
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Live Docker Containers

David Alexandre Gomes Reis

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Filipe Figueiredo Correia, Assistant Professor

July 27, 2020

Live Docker Containers

David Alexandre Gomes Reis

Mestrado Integrado em Engenharia Informática e Computação

July 27, 2020

Abstract

The use of containerization technologies for software development, such as Docker, is now
widespread, with over 70000 Dockerfiles being found in projects from the GitHub platform as of
October 2016. The use of containerization provides a secure, portable and efficient environment
where applications can be executed.

Currently, the usual workflow of a developer configuring a Docker environment consists of
writing a Dockerfile, building the Dockerfile into a Docker image, instantiating that Docker
image in a Docker container and verifying if the container is working as expected (using a tool or
the command-line). If the container is not behaving as expected, then the developer has to make
changes to the Dockerfile and repeat the process, until the desired behaviour is achieved. A
survey, answered by students and professionals, showed that this process is often perceived as
time-consuming.

Live programming refers to the ability to obtain continuous feedback on a program while
that program is being developed. The level of liveness in IDEs is related to the type and update
frequency of the feedback provided. Currently, the only Dockerfile development tools which
provide live feedback are some static analysis tools. Therefore, by increasing the live feedback
available in the Dockerfile development environment we can shorten the feedback loop and reduce
the time spent in Dockerfile development.

We propose an approach where dynamic analysis is performed on the Dockerfile under
development and the results of that analysis are displayed and updated in the IDE as the
developer edits the Dockerfile. By automatically collecting and presenting live dynamic feedback
about the Dockerfile under development, the developer has faster access to potentially helpful
information than in a non-live environment.

This approach is implemented as Dockerlive: an extension for Visual Studio Code which
provides live dynamic feedback for Dockerfile development. Dockerlive automatically builds,
instantiates and extracts information from a Docker image and a Docker container as the developer
edits a Dockerfile, providing continuous feedback on the changes that the developer makes. The
implementation of Dockerlive follows the reference architecture described in this dissertation.

In order to measure the impact of the presence of live dynamic feedback in a Dockerfile
developer’s performance, a controlled experiment with users has been designed and conducted.
This experiment showed evidence that the presence of live dynamic feedback in the IDE can
significantly improve the efficiency of developers working in Dockerfiles and significantly impact
their behaviour during the development process.

Keywords: Docker, Dockerfile, Containerization, Live Programming, IDE

i

ii

Resumo

O uso da tecnologias de containers no desenvolvimento de software, como Docker, é agora
generalizado, tendo sido encontrados acima de 70000 Dockerfiles em projetos da plataforma
GitHub à data de outubro de 2016. Estas tecnologias têm a vantagem de proporcionar um
ambiente seguro, isolado e eficiente onde se podem executar aplicações.

Atualmente, os passos que um programador segue para configurar um ambiente em Docker
são escrever um Dockerfile, compilar o Dockerfile numa Docker image, instanciar essa image num
Docker container e verificar se o container funciona como desejado. Se o container não estiver
a funcionar como desejado, o programador terá de alterar o Dockerfile e repetir este processo, até
que o comportamento desejado seja alcançado. Este processo pode ser lento, baseado em tentativa
e erro, pelo que se pode tornar demorado, como comprovado através de um inquérito realizado
com alunos e profissionais com experiência em Docker.

Live programming refere-se à capacidade de obter feedback contínuo sobre um programa
enquanto este é desenvolvido. O nível de liveness em IDEs corresponde ao tipo e à frequência de
atualização do feedback exibido. Atualmente, as únicas ferramentas de desenvolvimento em
Dockerfile que fornecem live feedback são algumas ferramentas que apenas fazem análise
estática. Deste modo, ao aumentar o live feedback disponível no ambiente de desenvolvimento de
Dockerfiles, é possível encurtar o ciclo de feedback e reduzir o tempo gasto no desenvolvimento
de Dockerfiles.

Propomos uma abordagem em que se executa análise dinâmica no Dockerfile em
desenvolvimento e os resultados dessa análise são exibidos e atualizados no ambiente de
desenvolvimento à medida que o Dockerfile é editado. Ao gerar e exibir live feedback dinâmico
sobre o Dockerfile em desenvolvimento, o programador tem acesso mais rápido a informação
potencialmente útil do que num ambiente sem este tipo de feedback.

Esta abordagem é implementada em Dockerlive: uma extensão para Visual Studio Code que
fornece live feedback dinâmico durante o desenvolvimento em Dockerfile. O Dockerlive compila,
instancia e extrai informação a partir de uma Docker image e de um Docker container à medida
que um Dockerfile é editado, fornecendo feedback contínuo sobre as alterações que são feitas. A
implementação do Dockerlive segue a arquitetura de referência descrita nesta dissertação.

De forma a medir o impacto da presença de live feedback dinâmico na eficiência de um
programador de Dockerfile, uma experiência com utilizadores foi desenhada e realizada. Esta
experiência mostrou indícios de que a presença de live feedback dinâmico no ambiente de
desenvolvimento pode aumentar significativamente a eficiência de programadores de Dockerfile e
pode ter um impacto significativo no seu comportamento durante o processo de desenvolvimento.

iii

iv

Acknowledgements

I would like to express my gratitude and appreciation to my supervisor, Prof. Filipe Correia, as
well as Prof. João Pedro Dias, for always being available to shine the beacon of wisdom through
the unclear path that a dissertation entails.

I would also like to express my gratitude to all the teachers who, over the course of my years
at Faculdade de Engenharia da Universidade do Porto, have constructively challenged me to
overcome unique obstacles and learn valuable lessons.

To my family, especially my mother, father and sister, thank you for the constant support over
the years, for always allowing me to pursue my ambitions and, above all, for shaping me into who
I am today and teaching me kindness, fortitude and discipline.

I would also like to thank my friends and colleagues who, over the years, have stayed by my
side and helped me relieve the tensions of life.

Finally, I would like to thank Cláudia, for being my partner in crime and having the world
record on how fast anyone can make me laugh.

David Alexandre Gomes Reis

v

vi

“Out of clutter, find simplicity;
From discord, make harmony;

In the middle of difficulty, lies opportunity.”

John A. Wheeler on Albert Einstein’s rules of work

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Current Problem . 2
1.3 Motivation and Objectives . 2
1.4 Contributions . 3
1.5 Document Structure . 3

2 Background 5
2.1 Infrastructure and DevOps . 5

2.1.1 Containerization with Docker . 5
2.1.2 Docker Engine . 7
2.1.3 Docker Image Building and Storage . 7

2.2 Liveness and Live Programming . 8

3 State-of-the-Art 13
3.1 Working with Dockerfiles . 13

3.1.1 Container Status . 14
3.1.2 Performance Monitoring . 16
3.1.3 Container Management . 18
3.1.4 Infrastructure Testing . 19
3.1.5 Static Analysis . 21
3.1.6 Image Build Optimization . 24
3.1.7 Discussion . 26

3.2 Liveness and Feedback in IDEs . 27
3.2.1 Discussion . 37

4 Survey on Working with Dockerfiles 39
4.1 Motivation . 39
4.2 Goals and Research Questions . 40
4.3 Data Collection . 40
4.4 Data Analysis . 42

4.4.1 First Run . 42
4.4.2 Second Run . 43

4.5 Threats to validity . 45
4.6 Discussions . 46

ix

x CONTENTS

5 Problem Statement 47
5.1 Current Problem . 47
5.2 Hypothesis . 49
5.3 Methodology . 49

6 Dockerlive: Approach and Reference Architecture 51
6.1 Approach . 51
6.2 Main Technology Choices . 52
6.3 Architecture . 54
6.4 Feature Design and Implementation . 56

6.4.1 Continuous Image Build . 58
6.4.2 Container Runtime Errors . 58
6.4.3 Processes Running in the Container . 59
6.4.4 Changes to Environment Variables . 60
6.4.5 Container Performance Statistics . 61
6.4.6 Image OS Information . 62
6.4.7 Layer Size and Build Time . 63
6.4.8 Layer File System Explorer . 64
6.4.9 Service Discovery . 67
6.4.10 Image Build and Container Log Output 68
6.4.11 Progress Reporting . 68

6.5 Deployment . 69

7 Empirical Evaluation 71
7.1 Motivation and Goals . 71
7.2 Research Questions . 72
7.3 Methodology . 72
7.4 Tasks . 75

7.4.1 First Task . 75
7.4.2 Second Task . 76
7.4.3 Third Task . 76

7.5 Data Collection . 77
7.5.1 Task Measurements . 77
7.5.2 Participant Questionnaire . 78

7.6 Recruitment and Demographics . 79
7.7 Data Analysis . 80

7.7.1 Demographic Information . 80
7.7.2 Skills and Experience . 81
7.7.3 Task Understanding . 83
7.7.4 Total Task Time . 84
7.7.5 Segmented Task Time . 85
7.7.6 Context Switches . 88
7.7.7 Feature Usage . 89
7.7.8 Dockerfile Development Activity Improvement 91
7.7.9 Usefulness and Usability . 93
7.7.10 Long-text Feedback . 96
7.7.11 Experience and Total Task Time . 97

7.8 Threats to validity . 98
7.9 Main Findings . 100

CONTENTS xi

8 Conclusion 103
8.1 Overview . 103
8.2 Contributions . 104
8.3 Future Work . 105

References 109

A Tool Sources 113

B Survey 115
B.1 First Run . 116
B.2 Second Run . 121

C User Study Instructions 129
C.1 Control Group . 130
C.2 Experimental Group . 133

D User Study Questionnaire 141
D.1 Control Group . 142
D.2 Experimental Group . 150

xii CONTENTS

List of Figures

2.1 Example Dockerfile . 6
2.2 Visual representation of the COW system in Docker 8

3.1 Docker plugin for Intellij IDEA . 16
3.2 Dockstation performance monitoring . 16
3.3 Docker plugin for Intellij IDEA . 18
3.4 Serverspec test which verifies if the port 3333 is listening to tcp6 traffic 20
3.5 Inspec test which verifies if the port 3333 is listening to tcp traffic 20
3.6 Goss test which verifies if the port 3333 is listening to tcp6 traffic 20
3.7 TF Smell caused by not removing a temporary file 21
3.8 Dive tool presenting the file system of a layer and the image potential wasted space 22
3.9 FastBuild performance measurement . 25
3.10 Slacker Architecture . 26
3.11 Example output for Javascript code on Kramer’s environment 28
3.12 Javascript error detected in user’s code on Kramer’s environment 28
3.13 LiveCodeLab interface with the example code "Simple cube" being executed . . 29
3.14 DS.js interface drawing a bar plot with data extracted from a html table 31
3.15 DS.js preview panes on three chained method calls 31
3.16 Scatterplots which display the values of runtime variables 32
3.17 Omnicode example interface . 33
3.18 Default Eclipse IDE interface for Java . 34
3.19 Code Bubbles IDE interface . 36
3.20 Visual Studio Code with Docker plug-in interface 37

4.1 Attitude towards a lot of time being spent in each activity (Run 1) 43
4.2 Attitude towards a considerable amount of time being spent in each activity (Run 2) 45

5.1 Possible workflow of a Dockerfile developer . 48

6.1 Impact of the LSP in the implementation of development assistive features 53
6.2 Dockerlive component diagram . 54
6.3 Dockerlive sequence diagram . 56
6.4 Error during the image build stage . 58
6.5 Error after container exits with non-zero exit code 59
6.6 Processes running inside container . 59
6.7 Running processes tree data structure . 60
6.8 Warning after change is detected in environment variable 61
6.9 Performance monitoring webview displaying container performance data 61
6.10 Operative System information . 63

xiii

xiv LIST OF FIGURES

6.11 CodeLens showing layer size and build time . 63
6.12 Webview displaying the file system of the layers inside an image 64
6.13 Window displaying the mode of a file system entry 65
6.14 Service discovery information . 67
6.15 Image build and container log output . 68
6.16 Progress report showing the status of the extension 69

7.1 Screenshot of the app Turns Timer . 78
7.2 Participant’s highest completed level of education 81
7.3 Total time used by participants in each task . 84
7.4 Total time used by participants in different contexts 85
7.5 Context switches per minute in each task . 88
7.6 Total context switches to each context . 89
7.7 Feature usage reported by the control group . 90
7.8 Feature usage reported by the experimental group 91
7.9 Perceived helpfulness of the development environment 92
7.10 Total time spent in Task 3 and number of Dockerfiles edited 97

List of Tables

3.1 Comparison of analysed Container Status tools 15
3.2 Comparison of analysed Performance Monitoring tools 17
3.3 Comparison of analysed Container Management tools 19
3.4 Comparison of analysed Static Analysis tools 24
3.5 Comparison of analysed development environments 38

6.1 Probing performed in each potential interest point 57

7.1 Statistical tests for Likert questions on Skills and Experience 82
7.2 Statistical tests for project questions on Skills and Experience 82
7.3 Statistical tests for questions on Task Understanding 83
7.4 Statistical tests for total task times . 84
7.5 Statistical tests for time spent in VSCode and in the instructions 86
7.6 Statistical tests for time spent in the terminal and in the web browser 87
7.7 Statistical tests for context switches per minute 88
7.8 Statistical tests for questions on each Dockerfile development activity 92
7.9 Statistical tests for questions on remote environment 94
7.10 Statistical tests for questions on usefulness . 95
7.11 Statistical tests for questions on overwhelmingness 95

xv

xvi LIST OF TABLES

Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
AUFS Advanced Multi-layered Unification File System
COW Copy-On-Write
CPU Central Processing Unit
CSV Comma-Separated Values
Dev Development
DSL Domain Specific Language
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
ID Identifier
IP Internet Protocol
IT Information Technology
JDT Java Development Tools
JS Javascript
JSON Javascript Object Notation
LSP Language Server Protocol
NFS Network File-system
Ops Operations
OS Operating System
RAM Random-Access Memory
REPL Read-Eval-Print Loop
RPC Remote Procedure Call
RQ Research Question
TCP Transmission Control Protocol
TF Temporary File
TSV Tab-Separated Values
UI User Interface
URL Uniform Resource Locator
VS Visual Studio
VSCode Visual Studio Code
YAML YAML Ain’t Markup Language

xvii

Chapter 1

Introduction

This chapter presents a general overview of this dissertation. Section 1.1 provides some context

regarding the technologies and fields of work most relevant to this dissertation. Section 1.2

introduces the main issues and challenges that currently exist in Dockerfile development, with

Section 1.3 focusing on the issues that this project intends to solve, as well as the objectives and

general approach. Section 1.4 presents the main contributions of this dissertation. Finally,

Section 1.5 provides some guidance on the structure of this document.

1.1 Context

DevOps is a set of practices which focus on promoting communication and cooperation between

development teams (Dev) and operations teams (Ops), as well as employing agile development

methodologies, with the purpose of optimizing the process of deployment. This optimization

consequently allows a company to adapt and respond faster to its needs [13]. In order to allow

the Dev and Ops teams to develop the infrastructure in an agile way, solutions which allow the

infrastructure to be defined using code have been developed and are currently available.

Containerization, particularly with Docker [26], has become a widely adopted technology

which enables the practice of DevOps [19, 35]. Docker allows developers to define the desired

infrastructure in a file called Dockerfile, which can then be built into a Docker image and

instantiated as a Docker container [5]. All the instructions specified in the Dockerfile, including

the development team’s product, are executed inside the container. This allows developers to

deploy their products in an environment with the following characteristics [33]:

• Secure — Applications run inside a container with strictly restricted access to the host’s

resources.

• Portable — A Dockerfile can create the same container under different host environments

and does not pollute the host machine with dependencies.

1

2 Introduction

• Efficient — As opposed to virtual machines, containers do not require an hypervisor, which

generally results in increased performance.

Despite these benefits, development with Docker containers is not perfect, since the

Dockerfile development process can be slow [15]. This dissertation aims at employing live

software development techniques with the objective of improving the current state of Dockerfile

development. Live software development is often associated with live programming, where a

developer, usually programming with a general-purpose programming language, has live

feedback in his development environment. However, liveness can be applied to other areas of

software development, such as testing or deployment [1]. The solutions and approaches

presented in this dissertation go beyond live programming by providing live dynamic feedback in

the development environment of the Dockerfile language, which is usually used in the

deployment phase of software development [33].

1.2 Current Problem

Developing a Dockerfile can be a hard and slow process [15]. According to the analysis performed

in Section 3.1, there are some tools available which can help developers working on Dockerfiles,

such as static analysers (e.g. linters) or infrastructure testing tools.

However, most of these tools don’t provide feedback during development in an automatic

way and, instead, must be manually launched by the developer. In other words, the majority

of the existing solutions don’t provide live feedback to the developer. Providing live feedback

is a technique that has proven to be effective at reducing the time required for a developer to

fix bugs [22], since the developer has access to information about his code more often and with

less effort. The tools which do provide some live feedback about Dockerfiles only provide static

analysis information, leaving most of the debugging process up to the developer.

We believe that the lack of live dynamic analysis feedback in the IDE leads developers to

work in an iterative workflow which can be slower than desired. The survey presented in

Chapter 4, answered by students and professionals with some experience in Dockerfile

development, further strengthens this belief by showing that developers regard most activities of

the Dockerfile development process as considerably time-consuming.

A more detailed description of the problems that this work intends to tackle is presented in

Section 5.1.

1.3 Motivation and Objectives

This dissertation attempts to solve some of the issues in the Dockerfile development process by

implementing a live development environment for Dockerfiles.

Live development environments aim at providing continuous feedback when developing

software, reducing the typical 4-stage development cycle (edit, compile, link, run) to a single

1.4 Contributions 3

stage development cycle. Live development environments can be classified according to their

liveness, which represents the extent and responsiveness of the feedback that is provided to

developers [36]. Steven L. Tanimoto proposes a 6-level liveness classification system. This

system is in ascending order, meaning that each level has higher liveness than the previous [37].

Given the current issues that exist within the Dockerfile development process and the benefits

that live programming can potentially bring to it, there is an argument to be made that by bringing

more live feedback to the developer’s environment it would be possible to mitigate some of these

issues and reduce the time required to develop a Dockerfile.

As such, the main objective of this dissertation is to provide live dynamic feedback to

developers working with Dockerfiles and analyse the impact of the increased live feedback in the

developer’s performance and behaviour.

Section 5.2 provides a deeper description of these topics, including the main hypothesis of this

dissertation.

1.4 Contributions

This dissertation aims to improve the current Dockerfile development process and analysing the

impact of liveness in the developer’s IDE. In order to achieve these objectives, the following

contributions are made:

• A survey, answered by students and professionals, with the purpose of identifying the main

issues that exist in the Dockerfile development process.

• A novel approach which enables the delivery of live dynamic feedback to a developer

working on Dockerfiles.

• A thoroughly documented reference architecture for the aforementioned approach,

implemented as an extension for the Visual Studio Code IDE.

• A controlled experiment with users which analyses the performance and behaviour of

developers working with and without an implementation of the reference architecture. This

user study has the the purpose of measuring the impact of a higher level of liveness in the

efficiency of developers working in Dockerfiles.

1.5 Document Structure

This chapter focuses on providing an overview of the concepts which support this dissertation, as

well as the problem it attempts to solve, its motivations and its objectives.

Chapter 2 presents the concepts and technologies which are relevant to this dissertation,

focusing mainly on containerization and live programming.

Chapter 3 analyses and documents the state of the art tools and solutions from two distinct

areas of software development: working on Dockerfiles and live programming environments. The

4 Introduction

analysis of the current Dockerfile work environment focuses on identifying and categorizing tools

and solutions which help a developer working on Dockerfiles, paying special attention to the

liveness levels of each tool. The analysis of live programming environments aims at documenting

different approaches to liveness and feedback in IDEs, as well as identifying the main threats to the

success of a live environment. Ultimately, this chapter intends to explore the current development

environment that is available to Dockerfile developers.

Chapter 4 describes a survey answered by 68 students and 109 developers with the main

objective of understanding the current Dockerfile development process. For this purpose, the

survey focuses on assessing which activities of Dockerfile development are perceived as

time-consuming and understanding the approaches that developers most use to work on a

Dockerfile.

After analysing the tools and approaches that Dockerfile developers have at their disposal, as

described on Chapter 3, and understanding the current Dockerfile development process through

the survey described in Chapter 4, Chapter 5 focuses on describing the main problems detected in

the Dockerfile development process and presenting the main hypothesis that this dissertation aims

to validate.

Chapter 6 describes an approach which aims to bring live dynamic analysis feedback to the

Dockerfile development environment. This chapter also describes a reference architecture and

implementation of this approach.

Chapter 7 presents a controlled experiment with users performed with the aim of analysing the

impact of live dynamic feedback in the Dockerfile development environment. The methodology,

data collection techniques, data analysis and threats to validity are discussed in this chapter.

Chapter 8 presents the conclusions of this document, addressing the main hypothesis and

providing an overview of the work and contributions performed. Finally, this chapter also

presents the work to be developed in the future with the aim of expanding the work performed in

this dissertation.

Chapter 2

Background

This chapter presents relevant concepts and technologies for this dissertation. Section 2.1

describes the concepts of infrastructure and DevOps, describing Docker’s general architecture

with particular emphasis on the Docker image building process and layered storage system.

Section 2.2 describes the concepts of live programming and liveness, as well as describe some of

its potential benefits and shortcomings.

2.1 Infrastructure and DevOps

Infrastructure can be defined as the characteristics and configurations of underlying technologies

which allow software to run and provide the features intended by the stakeholders [2]. Being

able to develop and deploy a software product in a reliable, fast and reproducible way can be

a very important objective for companies nowadays, since it allows a company to quickly ship

changes to its products. Most of the time, this can be is achieved through a symbiotic relationship

between the development team (which focuses on developing software) and the IT operations team

(which focuses on building and preparing the infrastructure), with continuous communication

and cooperation. By combining this communicational practice with agile development methods,

which promote fast development and deployment of software, the aforementioned objective can

be achieved. This organizational approach to the development and deployment of software and

infrastructure is defined as DevOps. The term DevOps refers to the development team ("Dev")

and the IT operations team ("Ops"), although this approach can be applied to other teams, such as

teams focused on security and networking [2, 32, 13].

2.1.1 Containerization with Docker

A container is an independent and isolated environment which runs within a host machine and is

strictly configured to use a restricted amount of its host’s resources. There are multiple

implementations of this concept, but in recent years Docker [26] has become a de facto

5

6 Background

standard [42]. Docker is a platform which allows developers to specify the desired container

configuration in a file called the Dockerfile. By using Docker to specify the desired application

infrastructure within a container, teams are able to deploy their products in an environment with

the following characteristics [33]:

• Secure — Applications run inside a container with strictly restricted access to the host’s

resources.

• Portable — A Dockerfile can create the same container under different host environments

and does not pollute the host machine with dependencies.

• Efficient — As opposed to virtual machines, containers do not require an hypervisor, which

generally results in increased performance.

These characteristics, combined with the practice of DevOps, allow the teams to develop their

infrastructure safely in a similar way to the development of the application code — using agile

methodologies and version control [19].

In recent years, cloud solutions have seen a large rise in popularity, with over 49% of the

world’s population having access to at least one Internet enabled device [34]. Containers can be

very useful in this type of solutions since the characteristics of the containerization pattern enable

an isolated and programmatic deployment at scale [34, 35].

In addition, the isolation that containers provide between the application’s dependencies and

the host machine reduces the potential incompatibility between different containerized

applications, since each one runs within it’s own environment and dependencies [33].

A common alternative to containers in the deployment of some cloud solutions is

virtualization. However, when compared to virtualization, containerization can offer a

performance advantage, reduced startup time and smaller deployment size. This makes

containerization better suited for some cloud solutions where performance is a key

requirement [12, 5].

Figure 2.1: Example Dockerfile. Generates a container with NodeJS v13.1.0 and dependencies
installed.

2.1 Infrastructure and DevOps 7

Figure 2.1 presents an example of a Dockerfile which launches a NodeJS v13.1.0 application.

It starts by defining the base image using the FROM instrution, which specifies that the base image

should be the node image at the version 13.1.0. This image, which is retrieved from DockerHub 1,

comes with NodeJS preinstalled. Instructions on line 3 to 8 are responsible for installing the

required dependencies to run the NodeJS application. The instruction EXPOSE exposes a port from

the container to the host machine. Finally, the instruction ENTRYPOINT specifies the command

which will be executed when the container is raised. In this case, it starts the NodeJS application.

2.1.2 Docker Engine

The Docker Engine consists of the Docker containerization technology along with some tools

and interfaces to help developers manage the Docker ecosystem. It can be divided in three main

components 2:

• dockerd — Daemon which runs in the background and directly controls images, containers

and other artifacts.

• Engine API — Interface which allows other applications to interact with dockerd.

• ’docker’ command — Command line tool which allows a user to manage Docker artifacts.

Using Docker, developers can define an environment by writing instructions in a file, called

Dockerfile. A Dockerfile can then be compiled into a Docker image, which contains a file system

resulting from the build process as well as an ENTRYPOINT instruction. A developer can then

instantiate the Docker image as a Docker container, which will load the image file system and

execute the ENTRYPOINT instruction.

With these components, developers can not only use the command line but also develop their

own programs which communicate with the Engine API in order to interact with containers and

images and perform actions such as building a Docker image from a Dockerfile or stopping a

running container [16].

2.1.3 Docker Image Building and Storage

Docker uses a Copy-On-Write (COW) mechanism, meaning that each layer of the image only

contains the files that the layer creates or modifies [24]. During the image building process, the

instructions present in the Dockerfile are read sequentially and each instruction in the Dockerfile

corresponds to a layer in the image. As such, layers are sequentially created and each layer only

stores the file system changes it performs [15]. For example, the layer generated from an ADD

instruction, which adds files from the host machine to the image, will contain just the added files.

This mechanism can reduce the image building time in some situations, since layers which

have not been changed do not need to be rebuilt. For example, if the programmer changes an
1node image in DockerHub available at https://hub.docker.com/_/node/
2Docker Overview — Docker Documentation available at https://docs.docker.com/engine/docker-o

verview/

https://hub.docker.com/_/node/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/

8 Background

instruction on line 8 of the Dockerfile, Docker can take the last intermediate layer generated before

line 8 and only execute instructions from line 8 onward. Every change to a file or directory during

the container’s execution is also written to a new layer which does not belong to the Docker image,

meaning that other instances of the same image will not have those changes. This also saves disk

space since files are only copied when modified, avoiding data duplication [15].

This mechanism is possible since Docker containers use a union file system such as AUFS [11]

or OverlayFS [27] which are able to merge different layers in a process called union mount [31,

11, 8]. Figure 2.2 represents how the COW system is used in order to allow each image layer to

be as small as possible and to allow multiple isolated containers to use the same image without

duplicating data.

Figure 2.2: Visual representation of the COW system in Docker a.

aTaken from https://docs.docker.com/storage/storagedriver/

However, despite the benefits provided by this mechanism, the image building process can still

be slow and disrupt the developer’s workflow [15].

2.2 Liveness and Live Programming

The concept of liveness refers to the ability to modify a running program, providing constant

accessibility to evaluation and nearly instantaneous feedback on actions performed by a user in

an environment. If an environment is able to provide these features, it can be considered a live

environment [1].

Although the concept of liveness is commonly associated with programming (i.e. live

programming) [37], liveness can be applied to other activities of software development, such as

testing or deployment [1], or even to live artistic performances [4]. The solutions and approaches

presented in this dissertation go beyond live programming by providing live dynamic feedback in

https://docs.docker.com/storage/storagedriver/

2.2 Liveness and Live Programming 9

the development environment of the Dockerfile language, which is usually used in the

deployment phase of software development [33].

Live programming environments aim to continuously update and provide feedback about a

system as it is being developed. Live programming can be achieved by constantly executing

the developer’s code, updating the running program any time the source code is changed, and

providing feedback to the developer according to the changes verified in the program’s execution.

Ideally, this changes the software development cycle from a 4-stage process (edit, compile, link,

run) to a single-stage cycle [37]. Since the purpose of live programming is to constantly keep the

developer informed about the system under development, feedback is usually tightly coupled to

environment where the code is written, either as a standalone IDE or as a plugin to an IDE [23].

Read-eval-print loops (REPLs) can also provide some liveness, since the developer obtains regular

feedback as the code is entered in the shell [40].

Following these principles, live programming can promote technical agility, as the short and

frequent feedback loop it creates allows developers to practice the inspect and adapt methodology

used in agile programming [17].

The concept of live programming has been implemented in various fields of work, such as 3D

graphics programming [10], general-purpose programming [22] and data science [41]. A deeper

analysis of multiple live programming solutions is performed in Section 3.2.

Steven L. Tanimoto proposes a classification system for live programming environments

according to the liveness that it provides. Tanimoto defines liveness as the ability to modify a

running program, taking into consideration the responsiveness and timeliness of the feedback

provided by the environment. The system initially consisted of 4 levels [36] but has since been

extended to 6 levels [37], where each level can be considered to provide more liveness than the

previous level. The 6 levels are [37]:

• Liveness Level 1 — Static visualization, such as a flowchart, with the ability to inform.

• Liveness Level 2 — In this level, the developer can perform an action and manually request

feedback. Feedback may arrive some time after the request is performed. For example, in

an environment with this level of liveness, a developer can manually compile and execute

a program and then observe the program’s output in order to understand if it’s behaving as

expected.

• Liveness Level 3 — In this level, the system waits for the developer to finish a section

of code. When the system detects that a section of code has been finished, it automatically

updates the running program with the new code and automatically provides feedback relative

to the updated execution. For example, in an environment with this level of liveness, a

developer can trigger an update of the program and obtain feedback just by changing and

saving a file in the IDE.

• Liveness Level 4 — In this level, the system continuously updates the running program

with changes in the source code as they are introduced by the developer. In contrast with

10 Background

the previous level, this level does not need an implicit trigger to update the running

program, doing so continuously. As a consequence, the feedback provided is also

continuously updated.

