
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real Time Optimizations for a
Web-based Telemedicine Platform

Paulo Renato Almeida Correia

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Daniel Sá Pina

Co-Supervisor: Renato Manuel Natal Jorge

July 28, 2020

Real Time Optimizations for a Web-based Telemedicine
Platform

Paulo Renato Almeida Correia

Mestrado Integrado em Engenharia Informática e Computação

July 28, 2020

Abstract

At-home health monitoring devices can prove to be of great value both for patients and med-
ical professionals in the process of making medical consultations more convenient and avail-
able. Although not a new field of study, recent advances in technology and infrastructure have
made Telemedicine, the act of providing healthcare at a distance, more reliable and capable than
ever before. Having numerous advantages over its traditional counterpart, this digital approach to
medicine might be crucial to provide access to care to those who are most deprived of it.

While there is research being done in the area, the vast majority of consumer-available solu-
tions still have many disadvantages, like excessive price, the lack of key features and inflexibility
or the reliance on proprietary software and specific operating systems, which affect their overall
adoption.

The present work will continue the team effort at INEGI and FEUP of building an affordable,
robust and open prototype for telemedicine use. This device is capable of real-time Electromyog-
raphy (EMG) monitoring and transmission so that a medical expert can analyse the sampled data
in a remote consultation scenario.

The analysis of this data is made in a web-application context via a modern web browser,
where the data from the device is received and displayed. The core of the work presented focuses
on optimizing this platform so it is as performant and reliable as other available solutions, with the
advantage of being easily accessible through the internet.

The solution entails a custom written a real-time charting library for the web capable of dis-
playing thousands of values per second while maintaining performance. This is achieved through
the usage of WebGL, a JavaScript API for rendering high-performance interactive 3D and 2D
graphics, that provides a way to execute shader code in a device’s graphics processing unit (GPU).
It also takes advantage of other modern browser features, like WebSockets, IndexedDB and Web
Workers, to provide all the necessary tools to analyse the dataset collected by the device.

The developed software achieves a significantly better performance than other available graph-
ing solutions on the web and provides a feature full analysis platform that is available on any device
with an internet connection.

Keywords: Telemedicine, Web Development, WebGL

i

ii

Resumo

Dispositivos móveis de monitorização remota são uma mais valia tanto para os pacientes como
para os profissionais de saúde no processo de fazer consultas mais convenientes e acessíveis.
Avanços recentes em tecnologia e infraestrutura de comunicação fazem soluções de telemedicina,
o acto de prestar cuidados de saúde à distância, mais capazes e seguras do que alguma vez fora
possível. Além de ter várias vantagens em relação a métodos mais tradicionais, esta abordagem
digital da medicina pode ser crucial para permitir o acesso a cuidados médicos àqueles que são
mais privados deste.

A maioria das soluções de telemedicina disponíveis ao consumidor ainda te m vários prob-
lemas, como o elevado preço, a falta de certas funcionalidades ou a dependência de software
proprietário e sistemas operativos específicos, que afectam a sua adoção.

O presente trabalho continua o esforço de equipa no centro de investigação INEGI para de-
senvolver um protótipo robusto, aberto e acessível para o uso em telemedicina. Este dispositivo
é capaz de monitorizar e transmitir sinais eletromiográficos (EMG) para que um profissional de
saúde possa analisar a informação recolhida, num contexto de consulta remota.

A análise destes dados é feita numa aplicação web acessível a partir de um web browser
moderno, em que a informação é recebida do dispositivo e representada graficamente. O trabalho
apresentado foca-se na otimização desta plataforma de forma a ser tão eficiente e fiável como
outras soluções disponíveis, com a vantagem de ser facilmente acessível através da internet.

A solução requer a criação de uma biblioteca de desenho de gráficos em tempo real para a web,
capaz de traçar milhares de valores por segundo mantendo uma boa performance. Isto é alcançado
através do uso de WebGL, uma API de JavaScript para renderização de gráficos 2D e 3D de alta
performance, que possibilita a utilização da unidade de processamento gráfico (GPU) do dispos-
itivo para a execução do código de renderização. Também são utilizadas outras funcionalidades
dos browsers modernos como WebSockets, IndexedDB e Web Workers, de maneira a implementar
todas as ferramentas necessárias para analisar a informação recolhida pelo dispositivo.

O software desenvolvido alcança uma performance significativamente melhor que outras soluções
de desenho de gráficos disponíveis online e proporciona uma experiência de análise completa,
disponível em qualquer dispositivo com uma conexão à internet.

Keywords: Telemedicina, Desenvolvimento Web, WebGL

iii

iv

“A society grows great when old men plant trees
whose shade they know they shall never sit.”

Greek proverb

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 2

2 Telemedicine solutions 5
2.1 Background . 5
2.2 Remote Consultation Solutions . 6

2.2.1 Mobile applications . 6
2.2.2 General Use Solutions . 7
2.2.3 Telemedicine devices in academia . 7

2.3 Summary . 8

3 Telemedicine Device for EMG capture 9
3.1 Device Objectives and Background . 9
3.2 Hardware Implementation . 10
3.3 Software Implementation . 11
3.4 Software Implementation Limitations . 13
3.5 Proposal . 14
3.6 Summary . 14

4 Proposed Solution 17
4.1 Objectives and Focus . 17
4.2 Requirements . 18

4.2.1 Functional Requirements . 18
4.2.2 Non-Functional Requirements . 18

4.3 Implementation Proposal . 19
4.3.1 Data Transfer . 19
4.3.2 Data Visualization . 20

4.4 Summary . 21

5 Development 23
5.1 Development Infrastructure . 23
5.2 Three.js . 25
5.3 Architecture . 26
5.4 Implementation Details . 28

5.4.1 Transfer Layer . 28

vii

viii CONTENTS

5.4.2 Graph . 32
5.4.3 Axis . 34
5.4.4 Data Management . 36
5.4.5 Rendering . 39

5.5 Summary . 41

6 Results 43
6.1 Comparison with previous solution . 43

6.1.1 Transfer Layer . 43
6.1.2 Performance . 46

6.2 Comparison with other charting solutions . 49
6.3 Summary . 52

7 Conclusions and Future Work 55
7.1 Summary . 55
7.2 Main Contributions . 56
7.3 Main Difficulties . 56
7.4 Future Work . 57

List of Figures

3.1 Block diagram of the prototype architecture. 11
3.2 Time diagram of the communication between the client and the server. 12
3.3 Screenshot of the current implemented interface. 13

5.1 Diagram of the web part of the project. 25
5.2 Class diagram of the project. 27
5.3 Screenshot of the current implemented interface 32
5.4 Diagram of the initial state of a Three.js Scene corresponding to a graph. 33
5.5 Screenshot of an empty graph. 34
5.6 Texture image used to make the sprite digits to display the label text on an AxisStep. 35
5.7 Example diagram of the changes in the graph data structures after 3 consecutive

frames where the visible range is shifting. 38
5.8 Comparison between fully rendered page (left) and only the canvas element (right). 40

6.1 Number of sampled values sent per second. 44
6.2 Comparison of bandwidth usage for both solutions. 44
6.3 Comparison of bandwidth usage per 10000 values for both solutions. 45
6.4 Comparison of average packet length and total packets sent for both solutions. . . 45
6.5 Comparison of the frame times by range for both solutions on Chrome and Firefox. 47
6.6 Comparison of CPU usage for both solutions on Chrome and Firefox. 48
6.7 Comparison of SoC power consumption for both solutions on Chrome and Firefox. 48
6.8 Comparison of GPU usage for both solutions on Chrome and Firefox. 49
6.9 Frame rendering duration per library over time on Google Chrome. 51
6.10 Comparison of the frame times by range for all libraries on Chrome and Firefox. 52
6.11 Comparison of CPU usage for all libraries on Chrome and Firefox. 53
6.12 Comparison of Soc power consumption for all libraries on Chrome and Firefox. . 53

ix

x LIST OF FIGURES

List of Tables

4.1 User stories related to the proposed system. 18
4.2 Non-Functional Requirements of the proposed system. 19
4.3 Simulation and rendering times per frame for 100,000 sprites being rendered in

Chrome by different rendering technologies in [1]. 20

5.1 Comparison of average packet size and total bandwidth of the data format alterna-
tives detailed. 30

5.2 Comparison of compression libraries during a 30 second test of signal transfer. . 31

6.1 Frame timing information for both solutions. 46
6.2 Frame timing information for all libraries on both Chrome and Firefox. 50

xi

xii LIST OF TABLES

Abbreviations

ICT Information and Communication Technologies
EMG Electromyography
RC Remote Consultation
SBC Single-Board Computer
CPU Central Processing Unit
GPU Graphics Processing Unit
RAM Random-Access Memory
PCB Printed Circuit Board
ECG Electrocardiography
JS JavaScript
NPM Node Package Manager
TS TypeScript
JSON JavaScript Object Notation
FPS Frames Per Second
DOM Document Object Model
SoC System-on-Chip

xiii

Chapter 1

Introduction

1.1 Context

In recent years the development of information and communication technologies (ICT) has rev-

olutionized the way people live their lives in the contemporary world. The fast developments in

the area have transformed many industries, birthed new and emerging ones and can prove to be of

great benefit in the health space.

In the modern world, ICT is almost synonymous with the internet. A commodity most people

in contemporary society take for granted, that provides access to almost anything with a simple

press of a button. But in a time where access seems abundant, more than half of the world popu-

lation still doesn’t have access to essential healthcare services [2].

Recent world events have shown how technology not only can facilitate some of the interac-

tions humans do daily but can also be crucial to provide said interactions at a distance, either when

they are not easily accessible or have an associated risk for the intervening parties.

The act of providing healthcare, medical information or any health-related service at a distance

using ICT is defined as Telemedicine [3]. This is a solution that can play a critical role in providing

access to medical care to the parts of the world that are most deprived of it.

It can have a significant contribution in reducing hospitalization by better monitoring patient’s

status, it can reduce consultation time and burden for medical staff [4], reduce the cost for patients

associated with travel to appointments [5], allow access to high-quality care to those who live in

remote locations [6] and most importantly it often leads to an improvement in the quality of care

and quality of life of the patient [7].

1.2 Motivation

At-home monitoring devices, most commonly in the form of wearable devices, have been a staple

of telemedicine for a long time. They allow healthcare professionals to more accurately monitor

patient progress from the comfort of their home [4]. However, most of these solutions are only

available for people who already have ease of access to other medical resources like hospitals and

1

2 Introduction

clinics. The availability of such telemedicine resources to people who would most benefit from it

is still limited either by infrastructure or cost [8].

Advances in the fields of non-invasive sensors, that make them cheaper and more resource-

friendly, in wireless technologies, that provide a cheaper and more broad access to the internet

and in the production of inexpensive small embedded systems has made the viability of low-cost

wearable devices a possibility [9].

While significant, affordability is not the only major hurdle in the adoption of these types

of health enabling technologies. The lack of a solution that is easy to deploy and requires no

additional software or service to the user is also one it’s inhibiting factors [8].

A telemedicine system mustn’t only provide the functionality needed to conduct medical con-

sultations remotely, but also easily integrate with the existing organizational structure of the entity

providing care. The ideal system offers a seamless experience of a traditional healthcare con-

sultation in a user-friendly way so that both the caregiver and recipient feel comfortable while

employing this new approach to medicine [10].

1.3 Objectives

The present dissertation will continue the effort of developing an affordable and open telemedicine

device that measures electromyography (EMG) signals. These signals have a variety of uses in

clinical and sports medicine, from diagnosis to monitoring and rehabilitation. This device aims to

be used in a remote consultation setting, where a patient following a doctor’s guidance can collect

all the needed information without leaving their house.

One of the distinct characteristics of this device is the use of the web platform to conduct all

the necessary interaction between both parties. In this way, the prototype can be used in tandem

with any device capable of accessing the internet the user might have available.

The main objective of the work is to develop a web platform that is fast, robust, easy to use, and

accessible on any modern web browser. This platform is then integrated with the existing prototype

and is where the medical professional will analyse the patients’ data during a consultation.

The software developed should be comparable in capabilities and reliability to other available

solutions in the area, with the added benefit of being easily accessible through the world wide web.

To achieve this the implementation should leverage the power of modern features available in the

web browser like WebGL, Web Sockets and Web Workers.

1.4 Document Structure

The present document is organized into 7 chapters that detail the work done. The present chapter

(Chapter 1) presents the context and motivation of the work, and briefly introduces the objectives

of this dissertation.

1.4 Document Structure 3

A background on telemedicine solutions, followed by a review of currently available ap-

proaches for remote consultation and monitoring, like mobile applications, general use applica-

tions and specific use applications is presented in chapter 2.

Chapter 3 extensively details the project this work is part of, from it’s overall goals to the

existing prototype. It describes the implementation efforts previously done, both in the hardware

and software experience, followed by an exploration of its software limitations. The chapter ends

with a brief proposal of the work needed to solve or minimize said limitations.

In chapter 4 this proposal is discussed in more detail, with an overview of the goals and re-

quirements for the present work. This is followed by an implementation proposal, a more technical

description and justification of the technologies and approaches to be used during development.

Chapter 5 explores in great detail the challenges and solutions found during the development

stage of the project. It justifies the technology stack used, describes the application architecture

and explores implementation details for the most challenging features of the built software.

