
0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 1

Pegasus: Performance Engineering for Software
Applications Targeting HPC Systems

Pedro Pinto, João Bispo, João M.P. Cardoso, Senior Member, IEEE , Jorge G. Barbosa, Member, IEEE ,
Davide Gadioli, Gianluca Palermo, Member, IEEE , Jan Martinovič, Martin Golasowski, Kateřina Slaninová,

Radim Cmar, Cristina Silvano, Fellow, IEEE

Abstract—Developing and optimizing software applications for high performance and energy efficiency is a very challenging task, even
when considering a single target machine. For instance, optimizing for multicore-based computing systems requires in-depth
knowledge about programming languages, application programming interfaces (APIs), compilers, performance tuning tools, and
computer architecture and organization. Many of the tasks of performance engineering methodologies require manual efforts and the
use of different tools not always part of an integrated toolchain. This paper presents Pegasus, a performance engineering approach
supported by a framework that consists of a source-to-source compiler, controlled and guided by strategies programmed in a
Domain-Specific Language, and an autotuner. Pegasus is a holistic and versatile approach spanning various decision layers composing
the software stack, and exploiting the system capabilities and workloads effectively through the use of runtime autotuning. The Pegasus
approach helps developers by automating tasks regarding the efficient implementation of software applications in multicore computing
systems. These tasks focus on application analysis, profiling, code transformations, and the integration of runtime autotuning. Pegasus
allows developers to program their strategies or to automatically apply existing strategies to software applications in order to ensure the
compliance of non-functional requirements, such as performance and energy efficiency. We show how to apply Pegasus and
demonstrate its applicability and effectiveness in a complex case study, which includes tasks from a smart navigation system.

F

1 INTRODUCTION

P ERFORMANCE and energy consumption are increas-
ingly essential non-functional requirements (NFRs) in

software engineering. To achieve performance and energy
efficiency goals, software developers require a deep under-
standing of both the problem at hand and the target com-
puter architecture (see, e.g., Cardoso et al. [1]). Moreover,
software developers have to consider a multitude of pro-
gramming models and languages, tools, and heterogeneous
architectures and systems, which increases the development
complexity when dealing with those NFRs. Although the
number of software applications needing high performance
and energy efficiency is increasing, only specialized devel-
opers master this necessary knowledge. Thus, methodolo-
gies and tools to assist both specialized and typical devel-
opers are of paramount importance when targeting high-
performance computing (HPC) systems.

The need to optimize applications and to take advantage
of the current and future HPC systems [2], especially based
on the heterogeneous computing power capability, is fully

• Pedro Pinto, João Bispo, João M. P. Cardoso and Jorge G. Barbosa are
with the Department of Informatics Engineering, Faculty of Engineering,
University of Porto, Porto, Portugal.
Email: {p.pinto, jbispo, jmpc, jbarbosa}@fe.up.pt

• Davide Gadioli, Gianluca Palermo and Cristina Silvano are with the
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Milano, Italy.
Email: {davide.gadioli, gianluca.palermo, cristina.silvano}@polimi.it

• Jan Martinovič, Martin Golasowski and Kateřina Slaninová are with
IT4Innovations, VSB, Technical University of Ostrava, Ostrava, Czech
Republic.
Email: {jan.martinovic, martin.golasowski, katerina.slaninova}@vsb.cz

• Radim Cmar is with Sygic, Bratislava, Slovakia.
Email: rcmar@sygic.com

recognized as an important contribution to achieve energy
efficiency goals [3]. Such optimizations may involve com-
piler optimizations, code transformations, parallelization
and specialization [4, 5, 6]. Typically, to satisfy performance
and energy or power consumption requirements, software
applications are given to tuning experts and recently to
performance engineers, who need to dig in the refactoring
space and select suitable code transformations.

Software development does not start with a focus on the
satisfaction of performance and energy or power consump-
tion requirements, which could even be counter-productive
in some cases. The typical methodology followed by expert
developers and performance engineers for improving soft-
ware applications in terms of execution time and energy
or power consumption requires several tasks. Commonly,
developers analyze the application (e.g., with profiling),
make decisions regarding code transformations, tuning of
parameters, and compiler options. In more sophisticated
cases, developers may consider the inclusion of runtime
autotuning strategies [7], used to adapt applications to the
dynamic conditions of the execution environment. Fig. 1
shows a typical performance engineering methodology flow
for HPC and consisting of the following main tasks:

• Analysis and Profiling: Incremental analysis and
profiling of the software application and impact of
NFRs. This analysis can rely on static and dynamic
information and may involve "what-if" analysis and
design-space exploration (DSE).

• Strategy Selection and Development: Selection of
strategies to target NFRs. With the knowledge ac-
quired by the analysis, developers can decide to
apply strategies from a catalog (e.g., loop transfor-

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 2

mations and automatic parallelization) or apply cus-
tom strategies. At this stage, developers also make
decisions about whether and how to include runtime
autotuning;

• Autotuner Integration: Integration of runtime auto-
tuning and other libraries, as well as generation and
selection of the configurations to be used at runtime;

• Application Deployment: Ultimately, developers
generate the final version of the application code and
deploy it.

Fig. 1. Main tasks of a typical performance engineering methodology.

All the tasks involved in Fig. 1 rely on multiple tools,
mostly selected based on the knowledge and familiarity of
the developer or performance engineer, with the help of
hard manual work efforts. The integration of the tools in a
single framework is usually missing and would need high-
levels of flexibility to adopt specific tools in each stage of
the methodology. Thus, specific actions are done manually
due to the lack of adequate tools or to the lack of integration
with other tools.

Bearing in mind some of these issues as a way to
contribute to the automation of the previously introduced
performance engineering methodology, we have adopted
the main concepts of an approach [8, 9, 10] inspired on
Aspect-Oriented Programming (AOP) [11], originally pro-
posed in the context of embedded systems [9, 12], and fur-
ther developed in the context of HPC applications [13, 14],
to introduce in this paper the Pegasus approach. Pegasus
relies on previously developed components and on partic-
ular enhancements to contribute to the automation of the
methodology presented in Fig. 1. In particular, we use the
LARA DSL and its associated libraries [15] to assist de-
velopers and performance engineers when developing and
tuning C/C++ applications, the Clava1 C/C++ source-to-
source compiler, and the mARGOt runtime autotuner [16].
The LARA language was originally developed to assist
developers when targeting multicore embedded devices
consisting of reconfigurable hardware. Initially, there was
a focus on instrumentation to identify critical regions and
guide mapping, hardware/software partitioning, and word-
length optimization. Clava, its supporting libraries, and the

1. Clava source code: https://github.com/specs-feup/clava

current version of the mARGOt autotuner were initially
proposed in ANTAREX2 project and their ultimate versions
are core components of the framework presented in this
paper.

LARA allows developers to program strategies
("recipes") and automatically apply them to software appli-
cations using a concept similar to AOP weaving [11]. AOP
is a programming paradigm aimed at increasing program
modularity by encapsulating code related to crosscutting
concerns (such as logging, profiling, and autotuning) into
separate entities called aspects that are then woven into
the original application. One of our goals is to maintain
the application software code mainly concerned with its
business logic and separated from the code related to NFRs
as much as possible, by generating the modified software
application automatically.

This paper introduces Pegasus, an integrated approach
that can automatize the methodology presented in Fig. 1 by
relying on the previously described components. Pegasus
contributes to a more systematic process, which is helpful to
assist developers and performance engineers, dealing with
execution time and energy or power consumption require-
ments. We show examples of recurring concerns arising
from the tasks of the presented HPC methodology and how
developers and performance engineers can use Pegasus to
program custom strategies to address those requirements.
Furthermore, we show the use of the Pegasus approach to
assist various performance engineering stages and tasks in
the context of a smart future navigation system running in
an HPC platform.

Overall, the main contributions of this paper are the
following:

• A systematic approach to support developers and
performance engineers when dealing with execution
time and energy or power consumption require-
ments;

• An integrated and smooth use of runtime autotun-
ing, including the synthesis and automatic integra-
tion of state-of-the-art runtime autotuning schemes;

• An evaluation of the approach with a large-scale and
high-computing-complexity case study, an industrial
prototype for a smart and future navigation system
to be run on an HPC system.

The remainder of this paper is organized as follows.
Section 2 describes the primary motivation for the proposed
Pegasus approach. Section 3 presents the approach and its
main components. In Section 4, we describe some represen-
tative use cases and the use of Pegasus. Section 5 presents
the case study and describes how to apply the performance
engineering methodology using Pegasus. Section 6 shows
the experimental results and an evaluation of the Pegasus
approach to the case study. Section 7 reviews the related
work, while Section 8 concludes the paper and presents
future work.

2 MOTIVATION

Performance engineering for HPC applications typically
involves the tasks shown in Fig. 1. These tasks can be

2. For more information, please see: http://antarex-project.eu/

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 3

seen as sequential phases, but are generally iterative. In
practice, developers perform multiple cycles of analysis,
development, and integration to fine-tune an application to
the non-functional requirements.

All tasks require analysis of the source code of the
software application, selection of points of interest, and
instrumentation or transformations of the code. In the first
task, Analysis and Profiling, these steps are performed to
gather knowledge about the application, while in the other
two tasks, Strategy Selection and Development and Autotuner
Integration, the application is modified to meet the desired
goals and requirements. For example, in Analysis and Pro-
filing, developers may need to make code changes that are
later discarded, since they might be applied only to collect
runtime characteristics of the application.

A framework to deal with the presented methodology
stages needs to have enough flexibility to support the
automation of several actions. These actions range from
the analysis of software code (e.g., to acquire static in-
formation or to identify bugs in the application [17]), the
instrumentation of the applications (e.g., to acquire dynamic
information), the modifications of code, to the integration
and synthesis of runtime autotuning schemes.

One of the core actions in the Strategy Selection and Devel-
opment task is code refactoring, also known as code restruc-
turing [18, 19] and code transformation. Code refactoring
was originally recognized as beneficial for improving the
quality of software, e.g., regarding robustness, extensibility,
reusability, and performance [20]. More recently, it has been
used for reducing energy consumption and for the paral-
lelization [21]. In many cases, users do not perform code
refactoring due to their unawareness of tools (as mentioned
by Murphy-Hill et al. [22]), or the lack of time and the risk
associated with transforming the code [23]. These reasons
apply mainly when dealing with code quality goals, such
as maintainability, extensibility, and reusability. However,
when the goals involve execution time and energy or power
consumption, the causes are not only the users’ unaware-
ness of tools, but also the lack of tools, the lack of knowledge
regarding the vast portfolio of code transformations, the
complexity to devise sequences of transformations, and the
lack of an easy way to know the impact of those transfor-
mations. The fact that many HPC application developers
are domain experts, but neither computer scientists nor
performance engineers, further aggravates this problem.
Therefore, it is essential to provide tools to help users
to address these problems and to apply code refactoring,
towards reaching maximum peak performance.

Herein, we demonstrate the application of some actions
of each task of the methodology to a simple matrix multi-
plication code, a well-known and straightforward example,
with the relevant code excerpt shown in Fig. 2. Matrix mul-
tiplication has been intensively studied [24, 25], and there
exist very optimized HPC implementations. This example,
however, is simple enough to follow and to show several
tasks to be done.

One of the first actions for performance analysis of an
application is profiling. For that, one can use GNU gprof [26],
Linux perf 3 or tools provided by Valgrind [27], e.g., for cache

3. https://perf.wiki.kernel.org/index.php/

1 // ...
2 template< typename T >
3 void matrix_mult(const vector<T>& A , const vector<T>& B,
4 vector<T>& C, const int N, const int M, const int K) {
5 // ...
6 for(int i=0; i<N; i++) {
7 for(int l=0; l < M; l++) {
8 for(int j=0; j < K; j++) {
9 C[K*i + j] += A[M*i+l]*B[K*l+j];

10 }
11 }
12 }
13 }
14 // main function here...

Fig. 2. Main parts of the original matrix multiplication code.

and call-graph profiling. The profiling reveals meaningful
information, e.g., where the execution of the application
spends most of its time (code regions or functions known
as hotspots). We note, however, that other analyses might
be involved, and there are tools, such as Vampir [28], that
can help on performance analysis of parallel applications.

Let us assume that the profiling information reveals that
the matrix multiplication function, matrix_mult, accounts
for most application’s execution time, and thus it is the
function where developers shall focus the first optimization
efforts.

To assess the impact of code transformations or to have
direct measurements of code regions, it is common to instru-
ment the application to measure time and energy around a
region of interest. In this example, we use standard C++
libraries to measure the time elapsed around the call to the
matrix_mult function. To measure energy consumption,
we rely on a library that makes use of RAPL [29]. Fig. 3
presents the resulting code.

1 #include <iostream>
2 #include <chrono>
3 // ...
4 int main() {
5 // ...
6 auto e0 = rapl_energy();
7 auto t0 = chrono::high_resolution_clock::now();
8

9 matrix_mult(A, B, C, N, M, K);
10

11 auto t1 = chrono::high_resolution_clock::now();
12 auto e1 = rapl_energy();
13 cout << (e1-e0) << "uJ" << endl;
14 auto d = t1 - t0;
15 auto d_ms =
16 chrono::duration_cast<chrono::milliseconds>(d);
17 cout << d_ms.count() << "ms" << endl;
18 // ...
19 }

Fig. 3. The function call to the kernel in the main is instrumented for
measuring execution time and energy consumption.

Now, we can easily measure the execution time of the
original and any newly generated code version and compare
those versions to evaluate the impact of possible optimiza-
tions. The output of the execution reports the time spent in
each kernel call, in addition to the original information, as
seen in Fig. 4.

At this stage, it is common to analyze the code of
the application (mostly the code of the hotspots) and to
select code optimizations that can improve performance.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 4

1 #0 C [0] [0] = 128 .153 [512 x512] X [512 x512]
2 2 .36459 e+06 uJ
3 94 ms

Fig. 4. Part of the output of the program, including the timing and energy
consumption information for each function call.

For instance, in order to reduce the execution time, we
applied loop tiling [30] to the loops of the function. Loop
tiling can provide better locality and reduce cache misses
and, therefore, reduce execution time and energy or power
consumption. Another possibility can be the use of loop
interchange [30], which requires an analysis of the iteration
space and access patterns in order to select the loops to
interchange. In this example, we applied loop tiling to the
three loops in the critical loop nest of the function. Fig. 5
shows an excerpt from the resulting code.

