes into consideration the optimization of multiple conflicting

objectives [MKB+16].

To achieve this, it uses the NSGA-III algorithm [DJ14] and takes into account eight objectives

to optimize: six QMOOD metrics - reusability, flexibility, understandability, functionality,

extendibility and effectiveness - a minimization of the number of refactoring operations

performed and a maximization of design coherence [MKB+16].

Design coherence is treated as an objective to maximize, as sometimes, despite the refactored

design structure being improved, refactoring can lead to design incoherence if not correctly

evaluated by the developer [MKB+16]. To preserve the semantics design, two measures were

20 State of the Art

formulated and used towards the objective of preserve design coherence: Vocabulary-based

similarity and Dependency-based similarity [MKB+16]. Vocabulary-based similarity is based on

the assumption that vocabulary used to name code elements in classes reflects a specific domain

terminology and dependency-based similarity uses the presumption that a high coupling value

between two classes, despite not being recommended, hints that are semantically

similar [MKB+16].

Solutions presented by this approach use a vector-based representation, where a vector

represents a sequence of refactoring operations to perform, with the order of these refactorings

corresponding to their respective position in the vector [MKB+16]. Figure 3.5 shows how a

similar approach using NSGA-II by Mansoor, Usman et al. [MKWD17] represents vector-based

refactoring sequences and how mutation occurs [MKWD17].

Initial solutions are created by randomly sequencing a combination of possible refactoring

operations throughout the source code, with future generations being created by splitting at random

two parent solutions and crossing over their refactoring operations to create the next generation of

solutions [MKB+16]. For mutations, one or more refactoring operations are replaced with random

ones used in the starting pool [MKB+16].

Figure 3.5: Vector-based representation of a refactoring sequence. (a) Crossover. (b)
Mutation. [MKWD17]

Harman, Mark et al. [HT07] proposed a search-based approach for refactoring sequencing

3.2 Refactoring Recommendation Systems 21

which operates upon Java-language systems and is based on a variant hill-climbing approach and

aims to optimize a sequence of Move Method refactoring operations [HT07].

The first version of this approach uses the CBO3 metric value as the fitness function for the

hill-climbing algorithm, with the objective to minimize its value as much as possible [HT07]. The

second version combines the SDMPC4 metric value to the CBO value as the fitness function, as

using a single metric as fitness function neglects with values of other important metrics, with the

case of optimizing CBO resulting in a small number of bloated classes containing a large amount

of methods [HT07].

Refactoring sequencing is essentially an optimization problem, as different refactorings result

in different metric values. Multiple approaches were theorized in order to optimize the final values

post-refactoring, with the vast majority coming from search-based approaches [HT07, MKB+16,

TC16b, CT17].

Similarly to the single refactoring identification, all studied approaches use quality metric

values or their combination as their fitness function towards optimization. The majority of

studied approaches use graphs as the representation [Mea12, TC16b, CT17], with vector-based

representation being used in two approaches [HT07, MKB+16].

3.2.3 Tools

There exist multiple tools aimed at easing the refactoring practice as a whole. When developing

a refactoring recommendation system, it is essential to study how capable current tools are, their

main features, user interactions and their shortcomings.

JDeodorant [FTC07, TCC08, FTSC11, TCC18, Nik] is a refactoring plugin for Eclipse

focused on the identification and removal of common code smells with the employment of

refactoring operations [FTC07, TCC08, FTSC11, TCC18, Nik].

Currently, the tool can correctly identify the presence of five different code smells, more

specifically, Feature Envy (Figure 3.6), Type/State Checking, Long Method, God Class and

Duplicated Code [TCC18, Nik]. It uses techniques such as clustering of class attributes and

methods in order to identify Extract Class refactoring opportunities [FTSC11] and with the help

of Eclipse JDT, such as ASTParser, for statement identification, and ASTRewrite, for refactoring

execution, this plugin is capable of executing refactorings such as Extract Class [FTSC11] and

Replace Conditional with Polymorphism [TCC08] automatically after user

confirmation [FTC07, TCC08, FTSC11, TCC18, Nik].

c-JRefRec [UOII17] is a change-based refactoring recommendation tool aimed to identify

Feature Envy code smells and fix them by applying the Move Method refactoring operation

[UOII17]. To do so, it uses static program analysis to find structural and semantic dependencies

and detect refactoring opportunities, defining a set of heuristics to use [UOII17].

3CBO - Coupling Between Objects
4SDMPC - Standard Deviation of Methods per Class

22 State of the Art

Figure 3.6: JDeodorant identification of Feature Envy code smells [FTC07].

It operates on the Eclipse IDE and takes source code as an input to its operations to analyse

current relationships between different classes and methods, creating a dependency graph across

the classes and methods on the system which is updated every time the developer operates on the

code [UOII17]. A semantic analysis is also used to extract code identifiers in order to identify the

Move Method candidates [UOII17].

Two interface views are provided by c-JRefRec: the Class State View and the Refactoring

Candidates View [UOII17]. Class State View provides four different metrics - number of methods,

incoming and outgoing calls to members of the class being analysed, number of classes calling

members from the current class and number of classes to which members of the current class are

accessing - in order to show coupling and cohesion between classes [UOII17].

Refactoring Candidates View lists the potential Move Method candidates, evaluating them

according to changes in metrics occurring in case a certain method is selected for

refactoring [UOII17]. These metrics include the difference between the incoming and outgoing

calls to members of the selected class, difference between the number of classes which use

methods or fields of the current class and the difference between the number of classes to which

members of the current class are accessing [UOII17].

Code-Imp [MÓ11, ÓTH+12] is an automated refactoring tool which operates on Java systems

and employs search-based techniques to find refactoring operations to perform on a given source

code [MÓ11, ÓTH+12]. This tool supports fourteen different refactoring operations across three

categories: method-level refactorings, field-level refactorings and class-level refactorings [MÓ11,

ÓTH+12].

It uses RECODER5 to generate an AST relative to the source code being refactored, where

the refactoring operations occur [MÓ11, ÓTH+12]. Once all refactorings are executed, Code-Imp

pretty-prints the AST back into source code, finishing the refactoring process [MÓ11, ÓTH+12].

Code-Imp mainly uses hill-climbing as its search algorithm [MÓ11, ÓTH+12], more

specifically, first-ascent and steepest-ascent hill-climbing [ÓTH+12]. In order to evaluate

performed refactoring operations, Code-Imp offers a set containing twenty-eight quality metrics,

5https://sourceforge.net/projects/recoder/, Last accessed on July 22, 2020

3.2 Refactoring Recommendation Systems 23

with the fitness function being defined by a combination of these metrics using either

weighted-sum optimality - sum of metrics with different weights assigned, representing the

metric’s importance - or pareto optimality - a refactor is only an improvement if it improves one

or more metrics without deteriorating another [ÓTH+12].

DNDRefactoring [LCJ13] is a refactoring tool built with the objective of streamline and make

the refactoring practice more intuitive, by allowing developers to directly manipulate program

elements inside the development environment, eliminating the need to navigate through menus

and configure tools [LCJ13]. Using the example of performing an Extract Method refactoring

shown on Figure 3.7, the developer just needs to select the section of a method to extract and drag

and drop it to the target class [LCJ13].

By using an effective mapping process to map drag sources and drop targets to a refactoring

operations, DNDRefactoring overcomes two common problems identified by the

creators [LCJ13]: invocation inconsistencies - as there is no standard for refactoring naming and

each IDE has its own naming for the same operation; configuration overload - current tools rely

on sometimes complex configuration dialog menus to function properly, even though most

developers do not bother with changing default configurations [LCJ13, MHPB12].

Figure 3.7: Extract Method refactoring on DNDRefactoring tool [LCJ13].

Due to the difficulty of translating certain refactoring operations to drag-and-drop gestures,

DNDRefactoring only supports move and extraction-based refactorings [LCJ13]. Another

problem arises, as a certain gesture may portray different operations [LCJ13]. Using the example

of dragging an expression from inside a method to a class, this gesture can mean the usage of

either an Extract Method or an Extract Constant, with the tool having to default to one of the

choices to stay loyal to its design values [LCJ13].

24 State of the Art

As shown by this study, current refactoring tools are capable of extensive analysis and

refactoring execution in very large systems as shown by

JDeodorant [FTC07, TCC08, FTSC11, TCC18, Nik], c-JRefRec [UOII17] and

Code-Imp [MÓ11, ÓTH+12]. However, these tools require the developer to manually execute

them and are expected to operate during large periods of time in order to find the best possible

refactoring for any given context.

This lengthy execution makes the use of these tools unfeasible during the development phase.

Tools such as DNDRefactoring [LCJ13] aim to hasten and simplify refactoring related with

moving or extracting code using drag-and-drop operations, promoting the refactoring practice

during development.

3.2.4 Live Tools

Most refactoring tools and approaches do not explore the liveness concept during their

operations, mostly due to how incompatible refactoring optimization and liveness are. However,

some tools related with refactoring already operate live.

A study on how liveness is employed in current tools supporting it was performed, with the

intent of finding more about their live implementation and supported features.

BeneFactor [GMH11] is a live refactoring tool for Eclipse6 that provides automated

refactoring to developers who already initiated manual refactoring [GMH11].

This tool has two main components: the refactoring detection module, which operates live

on the background, detecting potential manual refactoring behaviors by the developer’s part and

the code modification module, responsible for finishing the incomplete manual refactoring being

performed [GMH11].

The first component of this tool, the refactoring detection, operates live and uses two

strategies to fulfill this task: a code-change based approach, which analyses changes performed in

the AST, such as node addition, update and deletion, allowing for detection of, for example,

variable renaming; an action based approach, which takes into account recent developer actions,

such as copy, paste and selection of code and, if matched with common refactoring workflows,

assumes the developer is performing manual refactoring [GMH11].

The code modification module allows for safe and automated refactoring completion, without

the user needing to undo any changes [GMH11]. It uses the Eclipse Language Tool Kit and

consists of reverting the code to a previous state, recovering any partial refactored code, while

collecting information about the code being refactored such as original variable names and range

of refactored code statements [GMH11]. After this, precondition checks are performed (to be live

in the future) and, if successful, the automated refactoring is performed [GMH11].

6https://www.eclipse.org/, Last accessed on July 22, 2020

3.3 Quality Metrics Tools 25

Soares, Gustavo et al. [SMHG13] proposed using the functionality of the existent Eclipse

refactoring plugin SafeRefactor [SGSM10], to design a new plugin capable of warning the user

about behavior changes post-refactoring in a live manner [SMHG13].

SafeRefactor aims to execute refactoring operations safely by using generated unit tests to

compare the system after changes and alerting the developer in case any behavior change happens

post-refactoring [SGSM10]. This tool requires developers to manually execute it and wait for a

considerable amount of time for results, which is not ideal, despite its functionalities being useful

to developers [SMHG13].

The proposed live tool solves the performance problem by running the test generator in a

separate JVM with binaries of the base version of the system pre-loaded and then starts a

communication with the new plugin via RMI [SMHG13]. After that, generated test cases are sent

and executed on the modified program via reflection, allowing for results to be compared for

behavior changes [SMHG13].

Although there exist refactoring tools operating in a live way [GMH11, SMHG13], they

cannot be categorized as traditional refactoring recommendation systems. BeneFactor [GMH11]

is aimed towards live manual refactoring detection and automatic refactoring completion and

Soares, Gustavo et al. [SMHG13] approach detects erroneous manual refactoring.

As such, we believe there is opportunity to further implement liveness on refactoring tools,

with features similar to traditional refactoring recommendation tools, such as the refactoring

suggestion.

3.3 Quality Metrics Tools

Refactoring artifacts studied throughout this dissertation involved the usage of quality metrics

in some way. As such, we believe it is only natural to study the capabilities of current tools related

with the measurement and evaluation of quality metrics.

Fernandes, Sara [Cou19] designed a Visual Studio Code extension tool which operates in

TypeScript and JavaScript systems and incorporates liveness to quality metric visualization, so

that developers stay aware of the impact certain changes on the system cause on the values of

quality metrics [Cou19]. It also allows Git integration in order to observe the evolution of the

selected metrics [Cou19].

It supports the live visualization of any combination picked by the user (Figure 3.8) in a pool

of nineteen metrics ranging from simple metrics, such as the number of lines of code, to

calculated Halstead metrics [Hal77] such as the implementation effort and the coding time

needed to implement an algorithm [Cou19].

Although the main focus of this tool is to provide live metric visualization, it also supports the

execution of Split Variable Declaration and Extract Variable refactoring operations [Cou19].

26 State of the Art

Figure 3.8: Evolution over time of selected metrics [Cou19].

Tech Debt Tracker [Ste19a] is a Visual Studio Code extension that also operates on TypeScript

and JavaScript systems only, which mainly aims at helping developers, working alone or as a team,

to improve the overall quality of the source code with the usage of quality metrics [Ste19a].

It analyses the code using the following quality metrics: method length, cyclomatic complexity,

understandability, parameter count, nesting depth and comment density [Ste19b], displaying to

the user interface the results based on pre-defined thresholds [Ste19a, Ste19b]. Based on the

results of these metrics, an algorithm evaluates the analysed code and grades it from A (the least

likely to receive a bug fix in the near future) to E (the most likely to receive a bug fix in the near

future) [Ste19c].

For development teams, Tech Debt Tracker offers an interface to discuss and prioritize actions

to take on a function in order to increase its quality, constructing a prioritized backlog where each

developer can consult the voted priorities [Ste19a].

CodeMetrics [Kis16] is a simple Visual Studio Code extension whose main functionality is

calculating the complexity of a function, showing it to the user as code lenses above the

respective evaluated method [Kis16]. The user can click on the code lens to gather more

information about the source of the complexity reported by the extension and evaluation

customization is also featured, allowing for the user to decide the amount of complexity a certain

node type should be awarded during evaluation [Kis16].

CoreMetrics [Jas18] is a Windows-only Visual Studio Code and .NET Core extension which

analyses source code, providing the following metrics for the user: cyclomatic complexity, class

coupling, inheritance depth, lines of code and maintainability index [Jas18]. It functions based on

threshold values for these metrics, which are freely customizable by the user [Jas18].

MetricsReloaded [Bas04, Had14] is a plugin that works on any IntelliJ-based IDE and offers

a wide array of metrics for Java systems, but a limited amount for any other language supported

by the IDE being used [Bas04].

3.3 Quality Metrics Tools 27

Users can customize the range of the analysis, allowing for file, module and project scans and

create metric profiles by selecting metrics to show from a vast group, including the Chidamber-

Kemerer metrics suite [CK91], complexity and dependency [Had14]. Further customizability is

allowed, as the user is capable of creating custom metrics and defining threshold values [Had14].

Output of scans are presented using a table, but the user can also opt to display this information

in the forms of distribution diagram, histogram or pie chart, if applicable [Had14].

CodeMR [Cod18] is an IntelliJ-based IDE plugin which operates over Java, Kotlin and Scala

projects [Cod18]. It provides code metrics and high-level quality attributes (derived from the

combination of code metrics) and a platform for the user to easily visualize them [Cod18].

Offered code metrics are divided into four categories: project metrics, package metrics, class

metrics and method metrics [Cod18].

Teamscale [HNJ19] is a code analyser which performs static and dynamic analysis across

twenty-six programming languages [HNJ19].

It processes data from version control systems, external analysis tools and bug and issue

trackers and the results are available to developers on their IDE plugins as shown on

Figure 3.9 [HNJ19]. Managers can select how much technical debt should be allowed by

Teamscale, by choosing between no monitoring at all to fully scan until no technical debt is

found on the system [HNJ19].

Three different types of analysis are ran by the system: code quality analysis - composed of

code structure metrics, code duplication, comment completeness and architecture conformance,

test gap analysis and code usage analysis [HNJ19].

Figure 3.9: Teamscale’s architecture [HNJ19].

28 State of the Art

iPlasma [MMM+05] is a quality analysis tool for Java and C++ systems which uses model

extractors, quality metrics analysis and code duplication detection which has shown results in real

world systems like Mozilla and Eclipse [MMM+05].

A model of the system being analysed is created as the first step for design analysis, with the

goal of extracting all necessary information about a system such as functions and variables (and

respective usages), inheritance between classes and call-graphs [MMM+05].

After that, the created model is analysed using quality metrics, categorized into four categories:

size metrics, complexity metrics, coupling metrics and cohesion metrics [MMM+05]. iPlasma

also implements structural analysis build on top of the created model, detection strategies which

identify deviations from good design criteria based on metric thresholds and code duplication

detection [MMM+05].