Following that, chapter 6 compares the built solution to the previously implemented one to

outline the improvements made. Comparisons are also made to other state of the art graphing

solutions to detail how the implemented software better handles the problem presented.

Finally, the document ends with a brief conclusion in chapter 7, that details the main contri-

butions and difficulties of the project, followed by a description of future work that can be done to

improve the current solution.

4 Introduction

Chapter 2

Telemedicine solutions

Telemedicine is a broad area of study that encapsulates a lot of different techniques and ap-

proaches. The current work exists as a part of the development of a device for telemedicine to

be used by physicians to deliver healthcare appointments at a distance. The present chapter offers

a review of the state of the art of telemedicine solutions in the same field of remote consultation.

This chapter starts with a brief review of the history and market of telemedicine solutions

in section 2.1. It’s then followed by section 2.2, where an analysis of the presently available

devices and services that provide access to remote consultation capabilities is done. This analysis

is further divided into sub-sections that examine three distinct approaches to this particular type of

telehealth.

2.1 Background

Telemedicine has a long history, dating as far as 1900 with physicians being amongst the first to

adopt the telephone to deliver consultations at a distance. However, due to the limitations of the

medium, it never reached a high rate of adoption [11].

Modern advances in ICT have made the disadvantages associated with telemedicine, such as

the cost of communication and hardware, become less of an impeding factor while making its

advantages increasingly apparent. The infrastructures in place that enable fast internet access

to millions can also revolutionize communications between physicians and patients opening up

the possibility for preliminary diagnosis before hospital arrivals, distance check-ups and remote

medical consultations [12].

Besides solving limitations related to distance, computerized systems can also be used to fa-

cilitate other medical procedures like data collection and analysis. Health enabling technologies,

such as wearable devices, are regarded as one of the primary means to support the maintenance

of high-quality care in the coming years. With the increase of the elderly section of the popula-

tion and average life expectancy [13], the monitoring need of patients also increases, and at-home

monitoring solutions might be crucial in order to provide medical care to the growing amount of

persons in need [8].

5

6 Telemedicine solutions

Consequently, the telemedicine market has been experiencing an unprecedented expansion,

with a lot of entities interested in capturing this emerging industry. According to Statista, the

global telemedicine market is valued at 30,5 Billion USD in 2019 and is expected to grow to 41

Billion USD by 2021. A 2018 European Commission market analysis [14] states that the demand

for telemedicine solutions outpaces their supply, however, financial limitations on the part of the

consumer or the medical institution can be prohibitive for the adoption of such technologies.

2.2 Remote Consultation Solutions

Telemedicine is a very broad area of focus, covering a wide range of products, services and tech-

niques. Any part of the health sector affected by ICT can be defined as telemedicine, however, this

project will focus on a specific subsection that will be referred to as Remote Consultation (RC),

the ability to conduct a medical appointment at a distance. There are numerous ways of connecting

patients and doctors using technology, it’s been possible ever since the invention of the telephone,

however, newer approaches present new opportunities for the field. The following subsections will

detail some of these modern approaches and provide some context to what are their strengths and

weaknesses.

2.2.1 Mobile applications

With the internet being so ubiquitous in modern society, its usage in communication is preva-

lent. Most modern approaches to connect users and medical professionals take advantage of this

existing infrastructure, relying on the users’ ability to connect to the internet.

The smartphone has also become a predominant part of modern life, in 2016, 79% of persons

aged from 16 to 74 used a mobile phone to surf the internet [15], making it the primary device

type used to do so. Considering this, a large number of RC services use mobile operating systems,

such as Google’s Android and Apple’s iOS, as their only supported platforms.

Services like Push Doctor [16] from the UK, Swedish company KRY [17] with a service by the

same name, Teladoc [18] operating in North America and the Portuguese startup knok [19] all offer

a similar product. A mobile application that connects the user to a trained medical professional

via video conference, using the device’s built-in camera and microphone. After connected both

parties can have a regular consultation via the internet, however, the physician has no means of

evaluating the patient by doing any type of physical exam, making this type of service inadequate

for cases where more information from the patient is needed.

These types of services are mostly offered by private companies that give consumers an alter-

native to going to a physical clinic. Their usefulness is more in preliminary diagnosis than patient

monitoring and recovering.

Some services like Babylon Health [20] offer a way for the user to track their health using

consumer-facing wearable devices like smartwatches. These devices can give a better context of

the patient status in consultation but the physiological and environmental data that can be collected

from them is still very limited and can be hard to verify its validity [21].

2.2 Remote Consultation Solutions 7

Despite the smartphone being the most used device type to access the internet, only being

available for such platforms is still a limiting factor for some users. This is especially pronounced

for the older range of the population, where is less likely for a person to own a modern and capable

device, or simply less likely to be technologically apt to utilize one.

Some companies like Doxy.me [22] rely on open web standards to provide their platform to

users. This service is identical to the ones described earlier but its availability through the browser,

make it more accessible to the consumer since it can be used in any internet-capable device.

2.2.2 General Use Solutions

Another approach to RC is to offer a device with all the needed capabilities to provide a reliable

diagnosis at a distance. These devices offer all the major sensors usually found in a general

practitioners’ office and allow the medic to evaluate a patient from a distance, based on their

symptoms and the measured data.

Some companies offer all-in-one telemedicine kits so that no other equipment is required.

These kits are complete with a computer device, like a small laptop or a tablet to connect to the

internet and a large number of sensors and medical devices to allow for a thorough examination

of the patient. Products like VSee’s Telemedicine Kits [23] and Remote Health Solution’s VER

Line [24] are examples of this approach. They both offer two distinct lines of products, bigger

and more capable models made for durability and use on the field and smaller consumer-facing

solutions for at-home use.

A different and more recent solution is the Tyto device by TytoCare [25] that connects with

a mobile phone for use in RC with medical professionals via their service. This small device has

a large number of sensors like a high definition camera with an otoscope and tongue depressor

adaptor, a stethoscope and a thermometer. This can be seen as a hybrid approach as it relies on the

user having a smartphone but enhances its capabilities with additional hardware.

While these kinds of solutions are very versatile and allow for the testing of a significant

amount of physiological parameters their main value is mostly on preliminary diagnosis. For use

in follow up consultations or patient monitoring, a significant amount of sensors might prove to be

redundant if most are not utilized, and not justify the high price of such devices. Another disad-

vantage of buying these types of equipment is that they are locked to a specific vendor platform,

even if the user fully owns the device it might be useless if not paired with its required software

service.

2.2.3 Telemedicine devices in academia

For use in follow up check-ups and patient monitoring, a custom purpose-built device that can

measure the needed parameters with great precision can prove to be a better solution when only

specific details of the patient status need to be checked. This scenario is common when the initial

diagnosis is complete but routine check-ups have to be made in order to assess the development of

the problem.

8 Telemedicine solutions

The large majority of the work and research related to telemedicine in academia falls in this

category. Many researchers focus on a specific technology and try to improve upon it by making

it smaller, more precise or work remotely in a consultation environment.

Examples of such devices include a heart rate monitor that wirelessly monitors a patient’s heart

rhythm in real-time with the aid of a smartphone [26], or another heart monitor that sends an SMS

message to a doctor if any abnormality is detected [27]. Another example is of a low-cost digital

stethoscope that interfaces with a communication device and can amplify, store and transmit the

acquired signal to an expert for later analysis [28].

While specific use devices are the most common, research has also been done in general use

solutions. An example of this is the device developed by Prodhan et al. [29] capable of collecting

seven different vital signals from a patient such as blood pressure, oxygen and glucose levels in

the blood, body temperature amongst others. This is all accomplished by a low-cost portable

telemedicine kit that pairs with an Android enabled device to collect and transmit the acquired

data.

While serving as proofs of concept, most of these devices are still in a prototyping stage and

require further development to be finalized as end products that can be deployed and used by

actual patients. Furthermore, they are also dependent on external communication devices, like

smartphones or computers, that handle the communication with the physician in a telemedicine

context.

2.3 Summary

Telemedicine is an old field of study that has recently become more relevant with the advances

in ICT and infrastructure. Wearable devices capable of monitoring patient status might be crucial

to provide care to ever-increasing demand. As such the market for said solutions is experiencing

unprecedented growth.

The majority of consumer-available solutions for remote consultations are simple video con-

ference applications that connect a medical professional to the patient in need. While convenient

for the user, these solutions are limited as the physician can’t properly evaluate the patient’s status

via a simple video call.

General use devices are an available solution to this problem. They come equipped with a large

number of sensors and are capable of providing a reliable diagnosis at a distance. Conversely, they

are often expensive and a large number of sensors might be redundant if most are not utilized.

In academia, the majority of research efforts done is in specific use devices. Custom-built

hardware that monitors or records specific physiological signals that can be then transmitted and

analysed by an expert remotely.

Chapter 3

Telemedicine Device for EMG capture

This dissertation exists as a part of the research being done in the Institute of Science and Inno-

vation in Mechanical and Industrial Engineering (INEGI) and the Faculty of Engineering of the

University of Porto (FEUP) on the development of a portable device for telemedicine capable of

monitoring EMG signals.

In the present chapter an overview of the goals and previous work done on the device are given

in section 3.1 and its hardware implementation are detailed in section 3.2. Section 3.3 specifies

the prototype’s software implementation and section 3.4 summarizes its current limitations.

3.1 Device Objectives and Background

As explored in the previous chapters there are many approaches to delivering medical consulta-

tions remotely. Some rely solely on devices a user might already own, like a smartphone, others

have custom hardware but require integration with an existing platform or service.

As a contrast to this, one of the goals of the device being built is that it works as an independent

self-contained unit. Everything from signal acquisition, video conferencing, data processing to

data transfer is done in the device, with the only requirement being an internet connection. A user

shouldn’t need to worry about understanding or configuring the device, as all of this functionality

should be abstracted from them while providing a ready to use experience with the press of a

button.

Another goal is to be platform agnostic. As stated before, the user is only required to have

an internet connection, but the professional conducting the consult is still required to have an

external device to interact with the prototype. To maintain the platform open, all the data analysis

and interaction done during the appointment are made via a modern web browser, found in any

internet-capable device such as a laptop or smartphone. This allows easy access to the platform, no

software has to be pre-installed or patched, and a session can be started instantly just by connecting

to a web page. Developing for the web can also guarantee that the experience will always be the

same, regardless of what device type or operating system the user has available.

9

10 Telemedicine Device for EMG capture

In addition, the device should be affordable. All the parts used for its build are rather inexpen-

sive with the goal of making the prototype accessible to a larger audience.

Since the device is being built as a collaboration between a multidisciplinary team, one of the

core principles is also extensibility. The work done is expected to be expanded upon in the future

to add new features to the device or fix any unwanted behaviour.

Work on the device was started in 2014 by Pina et al. [30] with the development of a portable

prototype capable of capturing and processing EMG signals that could be monitored via the inter-

net.

This work was further explored by Rafael [31] in 2019 with the design and development of a

custom printed circuit board making the device smaller, cheaper and faster.

Currently, work on the project is being done in parallel by two dissertations. One is the work

detailed in this document whose contributions will be proposed and detailed further ahead. The

other is a re-implementation of the user interface according to feedback from medical professionals

and the addition of a video module to the prototype, allowing for video conferencing to be done

from the device.

3.2 Hardware Implementation

The prototype that currently exists and is being worked on already has a robust hardware imple-

mentation as a result of extensive work done by all the aforementioned projects. This section will

provide a brief overview of this implementation to better contextualize the device’s features.

The core component of the prototype is a small single-board computer (SBC) that manages and

connects all the other components such as the signal acquisition module and the Wi-Fi transmitter

along with processing the acquired signal and transmitting it. The software being run in this

computer will be explored in the next section.

In its current iteration, the SBC used is an ODROID-C1, that features an ARM 1.5GHz

quad-core central processing unit (CPU), an on-chip graphics processing unit (GPU) and 1GB

of random-access memory (RAM). This model was chosen as it is smaller and cheaper than other

available devices while still maintaining all features needed for the operation of the prototype,

making it ideal for this use.

Connected to this SBC is a custom-designed printed circuit board (PCB) made for signal ac-

quisition. This board includes an ADS1298 programmable integrated circuit that allows for up

to 8 input/output channels with several possible configurations, making it flexible for the mea-

surement of various signals. It should be noted that this allows for the capture of other biological

signals, like Electrocardiography (ECG) to track cardiac activity, with minimal modifications to

the hardware.

Electrodes used to attach to the patient’s skin are connected to the PCB either via an available

3.5mm audio jack port, making the prototype convergent to similar products in the market, or

directly to the board’s inputs.

3.3 Software Implementation 11

Figure 3.1: Block diagram of the prototype architecture.

A diagram of the described architecture can be found in Figure 3.1 and further details about

the implementation and the decisions behind the used components can be attained in [31].

3.3 Software Implementation

One of the core principles of the project is to be easy to use, this has implications on the software

side. The device should be able to easily work without requiring any technical knowledge from

the user.

To achieve this, the SBC embedded in the device starts several functions when it is first pow-

ered on, that are run simultaneously on different threads of execution:

• Starts the acquirement and processing of the data coming from the PCB: Some of the

data might be corrupted so a pre-processing is used to remove any unwanted values;

• Stores the captured data: The acquired data might be useful to analyse subsequently so it

can be stored in an external SD card;

• Starts a Web Server: The professional conducting the consultation will then connect to

this server to analyse the data that is being acquired.