1 // ...
2 template< typename T >
3 void matrix_mult_tiling(const vector<T>& A ,
4 const vector<T>& B, vector<T>& C,
5 const int N, const int M, const int K) {
6

7 const int BS1 = 32;
8 const int BS2 = 32;
9 const int BS3 = 32;

10 // ...
11

12 for(int i2=0; i2<N; i2 += BS1) {
13 for(int l2=0; l2<M; l2 += BS2) {
14 for(int j2=0; j2<K; j2 += BS3) {
15 for(int i=i2; i< min(N, i2+BS1); i++) {
16 for(int l=l2; l< min(M, l2+BS2); l++) {
17 for(int j=j2; j< min(K, j2+BS3); j++) {
18 C[K*i + j] += A[M*i+l]*B[K*l+j];
19 }
20 }
21 }
22 }
23 }
24 }
25 }
26 // ...

Fig. 5. The main kernel transformed with loop tiling.

The choice of the optimal tile size is not trivial and
depends on factors that might be unknown at the time we
improve the code. For instance, the memory organization
and sizes of the caches of the target machine play an
important role, requiring the developer that tunes the code
to know the target machine beforehand. Another factor that
affects the choice of the tile size is the size and shape of the
matrices used.

The next step is to measure the execution time and the
energy consumption for different tile and input matrices
sizes. It is common that at this stage, developers use design-
space exploration (DSE) tools (see, e.g., [31]) to evaluate the
different configuration settings. However, it is also not un-
common that developers perform this exploration manually
via code modifications, sometimes incurring lengthy and
error-prone development efforts.

We performed the exploration of tile and input matrices
sizes for two different machines, A and B, to illustrate how
different architectures affect the choice of tile size. Table 1
illustrates the results of this exploration for machine A and
presents the speedups of the code versions with loop tiling

over the original version (i.e., without loop tiling). Here,
developers may need to execute several times (five runs
in this example) each version of the application and report
average execution time and energy consumption. We note
that, albeit not presented, the energy consumption of these
versions followed the speedup trends.

TABLE 1
Speedups for machine A over the original application (without loop

tiling) for the explored combinations of matrix size (rows) and tile size
(columns). Results for the best tile sizes for each matrix size are

highlighted in bold.

Matrix Size Tile Size

64 128 256 512 1024

512 0.77 0.80 0.91 - -
1024 0.68 0.76 0.89 0.94 -
2048 1.25 1.52 1.80 1.97 2.08
4096 1.30 1.60 1.84 2.06 1.03
8192 1.30 1.58 1.83 0.98 0.99

These results show the importance of considering both
tile and matrix sizes. In some of the cases, namely for
matrices of size 512, loop tiling with the explored tile sizes
does not bring any improvement in execution time. The
results across a row illustrate how the choice of tile size
affects the performance for a particular matrix size. Those
results also show how the cache sizes and organization
affect the choice of this parameter. For instance, the row
for matrix size 8192 presents slowdowns for large tile sizes
(0.98× for 512), and speedups for smaller tile sizes (1.83×
for 256).

The target machine needs to be taken into account to
assess the impact on the performance of the chosen tile sizes.
For instance, while for machine A, the best tile sizes are
{256, 512, 1024, 512, 256} for each of the five matrix sizes, for
machine B the best tile sizes are {256, 256, 512, 512, 256}.

On the other hand, the results across a column show
that developers should also consider the matrix size. For
instance, the column for tile size 64 shows slowdowns when
used for smaller matrices (0.68× for 1024), but speedups
when used for larger matrices (1.30× for 8192).

Although these experiments illustrate the need for ex-
ploration and the kind of work needed to achieve this anal-
ysis, they consist of an elementary and limited exploration.
Typically, developers may need to test a larger set of values
and to consider all the parameters (variables) separately. For
instance, in our exploration example, the tile size variables,
BS1, BS2 and BS3, have always an equal value. Similarly,
the variables with the sizes of the matrices, M, N, and K, have
always an equal value, i.e., we only tested the multiplication
of squared matrices. The shape of the matrix may also
impact the choice of tile size, which for simplification, we
did not take into account.

One critical optimization consists of parallelizing the ap-
plication, e.g., via OpenMP directives [32]. We extended the
previous exploration for the matrix size of 2048 to test the
effect of different tile sizes and different numbers of threads
in a parallel version. The best result for a serial application,
a tile size of 1024, does not scale when using more than two
threads. This was expected as each of the two threads deals
with chunks of data with the same size as the tile, i.e., 1024

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 5

elements. This pattern is also observed for tiles of size 512
and 4 threads, of size 256 and 8 threads, of size 128 and 16
threads, and of size 64 and 32 threads. The exploration of
the number of threads in {1, 2, 4, 8, 16, 32} showed that the
fastest execution time is achieved with the tile size of 128
and using 32 threads. Additional exploration parameters
could be the scheduling policy (highly dependent on the
problem), and the distribution of threads on the machine
(highly dependent on the architecture).

Thus, for thorough exploration, developers may have to
deal with large design spaces, thus requiring sophisticated
DSE schemes. As most of the strategies involve code in-
strumentation and configuration, and there is a vast design
space to consider, manually changing the application to
support and perform the exploration can be unfeasible,
time-consuming, and prone to errors.

In specific scenarios, a runtime selection of a particular
configuration is more advantageous. For instance, when the
best configuration depends on the input data used or on
the target machine (as shown before), developers may have
to enhance the application with the capability to postpone
configuration decisions to runtime. In this case, the solution
involves the integration of a runtime autotuner.

In the matrix multiplication case, the use of runtime
autotuning can postpone the choice of the tile sizes to
execution time. However, even in this case, some offline
exploration might be needed to generate a knowledge-base
for the autotuner. For instance, considering execution time
and energy consumption metrics, a Pareto frontier (see, e.g.,
Li and Yao [33]), would enable the autotuner to control this
trade-off by choosing the values of the variables.

We parameterized the matrix multiplication function
with the tile sizes, and we inserted the autotuner code
to choose the tile sizes immediately before the call. The
decision takes into account the current running conditions
(as measured by the internal monitors of the autotuner) and
the sizes of the input matrices. Fig. 6 shows an excerpt of a
version of the application that uses mARGOt [16] to provide
this online adaptation. The tile sizes became a parameter
of the kernel, and the autotuner sets their value before the
function call with the update call to the mARGOt interface.
The autotuner receives the sizes of the matrices, N, M, K,
as inputs and sets the values of BS1, BS2 and BS3 right
before the call site. The other calls to mARGOt start and
stop its internal monitors, which in this case, keep track of
the execution time.

With this simple matrix multiplication code, we have
shown several techniques typically used by performance
engineers. This example illustrates the type of work needed
and how it can scale, but it also shows that even for straight-
forward cases, there is a need for an integrated methodology
to support the application developer.

The next section describes the Pegasus approach and
associated tool flow to semi-automate the tasks of the pro-
posed performance engineering methodology. Those tasks
include analysis, instrumentation, code transformations,
design-space exploration, and integration of a runtime au-
totuner.

1 #include <margot.hpp>
2 //...
3 template <typename T>
4 void matrix_mult_tiling(vector<T> const& A,
5 vector<T> const& B, vector<T>& C,
6 int const N, int const M, int const K,
7 int const BS1, int const BS2, int const BS3) {
8 // ...
9 }

10

11 int main() {
12 margot::init();
13 // ...
14 int BS1, BS2, BS3;
15 // ...
16 if(margot::matmul::update(BS1, BS2, BS3, N, M, K)) {
17 margot::matmul::manager.configuration_applied();
18 }
19 margot::matmul::start_monitor();
20 matrix_mult_tiling(A, B, C, N, M, K, BS1, BS2, BS3);
21 margot::matmul::stop_monitor();
22 // ...
23 }

Fig. 6. The call to the matrix multiplication function was surrounded with
autotuner code that chooses the best tile size from a set of pre-fixed tile
sizes for the current execution context.

3 PERFORMANCE ENGINEERING APPROACH

The Pegasus approach uses a framework composed of
Clava, a source-to-source compiler, LARA [9, 10], the lan-
guage used to program strategies that are automatically
applied in the performance engineering tasks, and mAR-
GOt [16], a runtime autotuner. Pegasus covers the tasks
presented in Section 1 with the following steps:

1) Analysis and Profiling: Analysis of the application
code, and profiling of its runtime behavior and
impact of certain transformations, parameter values,
and algorithms;

2) Strategy Selection and Development: Selection of
code transformations, compiler optimizations, and
decisions regarding the analysis in the previous
step, including the development of new and custom
transformations;

3) Autotuner Optimization: Generation of the Knowl-
edge Database and identification of Pareto frontiers
for the generation of the autotuning model and
synthesis of the runtime autotuner;

4) Autotuner Integration: Insertion of the runtime au-
totuner in the application code;

5) Application deployment.

The analysis can be either based on looking at the current
state of the application or based on a "what-if" analysis. The
former tries to understand how an application is currently
working and if we can take advantage of its characteristics
and inputs (through profile-guided optimizations). These
analyses include timing and energy profiling of the appli-
cation to find hotspots (i.e., code regions of the application
with the most significant contribution to a given metric) as
well as input frequency analysis, e.g., used to guide memo-
ization techniques [34]. The latter type of analysis relies on
LARA strategies to "poke and probe" the application and to
test what happens if a parameter or algorithm is changed.
A developer can perform such an analysis through ad
hoc LARA strategies or, more systematically, by relying on

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 6

exploration libraries provided by Clava to perform design-
space exploration and measure different metrics of interest.
For instance, these strategies can test the impact of data
type conversion between half-, single-, and double-precision
floating-point types, or the impact of changing the number
of threads of an OpenMP program.

The optimization and integration phases build on the re-
sults of the analysis. These phases are often part of a loop, in
which we come back to the analysis after transforming and
optimizing critical parts of the application and including
other components.

Our approach relies on a tool flow that uses Clava and
LARA throughout all the steps, as shown in Fig. 7. They are
used to define strategies for all the steps, from analysis to
optimization and integration of other components.

Fig. 7. The Clava+LARA tool flow.

3.1 The LARA Language

The LARA [9, 10] language provides several constructs for
capturing, querying, and modifying the source elements of
a target application. Furthermore, it is possible to use ar-
bitrary JavaScript to provide general-purpose computation.
The most important LARA constructs can be summarized
as follows:

• aspectdef marks the beginning of an aspect. The
aspect is the main modular unit of the LARA lan-
guage.

• select allows to query elements in the code (e.g.,
function, loop) that we want to analyze or trans-
form. This selection is hierarchical, i.e., select
function.loop end) selects all the loops inside all
the functions in the code.

• The apply block iterates over all the elements of the
previous selection. Each particular point in the code,
herein referred to as join point, can be accessed inside
the apply block by prefixing $ to the name of the
join point (e.g., $loop). Each join point has a set of
attributes, which can be accessed, and a set of actions,
which can be used to transform the code.

• The condition block can be used to filter join
points over a join point selection.

3.2 The Clava Source-to-Source Compiler
We base our approach on the idea that specific tasks and
application requirements (e.g., target-dependent optimiza-
tions, adaptivity behavior, and concerns) can be specified
separately from the source code that defines the functional-
ity of the program. Developers and performance engineers
can express those requirements as reusable strategies writ-
ten in a DSL and applied as a compilation step. To imple-
ment this approach for C/C++ programs, we developed
the Clava source-to-source compiler, that applies source
code analysis and transformation strategies described in the
LARA language.

Fig. 8 shows a block diagram of the Clava+LARA frame-
work, which is composed by three main parts: 1) the LARA
Framework; 2) the Clava Weaver engine; and 3) the C/C++
Frontend.

LARA
Framework

LARA
StrategyClava Weaver

Clava
AST

C/C++/
OpenCL
Program

Modified
C/C++/

OpenCL
Program

C/C++
Front-end

App

File

Function

Loop

Fig. 8. Block diagram of the Clava+LARA framework.

The LARA Framework compiles and executes the LARA
strategies defined in the input aspect files, instructing the
weaver on which code elements to select, which information
to query, and which actions to perform.

The C/C++ Frontend transforms the source code of the
input application into an abstract representation that can
be manipulated by the Clava Weaver engine. The Frontend
was implemented using the Clang compiler4, which is used
to parse the code and build an Abstract Syntax Tree (AST)
that is manipulated by the Clava Weaver engine. This AST
closely resembles the internal AST of Clang, with modifica-
tions and extensions that allow AST-based transformations,
and the capability of generating source code that is, as much
as possible, similar to the original.

The Clava Weaver engine is responsible for maintaining
an updated internal representation of the application source
code, initially generated by the C/C++ Frontend, which is
manipulated according to the execution of LARA strategies.
At the end of the execution, it generates the woven applica-
tion source code from the AST.

Current Clava libraries allow users to enhance their
applications with, e.g., memoization and autotuning capa-
bilities. These libraries can be imported and used in LARA
and deal with the generation of code and configuration files
that are needed for those libraries to work.

The C preprocessor (CPP) is commonly used by devel-
opers in HPC scenarios, e.g., for targeting different archi-

4. Clang: a C language family frontend for LLVM. For more informa-
tion, please visit http://clang.llvm.org/

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 7

tectures. Clava interacts with CPP by obtaining an AST
after the code has been transformed by CPP, as Clang
invokes CPP before parsing the source code. Thus, source
code transformations are applied later in the build process
after the CPP has resolved all definitions and conditional
statements.

3.3 Source-to-Source Transformations

Source-to-source transformations are a crucial part of the
performance engineering methodology, and Pegasus sup-
ports them through Clava. There are two main reasons to
change the application code. The first is to improve the
performance of an application, which can be done directly,
e.g., by applying loop transformations, or indirectly, e.g.,
by introducing specialized versions of critical functions and
mechanisms to decide which versions to run depending on
the current context. The second reason is to enable further
analysis of the application. This analysis can be either static,
by looking only at the application’s source code, or dynamic,
by instrumenting the application to collect specific metrics
during the execution. An example using static analysis is the
Clava auto-parallelization library, AutoPar-Clava [35, 36].
This library analyzes loops and finds dependencies between
iterations in order to understand if parallelization is possible
and how to apply it via OpenMP.

We use three main ways of transforming the application
source code. First, code can be inserted into the application
by providing the code to be inserted in a LARA aspect. Code
insertions are very flexible and useful for low-level, fine-
grained tasks.

Then, Clava actions can be applied, which are trans-
formations applied by Clava on a join point selected by
the user. These actions provide an abstraction as the user
does not have to control how the transformation is carried
out. Examples of such actions include Loop Tiling, applied
to loops, and Function Cloning, which clones the selected
function and changes its name to one specified by the user.