As found out through this review, current quality metric tools operate as a plugin or extension

of existent IDEs. This makes sense, as most, if not all, software development occurs inside an

IDE, and providing quick access to metrics is important.

A wide variety of metrics are supported by most of these tools, with only one [Kis16]

supporting a single metric. Most tools calculating multiple metrics disclose if they operate in a

live way or not. Only Fernandes, Sara [Cou19] discloses operating live and support the

measurement of multiple metrics.

Regarding the supported languages, current tools operate on different languages, with the

main ones being JavaScript or similar languages [Cou19, Ste19a, Ste19b, Ste19c, Kis16] and

Java [Bas04, Had14, Cod18, MMM+05].

3.4 Results and Discussion

A quick overview of Tables 3.2 through 3.5 show the results of the literature review performed

on the topics of live environments and languages, refactoring proposals and tools and quality

metrics tools.

The topic of live software development, and research done on the state of the art on topics

such as live development environments and live languages show the potential this novel field of

software development and agile can have and its impact on a developer’s work environment.

Table 3.2: Live environments comparison.

Name Reference Language Target Language Features
- [LL13] Pharo, JavaScript Moon [LL13] Entity, state and evolution visualization

Kanon [OMIA17] JavaScript-based Data structures
Connected parallel panels, visual representation

and summary of changes

Circa [Fis13] - Circa [Fis13] Powerful introspection and code manipulation

Euclase [OMB13] -
Undisclosed visual Powerful primitives, fast evaluation

language and beginner friendliness

3.4 Results and Discussion 29

By analysing Table 3.2 representing the results obtained on the topic of live environments and

their respective key features, we can observe the benefits of adding liveness to work environments,

whether the respective work areas are directly related to programming or not.

A rich visual overview of the state of both the source and respective execution is core in live

environments allows for developers to stay aware of changes done to the system, with features

such as introspection, manipulation and beginner friendliness allowing for developers to explore

and experiment with the system.

Table 3.3 shows results of the review performed on refactoring approaches and sequencing,

where we can observe the wide range of approaches already explored to identify and sequence

refactoring opportunities, with search-based algorithms being the most common approach to the

refactoring problem.

Table 3.3: Refactoring proposals comparison.

Reference Used Refactorings Target Code Smells Technique
Uses Outputs

Representation
Metrics Sequence

Bavota [BOD+10] Extract Class - Game Theory Yes Yes -

Pantiuchina
- God Class Random Forest Yes No -

[Pan19, PBTP18]

Bavota [BDO11] Extract Class Blob Class MaxFlow-MinCut Yes No Graph

Tsantalis [TC09] Move Method Feature Envy - Yes No -

Six operations, including

Long Method Heuristics Yes Yes Graph
Meananeatra Replace Temp with Query,

[MRA11, Mea12] Introduce Parameter Object

and Extract Method

Tarwani [TC16b]

Seven operations, including Ten smells, including

Yes Yes Graph
Extract Method, Move God Class, Long Greedy

Method, Extract Class Method, Feature Envy Algorithm

and Extract Parameter and Long Parameter List

Chug [CT17]

Nine operations, including Ten smells, including

A* Algorithm Yes Yes Graph

Extract Method, Extract God Class, Long

Class, Replace Type Code Method, Type

with State/Strategy and Checking, Dead

Encapsulated Field Code and Data Class

Ten operations, including

-
NSGA-III

Yes Yes Vector-based
Mkaouer Extract Class, Extract

[MKB+16] Interface, Inline Class,

and Push Down

Harman [HT07] Move Method - Hill-Climbing Yes Yes Vector-based

Representation of the solutions presented by these approaches are mostly done using graphs or

vector-based representations, with all proposals using metrics to some extent as fitness functions.

As expected, approaches which operate over multiple refactoring operations are the ones which

generally output refactoring sequences.

Through analysis of Table 3.4, some observations can be done. Most existent refactoring tools

do not apply liveness on their operations and operated on mainstream languages such as Java.

Also, most tools are, in some way, part of an existent IDE in the form of plugins or extensions.

30 State of the Art

Another observation that can be done, although there is a small sample size, is that tools which

operate live support a lower amount of possible refactoring operations.

Table 3.4: Refactoring tools comparison.

Name Reference Supported Refactorings Languages Live Plugin

JDeodorant

Move Method, Replace Conditional

Java No Yes
[FTC07, TCC08] with Polymorphism, Extract Method,

[FTSC11, TCC18, Nik] Extract Class, Extract Clone, Replace

Type Code with State/Strategy

c-JRefRec [UOII17] Move Method Java No Yes

Code-Imp [MÓ11, ÓTH+12]

Push Up/Down Method, Increase/

Java No -

Decrease Method/Field Visibility,

Pull Up/Down Field, Extract/Collapse

Hierarchy, Make Superclass Abstract/

Concrete, Replace Inheritance/

Delegation with Delegation/Inheritance

DNDRefactoring [LCJ13] Extract-based and Move-based Java No Yes

BeneFactor [GMH11]
Rename Method/Variable,

Java Yes Yes
Extract Method

- [SMHG13] - Java Yes Yes

Table 3.5: Quality metric tools comparison.

Name Reference Supported Metrics Languages Live Plugin

- [Cou19]

Nineteen metrics, including Lines

TypeScript, JavaScript Yes Yesof Code, Cyclomatic Complexity,

Halstead [Hal77] metrics

Function Length, Cyclomatic

TypeScript, JavaScript - Yes
Tech Debt [Ste19a, Ste19b] Complexity, Understandability

Tracker [Ste19c] Argument Count, Nesting

Depth, Comment Density

CodeMetrics [Kis16] Cyclomatic Complexity
TypeScript, JavaScript,

Yes Yes
Lua

CoreMetrics [Jas18]

Cyclomatic Complexity, Class

- - YesCoupling, Depth of Inheritance,

Lines of Code, Maintainability

MetricsReloaded [Bas04, Had14]
Chidamber-Kemerer [CK94], MOOD, Full Java support,

- Yes
Class Count, Dependency, Complexity limited for others

CodeMR [Cod18]

Thirty-seven metrics, including

Java, Kotlin, Scala - Yes
Coupling, Lack of Cohesion, Lines

of Code, Complexity, Instability,

Depth of Inheritance Tree

Teamscale [HNJ19] - Twenty-six languages - Yes

iPlasma [MMM+05]

Eighty supported metrics, including

Java, C++ - -
Lines of Code, Cyclomatic Complexity,

Coupling Between Objects, Tight

Class Cohesion

3.4 Results and Discussion 31

Table 3.5 shows the results found on the literature review performed over quality metric tools

and their main characteristics. We concluded that most existent tools available operate as

extensions or plugins on the developer IDE and calculate metrics on systems created using

mainstream languages such as Java, C++ and JavaScript.

Most of the found tools support a wide array of metrics to present to the user, with some even

displaying that information in multiple forms, such as charts. We can also observe the

incorporation of live programming philosophies on some of the current tools.

32 State of the Art

Chapter 4

Problem Statement

4.1 Open Issues . 33

4.2 Research Questions . 34

4.3 Proposal . 35

4.4 Validation . 35

This chapter describes the problem statement of this dissertation, with Section 4.1 briefly

explaining the found problems with current refactoring tools and approaches.

Section 4.2 details main hypothesis of this study and the research questions proposed, followed

by a description of our proposed solution in Section 4.3 and the validation methodologies used to

answer our research questions and validate the main hypothesis in Section 4.4.

4.1 Open Issues

Chapter 3 describes in detail existent solutions to the refactoring problem and its sequencing,

current applications of liveness in software development tools and how quality metrics tools

operate in order to inform the users about the values of metrics on the system being developed.

Based on the literature review analysis, it is possible to identify certain open issues present in

current tools and approaches.

Refactoring is still hard. When performed manually, the practice of refactoring is hard and

error-prone [GMH11]. Knowing exactly where to apply refactoring and how to apply it on

any given context is a difficult task for a human to do. In cases where manual refactoring

is wrongly employed, its effect can be counter-productive, further deteriorating the source

code. Automatic and semi-automatic refactoring tools attempt at making the refactoring

practice easy and painless for both the developer and the system, by applying complex

33

34 Problem Statement

algorithms to find optimal refactoring operations in a fraction of the time a human would

take [TCC18, UOII17, MÓ11, ÓTH+12]. However, most of these tools are often used

separately from the development process and end up severely underused [MHPB12].

Current recommendation tools lack liveness. Despite tools such as BeneFactor [GMH11] and

others [SMHG13] implementing the philosophy of live programming onto refactoring

systems, they cannot be portrayed as refactoring recommendation systems. Their use of

liveness is aimed towards either alerting the user of behavior changes due to poor

refactoring [SMHG13] or finishing a refactoring manually started by the user [GMH11],

rather than recommending refactoring operations to the developer beforehand.

Current refactoring tools could benefit from enhanced visualization and customization.
Quality metrics are commonly used to evaluate refactoring opportunities as they usually

reflect upon the system’s status. However, despite current tools being effective at

evaluating opportunities, with some even showing the impact of each refactoring on the

evaluated metrics, each project is different and the regular developer is not aware of values

in the measured metrics considered safe in the given context. This can translate in the

developer not realizing the true impact a refactoring can have on the system’s metrics and

to what metrics should the developer be aware of when developing new code.

4.2 Research Questions

Based on the open issues previously stated, the study performed during this dissertation aims

to understand if the existence of a live refactoring recommendation system aids developers with

the refactoring practice during software development.

The main purpose of incorporating liveness onto refactoring recommendation systems is to

offer developers a more efficient way of executing near-optimal refactoring sequences and tackle

technical debt during the process of development, without having to wait for the maintenance

process to do so.

As such, in this dissertation, we propose the ensuing hypothesis:

“A live refactoring recommendation system operating based on quality metrics is able

to aid developers towards a more maintainable code base.”

With the hypothesis defined, this dissertation focuses on answering the following research

questions:

RQ1 "Does providing developers with software visualization tools improves their awareness

towards code smells mitigation?" One of the point of study of this dissertation is to

understand the impact of visualizing software metrics on the developer’s actions towards

mitigating the presence of code smells.

4.3 Proposal 35

RQ2 "Does the usage of these tools result in improvements on quality metrics, leading to a more

maintainable code base?" Our study aims to understand how a live refactoring tool can

cause developers to act on a given code base in order to improve metric values as to increase

the code’s maintainability.

RQ3 "Does early exposure to software metrics and consequent early action by the part of the

developer lead to a more maintainable source code on earlier stages of development?"

Another point of study of this dissertation is to understand whether early exposure to

software metrics allow developers to detect the presence of problems within the code, and

if early action leads to an overall more maintainable code during earlier stages of

development.

4.3 Proposal

In order to help us answer these research questions and thus validate our hypothesis, a Visual

Studio Code extension was developed, with its main objective being a way to provide developers

with live evaluation of quality metrics and refactoring recommendations based on the values of

these metrics.

This tool should offer a simple interface for the user to quickly monitor current values of

supported metrics during regular development, while using their values to compute near-optimal

refactorings that the user can automatically execute effortlessly.

A custom repository crawler was also developed, as a mean to generate data on open-source

repositories, for us to answer our research questions. This crawler operates on top of our primary

tool and uses the developed API to simulate regular usage of our tool, allowing us to scale our data

collection.

More details about the conception of both the Visual Studio Code extension and the

development needed towards our automated analysis strategy to validate our theory can be

consulted throughout Chapters 5 and 6, respectively.

4.4 Validation

As to validate the hypothesis proposed in this dissertation and provide answers to the

formulated research questions, a proposed solution, described throughout Chapter 5, was

developed and thus, validated.

Our validation strategy resolves around the employment of two methodologies: survey

research and automated analysis. During the survey analysis (Sections 6.1.1 and 6.2.1), we will

be conducting a survey which aims to help us understand if our tool is capable of showing the

importance of software visualization towards code smell mitigation and whether the tool’s

refactoring suggestions can prove useful to developers. The automated analysis (Sections 6.1.2

36 Problem Statement

and 6.2.2) provides us with concrete data about the impact of the usage of our tool in real-life

open-source projects.

By using this strategy, we aim to gather sufficient numerical and non-numerical data to help

us answer the proposed research questions and thus validating our hypothesis. We believe that

selecting multiple empirical methods as a mean to validate our hypothesis provides a strong basis

for mitigating potential weaknesses in each method and minimizing the threats to our validation.

Chapter 5

Proposed Solution

5.1 Context . 37

5.2 Usage . 39

5.3 Automated Refactoring . 39

5.4 Live Metrics . 45

5.5 Visual Studio Code Extension . 50

5.6 Summary . 52

This chapter provides a detailed description of the implementation of the designed tool, aimed

at solving the problems found with current existent tools, stated during Chapter 4.

Section 5.1 briefly contextualizes our proposed solution with current trends in computation and

software engineering practices and provides a brief overview on how our solution works.

Section 5.2 briefly describes how the tool’s features are used by the developer, with

Sections 5.3 and 5.4 describe the implemented refactoring and metric features, followed by

Section 5.5 contextualizing how our tool fits within the Visual Studio Code’s interface, with

Section 5.6 briefly summarizing the features of our solution and the contents of this chapter.

5.1 Context

In Chapter 4, we outlined some of the problems found with current refactoring tools developers

can use, ranging from their user unfriendliness to a lack of visual feedback on provided changes.

We believe that, by providing programmers with a tool capable of filling the gap on most of these

issues, both productivity and agility on code base familiarity can be increased.

Computational power translates into a higher efficiency and power on parallel computation,

allowing for heavier work loads to be processed in the background. With its increase over the last

37

38 Proposed Solution

few years, coupled with a wide adoption of agile methodologies across the industry, we believe it

is the perfect timing to further explore the concept of liveness during the refactoring process.

Our solution proposal consists of a tool capable of computing refactoring recommendations
to the developer and evaluating them based on the values of certain quality metrics,
providing near-instant results. This tool operates upon JavaScript and TypeScript files, as an

extension to the Visual Studio Code text editor.

Once the interface command is ran, the user is shown the values of multiple metrics computed

live, combined into metrics related to the entire file and metrics relative to each individual method

found across all classes in a file. A section describing the found refactoring candidates is also

shown, for the user to consult them visually before executing the respective command.

Our choice to approach this problem using a file-by-file analysis instead of a full workspace

analysis comes with inherent limitations, mainly issues revolving around inheritance across

different files. We believe this decision, although limiting in some use cases, is the right choice,

considering the utmost importance of maintaining the liveness aspect of this tool. Using this

file-by-file approach allows the tool to provide near-instant results for all three supported

refactorings, resulting in a higher scalability compared to analysing the entire workspace, which

would greatly depend on how large the code base is. Throughout this chapter, we’ll discuss the

impact of these limitations where relevant.

The choice of this programming language and development platform combination was chosen

based on the fact that JavaScript has been the most popular language for eight years in a row

across the industry, according to the 2020 Stack Overflow Developer Survey1 with a staggering

69.7% of professional developers’ votes. TypeScript shows up at number eight in this category,

with a 28.5% usage in the professional developers’ votes, an increase of 5% when compared to last

year’s survey2. As for the development environment, the 2019 survey shows that Visual Studio

Code is the most used environment across different types of development, with the exception of

mobile development, with a 50.7% of all respondents’ votes.

Implementation details of this tool are described in greater detail on Sections 5.3 through 5.5

and describe aspects related to the tool’s supported refactorings, candidate gathering and filtering,

usage of both TypeScript’s and Visual Studio Code’s APIs, limitations and design choices taken

throughout development.

This dissertation is being carried out by the Software Engineering group at FEUP, where

another dissertation about liveness in refactoring is also being worked on. However, neither of the

two dissertations are dependent on one another and, despite both being centered about

refactoring, are clearly distinct on the solution approach. This dissertation focuses on the

evaluation, and consequent usage, of software metrics as a mean to provide the developer with

refactoring suggestions which turn the code more maintainable.

1https://insights.stackoverflow.com/survey/2020, Last accessed on July 22, 2020
2https://insights.stackoverflow.com/survey/2019, Last accessed on July 22, 2020

5.2 Usage 39

5.2 Usage

One of the main objectives when designing this extension, was to make it as simple and intuitive

as possible, while providing powerful tools to help developers working towards more maintainable

code.