The implementation for all of the functionalities described above is done using Python 2.71

the language chosen when the project was started. Although Python isn’t the fastest language,

compared to others such as C or C++, due to being an interpreted high-level language, it allows

for faster prototyping, development and debugging. This gives it an advantage over faster but more

restrictive languages. It was also chosen for having the status of being the default programming

language for academia, making it ideal for teaching device capabilities and further extension and

development in the future.

The Web server is built with a Python open-source web framework called Tornado [32]. This

library was chosen because of its non-blocking network I/O making it ideal for applications that

require a long connection with the user, such as a remote medical examination.
1At the time of writing this dissertation end of support for the language has been announced and it should be updated

in future work.

12 Telemedicine Device for EMG capture

The device serves a web page for analysis that can be connected via an internet connection.

When the page is loaded on the client-side, the browser opens a WebSocket connection with the

server through which further communication is made. The WebSocket API [33] is a communi-

cation protocol that allows a client and a server to exchange messages without any polling from

either side over a TCP connection.

This protocol is used to transfer the live data being captured by the device to the web page

where it is being displayed for real-time analysis. When a connection is established by the user

the server begins to send, in regular intervals, packages of information with the captured data until

the connection is closed or the device is deactivated. In Figure 3.2 a simple timing diagram of the

detailed communication can be seen.

Figure 3.2: Time diagram of the communication between the client and the server.

The client-side of this exchange runs solely on a browser window and can be accessed in

any modern internet-ready device, such as a smartphone or a computer. The implementation is

a simple web page written in HTML and CSS that has a JavaScript (JS) component to initiate

the WebSocket communication and properly format and display the arriving data. This is done

with the aid of a charting library called CanvasJS [34] that takes advantage of the HTML5 Canvas

browser API to plot the retrieved data to the screen.

The packages of data being periodically sent consist of 8 values one for each of the device’s

acquisition channels encoded in the JSON format. The user then has the ability to choose what

3.4 Software Implementation Limitations 13

channel they want to plot on screen using the 2 available charts (Figure 3.3).

Figure 3.3: Screenshot of the current implemented interface.

3.4 Software Implementation Limitations

The detailed implementation works as a proof of concept for the device but has a lot of crucial flaws

that would prevent it from being effective in a real-world telemedicine scenario. This section will

highlight some of these shortcomings and detail some of the reasons why they are considered as

such.

The first problem with this implementation is that the graph displayed on the web page does

not fully depict the data being sampled by the sensors, the volume of data being transmitted is

lower than required. The EMG signal ranges between approximately 50 and 500 Hz, so according

to the Nyquist theorem the acquisition rate should be at least 1000 Hz, however, the device only

communicates values to the client at a rate of about 30 Hz. Thirty times every second a message is

sent to the client with the last registered values for each of the 8 acquisition channels, from which

the selected ones are plotted to the corresponding graphs.

This discrepancy leads to a disregard of a large amount of data, about 97% of all values ac-

quired are not shown on the client-side, and while this is enough to approximate the corresponding

chart, a lot of precision is being lost in the transaction. If a spike was to occur in the interval

between the values being transmitted by the device, this peak might be completely missed or

otherwise lose some of its amplitude.

Latency is another problem, there is a noticeable delay between the acquisition of a value and

its display on the client-side. For a device intended for real-time use, this might not only affect the

overall user experience but also the user’s trust in its underlying technologies [35]. This problem is

14 Telemedicine Device for EMG capture

further aggravated as the latency increases with prolonged usage rendering the prototype unreliable

and impractical for use in long consultations.

Another downside of this implementation using the CanvasJS library is data persistence. There

is a maximum number of values displayed at any time per graph. When a value is added and the

maximum threshold is already reached the left-most value being displayed is then removed. This

results in the data only being available for analysis while it’s not shifted outside of the window

range by new incoming values.

Additionally, values are only added to one of the charts on display, therefore 6 of the 8 channels

are not being displayed and their data is being completely discarded. In this iteration, there is no

way to analyse more than 2 channels at once given that if the user changes a chart to plot a different

channel the previous channel information will no longer be recorded.

A final limitation worth noticing is the usability of the web page itself. In its current form,

the interface (Figure 3.3) consists only of the essential elements to test the prototype: 2 graphs

and buttons to toggle between channels. However, for the device to meet its requirements the

experience should be easy and seamless for the end-user and therefore the interface should be

intuitive and accessible for even the less technologically competent users.

3.5 Proposal

The goal of the current work is to solve or minimize all of the limitations outlined in the previous

section, in order to advance the prototype to a more complete state. This will be done with a special

emphasis on performance and data fidelity to provide a professional experience, comparable to its

competition, using only the browser.

To achieve this several parts of the experience will be re-written using different technologies

and a custom solution will be built to solve specific challenges.

Ultimately the experience of analysing the data acquired from the device should be easy, effi-

cient and powerful, providing the doctor all the necessary tools to conduct such analysis remotely.

In chapter 4 this proposal will be further detailed, with an in-depth analysis of the proposed

methodologies and its corresponding justifications.

3.6 Summary

This chapter detailed the vision and work already done in the device being developed for, con-

textualizing future chapters. Being built as a collaboration in INEGI, the prototype aims to solve

some problems detailed in the previous chapter, such as cost, ease of use and platform dependency.

The device aims to function as a simple, easy to use telemedicine kit, where a patient requires

no additional equipment or software to take part in a remote consultation. The appointment is

all done via the web so it’s fast and easy to access by medical professionals regardless of their

available devices.

3.6 Summary 15

The core of the device is an SBC that powers all other functionalities. It’s connected to a PCB

custom made to monitor EMG signals and a Wi-Fi dongle to deploy and transmit this information

for analysis.

The bulk of the work previously done was on the hardware side with the software remaining

in a very basic state. This is enough for a prototype phase of development but in order to be used

for its intended purpose, some features and optimizations are required. Some of the flaws that

need to be addressed are a lack of precision in the graphs being rendered, latency between signal

acquisition and display and the inadequate analysis features such as having no data persistence

and no ability to analyse multiple graphs.

This work proposes to solve all of these flaws and ultimately making the prototype and its

software experience more robust, reliable and easy to use for the end-user.

16 Telemedicine Device for EMG capture

Chapter 4

Proposed Solution

As seen in the previous chapter, the work being presented is contextualized in a team effort to

develop a telemedicine device and platform that relies on open technologies to provide a robust

experience. In a project of such scope, there are multiple different domains where work needs to

be done.

The present chapter details what its focus is in the context of this project and expands upon

what and why modifications were made. Firstly the objectives of the proposed solution are stated

in section 4.1. Section 4.2 details all the functional and non-functional requirements of the pro-

posed work and their significance. This is then followed by an implementation proposal done in

section 4.3, that is divided into sub-sections regarding each facet of the proposed implementation,

that tries to tackle all the requirements described previously.

4.1 Objectives and Focus

The main objective of this dissertation is to optimize the software experience delivered by the

prototype so it provides a platform for telemedicine comparable to other more mature solutions

in the area. The final product should be as reliable and performant for analysis as proprietary

software with the added benefit of running entirely on the web.

A major focus will be on how to reliably send and display the data captured by the device in

real-time. A re-write of the data displaying functionalities in the browser will be done, using a

custom-built charting solution, so that performance is guaranteed regardless of the volume of data

being displayed.

Changes to the way data is transmitted and encoded will also be made, some to complement

the developments made in the client-side, such as how data is stored, some to simply reduce the

volume and rate of unnecessary information being sent.

It should be noted that even when focusing only on the web experience of the platform there

is a lot of other improvements needed in other to make it fully ready and usable. Areas like video

conferencing, authentication and user interface all need to be either reworked or implemented,

however they are not the focus of the current project and will instead be addressed by future work.

17

18 Proposed Solution

As a result, most of the contribution done is centred around the scripting part of the web page,

changing how data is stored and represented, with additional work done in the server side to how

it’s transmitted and encoded.

The project is considered successful if a significant improvement is done in this area even if

the full vision of what the platform is intended to be, a ready to use telemedicine platform, is not

fully realised.

4.2 Requirements

With a better understanding of what is the main focus of the project, this section presents all the

functional and non-functional requirements for the overall work being proposed.

4.2.1 Functional Requirements

For all the work related to the rewrite being done, the only user that is going to interact with

the system in a meaningful way is the medical professional, since the patient only has to turn on

the device and follow instructions. Table 4.1 details all the user stories for this particular user,

illustrating the functionalities required for the system associated with this dissertation. A lot more

features are needed for a complete remote telemedicine scenario but these are the ones that pertain

to this project.

Table 4.1: User stories related to the proposed system.

ID Name Description

US01 Data History
As a medical professional, I want to be able to view
data previously acquired for a channel so that I can
go back and look at something I might have missed.

US02 Switch Between Graphs
As a medical professional, I want to be able to switch
between which channel is being charted per graph, so
that I have more control over what I’m analysing.

US03 Zoom and Pan
As a medical professional, I want to be able to pan
and zoom the charted data, so that I can analyse it
with further detail.

US04 Observe Multiple Graphs
Simultaneously

As a medical professional, I want to be able to ob-
serve multiple graphs simultaneously, so that I can
compare and relate data from different channels.

4.2.2 Non-Functional Requirements

The previously described functionalities are the ones needed for the system to be on par with what

is expected. Non-functional requirements are constraints that guide the implementation of said

functionalities. Table 4.2 details these requirements.

4.3 Implementation Proposal 19

Table 4.2: Non-Functional Requirements of the proposed system.

Name Description

Website Performance

The website experience while displaying, moving and
adjusting the data should maintain a constant perfor-
mance without noticeable frame drops or halts that
might hinder the experience.

Graph Precision

The data being charted should match the data be-
ing sampled by the device, therefore no information
should be sacrificed during the transmission between
prototype and client.

Low Latency

The charting of the data should occur as close to real-
time as possible, the latency between value acquisition
and display shroud be negligible and not interfere with
the overall experience.

Resource Efficient
The platform should be as resource and power efficient
as possible and not require an overwhelming use of
device memory or CPU to properly function.

These requirements are considered the biggest challenge of this project, and managing to fulfil

them all, without greatly sacrificing each other, is the main contribution the present dissertation

attempts to make.

4.3 Implementation Proposal

In order to fulfil all the requirements described above, this work proposes to completely rewrite

the scripting part of the website experience. This section details the modifications proposed, some

of the reasoning behind them and how their implementation is done.

4.3.1 Data Transfer

The biggest change to the data transfer layer is the volume in data transferred. To fulfil the Graph

Precision non-functional requirement the amount of data transmitted between the device and the

website will increase. Changing from sending 8 values at a 30 Hz rate (30×8 values per second)

to transmitting all the acquires values by the device sampling up to 8 different channels at 1000 Hz

(1000×8 values per second) would theoretically increase the needed bandwidth by about 97%.

To mitigate this increase, data compression will be applied to before transmission. Several

compression methods will be compared and tested before one is chosen for the problem. The

chosen algorithm not only has to have a good compression ratio but also has to be fast and efficient

as to not put extra strain on the battery life of the device.

Another change to the data transfer layer is in the rate of messages being sent. Rendering the

full frequency of the graph doesn’t imply sending individual values at this higher rate. Values will

20 Proposed Solution

be bundled and compressed together, resulting in less number of calls needed to send the same

amount of information. This results in less strain to the web browser, as it needs to handle fewer

incoming messages, and also in reduced bandwidth usage since larger chunks of information are

more easily compressed.

4.3.2 Data Visualization

The essential part of the platform is the data visualization charts. These are updated in real-time

with the collected information and are where the medical professional can conclude on a patient’s

status.

A completely new solution for displaying this information on the screen will be written, with

the intent of being both fast in rendering but also responsive for the user regardless of their device’s

capabilities. To achieve this, the proposed solution will take advantage of WebGL [36], a low-level

browser rendering API.

WebGL is based on the OpenGL ES 2.0 API and provides a way to execute code on the

device’s GPU via the browser. It’s also fully integrated with the rest of the web standards allowing

for WebGL elements to be used in conjunction with more standard HTML elements found on a

web page. This API is implemented by all major browsers and is both available on desktop and

mobile devices with a coverage of about 97% of global devices [37].

Most commonly used for 3D rendering applications, like video games or scientific visual-

ization [38], its benefits can also be used in the rendering of 2D scenes. Comparing it to other

2D rendering solutions available in the browser, like HTML5 Canvas and the now less utilized

Flash player, it shows a remarkable decrease in rendering times because of the reliance on GPU

acceleration as seen in Table 4.3.

Table 4.3: Simulation and rendering times per frame for 100,000 sprites being rendered in Chrome
by different rendering technologies in [1].

Implementation Simulation Time (ms) Rendering Time (ms) Total Time (ms)

Flash 56.3 174.4 230.7
HTML5 Canvas 59.3 391.0 450.3
WebGL 54.7 4.3 59.0

Another advantage of WebGL is that it allows for lower power consumption and CPU usage.

When the rendering is being handled by the device’s GPU, less strain is being put on the CPU

consequently improving battery usage [39].

4.4 Summary 21

4.4 Summary

This chapter details the focus of the present work in optimizing the data visualization parts of

the platform. It’s expected that the implemented solution has all the features needed for a thor-

ough analysis of the data in the browser while still maintaining performance, precision and being

resource-efficient.