• Liveness Levels 5 and 6 — In these levels, the system integrates some predictive

capabilities, proactively generating multiple possible code changes, executing those

changes and providing feedback accordingly. Possible code changes could be generated

using machine learning algorithms, which try to predict the most likely code changes that

the developer will perform next.

Working in a live programming environment has 3 main expected benefits [1]: immediacy,

exploration and stability. Immediacy refers to the fact that feedback about the actual state of the

program is delivered immediately during development in a live environment. Exploration refers

to the fact that it’s easier for a developer to quickly explore the system under development.

Immediacy and exploration are two advantages which go hand in hand, since by having

immediate feedback about the actual behaviour of their program, instead of having to speculate

on the program’s behaviour after a change, developers can swiftly explore and iterate on different

ideas. This can help developers converge more quickly to a better solution. Since the behaviour

of the system under development is constantly being observed it can also be easier to stabilize it

(i.e. ensure that the behaviour of the system is as expected for every possible input state) [1].

However, there can be obstacles to the success of a live environment, such as [1]: increased
complexity, unsuitable abstractions, transient semantics and lack of interoperability with
existing tools. By providing constant feedback to the developer there is an increased amount of

data for the developer to process, which can inadvertently increase the complexity of the

developer’s task. On the other hand, the abstractions used by the live programming environment

may not be useful for the system under development, especially when the system’s scale

increases. Transient semantics may also be a problem, since the system under development might

often be in a state that is not safely executable, making it hard to generate valuable live feedback

from dynamic analysis. This may interrupt the ideally continuous feedback loop. Furthermore,

some tools, such as external service APIs, may not be well suited for the repeated execution

required by live programming [1].

Given the characteristics of live environments described in this section, there are a few

different motivations for the implementation of liveness in programming. Some of these

motivations are [30]:

• Accessibility — Make programming more accessible, particularly to less experienced

programmers.

• Comprehension — Facilitate the comprehension of the system under development.

• Exploration — Enabling programmers to explore the system under development.

2.2 Liveness and Live Programming 11

• Productivity — Increase the productivity of the developer, often through accelerating the

execution of some development activities.

These motivations are not mutually exclusive and can even enable each other. For example,

accessibility is commonly achieved through a facilitated comprehension of the system under

development [30].

12 Background

Chapter 3

State-of-the-Art

This chapter analyses and categorizes existent solutions in two different (albeit interconnected)

topics. Section 3.1 analyses and categorizes existent tools and solutions which provide helpful

information or functionalities to developers working on Dockerfiles, describing their features and

level of liveness. Section 3.2 analyses existent development environments, taking into account

their liveness and the mechanisms they use to deliver feedback to the developer.

3.1 Working with Dockerfiles

After understanding and exploring the concepts introduced in Chapter 2, this section presents the

current state-of-the-art practices used by developers when writing a Dockerfile. Since those

practices rely heavily on the features and characteristics of the tools available to developers, an

analysis and categorization of those tools is performed and documented in this section. Each

section explores a category of tools which represents a set of functionalities that can help a

developer working on Dockerfiles. Since some of those functionalities could potentially benefit

from having a higher level of liveness, one of the main objectives of this analysis is to evaluate

the level of liveness of each tool, according to the hierarchy proposed by Tanimoto [37] and

described in Section 2.2. Tools can enable multiple practices which belong to different

categories, which means that some tools are listed under multiple categories.

In sum, this analysis aims to help answer the following questions:

• What features are currently not available within an IDE?

• What level of liveness do these tools and features provide?

• What development practices do these tools enable?

The tools analysed in these sections were found by searching on the platforms Google, GitHub,

Visual Studio marketplace, JetBrains Plugins Repository, Scopus and IEEE Xplore, using the

13

14 State-of-the-Art

search queries "Docker", "Dockerfile" and "Docker container". If multiple results were deemed

too similar in terms of features and characteristics, the star count (GitHub) and download count

(Visual Studio marketplace and JetBrains Plugins Repository) were used to select one of the tools.

For the results provided by the platforms Google, GitHub, Visual Studio marketplace and JetBrains

Plugins Repository, the documentation provided was used in order to analyse each tool. In the

cases where the documentation was insufficient, the tools were installed and tested manually.

For the results provided by Scopus and IEEE Xplorer, the article’s full-text was used in order to

analyse each tool. A total of 37 tools have been analysed and placed in one or more of the created

categories:

• Container Status

• Performance Monitoring

• Container Management

• Infrastructure Testing

• Static Analysis

• Image Build Optimization

3.1.1 Container Status

Some tools have as their main goal to display information about the status of one or more

containers. The different types of information that these tools gather and display to the user are:

• Running status — Show if a container is running, stopped or restarting.

• Ports — Show container port mappings.

• Log — Show the output log of a container.

Most of the tools analysed provide these types of information since they are some of the most

basic information that can be retrieved from a container. This information can be useful to identify

potential problems. For example, a developer who just instantiated a container that should run a

HTTP server can use one of these tools to check if the container is in fact running, or if it isn’t,

alerting the developer to a potential crash. Log visualization can also be very useful since the

programs and services running inside a container could be outputting valuable information to the

container’s logs.

Figure 3.1 shows a screen capture of the plugin Docker 1 for the Intellij IDEA IDE 1. This

plugin presents container status information graphically to the developer. The icons on the left

side of the container’s name are used to represent whether the container is running, stopped or

restarting. The user can select a container from the list and obtain the port bindings and logs

1Links to the mentioned tools can be found in Appendix A

3.1 Working with Dockerfiles 15

Table 3.1: Comparison of analysed Container Status tools. Links to the mentioned tools can be
found in Appendix A.

Tool Liveness Level IDE PluginRunning
Status Ports Log

Visual Studio Container
Tools Extensions (Preview)

2 2 2 VS

Docker 2 2 2 Intellij IDEA
Docker for Visual Studio
Code (Preview)

2 — 2 VSCode

Docker Explorer 2 — — VSCode
Docker WorkSpace 2 — — VSCode
Docker Runner 2 — — VSCode
Haven 2 2 2 No
DockStation 2 2 2 No
Portainer 2 2 2 No
Seagull 2 2 — No
Dozzle 2 — 2 No
docker_monitoring_logging_alerting 2 — 2 No
Weave Scope 2 — 2 No
Dockeron 2 — 2 No
ctop 2 — 2 No
lazydocker 2 — 2 No
Wharfee 2 — 2 No
cAdvisor 2 — — No
AppOptics 2 — — No
Docker-Alertd 2 — — No
monit-docker 2 — — No
Captain 2 — — No

for the selected container, by clicking on the Port Bindings and Log tab respectively. The plugin

retrieves this information by performing requests to the Docker Engine 2, which must be running

in the target machine.

Table 3.1 synthesizes the result of analysing a set of container status tools according to the

level of liveness that they enable. As an example, for the practice of checking the running status

of a container, every tool provides liveness at the level 2. This table shows that, to the best of our

knowledge, there are no tools which provide a liveness level above 2 in this category, since the

identified tools do not react autonomously to changes in the Dockerfile. Despite the lack of high

levels of liveness, we can also see that there are tools which enable all the practices identified in

this category in an IDE.

2Links to the mentioned tools can be found in Appendix A

16 State-of-the-Art

Figure 3.1: Docker plugin for Intellij IDEA

3.1.2 Performance Monitoring

Figure 3.2: Dockstation performance monitoring a.

aTaken from Dockstation documentation listed in Appendix A.

Containers can use some of the resources of the host machine, such as CPU and RAM usage,

secondary memory usage and network bandwidth. If the developer knows that the desired

behaviour from a container should trigger a certain level of resource usage, analysing the

resource usage of the container can provide helpful insight into whether the container is working

as intended. For example, a developer starts a container which should have a RAM usage of 1GB

when running as intended. If the reported secondary memory usage is different than the expected,

then it can be concluded that the container is not running as intended. Figure 3.2 shows a screen

capture from the tool Dockstation, which collects and displays information about the CPU and

RAM usage, secondary memory reads/writes and network activity 3.

3Links to the mentioned tools can be found in Appendix A

3.1 Working with Dockerfiles 17

Table 3.2: Comparison of analysed Performance Monitoring tools. Links to the mentioned tools
can be found in Appendix A.

Tool
Liveness Level

Alerting IDE PluginMonitoring

CPU RAM Secondary
Memory Network

Sysdig 2 2 2 2 Yes No
AppOptics 2 2 2 2 Yes No
monit-docker 2 2 2 2 Yes No
docker_monitoring
_logging_alerting

2 2 2 2 Yes No

docker-alertd 2 2 — — Yes No
cAdvisor 2 2 2 2 No No
DockStation 2 2 2 2 No No
Haven 2 2 — 2 No No
ctop 2 2 — 2 No No
Portainer 2 2 — 2 No No
Weave Scope 2 2 — — No No
lazydocker 2 2 — — No No
Dockeron — — 2 — No No

Some of these tools also allow the developer to configure certain actions or alerts which are

triggered automatically, based on the information extracted from a container. For example, this

allows a developer to automatically send an email to himself when the CPU usage of a container

goes above 95%, or to automatically restart a container if the container crashes.

In order to provide performance related feedback, tools usually start by checking if the target

container is running and display that information to the developer. Since checking if a container

is running is one of the types of information that is categorized in Section 3.1.1, which analyses

container status tools, every tool categorized as a performance monitoring tool is also categorized

as a container status tool.

Table 3.2 synthesizes the result of analysing a set of performance monitoring tools according

to the level of liveness that they enable. For example, for the practice of monitoring the RAM

usage of a container, every tool provides liveness at the level 2. This table shows that, to the

best of our knowledge, there are no tools which provide a liveness level above 2 in this category,

since the identified tools do not react autonomously to changes in the Dockerfile. It’s also worth

noting that there are no tools in this category that run within an IDE, as plugins. This is possibly

because these tools are of greater importance during operations, to continuously inspect the status

of a system in production, and their use during development is not as widespread. However, as

mentioned, this information and features could potentially be useful during development.

18 State-of-the-Art

3.1.3 Container Management

Some tools aim at providing the ability to easily manage the state of the containers in a local

machine, offering the options to start, stop, build and remove a local container. These tools enable

the following practices:

• Start container — Start an existing container

• Stop container — Stop an existing container

• Build container — Build a container from a Dockerfile

• Attach Shell — Attach an interactive shell into the container

These tools are useful to a developer working on Dockerfiles since without them, container

management relies on the built-in Docker console commands which take time and effort to write.

Therefore, these tools provide the ability to manage the containers on your machine in a easier

and faster way. Figure 3.3 shows a screen capture of the Docker plugin for Intellij IDEA, which

provides these features in the IDE. This tool allows a developer to start, stop and remove an

existing container in the developer’s system. However, it does not allow a developer to build a

container from a Dockerfile and does not perform any actions automatically as the developer edits

the code. This means that the developer must edit the Dockerfile and manually use the tool in

order to progress in his development process. On the other hand, the fact that this tool is available

directly in the IDE, where the developer writes the Dockerfile, is a valuable aspect that contributes

to a more fluent work environment.

Figure 3.3: Docker plugin for Intellij IDEA

Table 3.3 synthesizes the result of analysing a set of tools according to the level of liveness

that they enable in a given practice. For example, in the practice of starting a container, every tool

provides liveness at the level 2. This table shows that, to the best of our knowledge, there are no

tools which provide a liveness level above 2 in this category, since the identified tools do not react

3.1 Working with Dockerfiles 19

autonomously to changes in the Dockerfile. Despite the lack of higher levels of liveness, we can

also see that there are tools which enable all the practices identified in this category in the IDE of

the developer.

Table 3.3: Comparison of analysed Container Management tools. Links to the mentioned tools
can be found in Appendix A.

Tool/Plugin Liveness Level Attach Shell IDE PluginStart Stop Remove Build
Docker 2 2 2 2 Yes Intellij IDEA
Visual Studio Container
Tools Extensions (Preview)

2 2 2 — Yes VS

Docker for Visual Studio
Code (Preview)

2 2 2 — Yes VSCode

Wharfee 2 2 2 2 Yes No
Docker.el 2 2 2 2 Yes No
DockStation 2 2 2 — Yes No
Portainer 2 2 2 — Yes No
Weave Scope 2 2 — — Yes No
GoInside — — — — Yes No
Docker Runner 2 2 — 2 No VSCode
Docker Explorer 2 2 — — No VSCode
Captain for Mac 2 2 2 — No No
Dockeron 2 2 2 — No No
Seagull 2 2 2 — No No

3.1.4 Infrastructure Testing

Infrastructure testing solutions aim at allowing developers to execute tests on an infrastructure

configuration. The Docker development process can benefit from these tools, since they can be

used to test whether an infrastructure configuration, written in a Dockerfile, is generating a

container which behaves as intended [6].

RSpec. This tool allows developers to write tests in the Ruby programming language. It was

created for the purpose of allowing for behaviour-driven development, since it allows for

developers to clearly state the intended behaviour within a test 4.

Serverspec. This tool, which extends RSpec, allows developers to write RSpec tests in a Ruby

domain specific language (DSL) to verify if a server is working as intended 4. As an example,

Figure 3.4 shows a test which verifies if the port 3333 of the target server is listening to tcp6

traffic. Despite being directed at servers, Serverspec provides a wide range of testable resource

types 5 which make it useful for other kinds of systems.

4Links to the mentioned tools can be found in Appendix A
5List of Serverspec Resource Types available at https://serverspec.org/resource_types.html

https://serverspec.org/resource_types.html

20 State-of-the-Art

Figure 3.4: Serverspec test which verifies if the port 3333 is listening to tcp6 traffic

Chef Inspec. This tool is a testing framework which was initially an extension to Serverspec

but is now a separate standalone tool. Inspec allows developers to write tests in a Ruby DSL

named Chef InSpec DSL. These tests allow a developer to verify the infrastructure of a system 6.

Figure 3.5 shows a test written in the Chef InSpec DSL which verifies if the port 3333 of the target

server is listening to tcp traffic.

Figure 3.5: Inspec test which verifies if the port 3333 is listening to tcp traffic

Chef Inspec and Serverspec are very similar in their functionality, but support different types

of resources 7.

Goss. This tool allows the validation of a server configuration. Tests are specified in the YAML

language 6. As an example, Figure 3.6 shows a test written in YAML which verifies if the port

3333 of the target server is listening to tcp6 traffic.

Figure 3.6: Goss test which verifies if the port 3333 is listening to tcp6 traffic

These solutions provide a fast and replicable way for developers to test the underlying software

infrastructure of their systems, and some effort has been done in order to simplify their usage with

Docker. For example, Dgoss 6 builds a Docker image, instantiates a container and runs Goss tests

in that Docker container with a single command. Dockerspec 6 performs similar actions, but

also allows the developer to perform some static analysis on the Dockerfile. Nevertheless, none

of these tools provide a level of liveness above 2, since the developer must run them manually.

Furthermore, these tools do not run within an IDE. The tests must also be previously written by

the developer. As such, there is still some manual work that must be done by the developer in

order to run these tests.

6Links to the mentioned tools can be found in Appendix A
7Comparison between the resources supported by Chef Inspec and Serverspec available at https://www.insp

ec.io/docs/reference/migration/

https://www.inspec.io/docs/reference/migration/
https://www.inspec.io/docs/reference/migration/

3.1 Working with Dockerfiles 21

3.1.5 Static Analysis

Static analysis tools, in contrast with dynamic analysis tools, are able to scan a Dockerfile for

potential errors without instantiating a Docker container or building a Docker image. As such,

while their scope is more restricted when compared to the other solutions, they can also be much

faster to run.

J. Xu et al [39]. propose a static analysis approach to detect a code smell named Temporary File

Smell (TF Smell). During the Docker image building process, some files are only used during one

or more steps of the building process and are not necessary during runtime. As such, these files

should be deleted during the building process, after being used, so that the final image size is kept

as small as possible. Failing to delete such files is what J. Xu et al. coined as a TF Smell.

Figure 3.7 shows an example of a TF Smell. In this example, the developer copies a

temporary file called jdk.tar.gz (instruction 2), uses the file (instruction 3), and deletes the

file (instruction 4). However, given the layered nature of the Docker image building process, as

described in Section 2.1.3, the 4th instruction does not remove the file from the image, since on

the layer created by the 3rd instruction the file will still be present.

Figure 3.7: TF Smell caused by not removing a temporary file [39].

The static analysis method proposed by J. Xu et al. to detect TF Smells in a Dockerfile

consists of three steps. On the first step, an Abstract Syntax Tree (AST) of the target Dockerfile is

created. This AST is used in the following steps. On the second step, a semantic analyser is used

in order to create a list containing every file that is created (e.g. using a wget command) and

another list containing every file that is deleted (e.g. using a rm command). The line where each

creation/deletion occurs is also stored. In the third step, created and deleted files are compared. A

22 State-of-the-Art

TF Smell exists if this comparison reveals that a file is deleted in an instruction different from the

one where it is created [39].

dive is a tool which allows a developer to navigate through the file system of each layer of a

docker image 8. Developers can see which files are added, removed or modified in each layer of the

Dockerfile, allowing them to easily detect potentially unnecessary files still present in the image.

The size and command of each layer is also presented to the user. Furthermore, in order to facilitate

the exploratory work of the developer, filtering and agreggation of files are also supported.

Figure 3.8: Dive tool presenting the file system of a layer and the image potential wasted space a.

aTaken from dive’s documentation listed in Appendix A.

Dive is also able to present to the user the files that might be potentially wasting space in the

image (i.e. detect and localize TF Smells [39]). This is performed by automatically comparing

every file across every layer and detecting any files which are deleted in a layer different from the

one where the files are created. As an example, Figure 3.8 presents the output of the Dive tool

for a Docker image, showing to the user the multiple layers of the image, the file system of the

selected layer and the files which are potentially wasting space.

8Links to the mentioned tools can be found in Appendix A

3.1 Working with Dockerfiles 23

Despite its usefulness, all the features mentioned require manual work from the developer,

since the developer must still navigate and analyse the file system manually. Furthermore, this

tool does not automatically update according to changes in the Dockerfile.

Hadolint [Standalone] is a tool which performs static analysis on a Dockerfile, presenting to

the developer a list of possible errors and bad practices that the target Dockerfile may contain 9.

The rules which this linter applies 10 are based on the best practices list available in the official

Docker documentation 11.

The analysis of the Dockerfile consists of three main steps. The first step is to generate an AST

of the target Dockerfile which is used in the following steps. The second step is to use the AST in

order to verify if any of the rules is being broken. The third step is to perform the linting of any

Bash code that exists inside a RUN instruction. This last step is optional, since it only applies when

a Dockerfile contains a RUN instruction.

Hadolint is a standalone tool which is not live nor integrated, by default, into an IDE.

Hadolint [VSCode plugin] is a plugin which integrates Hadolint 9 into Visual Studio Code 9.

This plugin automatically runs Hadolint on the Dockerfile that the developer is editing every time

that the developer saves the Dockerfile, and presents the output of Hadolint in the user interface of

the IDE 9. The plugin presents the detected issues by underlining the respective instructions and

allows the developer to see details on the issues by hovering over the instructions. It also lists all

the issues in a window below the text editor.

This plugin, by automatically updating its state every time the user saves the Dockerfile,

achieves the 3rd level of liveness.

Docker for Visual Studio Code (Preview) and Docker (JetBrains), previously mentioned in

Section 3.1.1, also perform linting of the Dockerfile while it’s being edited and present the detected

issues in the development environment. Since these tools automatically update every time the

Dockerfile is edited without requiring the developer to save changes, they achieves the 4th level of
liveness 9.

In sum, Table 3.4 presents all the tools analysed, as well as the level of liveness with which

they provide static analysis. In this case, we can see that some tools are able to provide static

analysis in the IDE with a high level of liveness — these tools update their static analysis feedback

as the user edits the Dockerfile. However, this feedback can be quite limited when compared to

specialized live programming solutions which perform dynamic analysis since only static analysis

is performed.

9Links to the mentioned tools can be found in Appendix A
10Hadolint’s list of rules available at https://github.com/hadolint/hadolint#rules
11Docker Docs — Best practices for writing Dockerfiles available at https://docs.docker.com/develop/

develop-images/dockerfile_best-practices/

https://github.com/hadolint/hadolint#rules
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

24 State-of-the-Art

Table 3.4: Comparison of analysed Static Analysis tools. Links to the mentioned tools can be
found in Appendix A.

Tool Static Analysis
Liveness Level IDE Plugin

J. Xu et al. 2 No
Dive 2 No
Hadolint [Standalone]
Dockerlint
Dockerfile_lint
Dockerfilelint

2 No

Hadolint [Plugin]
Dockerfilelint [Plugin]

3 VS Code

Docker for Visual Studio Code (Preview) 4 VS Code
Docker 4 Intellij IDEA

3.1.6 Image Build Optimization

Docker images can become large and take a long time to build [38, 15, 14]. Given the iterative

nature of the Dockerfile development process, some solutions attempt to improve the development

process by reducing the time required to build a Docker image.

The image building time is also a critical factor to the success of live programming

environments, since feedback is delivered in a rapidly changing environment. If the feedback

takes too long to be generated and displayed to the developer, it can become outdated and,

therefore, less useful [29]. As such, when attempting to create a live programming environment,

it could be useful to implement solutions that can help lower the often excessive image

compilation times.

FastBuild is a solution which implements a caching system for remotely accessed files during

the Docker image building process. Using this cache system reduces the need to retrieve files

from remote systems, resulting in a considerable reduction of the time required to build a Docker

image, particularly in systems connected to a network with a low network bandwidth (up to 10.6x

faster) [15].

FastBuild achieves this by implementing three main components. The first component is a

caching mechanism which extends the existing caching mechanism in Docker. This mechanism

intercepts every network request performed during the image building process and if the network

request has been performed in a previous build then, instead of performing a new network request,

it satisfies the request using cached data. It also tests if the cached data is out of date, by performing

a request for the modification time. If the file is not stored in cache or the cached data is out of

date, then the network request is performed as usual. The second component is responsible for

overlapping instructions execution. The third component is responsible for building base images

locally instead of pulling them from Docker Hub. This is possible and faster than downloading the

base images due to the caching system implemented [15].

3.1 Working with Dockerfiles 25

Figure 3.9 shows that this tool can greatly reduce the required time to build and launch a

Docker container, and as such can reduce the amount of time that a developer has to wait for a

Dockerfile to build during the development process.

Figure 3.9: Build and launch time comparison on a low network bandwidth environment between
FastBuild and the Docker default building technique for 137 sample base images with more than
100,000 downloads on the Docker Hub platform [15].

Slacker [14] is a replacement for the default Docker storage driver which aims at reducing the

time required to pull and start a container without significantly decreasing the performance during

the execution of the container. Tests revealed that the two steps which usually take up most of the

time during the process of building and starting a container are (1) pulling an image hosted on a

remote repository (such as DockerHub) and (2) file system operations, particularly when writing

to a file which is on a deep layer of the AUFS file system. It was also noted that usually most

of the data on a container is not read immediately at startup. According to tests performed on 57

Docker images from DockerHub, the median size of an image is 329MB. However, the median

size of the files read until the container is running (i.e. server listening, printing a "system ready"

message, etc.) is only 20MB. As such, Slacker was designed with the aim of reducing the time

spent in these two steps.

Slacker consists of a centralized Network File System (NFS) which all the Docker daemons

and registries have access to, where containers are stored as files and images are stored as

snapshots. When a developer on his machine starts a container, the container files are actually

stored in the NFS and all file system operations are performed over the NFS. This allows a

container to lazily access the image data, reading and writing the data only as needed. Since

images are stored as read-only snapshots and the containers data is located in the NFS, pulling an

image no longer requires a network transfer to the developers machine, consisting of an efficient

clone action on the NFS server which creates a clone of the read-only snapshot. With Slacker,

26 State-of-the-Art

image layers are flattened, however a copy-on-write (COW) system is implemented in the

snapshot/clone system, which means that it still has the advantage of not requiring full copies of

images every time an image is pulled [14]. Figure 3.10 provides a visual representation of this

architecture.

Figure 3.10: Slacker Architecture [14].

According to further testing, with Slacker, pulling an image becomes 72x faster than the

regular image pulling with AUFS. The run phase, however, becomes 17% slower. Taking into

consideration the median times that each phase of the development cycle usually takes, this

provides significant improvements, reducing the median time on the push, pull and run cycle by

20x [14].

3.1.7 Discussion

Over the years, multiple efforts have been led with the purpose of improving the development

process of Dockerfiles, allowing developers to have faster and easier access to the functionalities

and metrics that are typically required to develop Dockerfiles. However, the vast majority of

these tools do not provide any automatic feedback while the developer works and, as such, are

not live enough to create a tight feedback loop in the developer’s environment. To the best of

our knowledge, the only tools which provide a level of liveness above 2 are some of the static

analysis tools described in Section 3.1.5, which only give a very shallow level of information to

the developer compared to the tools in other categories, as they only inspect the Dockerfile itself

and not the image or the container.

Liveness in IDEs requires a short feedback loop, as the developer’s changes to the code should

be reflected on his environment shortly after being made [29]. Since Dockerfile builds can take

some time, latency problems may arise when trying to increase the liveness in tools which require

the Docker image to be built. Even when no liveness is involved, this can be detrimental to the

developer’s workflow [15]. As a way to mitigate this issue, there are some potentially viable

solutions which focus on reducing the time required to build a Docker image. The authors of

the solutions described in this section agree that network requests are one of the biggest culprits

of long image compilation times. As such, these solutions rely mainly on caching mechanisms,

which save time and network bandwidth and have the potential to be useful in live programming

environments aimed at Dockerfiles.

3.2 Liveness and Feedback in IDEs 27

3.2 Liveness and Feedback in IDEs

This section presents and analyses multiple existent IDEs or plugins/extensions to IDEs which

focus on providing visual feedback during the development process. The search performed to

find these solutions was not restricted to a specific activity within software development or

liveness level. In order to come to these results, a search on IEEEXplore and the ACM Digital

Library was performed using the query "Live Programming OR Liveness" and the query

"integrated development environment OR IDE". Visual Studio Code’s marketplace was also

searched using the query "docker". Results were filtered by name, abstract, number of downloads

(when applicable) and citation count (when applicable). The main purpose of this analysis is to

understand different approaches to the implementation of liveness in IDEs and to the delivery of

feedback to the developer. For that reason, IDEs with different liveness levels and feedback

mechanisms were selected.

IDEs usually provide feedback about the program that is being developed. This feedback

can consist of errors, warnings, suggestions and other information which might be useful for

the developer to have during the development process. Live IDEs differ from non-live IDEs by

providing this kind of information in a continuous way [37]. As such, it’s important to understand

how existing solutions tackle the issue of implementing liveness and present information in a way

that is useful and comfortable to the developer. As such, an analysis has been perform in order to

answer the questions:

• What are the approaches currently used to implement liveness and display feedback
in IDEs?

• What are the main threats to the success of liveness in IDEs?

J. Kramer et al [22]. performed a controlled experiment with users in order to analyse the

developers’ behaviour when working on a live programming environment. Namely, they intended

to demonstrate that using a live environment lowers the time spent between introducing a bug and

fixing it and the overall time necessary to complete a task, and the participants would find and fix

bugs throughout the development of the task instead of just at its end.

In order to validate these hypotheses, a prototype was developed which provided information

about the code continuously, updating as the developer wrote the code. This prototype consisted

of a plugin for the Brackets IDE. It consists of two main components, the back-end and the

front-end. The front-end sends the JavaScript code that the developer is writing as a string to the

back-end. The back-end then executes the developer’s code in a sand-boxed environment,

gathering information about the code while it runs. This information consists of variable values,

log messages, function call return values and parameters and also supports the inspection of

different loop iterations [22]. As an example, Figure 3.11 shows the output of the tool for a

snippet of JavaScript code, showing the multiple types of possible feedback displayed to the user.

As shown in Figure 3.11, the information is displayed at the right side of the corresponding

line. This tool also provides some feedback when an error is detected on the developer’s code.

28 State-of-the-Art

Figure 3.11: Example output for Javascript code on Kramer’s environment [22].

Figure 3.12 shows an example of the interface presented when an error is found in the developer’s

code. In this tool, a small red error icon is placed at the left of the line where the error is detected

and the faulty part of the code is underlined with a dotted red line. When the user clicks this icon,

a small red window is displayed below the faulty line which contains a short description of the

error that was detected. This tool does not perform any attempt to automatically correct or suggest

potential fixes for the errors found in the code [22].

Figure 3.12: Javascript error detected in user’s code on Kramer’s environment [22].

Since the feedback is updated continuously and the developer does not need to perform any

explicit or implicit action in order to trigger the update, this prototype provides the 4th level of

liveness. Furthermore the live feedback provided results from both dynamic and static analysis,

since some feedback is generated from the execution of the program and some feedback is

generated from the raw source code [22].

The results from the user study for this prototype showed that using a live coding environment

significantly lowered the total time spent fixing bugs and promoted testing throughout the course

of the development. However, there was no decrease in the total time required for the completion

of the task. J. Kramer et al. believe that this can be due to a small sample size. Overall these

results show that this implementation of liveness can have some benefits on the improvement of

the development process [22].

LiveCodeLab [10] is a web-based framework that allows developers to write code in the

LiveCodeLang language and visualize the result of the code in real-time. The environment is

tailored towards the development of 3d graphics and audio sample sequencing, providing a live

visualization and playback of the code that is being written. The user does not need to perform

3.2 Liveness and Feedback in IDEs 29

any action in order to update the output of the tool, meaning that the tool is updated every time

that the code changes into a different valid state. Figure 3.13 presents the interface of

LiveCodeLab, executing the sample code provided in the website called "Simple cube".

Figure 3.13: LiveCodeLab interface with the example code "Simple cube" being executed.

Initially, LiveCodeLab used JavaScript as its language. Since the accessibility and

intuitiveness were core principles of the project, the next iterations of the framework moved to

the LiveCodeLang language, which is based in CoffeeScript and was designed with accessibility

in mind, having short syntax and intuitive keywords which facilitate the exploration process of

the developer without compromising the language’s flexibility and potential [10].