Finally, code transformations can be provided by Clava
libraries, which can be imported and used in LARA aspects.
These libraries provide high-level code transformations for
more coarse-grained tasks. For instance, the Timer library
is used to measure and report time around a provided join
point. It manages all implementation details, from including
header files to declaring variables to hold temporary values
and reporting the execution time. A couple of lines of LARA
code can achieve this (as shown in Fig. 9). The implemen-
tations of these libraries use the previously mentioned code
insertions and actions as building blocks, but are hidden
from the user.

Clava offers possibilities to transform the target applica-
tion at several levels of abstraction, meaning that end users
can write their custom and targeted transformation aspects
to change their applications in a precise way. On the other
hand, it is also possible to write aspects that can be reused
on multiple applications, reducing the amount of work for
repetitive tasks.

We rely on a source-to-source approach due to the fol-
lowing advantages compared to lower-level representations.
First, working at the source code level brings a level of
flexibility and portability that is not available otherwise. For

instance, after performing transformations, any specific tar-
get compiler can be chosen, giving more freedom to the pro-
grammers and allowing Pegasus to be used in more cases.
Concerning flexibility, a source-to-source approach allows
the use of other analysis and transformation frameworks
that inspect source code, and it also allows developers to
further modify the application source code.

Second, there is possibly a lower entry barrier and a
smoother learning curve for anyone using such an approach
since the strategies are specified at the same familiar level,
using a similar programming specification that developers
already use when programming. Lower-level representa-
tions would require that users learn and reason using a new
model. With Pegasus, end users are both able to program
their analysis and transformation strategies and to use the
ones provided. A lower-level representation would limit the
customization by users.

Third, certain information, such as code structure and
naming information, is typically lost when converting
source code into lower-level representations. For example,
struct field names would be lost, and the user would not
be able to specify any analysis or transformation based on
those names.

3.4 Synthesis and Integration of the Autotuner

The integration of the mARGOt autotuner [16] and deploy-
ment of the target application with a runtime adaptivity
layer is one of the fundamental steps in the Pegasus ap-
proach.

Some characteristics of the application may not be easily
gathered statically and may require dynamic profiling. For
instance, features that are directly related to the input are
not statically predictable. These include input sizes and
sparsity, which can make particular algorithms unfeasible,
and memory access patterns that directly depend on the
input, and that prevent parallelization and the application
of some loop transformations.

However, it is also possible that even dynamic profiling
cannot be efficiently used since the running conditions may
change during execution. In such cases, an autotuner is
required to provide runtime adaptation to changes in the ex-
ecution context. In Pegasus, Clava libraries support the inte-
gration of the mARGOt autotuner into a target application.
These libraries provide support to the user in three different
phases: configuration, generation of the initial knowledge
base, and code insertion for the mARGOt interface.

First, the libraries configure how the autotuner interacts
with the application, which includes defining knobs, met-
rics, and the optimization function that guides the choice
of the following settings. In the end, Clava generates the
configuration file needed by mARGOt.

Then, the libraries can be used to generate the initial
knowledge base. Although mARGOt has an online mode,
in which it can learn the application’s operating points as it
executes, it can also start with offline generated knowledge.
We can use the Clava libraries to explore the parameters,
i.e., the knobs, and data features, and measure the metrics
of interest, e.g., execution time and energy consumption. At
the end of the exploration, the library generates an operating
points list, which is then used by mARGOt.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 8

Finally, we include a library to ease the insertion of code
that interfaces with the actual autotuner code. A LARA
strategy selects the points in the code where the knobs
should be updated, and then, a function of the mARGOt
integration library inserts the needed code, taking into ac-
count the previous configuration. It also takes care of other
details such as inserting include directives and mARGOt
initialization code, reducing the amount of manual work
the user needs to perform.

4 STRATEGIES FOR SOFTWARE IMPROVEMENT

Given that the target problem for a performance engineer
in HPC is composed of profiling, code optimization, and
autotuning, this section presents examples of recurrent use
cases and how developers can solve them with Pegasus. We
selected strategies covering the steps identified in Section 3
to demonstrate some of the capabilities of our approach.

In particular, Section 4.1 presents the strategy Time and
Energy Measurement related to Analysis and Profiling, Sec-
tion 4.2 and Section 4.3, respectively, present the strategies
Multiversioning and Code Transformations related to Strat-
egy Selection and Development, and, finally, Section 4.4
presents the strategy Autotuning related to Autotuner Opti-
mization and Autotuner Integration.

4.1 Time and Energy Measurement

Fig. 9 shows a simple aspect that instruments arbitrary
function calls to measure either the execution time or the
consumed energy. We parameterize the presented aspect
with the name of the function whose calls we want to
measure, and whether to measure energy or time. It uses
two libraries that are part of the LARA API, Timer and
Energy.

1 import lara.code.Timer;
2 import lara.code.Energy;
3

4 aspectdef MeasureTimeOrEnergy
5 input funcCallName, measureEnergy end
6

7 select call end
8 apply
9 if(measureEnergy) {

10 new Energy().measure($call);
11 } else {
12 new Timer().time($call);
13 }
14 end
15 condition $call.name == funcCallName end
16 end

Fig. 9. LARA aspect to advise execution time and energy consumption
measurements around a given function call.

Line 7 of the example selects every function call of
the input application. The aspect filters these calls with
the condition in line 15, i.e., it only transforms calls to
functions with names matching the provided name (param-
eter funcCallName). In the apply block it is created an
instance of the correct library, either Timer or Energy, and
it is passed the call join point ($call) to the corresponding
function, which surrounds the call site with the code needed
to measure the execution time or the energy consumed.

If we weave twice this aspect into the application, first
to measure energy consumption and then to measure execu-
tion time on the same function call, the resulting application
looks like the matrix multiplication call presented in Fig. 3.
The original call was instrumented to collect metrics of
interest during the execution of the function and to print
the metric values to the standard output. The Timer and
Energy libraries also manage the insertion of include direc-
tives automatically.

We note that the code of this aspect can be easily ex-
tended to consider other types of join points, e.g., loops,
code sections, functions with specific characteristics.

4.2 Multiversioning

A recurring transformation performed with Clava is the
generation of multiple versions of a target function. We
usually follow this transformation by replacing some (or
all) of the target function calls with a mechanism that
can choose different versions at runtime. Each version can
then be optimized separately, and the choice of which to
execute is postponed to runtime. Fig. 10 shows a fragment
of a simplified version of such a strategy (used in Gadioli
et al. [37]), which optimizes each version differently by
choosing different compilation flags. In other instances, we
also change the code of each version, e.g., through the
application of different loop transformations.

We parameterize this aspect with a list of optimization
flags and a target function, previously selected by the user.
Line 8 creates an instance of MultiVersionPointers, a
library developed to help with the generation of the control
code. It makes an array with pointers to functions with the
same signature as the original. Each one of the positions
holds a pointer to one of the new versions, and the user
provides the mapping (index to function name). At runtime,
an heuristic or autotuner can choose what function to use
by changing the index. From line 10 to line 24, the strategy
iterates through all optimization flags and makes a clone
for each one of them, giving the clone a new name based
on the original and the flag index. Line 20 takes the newly
generated clone and surrounds it with pragmas that instruct
the compiler on how to optimize the function. Then, line
23 maps the name of the clone to its corresponding index.
The remainder of the aspect has three main parts. First, it
globally declares the variables to hold the index and the
array of function pointers (lines 26–33). The index variable
is the knob that can be controlled by an autotuner. Then,
it initializes the array in the main function, which is where
the mapping is generated by assigning a pointer to each
of the versions to its corresponding position (lines 36–39).
Finally, it replaces every call to the original target function
with a call to an associated function, pointed to by the
corresponding array position. For instance, the call:

1 int result = original_target(first_arg, second_arg);

is modified to:

1 int result = pointer_array[index](first_arg, second_arg);

This kind of strategy can be extended with other vari-
ables to create more complex applications with more poten-
tial for performance optimization. For instance, in Gadioli

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 9

1 import clava.ClavaJoinPoints;
2 import antarex.multi.MultiVersionPointers;
3

4 aspectdef MultiVersioning
5 input opts, $target end
6

7 var globalNameOpt = "multi_version_opts";
8 var mvp = new MultiVersionPointers($target, [opts.length]);
9

10 for(var optId in opts) {
11

12 // build the new for each clone
13 var opt = opts[optId];
14 var newName = $target.name + ’_opt’ + optId;
15

16 // generate clone
17 var $clone = $target.exec clone(newName);
18

19 // insert opt pragmas around the clone
20 call InsertPragmasAroundClone($clone, opt);
21

22 // add to multiversion controller
23 mvp.add(newName, optId);
24 }
25

26 var intType = ClavaJoinPoints.builtinType("int");
27 select file end
28 apply
29 // insert global for knob
30 exec addGlobal(globalNameOpt, intType, "0");
31 // insert global for multiversion controller
32 mvp.declare($file);
33 end
34

35 // initialize the multiversion controller
36 select function{’main’} end
37 apply
38 mvp.init($function);
39 end
40

41 // replace all calls to the target function with
42 // the multiversion controller
43 for (var $call of $target.calls) {
44 mvp.replaceCall($call, [globalNameOpt]);
45 }
46 end

Fig. 10. Excerpt of a LARA aspect to generate multiple versions of a
target function.

et al. [37], we targeted kernels with OpenMP pragmas,
and we added another dimension to multiversioning by
also considering two possible values for the proc_bind
clause. In the end, we exposed three knobs: the number of
threads, compiler optimization flags, and the proc_bind
value. These knobs can be controlled manually from the
command line or automatically from within the program,
e.g., with a user-defined heuristic or even an autotuner.

The decision to use function pointers to deal with
multiversioning in this example is merely an imple-
mentation choice. Although in this case we used the
MultiVersionPointers library to help with the code
generation, we provide another library to generate a switch
statement to choose the version to call. This switch imple-
mentation is better suited when additional layers of indirec-
tion are present, e.g., in C++ class methods and templates.

4.3 Code Transformations

Fig. 11 presents an example of a LARA aspect capable of
applying Loop Tiling [38] to a selected loop nest. Most of
the work is performed by the Clava action tile (line 25),
which takes the name of the variable holding the block

size (tileVar) and a reference loop ($topLevelLoop)
marking where to insert the newly generated loop.

1 import clava.ClavaJoinPoints;
2

3 aspectdef LoopTiling
4

5 input
6 $topLevelLoop,
7 tileVars = {}// Maps control vars to tile variable names
8 end
9

10 // Get function body
11 $fBody = $topLevelLoop.ancestor(’function’).body;
12

13 // Int type for tile variables
14 var $intType = ClavaJoinPoints.builtinType(’int’);
15

16 for(var $loop of $topLevelLoop.descendantsAndSelf(’loop’)) {
17 var tileVar = tileVars[$loop.controlVar];
18 if(tileVar === undefined) {
19 continue;
20 }
21

22 // Create tile variable
23 $fBody.exec addLocal(tileVar, $intType, ’64’);
24

25 $loop.exec tile(tileVar, $topLevelLoop);
26 }
27 end

Fig. 11. Example of a LARA aspect to perform loop tiling on a loop nest.

We parameterized the presented aspect with the refer-
ence loop (which is the outermost loop of the nest), and a
map containing the loops to tile. The map, tileVars, maps
the names of the control variable of each target loop to the
name of the corresponding variable that holds the block size.
In this aspect, these variables are declared as integers (line
23) on the scope where the reference loop is located (line
11). Finally, the aspect applies loop tiling to each loop in the
map (line 25).

This aspect assumes the loops are on the same loop nest
(the tile action fails if they are not) and only requests
the user to select and provide the reference loop (e.g., the
outermost) and define which loops to tile, identifying them
by their control variable inside the loop nest. This aspect
is reusable, and we may apply it to multiple loop nests in
different applications.

The current version of the Clava compiler supports sev-
eral built-in code transformations, such as loop tiling (used
in the example above) and interchange, function inlining,
cloning and wrapping, variable renaming, and setting loop
parameters such as induction variable initial value, step
and stopping condition. Other code transformations are
provided or can be programmed using LARA code and may
use built-in code transformations as building blocks.

4.4 Autotuning
This strategy shows how to integrate mARGOt [16] in
the target application. The autotuner enhances the original
application to deal with changes in the execution context.
We assume that the choice of the block size (for instance,
from the previous loop tiling transformation) should take
into account both the underlying architecture and the size
of the input matrices. By augmenting the application with
a runtime autotuner, we can make it resilient to changes in
the sizes of the matrices, leaving mARGOt to automatically

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 10

choose the optimal block sizes (or as close as possible to
optimal, based on the performed exploration).

Starting from an application with tiled loops (e.g., after
weaving the aspect presented in Fig. 11), we can use a Clava
library to integrate mARGOt in the application and gen-
erate the configuration files. We organized this integration
strategy in three steps, which are all called from a top-level
aspect: configuration, design-space exploration (DSE), and
code generation.

1 aspectdef XmlConfig
2 input configPath, $targetFunc end
3 output dseInfo, codeGenInfo end
4

5 /* ... */
6

7 /* knobs */
8 matmul.addKnob(’block_size_1’, ’BS1’, ’int’);
9 matmul.addKnob(’block_size_2’, ’BS2’, ’int’);

10

11 /* data features */
12 matmul.addDataFeature(’N’, ’int’);
13 matmul.addDataFeature(’M’, ’int’);
14 matmul.addDataFeature(’K’, ’int’);
15

16 /* ... */
17

18 /* generate the configuration file */
19 config.build(configPath);
20

21 /* generate the information needed for DSE and code gen*/
22 dseInfo = MargotDseInfo.fromConfig(config, funcName);
23 codeGenInfo = MargotCodeGen.fromConfig(config, funcName);
24 end

Fig. 12. Excerpt of a LARA aspect to configure the mARGOt autotuner.

Fig. 12 presents part of the aspect responsible for the con-
figuration step of the overall autotuner integration strategy.
For brevity, we omitted some of the code lines. The Clava
library allows the users to instantiate a configuration object
and then add and configure multiple mARGOt blocks. In
this example, we configure a single block named matmul.
Lines 8–9 and 12–14 show the most important parts of the
configuration, where the user can specify knobs, and where
the user can specify data features, respectively. Software
knobs are what the autotuner controls, and they are modi-
fied in response to runtime contextual information changes.
In this case, a change is represented by the data features,
which are the sizes of the input matrices. The call to the
build function (line 19) generates an XML configuration
file needed by mARGOt. However, the configuration infor-
mation is not only used to generate this file. The ensuing
steps reuse some of this information, which is why that
information is propagated forward (lines 22–23).