This will be accomplished by a full re-write of the charting code on the web using the WebGL

API, a browser feature that allows deferring the rendering to the GPU to achieve better perfor-

mance. Additionally, the transfer layer will also be overhauled, in order to transfer and analyse a

larger volume of data. This will be achieved by bundling data and compressing it to reduce the

number of sent messages and bandwidth.

22 Proposed Solution

Chapter 5

Development

During the course of this dissertation, a robust charting solution for the web was developed, meet-

ing all the requirements outlined in the previous chapter. Throughout development, different tech-

nologies were employed, comparisons between similar approaches were carried out and decisions

about the implementation were done in order to reach the final product.

The present chapter details all these challenges starting with section 5.1 that describes the

technology stack of the project. Next, the primary library used to build the solution, Three.js, and

its core concepts are explored in section 5.2 followed by an overview of the project’s architecture

in section 5.3.

Section 5.4, Implementation Details, is divided into multiple subsections related to different

aspects of the final solution. Each of these subsections thoroughly explores its implemented func-

tionality as well as the reasoning behind it, further exploring the difficulties faced when developing

the software.

5.1 Development Infrastructure

The right development infrastructure is a critical element of any software project. Not only should

the program fulfil its requirements and function as expected, but its implementation should be easy

to understand, maintainable and easily scalable for any future work.

The current project is part of a joined effort with a multidisciplinary team and is expected to

be built upon in the future. Accordingly, the choice of tooling and guidelines for the development

process was made with this in mind to ensure the code is easy to understand and maintain after its

original development period is over.

The bulk of the work proposed in this dissertation targets the web platform, narrowing the

number of available solutions to choose from. All modern web pages are built on top of 3 stan-

dards: HTML, CSS and JS1, thus a solution built for the web will consequently rely on these 3

languages.

1Recent developments to web standards allow the use of WebAssembly on modern browsers but that is outside of
the scope of this work.

23

24 Development

Since the work is mainly focused on displaying graphs using WebGL, a JS rendering API, the

little need for markup and styling required was done using plain HTML and CSS files. However,

for the scripting part, a more complex solution was employed.

The popularity of JS as a general-purpose language as risen ever since the release of Node.js in

2009, and with it, what is called the "JavaScript package ecosystem" [40]. Using the Node Package

Manager (NPM) a user can install JS packages, pieces of software that implement particular fea-

tures, that were developed by other people and are freely available to use in any software project.

NPM makes the process of installing and maintaining these dependencies easier for developers.

The proposed solution takes advantage of several open-source and free to use libraries, such as,

Three.js, localforage, zlib and threads.js that abstract certain browser APIs or implement needed

features that are not available in the browser by default. These libraries will be further explored in

the next sections when relevant.

To manage all these different dependencies without having to keep track of multiple JS files,

the library packages are installed using NPM and the project is built using Webpack [41], an

open-source JS module bundler.

Webpack concatenates all the written code, as well as any imported libraries, into a single

minimized output file that is then included by the HTML file, removing the hassle of dealing with

multiple imports, versions and downloads. This way the codebase can be broken down into files

that serve a singular purpose and depend on one another, making the code easier to read and debug.

Webpack also offers other features useful in the development process, such as plugins for asset

management, bundle optimization and variable injection, as well as a robust development server

and source maps for easier debugging.

To further aid with code quality the project is written in TypeScript (TS) [42], an open-source

language maintained by Microsoft that adds static typing to JS. TS was designed for the devel-

opment of large applications for the web and offers a robust module system, classes, interfaces

and other static type declarations. Features like these allow for development environments to bet-

ter understand the code base and offer more information to the developer, even while it’s being

written, such as warnings and errors.

This provides a contrast to standard JS programming where problems are only encountered

during runtime which can be an extra hassle during development. Another advantage of the lan-

guage is making the code easier to read and understand for any future developers as the type

declarations offer more information about functions and classes and how they interact with each

other.

Ultimately the TS code written is transpiled to JS and bundled with all of the needed im-

ported libraries by Webpack as stated above. A schematic of the system described can be found in

Figure 5.1.

5.2 Three.js 25

Figure 5.1: Diagram of the web part of the project.

5.2 Three.js

As stated in the solution proposal (Chapter 4) the built charting implementation will take advantage

of the WebGL browser API to render to the screen. This API is effectively a port of OpenGL to

the browser, so it provides the same low-level functionality as its C written counterpart but in a

native JS interface. While powerful, this graphic programming approach can be very verbose and

unnecessary for more simple rendering needs, as is the case with the present project.

In this way the Three.js library [43] was used to interface with the WebGL API. Three.js is a

wrapper library that abstracts the low-level execution of WebGL and greatly eases the process of

setting up the necessary code for an in-browser graphics rendering pipeline.

In this section, some key concepts and functionalities of Three.js are detailed as they are

necessary for understanding the architecture and implementation of the developed solution.

As with most 3D rendering engines, there is the concept of a Scene, where all that is being

rendered is stored. Much like a virtual environment, objects can be placed in 3D space within this

scene, and subsequently moved, rotated or scaled in all 3 dimensions. Since what’s intended to be

drawn in this project is a 2D graph, all objects are placed in the XY plane of the scene and have

no depth in the Z-axis.

The Three.js objects used in the implementation are the following: Line, LineSegments,

Group and Sprite objects. Both Line and LineSegments are used to draw straight lines

between points while applying a certain material. The difference between the two is that Line

only draws a segment between 2 points while LineSegments can draw multiple lines connecting

adjacent points in a geometry buffer. A Sprite object serves to render static images in a scene

26 Development

and is used in the context of this project to display the numerical values associated with the scale of

the graph. Finally, the Group object is used to group multiple objects and apply transformations,

such as scale or translation, to the group instead of each object individually. This is used in several

different ways throughout the implementation.

To know what portion of the 3D space is being projected to the user’s screen and what objects

are visible a Camera has to be defined. The Camera works just like a real-life camera does, it’s

placed in the scene and using parameters like Field of View, Aspect Ratio and focus planes, it

projects what it sees to the screen. For this project, the camera is outside the XY plane while being

focused on it in order to capture the objects there being placed.

Lastly, to finish the Three.js graphics foundation a WebGLRenderer needs to be defined. This

is the object that handles all the rendering to the screen. It requires a Scene and a Camera and

when called it renders what the camera is capturing to an associated canvas HTML element using

the WebGL API.

5.3 Architecture

The tool built uses an object-oriented approach in its organization structure. With the help of TS

static type declaration, the code is broken into different classes that each represent and implement

a part of the system and rely on each other to build its complex functionalities.

These classes and the relationships between them can be seen in Figure 5.2. Their purpose and

functionalities are as follows:

• index.ts - Represents the root of the file being called when the bundle is imported by

the browser. It instantiates the needed components for the functioning of the project and

handles the connections between them. It invokes the WebGL rendering pipeline when the

browser’s requestanimationframe() method is called;

• WebSocketManager - Handles all of the steps required to connect and read messages com-

ing from the device via the WebSocket API. It has two callback functions onMessage and

onError that are called when the respective action occurs. This class is also responsible

for decompressing and decoding the messages being sent, a functionality that is described

further ahead;

• TimedValues - Describes how the data sent from the device is modeled in the client. A

single time floating-point number corresponds to an array of data numbers, one for each of

the channels being sampled;

• Graph - Represents a single graph in the system. It has a Scene and a Camera associated

with said graph and keeps it’s own internal state. It also has distinct X and Y-Axis and zoom

values allowing for different graphs to show completely different zoom levels and value

ranges while being analysed;

5.3 Architecture 27

Figure 5.2: Class diagram of the project.

• GraphManager - Handles all the necessary integration with the multiple components of

the system. It stores all the individual graphs and handles passing received values to each

one. It also contains all the needed code to render the multiple graphs to the screen and is

where the Three.js WebGLRenderer is defined;

• DragHandler - Instantiates and manages the event listeners required to handle user input.

It supports both mouse and touch events, implementing the needed logic to calculate the

drag velocity and move the associated chart according to the input;

28 Development

• GraphControls - Creates and handles the input on a child element of the graph containing

all the buttons needed to interact with the graph;

• Axis - Represents one of the axis of the graph, implementing all the shared functionality

between both of them;

• xAxis and yAxis - Both inherit from Axis and implement the specific functionality for

each axis, such as different unit types, step length and scale adapting logic;

• AxisStep - Handles all the necessary code to create a step in an Axis, both creating

the sprite that displays the number associated with that step as well as the tick line where

it intersects the axis. Also implements logic related to positioning and moving said steps

according to the current graph’s zoom values;

• Chunk - Represents a portion of the data being drawn by the graph, displayed as a col-

lection of connected points stored in a LineSegments object. It has a maximum defined

number of data points it can hold and can be instantiated from a previously stored buffer of

information;

• ChunkManager - This class handles all the information, stored in chunks, associated with

a graph. It contains an array of visibleChunks that are the ones currently displaying to

the screen and 2 buffers where chunks are loaded to improve performance if the graph is

panned or zoomed out. It also has all the code necessary to store and recall all of the graph’s

information from device local storage to keep a data history.

5.4 Implementation Details

This section focuses on specific parts of the implementation, detailing the challenges they intro-

duced and how they were ultimately solved.

5.4.1 Transfer Layer

One of the main challenges of the project was the method to transfer the data from the device, in

the possession of the patient, to the client-side, being used remotely by the medic. The transfer

method used in previous implementations, WebSockets, is the most reliable approach to transfer

real-time data to a website, therefore, the previous implementation was reworked.

The WebSocket API is built on top of the TCP protocol where, after a connection is estab-

lished, messages between both parties can be exchanged freely without any polling from either

side. The biggest issue faced for the final implementation was how to send the large amount of

data being collected to the website in real-time, whilst being efficient in bandwidth usage.

To mitigate this problem two factors are taken into account, the frequency of messages being

sent and the structure of the messages being sent. The details regarding the frequency are, however,

5.4 Implementation Details 29

influenced by the message structure implementation, so the latter will be broken down and detailed

with the former being addressed when relevant.

5.4.1.1 Data Formatting

The way the messages being sent are structured have a large impact on their size. The standard

encoding for messages on the web is the JavaScript Object Notation (JSON) format, that is uni-

versally used and easy to understand for both humans and computers.

However, when transmitted via the web, a JSON object is converted to text which is then sent

encoded in the UTF-8 format. Numerical values that were previously stored in a double-precision

floating-point format, that occupied a total of 4 bytes, are now sent as text with each character

occupying 1 byte, making numbers with high precision up to 4 times larger.

The solution is to send messages as binary data, that is then interpreted in the client-side. This

requires a standard way to encode the message so that it can be properly decoded without any data

loss.

The prototype device samples values at a rate of 1000 Hz and since it’s impractical and unre-

liable to send each value individually, after a certain interval, values are bundled together and sent

as a single message.

The data collected is stored as a relation between the timestamp when they were sampled

and the sampled value itself. Since the device has 8 channels we can remove duplicate data by

grouping 1 timestamp to 8 values, one for each channel being sampled. This way, the message

would be structured as groups of 9 numbers, occupying 4 bytes each, with the first number of

each group corresponding to the timestamp and the following 8 to the values associated with each

channel in sequential order. Using this method, for n groups of values being sent per message the

bundle size of the message is n∗9∗4 bytes.

This value can be optimized further when taken into account the fact that the sample rate of

the device is always constant. Considering this, this rate can be closely approximated in the client-

side just by knowing the first and last time stamps of the bundle and the total number of groups

of values being sent. Using this optimized method, the message would consist of 2 initial values

corresponding to the first and last timestamp respectively followed by groups of 8 values for the

channels. This method would provide a bundle size of (2+ n ∗ 8) ∗ 4 bytes for n group of values

sent.

The efficiency of all the described approaches above can be seen in Table 5.1, where the size of

the average data packet and the total bandwidth of a 30 second transmission of a generated signal

sent at a rate of 6 Hz for each approach are compared.

30 Development

Table 5.1: Comparison of average packet size and total bandwidth of the data format alternatives
detailed.

Avg. Size Total Bandwidth

JSON 20237.86 B 120752.56 Bps

Binary Format w/ All Timestamp 5201.80 B 31037.40 Bps

Binary Format w/ 2 Timestamps 4645.93 B 27720.71 Bps

5.4.1.2 Data Compression

Another way to reduce bandwidth is to apply a compression algorithm to the bundle of data being

sent to reduce its overall size. This, however, presents a trade-off that conflicts with one of the

non-functional requirements of the system: low latency between capture and analysis of the data.

Both compressing and decompressing the data increases the delay between acquisition and

display. The final solution should be one that has a good compression rate but also a minimal

impact on the overall time it takes for the signal to be rendered.

Before doing a comparison of multiple compression libraries, some general principles of com-

pression were studied and taken into account when choosing the frequency at which the messages

are transmitted. Compression works by removing redundancies and repetition found in the data,

that can be reverted afterwards to reconstruct the original file [44]. Thus, the smaller the data-set

is the harder it is to compress since it has less redundancies.

Taking this into account it was decided to send bundles of information to the client at a fre-

quency of 6 Hz, increasing the overall size of the bundle, making it better for compression. Trans-

mission at this frequency adds an overall delay of 167ms to the system. This happens because after

a value is sampled it’s kept in the memory of the device for some time before the next message

is scheduled to dispatch. This latency increase was considered necessary since it helped reduce

bandwidth usage and improved performance as the client has to process less incoming messages.