Internally, LiveCodeLab performs 4 different actions independently and at different

intervals [10]:

• When the developer edits the code via keyboard or mouse, the code is translated, parsed and

hot-swapped over the old code.

• Since the developer can write code which depends on the current timestamp, the graphics

rendering and other data structures are updated at regular time intervals. This happens up to

60 times per second.

• The playback of audio samples is handled by a component which runs at a specific interval.

This interval is specified in "beats per minute" and is customizable using an instruction in

the code.

• LiveCodeLab also includes an optional feature called AutoCoder which randomly

swapping parts of the code every second. This feature, despite being undesired during

critical development, can be useful for a novice developer to explore the possibilities of the

tool at a faster pace.

In order to ensure that the environment does not crash or stop its output at any time due to the

developer writing faulty code, 2 verifications are made. First, the developer’s code is syntactically

30 State-of-the-Art

analysed, and if a syntax error is found, the code is not updated and the last working state keeps

running. In order to prevent runtime errors from affecting the flow of the environment, the previous

known working state of the environment is kept for the first few seconds of execution of a new

code. If that code runs for long enough, then it is considered stable and becomes stored as the last

working state. If that code crashes within a certain time frame, then it is discarded and the last

working state of the environment is restored. This does not guarantee that no runtime errors will

occur, but relies on the assumption that most runtime errors will occur within the first few seconds

of execution [10].

Since the feedback is updated continuously and the developer does not need to perform any

explicit or implicit action in order to trigger the update, LiveCodeLab provides the 4th level of

liveness. Furthermore the live feedback provided results from both dynamic and static analysis,

since some feedback is generated from the execution of the program and some feedback is

generated from the raw source code [10].

DS.js [41] is a tool which enables a live data science programming environment in any web-

page which contains data in the form of HTML tables or CSV/TSV datasets. DS.js detects the

data in the webpage and injects itself into the page near the tables, giving to a developer the option

to manipulate the data, derive tables from the data and perform other data science tasks. The

interface provided to the user is embedded directly into the web-page, consisting of a box where

the user writes JavaScript code which manipulates the data and a box where the result of the data

manipulation (i.e. a new table, a graph or other visualization) is displayed. Figure 3.14 shows an

example of this interface, where data is extracted from an HTML table of a website and a bar plot

is drawn using the data present in that table. DS.js is also able to suggest certain actions to the user

and to save the work that a user has done in a website. These functionalities help the developer

explore and discover more functionalities from the provided data manipulation API.

DS.js updates it’s live visual output pane every time that the developer finishes writing a line of

code, written in the editor pane. The end of a line of code is detected by the insertion of a newline

or a semicolon. The live visual output only renders the output of a single line of code at a time. As

such, developers need to be able to switch between the lines to be able to choose at any moment

which one is being displayed. Line switching is done by placing the cursor on the line which is

meant to be rendered in the live pane. Despite only the output of a single line being displayed at a

time, the whole block of code is executed. This means that DS.js provides the 3rd level of liveness,

since some user action is required in order to update the live visual output pane [41].

Other mechanisms are used in order to facilitate the work of the developer. For instance,

static analysis is performed and potentially problematic statements related to the declaration and

assignment of global variables are highlighted to the developer by displaying a small warning

icon next to the respective statements. Developers also have access to previews for individual

method calls. As illustrated in Figure 3.15 this is particularly useful in statements where many

method calls are chained, since it allows the developer to evaluate each one of these method calls

individually, therefore potentially making it easier to determine which of the chained method calls

3.2 Liveness and Feedback in IDEs 31

Figure 3.14: DS.js interface drawing a bar plot with data extracted from a html table.

is behaving unexpectedly in case of a bug. This mechanism also provides the 3rd level of liveness,

since the previews are live but require a mouse click on the desired method call in order to update

and be displayed. Both these mechanisms have in common the fact that they help the developer

by providing more feedback.

Figure 3.15: DS.js preview panes on three chained method calls [41].

User studies revealed that developers were able to successfully complete data science tasks

in 30 minutes. Subjects had some data analysis experience, but had almost no introduction to

DS.js beforehand. The overall response from the subjects to the live development experience was

positive and they liked its responsiveness, although they wished that it was possible to keep more

than one visualization on the screen at a time. Additionally, despite the benefits of having a live

environment, all subjects agreed that DS.js would be less suited for more complex analysis tasks,

since the API for data manipulation provided by the tool is too simple for those tasks [41].

32 State-of-the-Art

Omnicode [20] is a live IDE which runs the developer’s Python code and, using scatterplots,

displays all the values that the program’s variables had, as a function of the execution step or

another variable. Figure 3.16 shows two scatterplots. The left one shows the values of the variable

temp as a function of the number of execution steps, while the second one shows the values of the

variable temp as a function of the value of sum(nums) (i.e. the sum of all the variables inside

the list nums).

Figure 3.16: Scatterplots which display the values of runtime variables [20].

Omnicode was specially designed for environments where the developer has a set of test cases

consisting of known inputs and respective expected outputs and is tasked with writing the code

that processes the inputs and generates the expected outputs. The developer can see the test cases

and select one of them at a time. After selecting a test case, Omnicode automatically runs the code

while it’s being written by the developer, feeding it with the input from the selected test case, and

providing feedback to the developer. Tests are run when the developer stops writing for 2 seconds

and the code has a valid syntax, which means that this tool implements a form of live programming

which can be defined as continuous testing with the 3th level of liveness [20].

The feedback provided in real-time consists of:

• The return value of the code.

• A color indicator which shows if that value matches the expected output from the selected

test case.

• Scatterplots which display the values of runtime values during execution.

• By selecting a line of code, a popup displays a visualization of all the data structures existent

when the selected line is executed.

The user can also add custom scatterplots which allow him to visualize the value of a runtime

value as a function of another runtime value. This volume of feedback being provided in real-time

to the developer is what makes Omnicode stand out from other solutions, as it can be considered

an extreme implementation of live programming. In order to reduce clutter and provide more

meaningful information, the developer is also able to select a few lines of code or sections of

3.2 Liveness and Feedback in IDEs 33

a scatterplot and the whole IDE updates to display just the information relative to the selected

execution segment. This selection works bidirectionally, since by selecting some lines of code only

the corresponding sections of the scatterplots are highlighted, and vice-versa [20]. Figure 3.17

shows the interface with the main points of interested marked with letters a.) to f.).

Figure 3.17: Omnicode example interface [20].

After an exploratory user study, subjects reported that the live visualizations helped debugging

the code and validate their mental models of how the program works, reducing the need to write

print statements in order to do so, and that having a rich visualization helped them explain their

code to other people. However, subjects also reported that visual overload was a problem, which

is to be expected giving that one of the core objectives of Omnicode was to push live programming

to the extreme by displaying every value of every variable as a function of other variables at the

same time [20].

As a way to reduce the visual overload, the authors highlights a few possibilities [20]:

• Merge redundant information.

• Use color to help differentiate information.

• Allow user to selectively hide, show, resize and move information.

• Analyse the information and automatically highlight the most important segments.

By implementing these possibilities, the system would still be able to present the same

information, but would do so in a way that would be less overwhelming to the developer. It

should also be noted that despite the negative feedback regarding the visual overload, users were

still generally satisfied with this particular section of the tool, rating it at an average of 4.11 out of

5 [20].

34 State-of-the-Art

Omnicode’s scatterplots as well as the automated test results and any syntax and runtime errors

detected in the code via static analysis are displayed in panes located on both sides of the code

editor. These elements are always visible. By hovering the cursor over a line, a temporary pane

displays execution information for that line. Omnicode makes no attempt to automatically correct

or suggest potential fixes for the errors found in the code [20].

Eclipse IDE [28] is an integrated development environment which was a popular choice for

developers working in the Java programming language in 2006 and still is fairly common

nowadays 12. It provides support for the Java Development Tools (JDT) and a solid platform for

third-party plug-ins, allowing for the extensive customization of the functionalities available

during the development process. Despite supporting other languages, the analysis of this tool

focuses on the feedback provided to the developer when writing Java code with the default

interface configuration.

Figure 3.18: Default Eclipse IDE interface for Java

Figure 3.18 displays the main interface that this analysis focuses on. The left pane contains

the Package Explorer tab which displays the resources available in the project, such as files and

dependencies, organized in packages. The center pane is the code editor, where the developer can

read and write code. The code editor also displays any problems detected in the code, displaying a

small icon near the line count and underlining the relevant code in the respective line. By hovering

over the underlined portion of code, a short description of the problem is displayed. For some of

12Stack Overlow Developer Survey 2019 available at https://insights.stackoverflow.com/survey/
2019

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

3.2 Liveness and Feedback in IDEs 35

the detected problems, clicking on the icon displays a list of suggested changes in order to fix the

problem. The right pane contains the Outline tab which presents an overview of the file currently

visible in the code editor. This overview consists of a list of the classes present in the file, as well

as the instance variables, methods and constructors of each class. Each element is labeled with

a representative icon. This tab is updated every time that the developer stops writing code for a

few seconds. The bottom pane contains the Problems, Javadoc, Declaration and Console tabs.

The Problems tab provides a textual description of any problems detected in the developer’s code,

as well as the resource, path, location and type of each problem. This tab is updated every time

the user saves the current file. The Console tab displays the output of the developer’s program,

updating every time the developer manually triggers an execution of the program. The Javadoc

tab displays documentation relative to the currently opened file. The Declaration tab displays

information relative to the code where the cursor is currently placed [28].

Eclipse does not perform any live dynamic analysis. However, syntax errors are detected and

highlighted continuously, without requiring any explicit request from the developer. As such,

Eclipse provides some feedback obtained via static analysis with the 4th level of liveness.

Code Bubbles [7] is an integrated development environment for the Java programming language

which implements a user interface which is organized in sets of bubbles. Each individual bubble

is an independent element which can contains a piece of code (such as a method, constructor or a

class’s variables), documentation, search results, developer notes or other artifacts. Bubbles can be

grouped by dragging a bubble to a group or a bubble to another bubble. This allows the developer

to organize his IDE in a customizable way. Furthermore, a developer can navigate through the code

by right clicking a segment of code and pressing the "Open Declaration" or "Find All References"

buttons and by searching through the source code in the right pane of the interface. Each of these

interactions opens a new bubble that contains just the portion of code that the developer asked for,

such as a class or a function. This approach, as opposed to the more common file-based approach,

allows the developer to navigate through the code in a working set-based IDE which follows more

naturally the code’s structure. In addition, by hovering over certain sections of code, a temporary

bubble shows the developer a preview of their containing method. The developer can also assign

titles and icons to bubbles or bubble sets. Figure 3.19 displays the aforementioned features and

the interface of Code Bubbles.

Code Bubbles’ user interface is implemented using Microsoft Windows Presentation

Foundation, while it’s back-end runs as a plugin for the Eclipse IDE, using some of Eclipse’s

features in order to process the code. Features such as build, run and debug options, finding

references and declarations, error and warning management and syntax highlighting are provided

by Eclipse and displayed in Code Bubble’s interface. As such, the feedback provided by Code

Bubbles when an error is detected in the code is similar to the feedback provided by Eclipse in

the code editor [7], meaning that Code Bubbles also provides some feedback obtained via static

analysis with the 4th level of liveness.

36 State-of-the-Art

Figure 3.19: Code Bubbles IDE interface. Each letter represents one of the main elements of the
user interface [7].

User studies were conducted in order to understand how beneficial is the Code Bubbles code

visualization technique and also to gauge the opinion of experienced professional developers about

the features implemented. Overall, the participants felt positive about the environment. They

valued the ability of being able to see multiple functions side-by-side even if they were in different

files and generally agreed that reviewing code in Code Bubbles was easier than their preferred

IDE [7].

Visual Studio Code 13 is a code editor which can be used for many languages and purposes,

supporting a wide range of languages out-of-the-box and providing a plug-in marketplace where

developers can distribute and download plug-ins which further expand the capabilities of the

environment. This analysis focuses on the development of Dockerfiles in Visual Studio Code

with the Docker plugin 13 installed.

The feedback provided by this plugin regarding the file opened in the code editor consists

of syntax highlighting, problem detection and documentation. Problems detected in the currently

opened Dockerfile are displayed in a few different ways: the segments of code where each problem

was detected are underlined, a red mark indicating the location of the problems in the file is

displayed in the scroll bar and a textual description of each detected problem is displayed in a

pane below the code editor, providing also a count of all the detected problems. Furthermore, in

the file browser, if there are any problems detected then the file’s name is displayed in red. By

hovering over any underlined segment of code, a small window also displays a textual description

of the respective problem. Documentation can be accessed by hovering over valid Dockerfile

instructions. This action triggers the display of a small window containing a short description of

13Links to the mentioned tools can be found in Appendix A

3.2 Liveness and Feedback in IDEs 37

the hovered instruction and simple examples of its usage, as well as a link to a web-page where

the developer can obtain more extensive documentation for that instruction. Figure 3.20 displays

the interface of Visual Studio Code with the Docker plug-in where some of the described features

can be observed.

Figure 3.20: Visual Studio Code with Docker plug-in interface.

All the feedback described is obtained via static analysis of the Dockerfile and is instantly

updated on every code change, therefore providing static analysis feedback with the 4th level of

liveness.

3.2.1 Discussion

This analysis presents a few different approaches to live feedback and shows that the presence of

liveness in the development environment can have some benefits, such as leading to a reduction

of the average time required for a developer to create a working program or to fix existing

bugs [22]. Furthermore, the increased accessibility to relevant information in the IDE can be

valuable to developers, providing easier access to information which otherwise would only be

reachable by manually retrieving it. Increasing the understandability of the code can also be one

of the benefits of providing live feedback to the developer. It’s also noticeable that all of the

analysed environments provide live feedback generated from static analysis, while only some

perform live dynamic analysis. Environments which provide live feedback from dynamic

analysis usually display a larger amount of valuable information to the developer [20] and

promote a more continuous workflow where the developer is able to test his code more often [22]

without having to leave the IDE.

It can also be noticed that while some tools focus on providing feedback based on the plain

execution of the developer’s code, Omnicode adopts a test-based strategy where the user code is

automatically tested against pairs of known inputs and respective expected outputs [20].

38 State-of-the-Art

Table 3.5: Comparison of analysed development environments. The Quick fix column refers to the
ability to suggest code changes to the developer.

Environment Target language Navigation Quick
fix

Docs
access

Static analysis
liveness level

Dynamic analysis
liveness level

Omnicode Python
File-based and

test-based
No No 4 4

LiveCodeLab LiveCodeLang Single-file No No 4 4
J. Kramer et al. Javascript File-based No No 4 4

DS.js
Javascript (with

Data Mining API)
Table-based No Yes 3 3

Eclipse IDE Java File-based Yes Yes 4 2

Code Bubbles IDE Java
Working
set-based

Yes Yes 4 2

Visual Studio Code
with Docker plug-in

Dockerfile File-based No Yes 4 2

Furthermore, although the majority of IDEs adopt a file-based approach, other approaches such

as the working set-based [7] and table-based [41] are also evaluated positively by developers for a

few reasons, such as fitting the code’s logic more tightly [7].

In regards to the visibility of the feedback provided, all the analysed environments provide

partial visibility, where a lighter version of the feedback information is always displayed to the

developer and the full textual feedback generated by the IDE is visible only in certain views or by

performing certain actions, such as hovering over code. Furthermore, feedback that is always

displayed to the developer usually consists of small, unobtrusive and easily identifiable elements,

such as small icons placed near the line where a problem is detected or a red underline. Allowing

the developer to toggle the visibility of certain fragments of information is a way to ensure that

the user interface is not overwhelming while still providing all the desired feedback. Live

programming environments such as Omnicode and the environment proposed by J. Kramer et al.

are exceptions, constantly displaying a large amount of information to the developers. For that

reason, these tools can be overwhelming at times, although there are some mechanisms that can

help mitigate this issue [20] [22].

It should also be noted that features such as generated code fix suggestions and quick access to

the documentation have mixed support on the analysed environments. Both these features can be

helpful to the developer, particularly in cases where the developer is working with libraries beyond

the standard libraries of a programming language, as seen in DS.js [41]. Once again, the design of

these features is very important, so that the developer has a fluid interaction with his environment

and does not feel overwhelmed with information.

Table 3.5 presents a direct comparison between the analysed environments, including the

liveness level of the dynamic and static analysis feedback offered by each environment.

Chapter 4

Survey on Working with Dockerfiles

This chapter presents a survey which aims to understand the issues of the current Dockerfile

development process. Section 4.1 focuses on identifying the motivation for the execution of this

survey, as well as how its results can be relevant for professionals and researchers. Section 4.2

presents the primary goal of this survey and the research questions that this survey attempts to

answer. Furthermore, Section 4.3 describes the procedure used in order to collect the data.

Section 4.4 presents and analyses the results from the survey. Finally, Section 4.5 identifies

threats to the validity of the conclusions drawn, while Section 4.6 presents a brief summary of

those conclusions.

The description of the procedures and approaches present in this chapter aims at allowing other

researchers to perform this user study in other contexts. Along the same line, all the documents,

resources and artifacts mentioned throughout this chapter (i.e. the questionnaire, all the collected

data and data analysis scripts) are available in a replication package, stored as a public repository

on GitHub 1.

4.1 Motivation

In recent years, Docker has become a de facto standard in containerization technologies. Docker

uses a file, called Dockerfile, which contains text instructions, in order to generate an isolated

environment called a container [33]. Given Docker’s popularity and, consequently, the

importance of developing Dockerfiles, it becomes relevant to characterize and optimize the

Dockerfile development process that developers currently follow. This survey focuses on the

Dockerfile development process and attempts to identify some of its flaws, which may then be

improved upon with further work.

1Resources and artifacts related to this user study are available at https://github.com/davidreis97/chal
lenges_with_docker

39

https://github.com/davidreis97/challenges_with_docker
https://github.com/davidreis97/challenges_with_docker

40 Survey on Working with Dockerfiles

4.2 Goals and Research Questions

In Section 3.1, a set of tools currently available to Dockerfile developers is analysed. Through this

analysis it was found that, to the best of our knowledge, the only tools which provide live feedback

during Dockerfile development are some static analysis tools. On the other hand, Section 3.2

analyses a set of general-purpose development environments, some of which provide live dynamic

analysis feedback. Through this analysis we found that the presence of live dynamic analysis

feedback in the IDE can bring some improvements to the development process.

As such, this survey aims to expand on the conclusions drawn in Section 3.1 by further

analysing the current Dockerfile development process. Its specific goal is to to verify if there are

actual issues with the current process or if it generally works well as it is, without live dynamic

analysis feedback.

Furthermore, this survey aims to understand if the issues that developers experience and the

approaches that they use during development vary according to their level of experience. For

this purpose, the survey was distributed to two different target audiences — one generally more

experienced than the other. Section 4.3 presents more information about the distribution of the

survey.

This survey also aims to guide the implementation of a solution which brings live dynamic

feedback to the developer’s environment. This is achieved by dividing the Dockerfile

development process into the different main activities which constitute it and identifying the most

time-consuming activities.

Therefore, this survey aims to help answering the following research questions:

• RQ1 — How time-consuming is each activity of Dockerfile development?

• RQ2 — Which approaches are used to overcome issues during Dockerfile development?

4.3 Data Collection

Two runs of this survey were performed with different respondents. The first run of the survey was

answered by 68 students, most of whom were novices in Docker. The second run of the survey

was targeted to professional software developers and answered by 110 respondents.

In the first run, the survey was distributed in person during classes of the 4th year, 1st semester,

integrated masters in Informatics and Computer Engineering at the Faculty of Engineering of the

University of Porto. We started by explaining to each class the goals of the study. After that

we provided a URL where they could answer the survey in digital form. Students were asked

to answer the survey immediately and we stayed in the classroom until everyone had completed

their submission, helping students resolve any technical problems accessing the questionnaire.

This distribution strategy had the purpose of reaching a wide number of respondents, as well as

keeping at a minimum the class time spent on the survey. Since the survey’s estimated completion

time is 5 minutes and 6 classes were targeted, the survey’s distribution took approximately 30

4.3 Data Collection 41

minutes. The survey was also distributed through email to the same target audience to allow for

students who were absent from the classes to answer as well.

In the second run, the survey was first distributed in the context of the on-site research track

of the XP 2020 Conference 2, an international conference on agile software development. The

survey was also distributed in communities and forums directed towards Docker, DevOps and

general-purpose programming. This distribution strategy had the purpose of reaching developers

with some professional experience and a wide range of software engineering backgrounds.

In some questions of the survey, Likert-type rating scales are used. Likert scales are used to

measure a subject’s attitude — the personal level of agreement towards a certain statement [18]. In

our implementation, this scale consists of 5 options: Strongly Disagree, Disagree, Neutral, Agree

and Strongly Agree, which indicate the level of agreement of a respondent towards a statement.

The survey is divided into two sections: Participant Characterization and Working with

Docker technologies.

In order to measure the Dockerfile development experience of the respondents, the section

Participant Characterization of the survey focuses on gathering information about the professional

experience of each respondent. In this section, using a Likert scale, respondents must state their

opinion on their own level of experience working with Dockerfiles. In order to validate their

response with a less opinionated parameter, respondents must also specify how many projects

they have worked on that had a Dockerfile, used Dockerfiles created by others or created/updated

a Dockerfile. They are also required to select the Dockerfile instructions that they’ve used during

development. In the second run of the survey, the participants also specified their country, their

professional sector and their main professional responsibilities.

The survey section Working with Docker technologies focuses on discovering which activities

in Dockerfile development take longer than desired and gather some of the approaches used during

Dockerfile development. In this section, using a Likert scale, respondents must indicate if they

agree that they spend a lot of time in each of the development activities identified.

Furthermore, respondents can optionally specify in a text field what steps or strategies do they

usually take in order to diagnose and solve bugs in Dockerfiles. Respondents must also specify

which plugins/tools they use when developing a Dockerfile, other than a general-purpose text

editor, if any.

A full version of the questionnaire can be found in Appendix B. This survey was developed

in collaboration with another master’s thesis which focused on docker-compose development.

For that reason, the survey also contains questions regarding software development with

docker-compose. However, since this dissertation focuses solely on Dockerfile development, only

the set of questions regarding Dockerfiles are analysed.

2XP 2020 Conference Website available at https://www.agilealliance.org/xp2020/

https://www.agilealliance.org/xp2020/

42 Survey on Working with Dockerfiles

4.4 Data Analysis

By measuring the attitude of the respondents towards the statement that a considerable time is

spent in each Dockerfile development activity, we are able to identify the activities in which most

of the developers believe to be considerably time-consuming, therefore answering the research

question RQ1. By collecting responses about the general approach taken to solve problems in

Dockerfiles as well as the plugins/tools used during development, it is possible to identify a set of

approaches used, as well as their popularity, therefore answering the research question RQ2.

Questions regarding the professional experience of each respondent may help narrow down

the conclusions extracted from the survey to a specific group or range of developers.

4.4.1 First Run

We only considered the responses of participants who had created/edited a Dockerfile in at least

one project. As such, from the 68 total responses obtained, 19 were excluded, and the 49 remaining

participants were considered in this analysis.

Regarding the professional experience of the respondents, we verified that the average number

of projects where respondents had created/updated a Dockerfile was 2.4, showing that respondents

had some experience, as expected from students. The median response was 2 and the standard

deviation was 2.2.

In this run, the questions regarding the identified Dockerfile development activities were:

• A1 — When I write a Dockerfile, I spend a lot of time finding out what parent image is the

most suitable.

• A2 — When I write a Dockerfile, I spend a lot of time finding out what are the dependencies

of the system that must be added to the docker image.

• A3 — When I write a Dockerfile, I spend a lot of time finding out what are the Dockerfile

commands that I need.

• A4 — When I write a Dockerfile, I spend a lot of time trying to understand if the resulting

container is working as intended (e.g., running commands and tests on the container).

• A5 — When I write a Dockerfile, I spend a lot of time trying to understand why the resulting

container is not working as intended.

• A6 — When I write a Dockerfile, I spend a lot of time finding out which commands are

responsible for the container misbehaviour.

• A7 — When I write a Dockerfile, I spend a lot of time rebuilding the image and re-running

the container to confirm that it is working as intended.

The results shown in Figure 4.1 present the attitude of respondents towards the statement

that a lot of time is spent on each of the identified development activities. These answers make

4.4 Data Analysis 43

it possible to answer the research question RQ1, defined in Section 4.2: respondents generally

agreed that a lot of time is spent on most development activities. In particular, it can be observed

that activities A2-A7 were considered time-consuming, with over half the respondents answering

at least "Agree". Among those, A4, A5 and A7 were considered particularly time-consuming, with

over 60% of the respondents answering at least "Agree". A1 was not considered to be particularly

time-consuming. In A1 there was also a larger proportion of "Neutral" answers. We believe that

this may be due to the fact that this activity is performed less times than other activities (i.e. a base

image can be chosen just once at the start of the project, whereas finding and fixing can be a more

iterative process).

Figure 4.1: Attitude from respondents in the first run towards a lot of time being spent in each of
the development activities

It was also noticed that 90% of the respondents do not use any plugin/tool other than a general-

purpose IDE during Dockerfile development. From the remaining 10%, the only tool mentioned

was the Docker plugin for Visual Studio Code, previously analysed in Chapter 3.

Answering the research question RQ2, a large majority of the approaches to solving problems

in Dockerfiles that were mentioned by respondents mention "trial and error", using Google and

other online platforms, "random guessing" or entering the container to manually execute

commands which may help diagnose the issue. We believe that these approaches can be slow and

frustrating. This belief is further sustained by the fact that activities A3-A7, typically related to

the debugging process of Dockerfiles, were found to be perceived as particularly time-consuming.

4.4.2 Second Run

As expected, the second run was answered by developers with a wider range of backgrounds and

slightly more professional experience than the respondents of the first run. This analysis only takes

into consideration the responses of the participants who had created/edited a Dockerfile in at least

one project. As such, from a total of 110 responses, 1 response was discarded and the remaining

109 responses are considered in this analysis.

44 Survey on Working with Dockerfiles

Regarding the professional experience of the respondents, we verified that the average

number of years of experience in creating/updating a Dockerfile was 3.4. The median response

was 3 and the standard deviation was 1.64. These results reinforce our belief that the respondents

from this run are slightly more experienced than participants from the first run. Furthermore, a

vast majority of the participants worked in the industry, with most of the remaining participants

working in the academic sector. Participants were from 23 different countries, with Portugal

(21%), the USA (19%) and Spain (9%) being the most represented countries. Most of the

participants had responsibilities as a software developer, with a significant number also working

in operations.

In this run, the questions regarding the identified Dockerfile development activities were:

• A1 — When I write a Dockerfile, I spend considerable time finding out what parent image

is the most suitable.

• A2 — When I write a Dockerfile, I spend considerable time finding out what are the

dependencies of my system that must be added to the docker image.

• A3 — When I write a Dockerfile, I spend considerable time finding out what are the right

Dockerfile commands that I need.

• A4 — When I write a Dockerfile, I spend considerable time confirming if the resulting

container is working as intended.

• A5 — When I write a Dockerfile, I spend considerable time trying to understand why the

resulting container is not working as intended (e.g., running commands and tests on the

container).

• A6 — When I write a Dockerfile, I spend considerable time finding out which commands

are responsible for the container misbehaviour.

• A7 — When I write a Dockerfile, I spend considerable time rebuilding the image and re-

running the container to confirm that it is working as intended.

• A8 — When I write a Dockerfile, I spend considerable time reading Docker documentation.

These questions are very similar to the questions presented in the first run — questions

A1-A7 from both runs target the same Dockerfile development activities. However, in this run the

questions were slightly modified to be more clear and objective. Nevertheless, we believe that

these small changes should not significantly change the participants’ interpretations of the

questions. Question A8 was introduced in this run.

Figure 4.2 displays the attitude from respondents towards the statement that a considerable

amount of time is spent in each of the identified development activities. These results allow us to

answer the research question RQ1, defined in Section 4.2. The respondents generally agreed that

considerable time is spent in most Dockerfile development activities. Activities A2, A4, A5 and

4.5 Threats to validity 45

A7 were regarded as particularly time-consuming, with over 60% of the participants answering

with at least "Agree". In A4 and A7 in particular, less than 10% of the participants answered with

"Disagree" or less.

Figure 4.2: Attitude from respondents in the second run towards a considerable amount of time
being spent in each of the development activities

It was also observed that only 25 out of the 109 respondents (i.e. 23%) mentioned using tools

or plugins in order to develop Dockerfiles, with a vast majority consisting of static analysis tools

such as the ones described in Section 3.1.5.

Directly answering RQ2, many participants described a trial and error approach, where they

manually inspect the container using the command line after each Dockerfile change and iterate

until the container works as intended. Some participants also mentioned structured approaches

such as continuous integration pipelines and end-to-end testing.

4.5 Threats to validity

Survey differences. The survey published in the second run had a few changes when compared

to the first run. This could affect any conclusions drawn from comparing the results from both

runs. However, the results are consistent between the two runs of the survey, leading us to believe

that the changes did not have a relevant effect on the answers.

Participant’s geographic distribution. Even though in the second run participants had a much

broader background, certain countries may have been overly represented due to the fact that some

country-specific communities were approached in order to broadcast the survey. This could

negatively affect the generalizability of the results to the population of Dockerfile developers at

large. However, to the best of our knowledge, there is no evidence that a participant’s country

should significantly influence the conclusions drawn in this chapter.

46 Survey on Working with Dockerfiles

Selection of activities. The subdivision of the Docker development process into multiple

approaches was performed based on our experience with Dockerfile development. As such, other

developers might find a different division of approaches as more suitable. However, participants

did not raise this issue in neither of the runs, which gives us confidence that our set of approaches

was generally well accepted.

4.6 Discussions

This section focuses on discussing the results presented in Section 4.4, directly answering the

research questions defined in Section 4.2.