Fig. 13 shows an excerpt from an aspect that performs
DSE and builds the knowledge base used by mARGOt.
This aspect evaluates several combinations of values for
the knobs (representing the autotuner choices) and values
for the data features (simulating changing matrix sizes).
The aspect defines the values to test in lines 17–18. From
the top-level aspect, this aspect receives a target function
and corresponding function call. We select the body of the
function and instruct the DSE library to perform the changes
in values inside that scope (lines 5–8). We use the call to the
target function as the measuring point (line 9), which in this
example is only measuring execution time (line 14). After

providing this information and how many runs to perform
(at the end, this aspect reports the average of 30 runs, as
defined in line 11), the code variants are generated, and
the data collection begins. The results of the exploration are
processed, and the library generates the knowledge base in
the format required by mARGOt.

1 aspectdef Dse
2 input dseInfo, opListPath, $targetCall, $targetFunc end
3

4 // Select portion of code that we will explore
5 select $targetFunc.body end
6 apply
7 dseInfo.setScope($body);
8 end
9 dseInfo.setMeasure($targetCall);

10

11 dseInfo.setDseRuns(30);
12

13 // add desired metrics
14 dseInfo.addTimeMetric(’exec_time_ms’, TimeUnit.micro());
15

16 // set the knob values
17 dseInfo.setKnobValues(’block_size_1’, 16, 32, 64, 128);
18 dseInfo.setKnobValues(’block_size_2’, 16, 32, 64, 128);
19

20 // set the feature values
21 dseInfo.setFeatureSetValues([’N’, ’M’, ’K’],
22 [32, 16], [16, 16], [64, 64]);
23

24 dseInfo.execute(opListPath);
25 end

Fig. 13. Excerpt of an example LARA aspect to perform design-space
exploration for the mARGOt autotuner.

Finally, the last step is the generation of the code to
interface with mARGOt. Another part of the Clava mAR-
GOt library performs this generation, and Fig. 14 shows
an example of its use. In this example, we generate and
insert the code to perform an update call to mARGOt right
before the selected join point. The aspect selects the loop
inside the target function with a control variable matching
the one provided as input. This call to mARGOt’s update
takes the values of the data features and sets the values of
the knobs accordingly. Information such as the name of the
autotuner block, the names of the variables holding the knob
values, and data feature values are all already defined in the
codeGenInfo object, passed from the top-level aspect. This
information was previously defined in the configuration
step (line 23 in Fig. 12).

1 aspectdef CodeGen
2 input codeGenInfo, $targetFunc, controlVar end
3

4 select $targetFunc.loop end
5 apply
6 codeGenInfo.update($loop);
7 end
8 condition $loop.controlVar == controlVar end
9 end

Fig. 14. LARA aspect example to instrument an application with calls to
the mARGOt interface.

5 CASE STUDY

The case study is a prototype of a futuristic navigation sys-
tem, NavSys, being developed in the context of smart cities.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 11

NavSys is a highly sophisticated application, representative
of a future generation of navigation systems in the context
of smart cities and the management of autonomous vehicles.
This application includes components based on methods
and algorithms widely used in other domains, such as the
identification of shortest paths, betweenness centrality, and
Monte Carlo simulations.

Fig. 15 shows a block diagram of the NavSys appli-
cation consisting of four main components: K-Alternative
Paths Plateau (KAP), Probabilistic Time-Dependent Routing
(PTDR), Betweenness Centrality (BC), and Routing Reorder-
ing and Best Solution Choice (RBSC). KAP is responsible
for providing K path alternatives for routing a vehicle from
origin to destination. PTDR incorporates speed probability
distribution to the computation of the route planning in-car
navigation systems to guarantee more accurate and precise
responses [39]. BC provides information about centrality
nodes in the routing map (a graph) needed to identify
critical nodes. RBSC reorders the K alternative paths based
on different cost functions (depending on the kind of service
requested by the users of the navigation system).

Fig. 15. The structure of the NavSys application.

As NavSys is a computing- and data-intensive applica-
tion, optimizations are required to reduce the execution time
and energy consumption. To provide specific optimizations
and an improved version of the application code, we have
used the Pegasus approach described in this paper. In par-
ticular, we used the Pegasus approach on three components
(PTDR, BC, and RBSC), excluding KAP from the analysis.
Although the components we optimized are from the same
target application, they are independent, and thus they can
be seen as different applications from the perspective of our
approach.

The NavSys code version used in this paper has been
developed by the Czech supercomputing center IT4I to
provide an experimental testbed for extending the existing
Sygic navigation by server-side routing with a traffic flow
calculation for global optimization of city transportation.
The NavSys application is a result of recent research on
its main components, such as path reordering [40], k-
alternative paths [41, 42], betweenness centrality [43, 44, 45],
and probabilistic time-dependent routing [39]. Although
the complete NavSys application is not publicly available,
two of the important components codes, PTDR [39] and

BC [43, 44], have been disclosed and are available online5.
We note that performance improvements for similar

components to the ones used in NavSys have been ad-
dressed by using hardware accelerators such as GPUs and
FPGAs. Examples are the use of GPUs for BC [45] and the
use of FPGAs and GPUs for Quasi-Monte Carlo Financial
Simulations [46]. Although in this paper we do not target
hardware accelerators, it is in our plans to extend the Pega-
sus approach with strategies for heterogeneous architectures
with hardware accelerators. At the moment, the support
provided can help developers and performance engineers
to identify possible bottlenecks, hotspots, communication
patterns via code instrumentation and acquire certain com-
puting and code characteristics (via profiling and static
analysis) that can guide decisions regarding offloading to
specific components of the target architecture.

5.1 Pegasus Approach in the Case Study
Table 2 presents the classification of each strategy applied to
the use case regarding their steps (as described in Section 3)
and reusability. The following sections detail the strategies
presented here.

TABLE 2
Classification of each strategy applied to the use case.

Component Strategy Steps Reusable

PTDR Exploration 1 , 3 No
Autotuner Integration 3 , 4 , 5 No

BC

Analysis 1 No
Production 2 , 5 No
EvalDistances 1 , 2 No
EvalMeasures 1 , 2 Yes

RBSC Versioning 1 , 2 , 5 Yes

Out of the seven strategies applied to the use case,
we classify five as analysis strategies. The analysis is an
essential part of the methodology since it provides the
initial knowledge of the application and uncovers details for
custom transformations. This information drives and steers
the next steps.

The Pegasus approach supports the sequence and pro-
gression of the steps in the methodology. We may use
analysis and exploration strategies as standalone tools that
provide information, or we may use them to guide opti-
mization changes and generate a final production version.
For instance, in the BS component, the initial analysis strat-
egy leads to the production strategy that changes the main
loop of the application to skip BC computations based on
the similarity of the input graphs.

We classify two strategies as performing three method-
ology steps. First, Autotuner Integration, applied to the PTDR
component, explores the application design space to build
an autotuner knowledge base, integrates the mARGOt auto-
tuner into the application with all the needed configuration,
and builds a production application that is ready to be used.

5. The BC code is available at https://github.com/It4innovations/
Betweenness. The PTDR code is available at https://github.com/
It4innovations/PTDR

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 12

1: result← MCSIMULATION(samples, period)
2: stats← MAKESTATS(result)
3: PRINTSTATS(stats)
4: WRITERESULTS(result)

Fig. 16. The original PTDR main task.

Then, the Versioning strategy, applied to the RBSC com-
ponent, changes the application to allow multiversioning,
which is used both in analysis and production scenarios.

This work does not explore some possibilities, such as
the integration of the autotuner into BC and RBSC. In
BC, the autotuner can control the threshold to skip more
computations and decrease the execution time and energy
consumption, while maintaining the error below a prede-
fined value. In RBSC, the autotuner is used to choose which
of the multiple generated versions would run at any given
time, taking into account the accuracy of the generated
routes and the time taken to compute them.

Finally, Table 2 shows that two of the eight used strate-
gies are reusable, i.e., we could apply them directly to other
applications. The EvalMeasures strategy uses an aspect that
is parameterized with a loop, around which it inserts code
to measure both execution time and energy consumption.
Such a strategy can be used by other applications to measure
other loops (or any other points in the code), by selecting
them according to their needs and filters and passing them
to this aspect. The Versioning strategy, applied to RBSC,
is reusable since we parameterized it on several levels,
mainly on what reordering functions to evaluate, and what
mappings to apply to each input of the reordering functions.
In order to be applied in the target code, it only needs a call
to a function that we replace with the new versions to test.

5.2 PTDR Exploration
The application component used here, Probabilistic Time-
Dependent Routing or PTDR, incorporates speed probabil-
ity distribution to the computation of route planning [47].
Fig. 16 presents the pseudocode of such an application,
which performs a Monte Carlo simulation, parameterized
with the number of samples. Varying the number of samples
introduces a trade-off between faster execution and more
accurate results, i.e., a smaller number of samples produces
less accurate results, but they are computed faster. Depend-
ing on the server load or urgency of the routing request, it
is possible to favor one or the other to achieve the goals of
the current execution policy. Furthermore, the simulation is
parallelized with OpenMP, which allows for the exploration
of the number of threads to use and thus more exploitable
trade-offs.

We assume that running conditions, such as the server
load, may change during execution, which may impact the
performance of the application and render the decisions
based on the offline exploration unfit for dealing with the
current conditions. For this reason, we developed another
strategy to integrate mARGOt [16] into the application, in
order to provide runtime adaptability capabilities. The goal
is to dynamically reduce the number of Monte Carlo sam-
ples based on an unpredictability feature, which we extract
from a previous (smaller) execution with the current data.

The knowledge base needed by mARGOt is provided by
the previously described exploration step, while the Clava
mARGOt library provides the configuration files and API
integration.

In order to perform the PTDR parameter exploration and
autotuner integration, we developed two strategies consist-
ing of several LARA aspects. We first analyze the application
in order to understand how to properly configure it and then
add the autotuner to improve the selected parameters under
dynamic runtime conditions.

5.2.1 Exploration
The first strategy, Exploration, apply Design Space Explo-
ration (DSE) to the original application. To perform DSE,
we use a LARA library, which allows us to define how to
compile and run an application, and which code variables
to change and how. It is also possible to measure execution
time, energy, and other user-defined metrics. This LARA
library receives as parameter the number of executions to
perform per variant, starts the exploration process, and
returns, for each metric, the average of the collected values
of all executions.

In this exploration, we want to measure the impact of
the number of samples and threads. To achieve this, we
specified, in the LARA strategy, which variables are changed
and tested. This change is performed inside a user-defined
scope, which in this case, is a block (or compound statement)
surrounding the simulation call. The values tested for the
number of samples and threads are {500, 1000, 5000, 10000,
50000, 100000, 500000, 1000000} and {1, 2, 4, 8, 16, 32, 64},
respectively. The LARA library automatically generates all
code versions for the 56 (8× 7) variants, compiles, and runs
each of them.

For each version tested, the LARA code collects the
metrics defined by the user. It is also possible to specify
the scope where these metrics are collected. In this case, we
collected execution time and energy consumed around the
call to the Monte Carlo simulation. We developed a custom
error metric, specific to PTDR, called PtdrErrorMetric
to study the effect of reducing the number of samples on
the accuracy of the results. This user-defined metric can
be instantiated and provided to the LARA library, so it
is possible to measure it alongside the time metric. To
define a new metric, we need to extend the base metric
class and implement two methods, one that instruments
the application and one that extracts and reports the metric
value.

The value of the error is the Mean Squared Error of the
obtained results for the percentiles {5, 10, 25, 50, 75, 90,
95} in comparison to a reference value, which we obtained
by simulating with 1,000,000 samples and the maximum
number of threads in the machine.

This strategy can be parameterized to also extract an-
other metric from the running application, which is the
unpredictability value, as calculated by the application’s sta-
tistical report. The process of extracting this metric involves
a slight transformation of the source code, specified in the
ExposeUnpredictability aspect, which is conditionally
called by the Exploration aspect. Before the original call
to the Monte Carlo simulation, the strategy inserts a clone
of that call with a minimal number of samples. Then, we

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 13

1: testResult← MCSIMULATION(testSamples, period)
2: testStats← MAKESTATS(testResult)
3: unpred← testStats.variationCoeff
4: samples← MARGOTUPDATE(samples, unpred)
5: result← MCSIMULATION(samples, period)
6: stats← MAKESTATS(result)
7: PRINTSTATS(stats)
8: WRITERESULTS(result)

Fig. 17. The original PTDR main task after being woven with the auto-
tuner strategy.

use the statistical report of the application to extract the
variance of the obtained results for that particular input. The
code inserted by the LARA strategy collects this information
with a VariableValueMetric, which prints the value of
a user-defined variable in the measurement scope.

5.2.2 Autotuner Integration
The second strategy, Autotuner Integration, enhances the
application with autotuning capabilities (via the mARGOt
autotuner) by performing three main tasks. First, the mAR-
GOt LARA library is used to configure how the mARGOt
autotuner interacts with the application. We specify a set
of configurations about the operation of the autotuner, in-
cluding the definition of knobs, metrics to collect, and the
optimization functions to use. With this information, the
library produces an XML file that otherwise would have
to be specified manually.

Secondly, we use the previous exploration strategy to
perform a new DSE targeted to the integration of the au-
totuner. This time we decide not to explore the number of
threads and extract the unpredictability metric, which is used
by mARGOt as a data feature. A data feature is input data
that the autotuner takes into account for the update of the
knobs. After the exploration finishes, the library converts
the DSE results into the XML file that mARGOt uses as the
initial knowledge base for the autotuning process.

Finally, this library is used again to insert code in the
application to call the mARGOt API. The strategy selects
the point of interest, the call to the Monte Carlo simula-
tion, and defines it as the update point, where mARGOt
is called to update the knob controlling the number of
samples. The LARA library automatically takes care of the
implementation details, such as the generation of the code
to be introduced. This step uses information previously
defined in the first step, e.g., the knobs and data features,
to generate the correct code without relying on the user
providing the same information twice. Fig. 17 shows the
pseudocode of the resulting application. The first step is to
call the simulation with a minimal number of samples to
extract the unpredictability of the input data. Then, we pass
this information to the autotuner so it can choose the best-
suited number of samples to use.

5.3 BC Exploration
Let us consider an application that periodically computes
the Betweenness Centrality (BC) [43] over instances of
graphs representing routing maps of cities and traffic infor-
mation. This computation is expensive and for a large city

1: for every graph update do . can also be periodic
2: graph← LOADGRAPH()
3: result← BETWEENNESS(graph)
4: end for

Fig. 18. The original BC main task.

or using a very detailed graph, it may require a long time to
complete.