For the compression solution, only lossless algorithms that were purpose-built for real-time

usage were considered. The candidates found that met these requirements and the were compared

further were: LZ4 [45], LZO [46] and zlib [47].

In order to compare them, both the final size of the bundles and compression time were taken

into account. The test was done by calculating the average compression time, average package

size and total bandwidth used during a 30 second data transfer test at a rate of 6 Hz. The data

being compressed is formatted according to the standard described in the previous subsection that

contains only the first and last timestamps for the bundled values. The values transmitted are a

simulation of what the device would output, having 8 different generated channels at 1000 Hz, of

both a sine wave signal and random values2. The results of these tests can be seen in Table 5.2.

2Due to the fact this dissertation was done during a period of global pandemic access to the device and therefore a
reliable EMG signal was unfeasible.

5.4 Implementation Details 31

Table 5.2: Comparison of compression libraries during a 30 second test of signal transfer.

Compression Time
Sine Wave Random Noise

Avg. Size Total Bandwidth Avg. Size Total Bandwidth

Control 0 ms 4645.93 B 27720.71 Bps 4638.96 B 27679.12 Bps

LZ4 0.16612 ms 1444.78 B 8620.52 Bps 3046.75 B 18178.94 Bps

LZO 0.20170 ms 1519.16 B 9064.32 Bps 2164.21 B 12913.11 Bps

zlib 0.90467 ms 788.17 B 4702.74 Bps 1247.32 B 7442.34 Bps

Taking into account the results, the chosen algorithm used for data compression was zlib since

it achieved a significantly better-compressed size, of about half, when compared to the other li-

braries. It obtained a compression ratio of 5.89 for the sine wave signal and 3.72 for the random

signal. This better compression ratio came at the cost of performance, measuring over 4 times

slower than the two other libraries, however, the average time was still bellow 1 ms and was

considered insignificant in the overall functioning of the system.

5.4.1.3 Client Side

With the data sent being compressed and formatted as a binary buffer when it reaches the client

device, it has to be decoded to be acted upon. This decoding happens in real-time in the browser

while the charts are being updated with past received values. Since JS is a single-threaded lan-

guage when a package was received and unbundled, the frame being rendered was delayed causing

the experience to freeze for a noticeable fraction of a second. In order to remove this unwanted ir-

regular frame every time a new message was received (6 times every second) all the decompressing

and parsing logic was moved to a web worker.

The Web Worker API [48] is a part of the HTML standard, finalized in September 2015,

that allows a website to spawn background workers that run scripts in parallel to the main page.

These workers can run any type of code, including data storage mechanisms, and communicate

with the main thread via a system of messages. This way, the implementation takes advantage

of the multiple CPU cores and threads that are present in modern hardware of all classes, from

smartphones to desktops.

The implementation of web workers for this project was done via the library threads.js [49] that

integrates with Webpack to properly compile and bundle these workers for use with the rest of the

project. When initiated WebSocketManager spawns a readData worker to which it forwards

all the incoming message bundles. On receiving this binary data, the worker decompresses it using

pako [50], a web implementation of the zlib compression algorithm, parses the uncompressed

bundle and reconstructs the data by approximating all the unsent timestamps according to the

standard described above.

After the data is reconstructed in the worker it’s sent back to the main thread where it’s kept

in a pointBuffer before being added to any graph. Values are removed from this buffer and

32 Development

used at the rate of the rendering of the client. If the device is rendering at 60 frames per second

(FPS) this means each frame lasts about 16.66 ms of time on screen, and so, for that frame the

top values in the buffer, that when combined, span the sampling time of around same amount are

removed and added to the graphs. This ensures that even though values are sent as a big chunk of

information they are displayed to the user as if they were being sampled in real-time, making the

overall experience significantly smoother.

5.4.2 Graph

The final solution implements all the features expected from a charting library, allowing for a

robust analysis of the data while maintaining high performance. A screenshot of this final imple-

mentation and its interface in use can be seen in Figure 5.3.

Figure 5.3: Screenshot of the current implemented interface

A graph in the system is modelled by the Graph class that holds all its logic, state and data

in a way that multiple graph instances can work independently of one another. On the HTML

Document Object Model (DOM), the website structure, the graph is represented by a div element

with a graph class associated to it. When the GraphManager is initiated it parses the DOM for

all elements that fit the above criteria and creates an instance of Graph for each one of them.

When a new Graph object is created the proportions of the associated HTML element are

used to initiate a Camera with the appropriate aspect ratio to project onto the div. This camera

is then placed in an empty Scene, with its capture planes parallel to the XY plane. When the

camera is first positioned, it’s ensured that the leftmost point being captured corresponds to the

origin point of the scene, where values will be placed. After this, a VisibleRange is calculated,

that corresponds to the highest and lowest point in both the X and Y directions the camera can

5.4 Implementation Details 33

capture at a certain time. A top-down representation of the scene’s initial state can be seen in

Figure 5.4.

Figure 5.4: Diagram of the initial state of a Three.js Scene corresponding to a graph.

When points are added to the graph, they are added as lines in the XY plane, with its timestamp

value corresponding to the X coordinate and the EMG value corresponding to the Y coordinate.

Since the time is counted from the start of a consultation, no negative times exist so no values

are plotted with negative X coordinates. When more information is added, it arrives sequentially

so it’s always placed to the right of existing data, where line segments are appended from the

previously plotted values to the new ones.

These values, however, are not placed in their corresponding coordinates in the scene. A point

with the timestamp of 1 second and the value of 10 is not plotted at the coordinates (1, 10, 0). This

happens due to the way the graph handles zoom, allowing for independent zoom values for each

of the two dimensions.

When points are added to the graph they are in fact added to a LineSegments object that

is contained within a Group object called plotLine. This happens in order to apply transfor-

mations to the data set as a whole. Since all points are contained in this group, transformations

applied to the object will affect the entirety of the data. This way if the user wants to increase the

zoom in the X direction, a simple scale transformation is applied to that axis in the plotLine

object, which in turns affects all the plotted points, making it extremely efficient when compared

to applying said transformation to all points individually. Other scene parameters such as the scale

of the axis and the camera’s VisibleRange also need to be updated to reflect the change in zoom

to match the performed transformation. Using this approach allows for the manipulation of a data

set of thousands of information points without requiring too much computation power.

While data is being appended to the graph over time, the line being plotted might move outside

of the camera’s VisibleRange, forcing the graph to alter said range in order to fully show the

new values. If the point added is outside of the camera’s Y range, a simple zoom change is done in

this axis to show the new value. Because instantly updating the zoom value would cause the graph

34 Development

line to snap to this new position, the zoom operation is applied over several frames providing an

ease animation as to make the experience smoother for the user.

If the incoming value is plotted outside of the X range of the camera, the camera is then moved

in the horizontal axis to show this new point. This movement also occurs when a user interacts

with the graph by dragging with the mouse, or using touch input, to pan the information left and

right. The user drag velocity is inversely applied to the camera over time while the visible range is

updated with the new displaying values. This camera movement is applied every frame to provide

a smooth dragging experience allowing for better handling of the graph.

It’s important to note that despite being built using the Three.js framework and using its scene

paradigm, requiring the update of camera positions and applying 3D transformations to the data

projected, all of this complexity is abstracted from the end-user. All a user sees when the camera

is moved, are the charted values moving along with the screen. The interface and usability are

indistinguishable from any other graphing solution.

5.4.3 Axis

Each graph has two axis, a horizontal one, that corresponds to the X coordinate on the Three.js

scene, where time is plotted and a vertical one, corresponding to the Y coordinate, where the

sampled values are plotted. Each axis has several markings along its length to convey the current

scale. A screenshot of an empty graph, with the axis drawn, can be seen in Figure 5.5.

Figure 5.5: Screenshot of an empty graph.

Before exploring how the axis work individually we first need to describe what constitutes an

AxisStep, the class that models each individual marking on an axis. Every step consists of a

small line with a label associated with it that denotes its corresponding value. In the horizontal

axis, this label is expressed in a time format while in the vertical axis it simply displays the actual

value.

The main challenge when creating these steps was displaying this label. When text needs to be

displayed to the screen the Three.js framework doesn’t offer a convenient solution to use within a

scene. The recommended approach is to create the text via HTML and CSS and have it overlay on

top of the canvas element where the scene is being rendered. However, this solution was found to

be too inconvenient and complex for this project, since the text would have to move synchronously

5.4 Implementation Details 35

with the camera, making it necessary to update CSS positions in real-time according to movement

happening within the scene. Since all the necessary logic to display the text and information about

its position was already stored in the scene object, the Texture and Sprite components were

used to draw the numbers instead.

When a graph is first created, a Texture object is also instantiated using an image of all

the needed numbers and symbols to properly represent all possible text variations (Figure 5.6).

The font chosen for this purpose was monospaced to help with the placement of the digits by

making them all the same width. This texture is then broken into multiple Sprites one for each

digit, that are placed in a Map<string, Sprite> where the key to each sprite is the character

represented in its texture image. With all this setup done, when the label portion of the step is

being constructed, the associated text is cast to a string and for each character in that string a clone

of the corresponding Sprite is created and added to the step.

Figure 5.6: Texture image used to make the sprite digits to display the label text on an AxisStep.

The creation and placement of these steps is done by the Axis class and are handled differ-

ently depending on the axis. The X-axis is composed of a horizontal line with n equally spaced

steps along its length. The line that constitutes the axis itself has the same length as the existing

VisibleRange and moves synchronously with the camera creating the illusion of being infinite

without having to update its size.

The steps are placed in their corresponding place in the scene according to the current zoom

value for the graph. However, these steps do not stay permanently in the scene. To save memory,

when a step is out of view of the camera it is removed from the scene, only being reconstructed

again if necessary. This allows the graph to keep running indefinitely without having any memory

issues.

The distance between steps is calculated based on the current zoom value of the graph. If

the graph is zoomed out the markings update to a bigger interval to better convey the scale. This

is accomplished by defining minimum interval width in pixels, and when a zoom action occurs,

calculating what unit value, from a set of predefined values, would make the interval closest to the

minimum width whilst surpassing it. The predetermined unit values, in seconds, for the X-axis are

the following: [1, 2, 5, 10, 30, 60, 300, 600, 1800, 3600].

For the Y-axis, no vertical line is drawn since the graph can’t be panned to negative time

values and a line coinciding with the origin would never be seen. The vertical steps are placed at

the leftmost position in the visible range and are moved with the camera so they always stay in

view. The algorithm used to calculate the distance between steps is similar to the one previously

described except with different minimum widths and unit values. The unit values for the Y-axis u

are calculated according to the following formula u = 10n× v,n ∈ N,v ∈ [1,2.5,5].

36 Development

5.4.4 Data Management

The continuous plotline represented by the graph that links all the information points collected

is not an uninterrupted object. This line is made of segments of information that when together

transition seamlessly and give the appearance of continuity. This stems from the fact that all data

stored in a graph is divided and represented by Chunks, uniformly sized blocks of information

that make displaying and managing a large number of data points easier.

5.4.4.1 Data Chunks

A Chunk is the class in the system that models these blocks of information. The core of the Chunk

is a LineSegments object where the information is added and when drawn to the screen repre-

sents the multiple line segments connecting all the information points that make up the incoming

data.

Rendering objects in Three.js is an expensive operation, and rendering thousands of lines at a

high frame rate would cause performance issues on most systems. This was solutioned by using

the LineSegments component, that draws lines between consecutive points represented in its

given geometry.

Two distinct types of geometry can be used by objects in the framework, a standard Geometry

and BufferGeometry. The difference between the two is that the latter has a fixed size and

cannot be resized after its creation. This distinction exists because resizing buffers is a very costly

operation, almost as costly as creating a new buffer, so there is a benefit to having a fixed size

geometry that while more strict offers a significant performance increase.

This is one of the reasons data is divided into blocks. When initializing a new chunk, a

BufferGeometry object is created with enough space to accommodate a pre-defined number

of points. When data is added to the chunk, specific positions in this buffer geometry are updated

with the added values, causing the object to update when rendered. This means all Chunks have

the same size since their available space is allocated when they are created.

Since specific positions in a typed array are being accessed and updated, the Chunk class has

helper methods that abstract all these low-level operations which make it simple to add points to

the LineSegments object, check its capacity or return its first and last value.

5.4.4.2 Data Structures

With a structure to accommodate sections of data, the graph has to have a way to manage when

chunks are created, displayed and destroyed. This is the job of the ChunkManager the class that

handles how data is stored and displayed for a graph.

As information is added to the chart, the ChunkManager appends it to the last created chunk

with available space. A reference to this chunk is always maintained by the manager and is called

updatingChunk. When the current updatingChunk is full, it’s stored in local memory and

a new empty chunk is created and referenced as the new updating chunk. Every chunk has an

5.4 Implementation Details 37

assigned ID number. These numbers ascend in order and are used to know the correct sequence of

chunks that form the graph plotline.

Just like the steps in the X-axis, chunks are not permanently kept in the scene after they are

created. They are only added to the scene when a section of the information in the chunk is

contained within the camera’s visible range. When a chunk is no longer visible, it is removed

from the scene and kept either in memory or local browser storage.