The research question RQ1 aims to understand how time-consuming each activity of

Dockerfile development is. With the exception of the A1 activity in the first run of the survey and

A8 in the second run of the survey, participants in general found most Dockerfile development

activities to be time consuming. However, it should be noted that participants also displayed a

slight tendency to identify the debugging activities of Dockerfile development, such as

understanding why a container isn’t working or re-building the Docker image, as the most

time-consuming.

The research question RQ2 aims to identify the approaches used to solving bugs in Dockerfiles.

In general, participants commonly mentioned approaches which rely on "trial and error" and

manually building, raising and inspecting the images and containers under development. However,

some participants from the second run mentioned using more structured and formal approaches,

such as testing and pipelines. Furthermore, the tools and plugins used by the participants were

consistent with the analysis on the state-of-the-art Dockerfile static analysis tools, presented in

Section 3.1.5.

Overall, these results provide a better understanding of the most critical activities and the

problems that developers face during Dockerfile development. This knowledge can help increase

the impact of the live environment designed and implemented in Chapter 6 since the feedback

generated by the environment can be tailored towards helping the developer during the activities

perceived as most time-consuming.

Chapter 5

Problem Statement

This chapter describes the problems that currently exist in Dockerfile development, particularly

focusing on the problems that this dissertation proposes to address. Section 5.1 describes these

problems and elaborates on the current Dockerfile development process. Section 5.2 presents the

main hypothesis that this dissertation aims to validate, while Section 5.3 presents the

methodology used in order to validate this hypothesis, including a brief description of each step

in the methodology.

5.1 Current Problem

Currently, developing Dockerfiles can be a slow task, since developers must repeatedly modify

and test the Dockerfile until it produces a container that behaves as intended [15].

As thoroughly analysed in Chapter 3, there are some tools and approaches that can help during

Dockerfile development and, therefore, may improve the efficiency of a developer working with

Docker containers and Dockerfiles.

However, as previously mentioned, most of these tools don’t provide live feedback, as they

require explicit actions from the developer in order to function. For example, the Goss

framework 1, introduced in Section 3.1.4, allows a developer to perform infrastructure tests

which can help determine if the instructions written in a Dockerfile produce a Docker image and

container with the intended behaviour. However, this requires some effort, as the developer needs

to write the tests and execute the framework manually, often outside of his IDE. To the best of

our knowledge, the tools which provide some live feedback only perform static analysis.

We believe that the aforementioned limitations restrict developers working in Dockerfiles to

an iterative workflow which can often be slower than desired. As an example, Figure 5.1 presents

a possible workflow of a Dockerfile developer.

1Links to the mentioned tools can be found in Appendix A

47

48 Problem Statement

Figure 5.1: Possible workflow of a Dockerfile developer.

The survey presented in Chapter 4 further reinforces this belief. In this survey, developers

generally indicated spending a considerable amount of time in most activities of Dockerfile

development, particularly in the activities related to the debugging process of a Dockerfile.

Furthermore, this survey also showed that developers commonly use a "trial and error" approach

when solving problems related to Dockerfiles, regularly having to manually build, raise and

inspect a container to verify its behaviour.

In addition, a study, which evaluated a representative sample of 560 open-source projects from

the GitHub platform, showed that 34% of the Dockerfiles found in those projects could not be built

without errors [9]. The same study showed that bad practices, such as the lack of a MAINTAINER

tag or the lack of version pinning in the base image and dependencies, were also observed in a

considerable amount of Dockerfiles, including Dockerfiles in the top 100 repositories according to

GitHub’s star rating [9]. These results show that the emergence of errors and bad practices during

the Dockerfile development process is not uncommon.

Overall, the evidence presented in this section gives us confidence that the Dockerfile

development process could be significantly improved by the implementation of live dynamic

analysis feedback in the IDE.

5.2 Hypothesis 49

5.2 Hypothesis

Taking into consideration the limitations identified in the current Dockerfile development process,

described in Section 5.1, this dissertation aims to validate the following main hypothesis:

The Dockerfile development process can be more efficient if developers have a work

environment with richer feedback and higher level of liveness than provided by the current state

of the art tools and methodologies.

In this context, we define an increase in efficiency as a decrease in the time required for a

developer to finish the Dockerfile development process. Furthermore, in the Dockerfile

development process we include creating Dockerfiles from scratch, modifying existing

Dockerfiles (either to add features or to fix bugs) and also diagnosing problems in existing

Dockerfiles. Finally, according to the analysis performed in Section 3.1, only some static analysis

tools provide more than the 2nd level of liveness when working with Dockerfiles. As such, having

richer feedback and higher level of liveness can be achieved by providing feedback generated

from dynamic analysis of the image and container generated from a Dockerfile, with the 4th level

of liveness. It could also be possible to provide richer feedback by extending the current static

analysis tools, although this dissertation focuses primarily in dynamic analysis.

As described in Section 2.2, there are multiple potential motivations for the implementation

of liveness, such as improving the accessibility and comprehension of a system [30]. However,

given the hypothesis described, it should be noted that the main motivation for liveness in this

dissertation is productivity: accelerating some of the activities of the Dockerfile development

process and, as a consequence, accelerating the Dockerfile development process as a whole.

5.3 Methodology

The primary objective of this dissertation is to validate the hypothesis defined in Section 5.2 and

improve the Dockerfile development process.

As such, a preliminary survey, answered by students and professionals, was performed with

the purpose of identifying the main issues that arise during the development of Dockerfiles and

identifying the most time-consuming Dockerfile development activities. This preliminary survey

is described in Chapter 4.

This survey and the analysis of the state-of-the-art, presented in Chapter 3, allowed us to

design an approach which attempts to assist Dockerfile development and reduce the time spent in

most of the Dockerfile development activities, particularly in those identified as time-consuming.

This approach, which focuses on delivering live dynamic analysis feedback, allows the developer

to have a workflow with shorter and more frequent feedback loops. According to the hypothesis

presented in Section 5.2, this could improve the efficiency of the Dockerfile development process.

Section 6.1 performs a detailed description of this approach.

50 Problem Statement

In order to bring to life the aforementioned approach, a reference architecture, presented in

Section 6.3, has been designed. This architecture is implemented as Dockerlive 2, an extension

for the Visual Studio Code IDE. As designed in the approach, Dockerlive delivers live dynamic

analysis feedback in the Dockerfile development environment.

Dockerlive was then used in a controlled experiment with users. In this experiment, the

performance and behaviour of developers using Dockerlive were compared to the performance

and behaviour of developers using an environment without live dynamic feedback. The results

from this comparison allowed us to answer the main hypothesis of this dissertation, as well as

to measure and understand the impact of live dynamic feedback in the Dockerfile development

process. The methodology and the results obtained in this user study are thoroughly documented

in Chapter 7.

2Dockerlive’s VSCode Marketplace page is available at https://marketplace.visualstudio.com/ite
ms?itemName=david-reis.dockerlive

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive

Chapter 6

Dockerlive: Approach and Reference
Architecture

This chapter presents the solution implemented in order to generate live dynamic analysis feedback

in an IDE. Section 6.1 defines an approach designed to generate and provide feedback with the 4th

level of liveness. Section 6.2 presents a few key technologies that can be used in order to design

an efficient architecture and implementation of the approach. Dockerlive Section 6.3 defines the

architecture of the solution. Section 6.4 describes the features of Dockerlive, an implementation

of the previously mentioned approach, which runs as an extension to the IDE Visual Studio Code.

Dockerlive’s architecture and implementation details are a reference architecture of the approach,

presenting the architecture and mechanisms which can be used in order to deliver the approach in

other contexts.

6.1 Approach

In order to validate the hypothesis described in Section 5.2, an approach has been designed with

the aim of providing dynamic analysis feedback to the developer with the 4th level of liveness.

This approach allows the developer to have a workflow with shorter and more frequent feedback

loops which, according to the hypothesis, could improve the efficiency of the developer. This

approach consists of three steps: Identification of Interest Points, Probing of Interest Points and

Feedback Generation.

In the Identification of Interest Points step, the Dockerfile is parsed in order to locate

potential interest points that can be a source of valuable information to the developer. As such,

this step relies on performing static analysis on the Dockerfile. For example, if the Dockerfile

under development contains an EXPOSE instruction which exposes a certain port, then it could be

valuable for a developer to know, without having to perform any manual checks, what service is

running on the exposed port. On the other hand, some interest points are applicable to all

51

52 Dockerlive: Approach and Reference Architecture

Dockerfiles and do not depend on the existence of certain instructions or patterns. For example, it

can be useful for a developer to be able to visualise container performance statistics, regardless of

the particular set of instructions in the Dockerfile. The heuristics which identify potential interest

points are defined during the implementation of this approach.

In the Probing of Interest Points step, information is collected from the interest points

identified in the previous step. For this purpose, an image is built and a container is raised from

the Dockerfile under development. As such, this step performs dynamic analysis, gathering

information about the Docker container and the Docker image.

Finally, in the Feedback Generation step, the information collected in the previous steps is

processed and presented to the developer inside the IDE. Other IDEs have been analysed and

documented in Section 3.2 in order to better understand how feedback can be provided in a way

that is user-friendly.

These steps are executed every time that the developer makes a change to the Dockerfile in

the IDE. For performance reasons, since these steps can be computationally intensive, if a user

changes the Dockerfile before the end of the execution for the previous Dockerfile state, then the

previous execution should be cancelled and a new one should be started.

This approach has the advantage of allowing the collection of data which regards the actual,

live execution of the container. This allows the developer to have much richer information during

development, as well as reducing the need to manually perform Docker-related actions such as

building an image or raising a container. Another advantage of this approach is that it can be

easily extended by identifying new interest points. However, an implementation of this approach

must pay close attention to the performance, particularly on larger Dockerfiles, given the fact that

image compilation times can be long [15].

The feedback generated by this approach can be coupled with the existing static analysis

development tools for Dockerfiles which already provide up to the 4th level of liveness,

documented in Section 3.1.5, allowing a developer to simultaneously take advantage of the

richness of dynamic analysis and the immediacy of static analysis.

6.2 Main Technology Choices

This section provides some insight into some of the technologies that power the proposed

approach and, therefore, are referenced in the architecture presented in Section 6.3 and in the

description of the features presented in Section 6.4.

Visual Studio Code. In order to provide live feedback in the developer’s development

environment, we opted to implement an extension which runs in the general-purpose IDE Visual

Studio Code 1. This choice was made for two main reasons. Firstly, Visual Studio Code was the

1Links to the mentioned tools can be found in Appendix A

6.2 Main Technology Choices 53

most popular IDE amongst DevOps developers in 2019 2. As such, by implementing liveness as

an extension to Visual Studio Code, we provide liveness in an environment which the target users

of our work are probably already familiar with. Secondly, Visual Studio Code offers an API

which provides support to all the functionalities that our approach needs to work 3.

Language Server Protocol. The Language Server Protocol 4 (LSP) is a protocol which allows

a single implementation of development assistive features, such as code auto-complete or syntax

error highlighting, to be used across multiple different IDE’s. The main advantage of this protocol

is that it removes the need to have a unique implementation of these features for each language

and for each IDE. Figure 6.1 presents a visual representation of the impact of the LSP in the

implementation of development assistive features.

Figure 6.1: Impact of the LSP in the implementation of development assistive features through
IDE extensions a.

aTaken from https://code.visualstudio.com/api/language-extensions/language-server-e
xtension-guide

This protocol standardizes the communication between the IDE and a Language Server,

which implements the development assistive features and can be used across multiple IDEs.

Communication between the IDE and the Language Server is performed using the JSON-RPC

protocol.

Dockerode One of the possibilities when it comes to interacting with Docker programmatically

is to perform HTTP requests to the Docker API. This API works as an interface for performing

2Stack Overlow Developer Survey 2019 available at https://insights.stackoverflow.com/survey/
2019

3Visual Studio Code Contribution Points available at https://code.visualstudio.com/api/referenc
es/contribution-points

4Documentation for the Language Server Protocol is avaliable at https://microsoft.github.io/langua
ge-server-protocol/

https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://code.visualstudio.com/api/references/contribution-points
https://code.visualstudio.com/api/references/contribution-points
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

54 Dockerlive: Approach and Reference Architecture

Docker-related actions (e.g. build an image) and is used, for example, by Docker’s own command-

line interface 5. The Dockerode package 6 provides an interface for Javascript and Typescript

solutions to perform these requests using object-oriented principles such as classes and objects

instead of loose HTTP requests.

6.3 Architecture

Dockerlive implements this approach using a client/server architecture, where the client and server

are two asynchronous entities which communicate in order to provide functionalities inside Visual

Studio Code. Figure 6.2 presents an overview of Dockerlive’s architecture using a component

diagram.

Figure 6.2: Dockerlive component diagram. Presents an overview of the main components which
execute the dynamic analysis.

The Server component plays the role of the Language Server, as described in Section 6.2.

Therefore, it is responsible for parsing Dockerfiles and generating the feedback and the

functionalities that should be delivered to the user. It is completely separate from Visual Studio

Code or any other IDE.

The server has three main components: dockerfile-utils, dockerfile-language-service and

dockerfile-language-server-nodejs. These 3 libraries are also used by the Docker for Visual

Studio Code (Preview) 7 extension, previously presented in Chapter 3. These libraries perform

static analysis on Dockerfiles and report the results of the analysis using the Language Server

Protocol. In Dockerlive, these libraries were extended in order to perform not just static analysis

but also dynamic analysis, by automatically instantiating a container and performing the

necessary actions to provide all the features detailed in Section 6.4. The dockerfile-utils

5Docker Overview — Docker Documentation available at https://docs.docker.com/engine/docker-o
verview/

6Dockerode NPM package available at https://www.npmjs.com/package/dockerode
7Links to the mentioned tools can be found in Appendix A

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.npmjs.com/package/dockerode

6.3 Architecture 55

component, in particular, is responsible for analysing the Dockerfile and returning the results of

the analysis to the dockerfile-language-service component. The Validator component of

dockerfile-utils is responsible for executing the static analysis of the Dockerfile. If no errors are

detected, the DynamicAnalysis component executes the dynamic analysis.

Extending the existent stack of libraries directed towards static analysis has a few

performance benefits. Dynamic analysis, which can be computationally demanding for a

consumer-grade machine, only needs to run if the Dockerfile is syntactically valid. For example,

if the programmer mistyped the instruction FROM as FRMO, there’s no need to try to build an

image from the Dockerfile, as it’s already clear that it won’t compile successfully due to that

typo. As such, Dockerlive skips the dynamic analysis if the static analysis found issues with the

Dockerfile. This also reduces the probability of attempting to run a Dockerfile with transient

semantics [1]. Another performance benefit consists of being able to use the same Abstract

Syntax Tree (AST) that the static analysis uses to analyse the Dockerfile. As such, this AST is

reused in the dynamic analysis with the purpose of deciding which actions and feedback should

be generated (e.g. perform service discovery in each EXPOSE instruction, as described in

Section 6.4.9).

In order to perform actions related to Docker artifacts, such as running a container or building

an image, the server performs requests to the Docker API. Information is extracted from the

container in ways that are supported by a wide range of container operative systems. As such,

Dockerlive’s features should work for a variety of Linux distributions. In order to provide a good

user experience, if a certain feature is not supported in the operative system of the container that

the developer is working on, the feature simply doesn’t generate feedback, without throwing

exceptions or crashing in a way that is visible to the user.

Furthermore, since containers can change their state during their execution, the server keeps

making regular calls to the Docker API in order to update the information about the container.

The Client component serves as a bridge between the server and the IDE, presenting the

feedback generated by the server to the user. The client is tied to and is executed within Visual

Studio Code, as an extension, and is activated when a file of type Dockerfile is opened in the

editor. The first action taken by the client, when it is activated by Visual Studio Code, is to

instantiate the server. This client only interacts with the server, never directly interacting with the

Docker API or with any Docker artifacts. During its execution, the client has two main duties:

• Send commands and events to the server, such as a document edit or a custom command,

so that the server can generate new feedback or perform the action required by the custom

command.

• Receive data from server and present it to the user as visual interface elements.

Dockerlive’s architecture is based on the architecture of the lsp-sample example which is part

of the official Visual Studio Code documentation 8.
8lsp-sample example project available at https://github.com/microsoft/vscode-extension-sampl

es/tree/master/lsp-sample

https://github.com/microsoft/vscode-extension-samples/tree/master/lsp-sample
https://github.com/microsoft/vscode-extension-samples/tree/master/lsp-sample

56 Dockerlive: Approach and Reference Architecture

By using the Language Server Protocol and performing all the analysis in a independent server,

detached from the IDE, this extension could be implemented in other IDE’s with little effort, as

only a client would have to be developed. Further characteristics, advantages and disadvantages

of the Language Server Protocol are detailed in Section 6.2.

Figure 6.3: Dockerlive sequence diagram. Presents a simplified visualization of some of the
messages shared between the client, the server and the Docker API.

Figure 6.3 presents a simplified visualization of a possible exchange of messages between the

client, the server and the Docker API. In the sequence presented, the Dockerfile is edited by the

developer in the IDE. As such, the client sends the new version of the document to the server.

The server then builds an image, creates a container, gets the container’s statistics and performs

other calls to the Docker API in order to get more information about the container and the image.

Further details about other calls performed to the Docker API are available in Section 6.4. After

gathering and processing information about the image and the container created, the server sends

the information back to the client, which displays it to the developer through the IDE. After this

exchange of messages, the server would continue performing calls to the Docker API in order to

update the information about the container, sending the updated information to the client.

6.4 Feature Design and Implementation

This section presents the features available in Dockerlive, describing their implementation and

how they are presented to the developer within VSCode.

As described in Section 6.3, the Language Server Protocol is used to deliver feedback to the

IDE. This implementation uses version v1.35 of the LSP. The following features of the LSP are

used and referenced throughout this section:

6.4 Feature Design and Implementation 57

• Diagnostics — Problems/potential suggestions targeting a specific part of the code, which

can have a descriptive text and different severity levels: Error, Warning, Information or

Hint, in decreasing order of severity. In VSCode, diagnostics are rendered as underlines

in the targeted code section, where the color of the underline indicates the severity of the

diagnostic. The descriptive text can be read by hovering over the targeted code section. As

an example, the Container Runtime Errors feature of Dockerlive, described in Section 6.4.2,

uses this mechanism.

• Progress Reporting — If the Language Server needs to perform any actions which may

take a long time, it can use this mechanism to inform the IDE of the progress of the action,

and the IDE can display that information to the user. In VSCode, progress is reported

through the status bar. Dockerlive implements this feature, as described in Section 6.4.11,

since some of its actions may take a while to be performed (e.g. building a Docker image).

• Custom Messages — Some of the features implemented in Dockerlive are not directly

supported by the LSP. Therefore, the LSP allows the server and the client to communicate

using their own custom messages. The downside of using custom messages is that unlike the

natively supported features of LSP, which are implemented out-of-the-box in IDEs which

support the LSP, the features implemented using this mechanism have to be adapted to each

IDE.

As described in Section 6.1, a fundamental part of the approach consists in the identification

and probing of interest points identified in the Dockerfile. Table 6.1 presents the main interest

points where information is extracted from.

Table 6.1: Probing performed in each potential interest point.

Interest Point Probings

ENTRYPOINT/CMD instructions
Container runtime errors (Section 6.4.2)
Processes running in container (Section 6.4.3)

ENV instructions Changes to environment variables (Section 6.4.4)
FROM instructions Image OS information (Section 6.4.6)
EXPOSE instructions Service discovery (Section 6.4.9)

Dockerfile as a whole

Container performance statistics (Section 6.4.5)
Layer size and build time (Section 6.4.7)
Layer file system explorer (Section 6.4.8)
Image build and container output (Section 6.4.10)

In this implementation, the version of the Docker API used is v1.40. Throughout this section,

multiple calls to the Docker API will be mentioned. Each call is further described in the official

Docker API v1.40 documentation 9.

9Docker API v1.40 documentation available at https://docs.docker.com/engine/api/v1.40/

https://docs.docker.com/engine/api/v1.40/

58 Dockerlive: Approach and Reference Architecture

6.4.1 Continuous Image Build

In order to perform live dynamic analysis, every time the Dockerfile is edited inside VSCode the

client sends the updated version of the Dockerfile to the server, which starts compiling an image

from that Dockerfile. In order to build a new image, the contents of the directory where the

Dockerfile is located are packed into a tar file — including the updated Dockerfile. The tar file

is sent to the Docker API through the POST /build endpoint, which builds an image with the

tag TestImage. Every time a new image is built, it is built with this tag, therefore ensuring that the

image with tag TestImage is always the most recent one.

The output of the Docker API, which contains the image build logs, is used to monitor the

progress of the build (e.g. Step 3/5...). The current build step is displayed using the Language

Server Protocol progress reporting mechanism described in Section 6.4.11. The image build logs

are also displayed in the Output panel, as described in Section 6.4.10. The intermediate image ids

for each of the build steps, which, as mentioned in Section 6.4.7, are used to retrieve the size of

each layer, are also extracted using the build output.

If the image building process fails for any reason, such as, for example, a RUN instruction

returning with non-zero code, a diagnostic with ERROR severity is sent, targeting the instruction

which caused an error. This causes that instruction to be underlined in red inside VSCode, as

depicted in Figure 6.4. Dockerlive is able to determine the exact instruction which failed since

each build step corresponds to an instruction in the Dockerfile and, as mentioned, the current

step is monitored throughout the process. Hovering the underlined instruction shows more details

about the error, which is also gathered from the Docker API’s build output.

Figure 6.4: Error during the image build stage.

6.4.2 Container Runtime Errors

If the image is successfully built through the process described in Section 6.4.1, then a container is

instantiated from that image. Since Docker containers must not have the same name, this container

is named testcontainer followed by a large random number, to avoid any potential collision with

existing containers.

Dockerlive continuously monitors this container by waiting for it to exit and checking its exit

code. If the container exits with an exit code different than 0, then a diagnostic is sent with ERROR

severity targeting the ENTRYPOINT/CMD instruction. In VSCode, this causes that instruction to be

underlined in red, as shown by Figure 6.5. If there are no ENTRYPOINT nor CMD instructions in

the Dockerfile, then the last instruction of the Dockerfile is underlined. Hovering the underlined

6.4 Feature Design and Implementation 59

instruction prompts the user to consult the logs, which might indicate the reason why the container

exited with a bad exit code.

Dockerlive also attaches to the newly created container and displays its logs in the "Output"

panel, as described in Section 6.4.10.

A similar diagnostic is also generated if there is an error creating the container, starting the

container, getting the container’s exit code or attaching to the standard output to the container,

although these errors should not occur during Dockerfile development, as they are indicative of a

problem related to Docker itself, rather than the Dockerfile being edited.

Figure 6.5: Error after container exits with non-zero exit code.

6.4.3 Processes Running in the Container

Dockerlive allows the user to hover the ENTRYPOINT/CMD instruction (or the last instruction of

the Dockerfile if there is no ENTRYPOINT/CMD instruction) in order to see the processes running

in the container, as presented in Figure 6.6.

Figure 6.6: Processes running inside container.

This information is retrieved by executing a ps -eo pid,ppid,args command inside the

container. This command outputs the processes running in the container in a table format,

providing the process ID (pid), parent process ID (ppid) and arguments (args) for each

process running.

This information is then parsed, using the process IDs and parent process IDs in order to create

a data structure which represents the process tree. This process tree is later used to analyse the

environment variables of each process, as described in Section 6.4.4. Figure 6.7 shows an example

of the conversion from the table of running processes to a tree.

60 Dockerlive: Approach and Reference Architecture

Figure 6.7: Conversion to a tree data structure containing a container’s running processes.

In order to continuously monitor the processes running in the container, this mechanism is

executed every 500ms, allowing for the information in the developer’s environment to be regularly

updated. Furthermore, when a container exits, the running processes that were last detected before

the container shut down are still available through this hover mechanism, along with a small text

before the process table which indicates that the container has exited.

6.4.4 Changes to Environment Variables

Dockerlive continuously analyses the environment variables defined in the Dockerfile. The

objective of this analysis is to identify situations where an environment variable is defined inside

the Dockerfile and is redefined during the container’s lifetime. As verified in the user study

presented in Chapter 7, these situations can lead to bugs which may be time-consuming to detect

and fix. In particular, the third task of the user study, detailed in Section 7.4, serves as an example

of this kind of bug.

In order to detect and alert the developer of these potentially unwanted changes, the process

tree described in Section 6.4.3 is used. In Unix systems, the initial environment variables of a

process can be consulted by accessing a file called /proc/<pid>/environ, where <pid> is

the process ID of the process under analysis 10. By traversing the process tree and checking

the environment variables of each process using the /proc/<pid>/environ file, it’s possible

to detect when a process changes environment variables, since these changes propagate to child

processes. In other words, when a process is started with an environment variable with a value

different than the one defined in the Dockerfile, its parent process is responsible for changing

that environment variable. This allows Dockerlive not only to identify changes to environment

variables, but also to pinpoint those changes to a culprit process, as seen in Figure 6.8.

As such, a diagnostic with WARNING severity is generated and sent to the client, underlining

ENV instructions in blue when the value that they set is changed during the container’s execution.

Hovering the underlined instruction shows the expected value of the environment variable, the

actual value of the environment variable in the container and the process which changed the

environment variable. This mechanism is executed every 500ms, allowing for the information in

the developer’s environment to be regularly updated. Furthermore, this information persists in the

user’s interface even after the container exits.
10proc(5) — Linux manual available at https://man7.org/linux/man-pages/man5/proc.5.html

https://man7.org/linux/man-pages/man5/proc.5.html

6.4 Feature Design and Implementation 61

Figure 6.8: Warning after change is detected in environment variable.

6.4.5 Container Performance Statistics

Dockerlive users can visualize performance statistics of the running container by clicking the

“CPU” button, located in the upper right corner of the editor tab which contains the Dockerfile.

By clicking this button, a new tab with performance graphs becomes visible. If the graphs are

updated every second, then the container is running. If the graphs are stopped, then the container

is stopped. When a new container starts, data is erased from the graphs. Figure 6.9 shows an

example of these performance graphs.

Figure 6.9: Performance monitoring webview displaying CPU, Memory and Network information.

In order to extract this information, a call to the Docker API is performed through the GET

/containers/{id}/stats endpoint which provides performance information of a container.

This information is then sent to the client. Since the Language Server Protocol does not define

a payload to send graphical or performance data, this data is sent through a custom message,

containing the latest performance statistics. The client, upon receiving this message, updates the

62 Dockerlive: Approach and Reference Architecture

data displayed in the graphs. The graphs are displayed in a tab inside VSCode, which contains a

webview running HTML, CSS and JS code to render the graphs. Since this type of message does

not belong to the Language Server Protocol specification, every client implementation needs to

implement the retrieval and rendering of the performance data.

This feature is rendered in a webview inside VSCode, meaning that the file system data must be

sent from the server to the client, and from the client to the webview in the form of an asynchronous

message, as described in the VSCode documentation 11.

Furthermore, on this webview, there are also three buttons available:

• Stop — Stops the running container

• Restart — Restarts/Starts the container

• Open Shell — Open an interactive shell inside the container.

These buttons provide the developer with a quick way to interact with the running container.

When a developer presses one of these buttons, a message is sent from the client to the server

indicating which action it should take (e.g. pressing the Stop button sends a dockerlive/stop

message to the server). The server then interacts with the Docker API through the POST

/containers/{id}/stop to execute the action requested by the client.

When a developer presses the Open Shell button, an editable text box becomes visible which

contains the command docker exec -it <containerName> /bin/sh, where

<containerName> is the name of the current running container. By pressing Enter, the

command is executed in a terminal inside VSCode. This allows the developer to quickly open the

/bin/sh shell, often present in Linux distributions, but still allowing the developer to run other

executables.

6.4.6 Image OS Information

Dockerlive also attempts to extract information about the operative system running in the

container. If that information is successfully retrieved, a diagnostic on the FROM instruction is

generated and sent to the client with a severity of INFORMATION. In VSCode, the developer is

able to hover over the image name and see some information about the OS that the container is

running. As an example, Figure 6.10 shows the output of this feature for a Dockerfile with the

base image debian:sid.

Since different operative systems have different footprints, multiple strategies have to be

adopted in order to be able to provide support for a wide range of operative systems. These

strategies consist of executing a command inside the container which, if successful, return

information about the operative system. When a strategy is successful (i.e. the command exits

with exit code 0), the remaining strategies do not need to be executed. In order of priority of

attempts, the following commands are attempted:
11VSCode Webview API Documentation available at https://code.visualstudio.com/api/extensio

n-guides/webview

https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview

6.4 Feature Design and Implementation 63

Figure 6.10: Operative System information indicating the distribution running in the container.

1. cat /etc/os-release

2. cat /etc/lsb-release

3. cat /etc/issue

4. cat /proc/version

5. uname

Since this mechanism relies on executing commands inside the container, these commands are

attempted after the container is started, as described in Section 6.4.2.

6.4.7 Layer Size and Build Time

Figure 6.11: CodeLens showing layer size and build time.

CodeLens is a feature of VSCode which allows for short text to be exhibited above certain

lines of code. Dockerlive makes use of this feature in order to show, above every instruction in

the Dockerfile, the time it took to build an intermediate image from that instruction and the size of

that image. Figure 6.11 shows an example of this feature.

The time is calculated using the Docker API build output, which is received during the image

build process. Since Dockerfile instructions are executed sequentially, the time that a certain

instruction takes is the time that has elapsed since the previous instruction ended or since the start

of the image build process in case the instruction is the first one in the Dockerfile.

The size of each layer is obtained with a call to the Docker API through the GET

/images/{name}/history which reveals the intermediate images of a Docker image, as well

as their size. This call is performed targeting the image tagged "TestImage", which through the

64 Dockerlive: Approach and Reference Architecture

mechanism described in Section 6.4.1 is the result of the compilation of the Dockerfile which has

most recently been edited by the developer in VSCode. Each intermediate image with a valid ID

corresponds to an instruction in the Dockerfile. As such, since layers are stored in the same order

as the instructions in the Dockerfile, it’s possible to identify which instruction gave origin to each

intermediate image. After establishing this relationship, CodeLenses are created and sent to the

client.