Fig. 18 presents the pseudocode showing the main BC
task. Every graph is loaded and used immediately to cal-
culate the BC of its nodes. In this case, we consider that
changes in the graph sent to a file communicate traffic flow
information and route state (other possible optimizations
may consider in-memory graphs).

We explored the idea of skipping some computations of
BC and approximate them with previously computed BC
results. We would only perform this approximation if the
inputs of the computation, the graphs representing routing
maps and traffic, were considered similar. It is important to
note that we consider that no new routes are added, and
thus graphs that represent routings in cities always have the
same structure, and the edge weights are the only possible
changes in the graph. Skipping these computations would
save execution time and energy since the computation of
graph similarity is faster and scales linearly with the number
of nodes.

We consider two graphs similar if their D distance is
less than a defined threshold value, T . In the experiments,
we used a distance defined as

D =
1

E

E∑
n=1

∣∣∣Wn −W
′

n

∣∣∣ ,
where E is the number of edges in the graph, and Wn and
W

′

n are the weights of the nth edges of the current and
previous graphs, respectively.

In order to evaluate how skipping BC computations
affects the accuracy of the system that depends on these
results, we measure the difference between the reused result
and what would be the computed result for the current in-
put. In our case study, the result of a BC computation is a list
of nodes (always in the same order) and their corresponding
centrality. Our first step is to compute the rank of each node,
meaning the node with the highest centrality has rank 1, and
the node with the lowest centrality has rank N , where N is
the number of nodes in the graph. After this, we compute
B, the Euclidean distance of the vectors formed by the ranks
of the two results.

We note that the LARA strategies used (and described
below) can be easily extended to provide other distance
metrics and woven code based on those metrics.

To achieve the reduction in execution time and energy
consumption, while also maintaining accurate results, we
developed strategies for analysis of the problem, generation
of production code, and evaluation of the results.

5.3.1 Analysis
The first strategy, Analysis, rewrites the original application
to compute D and B in consecutive iterations of the main
loop.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 14

1: for every graph update do
2: graph← LOADGRAPH()
3: D ← CALCDIST(graph, previousGraph)
4: SAVE(D, arrayD) . save consecutive Ds
5: previousGraph← graph
6: result← BETWEENNESS(graph)
7: B ← CALCEUCLIDEAN(result, previousResult)
8: SAVE(B, arrayB) . save consecutive Bs
9: previousResult← result

10: end for
11: PRINT(arrayD)
12: PRINT(arrayB)

Fig. 19. The BC main task after being woven with the analysis strategy.

1: for every graph update do
2: graph← LOADGRAPH()
3: D ← CALCD(graph, previousGraph)
4: if D < T then
5: result← previousResult . BC skip
6: else
7: result← BETWEENNESS(graph)
8: previousResult← result
9: previousGraph← graph

10: end if
11: end for

Fig. 20. The BC main task after being woven with the production strat-
egy.

Fig. 19 presents the pseudocode of the BC main task after
being woven with the Analysis strategy. We calculate the
distance D after loading the graph for the current iteration
by comparing it to the graph of the previous iteration.
Similarly, B is calculated after computing BC for the current
iteration and comparing it to the result of the previous
iteration. We save and print these distances at the end of
the execution of the loop and then use them to suggest the
threshold T .

5.3.2 Production

The second strategy, Production, prepares the application to
use the described approach to skip BC computations. We
parameterized it with T , the threshold to use.

Fig. 20 shows the pseudocode of the central BC task
resulting from weaving the original application with this
production strategy. The strategy inserted the computation
of the graph distance D and a mechanism to reuse the
previous result if this distance is less than the predefined
threshold. If it is not, BC is computed for the current input
and made available for reuse by saving both the current
graph and the current BC result.

5.3.3 Evaluation

We developed two strategies for the evaluation and tun-
ing of the production application. The first, EvalDistances,
changes the application in order to collect statistics of the B
distance based on the production version of the application.
This strategy generates a version that is similar to the pro-
duction version but always computes BC. Then, whenever

1: for route ∈ routes do
2: score← EVALUATE(route)
3: SAVE(score, scores)
4: end for

Fig. 21. The original RBSC main code.

it was supposed to be a skip (D < T), it records the distance
between the current BC result and the one that would be
used in case there was a skip. At the end of execution,
it reports how many skips happened and the minimum,
maximum, and average B for those iterations.

The second evaluation strategy, EvalMeasures, is con-
cerned with measuring the execution time of the appli-
cation, considering three versions, original, parallel, and
production. This is a straightforward strategy that selects
the main loop of the application and surrounds it with calls
to a library to measure time using standard C++ libraries.
The EvalMeasures strategy can be parameterized to call the
Production strategy before inserting the measurement code.
This way, it is possible to measure both the original and the
production versions.

5.4 RBSC Exploration
After the generation of the several possible paths for a
NavSys request, they can be evaluated and reordered, in
order to reduce the total driving time. The pseudocode
of this application is presented in Fig. 21. However, there
is no single optimal reordering, as it is dependent on the
current data and requirements (e.g., customers may require
a NavSys service with more reliable data and accuracy by
using BC and PTDR). In order to satisfy these different
scenarios, we explore several evaluation heuristics that can
provide acceptable solutions to the reordering problem. We
developed a LARA strategy that can be used to create and
explore several heuristics automatically.

5.4.1 LARA Strategy
The strategy assumes that this application component calls
a reordering function. The strategy replaces the call to the
evaluation function with a switch statement, controlled by
a user-defined expression, which calls one of the heuristics
generated by the strategy (the expression can be any valid
C/C++ expression, such as a macro, or a variable within
scope). Other kinds of strategies, automated with LARA,
could generate a specific version of NavSys for each cus-
tomer requirement. The pseudocode of the application after
weaving is presented in Fig. 22. The transformed application
can then be used to automatically explore the different
heuristics by selecting different values for the switch state-
ment.

Fig. 23 presents the pseudocode of the LARA strategy
that modifies the code to enable exploration of evaluation
heuristics. It receives several inputs, some of them optional:

• rcall: the evaluation function already present in the
target application, which will be replaced by the
switch statement.

• extraValues: maps names of variables to functions
that are available in the scope of the object where

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 15

1: for route ∈ routes do
2: switch version do
3: case 0
4: score← EVALUATE(route)

5: case 1
6: score← HEURISTIC1(route)

7: . . .
8: case N
9: score← HEURISTICN(route)

10: end switch
11: SAVE(score, scores)
12: end for

Fig. 22. The RBSC code after weaving.

the original evaluation function (rcall) resides (e.g.,
instance functions, static functions). Before each ver-
sion of the reordering function is called, the functions
defined here are called and stored in a variable with
the given name. The mappings input can then use this
variable. This input is optional.

• mappings: array where each element is a C/C++
expression that maps variables of the current object
instance to values used as inputs to the reordering
functions.

• type: the output type of the mappings. If none is
specified, assumes the type is double.

• functions: array with names of functions that are
available in the scope of the object where the original
reordering function resides. Each reordering function
must have some inputs of the same type as type,
and the number of inputs can range from 0 to N,
where N is the length of the array mappings.

• switchCondition: the expression that is the condition
of the generated switch statement. The switch
assigns an incremental integer value to each version
of the reordering functions, starting from 0. The
value 0 is always associated with calling the original
function.

In the first step of the algorithm, the definition of the
reordering function called in the original application is
obtained. If a definition is not found, e.g., the code of the
function is not available, the algorithm cannot continue.

Next, if extraValues is not empty, it creates the vari-
able declarations that contain the value returned by calling
the corresponding function. These variables are stored in
decls and are available for the mappings.

After this, the mapping functions are created and stored
in the array mappers, which is then used to create the
several reordering implementations stored in the array
reorders. The reordering implementations are generated
based on the given mappings and reordering functions.
For each reordering function, there are as many reordering
implementations as combinations of mappings for the func-
tion inputs. Currently, the reordering implementations are
generated using combinations, but it is possible to change
the strategy to use permutations instead.

Finally, the original reordering call (i.e., rcall)
is replaced by a switch statement, which uses the

1: Input
2: rcall← the reordering call already in the application

code
3: extraV alues ← maps new variable names to al-

ready existing functions.
4: mappings← array of available mappings to explore
5: type← the return type of the mapping functions
6: funcs← array of reordering functions to explore
7: switchCondition ← expression that controls the
switch statement

8:
9: def ← rcall.definition

10: decls← EXTRAVALUESVARDECLS(def, extraV alues)
11: mappers← MAPPERS(mappings, def, type, decls)
12: reorders← REORDERS(def, decls, funcs,mappers)
13: CREATESWITCH(rcall, switchCondition, reorders)

Fig. 23. The strategy that modifies the code to enable exploration of
reordering functions.

switchCondition as its condition expression, and for
each case it calls a reordering implementation, except for
case 0 that executes the original reordering call.

6 EVALUATION

This section presents the use of Pegasus in the performance
engineering process targeting the components of the NavSys
application: Probabilistic Time-Dependent Routing (PTDR),
Betweenness Centrality (BC), and Routing Reordering and
Best Solution Choice (RBSC).

Table 3 presents the main characteristics of the machine
and environment used to perform the experimental evalua-
tions. The hardware in the machine used in this evaluation
is configured to represent a single node of an HPC machine,
namely, one of the machines in the IT4Innovations super-
computing center6.

TABLE 3
Specifications of the machine where the experiments were performed.

Parameter Value

CPU 2x Intel Xeon CPU E5-2630 v3 @ 2.40GHz
RAM 128GB

OS Ubuntu 16.04 LTS
Kernel 4.11.0-kfd-compute-rocm-rel-1.6-148

Compiler GCC 7.3
Flags -fopenmp -O3 -march=native -std=c++14
OpenMP OpenMP 4.5

The execution time measurements were performed with
standard Linux libraries with calls automatically injected to
the applications’ code using LARA strategies. We measured
the amount of energy consumed with our library, Spec-
sRapl7, which is a wrapper around RAPL [29]. Calls to our
library were also automatically injected into the application.

6. https://www.it4i.cz/?lang=en
7. The code for SpecsRapl can be found at https://github.com/

specs-feup/specs-c-libs

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 16

6.1 PTDR Evaluation

This section presents the results collected during the evalu-
ation experiments. The results have different focuses, from
an estimation of the work performed by Clava and the
described strategies (comparing to a manual alternative), to
the analysis of possible tradeoffs.

We invoked PTDR with speed profiles for the UK. For
the Exploration strategy, the number of samples and threads
were controlled by the exploration parameters, as described
previously. For the Autotuner Integration strategy, the ap-
plication always uses 32 threads. We measured the overall
execution time of these explorations with standard Linux
programs, from the moment the JVM is launched to the
moment where it terminates execution.

Table 4 presents statistics about the aspect files devel-
oped to implement the strategies previously described. The
first five files are all used in the Exploration strategy and
called from the Exploration.lara file, the strategy entry
point. The main code of the autotuner integration strategy
is defined in MargotTuning.lara, but all other files are
used as well since this strategy relies on the previous DSE
to build the knowledge base for mARGOt. The first column
shows the number of logical lines of source code (SLoC),
i.e., a line count disregarding certain elements such as
comments and closing brackets. The aspects are relatively
short since the definition of the exploration is performed
at a high level, and we do not insert a large amount of
native code. The outlier is the MargotTuning.lara file,
with 105 SLoC. However, around half of those lines are
pure JavaScript used to translate between different data
formats and to generate the XML configuration file. The
second column of the table shows the number of aspect
definitions (aspectdefs) in each file. Aspect definitions
are the main modular unit in LARA and allow organiz-
ing code into particular concerns which can be reused
and parameterized. Similarly, we also organize the na-
tive code inserted into the application (present inside the
LARA files) into code definitions, or codedefs, which are
template-like functions for native code. A special note is
needed for the files VariableValueMetric.lara and
PtdrErrorMetric.lara, which do not have any aspects.
As mentioned before, to implement a custom DSE metric,
we need to extend a JavaScript class. These two files, which
contain only JavaScript code, are simply implementing met-
rics.

TABLE 4
Lines of code of the developed LARA aspects split in files.

File SLoC Aspects Comments

Exploration.lara 58 2 9
ExposeUnpredictability.lara 13 1 3
VariableValueMetric.lara 22 0 8
PtdrErrorMetric.lara 28 0 11
InstrumentPtdrErrorMetric.lara 10 1 0
MargotTuning.lara 105 3 42

Total 236 7 73
Average 39.33 1.17 12.17

Table 5 contains weaving metrics for the previously
described strategies when woven into the application. For

each strategy, we show the number of called aspect defi-
nitions, the number of iterated join points (LARA objects
that represent code points and can be manipulated by the
user), the number of join point attributes queried (e.g., for
filtering) and the number of actions taken on the selected
join points (and how many of those were code insertions).
The metrics show that Clava automatically iterates over a
large number of points in the code, according to the user
specifications (the LARA select blocks). This iteration
is performed hierarchically, starting at the file level, then
going through all functions and then to the fine-grained
points, such as specific statements, function calls, or loops.
The results also show that a large number of attributes are
queried to find the target points in the code. In the case
of these strategies, the attributes are mainly the names of
functions and function calls. A user could manually go
through these structures in the source code and find where
the points of interest are. However, with Clava and LARA,
one can automatically iterate over the source code of an
extensive application, filter, and capture the points needed.

The last column of Table 5 shows the actions applied
to the selected points, i.e., the set of code structures (calls
or functions in this example) that we get after filtering
based on their attributes and hierarchical structure. Since
the strategies described previously rely mainly on adding
extra functionality, they can be mostly accomplished with
insertions of code into the original application at the target
locations. The Exploration strategy tests a broader set of
parameters, which results in more generated versions and
more performed actions.

TABLE 5
Weaving statistics for the strategies applied to the application.

Strategy Aspects JPs Attributes Actions (Inserts)

Exploration 847 51557 47736 1456 (840)
Autotuner 133 9040 7830 214 (123)

Total 980 60597 55566 1670 (963)
Average 490 30298.5 27783 835 (481.5)

Table 6 shows the number of lines of code in the original
application and the versions resulting from the weaving.
The second column shows the difference to the original
version of the application. It is important to note that while
the Exploration strategy appears to change the application
only slightly, it automatically generates 56 different ver-
sions, each with different numbers of threads and samples,
that are then compiled and executed to collect the metrics.
The number 399 for the Autotuner Integration strategy is
the number of lines in the final application, the produc-
tion version with support for mARGOt. However, during
the exploration, the strategy automatically generates eight
files with 410 SLoC each, one per value of the number of
samples tested, as described previously. Furthermore, this
strategy also generates two XML for mARGOt with 26 (the
configuration) and 107 lines (the knowledge base).