The ChunkManager has three arrays to handle loaded chunks. VisibleChunks, where

all the chunks containing data that is currently visible are stored, LeftLoadedChunks, where

the first 3 unseen chunks to the left of the current window are held and RightLoadedChunks,

that follows the same logic for the right of the window. When a chunk becomes out of view it’s

removed from the visible buffer and added to the appropriate loaded chunks buffer, according

to the direction it exited the screen. That buffer, if it reaches its capacity of three chunks, then

removes the furthest visible chunk from memory to keep its size constant.

The opposite also occurs, when a chunk that was in a side loaded buffer gets pushed to the

visible array, if available, a chunk stored in browser memory is loaded and added to the now

smaller buffer to keep the consistent size. These arrays are always kept in order according to the

correct sequence of chunks, so they can be easily manipulated with simple and performant array

operations such as pop and push.

An example of how the visible range would move after a pan and how that would affect the

chunk structure described can be seen in Figure 5.7. Changing from frame (a) to (b) the last

portion of the leftmost visible chunk stops being visible to the camera, and as a result, the chunk

is shifted out of the visible buffer and pushed to the left buffer which at the same time shifts its left

most chunk. The transition from (b) to (c) requires a new chunk from the right to be loaded, so it

is pushed into the visible array. Since there are no more chunks to load past the updating chunk,

the RightLoadedChunks buffer maintains its size.

This behaviour occurs to guarantee that when information needs to be loaded, either from a

zoom out or a pan, the chunk loading happens fast and responsively. Because the chunks that need

to be loaded are always the ones that are just outside of the visible frame, it’s easier to keep them

pre-loaded in a buffer and add them to the scene when necessary.

Only in exceptional cases, where the user does an exceedingly fast pan or has zoomed out to

a degree where a large number of chunks need to be loaded at once does the graph not respond

instantly. This is because if more than the 3 pre-loaded chunks need to be pushed to the visible

buffer in a single frame, they have to be fetched from local memory.

5.4.4.3 Local Storage

One of the main requirements of the system is data persistence. All information in the graph

should be available to be analysed during a consultation. The medical professional should be able

to zoom the graph out to the first received values and have a complete history of the signal.

This is achieved by storing the information chunks in local storage and then recalling them

only when needed, allowing for much more optimized usage of the device’s limited RAM.

38 Development

Figure 5.7: Example diagram of the changes in the graph data structures after 3 consecutive frames
where the visible range is shifting.

Modern web browsers support multiple ways for web sites to store data on the device and

retrieve it when necessary. Two examples of local storage APIs, and the ones used to achieve

the wanted functionality for the application, are the IndexedDB API [51] and the session storage

API [52]. They operate quite differently and have distinct capabilities. The session storage API

provides a mechanism to store key/value pairs in the device during the duration of a session. The

information, formatted as a string, is stored in a simple JS object that can easily be accessed during

run time with a maximum capacity of 5MB of storage.

IndexedDB is a more low-level browser API that allows for the storage of a complex amount

5.4 Implementation Details 39

of structured data of any type, including binary arrays. The data limit is much higher than the

session storage API and depends on browser implementation. The information stored is indexed

to enable high-performant searches of the data set. While more robust, this solution is, however,

much more difficult to use, so the library localForage [53] was employed to abstract some of the

more complex functionality.

The two described solutions are used in juncture to allow for the functioning of the history

system for the graph data. When a chunk reaches its maximum capacity its geometry data is sent

to a web worker to be stored. The web worker API is again used for heavy operations to be applied

to the data without halting the main UI thread.

Firstly the X coordinate for last value of the chunk is stored with a reference to the chunk ID in

the session storage instance. This is integral for the rebuilding of the chunk that will be explained

further on. Following this, the geometry is formatted into a binary array, removing all unnecessary

information. This includes the Z coordinate for all points that is always equivalent to 0 and all the

duplicate points created to properly draw the line segments.

After this pre-processing occurs the buffer is further compressed by pako, the JS implementa-

tion of the zlib compression algorithm, in order to be as memory efficient as possible. Finally, this

formatted and compressed binary data structure is indexed in the browser database with a key that

pertains to the chunk and graph ID so it’s easily recalled.

Since the IndexedDB can only be accessed asynchronously when a chunk needs to be recalled

that process does not happen instantly. In a situation where the user zooms out to a great extent

and multiple chunks need to be loaded instantly the ChunkManager needs to know the width

of the needed chunks to only load the required amount of information to fill the visible space.

This is where the session storage last value that was saved is used since it can be accessed in

synchronously. Using the reconstructed chunk’s last value and the last value of the previous chunk

an empty LineSegments object with the correct width can be built and placed in the scene before

any of its information is fetched and processed.

After this placeholder is created, a web worker is called to reverse the above-described pro-

cess. The data is decompressed and subsequently formatted as a BufferGeometry before being

transferred back to the main thread where it’s set as the geometry for the empty spacer chunk. In

most instances, this whole process happens while the empty chunk is still in one of the two loaded

chunk buffers and is seamless for the user. In the case the empty chunk was already placed in the

scene, in the next frame its information updates and the line segment is rendered.

5.4.5 Rendering

This solution is built around the Three.js library in order to benefit from the better performance that

comes from using the WebGL browser rendering API. This API, however, has some drawbacks

that had to be addressed. When rendering with WebGL, the browser has to fetch, from the canvas

HTML element where it’s going to render to, a WebGlRenderingContext that provides an

interface to the underlying OpenGL graphics platform.

40 Development

To render multiple charts on multiple canvases a new context would have to be created for each

one. Apart from being memory-intensive, these contexts would also not share the same resources.

All the low-level buffers, shaders and loaded textures needed for the rendering of a graph would

have to be loaded for every different context.

This was solutioned by having a single context and canvas where all graphs would be rendered

to in different positions, giving the illusion of multiple standalone graphs existing. To achieve this

the canvas is the first element in the body of the website, having a height and width that matches

the currently open window. This element is moved when the user scrolls the page and is resized

when the window dimensions change, to always fully occupy the visible area of the page.

Subsequently, when a graph is about to be rendered, the position of its corresponding div

element in relation to the browser window is measured. Using this positioning information the

viewport of the renderer is set to only output to this defined area of the canvas. Since the canvas

matches the area of the screen and the div element is transparent, it appears as if the information

is being rendered inside the div when in reality it’s being rendered to the canvas.

Using this method any number of graphs can be rendered without the use of extra resources.

It also helps with performance since if a graph intended to be rendered and is currently outside of

the pages visible frame, its rendering is skipped until a portion of it is visible.

In Figure 5.8 the fully rendered page can be compared to an example where only the underlying

canvas is visible. In this instance, it’s easy to understand how the canvas is being sectioned in order

for the information rendered to match the corresponding elements.

Figure 5.8: Comparison between fully rendered page (left) and only the canvas element (right).

5.5 Summary 41

5.5 Summary

This chapter explores in detail the implementation effort made for this project. It discusses the

choice of using tools such as TypeScript and Webpack to facilitate the development process. It

also details the architecture, implementation and key concepts used during development, not only

for the achieved solution but also for its underlying technology Three.js.

The transfer layer is built using the WebSocket API through which binary bundles of formatted

and compressed data are sent at a rate of 6 Hz. These bundles are decompressed and pre-processed

by a web worker on a separate thread on the client-side as to not interrupt the main thread where

the rendering is done.

The implemented solution has all the functionality expected from a charting solution, imple-

mented in a way that is easy to use, fast and responsive. Features like data panning, zoom and

the adaptive axis scales are all done taking advantage of several different Three.js components to

maintain good performance.

All the incoming graph data is persistent and can be recalled at any time during a consultation.

This is achieved by splitting data in multiple chunks of information that are stored locally via

the IndexedDB API. By using a combination of methods while managing the information, like

pre-loading data, using simple array operations and employing web worker threads, the overall

experience of examining the graph is seamless and performant.

42 Development

Chapter 6

Results

A big focus of the development throughout the project is in optimizing small details in the im-

plementation of both the display solution and the transfer layer to achieve the best possible per-

formance. The efficiency of managing device resources of the system was also an active priority

during the development phase.

In this chapter, a set of measurements is presented to examine the performance of the devel-

oped solution and provide an assessment of the improvements the present work made in the overall

usability of the prototype device.

Firstly, in section 6.1 a comparison between the new displaying approach and the previously

implemented solution is conducted. This further demonstrates the improvements made to the

website and the overall user experience with a greater emphasis on device performance.

Subsequently, in section 6.2 an analysis is done of some popular charting libraries for the web.

These were tested in scenarios identical to the functioning of the device and then compared to the

developed solution. This allows for the comparison between the developed solution to the state of

the art approaches available on the internet.

6.1 Comparison with previous solution

The newly implemented approach differs from what was previously implemented in several ways.

In order to understand how the changes made affect the overall functioning of the system, several

criteria were taken into account starting with the efficiency of the transfer layer.

6.1.1 Transfer Layer

Multiple improvements were done in this section but the most important was the increase in the

amount of data transmitted. With the previous implementation, fewer values were sent more fre-

quently. This was enough to build a chart that would approximate what the device was sampling

but a large amount of information was lost in the process. With the new approach, all values

sampled are sent to the device after they are pre-processed and compressed so no information is

lost.

43

44 Results

Figure 6.1: Number of sampled values sent per second.

Figure 6.1 shows a comparison between the amount of usable data being sent to the client

every second. This number is calculated by a simple formula using the number of values sent

per message and the frequency of transmission. For the previous solution, 8 values are sent every

message, at a rate of 30 Hz, resulting in 8× 30 = 240 values per second. For the developed

solution, a buffer with an average size of 140 bundles of 8 values is sent at a rate of 6 Hz, resulting

in 140× 8× 6 = 6720 values sent per second. This corresponds to an increase of 2800% in

information transmitted after the enhancements were done.

With the use of the network protocol analyser tool Wireshark [54], several tests were made

with both approaches to compare them in terms of overall network traffic. Although much more

information is being transmitted with the new solution, a substantial effort was made to minimize

the impact of this increase in the overall network consumption of the system.

Figure 6.2: Comparison of bandwidth usage for both solutions.

6.1 Comparison with previous solution 45

Figure 6.2 compares the bandwidth usage of a 30 second transmission of data for both solu-

tions. Despite the considerable increase in data transmitted the developed solution manages to

achieve a lower network consumption of 44 kbits/s, a slight improvement over the old solution

of 47 kbits/s. The improvements are better perceived in Figure 6.3 that compares the bandwidth

necessary to send 10000 values.

Figure 6.3: Comparison of bandwidth usage per 10000 values for both solutions.

Figure 6.4 helps to explain these findings. To transmit the higher amount of information the

average packet length for the improved solution is about 4,5 times higher than its counterpart,

even after the formatting and strong compression are applied, methods that were previously not

used. Nevertheless, the new solution transmits packets of information at a smaller rate in order to

improve compression so the overall bandwidth usage stays approximately the same.

Figure 6.4: Comparison of average packet length and total packets sent for both solutions.

46 Results

6.1.2 Performance

To evaluate and compare the performance of the two approaches they were tested and bench-

marked in several parameters. These tests will provide a better understanding of how the imple-

mented changes impact the usability and efficiency of the system.

The tests conducted consisted of a 30 second transmission between 2 computers: one emulat-

ing the prototype device by generating values and transmitting them over a LAN connection and

the other receiving the data and plotting it to the screen. The computer running the benchmarks is

using an Intel(R) Core(TM) i7-6700HQ CPU at a rate of 2.60 GHz and 8 GB of RAM. Although

the device is equipped with a dedicated graphics card, both browsers tested used the processors’

integrated Intel HD Graphics 530 GPU to render the web page. During the benchmarking, only

the minimal software required for the computer’s functioning was open to provide consistency be-

tween readings. The tests were conducted in both Google’s Chrome browser and Mozilla’s Firefox

browser, the two most popular products for Windows and Linux.

The overall user experience of the website is hard to compare objectively, but a good indicator

is the time that frames take to render along with the FPS. These benchmarks can reflect how effi-

cient and smooth the overall experience is, with a high average FPS and low frame time variation

generally reflecting a more fluid and responsive solution. Table 6.1 contains information about

these measurements for each solution.

Table 6.1: Frame timing information for both solutions.

Avg. Render Time Slowest Frame Fastest Frame Avg. FPS

Previous Solution Firefox 28.35 ms 85.36 ms 4.85 ms 35.31
Previous Solution Chrome 31.74 ms 89.85 ms 13.40 ms 31.54
Developed Solution Firefox 16.67 ms 25.82 ms 11.15 ms 60.00
Developed Solution Chrome 16.67 ms 24.51 ms 8.66 ms 60.03

As evidenced, the improved solution has a significantly better average frame render time and

FPS than the previously implemented approach despite handling and displaying over 28 times

more information. In both browsers the developed solution runs at an average of 60 FPS, this is

because the browser attempts to match the refresh rate of the device, in this case, 60 Hz. Any

improvement above this threshold would not be noticeable since the device would not be able to

display it faster.

Average FPS, however, does not strictly equate to good performance. If the average render

time for the system is low, but periodically some frames take longer to process than consistency

is lost and the user can encounter noticeable stutters in the motion that can undermine the overall

experience. A good indicator for this type of problem can be found by analysing the overall

number of frames, as it’s done in Figure 6.5.