CodeLens functionallity is supported by the Language Server Protocol. However, in the

Language Server Protocol it’s not possible to add CodeLenses a document after the initial

CodeLenses have been sent. Since we believe that, for a good user experience, CodeLenses

should be visible almost immediately after a user edits a document, the implementation of

CodeLens in Dockerlive relies on a custom CodeLensProvider in order to provide CodeLenses as

soon as possible, while still being able to add new CodeLens at any time.

6.4.8 Layer File System Explorer

Figure 6.12: Webview displaying the file system of the layers inside an image.

Dockerlive users can display and explore each layer’s file system by clicking in the “FS”

button, located in the upper right corner of the editor tab which contains the Dockerfile. By

clicking this button, a new tab is displayed. This tab allows the developer to navigate through the

aggregated file system of each of the intermediate layers. Figure 6.12 shows an example of this

feature. A short explanation on the decomposition of an image in multiple intermediate layers is

available in Section 2.1.3.

Each file system entry is described in 7 columns:

6.4 Feature Design and Implementation 65

1. C — If a file system entry or one of it’s descendants has been created, changed or deleted

in the selected intermediate layer, then a yellow square is displayed in this column.

2. Type — Shows the type of a file system entry (e.g directory, file, symbolic link).

3. Size — Shows the size of a file system entry. If the entry is a directory, this column shows

the number of items inside the directory.

4. Mode — Shows the mode (i.e. the permissions) of the file system entry in the Unix

permissions format.

5. UID — Shows the UID of the owner of the file system entry.

6. GID — Shows the GID of the owner of the file system entry.

7. Name — Shows the name of the entry.

On the top of the table there is a dropdown menu which allows you to select the intermediate

layer that is currently being displayed. You can also expand and collapse folders by clicking on

their name.

By hovering over the mode of an entry, you can see a small window which shows a visual

representation of the mode. Figure 6.13 shows an example of this feature.

Figure 6.13: Window displaying the mode of a file system entry.

If a layer deletes an entry, the entry is still visible in the layer which deleted it, but it has a red

background and a type of ’removal’.

This feature is rendered in a webview inside VSCode, meaning that the file system data must be

sent from the server to the client, and from the client to the webview in the form of an asynchronous

message, as described in the VSCode documentation 12.

In order to retrieve the intermediate layers which compose the image tagged "TestImage", a

call to the Docker API is performed through the endpoint GET /images/{name}/get. This

call returns a tar stream which contains the multiple intermediate layers of the image, as tar

files, as well as a JSON file which defines the correct order of the intermediate layers. Each

intermediate layer tar file contains the changes that were performed to the file system in that

layer. Therefore, in order to present to the developer the cumulative result of two or more layers,

the layers are merged.

As an example, consider that a Docker API call to retrieve the image’s intermediate layers

returned a tar stream with the files 23fg298h3.tar, guh309fj3.tar and json.
12VSCode Webview API Documentation available at https://code.visualstudio.com/api/extensio

n-guides/webview

https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview

66 Dockerlive: Approach and Reference Architecture

If the json file showed that the layer 23fg298h3 is the root layer, then if the user, in VSCode,

selects the guh309fj3 layer in the dropdown input field, then the user is able to see the result of

merging both these layers (and the changes performed by layer guh309fj3 marked with a yellow

square in the C column in the table).

In order to merge the intermediate layers but still keep track of the changes made by each

individual layer, at least two approaches can be used. The first approach is to keep all layers

separate until the user selects a layer in the dropdown, and only then calculate the cumulative file

system resulting from all the layers until the layer that the user selected. The two main

advantages of this approach is that there is no need to make any file system merges until the user

selects a layer in the dropdown and also that the changes made in each layer are also easily

accessible. However, merging multiple layers when the user selects a layer in the dropdown can

be computationally expensive and cause a delay to happen. For this reason, another approach was

chosen in Dockerlive.

The approach implemented in Dockerlive consists of calculating the cumulative result for all

layers at the end of the image build process. For example, in an image with layers A, B and C, this

approach calculates the merge of layers A + B and A + B + C automatically at the end of the image

build process. This way, when the user selects the layer B, for example, then the result of merging

all the layers until the layer B (i.e. A + B) has already been calculated, therefore taking much

less time to present it to the user than in the previous approach. The collection of changes made

by each individual layer is also sent to the client, providing a way to visually mark the changes

made by each particular layer. The main disadvantage of this approach is that more data needs to

be sent from the server to the client. For example, in the first approach, a packet would be sent

containing [A, B, C], where each entry contains just the changes performed in that layer. In the

second approach, a packet would be sent containing [A, B, C, A+B, A+B+C]. For this reason, in

Dockerlive, if packets exceed a size of 262144 bytes, they are split into multiple packets before

being sent to the file system webview, where they are joined and displayed.

Each file system entry is stored in the following data structure, called FilesystemEntry:

{

type: FileType,

permissions: PermissionObject,

uid: number,

gid: number,

size: number,

children: FilesystemEntryCollection

}

In the context of this data structure, FileType represents a file system entry type (e.g. ’file’,

’link’, ’symlink’), PermissionsObject is an object which stores the permissions of the entry in the

Unix permissions format and FilesystemEntryCollection is a list which stores multiple objects of

type FilesystemEntry.

6.4 Feature Design and Implementation 67

6.4.9 Service Discovery

Figure 6.14: Service discovery information showing a TCP service running on port 3000.

Dockerlive automatically tries to detect any services running on ports that are exposed with

the EXPOSE instruction. If no service is detected, an error underline in the EXPOSE instruction is

displayed. By hovering the port number on the instruction, you can see the name and protocol of

the detected service. Figure 6.14 shows an example of this feature.

Service discovery is performed with the help of Nmap 13. One of Nmap’s features consists

of detecting which services and versions are running in a specific port of a host. By using Nmap,

Dockerlive can automatically perform service discovery at the ports which are exposed in the

Dockerfile and present the output of Nmap as a diagnostic with INFORMATION severity level.

In order to be able to perform this scan, the container’s exposed ports must be published.

Publishing the ports ensures that all the exposed ports in the Dockerfile are mapped to random,

available ports on the host machine. For the ports to be published, the flag PublishAllPorts is

set to true in the Docker API call to the GET /containers/create endpoint, which creates

the container. In order to discover which host ports were mapped to all the exposed ports, a call

to the Docker API is performed through the GET /containers/{id}/json endpoint, which

inspects and returns information about a container — including the port mappings. After receiving

this information, the following Nmap command is executed:

nmap -oX - 127.0.0.1 -p [port1,port2,...] -sV -version-light

The flag -oX instructs Nmap to return results in the XML format. Since the scan must target

the host machine, the target IP address for the scan is 127.0.0.1. The flag -p

[port1,port2,...] instructs Nmap to scan the specified ports. These ports are the ones that

were obtained using the call to the Docker API. The flag -sV instructs Nmap to perform a

Service and Version Detection scan. The flag -version-light instructs Nmap to run a light

version of this scan, which can introduce some imperfect results (e.g. some services are less

likely to be accurately identified). However, since Nmap can, even with this flag, always detect if

a service is running and the speed of the feedback is very important in live development

environments, we believed that the performance benefits are worth the slightly worsened

accuracy.

The results from Nmap are parsed and mapped to the corresponding ports on the Dockerfile

and diagnostics are created and sent, as previously described.

13Links to the mentioned tools can be found in Appendix A

68 Dockerlive: Approach and Reference Architecture

6.4.10 Image Build and Container Log Output

Figure 6.15: Image build and container log output. Two features are highlighted in yellow: clear
all output and automatically scroll down as new output is displayed.

In order to improve the development flow while using Dockerlive, the output of the Docker

image build and the Docker container is displayed in the Output panel in VSCode. This panel

opens automatically when a Dockerfile is opened and may also be opened from the VSCode top bar

(View→Output). Figure 6.15 shows an example of this feature. By using VSCode’s Output panel,

the user has access to features such as automatically scrolling down as new output is displayed and

clearing all output.

6.4.11 Progress Reporting

In order to efficiently and discretely inform the user about the progress of the analysis, a progress

reporting mechanism has been implemented. The server sends the progress information using the

workDoneProgress protocol which is part of the Language Server Protocol. In VSCode, this

information is exhibited in the status bar, as shown in Figure 6.16.

This mechanism supports the following states:

• Build step information (e.g. "Step 1/4: FROM ubuntu")

• "Creating container..."

• "Starting container..." (as shown in Figure 6.16)

• "Running nmap..."

These states were chosen since they reflect the status of the dynamic analysis progress and

the test container. Any time that Dockerlive is not performing one of these actions, the progress

reporting interface is not visible in VSCode.

6.5 Deployment 69

Figure 6.16: Progress report showing the status of the extension.

6.5 Deployment

Dockerlive has been deployed to the Visual Studio Code Marketplace 14 where it is available for

download, free of charge. At the time of writing, Dockerlive has 272 installs and two 5-star

reviews in the marketplace’s rating system. In order to better understand the usage of the

extension, Dockerlive also contains some telemetry features, implemented through Microsoft

Azure 15, although at the time of writing not enough data has been collected to perform a

significant analysis.

Dockerlive is also available as an open-source project at GitHub 16.

14Dockerlive’s VSCode Marketplace page is available at https://marketplace.visualstudio.com/ite
ms?itemName=david-reis.dockerlive

15Links to the mentioned tools can be found in Appendix A
16Dockerlive’s GitHub page is available at https://github.com/davidreis97/Dockerlive

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://github.com/davidreis97/Dockerlive

70 Dockerlive: Approach and Reference Architecture

Chapter 7

Empirical Evaluation

This chapter describes the controlled experiment with users performed in order to validate the

main hypothesis of this dissertation, defined in Section 5.2. Section 7.1 and Section 7.2 start by

presenting the main motivation, goals and research questions for this user study. The methodology

and approaches used are presented in Section 7.3. Section 7.4 presents the experimental tasks

that participants were asked to perform during the user study. Section 7.5 discusses the methods

used to collect data during the user study, while Section 7.6 analyses the methods used to recruit

participants with balanced characteristics. Section 7.7 presents a detailed analysis of the results of

the user study, as well as the main conclusions. The main threats to the validity of this user study

are discussed in Section 7.8. Finally, Section 7.9 summarizes the main findings of this user study

and how they help to answer the research questions and the dissertation’s main hypothesis.

The description of the procedures and approaches present in this chapter aims at allowing

other researchers to perform this user study in other contexts. Along the same line, all the

documents, resources and artifacts mentioned throughout this chapter (i.e. questionnaires,

instruction documents, task code, all data collected and data analysis scripts) are available in a

replication package, stored as a public repository on GitHub 1.

7.1 Motivation and Goals

The main motivation of this user study is to understand if the presence of live dynamic feedback

in the development environment can positively influence the efficiency of a developer working in

a Dockerfile. Understanding this makes it possible to validate the main hypothesis, presented in

Section 5.2.

This study also aims to understand how live dynamic feedback can affect the behaviour of

developers working in a Dockerfile. In other words, we wish to understand which Dockerfile

1Resources and artifacts related to this user study are available at https://github.com/davidreis97/Dock
erliveUserStudy

71

https://github.com/davidreis97/DockerliveUserStudy
https://github.com/davidreis97/DockerliveUserStudy

72 Empirical Evaluation

development activities are impacted by the presence of liveness, as well as how and why they are

impacted.

Furthermore, this user study should make it possible to validate some of the design choices that

were made during the design of the approach, described in Section 6.1, and its implementation,

described in Section 6.4.

Another goal is to try to understand if the developers feel that the environment is comfortable

and useful, regardless of the results obtained in other objective and precise measurements.

Finally, by combining the results of this study with the results of the survey described in

Chapter 4, it’s also possible to assess the perceived improvements brought by liveness in each

activity of Dockerfile development, paying special attention to the activities that the participants

of the survey identified as most time-consuming.

7.2 Research Questions

This user study aims to help answering the following research questions:

• RQ1 — How can the presence of live dynamic analysis feedback change the way that

developers spend time while developing Dockerfiles?

• RQ2 — How can the presence of live dynamic analysis feedback aid the developer in each

Dockerfile development activity?

• RQ3 — How can the presence of live dynamic analysis feedback change the user-perceived

helpfulness and overwhelmingness of the IDE while fixing a Dockerfile?

7.3 Methodology

In order to answer the research questions defined in Section 7.2 and validate the main hypothesis,

presented in Section 5.2, a controlled experiment with users was designed and performed. This

user study has the prospect of measuring and understanding the effect that an increase in live

feedback can have in the Dockerfile development process. For this purpose, this study compares

the use of two distinct Dockerfile development environments: an environment with live dynamic

feedback, and an environment without live dynamic feedback. As such, this controlled

experiment makes it possible to obtain the data required to compare the performance,

development process and personal opinion of developers executing Dockerfile development tasks

within a controlled environment, with and without live dynamic feedback. After obtaining this

data, we can compare the two environments and, therefore, draw conclusions which verify the

validity of the main hypothesis and answer the research questions.

Tasks. Participants should be asked to perform 3 independent tasks, which consist of editing

a Dockerfile until the container built from that Dockerfile behaves as previously indicated to the

7.3 Methodology 73

participant. In other words, each of the 3 tasks consists of having the participant fix a Dockerfile.

Tasks are individually described in Section 7.4.

Development Environment. Participants should be separated into two groups: a control group

and an experimental group. Both groups should be given access to equivalent materials and asked

to execute the same tasks. The difference between both groups is that the development

environment provided to the control group only has the Docker for Visual Studio Code

(Preview) 2 v1.2.1 extension (previously analysed in Chapter 3) while the experimental group

also has, in addition to the aforementioned extension, Dockerlive 3 v1.0.17, which is an

implementation of the reference architecture documented in Chapter 6. As such, users from the

experimental group have access to live dynamic and static analysis feedback, while users from

the control group only have access to live static analysis feedback, which, as described in

Chapter 3, can be quite limited.

Participant Assignment. In order to ensure, to the best of our abilities, that the only significant

difference between the control group and experimental group is the liveness in their development

environment, a set of demographic and personal experience questions have been placed in a

questionnaire. This questionnaire aims at gathering data related to the experiment and is

thoroughly described in Section 7.5.2.

By ensuring that the answers from both groups to these questions are similar, we can be more

confident that both groups have similar abilities and, therefore, reduce the risk of having the

participants’ own abilities significantly influence the results of the study.

As such, during the assignment of participants to the groups, two main aspects should be

considered: the number of participants in each group and their answers to the demographics and

personal experience questions should be as similar as possible.

More information on participant recruitment and selection is disclosed in Section 7.6.

Experimental Procedure. In order to ensure that the performance of the participant’s machine

does not affect the results of the experiment, all participants should execute the tasks in the same

remote machine, to which they connect using a remote desktop tool such as TeamViewer 2. In order

to solve any potential technical issues regarding the remote desktop environment, participants

establish an audio connection with the observing researcher at the start of the experiment.

After connecting to the remote desktop environment, participants should be given access to

the instructions document which includes the instructions and rules for the experiment, a tutorial

for the extension features that the participants have at their disposal inside the IDE and a link

to the questionnaire. Participants should be instructed to start reading and follow the instructions

presented in this document. The instructions documents for both groups is available in Appendix C

and the questionnaires for both groups are available in Appendix D.

2Links to the mentioned tools can be found in Appendix A
3Dockerlive can be found at https://marketplace.visualstudio.com/items?itemName=david-rei

s.dockerlive

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive

74 Empirical Evaluation

According to the instructions, participants start by answering the Demographic Information

and Skills and Experience section of the questionnaire. After this, they should be given 15

minutes to read the rest of the instructions document. They are also allowed to consult the

instructions document at any time during the execution of the experiment. The next section of the

instructions document contains a list of all the extension features they have at their disposal in the

IDE. Since the experimental group has access to the Dockerlive extension, this section of the

instructions document is slightly larger for the experimental group. Features are described using

a short paragraph and a few images. This ensures that all participants have a basic understanding

of the features provided by their IDE so that their performance isn’t excessively influenced by

their lack of experience using the provided extensions.

The next section of the instructions document presents the global rules and instructions for the

experiment. These rules are the following:

• In each task, participants are given a Dockerfile which they must edit until the container has

the desired behaviour.

• Each task ends once either (a) the participant notifies the observing researcher that they’ve

reached the desired behaviour or (b) the participant gives up or (c) the participant spends

more than 20 minutes in the same task.

• Participants may only edit the Dockerfile. No other file in the task folder needs to be edited

in order to achieve the desire behaviour. However, participants are allowed to make

temporary changes to the code (e.g. print a variable or comment a line), which must be

reverted for the task to be considered successfully executed.

• Participants are allowed to consult the instructions document at any time.

• Participants are allowed to consult any documentation and perform any web searches they

may need, at any time. However, they must do so in the remote computer where they’re

performing the tasks, so that it’s possible for the observing researcher to measure the time

spent in the web browser.

• If something isn’t clear in the instructions file or in the descriptions of the tasks themselves,

participants must alert the observing researcher immediately.

Participants then read the instructions for the first task, execute the first task, fill the

questionnaire section destined for the first task, and repeat these steps for the two other tasks.

During the task execution, the observing researcher performs time and context switch

measurements, which are described in Section 7.5.1.

After finishing the last task, the participants fill the After Tasks section of the questionnaire,

after which the experiment is over.

The remote desktop environment should be reset after every participant executes the tasks —

the browser history should be cleared, to avoid leading other participants to consult previously

7.4 Tasks 75

visited documentation and the Visual Studio Code’s recent file feature should be cleared as well.

Docker artifacts (images, containers, volumes) are cleared not only after each participant, but also

after each task.

7.4 Tasks

In this experiment, participants must perform three tasks. All tasks follow the same pattern: a

Dockerfile and a few other files are provided to the participant, and the participant must edit that

Dockerfile until the container exhibits the desired behaviour. The desired behaviour is described

in the instructions document.

7.4.1 First Task

In the first task, participants are given a folder containing the following files:

• Dockerfile — The Dockerfile which must be edited in order to achieve the desired container

behaviour.

• file — A file containing the text "some data"

• package-lock.json — A file containing information regarding the NodeJS project.

• package.json — A file containing information regarding the NodeJS project, including the

script which starts the project.

• start_file.js — The script which is executed by the project’s start script. It attempts to read

the file file and print it’s contents to the standard output. If an exception is thrown, it prints

"Could not read file" to the standard output.

In order to successfully complete the task, the following container behaviour must be observed:

• Container standard output must show the text some data.

• Container must have a node process running.

In this task, instead of adding the file start_file.js, the Dockerfile attempts to add the file

start_flle.js, which doesn’t exist. In order to fix this problem, the participant could change the

ADD instruction or the name of the file so that the name of the file in the Dockerfile matches the

name of the file in the file system.

Furthermore, the start_file.js script attempts to read the file file, which is not being added to

the container. By adding this file using the ADD instruction, the script becomes able to read the

intended file. After implementing these fixes, the container behaves as desired.

76 Empirical Evaluation

7.4.2 Second Task

In the second task, participants are given a folder containing the following files:

• Dockerfile — The Dockerfile which must be edited in order to achieve the desired container

behaviour.

• downloader.py — The python script which is executed at the container’s entrypoint. This

script downloads a 10MB file from the internet and attempts to write the downloaded data

to a file on the root directory of the container named 10Mio.dat.

In order to successfully complete the task, the following container behaviour must be observed:

• Container standard output must show the text Success!.

• Container standard output must not show: Error downloading file nor Error writing file.

• Container must download 9MB-15MB of data during its lifetime.

In this task, the Dockerfile’s parent image is an image tagged davidreis1997/df2:1. This

image contains the 10Mio.dat file in its root directory. However, this file is configured so that the

default user has no permissions to write. For this reason, the python script, which runs at the start

of the container with the default user permissions, is not able to write on it.

For this task, there are at least two possible solutions. The first one consisted of adding the

instruction USER root to the Dockerfile, which gives permissions to write on the 10Mio.dat.

Another possible fix is to add the instruction RUN chmod +777 10Mio.dat which gives all the

possible permissions to the 10Mio.dat file, including the permission to write. After implementing

one of these fixes, the container behaves as desired.

7.4.3 Third Task

In the third task, participants are given a folder containing the following files:

• Dockerfile — The Dockerfile which must be edited in order to achieve the desired container

behaviour.

• index.js — The script which is executed by the project’s start script. It attempts to launch a

server which attempts to bind to the IP address stored in the environment variable

IP_ADDRESS.

• package-lock.json — A file containing information regarding the NodeJS project.

• package.json — A file containing information regarding the NodeJS project, including the

script which starts the project.

7.5 Data Collection 77

In order to successfully complete the task, the following container behaviour must be observed:

• Container standard output must show the text Listening!.

• Container standard output must not show: Could not bind.

• Container must have a TCP service running on the exposed port 3000.

In this task, the Dockerfile defines the IP_ADDRESS environment variable using the

instruction ENV IP_ADDRESS 0.0.0.0 and launches the index.js script at the container’s

entrypoint using the command ENTRYPOINT npm run start. However, the start script in

package.json starts by defining the environment variable IP_ADDRESS to 3.3.3.3,

overwriting the definition of that environment variable in the Dockerfile.

In order to make sure that the value of the IP_ADDRESS defined in the Dockerfile is not

overwritten, the ENTRYPOINT instruction can be changed to ENTRYPOINT node index.js,

which directly starts the script without changing the environment variable. After implementing

this fix, the container behaves as desired.

7.5 Data Collection

This section details the two sources of data in this experiment — task measurements and the

participant questionnaire. Task measurement consist of precise numerical attributes, such as time,

which are measured by the observing researcher during the execution of the tasks. The participant

questionnaire provides data input directly by the participants through a questionnaire.

7.5.1 Task Measurements

Task measurements are made by the observing researcher during the execution of the tasks, and

are measured individually for each task. Two types of data are extracted: task times segmented
by context and context switches.

In order to assess the participant’s time usage during the tasks, time is measured separately

across different contexts. Four contexts were defined:

• Using VSCode (except when using VSCode’s integrated terminal).

• Using a terminal (including VSCode’s integrated terminal).

• Using a web browser.

• Consulting the instructions document.

All actions that participants can do during a task fit into one and only one of these contexts.

Therefore, the sum of the time spent in these four contexts is the total time spent by a participant

in a task. For example, if a participant, during a certain task, spent 1 minute using VSCode, 2

78 Empirical Evaluation

minutes using a terminal, 2 minutes using a web browser and 1 minute consulting the instructions

document, then that participant took 6 minutes to execute that task.

The number of context switches is also measured separately, indicating how many times the

participant switched to a certain context.

In order to measure these parameters, the Android app Turns Timer was used. Figure 7.1

shows an example screenshot of the app, including a description of the UI elements used for these

measurements.

Figure 7.1: Screenshot of the app Turns Timer. a) Switches to the context; b) Name of the context;
c) Time spent in the context

7.5.2 Participant Questionnaire

The participants are asked to answer a questionnaire in order to gather their opinion about the

features they have at their disposal and the tasks that they have to execute, as well as to gather some

demographic and personal experience information. This questionnaire is available in Appendix D.

In some questions, Likert-type rating scales are used. Likert scales are used to measure a

subject’s attitude — the personal level of agreement towards a certain statement [18]. In our

implementation for this user study, this scale consists of 5 options: Strongly Disagree, Disagree,

Neutral, Agree and Strongly Agree, which indicate the level of agreement of a respondent towards

a statement.

Before the experiment. Before the start of the experiment, participants answer the

Demographic Information and Skills and Experience sections of the questionnaire. These

7.6 Recruitment and Demographics 79

sections focus on gathering relevant demographic and professional experience information which

can then be used to ensure that both the control and experimental groups have similar

characteristics. This is very important, since the only significant difference between the two

groups should be the experimental condition: the live feedback and features that participants have

at their disposal. Demographic questions include the age, gender and highest degree of education

of participants. Questions related to the skill and experience of the participants include their

familiarity with technologies such as Docker, Dockerfiles, Visual Studio Code, NodeJS and

Python, which are answered using a Likert scale. Participants are also asked to disclose the

number of projects in which they’ve had contact with and edited a Dockerfile. This last question

intends to provide a more objective measurement of experience in Dockerfile development when

compared to the questions answered with Likert scales.

During the experiment. At the end of each task, the participants answer the section of the

questionnaire respective to the completed task. Although the questions are the same for the three

tasks, they must be answered separately, once for each task. The first question asks the participant

how clear and simple to understand the task instructions were, which can be used to ensure that the

instructions are consistently being well understood by all the participants. The second question

asks which IDE features were useful during the execution of the tasks.

After the experiment. After all the tasks, participants answer the only remaining section of the

questionnaire. The first and third part of this questionnaire section make it possible to understand

how much participants felt that their IDE environment helped them solve the proposed tasks. The

second part of this questionnaire section makes it possible to understand if they felt overwhelmed

by the amount of information available in the IDE — something that, as described in Section 3.2.1,

should be avoided. The fourth part of this questionnaire section consists of three open-ended

questions. The first question tries to understand which features the participant felt were the most

useful, as well as understand the reason behind their answer. The second and third questions try

to understand any problems that the participant might have run into during the tasks, as well as

possible suggestions on how to improve the level of liveness they used to solve the tasks.

7.6 Recruitment and Demographics

In the run performed, from the total of 20 participants who participated in the user study, 17 were

contacted directly. The vast majority of these participants were students or very recent graduates

from the integrated masters in Informatics and Computer Engineering at the Faculty of

Engineering of the University of Porto. The remaining participants were also students from

software-engineering related courses. During this initial contact, a few of the demographic and

personal experience questions were asked. According to their responses, they were placed in one

of the groups, so that the groups would be as balanced as possible. 3 other participants responded

to a call for participants sent via email to 412 MSc students in software-engineering related

80 Empirical Evaluation

courses from the Faculty of Engineering of the University of Porto. These 3 participants filled a

separate preliminary questionnaire containing just the demographic and personal experience

sections of the main questionnaire, described in Section 7.5.2, and were placed in one of the

groups according to their answers.

7.7 Data Analysis

A run of this user study was performed with a sample of 20 participants — 10 participants

belonged to the control group and the other 10 belonged to the experimental group.

This section compares the data retrieved from the both groups using statistical tests which

analyse if two sets of samples come from the same distribution, answering the research questions

presented in Section 7.2 and, ultimately, the main hypothesis presented in Section 5.2.

In this user study, the Mann-Whitney U statistical test [25] was chosen to prove the significance

of the differences between the two groups, since this test does not assume that the data belongs to

a normal distribution and can be robust to a broken assumption. This test was used with a 95%

confidence level.

Furthermore, regarding the questions which use a Likert scale, each step of the Likert scale

was mapped to a numerical value:

• Strongly Disagree — 1

• Disagree — 2

• Neutral — 3

• Agree — 4

• Strongly Agree — 5

This mapping allows the processing of Likert scale questions using methods which handle

numerical data, such as the arithmetic mean, standard deviation or the Mann-Whitney U test.

7.7.1 Demographic Information

Regarding demographic information, the participants provided their gender, age and highest

completed degree of education at the time of the experiment. Since, as expected, the gender or

age of participants did not influence the results in any way, Figure 7.2 presents just the highest

completed level of education of the participants.

The highest completed degree of education slightly favours the control group, where 4

participants already had completed a master’s degree. However, since the groups were balanced

in order to have similar levels of experience with Docker technologies, we believe that this slight

imbalance should not be observable in the final results.

7.7 Data Analysis 81

Figure 7.2: Participant’s highest completed level of education, separated by group.

7.7.2 Skills and Experience

Regarding the skills and experience of the participants, the following Likert scale questions were

answered:

• Q1.1 — At this point in time I am comfortable working with Docker technologies.

• Q1.2 — At this point in time I am comfortable working with Dockerfiles.

• Q1.3 — At this point in time I am comfortable working with Visual Studio Code.

• Q1.4 — At this point in time I am comfortable working with Visual Studio Code to edit

Dockerfiles.

• Q1.5 — At this point in time I am comfortable working with linters.

• Q1.6 — At this point in time I am comfortable working with syntax highlighters.

• Q1.7 — At this point in time I am comfortable working with Unix operating systems.

• Q1.8 — At this point in time I am comfortable working with Javascript and NodeJS.

• Q1.9 — At this point in time I am comfortable working with Python.

• Q2.1 — I have a good enough understanding of English so that I can confidently answer

this survey and understand sentences with Docker and Unix related terms.

Table 7.1 shows the mean and standard deviation of the answers provided by both groups. A

two-tailed Mann-Whitney U was also performed in order to assess if there were significant

differences between the two groups, with the null hypothesis that both groups belong to the same

distribution and the alternative hypothesis that the groups show a statistically significant

82 Empirical Evaluation

difference in results. Considering a confidence level of 95%, since none of the tests shows a ρ

value where ρ < 0.05, we can say that there is not enough difference between the experimental

and control group answers to reject the null hypothesis. In other words, the groups didn’t provide

significantly different answers to this set of questions.

Table 7.1: Mean, Standard Deviation and Mann-Whitney U for Likert questions performed in the
Skills and Experience section.

Question
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q1.1 3.7 0.78 3.7 1.27 45 0.71
Q1.2 3.6 0.8 3.3 1.87 57.5 0.58
Q1.3 4.3 0.46 4.6 0.49 35 0.2
Q1.4 3.8 1.08 3.8 1.25 49 0.97
Q1.5 3.5 1.02 3.5 0.5 50 0.97
Q1.6 4.1 0.94 3.8 0.75 62 0.34
Q1.7 3.8 0.6 3.8 0.75 47 0.82
Q1.8 4.2 0.87 4 0.89 56 0.66
Q1.9 3.1 1.13 3.3 1.18 44 0.66
Q2.1 4.7 0.46 4.9 0.3 40 0.3

Participants also provided the number of projects where they worked on which had

Dockerfiles (Q3.1), where they used Dockerfiles created by others (Q3.2) and where they

created/updated Dockerfiles (Q3.3). Notice that only Q3.3 implies that the participant actually

developed a Dockerfile, being, for that reason, perhaps the most important question from these

three.