As such, the implemented features were designed with developer efficiency in mind, with close

to no effort required by the programmer to make the extension work. When the developer runs the

extension interface command, a new tab is created, showing a webview with information about

general file metrics, more specific metrics relative to methods and functions found in the file with

found refactoring suggestions shown last. Figure 5.1 shows how our tool’s interface fits in the

Visual Studio Code’s user interface, with the user being capable of assess the metrics quickly,

mostly in part due to the color scheme used and the compactness of the interface.

Figure 5.1: LiveRefactoring’s user interface within Visual Studio Code.

With the refactoring suggestions requiring user interaction, due to the semi-automated support

to empower users with the final decision, our interface provides any extra information required for

a refactoring to be executed, where it will be executed and, if applicable, the impact it will have

on the metrics. This is done by providing the user with three executable commands, one for each

supported refactoring, responsible of executing the best found suggestion on the current state of

the file. Once the file is saved, both the metrics and suggestions are recalculated and the interface

is updated.

5.3 Automated Refactoring

One of the core modules of this extension, it is responsible to automatically detect possible

refactoring operations, evaluate them and semi-automatically execute the best evaluated

40 Proposed Solution

refactoring. It is composed of three sub-modules, each responsible for a kind of refactoring

supported by this tool: the Extract Method, Extract Class and Extract Variable refactorings.

According to the performed literature review on refactoring tools and tools operating through

liveness, current Visual Studio Code extensions which support refactoring operations mostly work

similarly to a linter, offering small fixes to source code based on certain predetermined rules as,

for example, warn the user about a missing semicolon at the end of a statement.

As such, we believe there is room for improvement for current refactoring tools operating live.

These three refactoring operations were chosen to our suite both due to how commonly these are

performed by developers and their potential to be performed automatically.

This module of the tool extensively uses the TypeScript compiler API3, as it provides a

powerful interface for file analysis through the creation of an AST of a source file. Some of its

data structures are used throughout the pseudocode descriptions of created algorithms, including:

• Node: The main structure of the created AST, represents a node in the tree. It functions as

the superclass for all other node types contained within the AST. Relevant information from

this data structure contain its start and end positions, as to locate the line and character of

the node within the text editor;

• ClassDeclaration: A subclass of the Node superclass, represents a class declaration. Most

commonly possesses PropertyDeclaration, Constructor and MethodDeclaration nodes as

its children;

• PropertyDeclaration: A subclass of the Node superclass, represents the declaration of a

class field outside of the constructor parameters. Only fields declared this way are

considered for the algorithms as declaration inside constructor parameters only differ from

regular parameters created with the Parameter node due to the presence of keywords.

Constructor parameters do not count as PropertyDeclaration;

• MethodDeclaration: A subclass of the Node superclass, represents the declaration of a

method contained within a class. Usually formed by an Identifier (name of method), a list

of Parameter nodes and a Block node, parent of a list of Statement nodes containing the

method’s code.

5.3.1 Extract Method

In order for an Extract Method refactoring to be performed, the first step is to select the

fragment of code to be extracted onto the new method. This candidate extraction algorithm

operates in two different phases: the first one extracts individual nodes across all methods in each

class on a file, with the second phase combining the found nodes resultant of the first phase.

To be considered a potential refactoring candidate, a fragment of code is checked for the

following criteria:

3https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API, Last accessed on July 22, 2020

5.3 Automated Refactoring 41

Algorithm 1 First phase of the candidate retrieval process (single nodes)

1: procedure GETEXTRACTABLEFRAGMENTS(sourceFile)
2: ranges : Range[]← []
3: nodes : Node[]← []
4: for each node ∈ sourceFile do
5: if isStatement(node) & !isSourceFile(node.parent) & !isNodeOnConstructor(node)

then
6: startingPosition← Position(node.start.line,node.start.character)
7: f inishPosition← Position(node.end.line,node.end.character)
8: range← Range(startingPosition, f inishPosition)
9: ranges.push(range)

10: nodes.push(node)
11: end if
12: end for
13: end procedure

1. Statements: Candidate nodes selected during the first phase of the algorithm, described

with detail in Algorithm 1, are required to be one of any of the 20 statement types supported

by the TypeScript API;

2. Node hierarchy: Selected nodes cannot be direct descendants of a SourceFile node. In

other words, for a node to be selected, it needs to be contained within another node, such as

a function or method nodes;

3. Statement blocks: Consecutive statements are joined to create new and more complex

Extract Method candidates, which are evaluated individually, simulating a programmer’s

train of thought when manually selecting fragments to extract;

4. Filtering: As expected, many of the extractable fragments in a file and respective

combinations result in trivial refactorings. To avoid cases where either the algorithm

extracts all the code from the original method, rendering the entire selection process

pointless, or the candidate is composed of trivial extractions, filtering needs to be

performed. Found candidates are filtered to not be entirely composed of trivial
statements, such as VariableStatements and filtered by default as to not contain more
than 80% of the original method’s statements and contain a minimum of one statement.
These settings are highly customizable by the user, allows for programmers to make

changes to this tool in order to fit any individual project.

Once the final set of candidates is formed, metrics relevant to the evaluation of Extract

Method fragments are calculated, mainly their cyclomatic complexity, number of statements
and the lack of cohesion of methods (LCOM), based on an approach to evaluate Extract Method

refactorings suggested by Meananeatra, Panita et al. [MRA11]. This acts as a way to predict on

how extracting the candidate being analysed reflects on file metrics. By default, our solution

42 Proposed Solution

prioritizes candidates which lower the highest found cyclomatic complexity, followed by

lowering the highest number of statements and by lowering the class’ LCOM values.

The semi-automated refactoring execution is performed with the usage of the Visual Studio

Code API, more specifically the executeCommand() method. As Visual Studio Code natively

supports the Extract Method refactoring on TypeScript source files, we believe reusing this

functionality instead of our own custom solution is more efficient, as no time was wasted

reinventing the wheel, and ensures our tool acts naturally for previous users of the built-in
command. Should the native command be updated in future patches, our tool should reflect the

same behavior.

Essentially, this module is responsible for carefully selecting the best Extract Method out of

all possible solutions. Once the best result is found based on described criteria, our tool simply

invokes the Visual Studio Code built-in command for Extract Method.

5.3.2 Extract Class

The second supported refactoring is the Extract Class, which takes one cluttered class and

transforms it into two new classes whose methods share more similarities. For this refactoring, as

it is not natively supported by Visual Studio Code, we needed to create a custom solution, which

could have been done in one of two different ways:

1. Using the TypeScript compiler API to procedurally generate a new post-refactoring AST of

the entire source file, resultant of changes imposed by the Extract Class refactoring. Once

the new AST is created, we could transform the document by pretty-printing the AST to

the text editor. This is the most robust way to perform this task, however it comes at a

far greater computational cost and difficulty of implementation, as it requires parsing an

entire source file and essentially reconstruct it every time an Extract Class is required;

2. Use clever string manipulation to directly manipulate the contents of the document

according to the desired refactoring, similarly to how manual editing works. Although this

might seem a naive way to perform this task, it requires a significantly lower computation
cost and a simpler implementation when compared to the first option.

In this tool, we tackled this problem by employing the second approach, as to achieve as

close to full liveness as computationally possible we require the algorithm to operate as fast as

possible. As manually performing an Extract Class is, in its nature, a string manipulation process,

we believe the trade-off between algorithm robustness and execution time makes the second option

more appealing, when applied to our use case.

To create this algorithm, Fowler’s Extract Class mechanics [Fow99] were followed, with each

step returning the altered class string to be used as a parameter for the next step. Our tool

constantly calculates which methods should be extracted, using a method adapted from Bavota,
Gabriele et al. [BDO11], where three MxM matrices (with M being the amount of methods in

the class being analysed) containing information about the following metrics, respectively:

5.3 Automated Refactoring 43

Conceptual Similarity between Methods (CSM), Call-based Dependence between Methods

(CDM) and Structural Similarity between Methods (SSM).

Once all three matrices are calculated, a final weight matrix is created and values on its first

row below a certain threshold represent methods that should be extracted. With the target

methods found, the string manipulation algorithm starts by creating a two-way link between

classes, updating the contents of the document to reflect the move of methods to a new class,

finishing with the creation of the new class. Algorithm 2 illustrates how the contents of the

original class are updated to reflect methods moving around the two classes.

Bavota, Gabriele et al. [BDO11] proposal suggests the usage of graph theory in order to

further improve the suggestion. A Ford-Fulkerson algorithm, followed by the extraction of a

subset of methods dictated by a Max-Flow Min-Cut algorithm [CLRS09] is used on the original

approach. However, the employment of graph theory algorithms is too expensive to provide real-

time results and, as such, our tool utilizes a more straightforward methodology to filter which

methods should be extracted to a new class. Although it is not as precise as the original approach,

this rough approach should still be capable of producing acceptable results.

By using the created weight matrix between all methods in a class, we iterate them row by row,

checking the values in the matrix against two thresholds: a lower one, whose purpose is to filter

out spurious methods, such as getters or setters and an upper one, used to filter out metrics who

are not similar enough to others and should then be extracted to a new class. The values chosen for

these thresholds are 0.15 for the lower threshold and 0.30 for the upper threshold. This means that

methods whose value on the weight matrix are in the interval]0.15; 0.30] should be considered for

extraction and methods in the interval]0.30; 1.00] are methods which should not be considered

for extraction.

Algorithm 2 Original class being updated to reflect changes

1: procedure UPDATEORIGINALCLASS(targetMethods,originalClass)
2: for each method ∈ targetMethods do
3: originalClass← removeMethod(originalClass,method)
4: methodCall← ”this.”.concat(method.name)
5: updatedMethodCall← ”this.newClass.”.concat(method.name)
6: originalClass← originalClass.replace(methodCall,updatedMethodCall)
7: end for
8: return originalClass
9: end procedure

This refactoring is where our choice of using file-by-file analysis shows its biggest limitation:

Extract Class is not supported for classes which implement external interfaces or extend other

classes. In order to support it, a full workspace analysis of all classes and interfaces would have to

be performed constantly, as to know which methods can and cannot be moved due to inheritance.

We believe this option scales poorly with the size of the system and, as such, would not fit towards

our goal to provide live analysis to the user.

44 Proposed Solution

5.3.3 Extract Variable

The last supported automated refactoring is the Extract Variable, where we take a non-void call

expression and extract it to a new variable to be used afterwards on other calls to the same object.

The main benefit for using this type of refactoring is to ease code readability at the expense of the

creation of a local variable.

One of the first challenges we encountered when designing our approach was how could we

distinguish a void call expression, which cannot be extracted to an object, from a non-void call

expression, which is what can be extracted. Our choice to use file-by-file analysis does not grant

us access to external methods invoked and respective return values.

TypeScript’s compiler API provides us with the createProgram() method, which allows to

compile a TypeScript program from specified files. Once all dependencies for said files are

compiled, we can use the provided type checker to filter all call expressions present on that file

against their type flags. Type flags provide a vast array of information about the specific node we

are visiting, most importantly in the case of call expressions, whether that call returns void or not.

Algorithm 3 roughly exemplifies how this type checking is performed.

Algorithm 3 Checking return type of found call expressions

1: procedure GETNONVOIDCALLS(callExpressions, program)
2: nonVoidCalls : CallExpression[]← []
3: for each node ∈ program.sourceFile do
4: for each call ∈ callExpressions do
5: if isCallExpression(node) & (CallExpression)node = call then
6: nodeType← program.checker.getType(node)
7: if nodeType. f lags 6=VOID_FLAG_GLOBAL then
8: nonVoidCalls.push(call)
9: end if

10: end if
11: end for
12: end for
13: return nonVoidCalls
14: end procedure

With the call expressions filtered out, the tool should avoid to suggest trivial candidates, such as

one which are already simple enough to read for the programmer. To solve this, our tool filters out

call expressions which do not exceed a certain length. For example, if a call expression’s length is

10 characters and the threshold is set at 15 characters, said call does not show up as a suggestion

anymore.

As a final step towards the final suggestion, the filtered candidates are sorted in descending

order, according to the length of the call expression. The lack of a set of metrics that allow an

objective evaluation of this kind of refactoring is the main reason on why we take this approach,

which could be further improved with frequency checking of each call as a possible way to remove

duplicate code that may exist inside a method.

5.4 Live Metrics 45

Similarly to our Extract Method execution, our tool directly uses the built-in command for

variable extraction in Visual Studio Code. As such, we ensure its behavior is familiar to users of

the original command and, should a new patch occur, our command stays updated.

5.4 Live Metrics

The second main module of our tool, live metrics, has two main responsibilities: measuring

the necessary metrics to evaluate candidates and measure general metrics that can prove useful for

programmers during their development duties.

In order to evaluate candidates, this module employs algorithms based on an Extract Class

evaluation approach by Bavota, Gabriele et al. [BDO11] and an Extract Method evaluation

approach by Meananeatra, Panita et al. [MRA11].

5.4.1 Extract Class Metrics

As briefly referenced in subsection 5.3.2, the developed tool evaluates Extract Class

candidates based on previous work done by Bavota, Gabriele et al. [BDO11], which uses

matrices to compute metrics related to structural and semantic attributes of the class. It uses the

following metrics:

1. Structural Similarity between Methods (SSM) [GS06]: Ratio between the number of

used instance variables shared by two given methods, mi and mj, and the total number of

used instance variables on the same given methods;

SSM(mi,m j) =


∣∣Ii∩ I j

∣∣∣∣Ii∪ I j
∣∣ i f

∣∣Ii
⋃

I j
∣∣ 6= 0;

0 otherwise.

(5.1)

2. Call-based Dependence between Methods (CDM) [BDO11]: Ratio between the number

of calls done by method mi to mj and the total amount of incoming calls to mj throughout

the class. It is a commutative metric because the direction of this connection is not relevant;

CDM(mi,m j) =CDM(m j,mi) = max
{

CDMi→ j,CDM j→i
}

(5.2)

CDMi→ j =


calls(mi,m j)

callsin(m j)
i f callsin 6= 0;

0 otherwise.

(5.3)

3. Conceptual Similarity between Methods (CSM) [MP05]: Cosine of the angle composed

between two given methods, mi and mj. For any method in a class, a dictionary is created,

based on used vocabulary in variable, method call and parameter identifiers, representing a

46 Proposed Solution

pool of concepts used by the method. Then, a Latent Semantic Indexing

algorithm [BYRN99, DDF+90] is used to create a vector based on a method’s used

vocabulary, which is used to compute CSM.

CSM(mi,m j) =

−→mi ·−→m j

‖−→mi‖ ·
∥∥−→m j

∥∥ (5.4)

5.4.2 Extract Method Metrics

The usage of Extract Method refactoring is tighty coupled with the removal of the Long Method

code smell [Fow99]. As such, the selection of refactoring candidates to solve Long Methods can,

to some extent, be used as well to select Extract Method candidates.

Given this, the developed tool supports and evaluates Extract Method candidates based on an

approach by Meananeatra, Panita et al. [MRA11] to select the most suited candidates to remove

the Long Method code smell. This approach uses the values of the following metrics:

1. Complexity of Method (MCX) [McC76]: Often calculated with the usage of a control flow

graph, refers to the number of linearly independent circuits a program can take [McC76].

Other calculations take into account the number of predicates without needing the control

flow graph. Lower values of this metric indicate lower complexity and, therefore, higher

maintainability;

2. Lines of Code in Method (LOC): Refers to the number of statements contained within a

method’s code. Lower values indicate lower complexity and greater readability;

3. Lack of Cohesion of Method (LCOM) [CK91, CK94, HSCG96]: Takes into account the

amount of used instance variables and the class methods to calculate the class’ cohesion.

Higher values suggest a lower class cohesion and the need for action. Equation 5.5 shows

how this calculation is done in our tool [HSCG96].

LCOM =

1

v
·a−m

m−1
(5.5)

where:

m = number of methods in class

a = number of methods in a class which access an instance variable

v = number of instance variables

Once the necessary metrics are calculated, Extract Method candidates are sorted based on
which metric we want to optimize and prioritize. By default, our tool prioritizes minimizing

the highest number of statements in class methods, followed by minimizing the highest method

complexity and lastly minimizing the class’ lack of cohesion of methods.