This graph indicates that the experience for the developed solution is consistent overall, with

an overwhelming majority of the frames rendered, 89% on Chrome and 76% on Firefox, being

below the needed threshold to maintain the desired frame rate of 60 FPS and never surpassing

6.1 Comparison with previous solution 47

Figure 6.5: Comparison of the frame times by range for both solutions on Chrome and Firefox.

the range of 33,33 ms. This represents a significant improvement when compared to the previous

solution, where only a few frames would reach the desired threshold and occasionally some would

require up to 90 ms to render as evidenced in Table 6.1.

Other important information to benchmark is how efficient the new solution is. One of the

non-functional requirements of the system was for it to be power and resource-efficient, allowing

it to run easily and without any performance issues on lower-end devices.

Figure 6.6 depicts the improvements made concerning CPU usage for the new solution. As

illustrated, the proposed work is unequivocal more performant than the previous solution, more

notably on Google Chrome. This is greatly influenced by the fact that the GPU is tasked with the

rendering part of the implementation through the use of the WebGL API. Even though the data set

being displayed is significantly larger, it requires less processing power due to this implementation

and therefore relaxes the total usage of the CPU. It should be noted that modern CPU’s have dy-

namic clock speeds that increase, if possible after certain usage thresholds are crossed. However,

this is not taken into account in the following comparisons.

Consequently, the developed solution is also less taxing in regards to power consumption,

making it more convenient to use in all types of devices, especially ones that are battery powered

like laptops or smartphones. A comparison of the power consumption of the System-on-Chip

(SoC), which consists of the CPU cores, caches, GPU and memory controller for the conducted

tests can be seen in Figure 6.7.

48 Results

Figure 6.6: Comparison of CPU usage for both solutions on Chrome and Firefox.

Figure 6.7: Comparison of SoC power consumption for both solutions on Chrome and Firefox.

In regards to GPU usage, Figure 6.8 demonstrates as expected an increased use for the new

solution, since it takes advantage of this component to accelerate the rendering of the graph. This

increase is more pronounced in Firefox since the WebGL implementation is apparently not as

efficient as the one present in the Google browser.

6.2 Comparison with other charting solutions 49

Figure 6.8: Comparison of GPU usage for both solutions on Chrome and Firefox.

6.2 Comparison with other charting solutions

A large portion of the work done was spent on implementing a charting solution that is capable of

handling the specifics of the collected information. This solution has to be able to display thou-

sands of data points precisely, have multiple graphs charting different information simultaneously

and be easily manipulated by the user, all whilst being updated in real-time.

As with most software problems, there were already pre-built solutions ready to be used when

this project started, as seen previously. While none of these ready-made solutions were considered

ideal for the requirements of this project they are still an indication of the state of the art of what

is expected from charting solutions for the web.

This section compares a few of these available implementations to the developed solution in

order to assess if it is the best solution for the problem, and what are its strengths and weaknesses

when compared to the prior art.

Many charting libraries were considered for this comparison test. The four chosen solutions

and the reasoning behind the choice are the following:

• Rickshaw and D3.js - The Data-Driven Documents library or D3 [55] is one of the most

popular charting solutions for the web, with over 90k stars on its GitHub repository and 1M

weekly downloads on NPM. This library, however, is not a ready-made graph implementa-

tion, instead it offers the tools to easily manipulate data and create different visualization

approaches using SVG. Consequently, for this comparison the Rickshaw library was em-

ployed, a ready to use real-time graph implementation built with the tools provided by D3.js

by Shutterstock [56];

50 Results

• Chart.js - A simple, clean and open-source charting library that uses the Canvas API to

render to the screen. Was chosen mostly due to its popularity as a web charting solution, it

counts with over 49k stars on GitHub and over 1M weekly downloads on NPM [57];

• CanvasJS - A robust and flexible graphing library used by multiple professional software

companies for their data visualization needs. Also relying on the Canvas API for its render-

ing, it claims to have 10x performance over other solutions and was already in use by the

previous implementation of the prototype [34];

• Lightning Chart - A new charting solution that claims to be the highest-performant charting

library for the web. It allows for real-time scrolling line charts of up 1 million points. It

differs from all the others in this list since it relies on WebGL to render to the screen, a

characteristic that shares with the developed work [58].

The different libraries are all compared according to different parameters measured during

the following scenario. During 30 seconds, the charting software has to render onto two distinct

graphs the full information of two simulated channels with a sample rate of 1000 Hz that are

transmitted via a LAN connection. All the tests were run in the same machine as described in the

previous section.

This scenario closely emulates the default use case of the prototype, so the different solutions

can be compared amongst each other to see which one would be better suited for this specific

problem. These tests will also demonstrate how capable these solutions are when handling large

amounts of incoming information.

As done before the first metric analysed will be frame render time and average FPS, since

these measurements provide a better understanding of the overall usability and responsiveness of

the solution. Table 6.2 contains a detailed breakdown of each solution’s results for both Chrome

and Firefox while Figure 6.9 presents a graph of the frame rendering duration over the 30 seconds

of the test run on Chrome.

Table 6.2: Frame timing information for all libraries on both Chrome and Firefox.

Avg. Render Time Slowest Frame Fastest Frame Avg. FPS

Rickshaw Chrome 67.16 ms 123.59 ms 45.68 ms 14.92
Rickshaw Firefox 45.53 ms 97.09 ms 27.90 ms 21.98
Chart.js Chrome 341.69 ms 389.09 ms 327.41 ms 2.96
Chart.js Firefox 382.77 ms 455.23 ms 356.75 ms 2.64
CanvasJS Chrome 68.67 ms 96.90 ms 57.28 ms 14.59
CanvasJS Firefox 59.54 ms 221.25 ms 45.45 ms 16.79
Lightning Chart Chrome 54.11 ms 116.88 ms 9.13 ms 18.50
Lightning Chart Firefox 49.23 ms 64.88 ms 39.88 ms 20.31
Developed Solution Chrome 16.67 ms 24.51 ms 8.66 ms 60.03
Developed Solution Firefox 16.67 ms 25.82 ms 11.15 ms 60.00

6.2 Comparison with other charting solutions 51

Figure 6.9: Frame rendering duration per library over time on Google Chrome.

As evidenced, the developed solution achieves a much better frame rate and, consequently,

a better user experience than all the compared approaches. None of the mentioned libraries are

capable of reaching an average of 30 FPS, the standard for most modern video and animation.

Figure 6.10 again confirms the previous statement, showing the developed solution having a sig-

nificant better distribution when compared to the other approaches.

52 Results

Figure 6.10: Comparison of the frame times by range for all libraries on Chrome and Firefox.

In terms of performance and resource usage, Figure 6.11 and Figure 6.12 show the CPU usage

and the SoC power consumption for all the discussed libraries. In this comparison the developed

solution also outperforms its competition, maintaining a much better CPU usage percentage of

more than half usage when compared to all other solutions.

6.3 Summary

All of the metrics presented demonstrate the substantial improvement done by the present work

to the overall experience of analysing the prototype’s data. The new solution achieves better

performance and lower resource usage whilst providing better analysis tools and more precise

representation of the sampled data.

When compared to the what was previously implemented for the device it manages to use

about the same total bandwidth to transfer 28 times more information, through the use of com-

pression and less frequent messages. It also reaches twice as better of an average FPS improving

overall performance and responsiveness of the system.

In regards to available graphing solutions for the web, an analysis was done with some of

the most popular and performant solutions available. When tested for the volume of information

needed for the project, the developed solution outperformed all of its competitors by a wide margin

achieving about 3 times better average FPS than the second-best solution while using less total

resources and power.

6.3 Summary 53

Figure 6.11: Comparison of CPU usage for all libraries on Chrome and Firefox.

Figure 6.12: Comparison of Soc power consumption for all libraries on Chrome and Firefox.

54 Results

Chapter 7

Conclusions and Future Work

The present chapter is a reflection of the work done throughout this dissertation. Firstly a summary

of the project, its context, its importance and how it improved on the previously implemented

solution will be done in section 7.1.

Section 7.2 details what are the main contributions done by the present work followed by the

main difficulties it tackled and solved in section 7.3. Finally, at the end of the chapter in section 7.4

a description of possible future work is made.

7.1 Summary

Telemedicine can facilitate the way we provide care to those who need it, having a significant

amount of benefits over traditional medicine practice in several scenarios. With technology ever-

evolving and becoming more available, telemedicine devices can also evolve, aiding a larger num-

ber of people that previously had no access to such type of medical care. The severity of recent

world events demonstrate the importance of access to health care and how that access should strive

to be universal, not impeded by wealth, location or culture.

The majority of currently available solutions are provided by private companies, that offer

expensive, platform-exclusive solutions that are tied to specific services that force the user to

commit to a particular provider. Consequently, most solutions are only useful for early diagnosis

or broad cases, leaving a scarcity on custom offers for certain instances where patients’ needs are

more particular.

This dissertation extended the work previously done on a prototype built to monitor EMG

signals for use in remote consultations. The goal of this device is to be simple to use and deploy,

affordable, compatible with all platforms via the web and be open and extensible for any further

development.

The development work done was focused on improving the web platform where data from the

device is analysed with the intent of providing a robust and performant experience, comparable to

a standalone solution, but without the need to install or run any specific piece of software.

55

56 Conclusions and Future Work

Ultimately the solution developed fulfils all of its requirements, improving greatly on what

was already implemented, allowing the full amount of data collected by the device to be thor-

oughly analysed, with the use of a variety of features and tools, from any modern web browser. It

also achieved the goal of making the platform more performant, through the use of modern web

technologies, allowing for a better, faster and more responsive experience while using less of the

system’s resources.

7.2 Main Contributions

As stated, this dissertation achieved its main objective of creating a performant and viable solution

for analysis of live sampled EMG data for the web. It addressed all the limitations outlined in 3.4

and further propelled the device and platform being developed to their intended goal.

Breaking down the presented implementation we can dissect the main aspects that made it

possible. Firstly this dissertation proved that using the capabilities of WebGL for other types

of rendering, where it’s not traditionally employed, can greatly improve performance. The im-

plemented solution greatly outperformed all the other tested graphing libraries, with the ability to

maintain a steady frame rate while charting thousands of points at once by delegating the rendering

part of the platform to the device’s GPU.

The solution also takes advantage of new browser features, like Web Workers (parallel process-

ing) and IndexedDB, that make it possible to write better and more ambitious applications. The

ability to create separate threads to process and handle data without affecting the main updating

thread was crucial to achieve the performance previously only found in standalone applications.

Ultimately the biggest contribution from the present work is proving that the web can be

a reliable platform for applications that were previously considered too resource-intensive and

required specific combinations of software and hardware to be accessed. With the implementation

of new features and APIs as well as major improvements to their respective JavaScript engines,

modern web browsers are now better equipped to enable feature-rich experiences that rival what

was before only possible under said conditions. These better capabilities paired with the ease of

access of the internet can greatly improve the reach of essential software to a much wider audience,

that is currently already equipped with the necessary tools to access such a system.

7.3 Main Difficulties

Throughout development several technical difficulties were encountered, this section details the

problems they presented and how those problems were solutioned. While most of these adversities

were ultimately resolved or mitigated in the final version of the application they still required

additional effort or research to solve during the development process.

One of the major problems encountered was how to render text inside the graph. As stated

previously Three.js doesn’t offer a convenient solution for creating text inside a scene. The pre-

viously implemented solution involved creating the text in a canvas element programmatically,

7.4 Future Work 57

converting what was displayed on the canvas to a Texture, and finally applying that image to a

Sprite element. The painting and conversion of the canvas every time a new step would have to

render greatly affected performance and was later replaced by the solution described in 5.4.3.

Modelling the information received to the Three.js paradigm was also challenging. Several

iterations were made to how the information was displayed to either improve performance or al-

low for the implementation of new features. Every iteration improved on the previous making the

solution more performant in the process. Some of these changes include: adding all the individual

Line elements to a group element to perform data set transformations easily, moving the infor-

mation from individual Line elements to a single LineSegments element to reduce draw calls and

using pre-allocated BufferGeometry objects to store the information as individual chunks that are

more efficient to instantiate and manage.

Another problem was encountered when chunks had to be recalled from local storage after

a zoom action. In order to keep the solution efficient only the required chunks of data needed

to fill the visible range would need to be recalled. However, since this information was stored

in the browser’s indexed database recalling it didn’t occur synchronously, so there was no way

of knowing in run time how many data chunks were needed to fill the required space. Several

solutions were implemented, from forcing chunks to have a fixed width instead of a maximum

point limit, to requiring the zoom-out process to wait for all the information to be fetched from the

database before affecting the interface. Eventually, these solutions were considered compromises

to the overall experience, and the now implemented hybrid solution between the IndexedDB and

the session storage APIs, detailed in 5.4.4.3 was developed.

7.4 Future Work

For the prototype being developed to be considered ready for release a lot of improvements still

have to be made, like reworking the user interface, implementing communication methods be-

tween both parties and ensuring that all communication is secure and private. Some of these

features are already being worked on by other projects and some will be done in the future.

Even after the device is considered ready and can be tested in real-world scenarios it can

always be iterated upon making it smaller, more affordable or simply more efficient by using

different components or re-implementing already available functionalities. The device can also be

extended for use in other fields, expanding it’s available capabilities like ECG monitoring.

There are also improvements that can be done that relate more directly to the software side of

the project that was the focus of this work. A complete re-write or port of the software operating

the device must be made in order to future proof the project. This is because the code base is

written using Python 2.7, a version of the language that was discontinued in 2020 and will receive

no more security or improvement updates.