Table 7.2: Mean, Standard Deviation and Mann-Whitney U for project questions performed in the
Skills and Experience section.

Question
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q3.1 4.6 2.54 4.6 2.50 45.5 0.75
Q3.2 2.6 1.69 3.2 2.32 43.5 0.65
Q3.3 2.9 2.07 2.2 1.67 60 0.47

Table 7.2 presents the mean, standard deviation and, in similar fashion to the analysis

performed for the Likert scale questions, a two-tailed Mann-Whitney U test which aims to assess

if the differences between the two groups were statistically significant. Once again, considering a

confidence level of 95%, since none of the tests shows a ρ value where ρ < 0.05, we can say that

there is not enough difference between the experimental and control group answers to reject the

null hypothesis. In other words, the groups also provided similar answers to this set of questions.

In sum, the answers provided to these questions show that both groups had similar previous

experiences working with Dockerfiles — both in their own opinion and also in the number of

7.7 Data Analysis 83

projects they had worked before. These results provide a solid base for the conclusions presented

in the rest of this analysis, since they diminish the possibility of one of the groups performing

better on the proposed tasks due to having more experience with the technologies or systems used.

7.7.3 Task Understanding

It’s important to verify if all the participants understood the task’s instructions clearly and easily,

since the challenges that they face during the execution of the tasks should come from the

difficulties presented by the tasks themselves and not from the interpretation of the instructions.

As such, three Likert scale questions were performed in order to assess the participant’s

understanding of the proposed tasks — one question for each of the tasks. In order to ensure that

one of the groups didn’t present a significantly different level of understanding than the other

group, a two-tailed Mann-Whitney U was also performed. The null hypothesis for this test is

that both groups belong to the same distribution and the alternative hypothesis that the groups

show a statistically significant difference in results.

Table 7.3: Mean, Standard Deviation and Mann-Whitney U for Likert scale questions regarding
the understanding of the three proposed tasks.

Task
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Task 1 4.4 0.66 4.6 0.49 43 0.58
Task 2 4.8 0.4 4.8 0.4 50 0.95
Task 3 5 0 4.8 0.4 60 0.17

Table 7.3 shows the results of these calculations for each of the three tasks. Considering a

confidence level of 95%, since none of the tests shows a ρ value where ρ < 0.05, we can say that

there is not enough difference between the experimental and control group answers to reject the

null hypothesis. In other words, both groups had similar success in understanding the instructions

of the task.

Furthermore, looking at the full set of answers provided, it can be observed that from a total of

60 answers obtained to these three questions, only 1 answer was less than Agree in the Likert scale.

As such, it can be comfortably stated that the participants generally had no trouble understanding

the objective of the task or the task’s instructions.

It can also be noticed that the mean answer, in both groups, tends to grow with each question.

This is possibly due to the fact that the set of instructions for each of the three tasks had similar

structure and, therefore, participants got more comfortable with the format of the instructions

throughout the experiment.

84 Empirical Evaluation

7.7.4 Total Task Time

In order to help answer the research question RQ1, mentioned in Section 7.2 and validate the

main hypothesis of this dissertation, mentioned in Section 5.2, we analyse and compare the time

that participants from both groups took to solve the designated tasks. This section focuses on this

analysis.

Figure 7.3: Total time used by participants in each task, separated by group.

Figure 7.3 shows a boxplot representation of the distribution of the total times used by

participants in order to finish each of the three tasks. From this figure, it’s possible to see that in

all the tasks, the experimental group generally finished the three tasks significantly faster than the

control group.

In order to confirm that the experimental group was significantly faster than the control group

in the three tasks, three one-tailed Mann-Whitney U tests were performed. The null hypothesis for

these tests is that the results from both groups belong to the same distribution, while the alternative
hypothesis is that the experimental group shows significantly lower results.

Table 7.4: Mean, Standard Deviation and Mann-Whitney U for the total times used by participants
in each of the tasks. Times are in the format mm:ss.

Task
Control Experimental

One-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Task 1 14:31 04:52 07:23 02:19 86 < 0.01
Task 2 19:33 01:13 09:06 03:04 100 < 0.01
Task 3 16:18 04:45 10:17 02:07 87 < 0.01

Table 7.4 shows the results of these tests. Considering a confidence level of 95%, since in

all three tests ρ < 0.05, it’s possible to confidently state that the participants in the experimental

7.7 Data Analysis 85

group were significantly faster than the participants in the control group.

Directly addressing the main hypothesis of this dissertation, as well as the research question

RQ1, these results demonstrate that developers working in an environment with richer feedback

and a higher level of liveness were significantly more efficient than developers working in an

environment without those features.

Since the participants and the observing researcher have a limited amount of time to spend

in this experiment, the time spent in each task has been limited to a maximum of 20 minutes.

For the purpose of this analysis, cases where the participant exceeds the limit task time of 20

minutes were treated as if the participant completed the task at the time that they were interrupted

(around 20 minutes). This approach was chosen since, despite yielding results which are lower

from the truth (i.e. these participants would have finished in more than 20 minutes), all of these

cases happened in the control group. This fact ensures that this approach doesn’t negatively affect

the conclusions drawn in this section, since without the 20 minutes time limit, the difference

between the control and experimental group would be either equal or larger, but never smaller. An

alternative approach would be to exclude these participants from the user study. However, this

would result in a significantly lower number of observations in the control group, which would be

negative for the user study.

7.7.5 Segmented Task Time

Figure 7.4: Total time used by participants in each task, separated by context and group.

86 Empirical Evaluation

As described in Section 7.5.1, the time that developers spent in each task was counted separately

for 4 different contexts: VSCode, Terminal, Web Browser and Tutorial. As described in

Section 7.5.1, the Tutorial context accounts for all the time that a participant spends consulting

the instructions document. The sum of the times spent in each of these contexts equals the total

task time, analysed in Section 7.7.4.

By comparing the time that the experimental group and the control group spent in each of the

contexts, we can try to understand how the increased live feedback changes the way that developers

spend time during the development process. This also helps answering the research question RQ1,

mentioned in Section 7.2.

Figure 7.4 shows the boxplot representation of the time spent by the participants in the contexts

VSCode and In Tutorial. From these graphs, it’s possible to see that participants from both groups

spent similar amounts of time in these contexts. In order to confirm that the difference observed is

not significant, two-tailed Mann-Whitney U tests were performed, with the null hypothesis that

both groups belong to the same distribution and the alternative hypothesis that the groups show

a statistically significant difference in results.

Table 7.5: Mean, Standard Deviation and Mann-Whitney U for project questions regarding the
time spent in VSCode and in the instructions document. Times are in the format mm:ss.

Context Task
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

VSCode
Task 1 05:02 02:00 06:11 02:04 34 0.24
Task 2 08:55 02:07 06:55 02:23 72 0.1
Task 3 06:25 02:36 09:01 02:18 24 0.054

Instructions
Task 1 00:48 00:32 00:54 00:35 50.5 1
Task 2 00:33 00:13 00:55 00:36 34.5 0.26
Task 3 00:26 00:26 00:39 00:31 35 0.27

Table 7.5 shows the result of these tests, as well as the mean and standard deviation of the

observations collected from both groups. The Mann-Whitney U test, considering a confidence

level of 95%, shows that there were no significant differences between the two groups, since for

all tests ρ > 0.05. However, with a slightly lower confidence level of 90%, the test shows that

participants from the experimental group spent more time in VSCode than participants from the

control group in Tasks 2 and 3. It’s feasible to hypothesize that some participants from the

experimental group spent slightly more time inside Visual Studio Code when compared to

participants from the control group due to the fact that the experimental group had more features

and feedback in VSCode. Similarly, some participants in the experimental group spent a superior

amount of time reading the tutorial possibly due to the fact that they were using an environment

with a set of features which they had never used before, meaning that they had to spend some

time exploring and experimenting with the features that they had at their disposal. This

hypothesis is further encouraged by the fact that median values for the time spent by the

participants in the experimental group in the tutorial document slightly decreased from each task

7.7 Data Analysis 87

to the next, becoming progressively closer to the median of the participants from the control

group, leading to believe that participants were progressively getting more familiar with the

environment during the experiment.

Figure 7.4 also shows a boxplot representation of the time spent by the participants in each of

the groups in the Terminal and Web Browser contexts. These graphs show that participants from

the experimental group tend to spend less time than the control group in these two contexts. In

order to verify if this difference is statistically significant, a one-tailed Mann-Whitney U test was

performed. The null hypothesis for this test is that the results from both groups belong to the same

distribution, while the alternative hypothesis is that the experimental group shows significantly

lower results.

Table 7.6: Mean, Standard Deviation and Mann-Whitney U for project questions regarding the
time spent in the terminal and in the web browser. Times are in the format mm:ss.

Context Task
Control Experimental

One-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Terminal
Task 1 06:20 02:06 00:02 00:04 100 < 0.01
Task 2 06:34 01:47 00:01 00:01 100 < 0.01
Task 3 06:13 01:45 00:00 00:00 100 < 0.01

Web Browser
Task 1 02:22 01:26 00:17 00:18 85 < 0.01
Task 2 03:32 00:54 01:16 01:26 88 < 0.01
Task 3 03:14 01:37 00:37 00:37 91 < 0.01

Table 7.6 shows the results of these tests for the Terminal and Web Browser contexts.

Considering these results and a confidence level of 95%, since ρ < 0.05 in all of the

Mann-Whitney U tests, it’s possible to confirm that the experimental group spent significantly

less time than the control group in the Terminal and Web Browser contexts in every tasks. This

discrepancy may be due to the fact that the live feedback and the automatic building and

instantiation of the container in the experimental environment drastically reduced the need to use

the terminal in order to solve the tasks. Along the same line, if the participants from the

experimental group didn’t need to use command line tools, then they also had no need to consult

documentation for those tools, resulting in participants from the experimental group also

spending less time in the web browser.

In summary, and helping to answer the research question RQ1, these results show evidence

that developers with access to live dynamic feedback in their environment can tend to spend less

time in the terminal and have less need to consult resources using a web browser. From the data

displayed in this section, we can also see that the differences regarding the total task time between

the two groups, demonstrated in Section 7.7.4, largely come from the experimental group spending

less time in the terminal and in a web browser. Finally, we can also see that the increased liveness

and reduced time spent in those two contexts doesn’t significantly affect the time spent in other

contexts.

88 Empirical Evaluation

7.7.6 Context Switches

This section attempts to help answering the research question RQ1, defined in Section 7.2, by

comparing the number of context switches that participants perform during the execution of the

tasks. In order to understand if one of the groups tends to change contexts more times than the

other in the same time interval, we calculate the number of context switches per minute by dividing

the number of context switches performed by each participant by the minutes that each participant

took to finish a task.

Figure 7.5 presents a boxplot graph comparing the context switches per minute for both groups.

From the observation of this graph, it’s possible to see that there is a tendency for the experimental

group to perform less context switches per minute spent in all tasks.

Figure 7.5: Context switches per minute in each task, separated by group.

In order to verify if this decrease is significant, a one-tailed Mann-Whitney U test was

performed. The null hypothesis for this test is that the results from both groups belong to the

same distribution, while the alternative hypothesis is that the experimental group shows

significantly lower results.

Table 7.7: Mean, Standard Deviation and Mann-Whitney U for the number of context switches
per minute by participants in each of the tasks.

Task
Control Experimental

One-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Task 1 1.58 0.43 0.79 0.35 93 < 0.01
Task 2 1.44 0.40 0.67 0.23 95 < 0.01
Task 3 1.58 0.46 0.58 0.14 100 < 0.01

7.7 Data Analysis 89

Table 7.7 shows the results of these tests. Considering these results and a confidence level

of 95%, since ρ < 0.05 in all of the Mann-Whitney U tests, it’s possible to confirm that the

experimental group performed significantly less context switches per minute in each of the tasks,

when compared to the control group. Helping understand the way that developers spend time with

liveness in their environment, this data reveals that one of the consequences of having increased

live feedback while developing Dockerfiles is that developers tend to switch between contexts less

times.

Figure 7.6 shows the total number of context switches performed to each context (i.e. for

the context VSCode, shows the number of times that the participants switched to the VSCode
context in the three tasks). It’s noticeable from this graph that the users from the control group

switched between the VSCode and Terminal contexts many more times than the experimental

group. Looking at these results, we consider that the constant need to travel between the VSCode
and Terminal can be disruptive and generally negative for the development experience.

Figure 7.6: Total context switches to each context, separated by group.

Furthermore, from the results presented in this section and the total time that participants take

to finish the tasks, discussed in Section 7.7.4, we can see that participants from the experimental

group generally take less time to finish the tasks and perform less context switches per minute. We

believe that the reduced need to switch from one context to another may be one of the factors that

contributes to the decrease in the time required to finish a task.

7.7.7 Feature Usage

Participants from both groups were asked to indicate which features they used during the execution

of each task. We analyse this data in order to discover which features were most used during

the experiment. This can help validate the feature choices that were made during the design of

the approach, described in Section 6.1, and help direct future development efforts. Participants

were able to choose from a list of the features that directly matched the features described in

90 Empirical Evaluation

the instructions document or input any text using a text field. They could also choose the option

’None’ if they felt that no feature in particular had been helpful in that task.

Figure 7.7 presents the feature usage reported by the control group. The control group, which

had substantially less features at their disposal, frequently felt that there wasn’t a single feature

that had been helpful in the execution of the task. In fact, from the total of 30 tasks that were

executed by the 10 participants in this group, in 11 of those tasks the participant reported that none

of the available features was helpful. Furthermore, some participants mentioned the terminal and

the web search as helpful features. These features do not provide live feedback and the terminal

in particular requires manual work from the developer which would not be as needed in a live

environment.

Figure 7.7: Feature usage reported by the control group in all tasks.

Figure 7.8 presents the feature usage reported by the experimental group. Users identified

two features in particular as being used in almost every task: Container log output (30/30 tasks)

and Image Build and Container Runtime Errors (28/30 tasks). This is probably due to the fact

that building an image and a container and inspecting the container’s standard output are steps

that may need to be performed very often while debugging a Dockerfile. As such, continuously

raising a container and continuously displaying the container’s standard output in the IDE without

requiring any effort from the developer can become very useful features, as displayed by the graph.

Other features can be a bit more situational and, therefore, might have been useful in only a few

of the tasks. Still, most of the live features described in the instructions document were reported

to be useful in at least one third of the tasks executed. It can also be noted that even with the

live dynamic analysis features, static analysis features were still perceived as useful, being used

in 14 of the 30 total tasks, reinforcing the idea presented in Section 6.1 that live dynamic analysis

features are not necessarily a replacement for live static analysis features, but rather a complement.

Finally, it can be noticed that the features "Open shell in container" and "Docker management"

weren’t used by any participant. For the first feature, this can be due to the fact that participants

from the experimental group generally didn’t feel the need to access the terminal, as shown in

Section 7.7.5. The lack of usage of the second feature can be due to the fact that since Dockerlive

automatically builds and instantiates a container as the Dockerfile is being edited, participants

from the experimental group felt no need to perform actions related to the management of Docker

artifacts.

7.7 Data Analysis 91

Figure 7.8: Feature usage reported by the experimental group in all tasks.

7.7.8 Dockerfile Development Activity Improvement

In order to understand how the presence of live feedback helps in each of these activities,

particularly in the most time-consuming ones, participants answered the following Likert scale

questions, which directly address the development activities identified in the survey described in

Chapter 4:

• Q1 — During the execution of the tasks, the feedback provided in the IDE helped me finding

out what parent image is the most suitable.

• Q2 — During the execution of the tasks, the feedback provided in the IDE helped me finding

out what are the dependencies of the system that must be added to the docker image.

• Q3 — During the execution of the tasks, the feedback provided in the IDE helped me finding

out what are the Dockerfile commands that I need.

• Q4 — During the execution of the tasks, the feedback provided in the IDE helped me trying

to understand if the resulting container is working as intended (e.g., running commands and

tests on the container).

• Q5 — During the execution of the tasks, the feedback provided in the IDE helped me trying

to understand why the resulting container is not working as intended.

• Q6 — During the execution of the tasks, the feedback provided in the IDE helped me finding

out which commands are responsible for the container misbehaviour.

• Q7 — During the execution of the tasks, the feedback provided in the IDE helped me

rebuilding the image and re-running the container to confirm that it is working as intended.

92 Empirical Evaluation

Figure 7.9: Perceived helpfulness of the development environment in each Dockerfile development
activity.

Figure 7.9, which presents the answers to the questions Q1-Q7, shows that participants from

the experimental group tended to respond more positively to these questions, particularly in

questions Q4-Q7. In order to verify if the experimental group provided significantly more

positive answers, a one-tailed Mann-Whitney U was performed with the null hypothesis that the

results from both groups belong to the same distribution and the alternative hypothesis that the

experimental group shows significantly higher results.

Table 7.8: Mean, Standard Deviation and Mann-Whitney U for Likert scale questions regarding
each of the Dockerfile development activities.

Question
Control Experimental

One-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q1 2.2 1.08 3 1.26 32 0.08
Q2 2.3 1.19 3.2 1.4 31.5 0.08
Q3 2.9 1.58 3.2 1.25 44.5 0.35
Q4 2.4 1.2 4.7 0.64 8 < 0.01
Q5 2.1 1.04 4.8 0.4 6 < 0.01
Q6 2.1 1.14 4.9 0.3 5.5 < 0.01
Q7 2 1.34 5 0 5 < 0.01

According to the results presented in Table 7.8, considering a confidence level of 95%, there

isn’t a significant difference in the responses to questions Q1, Q2 and Q3, since for those 3 tests

ρ > 0.05. In other words, participants did not believe that (Q1) the live dynamic feedback

significantly helped finding out what parent image is most suitable, (Q2) finding out what are the

dependencies of the system that must be added to the docker image or (Q3) finding out the right

Dockerfile commands. In Q1, this is can be due to the fact that the participants were asked to edit

an existing Dockerfile, which already had a valid base image, and therefore never had to go

7.7 Data Analysis 93

through the task of choosing a parent image. In Q2, this can be due to the fact that there isn’t a

feature in Dockerlive dedicated to the management of dependencies, although some of the

features available, such as automatically building an image and underlining any Dockerfile

instructions that fail, can aid developers in this activity to a certain degree. In Q3, this can be due

to the fact that the static analysis extension provides some access to Dockerfile documentation,

and since both the experimental group and the control group have access to this feature, there

isn’t a significant difference between both groups.

However, in the tests for questions Q4, Q5, Q6 and Q7, ρ < 0.05. This shows that

participants in the experimental group perceived their environment significantly more helpful

than the control group in the activities of (Q4) trying to understand if the resulting container is

working as intended, (Q5) trying to understand why the resulting container is not working as

intended, (Q6) finding out which commands are responsible for the container misbehaviour and

(Q7) rebuilding the image and re-running the container to confirm that it is working as intended.

This can be due to the fact that the live environment’s features, which are available only to the

experimental group, directly help the developer in these development activities. It should also be

noticed that in the experimental group the mean answer for these questions was very high

(between Agree (4) and Strongly Agree (5)) and the standard deviation was relatively low

(σ < 1), indicating that these participants consistently rated very highly the help provided by

their environment in these development activities.

In Chapter 4, the Dockerfile development process was analysed and, by inquiring the opinion

of experienced developers using a survey, the tasks where developers feel like they spend the

most time were identified. According to the answers to that survey, presented in Section 4.4, the

development activities targeted with questions Q4, Q5, Q6 and Q7 were some of the activities

that were generally identified as most time consuming. Therefore, the results presented in this

section in combination with the results of the Dockerfile development survey indicate that live

dynamic analysis feedback can significantly help developers during some of the most

time-consuming activities of Dockerfile development. This also helps us answer the research

question RQ2, defined in Section 7.2.

7.7.9 Usefulness and Usability

In order to assess the perceived usefulness and usability, helping to answer the research

question RQ3 defined in Section 7.2, at the end of experiment each participant responded to the

following questions, answered with a Likert scale:

• Q1.1 — It was easy working with the remote desktop environment.

• Q2.1 — Having feedback displayed in the IDE (instead of, for example, in an external tool)

helped me solve the tasks more quickly.

94 Empirical Evaluation

• Q2.2 — I found it easy to get all the information I needed to solve the tasks without leaving

the IDE.

• Q2.3 — The feedback provided inside the IDE made it easier to solve the designated tasks.

• Q3.1 — I felt overwhelmed by the quantity of information displayed inside VSCode.

• Q3.2 — I felt overwhelmed by the way the information was displayed inside VSCode.

Question Q1.1 isn’t directly related to the usefulness and usability of the participant’s

environment. However, if participants have trouble using the remote environment, it’s possible

for their performance and their perspective on the usability of the development environment to be

negatively affected. For that reason, it’s important to verify that the remote environment didn’t

have a negative impact and was easy to work with, both in the experimental and in the control

group. As such, a two-tailed Mann-Whitney U test was performed. The null hypothesis for this

test is that both groups belong to the same distribution and the alternative hypothesis that the

groups show a statistically significant difference in results.

Table 7.9: Mean, Standard Deviation and Mann-Whitney U for Likert scale questions regarding
the remote environment used during the experiment.

Question
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q1.1 4.4 0.49 4.6 0.66 38 0.32

Table 7.9 presents the results obtained with the answers to these questions. Considering a

confidence level of 95%, since ρ > 0.05, these results show evidence that there isn’t a significant

difference in the results to Q1.1 from both groups. On average both groups answered between

a Agree and a Strongly Agree with a small standard deviation, indicating that most participants

generally had no trouble using the remote environment. This minimizes the chance of the remote

environment influencing the rest of the results presented in this chapter.

Questions Q2.1, Q2.2 and Q2.3 aim to test if the experimental group felt more than the control

group that the features that they had at their disposal were helpful and useful in the task execution.

As such, a one-tailed Mann-Whitney U was performed. The null hypothesis for this test is that

the results from both groups belong to the same distribution, while the alternative hypothesis is

that the experimental group shows significantly higher results.

7.7 Data Analysis 95

Table 7.10: Mean, Standard Deviation and Mann-Whitney U for Likert scale questions regarding
the usefulness of the features provided.

Question
Control Experimental

One-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q2.1 3.1 1.45 4.9 0.3 12.5 < 0.01
Q2.2 1.7 1.19 4.2 0.75 8 < 0.01
Q2.3 2.9 1.37 4.9 0.3 3 < 0.01

Considering a confidence level of 95%, since ρ < 0.05 in all the tests presented in Table 7.10,

we can conclude that participants from the experimental group displayed a statistically significant

tendency to find their environment more useful and helpful than participants from the control

group. These results also help us answer the research question RQ3, showing evidence that users

perceive environments with live dynamic analysis features as more helpful and useful than

environments with less liveness.

The purpose of the questions Q3.1 and Q3.2 is to verify if the participants’ environment,

particularly the experimental environment since it has much more information available to the

developer. Furthermore, these questions make it possible to verify if the participants perceive one

of the environments as more overwhelming than the other. In order to verify if there is a significant

difference in the perceived overwhelmingness between both groups of participants, a two-tailed

Mann-Whitney U test has been performed. The null hypothesis for this test is that both groups

belong to the same distribution and the alternative hypothesis that the groups show a statistically

significant difference in results.

Table 7.11: Mean, Standard Deviation and Mann-Whitney U for Likert scale questions regarding
the overwhelmingness of the environment used for the tasks.

Question
Control Experimental

Two-Tailed
Mann-Whitney U

x̄ σ x̄ σ U ρ

Q3.1 1.7 0.78 1.6 0.66 52.5 0.87
Q3.2 1.8 0.75 1.6 0.66 57 0.59

Table 7.11 presents the results obtained with the answers to these questions. Once again,

considering a confidence level of 95%, since ρ > 0.05 in all the tests we can conclude that both

groups presented similar opinions in regards to the overwhelmingness of their environment. In

both the control group and experimental group the mean response was low and no answers above

"Neutral" in the Likert scale were given.

As described in the analysis of the state-of-the-art approaches to liveness and feedback in

IDEs, presented in Section 3.2, one of the pitfalls that live development environments can fall

into is to display too much information in a way that is not friendly for the user, making the

user feel overwhelmed. The results presented in this section show some evidence that Dockerlive

successfully avoids these problems.

96 Empirical Evaluation

7.7.10 Long-text Feedback

Participants were also asked to answer a three free text questions. This section presents a summary

of the answers provided to these questions.

Useful features. The first question asked participants what features were most useful in their

environment, and why. In the control group, since their environment did not have as many

features as the experimental group did, the answers were generally shorter. Four participants

mentioned the quick access to Dockerfile documentation via static analysis, while other three

participants mentioned the Docker management feature where they could manually interact

with Docker artifacts using a menu in VSCode. The three remaining participants did not name

any feature. In the experimental group, 7 participants mentioned the automatic building and
instantiation of the container as one of the most useful features. Two of these users mentioned

that this feature was valuable to them due to the "instant feedback [that] allows for quicker

identification of errors". Another participant stated: "I could see myself using [Container log

output and automatic image build] several times throughout my day to day tasks". Other features

frequently mentioned were the file system explorer, the container performance graphs, the

service discovery, environment variables change detection and visualization of processes
running in container. The general reasoning behind theses answers is that these features provide

quick ways to inspect the container in a constantly updating way. In general, these results were

consistent with the results of the feature usage questions, presented in Section 7.7.7.

Problems with level of feedback. The second question asked participants to identify problems

they had working with the level of feedback that they were provided. Participants from the

control group mentioned "Lack of debugging information", "Leaving IDE workflow too often",

"Lack of feedback in terms of knowing the origin of the error", and "Took some time finding out

what was causing the problem". Participants from the experimental group did not mention any of

these problems. The problems reported by participants from the control group are very much in

line with the problems identified in the Dockerfile development survey presented in Chapter 4,

further sustaining our hypothesis that the current Dockerfile development workflow has problems

that could be tackled with live dynamic feedback in the developer’s environment. In the

experimental group, only two participants reported a problem. Both problems were related to

their own inexperience and the initial learning curve to Dockerlive. This was expected, since they

had no previous experience with Dockerlive.

Improvement suggestions. The third and final question asked participants how they’d improve

the level of feedback they had to work with. In the control group, 3 participants expressed that

they would like to have features which would give them more feedback on the Dockerfile under

development. 3 other participants mentioned that they’d like to have features which would give

them a quicker path to perform Docker-related actions. 4 other participants didn’t identify any

way to improve the level of feedback, one of which even stated that "The IDE can’t think for you,

7.7 Data Analysis 97

the help it provides is already what you can expect as a software developer". In general, these

responses show that liveness may not be something that developers immediately identify as a

potential improvement to their Dockerfile development environment, even though the findings

reported in this user study clearly show that it is. In the experimental group, 1 participant

mentioned that the image build errors could be more precise and point to the specific part of the

instruction that is failing instead of the entire instruction. Another participant mentioned that

showing suggestions for common mistakes would be an improvement. 7 other participants

expressed that they had no improvements to suggest.

7.7.11 Experience and Total Task Time

This section aims at understanding if the participant’s experience with Docker technologies has

any impact in the time that participants take to finish the tasks.

Considering the questions asked regarding the participant’s experience, analysed in

Section 7.7.2, it would be reasonable to expect a relationship between the experience of each

participant and the time that they take to execute the tasks within each participant group. In

particular, participants who reported having more experience could be expected to be faster than

other participants from the same group who reported having less experience.

However, this is not the case. We were unable to find a clear relationship between a

participant’s responses to the personal experience questions and the participant’s performance

during the tasks. As an example, Figure 7.10 shows that a clear relationship between the total

time spent in Task 3 and the Dockerfiles created/updated by each participant doesn’t seem to

exist. Similar results were found for the other tasks.

Figure 7.10: Total time spent in Task 3 and number of Dockerfiles edited.

This can be due to the fact that since all participants have very similar backgrounds: almost

all the participants are students — or very recent graduates — from the integrated masters in

Informatics and Computer Engineering at the Faculty of Engineering of the University of Porto.

Therefore, since all participants went through similar learning experiences prior to the study, the

number of Dockerfiles created/updated by each participant may not have a very big impact in the

participant’s performance.

98 Empirical Evaluation

Nonetheless, it was still important to include these questions in order to ensure in the best

way possible that the groups have balanced levels of experience when it comes to the technologies

used during the user study. At a larger scale, with an increased number of participants, this would

become even less of a concern, since the larger the groups, the more they would tend to be balanced

by nature.

7.8 Threats to validity

The user study described in this chapter aims to validate the main hypothesis, presented in

Section 5.2, and help answer the research questions, presented in Section 7.2. This section

discusses the characteristics of this user study which can pose a threat to the validity of the

conclusions drawn in this chapter.

Participant’s background. All the participant’s from this user study have very similar

professional backgrounds. Almost all the participants (19/20) are students or very recent

graduates from a MSc in Informatics and Computer Engineering at the Faculty of Engineering of

the University of Porto. As such, it may not be completely safe to generalize the conclusions

drawn in this user study to a wider audience, namely an audience with strong professional

experience in programming or Docker technologies. However, the methodology used in this user

study should be viable and produce valuable results if executed with more experienced

participants. As such, it would be interesting, as future work, to perform a run of this user study

with more experienced participants and even to compare the results with the results presented in

this chapter.

Sample size. The sample size for this user study could be considered relatively small. A larger

sample size would have allowed to perform a completely random grouping of participants, since

the higher the number of participants, the more naturally balanced randomly generated groups can

become. However, given the very significant disparity of results from the control and experimental

group, evidenced in Section 7.7, we would not expect a significant difference in the conclusions

drawn from this chapter compared to the conclusions drawn a user study performed with a larger

set of participants.