5.4 Live Metrics 47

5.4.3 Interface Metrics

Besides the metrics used to evaluate supported refactorings, our tool provides an extensive suite

of metrics for the developer to consult whilst programming. These metrics are mostly based from

Fernandes’ work [Cou19], as we believe it presents a solid suite of useful metrics for developers

be aware of. Metrics shown to the user can be divided into four categories:

1. Line-related Metrics: metrics which are connected to the kind of lines present on the file.

Includes metrics such as number of total lines, number of comment lines, number of code

lines and number of blank lines;

2. Node-related Metrics: metrics referring to the amount of nodes and its respective kind,

present in a file. Extensively uses TypeScript’s compiler API4 to analyse the constructed

AST. Supported metrics include number of methods, number of classes and cyclomatic

complexity;

3. Halstead Metrics: metrics directly inferred from Halstead’s work [Hal77]. Supported

metrics on this category include program length, vocabulary, volume, difficulty to

write/understand, effort and time required to program and the number of bugs delivered.

Halstead’s volume is later used to compute the maintainability index [OHA92, CALO94],

with Equation 5.6 being used in our tool[Mic].

MI = (171−5.2 · log(V)−0.23 · (CC)−16.2 · log(LOC)) ·
100

171
(5.6)

where:

V = Halstead Volume

CC = Method’s Cyclomatic Complexity

LOC = Method’s Lines of Code

4. Method Metrics: metrics which are also used by our tool to evaluate the Extract Method

refactoring, based on work presented by Meananeatra [MRA11] on the subject. Includes

number of statements, cyclomatic complexity and lack of cohesion of methods.

As to allow quick visualization and simplify the interpretation of the values of these metrics,

our tool checks the metric values and compares most of them against predetermined thresholds,

coloring the respective table cell with either green, yellow, orange or red, according to the severity

of the calculated value. Table 5.1 shows the metrics which are being checked against a threshold,

references consulted to determine threshold values (if applicable) and the threshold value.

Selecting threshold values for our tool is not a trivial task, as different programming

languages might have different paradigms of programming, each developer has its own

4https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API, Last accessed on July 22, 2020

48 Proposed Solution

programming patterns and each project fits into different contexts. As such, pinpointing threshold

values which fit any JavaScript or TypeScript project is prone to extensive experimentation. One

solution could be providing full customization of these values for the user, however this can

become counter-productive once the developer decides to manually tailor the threshold values to

unfeasible values, which remove the need for the developer to worry about them at all.

Table 5.1: Metrics and respective thresholds.

Metric Reference Threshold value
Number of Lines [McC] 1000

Number of Comment Lines [McC]
1:4:1 ratio between comment,

code and blank lines, respectively

Number of Code Lines [McC]
1:4:1 ratio between comment,

code and blank lines, respectively

Number of Blank Lines [McC]
1:4:1 ratio between comment,

code and blank lines, respectively

Halstead Length [McC] 300

Halstead Volume [McC] 1500

Halstead Difficulty [McC] 30

Halstead Effort [McC] 45000

Halstead Level [McC] 0.6

Halstead Time [McC] 2100

Halstead Bugs Delivered [McC] 0.6

Maintainability Index [Mic]

0-9: low

10-19: moderate

20-100: good

Method’s Complexity [HGW11] 5

Method’s Number of Statements [HGW11] 12

Lack of Cohesion of Methods [HSCG96] 0.5

Figure 5.2 shows the compact view of our user interface. The first section shows some metrics

regarding the contents of the source file, with cells containing thresholds to check against being

colored according to their value. The Method Metrics and Function Metrics sections of the

interface are collapsible and show metrics relevant for method and function evaluation (see

Figure 5.3 for an expanded view of a method metric), with colored squares serving as preview for

each metric status. Our idea behind this concept was to provide a way for the user to quickly

evaluate both methods and functions, without the need to extend the interface, similarly to how

unit testing frameworks work. Note that, for the file shown, only one method contains values

which should be monitored by the developer.

Once changes are done to the source code, they are also reflected on the metric values. In

order for users to consult how metrics looked like before changes were done, our tool provides

5.4 Live Metrics 49

Figure 5.2: LiveRefactoring’s user interface.

visualization for the previous values of metrics for each file, if changes were done. Figure 5.3

shows the impact a change on the source code has in the metric values and how our interface

reflects that. Values on the left show the previous value for each metric, while values on the right

shows the new values for each metric post-changes.

Figure 5.3: Impact on the interface due to code changes.

50 Proposed Solution

5.5 Visual Studio Code Extension

The developed tool bundles the modules presented in Sections 5.3 and 5.4 and allows for user

interaction with them through custom executable commands, a simple webview-based interface

and options customization.

While one of our first ideas was to automatically execute an entire sequence of refactoring

operations, some limitations within the Visual Studio Code’s API do not allow for such

functionalities. These limitations were mainly found around the lack of customization for virtual

documents5, where most of this sequencing and metric optimization would have occurred, and

the lack of automated, fail-proof, execution of a chain of commands.

5.5.1 Commands

Command creation is possible through the usage of Visual Studio Code’s API and the tool’s

interface is created using Visual Studio Code’s Webview API6. This extension supports the

execution of four commands, shown in Figure 5.4:

1. Live Refactoring: Extract Method: Once executed, this command automatically

performs the best evaluated Extract Method candidate for the current selected file, based on

the metrics results discussed in Subsection 5.3.1;

2. Live Refactoring: Extract Class: Once executed, this command automatically performs

the best evaluated Extract Class candidate for the current selected file, based on the metrics

results discussed in Subsection 5.3.2;

3. Live Refactoring: Extract Variable: Once executed, this command automatically

performs the best evaluated Extract Variable candidate for the current selected file, based

on the metrics results discussed in Subsection 5.3.3;

4. Live Refactoring: View User Interface: A new interface column is created and a new tab

shows a webview, allowing the user to consult metrics information and our top suggestions

for each of our supported refactorings and their relative impact on some metrics. Shown

metrics are described in more detail in Section 5.4.

Figure 5.4: Supported commands on the Visual Studio Code’s Command Palette.

5https://code.visualstudio.com/api/extension-guides/virtual-documents, Last accessed on July 22, 2020
6https://code.visualstudio.com/api/extension-guides/webview, Last accessed on July 22, 2020

5.5 Visual Studio Code Extension 51

5.5.2 Settings

Despite most of this tool operating automatically, it allows for some user customization which

impacts how some candidate evaluation is performed and provides a way for users to tailor the

tool as best as possible to their respective context. Possible customization includes:

• Minimum number of extracted methods: Users can customize the minimum number of

methods an Extract Class candidate can contain. Both minimum and default values for this

setting is two methods, with no maximum value, as it depends on the number of methods a

class contains;

• Maximum original method percentage: Users can customize the maximum percentage of

statements an Extract Method candidate can extract from its original method. This number

is bound within 0% and 100% of extraction of the original method, with values close to both

ends representing redundant values which often provide pointless results. Default value is

80%;

• Minimum number of statements: Users can customize the minimum amount of

statements an Extract Method candidate should extract to a new method. Minimum value is

one statement, with the default being three statements;

• Minimum call expression length: Users can customize the minimum call expression

length for an Extract Variable candidate to be considered. Minimum value is a length of

one character, with the default value being twelve characters.

More options regarding interface customization are also provided to the user, allowing for line-

related, node-related and Halstead [Hal77, Cou19] metrics to be filtered in or out of the shown

interface.

5.5.3 Events

Visual Studio Code’s API allows for developers to subscribe certain events happening in the

editor, as to trigger code execution once said events occur. Our tool uses this API feature to

simulate continuous execution in order to achieve liveness. However, choosing which events to

subscribe is crucial to ensure that a live-like experience is achieved, while not overwhelming the

user with unnecessary updates and a constant barrage of incoming information.

Given this, two of the events that provide the best live results are the

onDidChangeTextDocument and onDidChangeTextEditorSelection events, which trigger every

time a document is changed and the current selection is changed, respectively. Despite this high

level of liveness, these events can be unnecessarily intrusive on the developer’s train of thought

and, therefore, counter-productive.

To tackle this issue, our tool subscribes events which, although not as live as the ones previously

stated, are still considered within liveness bounds while not being as intrusive as said events.

52 Proposed Solution

Subscribed events of our tool are onWillSaveTextDocument and onDidChangeActiveTextEditor,

which trigger when the current document is saved or when the active text editor changes, which

occurs when, for example, the user opens a document on the editor, respectively.

We believe these events correspond to the point in time when the user is done with a task and

is either moving onto a new task or ready to iterate on the recently finished task, with the right

amount of intrusion for the user to not be overwhelmed and the workflow to not be interrupted.

5.6 Summary

This chapter describes our approach to tackle the problems we found with current tools,

outlined in the previous chapter. The proposed solution comes in the form of a Visual Studio

Code extension that provides developers with semi-refactoring execution of extraction-based

refactorings, such as Extract Method, Extract Class and Extract Variable.

Further on this chapter, we detail the techniques used to execute said refactorings, both the

quality metrics used to sort the refactoring opportunities and the general metrics provided to the

user via a webview interface, followed by explaining the usage of Visual Studio Code’s API to

enhance our extension.

Chapter 6

Empirical Validation

6.1 Methodology . 53

6.2 Results . 54

6.3 Threats to Validity . 73

In order to validate our developed tool and answer the proposed research questions, we

adopted the following empirical methods: survey research and automated analysis. Section 6.1

describes our approach in using each of said methods, with the respective results being discussed

in Section 6.2. Section 6.3 discusses the main threats to our validation.

6.1 Methodology

This section provides more detail about the used methodologies to validate our hypothesis and

answer the proposed research questions. Section 6.1.1 describes the conducted survey, its main

objectives and how data retrieved from it helps us answering the research questions. Section 6.1.2

describes how we evaluated our tool’s results when used on files from open-source projects, with

varying degrees of complexity.

6.1.1 Survey

To understand how capable our tool is at providing useful and quick information to

programmers via its interface, we ran a survey, available in Appendix A, focused on studying our

tool’s usability and feature set. The main goal for this survey is to understand the impact it has on

a developer’s workflow, this is, if our tool can trigger developer action onto the code, once the

user understands the extent of technical debt present on the file. Another goal for this survey is to

understand if the feature set implemented proves useful and accessible to the user.

53

54 Empirical Validation

Most of the questions present on this survey are answered resorting to the Likert psychometric

scale [Lik32], with the exceptions to this rule being questions relative to participant profiling and

technical background. The scale used ranges from 1 to 5, depending on how the user agrees with

a given statement, with 1 being labeled ’Strongly disagree’ and 5 labeled ’Strongly agree’.

Results obtained from this survey should grant us a better understanding on whether our

developed tool achieves its purpose of providing developers with a metrics visualization systems

and if the features we provide to tackle any technical debt encountered have the quality to do so.

Interpretation of gathered data should help us answer RQ1 and RQ3.

6.1.2 Automated Analysis

The last of our methodologies is an experimental approach, which consists on an automated

usage of our tool on open-source repositories. This allows for experimentation and evaluation

of our tool’s performance in real projects, with varying degrees of complexity, while gathering a

large amount of numerical data we can use to answer our research questions and further support

our validation.

For this, a custom repository crawler was developed. This crawler reads from a JSON object

describing the repositories to be analysed, using information such as the repository’s URL,

versions of the repository to be analysed (as we aim to also examine different versions of the

same file) and the files of interest (files on which the tool will be tested) spread through the

specified repository versions.

Our goal when adopting this approach of validation is to understand whether our tool can

provide the developer with meaningful refactorings which take into account the values of a set of

predefined metrics (see Section 5.4), and improves them after each iteration of refactoring. Our

choice of analysing different versions of the same file, across different repository commits, ties

into our need to understand whether developers using our tool are able to detect the presence of

possible problems lying in the code and how our tool’s suggestions differ across multiple versions

of a file.

Data resultant from the analysis of our tool’s impact in the quality metrics of selected files is

of great importance, as conclusions taken are essential for us to answer RQ2 and RQ3.

6.2 Results

This section describes in greater detail the results obtained in all the validation methodologies

used, which were described in Section 6.1: survey analysis and automated analysis.

Section 6.2.1 gives more details about how the survey was conducted, the number of

participants in our study, the questions performed and the results obtained, with Section 6.2.2

presenting the numerical data retrieved from the usage of our tool in open-source repositories.

6.2 Results 55

6.2.1 Survey

As explained in Section 6.1.1, one of our means to validate our hypothesis and answer the

proposed research questions was to conduct a survey on the usability, user interaction and the

importance of our tool’s features. This survey was answered by a group of 31 participants.

Sections 6.2.1.1 through 6.2.1.6 detail the questions done to the participants and discuss their

respective answers.

6.2.1.1 Participant’s Profile

In order to profile our participants, the introductory section gathers information about about

their age and education level. Figure 6.1 shows how both the age and education levels are spread

among our survey’s participants.

Figure 6.1: Survey participant’s age (left) and education level (right).

As it can be observed, our survey reached a highly diverse group of respondents, with the most

common answer being in the age bracket of 18 to 24 years old with a bachelor’s degree.

6.2.1.2 Technical Background

To further contextualize our participants in our survey, we also gathered information about

their technological background. For this, questions asked revolved around their programming

experience (in years), familiarity with certain software engineering and programming terms,

experience in both JavaScript and TypeScript and previous usage of Visual Studio Code,

refactoring recommendation systems and software metric analysis tools. Questions asked in this

section are identified as TB1 through TB7:

TB1: I have experience in programming for...;

TB2: I am familiar with programming terms, such as classes, methods and data structures;

TB3: I am familiar with software development terms, such as refactoring, debugging and unit

testing;

56 Empirical Validation

TB4: I am experienced in JavaScript or TypeScript;

TB5: I have used Visual Studio Code before;

TB6: I have used refactoring tools or extensions before;

TB7: I have used software metric analysis tools before.

Figures 6.2 and 6.3 show graphical representations of the answers for this section of the survey.

Participants of this survey are mostly familiar with most programming and development terms that

the survey may refer to, with all respondents having some degree of programming experience.

This suggests a software engineering experience, which indicates that all participants fit within the

target demographic for this survey.

Figure 6.2: Survey answers to questions TB2, TB3 and TB4.

On the topic of relevant technologies and tools used in the developed tool, all participants

have experience with using Visual Studio Code, while most of our participants already had any

experience with both refactoring and metric analysis tools. On the topic of relevant programming

languages for our tool, more than half the participants (17 out of 31) consider themselves

experienced with JavaScript or TypeScript.

6.2.1.3 Interface

On this section of the survey, we present the participant with pictures of our interface report and

how it changes when the programmer alters the source code, in which we aim to understand the

first impressions a user might have when using the tool. This section is divided into questions about

the general interface, post-changes interface and Visual Studio Code-related interface. Questions

asked in this section are identified as I1 through I10 for questions relative to the general interface:

I1: Most of the metric values on this file are within healthy limits;

I2: The color scheme used allows me to quickly identify problematic methods without spending

time looking through them individually;

I3: Despite the long list of metrics, I am able to process the information fairly quickly;

I4: The first section of the interface, file-related metrics, is emphasized enough and its

information is of easy interpretation;

6.2 Results 57

Figure 6.3: Survey answers to questions TB1 (top-left), TB5 (top-right), TB6 (bottom-left) and
TB7 (bottom-right).

I5: The second section of the interface, method-related metrics, is emphasized enough and its

information is of easy interpretation;

I6: The third section of the interface, refactoring suggestions, is emphasized enough and its

information is of easy interpretation;

I7: The amount of information presented is overwhelming;

I8: The information given is enough for me to know if any action is needed on the code;

I9: The preview colored squares on the ’Method Metrics’ section allows for even faster analysis

of methods;

I10: This report format of presentation fits the purpose of this tool.

Figure 6.4 shows the distribution of answers relative to the interface questions, I1 through I10.

The results obtained suggest that our approach to the visual part of our system is mostly well

perceived by our target end-user, as answers to questions I1-I3 and I8-I10 indicate that our tool’s

interface is capable of transmitting information in a simple to read format. Answers to questions

I1, I3 and I8 in particular, suggest that our tool provides a way for developers to quickly evaluate

the current state of the metrics on the file being worked on and whether any action should be taken

or not.

58 Empirical Validation

Figure 6.4: Survey answers to questions regarding the tool’s interface.

However, based on answers to questions I4-I7, the current interface could use some

improvements on the way information is presented to the user, as some participants believe that

two of the report sections could be presented better and a significant portion of the respondents

agreed that the amount of information presented on the report is overwhelming, which could lead

some developers to spent more time than intended to interpreting the information displayed.

To test a possible existence of correlation between the agility of assessment of the metrics and

the awareness of requiring action. As such, we calculated the mean results for questions I2, I3 and

I9 to figure the evaluation of the participants to the agility of assessment our tool provides and the

answers to question I8 which consider if the participant is aware that action is needed on the code.