The Exploration strategy went through the various val-
ues of the number of threads and samples and collected the
three metrics (execution time, energy consumed, and error)
for each generated and tested version. This exploration took
28080 seconds. The results of this design-space exploration

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 17

TABLE 6
Lines of code of the application, originally and after being woven with

each aspect.

Version SLoC ∆ SLoC

Original 394 0
Exploration 410 16
Autotuner Integration 399 5

Total 1203 21
Average 401 7

are presented in Fig. 24. These heat maps have the explo-
ration parameters on each of the axes, and the cells contain
the value of each specific metric.

The results show the execution time (in seconds), the
energy consumed (in joules), the error of the computation
resulting while varying the number of threads and samples,
and the average power (in watts). As expected, both the exe-
cution time and energy consumed decrease with the number
of threads and increases with the number of samples. The
error metric behaves more erratically for smaller numbers
of samples. However, as the number of samples increases,
the behavior becomes more consistent.

As for the mARGOt autotuner integration strategy, we
were primarily concerned with its integration using our
approach and how it would compare to the alternative
of manually integrating it. We think there are definite ad-
vantages to using a semi-automated approach like the one
presented here. The (automated) design-space exploration
to build mARGOt initial knowledge base took 1220 seconds.
We could then use this to provide runtime adaptation.
Thanks to the usage of the Pegasus approach, we could
reduce the number of simulations by a significant amount,
between 36% and 81%, with a negligible code overhead.

6.2 BC Evaluation
This section presents the results collected during the eval-
uation experiments, which range from an estimation of
the work performed by Clava and the described strategies
(comparing to a manual alternative), to the comparison of
the performance of the original and generated versions.

In these experiments, we tested the original version, a
parallel version of the original, and the production version.
The parallel version derives from the original by using
OpenMP directives on the BC kernel, and we obtain the
production version by weaving the parallel version with the
Production strategy.

This application was invoked with an input of 68 graphs,
each with 37812 nodes and 85273 edges. Each graph rep-
resents the traffic conditions of the city of Vienna at 15
minutes intervals, from 04h00 to 20h45. We collect the
time and energy measurements presented around the main
loop of the application (as described in Fig. 18), and they
take the loading of the graph file into account (however,
this is negligible in the overall execution time and energy
consumed).

Table 7 presents statistics about the aspect files de-
veloped to implement the strategies described previously.
The code in the file MeasureLoop.lara is used in the
evaluation strategy and called from the aspects in the

file EvalMeasures.lara. We measure time and energy
according to the LARA aspects in these files, which are
reused for every version tested. The first column of the
table presents the number of logical lines of source code
in each file. A considerable portion of the lines of code
in these files is the native C++ code that is inserted into
the application, mainly functions to calculate distances and
collect results. The second column presents the number of
aspect definitions (aspectdefs) in each file, giving an idea
of how well distributed the source code is across the main
modular unit of LARA, the aspect definition.

TABLE 7
Lines of code of the developed LARA aspects, divided by file.

File SLoC Aspects Comments

Production.lara 46 3 2
Analysis.lara 87 3 9
EvalDistances.lara 95 4 6
EvalMeasures.lara 14 1 0
MeasureLoop.lara 10 1 0

Total 252 12 17
Average 50.4 2.4 3.4

Table 8 contains weaving metrics for the previously
described strategies when woven into the application. The
results show, for each strategy, the number of called aspect
definitions, the number of iterated join points (JPs), the
number of queried attributes, and the number of actions
taken on the selected join points.

TABLE 8
Weaving statistics for the strategies applied to the application.

Strategy Aspects JPs Attributes Actions (Inserts)

Production 3 1161 449 5 (5)
Analysis 3 1847 789 11 (11)
EvalDistances 4 1742 686 10 (10)
EvalMeasures 9 1616 833 18 (12)

Total 19 6366 2757 44 (38)
Average 4.75 1591.5 689.25 11 (9.5)

The strategy EvalMeasures has more aspect calls and
(non-insertion) actions since it is more complicated than the
other strategies. The application that results from applying
this strategy measures execution time and energy consump-
tion. The additional actions, automatic and transparent to
the user, are related to the insertion of header inclusion
directives that provide the libraries to collect the data. Sim-
ilarly, the extra aspect definitions calls are internal aspects
for verification and the correct generation of the measuring
code. Once again, this is automatic and not seen by the user.

Table 9 shows the number of lines of code in the applica-
tion, in its original version, and after being modified by each
presented LARA strategy. The second column shows the
difference in the application size between the original and
each generated version. As a note, this metric only counts
how many more lines the woven version has, and it does
not account for other application-transforming effects such
as the replacement of certain statements that the presented
strategies use.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 18

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

50
00

00

10
00

00
0

samples

1

2

4

8

16

32

64

th
re

ad
s

200
400
600
800
1000
1200

(a) Execution Time (s)

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

50
00

00

10
00

00
0

samples

1

2

4

8

16

32

64

th
re

ad
s

10000
20000
30000
40000
50000
60000
70000

(b) Energy (J)

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

50
00

00

10
00

00
0

samples

1

2

4

8

16

32

64

th
re

ad
s

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5

(c) Error

50
0

10
00

50
00

10
00

0
50

00
0

10
00

00

50
00

00

10
00

00
0

samples

1

2

4

8

16

32

64

th
re

ad
s

60
70
80
90
100
110
120

(d) Average Power (W)

Fig. 24. Heatmaps with the results of the design-space exploration of PTDR.

TABLE 9
Lines of code of the application, originally and after being woven with

each aspect.

Version SLoC ∆ SLoC

Original 359 0
Production 371 12
Analysis 408 49
EvalDistances 409 50
EvalMeasures 378 19

Total 1925 130
Average 385 26

Based on some empirical testing, we chose a threshold
value of T = 2.00 since it leads to skipping around a quarter
of the total computations (performance measurements are
shown later), and the minimum and average distances B
are sufficiently close to the values obtained with smaller
thresholds.

Table 10 shows the number of BC calls (BCs), the exe-
cution time (T), the energy consumed (E) and the average
power (P) for three versions of the application, the original,
the parallel version (OpenMP) and the production version
with threshold T = 2.00 (Skip). The results also show
the speedup that each generated version achieves when
compared to the original (S), as well as the improvement
in energy consumed (I). It is important to note that we
generated the production version on top of the parallel

version and, when compared to this, it achieved a speedup
of 1.32 and an energy consumption improvement of 24.79%.
This improvement appears to scale linearly with the number
of computations that are skipped. Note that with T = 2.00,
the application skips 17 out of 68 BC computations or
23.53% of the total, and from the parallel version to the
production version, the execution time improves by 23.47%.
These results are positive, as it appears both execution time
and energy consumption may be reduced linearly with the
number of computations skipped. With this knowledge, it is
then up to domain specialists to find the optimal threshold
that leads to the best performance improvements while
keeping acceptable (accurate) BC results, which may change
from one application to another.

TABLE 10
Number of calls to BC, total execution time, energy consumed and

average power for the original version, the parallel version (OpenMP)
and the production version (Skip) with threshold T = 2.

Version BCs T (s) S E (J) I P (W)

Original 68 51198 1.00 2.93 × 106 0.00% 57
OpenMP 68 4934 10.38 5.95 × 105 79.69% 121
Skip 52 3728 13.73 4.48 × 105 84.73% 120

6.3 RBSC Evaluation
This section presents the results collected during the evalu-
ation experiments for RBSC, which estimates the work per-

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 19

formed by Clava and the described strategies (comparing to
a manual alternative), on four different scenarios based on
the strategy described in Section 5. The different scenarios
change the number of reordering functions and their arity,
as well as the number of mappings to use, which leads to a
different number of variants generated. A summary of these
scenarios is presented in Table 11.

TABLE 11
The configuration of each tested scenarios.

Scenario Functions Arity Mappings Variants

Scenario 1 1 2 3 3
Scenario 2 1 3 3 1
Scenario 3 2 2, 3 3 6
Scenario 4 2 2, 3 4 10

Table 12 presents statistics about the aspect files devel-
oped to implement the reusable multiversioning strategy
that we applied to the RBSC component. There are also other
LARA files, one for each scenario, but these only define the
specific functions and mappings to use. We do not account
for these scenario-defining files. The SLoC column shows
the number of logical lines of source code, and we can see
the aspects are relatively short since they have well-defined
concerns. For instance, Switch has two aspects used to gen-
erate a switch statement that allows controlling which of
the generated versions is used. The Aspects column of the
table shows the number of aspect definitions (aspectdefs)
in each file, and we can further see how well contained each
specific concern is. On average, each aspect definition has
around 16 SLoC.

TABLE 12
Lines of code of the developed LARA aspects split in files.

File SLoC Aspects Comments

Mappers.lara 32 3 4
Reorders.lara 51 3 10
ExtraValues.lara 30 1 9
Switch.lara 23 2 7
Reordering.lara 22 1 9
Utils.lara 26 1 6

Total 184 11 45
Average 30.7 1.83 7.5

Table 13 contains weaving metrics for the presented
scenarios when woven into the application. We show the
number of aspects called, the number of iterated join points
and their queried attributes and the number of actions taken
on the selected join points and how many of those were code
insertions. We can see that the strategy automatically iterates
over a large number of code elements, some of them in input
code, some of them generated during the weaving process,
and performs a large number of queries. In this case, process
automation is essential, since the number of variants scales
exponentially with the number of functions, their arity, and
the number of mappings defined by the user.

Table 14 shows the SLoC in the application, in its original
version, and after being modified by each scenario. Column
∆ SLoC of the table shows the difference in the application
code size between the original and each of the generated

TABLE 13
Weaving statistics for the strategies applied to the application.

Strategy Aspects JPs Attributes Actions (Inserts)

Scenario 1 10 6250 527 38 (27)
Scenario 2 8 4474 412 23 (16)
Scenario 3 12 8029 639 47 (34)
Scenario 4 18 15097 1075 101 (75)

Total 48 33850 2653 209 (152)
Average 12 8462.5 663.25 52.25 (38)

versions. Since the strategy generates new versions accord-
ing to the reordering of functions and mappings defined by
the user, the number of new lines of code scales with the
complexity of the scenario.

TABLE 14
Lines of code of modified files in the application, originally and after

being woven with each aspect.

Version SLoC ∆ SLoC

Original 53 0
Scenario 1 93 40
Scenario 2 74 21
Scenario 3 104 51
Scenario 4 169 116

Total 440 228
Average 110 57

6.4 Threats to Validity
The central claims about the Pegasus approach presented
in this paper include some threats of validity, especially
in terms of the productivity enhancements to apply the
presented performance engineering methodology. In this
section, we identify the major threats to validity, explain
why we consider them, and discuss extensions to minimize
those threats.

The use case considered in the evaluation of Pegasus
presented in this paper, despite allowing us to address all
the stages of the performance engineering methodology,
did not expose the approach to many of its features. We
note, however, that previous evaluations in the context of
other applications allowed us to conclude about similar
effectiveness and efficiency.

The learning curve needed to learn the LARA language
was not quantified and might interfere with the adoption of
the approach by developers addressing HPC applications.
The adoption of JavaScript code for programming part of
the strategies might require additional efforts and reluctance
by developers with C/C++ background. In this case, a
possibility could be to extend the LARA framework and
adopt a subset of C/C++ code for LARA strategies.

Other applications may need code transformations that
are not outright supported by the current version of the
Clava compiler. In this case, future work should extend the
portfolio of code transformations.

The efficient use of the autotuner may require the ex-
traction of application-specific metrics that are not present
in the original application code. Since these are application-
specific metrics, there is not a general library that can be

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 20

provided with Pegasus to help with their extraction, mean-
ing that specific refactorings are the responsibility of the end
user. In this case, the application of the methodology may
require the maintenance of different versions of the code
and manual efforts.

The evaluation included in this paper does not consider
the parallelization of the applications considering multi-
ple computing nodes and, e.g., using MPI. Although we
have previously applied code transformations for MPI-
based parallelization, our source-to-source compiler does
not include strategies for MPI-based auto-parallelization.
Besides, we did not evaluate Pegasus when the performance
engineering methodology needs to target heterogeneous
computing systems, possibly using hardware accelerators,
such as GPUs. Although our approach can help developers
to generate the host code for communicating and interfacing
with OpenCL kernels and may also help to inject code
that dynamically selects the offloading of the computations
according to runtime data, it is dependent on the existence
of the kernels in OpenCL, and further extensions need to
integrate compilers able to generate OpenCL code from
C/C++.

7 RELATED WORK

To the best of our knowledge, the Pegasus approach pre-
sented in this paper is the first one considering the support
of the main stages of the performance engineering method-
ology presented in this paper and followed in the context
of HPC applications. We note, however, that there have
been research efforts addressing stages of the methodology,
and we present and discuss some of the most relevant
approaches.

There have been various research efforts focused on pro-
viding support for guiding and controlling compilers and
toolchains. Recent trends propose the use of DSLs, embed-
ded or external, as a programmable way to allow compiler
and toolchain users. However, most of those approaches are
focused on subsets of the main tasks needed in the typical
methodology described in the introduction of this paper,
which would force users to know more than one DSL, e.g.,
one for instrumenting the code, another one for defining
code transformations, and usually impose adoption bar-
riers. The LARA approach has been one of the research
efforts contributing to the foundations of a DSL focused on
providing abstractions and mechanisms for programming
strategies in different levels of development and layers of
toolchains. Previous work on LARA has demonstrated its
use and usefulness in different contexts and partially un-
cover its possible contribution when targeting HPC systems.

Because LARA is a DSL addressing strategies for various
targets and goals, one can provide higher-levels of abstrac-
tion by developing APIs on top of LARA. This usage is
exemplified in several cases, mostly dealing with instru-
mentation and focused on its use with different target lan-
guages, or by designing DSLs focused on specific goals and
using LARA and its infrastructure as backend. Examples
of approaches primarily focused on cross-cutting concerns
are the ones typically provided by the AOP communities,
for instance, AspectJ [48] and AspectC++ [49]. Orthogonal
to those approaches and the main focus of this paper are

the ones proposing DSLs to program sections of software
applications and supported by code generators empowering
the knowledge exposed in more general domain levels than
by using general languages. However, the use of those DSLs
depends on the application domain and requires adopting
different DSLs in the methodology, according to the target
domain.