Control group environment. The control group’s environment was designed to be as close to

the "typical" Dockerfile development environment as possible. Therefore the control groups

environment is the combination of two tools: The Visual Studio Code IDE, which was the most

popular development environment amongst DevOps developers in 2019 4, and the Docker for

Visual Studio Code (Preview) 5 extension, which was the most commonly used extension during

4Stack Overlow Developer Survey 2019 available at https://insights.stackoverflow.com/survey/
2019

5Links to the mentioned tools can be found in Appendix A

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

7.8 Threats to validity 99

Dockerfile development according to the survey described in Chapter 4. However, there is a

concern that other Dockerfile development tools, such as the ones presented in Chapter 3, might

benefit the participants in ways that this environment didn’t. Nevertheless, a baseline

environment had to be chosen and it’d be impossible to account for the favourite development

tool of each participant, so we chose the set of tools that, to the best of our knowledge, is most

commonly used for Dockerfile development nowadays.

Task complexity. Since each participant only had a limited amount of time to spend in this user

study, the tasks proposed couldn’t be very complex, as it would take too long for the participants to

solve them. As such, instead of obtaining broken Dockerfiles from public open-source projects and

creating the tasks around fixing them, we manually created small Dockerfiles with mistakes which

we believe to be feasible to happen in a Dockerfile and, at the same time, are small and simple

enough that they can be understood and fixed in a short amount of time. It would be interesting,

as future work, to perform a run of this user study with Dockerfiles extracted from real projects.

As stated before, this would imply recruiting participants willing to perform the tasks during an

extended amount of time, who may not be easy to achieve.

Task generalization. Still related to the participants’ time constraints, the tasks consisted of

fixing existing Dockerfiles and never creating a Dockerfile from scratch. It could be argued that

since the tasks only focus on fixing existing Dockerfiles, the impact of liveness hasn’t been

measured in the full Docker development process. However, we believe that the impact of

liveness verified in this user study would translate in similar ways to development tasks where

developers have to create a Dockerfile from scratch. It would be interesting, as future work, to

perform a run of this user study where participants are asked to fully create a Dockerfile from

scratch with the goal of replicating a certain container behaviour. Performing user studies with

real-world software projects would also help mitigate this threat.

Remote environment. As detailed in Section 7.3, participants were asked to perform the tasks

in a remote environment. There is a risk that the interactions with the development environment

could be hindered by the fact that participants are using a remote environment. This could affect

the usability of the environment when compared to the most common real-world usage, where a

developer uses the IDE on its own computer. In order to ensure, to the best of our abilities, that

this factor has as little impact as possible, participants were asked about how easy it was to work

with the remote environment. The answers to this question, detailed in Section 7.7.9, show that,

according to the participants, the remote environment was easy to work with, giving confidence

that the impact of the remote environment in the results obtained was reduced.

Peer pressure. During the experiment, the observing researcher continuously monitored the

progress of the participants through the experiment. Since the increased pressure and stress from

being under observation can have a significant impact on the performance of developers [3], there’s

100 Empirical Evaluation

a chance that the performance of the participants was slightly different from their performance if

they were doing the tasks without the added pressure of being monitored. However, it should also

be noted that since both groups performed the experiment under the same conditions, both groups

can equally be affected by this issue.

Participant bias. In controlled experiments, such as the one described in this chapter, where

participants are questioned about a novel system, participants may artificially favour the system

they believe to be designed by the researcher [21]. In order to mitigate this issue, participants

were not informed about their group until after the experiment was over. Nonetheless, it’s still

possible that some participants realized throughout the experiment that they were using a novel

system. However, we believe this risk to be small since, as stated, participants were not informed

about their group. In addition, since the control group also had access to a VSCode extension for

Docker development, it’s possible that some participants from the control group also thought to be

using a novel system. As such, we believe that this threat had low potential for impact and equally

affected both groups and, therefore, didn’t significantly skew the results obtained. Furthermore,

we also believe that measurements performed by the researching observer, such as the time spent

in each task, are not affected by this threat.

7.9 Main Findings

In summary, this user study provided the following main findings:

• Participants with a live development environment were significantly more efficient at

solving the proposed tasks than participants without a live development environment.

• Participants with a live development environment had a more continuous development flow

since they did not switch contexts as often as participants without a live development

environment.

• Participants with a live development environment, in most cases, did not use a terminal at

all and spent less time searching documentation and help in a web browser.

• The live features available to participants with a live development environment were

generally highly regarded and perceived as useful and helpful.

• Participants with a live development environment did not feel overwhelmed by the increased

live feedback available to them.

• Participants with a live development environment perceived the features available to them

as helpful in most Dockerfile development activities, particularly in the ones that were

identified in the Docker development survey presented in Chapter 4 to be the most

time-consuming.

7.9 Main Findings 101

These findings support the main hypothesis of this dissertation, defined in Section 5.2 — the

presence of live dynamic feedback can have a significant and positive impact in the efficiency of

the Dockerfile development process.

These findings also help us answer the research questions defined in Section 7.2. RQ1

questions the effect of live dynamic feedback on the way that developers spend time during

Dockerfile development. These findings show evidence that in an environment with live dynamic

feedback developers tend to be more efficient, tend to spend less time in the terminal and in the

web browser and tend to switch contexts less often.

RQ2 inquires about the effect of live dynamic feedback in the Dockerfile development

activities identified in Chapter 4. These findings show evidence that developers regard the live

dynamic feedback as particularly helpful in the activities that were found to be the some of the

most time-consuming by the survey presented in Chapter 4. This reinforces our belief that the

approach to generate live dynamic feedback described and implemented in Chapter 6 tackles the

most critical activities in the Dockerfile development process.

Finally, RQ3 questions the way that developers perceive an environment with live dynamic

feedback in regards to its helpfulness and overwhelmingness. The findings presented in this

section show evidence that developers were comfortable using the live dynamic environment and

were not overwhelmed by the information displayed in the IDE.

102 Empirical Evaluation

Chapter 8

Conclusion

This chapter presents a summary of the work and contributions developed in this dissertation. As

such, Section 8.1 starts by presenting an overview of the problem that this dissertation attempts to

tackle, the main hypothesis, the validation methodology and the main conclusions drawn.

Furthermore, Section 8.2 presents the main contributions present in this dissertation while

Section 8.3 presents some potential expansion points which can be used to expand this

dissertation as future work.

8.1 Overview

In recent years, Docker has become one of the most popular containerization technologies,

allowing developers to deliver their products in a secure, portable and efficient way. This allows

DevOps teams to develop their infrastructure in an agile way and using version control

techniques [32]. However, the current development process of a Dockerfile can still be improved.

As discussed in Section 3.1, there is currently very little live feedback available to a developer

working with Dockerfiles, as only some of the static analysis tools provide a level of liveness

above 3. To the best of our knowledge, there are no tools which provide live dynamic feedback

in the Dockerfile development environment. On the other hand, Section 3.2 analyses multiple

environments where the presence of live feedback, when correctly implemented, can improve the

developer’s workflow, promoting a better understanding of the system under development and

reducing the time required for a developer to fix problems. Live programming environments, in

general, can improve the developer’s workflow by introducing immediate feedback, facilitating

the exploration process that often takes place during development [10].

The results of the survey presented in Chapter 4 show further evidence that the Dockerfile

development process could be improved. The respondents generally agreed that a considerable

amount of time is spent in most Dockerfile development activities and only a small percentage

uses plugins or tools to help during development.

103

104 Conclusion

This dissertation’s main hypothesis, described in Section 5.2, is that the Dockerfile

development process can become more efficient with the introduction of live dynamic analysis

feedback in the developer’s IDE. In this context, an increase in efficiency is defined as a decrease

in the time required to perform a Dockerfile development task (e.g. fixing a bug in a Dockerfile).

In order to validate this hypothesis, an approach which brings live dynamic feedback to the

Dockerfile development environment has been designed, as described in Chapter 6. This approach

has been implemented as Dockerlive 1, an extension for Visual Studio Code.

A controlled experiment with users, described in Chapter 7, has been performed with the goal

of observing the impact of the presence of live dynamic feedback in the Dockerfile development

environment. One of the findings from this user study is that developers can take significantly less

time to perform a Dockerfile development task when using a development environment with live

dynamic feedback.

These results show evidence that the presence of live dynamic feedback in the Dockerfile

development environment can significantly increase the efficiency in its development process,

therefore validating the main hypothesis presented in this dissertation.

8.2 Contributions

In order to validate the main hypothesis of this dissertation, described in Section 5.2, this

dissertation makes four main contributions. This section focuses on presenting and describing

each of those contributions, as well as how they were useful to achieve the dissertation’s main

goal of validating the main hypothesis.

Preliminary survey. A preliminary survey, answered by students and professionals, focused on

understanding the current Dockerfile development process. This survey identifies the most time-

consuming Dockerfile development activities as well as the main approaches that developers use

to fix issues in Dockerfiles. With this information, a new approach, described in Section 6.1, was

designed to specifically tackle the development activities that the participants of this survey regard

as particularly time-consuming. Similarly, when analysing the behaviour of the participants of the

controlled experiment with users described in Chapter 7, we can specifically analyse the impact of

the tool in the steps identified as most time-consuming. The methodology used in this survey and

the results obtained are thoroughly documented in Chapter 4.

Approach to increase liveness in Dockerfile development. In order to analyse the impact of

live dynamic feedback in the developer’s efficiency and validate the main hypothesis, an approach

was designed with the aim of providing live dynamic analysis feedback to a developer working

on Dockerfiles. This approach allows the developer to have a workflow with shorter and more

1Dockerlive’s VSCode Marketplace page is available at https://marketplace.visualstudio.com/ite
ms?itemName=david-reis.dockerlive

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive

8.3 Future Work 105

frequent feedback loops which, according to the hypothesis, could improve the efficiency of the

developer. Section 6.1 provides an in-depth description of this analysis.

Reference architecture and implementation. A reference architecture for the previously

mentioned approach has been documented and implemented. This reference architecture has the

objective of supporting and guiding software developers who wish to implement the approach

defined in Section 6.1. This ensures that the aforementioned approach can be efficiently and

independently implemented in other contexts. This reference architecture was implemented as

Dockerlive 2, an extension for Visual Studio Code. This implementation was used during the

controlled experiment with users presented in Chapter 7. An in-depth description of this

architecture and Dockerlive’s implementation details can be found in Chapter 6 provides.

User study. In order to validate the main hypothesis, mentioned in Section 5.2, we have

compared the performance of developers working with and without live dynamic feedback. For

that purpose, a controlled experiment with users was performed. In this user study, participants

were asked to perform three development tasks where a Dockerfile must be edited. Participants

were split into 2 groups. One of the groups performed the development tasks using an

environment with live dynamic feedback, while the other group only had live static feedback.

Every participant was timed, making it possible to measure the impact of the increased live

feedback on the efficiency of developers. Further questions were asked to the participants, in

order to evaluate the usability of their environment and obtain other individual remarks that could

point towards possible flaws in the environment. The methodology and the results obtained in

this user study are thoroughly documented in Chapter 7.

8.3 Future Work

Although the main objective of this dissertation has been achieved, there’s still work that can be

done in order to expand the implementation of liveness and better understand its impact. This

section focuses on exploring those possibilities.

Live feedback. Through the approach presented in Section 6.1, live dynamic feedback with the

4th level of liveness has been implemented. We believe that it could be valuable to increase the

level of liveness to the 5th or 6th level by introducing live predictive features which generate

multiple code changes and suggest those changes to the developer. A participant from the user

study described in Chapter 7 suggested the introduction of the 5th level of liveness, further

sustaining this belief. Implementing a liveness level above 4 would require at least an extra step

when compared to our approach, where the predictive features are executed. It could also be

2Dockerlive’s VSCode Marketplace page is available at https://marketplace.visualstudio.com/ite
ms?itemName=david-reis.dockerlive

https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive
https://marketplace.visualstudio.com/items?itemName=david-reis.dockerlive

106 Conclusion

valuable to increase the amount of live dynamic feedback that is being generated, without

increasing the level of liveness, by identifying and probing new interest points.

Other platforms. Although most of the contributions in this dissertation are directed towards

Docker technologies, we believe that our approach could also translate well into other

infrastructure-as-code platforms, such as Vagrant 3. A survey targeting the communities of these

platforms could be a good starting point to understand which platforms are the most promising

candidates to enable our approach.

Improvements on current implementation. During the controlled experiment with users

described in Chapter 7, the participants were asked to give suggestions about what could be

improved in Dockerlive. The following changes were suggested:

• Automatically detect common mistakes and code smells in the Dockerfile and suggest

potential fixes. [5th level of liveness]

• When an error is detected in the ADD instruction, underline the specific arguments of the

instruction which caused the error to occur. This can also be applied to other instructions

such as the RUN instruction.

The time that it takes for the live feedback to be generated and displayed in the IDE can affect

the experience of liveness [29]. In that sense, reducing the image build time could significantly

reduce the time that it takes for feedback to be generated by Dockerlive, potentially improving the

liveness experience even further. To this effect, some of the approaches described in Section 3.1.6,

which focus on reducing the Docker image build times, could be integrated with Dockerlive in

order to enable a shorter feedback loops.

Improve other Dockerfile development activities. According to the results presented in

Section 7.7.8, the Dockerfile development activities regarding the debugging phase of Dockerfile

development, such as detecting and identifying container misbehaviour or rebuilding a Docker

image, were significantly helped by the presence of the live dynamic analysis feedback

implemented. Work could be done in order to bring significant benefits to other activities of

Dockerfile development, such as selecting an image or managing dependencies.

Further user studies. As mentioned in Section 7.8, it would be valuable to carry out an

experiment similar to the one described in Chapter 7 with a few differences. Firstly, in regards to

the participants, having a larger sample size where participants have different backgrounds and

higher levels of experience would give more confidence about the generalizability of the results

to the population of Dockerfile developers at large. In addition, it would be valuable to design

tasks based on Dockerfiles extracted from real open-source projects and tasks which consist of

3Links to the mentioned tools can be found in Appendix A

8.3 Future Work 107

creating a Dockerfile from scratch. These tasks would likely be much more time-consuming to

execute than the ones described in Section 7.4, but they could enable a broader measurement of

the impact of liveness in the Dockerfile development process.

It could also be useful to perform a case study in a real project in the industry where the usage

of Dockerlive would be monitored during a considerable amount of time, such as a few months.

This would give some insight into any long-term benefits of having live dynamic feedback during

the development of Dockerfiles which may not be observable in short experiments, such as the one

performed, where users usually do not have the chance to get fully familiar with their environment.

In order to get a deeper understanding of the current state of Dockerfile development, a subject

that is approached in Chapter 5, it could be useful to expand on the survey described in Chapter 4.

Doing so would allow us to better understand the strategies and approaches that developers tend

to use during Dockerfile development, which in turn could help tweak and improve the approach

and implementation of liveness described in Chapter 6.

As explored in Section 2.2, there can be multiple motivations for liveness, such as accessibility,

comprehension or productivity [30]. This user study focused mainly on analysing the impact of

live dynamic feedback in the productivity of the developers. However, it could also be useful to

explore the impact in other motivations. This could involve, for example, assessing the level of

comprehension of developers while working with and without live dynamic feedback.

108 Conclusion

References

[1] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira, and
João Pedro Dias. Live software development: Tightening the feedback loops. In
ACM International Conference Proceeding Series, pages 1–6, New York, USA, 4 2019.
Association for Computing Machinery.

[2] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and Damian Andrew
Tamburri. DevOps: Introducing infrastructure-as-code. In Proceedings - 2017 IEEE/ACM
39th International Conference on Software Engineering Companion, ICSE-C 2017, pages
497–498. Institute of Electrical and Electronics Engineers Inc., 6 2017.

[3] Mahnaz Behroozi, Chris Parnin, and Titus Barik. Hiring is Broken: What Do Developers Say
about Technical Interviews? In Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC, volume 2019-Octob, pages 15–23. IEEE Computer
Society, 10 2019.

[4] Ilias Bergström and Alan F. Blackwell. The practices of programming. In Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, volume
2016-Novem, pages 190–198. IEEE Computer Society, 11 2016.

[5] David Bernstein. Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud
Computing, 1(3):81–84, 9 2014.

[6] Jens Böttcher and Andreas Steffens. Current State of Testing Infrastructure as Code. Full-
scale Software Engineering / The Art of Software Testing 2017, pages 13–18, 2017.

[7] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung,
Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola. Code
bubbles: Rethinking the user interface paradigm of integrated development environments.
In Proceedings - International Conference on Software Engineering, volume 1 of ICSE ’10,
pages 455–464, New York, NY, USA, 2010. Association for Computing Machinery.

[8] Minh Thanh Chung, Nguyen Quang-Hung, Manh Thin Nguyen, and Nam Thoai. Using
Docker in high performance computing applications. In 2016 IEEE 6th International
Conference on Communications and Electronics, IEEE ICCE 2016, pages 52–57. Institute
of Electrical and Electronics Engineers Inc., 9 2016.

[9] Jurgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and
Harald C. Gall. An Empirical Analysis of the Docker Container Ecosystem on GitHub. In
IEEE International Working Conference on Mining Software Repositories, pages 323–333.
IEEE Computer Society, 6 2017.

109

110 REFERENCES

[10] Davide Della Casa and Guy John. LiveCodeLab 2.0 and its language LiveCodeLang.
In FARM 2014 - Proceedings of the 2014 ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design, pages 1–8. Association for Computing
Machinery, 2014.

[11] Rajdeep Dua, Vaibhav Kohli, Sriram Patil, and Swapnil Patil. Performance analysis of Union
and CoW File Systems with Docker. In International Conference on Computing, Analytics
and Security Trends, CAST 2016, pages 550–555. Institute of Electrical and Electronics
Engineers Inc., 4 2017.

[12] Rajdeep Dua, A. Reddy Raja, and Dharmesh Kakadia. Virtualization vs containerization to
support PaaS. In Proceedings - 2014 IEEE International Conference on Cloud Engineering,
IC2E 2014, pages 610–614. Institute of Electrical and Electronics Engineers Inc., 9 2014.

[13] Andrej Dyck, Ralf Penners, and Horst Lichter. Towards definitions for release engineering
and DevOps. In Proceedings - 3rd International Workshop on Release Engineering,
RELENG 2015, page 3. Institute of Electrical and Electronics Engineers Inc., 2015.

[14] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Slacker: Fast distribution with lazy docker containers. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies, FAST 2016, pages 181–195, Santa
Clara, CA, 2 2019. USENIX Association.

[15] Zhuo Huang, Song Wu, Song Jiang, and Hai Jin. FastBuild: Accelerating Docker Image
Building for Efficient Development and Deployment of Container. In IEEE Symposium on
Mass Storage Systems and Technologies, volume 2019-May, pages 28–37. IEEE, 5 2019.

[16] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, Wong Ming Tat,
Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. Evaluation of Docker as Edge
computing platform. In ICOS 2015 - 2015 IEEE Conference on Open Systems, pages 130–
135. Institute of Electrical and Electronics Engineers Inc., 1 2016.

[17] Ivar Jacobson, Ian Spence, and Pan-Wei Ng. Agile and SEMAT: Perfect Partners. Commun.
ACM, 56(11):53–59, 11 2013.

[18] Susan Jamieson. Likert scales: How to (ab)use them. Medical Education, 38(12):1217–1218,
12 2004.

[19] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven design for
cloud infrastructure DevOps. In Proceedings - 2016 IEEE International Conference on
Cloud Engineering, IC2E 2016: Co-located with the 1st IEEE International Conference
on Internet-of-Things Design and Implementation, IoTDI 2016, pages 202–211. Institute of
Electrical and Electronics Engineers Inc., 6 2016.

[20] Hyeonsu Kang and Philip J. Guo. Omnicode: A novice-oriented live programming
environment with always-on run-time value visualizations. In UIST 2017 - Proceedings of
the 30th Annual ACM Symposium on User Interface Software and Technology, pages 737–
745. Association for Computing Machinery, Inc, 10 2017.

[21] Andrew J. Ko, Thomas D. LaToza, and Margaret M. Burnett. A practical guide to controlled
experiments of software engineering tools with human participants. Empirical Software
Engineering, 20(1):110–141, 2013.

REFERENCES 111

[22] Jan Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. How live coding affects
developers’ coding behavior. In Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC, pages 5–8. IEEE Computer Society, 2014.

[23] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. The road to live programming:
Insights from the practice. In Proceedings - International Conference on Software
Engineering, pages 1090–1101. IEEE Computer Society, 5 2018.

[24] Yan Li, Bo An, Junming Ma, and Donggang Cao. Comparison between chunk-based and
layer-based container image storage approaches: An empirical study. In Proceedings - 13th
IEEE International Conference on Service-Oriented System Engineering, SOSE 2019, 10th
International Workshop on Joint Cloud Computing, JCC 2019 and 2019 IEEE International
Workshop on Cloud Computing in Robotic Systems, CCRS 2019, pages 197–202. Institute of
Electrical and Electronics Engineers Inc., 5 2019.

[25] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1):50–60,
1947.

[26] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux Journal, 2014(239), 3 2014.

[27] Naoki Mizusawa, Yuya Seki, Jian Tao, and Saneyasu Yamaguchi. A Study on
I/O Performance in Highly Consolidated Container-Based Virtualized Environment on
OverlayFS with Optimized Synchronization. In Proceedings of the 2020 14th International
Conference on Ubiquitous Information Management and Communication, IMCOM 2020.
Institute of Electrical and Electronics Engineers Inc., 1 2020.

[28] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java software developers using
the eclipse IDE? IEEE Software, 23(4):76–83, 2006.

[29] Patrick Rein, Stefan Lehmann, Toni Mattis, and Robert Hirschfeld. How live are
live programming systems? Benchmarking the response times of live programming
environments. In ACM International Conference Proceeding Series, volume 18-July-20,
pages 1–8. Association for Computing Machinery, 7 2016.

[30] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. Exploratory
and Live, Programming and Coding. The Art, Science, and Engineering of Programming,
3(1), 7 2018.

[31] Jay Shah and Dushyant Dubaria. Building modern clouds: Using docker, kubernetes google
cloud platform. In 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference, CCWC 2019, pages 184–189. Institute of Electrical and Electronics Engineers
Inc., 3 2019.

[32] Jay Shah, Dushyant Dubaria, and John Widhalm. A Survey of DevOps tools for Networking.
In 2018 9th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication
Conference, UEMCON 2018, pages 185–188. IEEE, 11 2018.

[33] Tiago Boldt Sousa, Filipe Figueiredo Correia, and Hugo Sereno Ferreira. Patterns for
Software Orchestration on the Cloud. In Proceedings of the 22nd Conference on Pattern
Languages of Programs, PLoP ’15, USA, 2015. The Hillside Group.

112 REFERENCES

[34] Tiago Boldt Sousa, Hugo Sereno Ferreira, and Filipe Figueiredo Correia. Overview of a
Pattern Language for Engineering Software for the Cloud. In 25th Conference on Pattern
Languages of Programs, PLoP ’18, USA, 2018. The Hillside Group.

[35] Tiago Boldt Sousa, Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Ademar Aguiar.
Engineering Software for the Cloud. In Proceedings of the 11th Latin-American Conference
on Pattern Languages of Programming, SugarLoafPLoP ’16, pages 1–8, USA, 2018. The
Hillside Group.

[36] Steven L. Tanimoto. VIVA: A visual language for image processing. Journal of Visual
Languages and Computing, 1(2):127–139, 1990.

[37] Steven L. Tanimoto. A perspective on the evolution of live programming. In 2013 1st
International Workshop on Live Programming, LIVE 2013 - Proceedings, pages 31–34. IEEE
Computer Society, 2013.

[38] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. CNTR: Lightweight
OS containers. In Proceedings of the 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, pages 199–212, Boston, MA, 7 2020. USENIX Association.

[39] Jiwei Xu, Yuewen Wu, Zhigang Lu, and Tao Wang. Dockerfile TF smell detection based on
dynamic and static analysis methods. In Proceedings - International Computer Software and
Applications Conference, volume 1, pages 185–190. IEEE Computer Society, 7 2019.

[40] Danny Yoo, Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler. WeScheme: The
browser is your programming environment. In ITiCSE’11 - Proceedings of the 16th Annual
Conference on Innovation and Technology in Computer Science, pages 163–167. Association
for Computing Machinery, Inc, 2011.

[41] Xiong Zhang and Philip J. Guo. DS.js: Turn any webpage into an example-centric live
programming environment for learning data science. In UIST 2017 - Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, pages 691–702.
Association for Computing Machinery, Inc, 10 2017.

[42] Yang Zhang, Gang Yin, Tao Wang, Yue Yu, and Huaimin Wang. An Insight into the Impact of
Dockerfile Evolutionary Trajectories on Quality and Latency. In Proceedings - International
Computer Software and Applications Conference, volume 1, pages 138–143. IEEE Computer
Society, 6 2018.

Appendix A

Tool Sources

This appendix contains the sources for the tools categorized in Section 3.1.

Tool Source
AppOptics https://www.appoptics.com/

cAdvisor https://github.com/google/cadvisor

Captain https://getcaptain.co/

Chef InSpec https://www.inspec.io/

ctop https://github.com/bcicen/ctop

dive https://github.com/wagoodman/dive

Docker-Alertd https://github.com/deltaskelta/docker-alertd

Docker.el https://github.com/Silex/docker.el

Docker Explorer https://marketplace.visualstudio.com/items?i
temName=formulahendry.docker-explorer

Docker for Visual Studio
Code (Preview)

https://marketplace.visualstudio.com/items?i
temName=ms-azuretools.vscode-docker

docker_monitoring_logging
_alerting

https://github.com/uschtwill/docker_monitori
ng_logging_alerting

Dockeron https://github.com/dockeron/dockeron

Docker Runner https://marketplace.visualstudio.com/items?i
temName=Zim.vsc-docker

DockerSpec https://github.com/zuazo/dockerspec

Docker Workspace https://marketplace.visualstudio.com/items?i
temName=tiibun.vscode-docker-ws

Docker [Plugin for Intellij
IDEA IDE]

https://plugins.jetbrains.com/plugin/7724-d
ocker

Dockstation https://github.com/DockStation/dockstation
https://dockstation.io/

Dozzle https://github.com/amir20/dozzle

GoInside https://github.com/iamsoorena/goinside

goss https://github.com/aelsabbahy/goss

113

https://www.appoptics.com/
https://github.com/google/cadvisor
https://getcaptain.co/
https://www.inspec.io/
https://github.com/bcicen/ctop
https://github.com/wagoodman/dive
https://github.com/deltaskelta/docker-alertd
https://github.com/Silex/docker.el
https://marketplace.visualstudio.com/items?itemName=formulahendry.docker-explorer
https://marketplace.visualstudio.com/items?itemName=formulahendry.docker-explorer
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://github.com/uschtwill/docker_monitoring_logging_alerting
https://github.com/uschtwill/docker_monitoring_logging_alerting
https://github.com/dockeron/dockeron
https://marketplace.visualstudio.com/items?itemName=Zim.vsc-docker
https://marketplace.visualstudio.com/items?itemName=Zim.vsc-docker
https://github.com/zuazo/dockerspec
https://marketplace.visualstudio.com/items?itemName=tiibun.vscode-docker-ws
https://marketplace.visualstudio.com/items?itemName=tiibun.vscode-docker-ws
https://plugins.jetbrains.com/plugin/7724-docker
https://plugins.jetbrains.com/plugin/7724-docker
https://github.com/DockStation/dockstation
https://dockstation.io/
https://github.com/amir20/dozzle
https://github.com/iamsoorena/goinside
https://github.com/aelsabbahy/goss

114 Tool Sources

Tool Source
Hadolint https://github.com/hadolint/hadolint

Hadolint [Plugin for
VSCode]

https://marketplace.visualstudio.com/items?i
temName=exiasr.hadolint

Haven https://github.com/codeabovelab/haven-platf
orm

IntellijIDEA https://www.jetbrains.com/idea/

lazydocker https://github.com/jesseduffield/lazydocker

Microsoft Azure https://azure.microsoft.com/

monit-docker https://github.com/decryptus/monit-docker

Nmap https://nmap.org/

Portainer https://github.com/portainer/portainer
https://www.portainer.io/

RSpec https://rspec.info/

Seagull https://github.com/tobegit3hub/seagull

ServerSpec https://serverspec.org

Sysdig https://sysdig.com/

TeamViewer https://www.teamviewer.com/

Vagrant https://www.vagrantup.com/

Visual Studio Code https://code.visualstudio.com/

Visual Studio Container
Tools Extensions (Preview)

https://marketplace.visualstudio.com/items?i
temName=ms-azuretools.vs-containers-tools-e
xtensions

Weave Scope https://github.com/weaveworks/scope

Wharfee https://github.com/j-bennet/wharfee

https://github.com/hadolint/hadolint
https://marketplace.visualstudio.com/items?itemName=exiasr.hadolint
https://marketplace.visualstudio.com/items?itemName=exiasr.hadolint
https://github.com/codeabovelab/haven-platform
https://github.com/codeabovelab/haven-platform
https://www.jetbrains.com/idea/
https://github.com/jesseduffield/lazydocker
https://azure.microsoft.com/
https://github.com/decryptus/monit-docker
https://nmap.org/
https://github.com/portainer/portainer
https://www.portainer.io/
https://rspec.info/
https://github.com/tobegit3hub/seagull
https://serverspec.org
https://sysdig.com/
https://www.teamviewer.com/
https://www.vagrantup.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vs-containers-tools-extensions
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vs-containers-tools-extensions
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vs-containers-tools-extensions
https://github.com/weaveworks/scope
https://github.com/j-bennet/wharfee

Appendix B

Survey

This appendix presents the survey discussed in Chapter 4. Section B.1 contains the survey

distributed in the first run, while Section B.2 contains the survey distributed in the second run.

115

Personal context

1.

Mark only one oval per row.

2.

Mark only one oval per row.

Until now, approximately in how many projects have you ...