For this, we ran a correlation test between the mean results of I2, I3 and I9 against the results of

I8, using Kendall’s tau-b correlation tests [Ken38, Ken45], with the null hypothesis being there

is independence between the agility of assessment and the awareness of action. The resultant p-

value of approximately 0.015, below the used significance value of 0.05 makes us reject the null

hypothesis.

Following the general interface questions, the next subsection covered how the post-changes

interface is perceived by the user, with questions PCI1 and PCI2:

PCI1: I can clearly understand the values on the left side correspond to old values, while the

ones on the right correspond to the newest ones;

PCI2: Only showing the two more recent values of each metric for a programming session is

enough.

Figure 6.5 shows the distributions of answers to questions PCI1 and PCI2, shown to the user

once a post-changes interface screen is presented. Answers to question PCI1 show that the way

6.2 Results 59

Figure 6.5: Survey answers to questions regarding the tool’s post-changes interface.

our interface shows changes in metrics is clear to the user (27 of 31 participants agreed), but PCI2

shows that only comparing the two most recent values could not be enough for some users.

After the post-changes questions, the participant is exposed to the Visual Studio Code’s

interface, where common contribution points for new interface elements are shown and how our

tool fits into this interface. Figure 6.6 shows the answers obtained for questions VSCI1, VSCI2

and VSCI3:

VSCI1: The webview interface is distracting;

VSCI2: I would prefer for the information given by the tool to be shown in other contribution

points, eliminating the need for a webview;

VSCI3: Extensions whose features are scattered thoughout the VSCode UI can be confusing to

use.

Figure 6.6: Survey answers to questions regarding the tool’s implementation on the Visual Studio
Code’s UI.

As observed on the results obtained in Figure 6.6, most participants believe that the webview

format we used for our interface is distracting for the user. However, most respondents believe that

extensions with features present in multiple contribution points of the Visual Studio Code UI can

be confusing to use and a considerable amount of answers to VSCI2 disagree with the information

given by the tool to be spread through the contribution points.

A possible interpretation of the inconsistency seen in the answers for these questions is that

our webview approach is a possible correct approach for the interface, due to its capability of

keeping all required information in a single section of the interface, without resorting to fragment

our interface into smaller parts and insert them into the embedded Visual Studio Code UI, which

60 Empirical Validation

could pose a problem, considering the answers to VSCI3. However, as suggested by questions

VSCI1 and VSCI2, it should be improved, as to not be as much of a distraction as the current

version is.

6.2.1.4 Workflow

Once the respondent is contextualized about how our tool fits in the programming

environment, a video of the tool’s usage and workflow is shown. The point of study in this

section is to understand how clear are the instructions given by the tool, if the processing time for

all the metrics and refactoring suggestions is acceptable and whether the webview still proves a

distraction for the user, after watching the tool being used. Questions in this section are identified

as WF1 through WF5:

WF1: The workflow to execute the top Extract Method suggestion looked simple;

WF2: Instructions presented on the interface on how to execute a refactoring are clear;

WF3: The processing time of post-changes metrics and refactoring suggestions (around five

seconds for this file) is too high;

WF4: The webview is distracting for the programmer;

WF5: I would prefer a button in the interface to run the refactoring, instead of manually executing

a command.

Figure 6.7: Survey answers to questions regarding the tool’s workflow.

Results shown in Figure 6.7 indicate that the usage of our tool is simple and clear. However,

the webview interface is still seen as a distraction, which suggests that, despite the tool providing

useful information (see Section 6.2.1.3), the format in which it is presented could be improved.

Question WF3, in particular, shows a wide spread of responses, as a significant portion of the

answers suggest that our tool takes too long for analyse supported metrics and evaluate all possible

6.2 Results 61

refactorings, which is not ideal. This distribution of answers could be tied to multiple factors,

including tool inefficiency by our part, lack of direct comparison between our system and existent

ones with similar purposes or unfamiliarity of the computational cost of the used algorithms by

the respondents.

6.2.1.5 Refactoring

Another main functionality of our tool is the refactoring module, responsible for

semi-automatically execute refactoring operations on the source code. Respondents are

questioned about whether our choice of supported refactorings is correct and how programmers

can benefit from a tool which analyses in real-time and executes the best found refactoring.

RF1: All three supported refactorings (Extract Method, Extract Class and Extract Variable) are

refactorings I use regularly;

RF2: A tool which automatically finds the best refactoring of each kind, for any file and in close

to real time, is something I see value in;

RF3: Having semi-automated execution of the best found refactorings is useful, i.e. the user

triggers the execution, but execution is performed automatically;

RF4: Having a preview of what the refactoring is going to change before executing is useful.

Figure 6.8 shows how the refactoring module of our tool is perceived by our respondents,

with a vast majority recognizing the importance of optimal refactoring finding, semi-automated

execution and refactoring preview. However, our selection of supported operations is divisive, as

answers to question RF1 are distributed almost evenly through the Agree and Disagree options.

Figure 6.8: Survey answers to questions regarding the tool’s refactoring capabilities.

Apart from semi-automated refactoring execution, our tool also allows for users to customize

the algorithms of finding and evaluating refactorings, as we believe that every project has its own

context and no one is more familiar with it than its own developers. Survey participants are

questioned about the clarity of each option and how useful customization on refactoring tools is.

62 Empirical Validation

UC1: Offering user customization for refactoring tools is useful;

UC2: The description of each option and its impact on the suggestions are clear.

As shown by Figure 6.9, the feature of user customization on refactoring suggestion systems is

considered very useful by the respondents (30 out of the 31 participants agreed), with the way such

options and their purpose are presented to the user being considered clear by the vast majority of

the responses.

Figure 6.9: Survey answers to questions regarding the tool’s user settings.

6.2.1.6 Final Remarks

The final section of the survey requires respondents to take into account all the information

and features exposed throughout the survey and its purpose is to understand the usefulness of the

tool as a whole, and which of the features implemented were their favorite and which were not as

impressive.

FR1: This tool’s features are simple and fast to understand;

FR2: This tool can positively impact my development workflow;

FR3: I would use this tool.

The final balance of our tool shows a very positive result, as seen by Figure 6.10. The majority

of participants understood how the features and the tool as a whole worked, recognizing its impact

on development workflow. Most participants (22 out of 31) would consider using this tool for

their work, with the two answers disagreeing with this statement being participants which did

not regularly use the supported refactorings (both answering Strongly disagree on question RF1).

This could suggest that the consideration of using our tool could by tightly connected to the kind

of supported refactorings.

6.2.2 Automated Analysis

The automated analysis ran our tool through twenty-two files, spread between five open-source

repositories, ranging from a small independent project to large-scale open-source projects such

as Microsoft’s vscode1, passing through TypeScript showcase projects, like dojo2. This choice of
1https://github.com/Microsoft/vscode/, Last accessed on July 22, 2020
2https://github.com/dojo/intern-only-dojo/, Last accessed on July 22, 2020

6.2 Results 63

Figure 6.10: Survey answers to the final section.

projects was done as to portray how our tool can work on projects with varying scopes and fit

various workloads, while we progressively gained confidence in its results during tests on larger

files.

While the chosen files were not entirely randomly selected, we believe that the ones chosen

grant a solid representation on how our tool operates in real-life situations. Our selection criteria

for these files was rather simple, as we targeted files which contain some amount of logic, while

being conservative about the size of the file, due to obvious limitations on live processing a code

file. To further contextualize on the size of the chosen files, the median and mean number of lines
of code present in these files being 119 and 144 lines of code, respectively.

Despite our tool providing execution of three refactoring operations, only two of them operate

using the analysis of quality metrics: Extract Method and Extract Class. As such, our experiments

on the selected files will be focused on analysing the metrics before and after the aforementioned

refactorings. The metrics used by these refactorings are discussed in greater detail in Section 5.4.

No mixing of refactorings will be performed during these experiments, in order to test the

impact a single kind of refactoring has on the original files. In other words, when evaluating

our approach to the Extract Method refactoring, only Extract Methods will be executed, starting

at the original code state to the final state of our experiment. This is to restrict the interference

one refactoring might cause to the targeted metrics of another, for example, an Extract Method

changing the LCOM value of a class.

6.2.2.1 Extract Method

Starting off with the Extract Method refactoring, our tool’s objective is to try to find possible

refactorings whose execution allows for metric values to be more evenly leveled among methods.

By default, our system prioritizes extracting fragments with the highest amount of cyclomatic

complexity, followed by the fragment’s number of statements and then by its impact on the LCOM

metric. As LCOM is a metric operating on an entire class cohesion, we found that Extract Method

suggestions did not have much impact on drastically changing this metric, which is most likely

tied to the fact is takes into account instance variables, which is something the Extract Method

refactoring cannot change without external action by the developer. Given this, results shown in

this section will not show changes on the LCOM metric.

64 Empirical Validation

Figure 6.11: LiveRefactoring’s impact on number of statements (left) and cyclomatic complexity
(right) metrics.

On the 22 files analysed, our tool found 188 possible Extract Methods which passed the filtering

of a minimum of three statements and a maximum of 80% of the original method’s statements.

We then executed the five best possible Extract Methods on every studied file, however, in files

which did not have five suggestions, we executed as many as possible.

The experiment ran utilized the default user settings for our tool (see Section 5.5.2 for more

details about the user settings) and prioritizes minimizing the highest number of cyclomatic

complexity found in all methods and functions of the file, followed by minimizing the highest

number of statements in a given method or function, with minimizing the values of LCOM being

prioritized last.

Figure 6.11 shows the results our tool obtained on five of the analysed files, one per repository.

The downward trend on the metrics we are trying to minimize is clear across all files, which

suggests that our tool is capable of finding and extracting methods according to the defined criteria,

6.2 Results 65

with the goal to minimize the number of statements and the cyclomatic complexity of methods in

the file.

Figure 6.12: LiveRefactoring’s impact on the maintainability index.

To test if the downward trend we observed on the selected metrics translates into the process

of improving the overall maintainability of the source code analysed, our experiment also tracked

the trend of other metrics, including the maintainability index [OHA92, CALO94, Mic], which is

also used to evaluate, as the name suggests, how maintainable a certain code structure is. As such,

Figure 6.12 shows how the refactoring suggestions impact the value of this metric, across the same

files presented in Figure 6.11. As higher maintainability values usually indicate the presence of

code with higher quality, Figure 6.12 shows that our refactorings turned the existent code into a

more maintainable one across all files.

By observing both figures and the metric trends, it is possible to establish a visual correlation

between a lower number of statements and cyclomatic complexity values and a higher

maintainability index, However, further statistical testing must be performed.

A paired (or matched) samples upper-tailed t-test was conducted to evaluate whether our

Extract Method approach lead towards a more maintainable code, comparing the initial

66 Empirical Validation

maintainability values, before action of our tool, with the final maintainability values, after action

of our tool. The conducted t-test is directed at testing the hypothesis in Table 6.1.

Null Hypothesis Alternative Hypothesis
H0: Extract Methods used by the tool did not

improve the code’s maintainability. µd <= 0
Ha: Extract Methods used by the tool

improved the code’s maintainability. µd > 0

Table 6.1: Hypothesis Tests related to the Extract Method refactoring.

With our tool working towards improving the maintainability index metric and with the

objective being comparing the values of the same sample in different points in time, we chose to

run an upper-tailed paired samples t-test, where the obtained t-value should help us reject or

accept the null hypothesis - the Extract Methods performed by our tool do not improve the code’s

maintainability.

One of the assumptions of a paired samples t-test is the normality of the sample data. To verify

this assumption, we used the Shapiro-Wilk normality test [SW65] to test the normality of our data,

with the null hypothesis meaning that the sample comes from a normally distributed population.

Table 6.2 shows the obtained p-value of the Shapiro-Wilk test and the performed t-test.

Shapiro-Wilk p-values of 0.0726 and 0.1951 for the before and after samples, respectively, are

slightly higher than the chosen significance value of 0.05, which shows that we cannot reject the

null hypothesis of this test on both samples. We can also verify that the p-value of the t-test is

significantly lower than the significance value chosen of 0.05, thus, meaning that there is enough
evidence to reject the null hypothesis H0.

Sample Mean value Std. Deviation Sig. Value DF Shapiro-Wilk(p) t-test(p)
Before 67.758 11.739

0.05 21
0.0726

0.003968
After 70.764 8.136 0.1951

Table 6.2: T-test on the Extract Method refactoring impact on maintainability.

Given this, based on the evidence obtained from the analysis of quality metrics calculated by

our tool, we are convinced that Extract Method suggestions provided by our tool result in an

overall more maintainable code.

Another point of study on this refactoring is whether our tool can detect and act on similar

problems in multiple versions of the same file, which could indicate that early usage of this tool

could aid developers on detecting and preventing the persistence of code smells on earlier versions

of a file. As such, we conducted another experiment using one of the studied repositories, deno-

drash3 to analyse how our tool performed at detecting problems in three different files: server.ts,

http_service.ts and string_service.ts across multiple versions. These files were selected due to

3https://github.com/drashland/deno-drash/, Last accessed on July 22, 2020

6.2 Results 67

Figure 6.13: LiveRefactoring’s impact on targeted metrics across five repository versions.

previous analysis showing their potential to carry problems and due to being files targeted by

multiple changes across the repository’s history. To find good candidate versions of the repository,

we tried to select versions with multiple commits in between, as we believe it provides files with

substantial difference between them.

Figure 6.13 shows the evolution of the targeted metrics (number of statements and cyclomatic

complexity) on the server.ts file across five versions, spread between more than 50 commits done

on the file across four months of development. We can observe that our tool was capable of finding

similar improvements on all five versions of the file. Figure 6.14 shows the extent of how the tool

impacted the maintainability index on all methods across the five selected versions of server.ts.

As expected, the tool improved the maintainability index on all five versions, similarly to what

was observed on the previous experiment (see Figure 6.12). However, these improvements are

only in the single-digit margin, indicating residual improvements, which could be explained by

the number of Extract Method executed - five - relative to the number of methods present in the

file (18 to 20 methods across selected versions before any refactoring occurred)

68 Empirical Validation

Figure 6.14: LiveRefactoring’s impact on the maintainability index across five repository versions
of server.ts.

This may suggest that early usage of our tool could have benefits for developers and can result

in healthier metrics for files across their lifetime if used early on, as results found after five Extract

Methods across different versions of the studied files, show that both the targeted metrics and the

metrics used to evaluate our approach trend towards better and healthier values across the board.

From the obtained results in this last experiment, we figured that one more study could be

done on our tool’s approach to the Extract Method refactoring. This is, if the single-digit

improvements found on our second experiment are is some way related to the number of Extract

Methods performed, when compared to the number of methods a file has before the refactoring

begins. Figure 6.15 shows the evolution of the previously studied metrics in deno-drash’s

http_service.ts file, on commit f9953e3 when, instead of five Extract Methods executed, we

execute ten of them.

As seen in Figure 6.15, the metrics can be further improved when more Extract Methods are

performed. However, we cannot execute as many Extract Methods as there exist, as dozens of

small methods being extracted might actually turn the code more bloated than the one we started

with, which ends up being counter-productive towards a more maintainable code base. Our user

customization makes our tool very versatile to tackle this problem, as developers can specifically

tailor the size of suggested Extract Methods, given their project’s context, allowing them to find a

balance between the number of refactorings performed, to the benefit gained from them.

6.2 Results 69

Figure 6.15: LiveRefactoring’s impact on the selected metrics across ten Extract Method
refactorings.

6.2.2.2 Extract Class

Another of our tool’s objectives is to provide automated Extract Class refactorings using a

modified metrics-based approach (see Section 5.3.2 for details of implementation). However, due

to the need for our solution to perform in close to real time, some compromises had to be made,

which could make our approach lose some fidelity, when compared to the original [BDO11].

In order to evaluate the effectiveness of our modifications and answer the related research

questions regarding improvements on the source file, we studied the Extract Class refactorings our

tool suggests in each of the twenty-two analysed files and its impact on the LCOM metric. Extract

Class refactorings resulting in lower values of LCOM across all classes in the file should represent

an improvement on the metrics, while higher values should indicate a deterioration of the LCOM

metric.