In order to apply code refactoring in early phases of
software development and to enable the use of refactor-
ing by inexperienced developers, Liu et al. [50] propose a
monitoring-based framework to drive users on applying
code refactoring. The refactoring is based on the qual-
ity of code in terms of maintainability, extensibility, and
reusability. In the context of reducing energy consumption
in mobile android apps, authors have also focused on code
refactoring. For example, Morales et al. [51] propose a
recommendation system for refactoring eight types of anti-
patterns.

There are source-to-source compilers that can be used
to achieve the kind of transformations performed by the
Clava compiler. For instance, Cetus [52] is a source-to-source
compiler for ANSI C programs, and ROSE [53] is a source-
to-source compiler providing program transformation and
analysis tools for C, C++ and Fortran applications. To the
best of our knowledge, they cannot easily support all the
tasks required in our proposed approach. To apply strategies
like the ones presented in this paper, Cetus and ROSE
require the implementation of each new strategy internally
(with the programming language used to develop each
compiler), using lower-level and IR-specific abstractions for
each particular compiler, and then to rebuild the compiler
including options to apply such strategies. Specifically, they
do not easily support end user programming of the required
strategies that can vary according to the application, target
machine, and requirements, and thus make a built-in inte-
gration of some strategies not an option. Albeit possible, this
option would require a compiler expert for each compiler
and would neither be practical nor reasonable for any end
user. On the other hand, while using Clava, users describe
the transformations in LARA, which was designed specif-
ically for the analysis and transformation of source code
at a high level of abstraction. Additionally, there are other
limitations with these compilers that favor the use of Clava.
For instance, Cetus only accepts ANSI C. In contrast, since
Clava uses Clang to perform the parsing, it accepts a wide
range of C and C++ code.

Recognizing the need to apply and specify code trans-
formations, many approaches focus on specific kinds of
transformations. For instance, CHiLL [54] is a declara-
tive language focused on recipes for loop transformations.
CHiLL recipes are scripts written in separate files, which
contain a sequence of transformations to be applied in the
code during a compilation step. The PATUS framework [55]
defines a DSL specifically geared toward stencil compu-
tations and allows programmers to define a compilation
strategy for automated parallel code generation using both
classic loop-level transformations (e.g., loop unrolling) and
architecture-specific extensions (e.g., SSE). Locus [56] is a
system and a language for program optimizations that relies
on a separation of concerns. Program transformations and
optimizations are specified on files separated from the ap-

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 21

plication code and interconnect with it via user annotations
that identify sections of code. Besides the programmability
for orchestrating compiler optimizations leveraged on inter-
faces and extensions to existent source-to-source compilers
such as ROSE [53] and Pips [57], Locus also provides the in-
terface to optimization-space exploration frameworks such
as Opentuner [58].

The Clava compiler relies on the LARA language, which
is general enough to be able to describe and implement
the approaches and kind of transformations proposed by
CHiLL [54] and Locus [56]. With Clava+LARA, one can
select elements in the code for optimization (e.g., loops,
code sections), filter them based on their attributes (e.g.,
the loop variable) and then apply the transformation (e.g.,
loop tiling). It can also be used for programming autopar-
allelization strategies as presented in Arabnejad et al. [35],
optimization-space exploration, and integration with third-
party tools.

There are more general approaches for code analysis and
transformation, such as term rewriting. Stratego/XT [59]
and Rascal [60] describe transformations based on pattern-
matching and rewrite rules that are applied over an abstract
representation obtained from the grammar of the target
language. The Clava compiler, on the other hand, uses Clang
for parsing and analysis, and can be developed incremen-
tally, adding code points, attributes, and actions as needed.

Several optimizing compilers also support transforma-
tions, such as auto-parallelization. For instance, Par4All [61]
is an automatic parallelizing and optimizing compiler for
C and Fortran, with backends for OpenMP, OpenCL, and
CUDA. The auto-parallelization feature of the Intel Com-
piler8 automatically detects loops that can be safely and
efficiently executed in parallel and generates multi-threaded
code of the input program. However, these approaches offer
minimal control over the transformations they support and
do not allow the kind of customization that Clava provides.

Overall, the use of the tools and approaches presented
above can contribute to the performance engineering tasks
and can also be seen as complementary options to support
users in the complex stages of performance engineering.
However, we believe that the Pegasus approach is unique
and holistically unifies performance engineering tasks, gen-
uinely contributing to productivity gains.

8 CONCLUSION

This paper presented Pegasus, an approach for the semi-
automation of the tasks in a typical performance engineer-
ing methodology for software applications, and targeting
high-performance computing (HPC) systems. The Pegasus
approach is supported by a framework consisting of a
source-to-source compiler (Clava), a domain-specific lan-
guage (LARA), which allows developers and performance
engineers to program strategies at different levels of the
methodology, by a runtime Autotuner (mARGOt), and by
libraries that contribute to the effectiveness of the approach.

We evaluated the Pegasus approach with core compo-
nents of a futuristic navigation system case study targeting
smart cities and requiring the use of an HPC platform. The

8. Intel C++ Compiler. For more information, please visit https://
software.intel.com/en-us/c-compilers/

experimental results strongly show the importance of the
approach in different stages of the software development
process. Moreover, the results show that Pegasus contributes
to more efficient implementations, otherwise requiring man-
ual efforts. Specifically, the addressed components of the
navigation system were improved in terms of execution
time reductions and energy consumption savings.

The software metrics collected indicate that our ap-
proach may significantly save programming and perfor-
mance tuning time and contribute to time-to-solution re-
ductions. The approach is useful for application analysis,
use and analysis of the impact of compiler optimizations,
identification of possible operating points and knobs, and
synthesis and integration of a runtime autotuner. LARA
strategies support all these steps, some of them with high
levels of reusability. These strategies are automatically ap-
plied to the application source code, and thus have high po-
tential to reduce the efforts of developers and performance
engineers.

The planned future work includes further automation of
several tasks of the methodology, especially the ones regard-
ing the interface to other third-party tools and the selection
of the strategies according to the application analysis and
the performance and energy consumption requirements.
Furthermore, targeting distributed and heterogeneous sys-
tems is on our plans. We already have some Clava libraries
that help with the generation of code for computation
offloading and other Clava libraries that already perform
directive-based parallelization, and that could be adapted
for heterogeneous architectures.

ACKNOWLEDGMENTS

This work was partially funded by the ANTAREX project
through the EU H2020 FET-HPC program under grant no.
671623. Pedro Pinto and João Bispo acknowledge the sup-
port provided by Fundação para a Ciência e a Tecnologia,
Portugal under Ph.D. grant SFRH/BD/141783/2018 and
Post-Doc grant SFRH/BPD/118211/2016, respectively.

REFERENCES

[1] J. M. P. Cardoso, J. G. F. C. Coutinho, and P. C. Diniz,
Embedded Computing for High Performance: Efficient Map-
ping of Computations Using Customization, Code Transfor-
mations and Compilation, 1st ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2017.

[2] A. Dubey, S. R. Brandt, R. C. Brower, M. Giles, P. D.
Hovland, D. Q. Lamb, F. Löffler, B. Norris, B. O’Shea,
C. Rebbi, M. Snir, and R. Thakur, “Software abstrac-
tions and methodologies for hpc simulation codes on
future architectures,” arXiv preprint arXiv:1309.1780,
2013.

[3] P. Balaprakash, A. Tiwari, and S. M. Wild, “Multi
objective optimization of hpc kernels for performance,
power, and energy,” in International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High
Performance Computer Systems. Springer, 2013, pp. 239–
260.

[4] R. Rabenseifner, “Hybrid parallel programming on hpc
platforms,” in proceedings of the Fifth European Workshop
on OpenMP, EWOMP, vol. 3, 2003, pp. 185–194.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 22

[5] G. Oger, D. Le Touzé, D. Guibert, M. De Leffe,
J. Biddiscombe, J. Soumagne, and J.-G. Piccinali, “On
distributed memory mpi-based parallelization of sph
codes in massive hpc context,” Computer Physics Com-
munications, vol. 200, pp. 1–14, 2016.

[6] M. Bauer, H. Cook, and B. Khailany, “Cudadma: op-
timizing gpu memory bandwidth via warp special-
ization,” in Proceedings of 2011 international conference
for high performance computing, networking, storage and
analysis. ACM, 2011, p. 12.

[7] P. Balaprakash, J. J. Dongarra, T. Gamblin, M. Hall, J. K.
Hollingsworth, B. Norris, and R. W. Vuduc, “Auto-
tuning in high-performance computing applications,”
Proceedings of the IEEE, vol. 106, pp. 2068–2083, 2018.

[8] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk,
R. Nobre, P. Diniz, and Z. Petrov, “Lara: An aspect-
oriented programming language for embedded sys-
tems,” in Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, ser.
AOSD ’12. New York, NY, USA: ACM, 2012, pp. 179–
190.

[9] J. M. P. Cardoso, J. G. F. Coutinho, T. Carvalho, P. C. Di-
niz, Z. Petrov, W. Luk, and F. Gonçalves, “Performance-
driven instrumentation and mapping strategies using
the lara aspect-oriented programming approach,” Soft-
ware: Practice and Experience, vol. 46, no. 2, pp. 251–287,
2016.

[10] P. Pinto, T. Carvalho, J. Bispo, M. A. Ramalho, and
J. M. Cardoso, “Aspect composition for multiple target
languages using lara,” Computer Languages, Systems &
Structures, vol. 53, pp. 1–26, 2018.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in ECOOP’97 – Object-Oriented Pro-
gramming, M. Akşit and S. Matsuoka, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–
242.

[12] J. M. Cardoso, T. Carvalho, J. G. Coutinho, R. Nobre,
R. Nane, P. C. Diniz, Z. Petrov, W. Luk, and K. Bertels,
“Controlling a complete hardware synthesis toolchain
with lara aspects,” Microprocessors and Microsystems,
vol. 37, no. 8, Part C, pp. 1073 – 1089, 2013.

[13] C. Silvano, G. Agosta, S. Cherubin, D. Gadioli,
G. Palermo, A. Bartolini, L. Benini, J. Martinovič,
M. Palkovič, K. Slaninová, J. Bispo, J. M. P. Cardoso,
R. Abreu, P. Pinto, C. Cavazzoni, N. Sanna, A. R.
Beccari, R. Cmar, and E. Rohou, “The antarex approach
to autotuning and adaptivity for energy efficient hpc
systems,” in Proceedings of the ACM International Con-
ference on Computing Frontiers, ser. CF ’16. New York,
NY, USA: ACM, 2016, pp. 288–293.

[14] C. Silvano, G. Agosta, A. Bartolini, A. Beccari, L. Benini,
L. Besnard, J. Bispo, R. Cmar, J. Cardoso, C. Cavazzoni,
D. Cesarini, S. Cherubin, F. Ficarelli, D. Gadioli, M. Go-
lasowski, I. Lasri, A. Libri, C. Manelfi, J. Martinovic,
and E. Vitali, “Supporting the scale-up of high perfor-
mance application to pre-exascale systems: The antarex
approach,” in 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP),
02 2019, pp. 116–123.

[15] C. Silvano, G. Agosta, A. Bartolini, A. R. Beccari,

L. Benini, L. Besnard, J. Bispo, R. Cmar, J. M. Cardoso,
C. Cavazzoni, D. Cesarini, S. Cherubin, F. Ficarelli,
D. Gadioli, M. Golasowski, A. Libri, J. Martinovič,
G. Palermo, P. Pinto, E. Rohou, K. Slaninová, and
E. Vitali, “The antarex domain specific language for
high performance computing,” Microprocessors and Mi-
crosystems, vol. 68, pp. 58 – 73, 2019.

[16] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mAR-
GOt: a Dynamic Autotuning Framework for Self-aware
Approximate Computing,” IEEE Transactions on Com-
puters, 2018.

[17] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Im-
proving software diagnosability via log enhancement,”
SIGARCH Comput. Archit. News, vol. 39, no. 1, pp. 3–14,
Mar. 2011.

[18] R. S. Arnold, “Software restructuring,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 607–617, April 1989.

[19] W. G. Griswold and D. Notkin, “Automated assistance
for program restructuring,” ACM Trans. Softw. Eng.
Methodol., vol. 2, no. 3, pp. 228–269, Jul. 1993.

[20] T. Mens and T. Tourwe, “A survey of software refactor-
ing,” IEEE Transactions on Software Engineering, vol. 30,
no. 2, pp. 126–139, Feb 2004.

[21] D. Dig, “A refactoring approach to parallelism,” IEEE
Software, vol. 28, no. 1, pp. 17–22, Jan 2011.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we
refactor, and how we know it,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 5–18, Jan. 2012.

[23] E. Tempero, T. Gorschek, and L. Angelis, “Barriers to
refactoring,” Commun. ACM, vol. 60, no. 10, pp. 54–61,
Sep. 2017.

[24] G. H. Golub and C. F. Van Loan, Matrix computations.
JHU press, 2012, vol. 3.

[25] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Alge-
braic complexity theory. Springer Science & Business
Media, 2013, vol. 315.

[26] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof:
A call graph execution profiler,” in Proceedings of the
1982 SIGPLAN Symposium on Compiler Construction, ser.
SIGPLAN ’82. New York, NY, USA: ACM, 1982, pp.
120–126.

[27] N. Nethercote and J. Seward, “Valgrind: A framework
for heavyweight dynamic binary instrumentation,” in
Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser.
PLDI ’07. New York, NY, USA: ACM, 2007, pp. 89–
100.

[28] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,
M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel,
“The vampir performance analysis tool-set,” in Tools
for High Performance Computing, M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 139–
155.

[29] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le, “RAPL: Memory Power Estimation and
Capping,” in Proceedings of the 16th ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design,
ser. ISLPED 2010. New York, NY, USA: ACM, 2010,
pp. 189–194.

[30] M. Wolfe, High Performance Compilers for Parallel Com-

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 23

puting, C. Shanklin and L. Ortega, Eds. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

[31] A. Hartono, B. Norris, and P. Sadayappan,
“Annotation-based empirical performance tuning
using orio,” in 2009 IEEE International Symposium on
Parallel Distributed Processing, May 2009, pp. 1–11.

[32] R. Chandra, Parallel programming in OpenMP. Morgan
kaufmann, 2001.

[33] M. Li and X. Yao, “Quality evaluation of solution sets in
multiobjective optimisation: A survey,” ACM Comput.
Surv., vol. 52, no. 2, pp. 26:1–26:38, Mar. 2019.

[34] D. Michie, ““Memo” functions and machine learning,”
Nature, vol. 218, no. 5136, 1968.

[35] H. Arabnejad, J. Bispo, J. G. Barbosa, and J. M. P. Car-
doso, “An OpenMP based Parallelization Compiler for
C Applications,” in 16th IEEE International Symposium
on Parallel and Distributed Processing with Applications
(ISPA 2018), Dec. 2018.