On the web part of the implementation improvements also have to be made. Currently, the

device only works if it’s accessed through a local connection. A DNS solution has to be developed

in order for the device to be accessed through the internet. This solution also has to provide a

58 Conclusions and Future Work

secure connection through the modern HTTPS protocol since it’s considered the standard for the

web, with most web browsers blocking websites or the access to certain APIs, like Web Workers,

if a connection is not secured.

Finally, regarding the developed graphing solution some extra features not covered by the

present work can be implemented if they are deemed necessary. Functionality like the ability to

export or import data to the medic computer for later consultation, the availability of a progressive

web app companion of the website so analysis of saved data can be done offline and the creation

of accessibility and customization options, to improve the analysis experience, such as plotting

more than one line per graph, offering different types of graphs or providing different options

to customize the fonts, colours and sizes of the elements in the graph. This concept of high

performant plotting can also be extended and applied to other contexts such as the industry and

financial sectors.

Bibliography

[1] Rama C. Hoetzlein. Graphics performance in rich internet applications. IEEE Computer

Graphics and Applications, 2012.

[2] WHO and The World Bank. Tracking Universal Health Coverage: 2017 Global Monitoring

Report. Technical report, 2017.

[3] Douglas A. Perednia and Ace Allen. Telemedicine Technology and Clinical Applications.

JAMA: The Journal of the American Medical Association, 1995.

[4] Mirza Mansoor Baig and Hamid Gholamhosseini. Smart health monitoring systems: An

overview of design and modeling. Journal of Medical Systems, 2013.

[5] David Hailey, Risto Roine, and Arto Ohinmaa. Systematic review of evidence for the benefits

of telemedicine., 2002.

[6] Matthew Berman and Andrea Fenaughty. Technology and managed care: Patient benefits of

telemedicine in a rural health care network. Health Economics, 2005.

[7] Bahram Delgoshaei, Mohammadreza Mobinizadeh, Reyhaneh Mojdekar, Elham Afzal, Jalal

Arabloo, and Efat Mohamadi. Telemedicine: A systematic review of economic evaluations.

Medical Journal of the Islamic Republic of Iran, 2017.

[8] Michael Marschollek, Matthias Gietzelt, Mareike Schulze, Martin Kohlmann, Bianying

Song, and Klaus Hendrik Wolf. Wearable Sensors in Healthcare and Sensor-Enhanced Health

Information Systems: All Our Tomorrows?, 2012.

[9] J. Puentes and B. Solaiman. Telemedicine in Perspective: Trends and Challenges. 2006.

[10] Md Zihad Tarafdar. Software Development for a Secure Telemedicine System for Slow Inter-

net Connectivity. PhD thesis, University of Dhaka, 2019.

[11] Karen M. Zundel. Telemedicine: History, applications, and impact on librarianship, 1996.

[12] Ittipong Khemapech, Watsawee Sansrimahachai, and Manachai Toahchoodee. Telemedicine

- meaning, challenges and opportunities. Siriraj Medical Journal, 2019.

[13] David E Bloom, Axel Boersch-supan, Patrick Mcgee, and Atsushi Seike. Population aging:

facts, challenges, and responses. Program on the Global Population Aging, 2011.

59

60 BIBLIOGRAPHY

[14] European Commission. Market study on telemedecine. European Commission, 2018.

[15] Eurostat. Almost 8 out of 10 internet users in the EU surfed via a mobile or smart phone in

2016. . . . Newsrelease, 2016.

[16] Push Doctor. Online Doctor & Prescription Services with a UK GP today | Push Doctor.

https://www.pushdoctor.co.uk/, 2020. [Online; accessed 2020-07-02].

[17] KRY International AB. Kry – see a doctor by video. https://www.kry.se/en/, 2020.

[Online; accessed 2020-07-02].

[18] Teladoc Health. The right care when you need it most | teladoc R©. https://www.

teladoc.com/, 2020. [Online; accessed 2020-07-02].

[19] Knok healthcare. knok. https://www.knokcare.com/, 2020. [Online; accessed 2020-

07-02].

[20] Babylon Health. Babylon health uk - the online doctor and. . . | babylon health. https:

//www.babylonhealth.com/, 2020. [Online; accessed 2020-07-02].

[21] Christine E. King and Majid Sarrafzadeh. A Survey of Smartwatches in Remote Health

Monitoring. Journal of Healthcare Informatics Research, 2018.

[22] Doxy.me. The simple, free, and secure telemedicine solution | doxy.me. https://doxy.

me/, 2020. [Online; accessed 2020-07-02].

[23] VSee. Telemedicine kits, carts + digital medical devices + software. https://vsee.com/

hardware/, 2020. [Online; accessed 2020-07-02].

[24] Remote Health Solutions. Virtual exam room | remote health solutions. https://rhsusa.

com/virtual-exam-room, 2020. [Online; accessed 2020-07-02].

[25] TytoCare. Tytocare | on demand medical exams. anytime. anywhere. https://www.

tytocare.com/, 2020. [Online; accessed 2020-07-02].

[26] Hun Shim, Jung Hoon Lee, Sung Oh Hwang, Hyung Ro Yoon, and Young Ro Yoon. De-

velopment of Heart Rate Monitoring for Mobile Telemedicine using Smartphone. In IFMBE

Proceedings, 2009.

[27] B. Ramachandran and S. Bashyam. Development of real-Time ECG signal monitoring sys-

tem for telemedicine appalication. In Proceedings of the 3rd International Conference on

Biosignals, Images and Instrumentation, ICBSII 2017, 2017.

[28] Aparna Lakhe, Isha Sodhi, Jyothi Warrier, and Vineet Sinha. Development of digital stetho-

scope for telemedicine. Journal of Medical Engineering and Technology, 2016.

https://www.pushdoctor.co.uk/
https://www.kry.se/en/
https://www.teladoc.com/
https://www.teladoc.com/
https://www.knokcare.com/
https://www.babylonhealth.com/
https://www.babylonhealth.com/
https://doxy.me/
https://doxy.me/
https://vsee.com/hardware/
https://vsee.com/hardware/
https://rhsusa.com/virtual-exam-room
https://rhsusa.com/virtual-exam-room
https://www.tytocare.com/
https://www.tytocare.com/

BIBLIOGRAPHY 61

[29] Uzzal Kumar Prodhan, Mohammad Zahidur Rahman, Israt Jahan, Ahsin Abid, and Mo-

htasim Bellah. Development of a portable telemedicine tool for remote diagnosis of

telemedicine application. In Proceeding - IEEE International Conference on Computing,

Communication and Automation, ICCCA 2017, 2017.

[30] Daniel Sa Pina, Antonio Augusto Fernandes, Renato Natal Jorge, and Joaquim Gabriel

Mendes. Development of a portable system for online EMG monitoring. In exp.at 2015

- 3rd Experiment International Conference: Online Experimentation, 2016.

[31] Ana Sofia Simões Correia Rafael. Development of a prototype for EMG in telemedicine.

Master’s thesis, Faculdade de Engenharia da Universidade do Porto, 2019.

[32] TornadoWeb. Tornado web server — tornado 6.0.4 documentation. https://www.

tornadoweb.org/, 2020. [Online; accessed 2020-07-02].

[33] I. Fette, Inc. Google, A. Melnikov, and Isode Ltd. RFC6455 - The WebSocket Protocol.

Journal of Chemical Information and Modeling, 2011.

[34] Fenopix. Beautiful HTML5 Charts & Graphs | 10x Fast | Simple API. https://

canvasjs.com/, 2020. [Online; accessed 2020-07-02].

[35] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler. Waiting times in quality of experience for

web based services. In 2012 4th International Workshop on Quality of Multimedia Experi-

ence, QoMEX 2012, 2012.

[36] Khronos Group. WebGL, 2015.

[37] Fyrd. Can I use... Support tables for HTML5, CSS3, etc. https://caniuse.com/

#feat=webgl, 2020. [Online; accessed 2020-07-02].

[38] Charles Marion and Julien Jomier. Real-time collaborative scientific WebGL visualization

with WebSocket. In Proceedings, Web3D 2012 - 17th International Conference on 3D Web

Technology, 2012.

[39] Xu Hui, Wei Lihao, Wang Tian, and Luo Xiaoben. WebGL based HTML5 application per-

formance analyzer. Journal of Convergence Information Technology, 2012.

[40] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the dynamics of the

javascript package ecosystem. In Proceedings of the 13th International Conference on Min-

ing Software Repositories, pages 351–361, 2016.

[41] webpack. webpack. https://webpack.js.org/, 2020. [Online; accessed 2020-07-02].

[42] Microsoft. TypeScript - JavaScript that scales. https://www.typescriptlang.org/,

2020. [Online; accessed 2020-07-02].

https://www.tornadoweb.org/
https://www.tornadoweb.org/
https://canvasjs.com/
https://canvasjs.com/
https://caniuse.com/#feat=webgl
https://caniuse.com/#feat=webgl
https://webpack.js.org/
https://www.typescriptlang.org/

62 BIBLIOGRAPHY

[43] mrdoob. three.js – JavaScript 3D library. https://threejs.org/, 2020. [Online;

accessed 2020-07-02].

[44] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. ACM Computing Surveys

(CSUR), 1987.

[45] lz4. GitHub - lz4/lz4: Extremely Fast Compression algorithm. https://github.com/

lz4/lz4, 2020. [Online; accessed 2020-07-02].

[46] Oberhumer, Markus. oberhumer.com: LZO real-time data compression library. http:

//www.oberhumer.com/opensource/lzo/, 2020. [Online; accessed 2020-07-02].

[47] Gailly, Jean-loup and Adler, Mark. zlib Home Site. https://zlib.net/, 2020. [Online;

accessed 2020-07-02].

[48] Mozilla. Web Workers API - Web APIs | MDN. https://developer.mozilla.org/

en-US/docs/Web/API/Web_Workers_API, 2020. [Online; accessed 2020-07-02].

[49] Wermke, Andy. Web worker meets worker threads - threads.js. https://threads.js.

org/, 2020. [Online; accessed 2020-07-02].

[50] nodeca. pako 1.0.11 API documentation. http://nodeca.github.io/pako/, 2020.

[Online; accessed 2020-07-02].

[51] Mozilla. IndexedDB API - Web APIs | MDN. https://developer.mozilla.org/

en-US/docs/Web/API/IndexedDB_API, 2020. [Online; accessed 2020-07-02].

[52] Mozilla. Window.sessionStorage - Web APIs | MDN. https://developer.mozilla.

org/en-US/docs/Web/API/Window/sessionStorage, 2020. [Online; accessed

2020-07-02].

[53] Mozilla. localForage. https://localforage.github.io/localForage/, 2020.

[Online; accessed 2020-07-02].

[54] Wireshark Team. Wireshark · Go Deep. https://www.wireshark.org/, 2020. [On-

line; accessed 2020-07-02].

[55] d3. D3.js - Data-Driven Documents. https://d3js.org/, 2020. [Online; accessed

2020-07-02].

[56] Shutterstock. Rickshaw: A JavaScript toolkit for creating interactive time-series graphs.

https://tech.shutterstock.com/rickshaw/, 2020. [Online; accessed 2020-07-

02].

[57] charjs. Chart.js | Open source HTML5 Charts for your website. https://www.chartjs.

org/, 2020. [Online; accessed 2020-07-02].

https://threejs.org/
https://github.com/lz4/lz4
https://github.com/lz4/lz4
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
https://zlib.net/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://threads.js.org/
https://threads.js.org/
http://nodeca.github.io/pako/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://localforage.github.io/localForage/
https://www.wireshark.org/
https://d3js.org/
https://tech.shutterstock.com/rickshaw/
https://www.chartjs.org/
https://www.chartjs.org/

BIBLIOGRAPHY 63

[58] Arction. Javascript High Performance Charts | WebGL Charts Library. https://www.

arction.com/lightningchart-js/, 2020. [Online; accessed 2020-07-02].

https://www.arction.com/lightningchart-js/
https://www.arction.com/lightningchart-js/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Telemedicine solutions
	2.1 Background
	2.2 Remote Consultation Solutions
	2.2.1 Mobile applications
	2.2.2 General Use Solutions
	2.2.3 Telemedicine devices in academia

	2.3 Summary

	3 Telemedicine Device for EMG capture
	3.1 Device Objectives and Background
	3.2 Hardware Implementation
	3.3 Software Implementation
	3.4 Software Implementation Limitations
	3.5 Proposal
	3.6 Summary

	4 Proposed Solution
	4.1 Objectives and Focus
	4.2 Requirements
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements

	4.3 Implementation Proposal
	4.3.1 Data Transfer
	4.3.2 Data Visualization

	4.4 Summary

	5 Development
	5.1 Development Infrastructure
	5.2 Three.js
	5.3 Architecture
	5.4 Implementation Details
	5.4.1 Transfer Layer
	5.4.2 Graph
	5.4.3 Axis
	5.4.4 Data Management
	5.4.5 Rendering

	5.5 Summary

	6 Results
	6.1 Comparison with previous solution
	6.1.1 Transfer Layer
	6.1.2 Performance

	6.2 Comparison with other charting solutions
	6.3 Summary

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Main Contributions
	7.3 Main Difficulties
	7.4 Future Work