Challenges with Docker technologies
This survey was developed under the scope of Preparação da Dissertação (PDIS) in regards
to two dissertations related to Docker technologies. The objective is to identify and gauge the
challenges developers encounter when working with Docker technologies namely dockerfiles
and docker compose.
*Required

Before LDSO I was experienced in … *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

writing a dockerfile for a
software system

writing a docker-compose.yml
file for a software system

writing a dockerfile for a
software system

writing a docker-compose.yml
file for a software system

At this point in time I am experienced in... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

writing a dockerfile for a
software system

writing a docker-compose.yml
file for a software system

writing a dockerfile for a
software system

writing a docker-compose.yml
file for a software system

116 Survey

B.1 First Run

3.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

4.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

5.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

6.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

... worked on that had a Dockerfile? *

... worked on that had a docker-compose.yml file? *

... used Dockerfiles created by others (colleagues or third parties)? *

... used docker-compose.yml files created by others (colleagues or third parties)?
*

B.1 First Run 117

7.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

8.

Mark only one oval.

0 1 2 3 4 5 6 7 8 9 10

9.

Tick all that apply.

... arguments/variables (ARG instruction).

... volumes (VOLUME instruction).

... the user (USER instruction).

... the working directory (WORKDIR instruction).

... environment variables (ENV instruction).

10.

Tick all that apply.

... volumes.

... networks.

Working with Docker technologies

... created/updated a Dockerfile? *

... created/updated a docker-compose.yml file? *

In the Dockerfiles I've developed, I've specified...

In the docker-compose.yml files I've developed, I've configured...

118 Survey

11.

Mark only one oval per row.

12.

When I write a Dockerfile, I spend a lot of time... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

finding out what parent image
is the most suitable.

finding out what are the
dependencies of the system
that must be added to the
docker image.

finding out what are the
Dockerfile commands that I
need.

trying to understand if the
resulting container is working
as intended (e.g., running
commands and tests on the
container).

trying to understand why the
resulting container is not
working as intended.

finding out which commands
are responsible for the
container misbehaviour.

rebuilding the image and re-
running the container to
confirm that it is working as
intended.

finding out what parent image
is the most suitable.

finding out what are the
dependencies of the system
that must be added to the
docker image.

finding out what are the
Dockerfile commands that I
need.

trying to understand if the
resulting container is working
as intended (e.g., running
commands and tests on the
container).

trying to understand why the
resulting container is not
working as intended.

finding out which commands
are responsible for the
container misbehaviour.

rebuilding the image and re-
running the container to
confirm that it is working as
intended.

What steps or strategies do you usually follow in order to diagnose and fix bugs
in the creation of Dockerfiles?

B.1 First Run 119

13.

Mark only one oval.

Yes

No

14.

Do you use any plugins/tools when developing Dockerfiles? *

If so, which ones and how do they help you?

120 Survey

Characterization of the participants

1.

2.

Other:

Tick all that apply.

Industry

Academia

Practices and challenges when using
Docker technologies
Thank you for your interest in participating in this study. The goal of the survey is to identify and
gauge the challenges developers encounter when working with Docker technologies namely
Dockerfiles and Docker Compose.

You can find here the 1min video explaining why the study is important:
https://vimeo.com/426652252
*Required

Country *

Where do you currently work? *

B.2 Second Run 121

B.2 Second Run

3.

Other:

Tick all that apply.

Software Development

Operations

Quality Assurance

Coaching

Product Management

Scientific Research

Teaching

How much experience (in years) do you have working on projects ...

4.

5.

6.

7.

8.

What are your main professional responsibilities? *

... that had a Dockerfile? *

... that had a docker-compose.yml file? *

... where you have used Dockerfiles created by others (colleagues or third parties)? *

... where you have used docker-compose.yml files created by others (colleagues or
third parties)? *

... where you created/updated a Dockerfile? *

122 Survey

9.

10.

Tick all that apply.

... arguments/variables (ARG instruction).

... volumes (VOLUME instruction).

... the user (USER instruction).

... the working directory (WORKDIR instruction).

... environment variables (ENV instruction).

11.

Tick all that apply.

... volumes.

... networks.

...configs.

...secrets.

Working with Docker technologies

... where you created/updated a docker-compose.yml file? *

In the Dockerfiles that I have developed, I have at some point specified ...

In the docker-compose.yml files I have developed, I have at some point specified ...

B.2 Second Run 123

12.

Mark only one oval per row.

When I write a Dockerfile, I spend considerable time ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

reading Docker documentation.

finding out what are the right
Dockerfile commands that I
need.

finding out what parent image is
the most suitable.

finding out what are the
dependencies of my system that
must be added to the docker
image.

confirming if the resulting
container is working as
intended.

trying to understand why the
resulting container is not
working as intended (e.g.,
running commands and tests on
the container).

finding out which commands
are responsible for the container
misbehaviour.

rebuilding the image and re-
running the container to confirm
that it is working as intended.

reading Docker documentation.

finding out what are the right
Dockerfile commands that I
need.

finding out what parent image is
the most suitable.

finding out what are the
dependencies of my system that
must be added to the docker
image.

confirming if the resulting
container is working as
intended.

trying to understand why the
resulting container is not
working as intended (e.g.,
running commands and tests on
the container).

finding out which commands
are responsible for the container
misbehaviour.

rebuilding the image and re-
running the container to confirm
that it is working as intended.

124 Survey

13.

14.

Mark only one oval.

Yes

No

15.

What steps or strategies do you usually follow in order to diagnose and fix bugs in
the creation of Dockerfiles?

Do you use any plugins/tools when developing Dockerfiles? *

If so, which ones and how do they help you?

B.2 Second Run 125

16.

Mark only one oval per row.

When I write a docker-compose.yml file, I spend considerable time… *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

reading Docker documentation.

finding out what are the keys
that I need.

finding out what images are
available.

trying to understand why the
services are not working as
intended.

(re)starting the services to
confirm that they are working as
intended.

configuring the properties of
each service (e.g. port mapping,
name, ...).

configuring the dependencies
between the services (e.g.
depends_on).

configuring volumes and how
they are attached to the
services.

configuring networks and how
they are connected to the
services.

configuring configs and how
they are accessed by the
services.

configuring secrets and how
they are accessed by the
services.

reading Docker documentation.

finding out what are the keys
that I need.

finding out what images are
available.

trying to understand why the
services are not working as
intended.

(re)starting the services to
confirm that they are working as
intended.

configuring the properties of
each service (e.g. port mapping,
name, ...).

configuring the dependencies
between the services (e.g.
depends_on).

configuring volumes and how
they are attached to the
services.

configuring networks and how
they are connected to the
services.

configuring configs and how
they are accessed by the
services.

configuring secrets and how
they are accessed by the
services.

126 Survey

17.

18.

Mark only one oval.

Yes

No

19.

What steps or strategies do you usually follow in order to diagnose and fix bugs in
the creation of docker-compose.yml files?

Do you use any plugins/tools when developing docker-compose.yml files? *

If so, which ones and how do they help you?

B.2 Second Run 127

20.

Mark only one oval per row.

21.

This content is neither created nor endorsed by Google.

When I read a docker-compose.yml file, I spend considerable time trying to
understand … *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

what the services are.

the dependencies between
services (e.g. depends_on).

what volumes are used and how
they are attached to the
services.

what networks are used and
how they are connected to the
services.

what the services are.

the dependencies between
services (e.g. depends_on).

what volumes are used and how
they are attached to the
services.

what networks are used and
how they are connected to the
services.

Comments
Feel free to leave us a comment. Do you use Docker, Docker Compose or any other technology related to
software containers in a specific way that we may find interesting? Have you detected anything wrong with
the questions in this questionnaire? Let us know your email address if you want to receive further details
about this research.

 Forms

128 Survey

Appendix C

User Study Instructions

This appendix presents the instructions document described in Chapter 7. This instructions

document was provided to the participants at the start of the experiment. Section C.1 contains the

instructions document given to the control group, while Section C.2 contains the instructions

document given to the experimental group.

129

General instructions
Before proceeding, please fill the “Demographic Information” and “Skills and Experience”
sections of the questionnaire linked below. Once you reach the “DF1” section, read the rest
of this document.

https://forms.gle/ZzZ1V2Gx9FuDhy2DA

In this experiment you will perform 3 tasks. In each task you must edit a Dockerfile using
Visual Studio Code. To help you in these tasks, you’ll have access to a set of extensions
which will provide feedback while you edit the Dockerfiles. The combination of Visual Studio
Code with these extensions will be referred to as the “environment” in this document and in
the questionnaire. The features available in these extensions are described in the next
sections of this document.

You have 15 minutes to read and understand the features described in this document. You
are allowed to consult this document at any point during the task execution.

Available Features

1- Static Analysis Errors

This environment analyses the Dockerfile’s syntax, underlining any syntax errors that it finds.

2- Docker Management

This environment provides a sidebar menu which allows the programmer to perform quick
actions related to Docker containers, images, registries, networks, volumes and contexts
(e.g. start container, stop container, view container logs, delete image).

130 User Study Instructions

C.1 Control Group

Tasks

Global Rules
● In each task, you’ll be given a Dockerfile which you must edit until the container has

the desired behaviour.
● Each task ends once you notify the experiment observer that you have reached the

desired behaviour.
● You may only edit the Dockerfile. No other files (such as .py or .js) need to be

edited in order to achieve the desired behaviour. However, you are allowed to make
temporary changes to the code (e.g. print a variable or comment a line) if you think it
may help you diagnose the issue. Note that if you make a temporary change to the
code you must restore the code to its original state for the task to be validated.

● You have a maximum of 20 minutes to complete each task.
● Feel free to consult this document at any time.
● All the information that you need to solve the tasks is present in this document.

However, feel free to consult any documentation and perform any web searches you
may need, at any time, in the remote computer where you’re performing the
tasks.

● If something isn’t clear in these instructions or in the descriptions of the tasks
themselves please alert the experiment observer immediately.

Instructions
● In the C:/Users/DockerliveTest/Desktop folder, you’ll find 3 folders - “DF1”, “DF2”,

“DF3”. Each of these folders contains a task.
● Do these 3 tasks in order and fill the respective section of the questionnaire after

each task.
● Instructions for each of the tasks are available in the remaining sections of this

document.

C.1 Control Group 131

● At the end of each task please run the following command on a powershell window:
docker-cleanup-script

● You can now read the instructions and start the task “DF1”.

DF1
1. Open Visual Studio Code using the shortcut in the desktop.
2. In Visual Studio Code open the “DF1” folder using the menu “File” -> “Open Folder…”
3. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must show: "some data"
● 'node' process must be running in container

4. Alert the experiment observer once you've met the criteria in point 3.
5. Execute the following command on a powershell window:

docker-cleanup-script
6. Fill the “DF1” section of the questionnaire.
7. Move to the next task.

DF2
1. In Visual Studio Code open the “DF2” folder using the menu “File” -> “Open Folder…”
2. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must NOT show: "Error downloading file" nor "Error writing

file"
● Container stdout must show: “Success!”
● Container must download 9MB-15MB of data

3. Alert the experiment observer once you've met the criteria in point 2.
4. Execute the following command on a powershell window:

docker-cleanup-script
5. Fill the “DF2” section of the questionnaire.
6. Move to the next task.

DF3
1. In Visual Studio Code open the “DF3” folder using the menu “File” -> “Open Folder…”
2. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must show: "Listening!"
● Container stdout must not show: "Could not bind"
● Container must have a TCP service running on the exposed port 3000

3. Alert the experiment observer once you've met the criteria in point 2.
4. Execute the following command on a powershell window:

docker-cleanup-script
5. Fill the remaining sections of the questionnaire.

132 User Study Instructions

General instructions
Before proceeding, please fill the “Demographic Information” and “Skills and Experience”
sections of the questionnaire linked below. Once you reach the “DF1” section, read the rest
of this document.

https://forms.gle/fXuQu3euNfGgic769

In this experiment you will perform 3 tasks. In each task you must edit a Dockerfile using
Visual Studio Code. To help you in these tasks, you’ll have access to a set of extensions
which will provide feedback while you edit the Dockerfiles. The combination of Visual Studio
Code with these extensions will be referred to as the “environment” in this document and in
the questionnaire. The features available in these extensions are described in the next
sections of this document.

You have 15 minutes to read and understand the features described in this document. You
are allowed to consult this document at any point during the task execution.

Available Features
This environment includes a VSCode extension which automatically compiles an image from
the Dockerfile while it is being edited, raises a container with that image and executes some
verifications. The result of those tests are shown to the developer in VSCode as explained in
the following paragraphs.

1- Static Analysis Errors

This environment analyses the Dockerfile’s syntax, underlining any syntax errors that it finds.

2- Docker Management

This environment provides a sidebar menu which allows the programmer to perform quick
actions related to Docker containers, images, registries, networks, volumes and contexts
(e.g. start container, stop container, view container logs, delete image).

C.2 Experimental Group 133

C.2 Experimental Group

3- Image Build and Container Runtime Errors

Instructions which cause errors while building the image or instantiating the image in a
container are underlined in red. Hovering the underlined instruction shows more details
about the error.

4- Changes to environment variables

ENV instructions are underlined in blue when the value that they set is changed during the
container’s execution. Hovering the underlined instruction shows more details, including the
process which changed the environment variable.

134 User Study Instructions

5- Processes running in the container

By hovering over the ENTRYPOINT/CMD instruction you can see the processes running in
the container.

6- Container performance statistics

You can visualize performance statistics of the container by clicking the “CPU” button,
located in the upper right corner of the editor tab which contains the Dockerfile. By clicking
this button, a new tab with performance graphs will be visible. If the graphs are updated
every second, then the container is running. If the graphs are stopped, then the container is
stopped. When a new container starts (by editing the Dockerfile or pressing the restart
button) data is erased from the graphs.

On this page there are also 3 buttons available:
 - Stop - Stops the running container

C.2 Experimental Group 135

 - Restart - Restarts/Starts the container
 - Open Shell - Open an interactive shell inside the container

7- Base image OS information

By hovering the image name on the FROM instruction, you can see some information about
the OS that the container is running (including the OS Family, Version and Kernel version).

8- Layer Size and Build Time

Above every instruction you can see a small text indicating the time it took to build that layer
and the size that the layer takes.

9- Explore each layer's filesystem

You can explore each layer's filesystem by clicking in the “FS” button, located in the upper
right corner of the editor tab which contains the Dockerfile. By clicking this button a new tab
will allow the developer to navigate through the aggregated filesystem of each of the layers.

On the top of the table there is a dropdown which allows you to select the layer that is
currently being displayed. Files which were created/edited/removed in the selected layer are
marked with a yellow square.

136 User Study Instructions

You can expand/collapse folders by clicking on their name.

By hovering the permissions, you can see a small window which will help you interpret the
permissions for each of the entities. These are in the UNIX permissions format.

10- Service discovery

This environment will automatically try to detect any services running on ports that are
exposed with the EXPOSE instruction. If no service is detected, an error underline will be
displayed. By hovering over the port number on the instruction, you can see the name and
protocol of the detected service.

C.2 Experimental Group 137

11- Container log output

The output of the docker build and the docker container is displayed in the Output pane in
VSCode. This pane opens automatically when a Dockerfile is opened and may also be
opened in the VSCode top bar (View -> Output). It’s advised to enable auto-scrolling (open
padlock icon, as displayed below).

138 User Study Instructions

Tasks

Global Rules
● In each task, you’ll be given a Dockerfile which you must edit until the container has

the desired behaviour.
● Each task ends once you notify the experiment observer that you have reached the

desired behaviour.
● You may only edit the Dockerfile. No other files (such as .py or .js) need to be

edited in order to achieve the desired behaviour. However, you are allowed to make
temporary changes to the code (e.g. print a variable or comment a line) if you think it
may help you diagnose the issue. Note that if you make a temporary change to the
code you must restore the code to its original state for the task to be validated.

● You have a maximum of 20 minutes to complete each task.
● Feel free to consult this document at any time.
● All the information that you need to solve the tasks is present in this document.

However, feel free to consult any documentation and perform any web searches you
may need, at any time, in the remote computer where you’re performing the
tasks.

● If something isn’t clear in these instructions or in the descriptions of the tasks
themselves please alert the experiment observer immediately.

Instructions
● In the C:/Users/DockerliveTest/Desktop folder, you’ll find 3 folders - “DF1”, “DF2”,

“DF3”. Each of these folders contains a task.
● Do these 3 tasks in order and fill the respective section of the questionnaire after

each task.
● Instructions for each of the tasks are available in the remaining sections of this

document.
● At the end of each task please run the following command on a powershell window:

docker-cleanup-script
● You can now read the instructions and start the task “DF1”.

DF1
1. Open Visual Studio Code using the shortcut in the desktop.
2. In Visual Studio Code open the “DF1” folder using the menu “File” -> “Open Folder…”
3. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must show: "some data"
● 'node' process must be running in container

4. Alert the experiment observer once you've met the criteria in point 3.
5. Copy, paste and execute the following command on a powershell window:

docker-cleanup-script

C.2 Experimental Group 139

6. Fill the “DF1” section of the questionnaire.
7. Move to the next task.

DF2
1. In Visual Studio Code open the “DF2” folder using the menu “File” -> “Open Folder…”
2. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must NOT show: "Error downloading file" nor "Error writing

file"
● Container stdout must show: “Success!”
● Container must download 9MB-15MB of data

3. Alert the experiment observer once you've met the criteria in point 2.
4. Copy, paste and execute the following command on a powershell window:

docker-cleanup-script
5. Fill the “DF2” section of the questionnaire.
6. Move to the next task.

DF3
1. In Visual Studio Code open the “DF3” folder using the menu “File” -> “Open Folder…”
2. Edit the Dockerfile until all of the following properties are true (Note that you must

verify all of these conditions):
● Container stdout must show: "Listening!"
● Container stdout must not show: "Could not bind"
● Container must have a TCP service running on the exposed port 3000

3. Alert the experiment observer once you've met the criteria in point 2.
4. Copy, paste and execute the following command on a powershell window:

docker-cleanup-script
5. Fill the remaining sections of the questionnaire.

140 User Study Instructions

Appendix D

User Study Questionnaire

This appendix presents the questionnaire described in Chapter 7. This questionnaire was answered

throughout the user study by all participants. Section D.1 contains the questionnaire provided

to the control group, while Section D.2 contains the questionnaire provided to the experimental

group.

141

Demographic Information

1.

Mark only one oval.

Other:

Female

Male

Prefer not to say

2.

3.

Mark only one oval.

High School

Bachelor's degree

Master's degree

Doctoral degree

Skills and Experience

Live Docker Containers
This is the questionnaire for the Live Docker Containers User Study. Fill this questionnaire
according to the instructions provided.
*Required

Gender *

Age *

What is the highest degree or level of education you have completed? *

142 User Study Questionnaire

D.1 Control Group

4.

Mark only one oval per row.

Until now, approximately in how many projects have you ...

5.

6.

7.

At this point in time I am comfortable working with... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...Docker technologies.

...Dockerfiles.

...Visual Studio Code.

...Visual Studio Code to edit
Dockerfiles.

...linters.

...syntax highlighters.

...Unix operating systems.

...Javascript and NodeJS.

...Python.

...Docker technologies.

...Dockerfiles.

...Visual Studio Code.

...Visual Studio Code to edit
Dockerfiles.

...linters.

...syntax highlighters.

...Unix operating systems.

...Javascript and NodeJS.

...Python.

... worked on that had a Dockerfile? *

... used Dockerfiles created by others (colleagues or third parties)? *

... created/updated a Dockerfile? *

D.1 Control Group 143

8.

Tick all that apply.

... arguments/variables (ARG instruction).

... volumes (VOLUME instruction).

... the user (USER instruction).

... the working directory (WORKDIR instruction).

... environment variables (ENV instruction).

9.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

DF1

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

10.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

In the Dockerfiles I've developed, I've specified...

I have a good enough understanding of English so that I can confidently answer this
survey and understand sentences with Docker and Unix related terms. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

144 User Study Questionnaire

11.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

None

DF2

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

12.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

13.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

None

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

D.1 Control Group 145

DF3

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

14.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

15.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

None

After tasks
Fill this section after finishing all the tasks.

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

146 User Study Questionnaire

16.

Mark only one oval per row.

17.

Mark only one oval per row.

Select your opinion towards the following sentences: *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

It was easy working with the
remote desktop environment.

Having feedback displayed in
the IDE (instead of, for example,
in an external tool) helped me
solve the tasks more quickly.

I found it easy to get all the
information I needed to solve
the tasks without leaving the
IDE.

The feedback provided inside
the IDE made it easier to solve
the designated tasks.

It was easy working with the
remote desktop environment.

Having feedback displayed in
the IDE (instead of, for example,
in an external tool) helped me
solve the tasks more quickly.

I found it easy to get all the
information I needed to solve
the tasks without leaving the
IDE.

The feedback provided inside
the IDE made it easier to solve
the designated tasks.

I felt overwhelmed by...

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...the quantity of information
displayed inside VSCode.

...the way the information was
displayed inside VSCode.

...the quantity of information
displayed inside VSCode.

...the way the information was
displayed inside VSCode.

D.1 Control Group 147

18.

Mark only one oval per row.

During the execution of the tasks, the feedback provided in the IDE helped me... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...finding out what parent image
is the most suitable.

...finding out what are the
dependencies of the system
that must be added to the
docker image.

...finding out what are the
Dockerfile commands that I
need.

...trying to understand if the
resulting container is working as
intended (e.g., running
commands and tests on the
container).

...trying to understand why the
resulting container is not
working as intended.

...finding out which commands
are responsible for the container
misbehaviour.

...rebuilding the image and re-
running the container to confirm
that it is working as intended.

...finding out what parent image
is the most suitable.

...finding out what are the
dependencies of the system
that must be added to the
docker image.

...finding out what are the
Dockerfile commands that I
need.

...trying to understand if the
resulting container is working as
intended (e.g., running
commands and tests on the
container).

...trying to understand why the
resulting container is not
working as intended.

...finding out which commands
are responsible for the container
misbehaviour.

...rebuilding the image and re-
running the container to confirm
that it is working as intended.

148 User Study Questionnaire

19.

20.

21.

This content is neither created nor endorsed by Google.

Which features do you feel were the most useful? And why?

What problems did you run into while working with this level of feedback?

How would you improve this level of feedback?

 Forms

D.1 Control Group 149

Demographic Information

1.

Mark only one oval.

Other:

Female

Male

Prefer not to say

2.

3.

Mark only one oval.

High School

Bachelor's degree

Master's degree

Doctoral degree

Skills and Experience

Live Docker Containers
This is the questionnaire for the Live Docker Containers User Study. Fill this questionnaire
according to the instructions provided.
*Required

Gender *

Age *

What is the highest degree or level of education you have completed? *

150 User Study Questionnaire

D.2 Experimental Group

4.

Mark only one oval per row.

Until now, approximately in how many projects have you ...

5.

6.

7.

At this point in time I am comfortable working with... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...Docker technologies.

...Dockerfiles.

...Visual Studio Code.

...Visual Studio Code to edit
Dockerfiles.

...linters.

...syntax highlighters.

...Unix operating systems.

...Javascript and NodeJS.

...Python.

...Docker technologies.

...Dockerfiles.

...Visual Studio Code.

...Visual Studio Code to edit
Dockerfiles.

...linters.

...syntax highlighters.

...Unix operating systems.

...Javascript and NodeJS.

...Python.

... worked on that had a Dockerfile? *

... used Dockerfiles created by others (colleagues or third parties)? *

... created/updated a Dockerfile? *

D.2 Experimental Group 151

8.

Tick all that apply.

... arguments/variables (ARG instruction).

... volumes (VOLUME instruction).

... the user (USER instruction).

... the working directory (WORKDIR instruction).

... environment variables (ENV instruction).

9.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

DF1

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

10.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

In the Dockerfiles I've developed, I've specified...

I have a good enough understanding of English so that I can confidently answer this
survey and understand sentences with Docker and Unix related terms. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

152 User Study Questionnaire

11.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

Image Build and Container Runtime Errors

Changes to environment variables

Processes running in the container

Container performance statistics

Open shell inside container

Base image OS information

Layer Size and Build Time

Explore each layer's filesystem

Service discovery

Container log output

None

DF2

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

12.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

D.2 Experimental Group 153

13.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

Image Build and Container Runtime Errors

Changes to environment variables

Processes running in the container

Container performance statistics

Open shell inside container

Base image OS information

Layer Size and Build Time

Explore each layer's filesystem

Service discovery

Container log output

None

DF3

Instructions for this task are available in the provided document.

Fill this section after finishing the task.

14.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

It was simple to understand the objective of the task and the task's instructions. *
1- Strongly Disagree / 2- Disagree / 3- Neutral / 4- Agree / 5- Strongly Agree

154 User Study Questionnaire

15.

Other:

Tick all that apply.

Static Analysis Errors

Docker Management

Image Build and Container Runtime Errors

Changes to environment variables

Processes running in the container

Container performance statistics

Open shell inside container

Base image OS information

Layer Size and Build Time

Explore each layer's filesystem

Service discovery

Container log output

None

After tasks
Fill this section after finishing all the tasks.

Which of these features did you use to solve this task? (If you don't remember the
name of a specific feature, the instructions document contains a list with all the
features using the same names.) *

D.2 Experimental Group 155

16.

Mark only one oval per row.

17.

Mark only one oval per row.

Select your opinion towards the following sentences: *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

It was easy working with the
remote desktop environment.

Having feedback displayed in
the IDE (instead of, for example,
in an external tool) helped me
solve the tasks more quickly.

I found it easy to get all the
information I needed to solve
the tasks without leaving the
IDE.

The feedback provided inside
the IDE made it easier to solve
the designated tasks.

It was easy working with the
remote desktop environment.

Having feedback displayed in
the IDE (instead of, for example,
in an external tool) helped me
solve the tasks more quickly.

I found it easy to get all the
information I needed to solve
the tasks without leaving the
IDE.

The feedback provided inside
the IDE made it easier to solve
the designated tasks.

I felt overwhelmed by...

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...the quantity of information
displayed inside VSCode.

...the way the information was
displayed inside VSCode.

...the quantity of information
displayed inside VSCode.

...the way the information was
displayed inside VSCode.

156 User Study Questionnaire

18.

Mark only one oval per row.

During the execution of the tasks, the feedback provided in the IDE helped me... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

...finding out what parent image
is the most suitable.

...finding out what are the
dependencies of the system
that must be added to the
docker image.

...finding out what are the
Dockerfile commands that I
need.

...trying to understand if the
resulting container is working as
intended (e.g., running
commands and tests on the
container).

...trying to understand why the
resulting container is not
working as intended.

...finding out which commands
are responsible for the container
misbehaviour.

...rebuilding the image and re-
running the container to confirm
that it is working as intended.

...finding out what parent image
is the most suitable.

...finding out what are the
dependencies of the system
that must be added to the
docker image.

...finding out what are the
Dockerfile commands that I
need.

...trying to understand if the
resulting container is working as
intended (e.g., running
commands and tests on the
container).

...trying to understand why the
resulting container is not
working as intended.

...finding out which commands
are responsible for the container
misbehaviour.

...rebuilding the image and re-
running the container to confirm
that it is working as intended.

D.2 Experimental Group 157

19.

20.

21.

This content is neither created nor endorsed by Google.

Which features do you feel were the most useful? And why?

What problems did you run into while working with this level of feedback?

How would you improve this level of feedback?

 Forms

158 User Study Questionnaire

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Current Problem
	1.3 Motivation and Objectives
	1.4 Contributions
	1.5 Document Structure

	2 Background
	2.1 Infrastructure and DevOps
	2.1.1 Containerization with Docker
	2.1.2 Docker Engine
	2.1.3 Docker Image Building and Storage

	2.2 Liveness and Live Programming

	3 State-of-the-Art
	3.1 Working with Dockerfiles
	3.1.1 Container Status
	3.1.2 Performance Monitoring
	3.1.3 Container Management
	3.1.4 Infrastructure Testing
	3.1.5 Static Analysis
	3.1.6 Image Build Optimization
	3.1.7 Discussion

	3.2 Liveness and Feedback in IDEs
	3.2.1 Discussion

	4 Survey on Working with Dockerfiles
	4.1 Motivation
	4.2 Goals and Research Questions
	4.3 Data Collection
	4.4 Data Analysis
	4.4.1 First Run
	4.4.2 Second Run

	4.5 Threats to validity
	4.6 Discussions

	5 Problem Statement
	5.1 Current Problem
	5.2 Hypothesis
	5.3 Methodology

	6 Dockerlive: Approach and Reference Architecture
	6.1 Approach
	6.2 Main Technology Choices
	6.3 Architecture
	6.4 Feature Design and Implementation
	6.4.1 Continuous Image Build
	6.4.2 Container Runtime Errors
	6.4.3 Processes Running in the Container
	6.4.4 Changes to Environment Variables
	6.4.5 Container Performance Statistics
	6.4.6 Image OS Information
	6.4.7 Layer Size and Build Time
	6.4.8 Layer File System Explorer
	6.4.9 Service Discovery
	6.4.10 Image Build and Container Log Output
	6.4.11 Progress Reporting

	6.5 Deployment

	7 Empirical Evaluation
	7.1 Motivation and Goals
	7.2 Research Questions
	7.3 Methodology
	7.4 Tasks
	7.4.1 First Task
	7.4.2 Second Task
	7.4.3 Third Task

	7.5 Data Collection
	7.5.1 Task Measurements
	7.5.2 Participant Questionnaire

	7.6 Recruitment and Demographics
	7.7 Data Analysis
	7.7.1 Demographic Information
	7.7.2 Skills and Experience
	7.7.3 Task Understanding
	7.7.4 Total Task Time
	7.7.5 Segmented Task Time
	7.7.6 Context Switches
	7.7.7 Feature Usage
	7.7.8 Dockerfile Development Activity Improvement
	7.7.9 Usefulness and Usability
	7.7.10 Long-text Feedback
	7.7.11 Experience and Total Task Time

	7.8 Threats to validity
	7.9 Main Findings

	8 Conclusion
	8.1 Overview
	8.2 Contributions
	8.3 Future Work

	References
	A Tool Sources
	B Survey
	B.1 First Run
	B.2 Second Run

	C User Study Instructions
	C.1 Control Group
	C.2 Experimental Group

	D User Study Questionnaire
	D.1 Control Group
	D.2 Experimental Group