Out of all the analysed files, our tool only found four files with possible Extract Class

refactorings, on which we proceeded to execute the highest amount of Extract Class refactorings

70 Empirical Validation

Figure 6.16: LiveRefactoring’s Extract Class impact on the LCOM metric across four files.

as possible, up to a maximum of five, similarly to how the Extract Method experiment was

conducted. Despite our tool filtering for Extract Class opportunities starting at two extracted

methods, with the selected files containing a moderate amount of logic onto them, the amount of

Extract Class suggestions was close to none.

To evaluate whether or not our Extract Class approach leads towards a reduction of the LCOM

values across all classes in a file, we conducted a t-test. Similarly to the Extract Method statistical

test, the performed t-test was a paired sample one-tailed t-test, with the difference of this one

being lower-tailed, since we want to test the decrease of a variable and not the opposite. Table 6.3

shows the null and alternative hypothesis being tested during this t-test.

Null Hypothesis Alternative Hypothesis
H0: Extract Class used by the tool do not

improve the LCOM values across all classes

in a file. µd >= 0

Ha: Extract Class used by the tool improve

the LCOM values across all classes in a file.

µd < 0

Table 6.3: Hypothesis Tests related to the Extract Class refactoring.

Table 6.4 shows the results obtained with the performed t-test, where it is possible to observe

that the obtained p-value is significantly higher than the defined significance value of 0.05, leading

6.2 Results 71

to the conclusion that there is not sufficient evidence to reject the null hypothesis H0. The

Shapiro-Wilk normality test could not be done on such a small sample and, as such, we will

assume the sample used follows a normal distribution, which is further discussed as a threat to

validity.

Sample Mean value Std. Deviation Sig. Value DF Shapiro-Wilk(p) t-test(p)
Before 0.549 0.411

0.05 3
-

0.312
After 0.423 0.101 -

Table 6.4: T-test on the Extract Class refactoring impact on the LCOM metric.

Figure 6.16 shows how the value of LCOM is impacted when an Extract Class is executed on

each respective file. In a first look of this graph, we can compare initial and final values of

LCOM for the studied files and observe that in three out of the four files, the values of LCOM

trend towards more favorable ones. However, the LCOM values followed an opposite trend

across all Extract Class refactorings performed on vscode’s cursorMoveOperations.ts, which

indicates a substantially decay of the LCOM metric after every refactoring performed. Upon

closer inspection of the file at hand, cursorMoveOperations.ts4, the targeted class for the

refactoring, MoveOperations, is a class without any fields, composed of only static methods. As

such, any Extract Class performed on this class would inevitably increase the value of LCOM,

due to the creation of a link between the new and old classes which serves no purpose on a class

with only static methods.

Despite existing a strongly plausible explanation for the only unfavorable growth of LCOM

values observed in the targeted files and considerable improvements on the LCOM metrics for the

other, more regular files, we believe the data and evidence we gathered shows some potential in

our modified approach to identify Extract Class opportunities however, it is not enough to claim

the effectiveness of our Extract Class towards a more maintainable code base.

6.2.3 Discussion

This work was done with the main objective of validating the following hypothesis:

“A live refactoring recommendation system operating based on quality metrics is

capable to aid developers towards a more maintainable code base.”

The obtained results, explained throughout this chapter, should help us answer the proposed

research questions:

RQ1 "Does providing developers with software visualization tools improves their awareness

towards code smells mitigation?"

4https://github.com/microsoft/vscode/blob/master/src/vs/editor/common/controller/cursorMoveOperations.ts, Last
accessed on July 22, 2020

72 Empirical Validation

The answer to RQ1 lies within the conducted survey (see Section 6.2.1), where we asked

participants about the usability of our tool and its possible impact when used during

development tasks. During the Interface section of the survey (see Section 6.2.1.3), 93.6%
of participants were able to correctly assess the metrics of a file they were unfamiliar with,

during the first seconds of contact with both our tool and the evaluated file, as seen in

answers to question I1. Answers to questions I3 and I7 show us that, despite the amount of

information being considered overwhelming by a significant portion (32.3%) of the

respondents, the information could be quickly processed according to 77.4% of the

participants. Question I2 suggests that the used color scheme was key for users to assess

the information rapidly, as 96.8% of participants agreed on its role in the interface. On

whether this awareness can translate to developer action (question I8), 80.7% of

respondents agreed that provided information was enough to understand if any action was

needed on the code, which suggests there could be causality between having access to

information and the incentive to take action.

We can also establish a correlation between the correct assessment of metrics and whether

the information provided by our tool is enough to consider taking action as, out of the 29

participants which agreed with question I1, 24 of them considered the information given

enough for action to be taken (82.8%). With an existent correlation between the agility of

assessment and the awareness for action being needed, we believe that there is significant
evidence suggesting that our tool is capable of allowing developers for a quick
assessment of metrics and identification of problematic portions of the code, such as

methods or functions, in files the programmer is not necessarily familiar with.

RQ2 "Does the usage of these tools result in improvements on quality metrics, leading to a more

maintainable code base?"

Our final research question, RQ2, was answered by studying how the developed tool can

improve code files towards a greater maintainability. To study this, we selected five

open-source repositories with varying degrees of complexity and executed refactorings on

selected files. This process and its results are described in greater detail during

Section 6.2.2. In order to isolate the effect each refactoring type had on the metrics of a

file, we conducted studies separately with each refactoring type (Extract Variable was

excluded due to insignificant impact on metrics) on the original files, where we executed, at

most, 5 refactorings of each type. As we executed each kind of refactoring separately, we

also studied their impact separately, with Extract Method being studied in Section 6.2.2.1

and Extract Class in Section 6.2.2.2.

Results obtained for Extract Method, shown in Figures 6.11 and 6.12, indicate that our

tool, operating on minimizing the maximum value of statements and cyclomatic complexity

found in all methods and functions across a file, is capable of leading other metrics towards

values which suggest a higher maintainability. The results of the Extract Class refactoring,

shown in Figure 6.16, suggest that the value of the measured metric trends towards values

6.3 Threats to Validity 73

considered better across most files. However, the amount of Extract Class refactorings

performed represents a small sample size and, as such, we cannot conclude whether our

Extract Class approach leads towards a more maintainable code.

We can observe that results obtained with our Extract Method approach provide

substantial evidence that post-refactoring code is more maintainable than its

pre-refactoring counterpart. However, results show that our Extract Class approach

suggests is not conclusive about the maintainability of post-refactoring code.

RQ3 "Does early exposure to software metrics and consequent early action by the part of the

developer lead to a more maintainable source code on earlier stages of development?"

To answer RQ3, we studied the evolution of selected metrics across multiple versions of the

same file, a process detailed throughout the final parts of Section 6.2.2.1, where we execute

multiple Extract Methods sequentially on each of the selected versions and analyse whether

these metrics trend towards more maintainable values.

Results obtained for some files in deno-drash repository, a subset of the analysed files in

RQ2, shown in Figures 6.13 through 6.15, indicate that our Extract Method approach leads

to more maintainable code overall, albeit without significant margins, across most versions

of a file, with final results between versions converging to similar values.

With the results observed in RQ1 showing significant evidence of greater developer

awareness when using a visualization tool and answers to question I7 showing most

respondents considered that provided information was enough for action to be taken, we

believe there is evidence supporting the statement that early action leads towards higher

maintainability early on the development process.

The results obtained in the selected research points indicate that, although there exists

significant evidence pointing towards an effectiveness in using quality metrics to guide a live

refactoring tool to reach a more maintainable source code, the main hypothesis of this
dissertation could not be entirely validated. While both the correlation between metric

visualization and awareness of action and the effectiveness of our Extract Method approach

leading to a more maintainable code being validated, there was not enough evidence to reject the

null hypothesis related to our Extract Class approach pointing towards higher maintainability.

6.3 Threats to Validity

As with any research project, it is important to identify and mitigate possible validity threats

which may hinder the validation process. As such, this section is dedicated to identify and describe

how validity threats we encountered were mitigated and how can they impact the conclusions taken

from the results of our study.

74 Empirical Validation

6.3.1 Conclusion Validity

Threats to the validity of our conclusions are ones which hinder the ability to draw

conclusions considered correct about the relations between treatment and outcomes of

experiments [WRH+12].

Reliability of measures. The external metric used to evaluate our Extract Class approach,

LCOM, is one which has been subject to multiple revisions throughout

time [CK91, CK94, HSCG96] and it is one metric whose relevance and usefulness in

quality measurement has been put into question [HSCG96, BBM96]. Considering the

background of this metric, despite results on our Extract Class pointing towards

improvements on the LCOM metric in most files studied, which in turn suggests an overall

improvement on the code, any conclusion taken from our results should take into

consideration the history of the metric used to evaluate them. Future studies should look to

expand on the metrics used to validate our tool’s approach.

Assumption of normality. The sample size of our experiment on the Extract Class method is

very small, as it is composed of four documents. As such, the used normality test, Shapiro-

Wilk’s, cannot provide useful results to determine the normality of the sample, leading to

an assumption that the samples for this experiment followed a normal distribution. Future

experiments should expand on the sample size provided for this experiment.

6.3.2 Internal Validity

Threats to internal validity are ones which affect a conclusion about the causal relationship

between treatment and outcome, without the researcher’s knowledge [WRH+12].

Participant selection. Participants of our survey were volunteers and, as such, are subjects

whose motivation is considered to be greater than the whole population [WRH+12]. This

variability in motivation could influence the answers which would otherwise be given.

File sample characteristics. The files for analysis were selected based on a simple criteria:

files should have some logic within them. This was done in order to filter out possible

files containing trivial code, such as, for example, a single abstract class. Another point of

selection for these files, were files whose amount of code resulted in reasonable processing

times, particularly due to the cost of our Extract Class algorithm. Despite the file length

selection criteria not influencing the obtained results, it can influence the interpretation of

said results. This is, the more code a file has, the less percentage of this code is altered by a

refactoring, which results in a less noticeable gain across all code in the file.

Besides this criteria, files were selected randomly, as to not further influence results

obtained. As such, interpretation of results should take into consideration how the chosen

files were selected.

6.3 Threats to Validity 75

Environment. The environment in which the survey was performed was not controlled, due to

the restrictions imposed by the current circumstances. As such, participants may have had

access to resources which can influence their answers. Despite the weight of this threat

being close to insignificant, future studies should have more control in the environment they

are performed on.

6.3.3 Construct Validity

Threats to this type of validity concerns about the generalization of the results of the

experiments to the theory behind those experiments and can be related either to design or social

factors [WRH+12].

Hypothesis guessing. Participants of our survey, destined to evaluate the usability and feature

set of our tool, could have tried to guess the hypothesis being tested, based on the type of

questions asked. Despite the intentions behind the survey not being directly disclosed to the

participants, such behavior could influence their answers to the proposed questions.

6.3.4 External Validity

External validity is a type of validity which refers to whether results found in our study are

capable of holding when tested against populations with different characteristics in different

contexts and conditions [WRH+12].

Survey sample size. The conducted survey about the tool’s usability and feature set counted

with about 31 participants, which could be considered a small sample size, with reduced

statistical relevance. As such, interpretation of the obtained results should take into

consideration the number of participants.

File sample size. Our automated analysis examined the usage of our tool on 22 TypeScript and

JavaScript code files. This is considered a small sample size and generalization of results

obtained should consider the amount of files analysed. To mitigate this threat, the chosen

files are contained within five different open-source repositories of varying structure and

complexity, ranging from small, personal pet projects to large, industry-scale repositories.

Although we believe possible threats caused our relative small file sample size can be

mitigated due to the variation of the selected repositories, future experiments should target

a greater number of files contained in a larger number or repositories.

76 Empirical Validation

Chapter 7

Conclusions and Future Work

7.1 Conclusions . 77

7.2 Main Contributions . 78

7.3 Future Work . 79

This chapter serves as a retrospective about all the work performed during this dissertation, the

conclusions obtained, the main contributions this work has done towards scientific progress and

future work that can enhance this project in its current state. Section 7.1 summarizes the main

conclusions taken from this work, including the answers for the research questions proposed.

Section 7.2 details how this work has contributed to the field in question and Section 7.3 describes

possible future work to be done in order to enrich what was obtained during this dissertation.

7.1 Conclusions

Refactoring suggestion systems are important tools which help developers tackle some of the

technical debt that naturally creeps onto software systems during their development. After a

literature review on liveness in software development, refactoring candidate identification,

refactoring sequencing, current refactoring tools and live tools, we identified some problems on

how current tools could use some improvements about the way results are shown to the user and

how easy they are to use.

Our solution for mitigating this problem comes in the form of a Visual Studio Code extension

which incorporates the concept of liveness to provide instant feedback to developers about the

changes on metrics during development. These metrics are also used to compute refactoring

suggestions which target specific metrics and aim to lead them towards values considered more

optimal.

The following hypothesis was considered:

77

78 Conclusions and Future Work

“A live refactoring recommendation system operating based on quality metrics is able

to aid developers towards a more maintainable code base.”

In order to validate said hypothesis, three research questions were proposed which lead our

validation methodologies:

RQ1 "Does providing developers with software visualization tools improves their awareness

towards code smells mitigation?"

Results obtained through a survey suggest that our tool’s interface allows developers to

quickly identify problematic methods and quickly assess the value of the metrics for any

file, even if its contents are not familiar to the programmer. In turn, this agility in assessment

serves as significant evidence to claim that visualization tools lead towards an increase in
awareness to tackle code smells.

RQ2 "Does the usage of these tools result in improvements on quality metrics, leading to a more

maintainable code base?"

We studied if the tool’s supported refactorings which impact metrics, Extract Method and

Extract Class, can result in improvements of quality metrics. Results for our Extract Method

approach heavily suggest that it leads towards a more maintainable code, while results

obtained on our Extract Class approach were not conclusive.

RQ3 "Does early exposure to software metrics and consequent early action by the part of the

developer lead to a more maintainable source code on earlier stages of development?"

Studies performed on multiple versions of a subset of files analysed in RQ2 using the Extract

Method refactoring shows that there is evidence suggesting that early action leads to more

maintainable code from earlier stages of development, as final values converge to similar

metric values.

7.2 Main Contributions

Over the duration of this dissertation, our work was directed towards the creation of a

refactoring suggestion system, which operates on the analysis and usage of quality metrics to

provide developers with a tool which helps tackling the presence of technical debt on the code.

Beyond the proposed solution, our work contributed to the software engineering field in the

following manners:

Literature review. One of the first steps taken towards understanding how should we approach

this problem, was by reporting on what previous researchers have accomplished on the

topics of liveness in software development, how refactoring recommendation systems

identify candidates, schedule the execution of refactorings, existent refactoring tools and

how liveness is incorporated on refactoring tools that support it and existent tools created

to evaluate quality metrics in software systems.

7.3 Future Work 79

Visual Studio Code extension. The proposed solution for the problem at hand, was to design

and develop a Visual Studio Code extension. This tool must be able to operate live and offer

the developer with an analysis of some quality metrics which help the developer identify the

presence of code smells, using them to compute refactoring suggestions which tackle said

code smells, for the user to execute semi-automatically.

Custom repository crawler. One of the validation methodologies we used, required the

development of a simple repository crawler, capable of executing refactorings on

pre-determined repositories and respective documents of interest, through versions of

repositories previously specified.

Survey study. Another of the validation methodologies applied, was the creation of a research

survey on the developed extension, in order for subjects with background in software

engineering to evaluate the feature set, the usability and the accessibility of our tool. We

believe results obtained from this survey are promising and could lead to more research

being done on the usability of live tools in the future.

7.3 Future Work

As with every software engineering project, current features present on the tool could be

improved upon and more experiments could be engineered in order to fully understand how an

extension such as ours can improve a developer’s workflow and a system’s evolution. Here is

some future work that can be performed, based on what we learnt throughout its development and

based on feedback received from survey participants:

Improvements to interface. Although we believe that our tool provides useful information

regarding the detection of code smells by a developer’s standpoint, supported by the results

obtained in our survey (see Section 6.2.1), some features on the interface could definitely

use some improvements to make the information provided more clear, as also pointed by

the results of the survey. Also, more interface customization could be done, such as a dark

mode option, as to allow users to personalize the tool to their preferences.

Refactoring sequencing. One of the first ideas we envisioned for our tool was the ability for

proposing refactoring sequences to the user. However, we found some limitations regarding

the implementation of such search algorithms within the Visual Studio Code’s API and

concerns about the computational cost of employing such algorithms in a tool supposed to

be live.

Experimentation. With the concept of liveness emerging on software engineering tools and

how tightly it is connected to user experience, we believe our tool could be subject to more

testing, regarding both its usability and its usefulness. For example, one could evaluate

how a project evolves when developers start using our tool starting from early parts of its

conception, compared to what the project would look like otherwise.