[36] H. Arabnejad, J. Bispo, J. M. P. Cardoso, and J. G. Bar-
bosa, “Source-to-source compilation targeting openmp-
based automatic parallelization of c applications,” The
Journal of Supercomputing, Dec 2019. [Online]. Available:
https://doi.org/10.1007/s11227-019-03109-9

[37] D. Gadioli, R. Nobre, P. Pinto, E. Vitali, A. H.
Ashouri, G. Palermo, J. M. P. Cardoso, and C. Silvano,
“SOCRATES — A seamless online compiler and sys-
tem runtime autotuning framework for energy-aware
applications,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2018, pp. 1143–
1146.

[38] M. Wolfe, “More iteration space tiling,” in Supercomput-
ing ’89: Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, Nov 1989, pp. 655–664.

[39] E. Vitali, D. Gadioli, G. Palermo, M. Golasowski,
J. Bispo, P. Pinto, J. Martinovič, K. Slaninová, J. Car-
doso, and C. Silvano, “An Efficient Monte Carlo - based
Probabilistic Time-Dependent Routing Calculation Tar-
geting a Server-Side Car Navigation System,” IEEE
Transactions on Emerging Topics in Computing, 2019.

[40] M. Golasowski, J. Beránek, M. Šurkovský, L. Rapant,
D. Szturcová, J. Martinovič, and K. Slaninová, “Al-
ternative paths reordering using probabilistic time-
dependent routing,” in Advances in Networked-based In-
formation Systems, L. Barolli, H. Nishino, T. Enokido,
and M. Takizawa, Eds. Springer International Pub-
lishing, 2020, pp. 235–246.

[41] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Wer-
neck, “Alternative routes in road networks,” Journal of
Experimental Algorithmics, vol. 18, Apr. 2013.

[42] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser,
“Alternative routing: K-shortest paths with limited
overlap,” in Proceedings of the 23rd SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information
Systems, ser. SIGSPATIAL ’15. New York, NY, USA:
Association for Computing Machinery, 2015.

[43] J. Hanzelka, M. Běloch, J. Křenek, J. Martinovič, and
K. Slaninová, “Betweenness propagation,” in Computer
Information Systems and Industrial Management, K. Saeed
and W. Homenda, Eds. Springer International Pub-
lishing, 2018, pp. 279–287.

[44] J. Hanzelka, M. Běloch, J. Martinovič, and K. Slaninová,
“Vertex importance extension of betweenness centrality
algorithm,” in Data Management, Analytics and Innova-
tion, V. E. Balas, N. Sharma, and A. Chakrabarti, Eds.
Singapore: Springer Singapore, 2019, pp. 61–72.

[45] A. McLaughlin and D. A. Bader, “Accelerating gpu
betweenness centrality,” Commun. ACM, vol. 61, no. 8,
pp. 85–92, Jul. 2018.

[46] X. Tian and K. Benkrid, “High-performance quasi-
monte carlo financial simulation: Fpga vs. gpp vs.
gpu,” ACM Trans. Reconfigurable Technol. Syst., vol. 3,
no. 4, Nov. 2010.

[47] M. Golasowski, R. Tomis, J. Martinovič, K. Slaninová,
and L. Rapant, “Performance Evaluation of Proba-
bilistic Time-Dependent Travel Time Computation,”
in Computer Information Systems and Industrial Man-
agement, K. Saeed and W. Homenda, Eds. Springer
International Publishing, 2016, pp. 377–388.

[48] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold, “An overview of AspectJ,”
in European Conference on Object-Oriented Programming.
Springer, 2001, pp. 327–354.

[49] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “As-
pectC++: An Aspect-oriented Extension to the C++
Programming Language,” in Proceedings of the Forti-
eth International Conference on Tools Pacific: Objects for
Internet, Mobile and Embedded Applications, ser. CRPIT
’02. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2002, pp. 53–60.

[50] H. Liu, X. Guo, and W. Shao, “Monitor-based instant
software refactoring,” IEEE Trans. Softw. Eng., vol. 39,
no. 8, pp. 1112–1126, Aug. 2013.

[51] R. Morales, R. Saborido, F. Khomh, F. Chicano, and
G. Antoniol, “Earmo: An energy-aware refactoring ap-
proach for mobile apps,” in Proceedings of the 40th
International Conference on Software Engineering. New
York, NY, USA: ACM, 2018, pp. 59–59.

[52] C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and
S. Midkiff, “Cetus: A Source-to-Source Compiler Infras-
tructure for Multicores,” Computer, vol. 42, no. 12, pp.
36–42, Dec 2009.

[53] D. Quinlan, “Rose: Compiler support for object-
oriented frameworks,” Parallel Processing Letters,
vol. 10, no. 02n03, pp. 215–226, 2000.

[54] G. Rudy, M. M. Khan, M. Hall, C. Chen, and J. Chame,
“A programming language interface to describe trans-
formations and code generation,” in International Work-
shop on Languages and Compilers for Parallel Computing.
Springer, 2010, pp. 136–150.

[55] M. Christen, O. Schenk, and H. Burkhart, “PATUS:
A Code Generation and Autotuning Framework for
Parallel Iterative Stencil Computations on Modern Mi-
croarchitectures,” in IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS). IEEE, May
2011, pp. 676–687.

[56] T. S. F. X. Teixeira, C. Ancourt, D. Padua, and W. Gropp,
“Locus: A system and a language for program opti-
mization,” in Proceedings of the 2019 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization,
ser. CGO 2019. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 217–228.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 24

[57] R. Keryell, C. Ancourt, F. Coelho, B. Eatrice, C. Frann,
F. Irigoin, and P. Jouvelot, “Pips: a workbench for
building interprocedural parallelizers, compilers and
optimizers,” École Nationale Supérieure des Mines de
Paris, France., Tech. Rep., 04 1996.

[58] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-
Kelley, J. Bosboom, U.-M. O’Reilly, and S. Amaras-
inghe, “Opentuner: An extensible framework for pro-
gram autotuning,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser.
PACT ’14. New York, NY, USA: ACM, 2014, pp. 303–
316.

[59] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser, “Stratego/xt 0.17. a language and toolset for
program transformation,” Science of Computer Program-
ming, vol. 72, no. 1-2, pp. 52 – 70, 2008.

[60] P. Klint, T. Van Der Storm, and J. Vinju, “Rascal: A
domain specific language for source code analysis and
manipulation,” in Ninth IEEE International Working Con-
ference on Source Code Analysis and Manipulation. IEEE,
2009, pp. 168–177.

[61] N. Ventroux, T. Sassolas, A. Guerre, B. Creusillet, and
R. Keryell, “Sesam/par4all: a tool for joint exploration
of mpsoc architectures and dynamic dataflow code
generation,” in Proceedings of the 2012 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools.
ACM, 2012, pp. 9–16.

Pedro Pinto is a PhD student at the Faculty
of Engineering of the University of Porto. Pedro
Pinto obtained his MSc from the same insti-
tution in 2012. Since graduating, he has been
involved in several research projects in the area
of compilers. His main research interests include
source-to-source compilation, application analy-
sis and optimization, and code transformations,
as well as broader topics such as program-
ming languages, high-performance computing
and machine learning.

João Bispo is a post-doctoral researcher at the
SPeCS lab in the Faculty of Engineering, Univer-
sity of Porto (FEUP). He is doing research since
the end of his bachelor’s (2006), and in 2012
received the Ph.D. degree from Instituto Supe-
rior Técnico (IST), Lisbon, with a thesis about
automatic runtime migration of binary code to
hardware. His research interests an on hard-
ware synthesis from high-level descriptions and
source-to-source compilation.

João M. P. Cardoso got his Ph.D. degree in
Electrical and Computer Engineering from the
IST/UTL (Technical University of Lisbon), Lis-
bon, Portugal, in 2001. He is Full Professor at
the Dep. of Informatics Eng., Faculty of Eng. of
the University of Porto, and a senior researcher
at INESC TEC. Before, he was with the IST/UTL
(2006-2008), a senior researcher at INESC-ID
(2001-2009), and with the University of Algarve
(1993-2006). In 2001/2002, he worked for PACT
XPP Technologies, Inc., Munich, Germany. He

has been involved in the organization and served as a Program Com-
mittee member for many Int’l Conferences. He was co-scientific co-
ordinator of the FP7-EU project REFLECT and technical manager of
the H2020-EU project ANTAREX, and coordinator of various national
funded projects. He has (co-)authored over 200 scientific publica-
tions. His research interests include compilation techniques, domain-
specific languages, reconfigurable computing, high-level synthesis and
application-specific architectures, and high-performance computing with
an emphasis in embedded computing. He is a senior member of IEEE
and ACM.

Jorge G. Barbosa received the BSc degree in
Electrical and Computer Engineering from Fac-
ulty of Engineering of the University of Porto
(FEUP), Portugal, the MSc in Digital Systems
from University of Manchester Institute of Sci-
ence and Technology, England, in 1993, and
the PhD in Electrical and Computer Engineering
from FEUP, Portugal, in 2001. Since 2001 he is
an Assistant Professor at FEUP. His research
interests are related to parallel and distributed
computing, heterogeneous computing, schedul-

ing in heterogeneous environments and cloud computing.

Davide Gadioli received his his Master of Sci-
ence degree in Computer Engineering in 2013,
while in 2019 he received the Ph.D degree in
Computer Engineering, from Politecnico di Mi-
lano (Italy). Currently, he is a postdoc at Dipar-
timento di Elettronica, Informazione e Bioingeg-
neria (DEIB) of Politecnico di Milano. In 2015,
he was a Visiting Student at IBM Research (The
Netherlands). His main research interests are
in application autotuning, autonomic computing
and approximate computing.

Gianluca Palermo received his Master of Sci-
ence degree in Electronic Engineering, in 2002,
and the PhD degree in Computer Engineering, in
2006, from Politecnico di Milano (Italy). He is cur-
rently an Associate Professor at the Department
of Electronics, Information and Bioengineering
(DEIB) at the same University. Previously, he
was Consultant Engineer at the Low-Power De-
sign Group of AST - STMicroelectronics working
on Network-on-Chip, and Research Assistant at
the Advanced Learning and Research Institute

(ALaRI) of the Universita’ della Svizzera Italiana (Switzerland). His
research interests include design methodologies and architectures for
embedded and HPC systems focusing on autotuning aspects. He is
an active member of the scientific community serving in organizing and
program committees of several conferences in his research areas. Since
2003, he published more than 100 scientific papers in peer-reviewed
conferences and journals. He is member of IEEE, ACM and HiPEAC.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3001257, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. YY, MONTH YEAR 25

Jan Martinovič is currently Head of Ad-
vanced Data Analysis and Simulation Lab at
IT4Innovations National Supercomputing Cen-
ter, VSB – Technical University of Ostrava,
Czech Republic. His research activities are fo-
cused on information retrieval, data processing,
design and development of information systems
and disaster management. His activities also
cover a development HPC as a Service Middle-
ware which allows to use HPC infrastructure re-
motely by specific API. Jan is coordinator of the

H2020 ICT project LEXIS (Large-scale Execution for Industry & Society).
He had previous experience with coordination of the different contracted
research activities and had responsibility for the technical coordination
of the several national projects. He was the Leader of IT4I as a partner of
the two H2020-FETHPC-2014 projects ANTAREX and ExCAPE. He is
also responsible for the research and development team of FLOREON+
system for disaster management support. He has published more than
100 papers in international journals and conferences.

Martin Golasowski is a researcher and a Ph.D.
student in the Advanced Data Analysis and Sim-
ulation Laboratory of the IT4Innovations National
Supercomputing Center of the Czech Republic.
Topic of his research are high performance pro-
gramming models for Monte Carlo methods and
emerging heterogenous architectures. He par-
ticipated in the H2020 FET project ANTAREX,
H2020 ICT project LEXIS and in the research
activities and development of FLOREON+ sys-
tem for disaster management support. His other

interests include parallel computing architectures, data processing and
visualisation. He has published more than 30 conference papers and
several journal articles.

Kateřina Slaninová is Deputy head of Ad-
vanced Data Analysis and Simulations Lab at
IT4Innovations National Supercomputing Cen-
ter, VSB – Technical University of Ostrava,
Czech Republic. She has got a doctoral degree
in Informatics from VSB – Technical University of
Ostrava, Czech Republic. Kateřina research in-
terests include information retrieval, traffic anal-
ysis, vehicle routing problem, hyperparameter
search, data mining, process mining, and com-
plex networks. Her recent activities also cover

cooperation with SMEs in areas such as traffic management, artificial
intelligence, time series analysis, etc. She participated in H2020 ICT
project LEXIS and H2020 FETHPC project ANTAREX. She worked
within the team of the Center for the Development of Transportation Sys-
tems RODOS. She has published more than 70 papers in international
journals and conferences.

Radim Cmar is currently the solution architect at
Sygic, Slovakia. His main expertise is in system
modelling and architecture design for complex
ITC systems such as mobile applications, server
computing systems, and client to server commu-
nication systems. He graduated at Slovak Tech-
nical University of Bratislava in 1993. From 1997
to 2001 he was the research engineer at IMEC,
Leuven, Belgium with the focus on HW/SW co-
design methodologies for ASIC design. From
2001 to 2005 he was the system engineer at

RFMD, San Jose, U.S. responsible for the design of the system-on-chip
solutions for wireless communication. In 2007 he joined Sygic and since
then he has been responsible for product definitions of various navi-
gation components, and project lead for developing business solutions
with many business partners. He participated in the H2020 FET project
ANTAREX representing the industrial partner in the HPC solution for
large scale navigation problems.

Cristina Silvano is a Full Professor of Com-
puter Architectures at at the Department of Elec-
tronics, Information and Bioengineering (DEIB)
of the Politecnico di Milano, Italy. Her main
research interests are in energy-efficient em-
bedded systems, design space exploration of
manycore architectures and application autotun-
ing for HPC. She has published more that 160
scientific papers in peer-reviewed journals and
conferences, five books and she holds several
patents in collaboration with Group Bull and

STMicroelectronics. She was Project Coordinator of three European
projects: H2020-ANTAREX, FP7-2PARMA and FP7-MULTICUBE. She
has served in the organizing and program committees of several major
conferences in computer architectures, embedded systems and elec-
tronic design automation. She is Associate Editor of ACM TACO and
IEEE TC. She served as Independent Expert Reviewer for the European
Commission and for several science foundations. In 2017, she has been
elevated to the grade of IEEE Fellow.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 30,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