80 Conclusions and Future Work

Our work explored the employment of liveness in the scope of the software engineering process

of refactoring. Despite not pioneering live refactoring, we believe the work performed serves as a

step forward in the live refactoring field and future research on the area can benefit from the lessons

learnt throughout this dissertation and further explore both the interaction between developers and

their development environments and the usage of more efficient algorithms to reach better and

faster solutions.

References

[ARC+19] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira,
and João Pedro Dias. Live software development: Tightening the feedback loops. In
Proceedings of the Conference Companion of the 3rd International Conference on
Art, Science, and Engineering of Programming, Programming ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[Bas04] Bas Leijdekkers. MetricsReloaded, 2004. https://plugins.jetbrains.com/
plugin/93-metricsreloaded, Last accessed on 22-07-2020.

[BBM96] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[BD02] J. Bansiya and C.G. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28(1):4–17, jan 2002.

[BDO11] Gabriele Bavota, Andrea De Lucia, and Rocco Oliveto. Identifying Extract Class
refactoring opportunities using structural and semantic cohesion measures. Journal
of Systems and Software, 84(3):397–414, mar 2011.

[BFdH+13] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal
Moskal, Nikolai Tillmann, and Jun Kato. It’s alive! continuous feedback in UI
programming. ACM SIGPLAN Notices, 48(6):95, jun 2013.

[BFS14] Pierre Bourque, Richard E Fairley, and IEEE Computer Society. Guide to the
Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE
Computer Society Press, Washington, DC, USA, 3rd edition, 2014.

[BOD+10] Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, Giuliano Antoniol, and
Yann-Gael Gueheneuc. Playing with refactoring: Identifying extract class
opportunities through game theory. 2010 IEEE International Conference on
Software Maintenance, pages 1–5, sep 2010.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

[CALO94] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, August 1994.

[CK91] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object
oriented design. ACM SIGPLAN Notices, 26(11):197–211, nov 1991.

81

https://plugins.jetbrains.com/plugin/93-metricsreloaded
https://plugins.jetbrains.com/plugin/93-metricsreloaded

82 REFERENCES

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, jun 1994.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Cod18] CodeMR. CodeMR, 2018. https://plugins.jetbrains.com/plugin/
10811-codemr, Last accessed on 22-07-2020.

[Cou19] Sara Filipa Couto Fernandes. Supporting Software Development through Live
Metrics Visualization. Dissertation, Faculdade de Engenharia da Universidade do
Porto, 2019.

[CT17] Anuradha Chug and Sandhya Tarwani. Determination of optimum refactoring
sequence using A algorithm after prioritization of classes. 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
2017-Janua:1624–1630, sep 2017.

[DDF+90] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R.A. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for
Information Science 41, pages 391–407, 1990.

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Inc., USA, 2001.

[DJ14] Kalyanmoy Deb and Himanshu Jain. An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part
I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary
Computation, 18(4):577–601, aug 2014.

[Fis13] Andrew Fischer. Introducing Circa: A dataflow-based language for live coding. 2013
1st International Workshop on Live Programming (LIVE), pages 5–8, may 2013.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

[FTC07] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou. JDeodorant:
Identification and Removal of Feature Envy Bad Smells. 2007 IEEE International
Conference on Software Maintenance, pages 519–520, oct 2007.

[FTSC11] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
JDeodorant: Identification and application of extract class refactorings. Proceedings
- International Conference on Software Engineering, pages 1037–1039, 2011.

[GMH11] Xi Ge and Emerson Murphy-Hill. BeneFactor. Proceedings of the ACM
international conference companion on Object oriented programming systems
languages and applications companion - SPLASH ’11, page 19, 2011.

[GS06] G. Gui and P. D. Scott. Coupling and cohesion measures for evaluation of component
reusability. In Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06, page 18–21, New York, NY, USA, 2006. Association for
Computing Machinery.

https://plugins.jetbrains.com/plugin/10811-codemr
https://plugins.jetbrains.com/plugin/10811-codemr

REFERENCES 83

[Had14] Hadi Hariri. Touring Plugins: Software Metrics, 2014. https:
//blog.jetbrains.com/idea/2014/09/touring-plugins-issue-1/,
Last accessed on 22-07-2020.

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., USA, 1977.

[HGW11] Steffen Herbold, Jens Grabowski, and Stephan Waack. Calculation and optimization
of thresholds for sets of software metrics. Empirical Softw. Engg., 16(6):812–841,
December 2011.

[HNJ19] Roman Haas, Rainer Niedermayr, and Elmar Juergens. Teamscale: Tackle Technical
Debt and Control the Quality of Your Software. 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), pages 55–56, may 2019.

[HSCG96] Brian Henderson-Sellers, Larry L. Constantine, and Ian M. Graham. Coupling and
cohesion (towards a valid metrics suite for object-oriented analysis and design).
Object Oriented Systems, 3:143–158, 1996.

[HT07] Mark Harman and Laurence Tratt. Pareto optimal search based refactoring at the
design level. Proceedings of the 9th annual conference on Genetic and evolutionary
computation - GECCO ’07, page 1106, 2007.

[II11] ISO and IEC. ISO/IEC 25010:2011 - Systems and software engineering –
Systems and software Quality Requirements and Evaluation (SQuaRE) – System
and software quality models, 2011.

[III17] ISO, IEC, and IEEE. Iso/Iec/Ieee 24748-4:2016. ISO/IEC/IEEE 24765:2017(E),
2016:1–522, 2017.

[Jas18] Jasper Koning. CoreMetrics, 2018. https://
marketplace.visualstudio.com/items?itemName=
jasper.coremetrics, Last accessed on 22-07-2020.

[KA16] Yahya Khrishe and Mohammad Alshayeb. An empirical study on the effect of
the order of applying software refactoring. 2016 7th International Conference on
Computer Science and Information Technology (CSIT), pages 1–4, jul 2016.

[Ken38] M. G. Kendall. A New Measure of Rank Correlation. Biometrika, 30(1-2):81–93,
06 1938.

[Ken45] M. G. Kendall. The treatment of ties in ranking problems. Biometrika, 33(3):239–
251, 1945.

[Kis16] Kiss Tamás. CodeMetrics, 2016. https://
marketplace.visualstudio.com/items?itemName=
kisstkondoros.vscode-codemetrics, Last accessed on 22-07-2020.

[LCJ13] Yun Young Lee, Nicholas Chen, and Ralph E. Johnson. Drag-and-drop refactoring:
Intuitive and efficient program transformation. 2013 35th International Conference
on Software Engineering (ICSE), pages 23–32, may 2013.

[Lik32] R Likert. A technique for the measurement of attitudes. Archives of Psychology, 22
140:55, 1932.

https://blog.jetbrains.com/idea/2014/09/touring-plugins-issue-1/
https://blog.jetbrains.com/idea/2014/09/touring-plugins-issue-1/
https://marketplace.visualstudio.com/items?itemName=jasper.coremetrics
https://marketplace.visualstudio.com/items?itemName=jasper.coremetrics
https://marketplace.visualstudio.com/items?itemName=jasper.coremetrics
https://marketplace.visualstudio.com/items?itemName=kisstkondoros.vscode-codemetrics
https://marketplace.visualstudio.com/items?itemName=kisstkondoros.vscode-codemetrics
https://marketplace.visualstudio.com/items?itemName=kisstkondoros.vscode-codemetrics

84 REFERENCES

[LL13] Remo Lemma and Michele Lanza. Co-evolution as the key for live programming.
2013 1st International Workshop on Live Programming (LIVE), pages 9–10, may
2013.

[LMD06] Michele Lanza, Radu Marinescu, and Stéphane Ducasse. Object-Oriented Metrics
in Practice. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[McC] McCabe Software. All Metrics Thresholds in McCabe IQ. http://
www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf, Last accessed on 22-
07-2020.

[McC76] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, 1976.

[McD07] Sean McDirmid. Living it up with a live programming language. Proceedings of the
22nd annual ACM SIGPLAN conference on Object oriented programming systems
and applications - OOPSLA ’07, 42(10):623, 2007.

[Mea12] Panita Meananeatra. Identifying refactoring sequences for improving software
maintainability. Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering - ASE 2012, page 406, 2012.

[MHPB12] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How We Refactor, and
How We Know It. IEEE Transactions on Software Engineering, 38(1):5–18, jan
2012.

[Mic] Microsoft. Code Metrics – Maintainability Index. https://
docs.microsoft.com/pt-pt/archive/blogs/zainnab/code-
metrics-maintainability-index, Last accessed on 22-07-2020.

[MKB+16] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel O Cinneide,
and Kalyanmoy Deb. On the use of many quality attributes for software refactoring:
a many-objective search-based software engineering approach, volume 21. dec
2016.

[MKWD17] Usman Mansoor, Marouane Kessentini, Manuel Wimmer, and Kalyanmoy Deb.
Multi-view refactoring of class and activity diagrams using a multi-objective
evolutionary algorithm. Software Quality Journal, 25(2):473–501, jun 2017.

[MMM+05] Cristina Marinescu, Radu Marinescu, Petru Mihancea, Daniel Ratiu, and Richard
Wettel. iPlasma:An Integrated Platform for Quality Assessment of Object-Oriented
Design. In Proceedings of the 21st IEEE International Conference on Software
Maintenance ICSM 2005, pages 77–80, 2005.

[MÓ11] Iman Hemati Moghadam and Mel Ó Cinnéide. Code-Imp. Proceeding of the 4th
workshop on Refactoring tools - WRT ’11, page 41, 2011.

[MP05] A. Marcus and D. Poshyvanyk. The conceptual cohesion of classes. In 21st
IEEE International Conference on Software Maintenance (ICSM’05), pages 133–
142, 2005.

[MRA11] Panita Meananeatra, Songsakdi Rongviriyapanish, and Taweesup Apiwattanapong.
Using software metrics to select refactoring for long method bad smell. In

http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf
http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf
https://docs.microsoft.com/pt-pt/archive/blogs/zainnab/code-metrics-maintainability-index
https://docs.microsoft.com/pt-pt/archive/blogs/zainnab/code-metrics-maintainability-index
https://docs.microsoft.com/pt-pt/archive/blogs/zainnab/code-metrics-maintainability-index

REFERENCES 85

The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and
Information Technology (ECTI) Association of Thailand - Conference 2011, pages
492–495. IEEE, may 2011.

[Nas51] John Nash. Non-Cooperative Games. Annals of Mathematics, 54(2):286–295, 1951.

[Nik] Nikolaos Tsantalis. JDeodorant. https://github.com/tsantalis/
JDeodorant, Last accessed on 22-07-2020.

[OHA92] P. Oman, J. Hagemeister, and D. Ash. A definition and taxonomy for software
maintainability. Moscow, ID, USA, Tech. Rep, pages 91–08, 1992.

[OMB13] Stephen Oney, Brad A. Myers, and Joel Brandt. Euclase: A live development
environment with constraints and FSMs. 2013 1st International Workshop on Live
Programming (LIVE), pages 15–18, may 2013.

[OMIA17] Akio Oka, Hidehiko Masuhara, Tomoki Imai, and Tomoyuki Aotani. Live Data
Structure Programming. Proceedings of the International Conference on the Art,
Science, and Engineering of Programming - Programming ’17, Part F1296:1–7,
2017.

[ÓTH+12] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and Iman
Hemati Moghadam. Experimental assessment of software metrics using automated
refactoring. Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement - ESEM ’12, page 49, 2012.

[Pan19] Jevgenija Pantiuchina. Towards Just-In-Time Rational Refactoring. 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 180–181, may 2019.

[PBTP18] Jevgenija Pantiuchina, Gabriele Bavota, Michele Tufano, and Denys Poshyvanyk.
Towards just-in-time refactoring recommenders. Proceedings of the 26th Conference
on Program Comprehension - ICPC ’18, pages 312–315, 2018.

[SGSM10] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. Making Program
Refactoring Safer. IEEE Software, 27(4):52–57, jul 2010.

[SMHG13] Gustavo Soares, Emerson Murphy-Hill, and Rohit Gheyi. Live feedback on
behavioral changes. 2013 1st International Workshop on Live Programming (LIVE),
pages 23–26, may 2013.

[Ste19a] Stepsize. Tech Debt Tracker, 2019. https://
marketplace.visualstudio.com/items?itemName=Stepsize.tech-
debt-tracker, Last accessed on 22-07-2020.

[Ste19b] Stepsize. Tech Debt Tracker: The Code Metrics, 2019. https:
//www.notion.so/Tech-Debt-Tracker-The-Code-Metrics-
738c12fe245b4064bdc951ea6b5b1403, Last accessed on 22-07-2020.

[Ste19c] Stepsize. Tech Debt Tracker: The Debt Ratings, 2019. https:
//www.notion.so/Tech-Debt-Tracker-The-Debt-Ratings-
764fb1ea2af64446b14323992181981b, Last accessed on 22-07-2020.

https://github.com/tsantalis/JDeodorant
https://github.com/tsantalis/JDeodorant
https://marketplace.visualstudio.com/items?itemName=Stepsize.tech-debt-tracker
https://marketplace.visualstudio.com/items?itemName=Stepsize.tech-debt-tracker
https://marketplace.visualstudio.com/items?itemName=Stepsize.tech-debt-tracker
https://www.notion.so/Tech-Debt-Tracker-The-Code-Metrics-738c12fe245b4064bdc951ea6b5b1403
https://www.notion.so/Tech-Debt-Tracker-The-Code-Metrics-738c12fe245b4064bdc951ea6b5b1403
https://www.notion.so/Tech-Debt-Tracker-The-Code-Metrics-738c12fe245b4064bdc951ea6b5b1403
https://www.notion.so/Tech-Debt-Tracker-The-Debt-Ratings-764fb1ea2af64446b14323992181981b
https://www.notion.so/Tech-Debt-Tracker-The-Debt-Ratings-764fb1ea2af64446b14323992181981b
https://www.notion.so/Tech-Debt-Tracker-The-Debt-Ratings-764fb1ea2af64446b14323992181981b

86 REFERENCES

[SW65] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples)†. Biometrika, 52(3-4):591–611, 12 1965.

[Tan90] Steven L. Tanimoto. VIVA: A visual language for image processing. Journal of
Visual Languages and Computing, 1(2):127–139, jun 1990.

[Tan13] Steven L. Tanimoto. A perspective on the evolution of live programming. 2013 1st
International Workshop on Live Programming (LIVE), pages 31–34, may 2013.

[TC09] N. Tsantalis and A. Chatzigeorgiou. Identification of Move Method Refactoring
Opportunities. IEEE Transactions on Software Engineering, 35(3):347–367, may
2009.

[TC16a] Sandhya Tarwani and Anuradha Chug. Prioritization of code restructuring for
severely affected classes under release time constraints. 2016 1st India International
Conference on Information Processing (IICIP), pages 1–6, aug 2016.

[TC16b] Sandhya Tarwani and Anuradha Chug. Sequencing of refactoring techniques by
Greedy algorithm for maximizing maintainability. 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), pages 1397–
1403, sep 2016.

[TCC08] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
JDeodorant: Identification and Removal of Type-Checking Bad Smells. 2008
12th European Conference on Software Maintenance and Reengineering, pages
329–331, apr 2008.

[TCC18] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. Ten
years of JDeodorant: Lessons learned from the hunt for smells. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 4–14. IEEE, mar 2018.

[UOII17] Naoya Ujihara, Ali Ouni, Takashi Ishio, and Katsuro Inoue. c-JRefRec: Change-
based identification of Move Method refactoring opportunities. 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 482–486, feb 2017.

[WRH+12] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012.

Appendix A

Survey

This appendix is a copy of the survey filled by volunteers related to the software engineering

area. Results to this survey are shown in Section 6.2.1.

87

Participant's
Profile
(Optional)

This section will only be used to better understand the distributions among the
participants. No filling is required if you don't want to share your personal
information.

1.

Mark only one oval.

< 18

18 - 24

25 - 40

> 40

Live Refactoring
This survey aims to evaluate two refactoring tools: "Extract Method Finder" and "Semi-
automated Extractor", developed in the context of two master thesis done at FEUP: "Towards
a Smart Recommender for Code Refactoring" and "Towards a Live Refactoring Recommender
Based on Code Smells and Quality Metrics", respectively.

Both tools were built as a VS Code extension for JavaScript and TypeScript. They're
recommendation systems that allows developers to visualize, select and apply refactoring
suggestions.

No extensive knowledge about refactoring is required to answer this survey. However, basic
programming experience is recommended.

All answers are anonymous and will be used exclusively for academic purposes. If you're
interested and consent, your participation will be acknowledged in our work.

Thank you for your collaboration,
João Barbosa & Sérgio Salgado

(Estimated completion time: 15-30 mins)
* Required

Age

88 Survey

2.

Mark only one oval.

Other:

High school

Bachelor's degree

Master's degree

Doctorate's degree

Technical
Background

Tell us a bit more about yourself, regarding knowledge in software development
and refactoring systems.

3.

Mark only one oval.

No experience

< 1 year

1 - 2 years

3 - 5 years

5 - 10 years

> 10 years

4.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

Education
Highest completed degree of education. If currently enrolled in one, choose the highest one completed.

Programming Experience *

I am familiar with programming terms, such as classes, methods, data structures,
etc. *

Survey 89

5.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

6.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

7.

Mark only one oval.

Yes

No

8.

Mark only one oval.

Yes

No

I am familiar with software development terms, such as refactoring, debugging,
unit testing, etc *

I am experienced in JavaScript or TypeScript. *

I have used Visual Studio Code before. *

I have used refactoring tools or extensions before. *

90 Survey

9.

Mark only one oval.

Yes

No

Part 1:
Extract
Method
Finder

The first part of this survey aims to evaluate the "Extract Method Finder".

The application focuses on the Extract Method refactoring. We recommend this simple
2-min read if you want to learn or need a refresh about this technique:
https://refactoring.guru/extract-method.

1.1.
Visualization

This section focuses on the first component of the tool: visualizing refactoring
recommendations.

The tool is always active and analyzing the source code as it is modified, providing
real-time updates to the developer.

Suggestions are shown as colored blocks, to the left of the editor's line number.
Each suggestion uses a different color.

Colors follow a gradient from green to red and are assigned according to the
suggestion's severity: closer to red means the refactoring is more evident. If there
are no suggestions, only a green color is shown, spanning from the beginning to
the end of the block.

This section evaluates three main aspects:
 - Continuous Feedback
 - Multiple vs. Single Suggestion
 - Refactoring Availability

Continuous Feedback
The animated image below shows a method being implemented. Our tool updates its suggestions in real-time
as changes are being made to the code.

I have used software metric analysis tools before. *

Survey 91

10.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

11.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

1.1.1. I can quickly locate the different refactoring suggestions. *

1.1.2. The color scheme allows me to quickly identify the most prominent
suggestions. *

92 Survey

12.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

13.

Mark only one oval.

Other:

Once I stop typing.

Once I change to another line.

At fixed rates (e.g. every 1 second).

Continuously.

Multiple vs. Single Suggestion
Consider the two images below. The first image shows a more traditional refactoring recommender, with a
single suggestion. The second image shows all suggestions available in the method 'levenshtein', of the class
'UtilsTS'.

1.1.3. Continuous feedback next to line numbers is too distracting for my regular
development activity. *

1.1.4. How frequently should suggestions be updated? *

Survey 93

Single suggestion

Multiple suggestions

94 Survey

14.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

15.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

Refactoring Availability
On the animation below, we move our cursor from top to down, across all lines of code. Our tool only shows
feedback in certain blocks.

1.1.5. I see benefit in having multiple suggestions available at the same time,
since it raises my awareness on the options I have. *

1.1.6. I see benefit in having multiple suggestions available at the same time,
since it helps me better understand the tool's reasoning. *
For instance, consider line 18 (second image). Do you agree with the assignment? If not, can you
understand why/how it may have reached a different outcome?

Survey 95

16.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

1.1.7. I am able to quickly understand when refactoring feedback is available. *

96 Survey

17.

Check all that apply.

Global variables

Enums

Functions

Interfaces

Class declarations

Class attributes

Class constructors

Class methods

18.

1.2.
Selection
and
Application

This section is concerned with the selection and application of refactoring
suggestions provided by the tool.

Both actions are available through a command reachable by VS Code's Command
Palette, which opens a new selection menu.

For each suggestion, the developer is able to see if it is automatically extractable
and the number of lines it contains. Also, code lines of the suggestion in focus will
be highlighted in the editor.

After a suggestion is accepted, the developer is prompted to write the name of the
new extracted method.

1.1.8. In which data structures was our tool giving feedback? *

Additional remarks
Write here any additional feedback that wasn't addressed in the previous questions.

Survey 97

19.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

1.2.1. Selecting refactoring suggestions through the VS Code's Command
Palette is easy and intuitive. *

98 Survey

20.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

21.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

22.

1.2.2. Highlighting a suggestion allows me to better perceive the lines of code it
refers to. *

1.2.3. I find usefulness in having a semi-automated refactoring tool. *
Semi-automated means it modifies the code automatically, but first a suggestion must be selected by
the developer.

Additional remarks
Write here any additional feedback that wasn't addressed in the previous questions.

Survey 99

1.3.
Code
Quality
History

Our tool provides a second command, in VS Code's Command Palette, which allows
developers to analyze the file's evolution in terms of code quality.

The command opens a webview displaying a multi-line chart. The chart updates every
time the file is saved.

The chart displays a subset of software metrics, picked according to their relevance for
Extract Method refactoring. Each software metric has a label and is represented by a
unique color.

The developer is also able to hover recorded instances, which displays the absolute
values of these metrics (colored according to the label).

(Note: knowledge about code quality metrics is not necessary to answer this section. In
short, metrics are numerical values that are indicative of the software's overall
complexity and/or quality. If you want to know more about the metrics we use, you can
check https://www.verifysoft.com/en_halstead_metrics.html)

23.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

1.3.1. Software metrics are a good indicative of overall code complexity and
quality. *

100 Survey

24.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

25.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

26.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

27.

1.4. Final
Remarks

This section of the survey is aimed at better understanding your findings on the tool's
overall experience and usability, as well as possible improvements to be made.

1.3.2. I find value in having an historical record for code quality. *

1.3.3. I find value in being able to see code quality evolution as it is being
modified. *

1.3.4. I find value in being able to see absolute values for the code quality
metrics. *

Additional remarks
Write here any additional feedback that wasn't addressed in the previous questions.

Survey 101

28.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

29.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

30.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

31.

Other:

Check all that apply.

Live feedback on refactoring needs.

Refactoring severity based on color gradient.

Multiple refactoring suggestions.

Semi-automated refactoring application.

Code quality history analysis.

1.4.1. The tool's features were simple to use and easy to understand. *

1.4.2. This tool can positively impact my development workflow. *

1.4.3. I would consider using this tool. *

1.4.4. Based on what you saw on this survey, which features would you say were
the most important? *

102 Survey

32.

Other:

Check all that apply.

Live feedback on refactoring needs.

Refactoring severity based on color gradient.

Multiple refactoring suggestions.

Semi-automated refactoring application.

Code quality history analysis.

33.

Part 2:
Semi-
automated
Extractor

This section of the survey showcases our second tool, presented below, which
consists of a refactoring tool that supports the execution of three refactorings
based on extraction: Extract Method, Extract Class and Extract Variable. These
refactorings are executed based on background live analysis of quality metrics,
whose values can indicate the presence of 'code smells' lying within the source
code.

A code smell is a characteristic in code, which usually indicates the presence of a
deeper problem. If you need to refresh your memory about what a code smell is, we
recommend reading the following:

What is a code smell? - https://martinfowler.com/bliki/CodeSmell.html
Types of code smells. - https://sourcemaking.com/refactoring/smells

1.4.5. Based on what you saw on this survey, which features could be improved?
*

Additional remarks
Write here any additional feedback that wasn't addressed in the previous questions.

Survey 103

2.1.
Interface

This section is dedicated to questions relative to the tool's interface and respective
usability. The images below show the tool's interface presenting a report about the
results retrieved from the analysis of the 'Observable.ts' source code file, in both the
compressed and expanded view. If you wish to view the file, although not needed to
answer the questions, it is located at: https://github.com/dojo/intern-only-
dojo/blob/master/src/Observable.ts

The interface is divided into three sections:
1. File-related metrics: area where line, node and Halstead metrics (not shown in the
picture, see below for more information) are shown. This section shows metrics
calculated across the entire code file.
2. Method metrics: area where metrics relative to each individual method contained in
the file is shown. Small colored squares reflect the metric values on each method,
without the need to expand this area of the interface.
3. Refactoring suggestions: area which shows the amount of suggestions found for
each kind of supported refactoring, with more information about the top suggestion
when clicked.

Halstead metrics identify measurements of software properties and the relationships
between them and are inferred using the amount of operands and operators in a given
code structure. Although knowledge about them is not needed to answer the following
questions, you can read more about them at https://www.geeksforgeeks.org/software-
engineering-halsteads-software-metrics/

Background colors are coded to show the severity of each metric, ranging from red (for
critical values), to green (near-optimal/optimal values).

If needed, full resolution pictures are provided at:
- Compressed View: https://i.imgur.com/tupGifx.png
- Expanded View: https://i.imgur.com/VC4yLZ3.png

104 Survey

Interface compressed report

Survey 105

Interface expanded report

106 Survey

Survey 107

34.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

35.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

36.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

37.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.1.1. Most of the metric values on this file are within healthy limits. *

2.1.2. The color scheme used allows me to quickly identify problematic methods
without spending time looking through them individually. *

2.1.3. Despite the long list of metrics, I am able to process the information fairly
quickly. *

2.1.4. The first section of the interface, file-related metrics, is emphasized
enough and its information is of easy interpretation. *

108 Survey

38.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

39.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

40.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

41.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.1.5. The second section of the interface, method-related metrics, is
emphasized enough and its information is of easy interpretation. *

2.1.6. The third section of the interface, refactoring suggestions, is emphasized
enough and its information is of easy interpretation. *

2.1.7. The amount of information presented is overwhelming. *

2.1.8. The information given is enough for me to know if any action is needed on
the code. *

Survey 109

42.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

43.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

Post-Changes Interface
When changes in the file occur, the tool displays the two more recent values, with the most recent being on the
right, storing them for the current section.
The image below shows the impact of an Extract Method refactoring on the metric values for the same file as
the previous image.

If necessary, the full resolution image is available here: https://i.imgur.com/FR7v7r7.png

Post-changes impact on the interface report

2.1.9. The preview colored squares on the 'Method Metrics' section allows for
even faster analysis of methods. *

2.1.10. This report format of presentation fits the purpose of this tool. *

110 Survey

44.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

45.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.2.
Visual
Studio
Code

This section contextualizes how our tool is incorporated into the VSCode UI.

The image below shows five contribution points in the VSCode UI, where
implementing UI fragments is the most common. Their nomenclature is as follows:

1 - Tree View Container
2 - Tree View
3 - Status Bar
4 - Webview
5 - Diagnostics Report

If necessary, the full resolution image is available here:
https://i.imgur.com/8HOMRtV.png

2.1.11. I can clearly understand the values on the left side correspond to old
values, while the ones on the right correspond to the newest ones. *

2.1.12. Only showing the two more recent values of each metric for a
programming session is enough. *

Survey 111

VSCode main interface

46.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

47.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.2.1. The webview interface is distracting. *

2.2.2. I would prefer for the information given by the tool to be shown in other
contribution points, eliminating the need for a webview. *

112 Survey

48.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

Workflow
The video below shows the usage of the tool, from the moment metrics are quickly scanned, to the assessment
and execution of the top Extract Method suggestion. Apart from Extract Method, our tool directly supports the
Extract Class and Extract Variable refactorings.

The file shown, 'middleware.ts', contains 6 classes, 14 methods across them, with around 150 lines of code.

Workflow on the Semi-automated Extractor

2.2.3. Extensions whose features are scattered thoughout the VSCode UI can be
confusing to use. *

Survey 113

49.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

50.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

51.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

52.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.2.4. The workflow to execute the top Extract Method suggestion looked
simple. *

2.2.5. Instructions presented on the interface on how to execute a refactoring
are clear. *

2.2.6. The processing time of post-changes metrics and refactoring suggestions
(around five seconds for this file) is too high. *

2.2.7. The webview is distracting for the programmer. *

114 Survey

53.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.3.
Refactoring

Refactoring is a common software engineering practice, where the programmer
changes the internal aspect of a system, without changing its external behavior.

As you may have noticed from the previous video, apart from a metrics report, our
tool supports the automated execution of three refactorings: Extract Method,
Extract Class and Extract Variable. These refactorings are automatically evaluated
according to the values of a specific set of quality metrics (some not shown on the
report).

54.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

55.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.2.8. I would prefer a button in the interface to run the refactoring, instead of
manually executing a command. *

2.3.1. All three supported refactorings (Extract Method, Extract Class and Extract
Variable) are refactorings I use regularly. *

2.3.2. A tool which automatically finds the best refactoring of each kind, for any
file and in close to real time, is something I see value in. *

Survey 115

56.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

57.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

Customization
As each project's context is different from one another, our tool allows programmers to customize the
refactoring suggestions and the information shown on the interface report.

The image below shows some of the options the user can customize to alter the tool's behavior.

If necessary, the full resolution image is available here: https://i.imgur.com/ALrKnai.png

2.3.3. Having semi-automated execution of the best found refactorings is useful,
i.e. the user triggers the execution, but execution is performed automatically. *

2.3.4. Having a preview of what the refactoring is going to change before
executing is useful. *

116 Survey

Options menu

58.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

59.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

2.4. Final
remarks

The final section of the survey aims to understand your opinion on this tool and which
changes should be made to make it better.

2.3.5. Offering user customization for refactoring tools is useful. *

2.3.6. The description of each option and its impact on the suggestions is clear. *

Survey 117

60.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

61.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

62.

Mark only one oval.

Highly disagree

1 2 3 4 5

Highly agree

63.

Other:

Check all that apply.

Metrics and refactoring report (Webview interface)

Comparison between old and new metrics

Live computation of metrics

Live evaluation of refactoring opportunities

Semi-automated refactoring execution

Extension customization

2.4.1. This tool's features are simple and fast to understand. *

2.4.2. This tool can positively impact my development workflow. *

2.4.3. I would use this tool. *

2.4.4. Based on what you saw on this survey, what would you say were the best
features of this tool? *

118 Survey

64.

Other:

Check all that apply.

Metrics and refactoring report (Webview interface)

Comparison between old and new metrics

Live computation of metrics

Live evaluation of refactoring opportunities

Semi-automated refactoring execution

Extension customization

All done :)

Thank you for your time and valuable feedback!

And remember, refactor early and continually.

This content is neither created nor endorsed by Google.

2.4.5. Based on what you saw on this survey, what would you say were the
features which could be improved upon? *

 Forms

Survey 119

120 Survey

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Objectives
	1.5 Dissertation Structure

	2 Background
	2.1 Software Engineering
	2.2 Software Refactoring
	2.3 Software Quality
	2.3.1 Code Smells
	2.3.2 Quality Metrics

	2.4 Live Programming
	2.4.1 Levels
	2.4.2 Criticism

	3 State of the Art
	3.1 Live Software Development
	3.1.1 Live Development Environments
	3.1.2 Programming Languages

	3.2 Refactoring Recommendation Systems
	3.2.1 Refactoring Identification
	3.2.2 Sequencing Refactorings
	3.2.3 Tools
	3.2.4 Live Tools

	3.3 Quality Metrics Tools
	3.4 Results and Discussion

	4 Problem Statement
	4.1 Open Issues
	4.2 Research Questions
	4.3 Proposal
	4.4 Validation

	5 Proposed Solution
	5.1 Context
	5.2 Usage
	5.3 Automated Refactoring
	5.3.1 Extract Method
	5.3.2 Extract Class
	5.3.3 Extract Variable

	5.4 Live Metrics
	5.4.1 Extract Class Metrics
	5.4.2 Extract Method Metrics
	5.4.3 Interface Metrics

	5.5 Visual Studio Code Extension
	5.5.1 Commands
	5.5.2 Settings
	5.5.3 Events

	5.6 Summary

	6 Empirical Validation
	6.1 Methodology
	6.1.1 Survey
	6.1.2 Automated Analysis

	6.2 Results
	6.2.1 Survey
	6.2.2 Automated Analysis
	6.2.3 Discussion

	6.3 Threats to Validity
	6.3.1 Conclusion Validity
	6.3.2 Internal Validity
	6.3.3 Construct Validity
	6.3.4 External Validity

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Main Contributions
	7.3 Future Work

	References
	A Survey

