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Abstract 

The general objective of this thesis is to study the dynamics of True Moving Bed (TMB), Simulated 

Moving Bed (SMB) and True Moving Bed Reactor (TMBR) while addressing the inherent problems 

of those units due their dynamics with application of a TMBR for the synthesis of n-Propyl 

Propionate. The first two processes are characterized by being able to promote continuous 

separation of complex mixtures, such as chiral compounds. The last one, as a further 

development of the first two, is characterized by being able to promote reaction and separation 

simultaneously and continuously.  

Due to the complex dynamics of those units, a series of problems are found in this field, such as 

process control, inference of their main properties, units design and optimization. In this way, in 

the present thesis, first a method based on Gram-Schmidt Orthogonalization to analyze the 

impact of the operating variables in the dynamic response of a TMB unit was proposed, 

concomitantly with a characterization of the dynamic system behavior. The results showed that 

the recycling flow rate is the operating variable with the greatest impact for a TMB used to 

separate bi-naphthol enantiomers. The step perturbation analysis showed the consistency of the 

proposed method and that some process variables perturbations result in a system inverse 

response for the recovery performance indicator. 

Then, the orthogonalization method was applied to two SMB units, with four and eight columns, 

and an analysis of the transient behavior of the units was done. The results were compared with 

the ones obtained for a TMB unit. The results show that the TMB/SMB equivalence is valid only 



 
 

 

for conditions that do not violate the regeneration/separation regions and that the transient 

behavior of the four columns SMB can resemble more the TMB.  

Then, the control problem of a TMB unit was addressed, through the development of a novel 

strategy to identify transfer functions of TMB/SMB and its application on classical linear model 

predictive controllers (MPC). Therefore, it was proposed a modification in the MPC prediction, 

that consists in a strategy based on a switching system where the most adequate transfer 

function is employed in the controller to overcome the problems related with the process 

dynamic behaviour. The results show that the used methodology enables the easy identification 

of transfer functions at the process optimal operating point and that the MPC can control the 

process in both the servo and regulator problem cases. It is also showed that the transfer function 

identified can be applied in the control of a SMB unit with four columns, under its optimal 

conditions. 

The inference problem was addressed by the development of a system composed by two 

Artificial Neural Networks working concomitantly with an offline measurement, named Quasi-

Virtual Analyser (Q-VOA) system. The development of the Q-VOA was presented and the system 

was simulated in order to evaluate its efficiency. The results showed that the Q-VOA is capable 

of reducing the system errors and keep the prediction closer to the process true responses, when 

compared with the simple VOA system, which is based solely on model predictions. Furthermore, 

the results showed the efficiency of the measurement system even under the presence of non-

measured perturbations. 



 
 

 

For the design and optimization of TMB units a novel improved Self-Organizing Hierarchical 

Particle Swarm Optimization with Time-Varying Acceleration Coefficients with Mutable Searching 

Region (HPSO-TVAC-MSR) was proposed together with an adapted method to define the 

operating variables confidence region. This methodology presented better results when 

compared with the traditional method, the Triangle Theory. The main advantage of the proposed 

methodology is the possibility to track the possible operating regimes of the unit while meeting 

a given requirement. 

The next step of this thesis had the focus on the production of the n-Propyl Propionate in a TMBR 

unit. Therefore, a series of experimental studies of the ProPro reaction system separation in a 

chromatographic fixed bed unit packed with Amberlyst 46 were performed. The adsorption 

equilibrium isotherms and the corresponding Langmuir model parameters were determined. A 

phenomenological model to represent the process was developed and validated through the 

experimental data. Meanwhile, it was proposed the characterization of the uncertainties of all 

steps and its extension to the model prediction. The results showed that the model predicted 

with precision the breakthrough experiments. Furthermore, the uncertainty evaluation was an 

important tool allowing the parameters estimation and model validation to be done with a low 

number of experiments while leading to high precision predictions. 

Then, it was proposed the study of the production of n-Propyl Propionate in a Fixed Bed 

Adsorptive Reactor, with the development of a phenomenological model to represent this 

process and its validation through laboratory experiments in a lab-scale unit. The results showed 



 
 

 

that the model was able to predict with precision the Fixed Bed Reactor experimental data.  

Paving the way to the development of a TMBR unit for the synthesis of the ProPro. 

Finally, it was investigated a novel route of synthesis of n-Propyl Propionate through a TMBR unit 

packed with Amberlyst 46 resin   with the application of the HPSO-TVAC-MSR to the TMBR unit 

design and optimization. The results demonstrated that the unit is capable of producing n-Propyl 

Propionate with high purity and conversion, over 99%. Furthermore, the productivity associated 

with low eluent consumption and operation at significant low temperature provide evidence that 

the SMBR may be an efficient and competitive route for the production of n-Propyl Propionate. 

It was also demonstrated that the swarm optimization may be a powerful tool which can 

simultaneously provide deep information about the TMBR operating regions. 

  



 
 

 

Resumo 

O objetivo geral desta tese é o estudo da dinâmica das unidades de Leito Móvel Real (TMB), Leito 

Móvel Simulado (SMB) e Reator de Leito Móvel Real (TMBR), abordando simultaneamente os 

problemas inerentes a estas unidades, devidos aos seus complexos comportamentos dinâmicos, 

e a aplicação de uma unidade TMBR para a síntese de n-Propil Propionato. Os dois primeiros 

processos citados são caracterizados por possibilitar a separação de misturas complexas em 

contínuo, como por exemplo a separação de compostos quirais. A última unidade, sendo 

desenvolvida a partir das duas primeiras, é caracterizada por promover reação e separação em 

simultâneo e em contínuo.  

Devido à   dinâmica complexa destas unidades, são encontrados neste campo uma série de 

problemas, como por exemplo o controlo do processo, a inferência das principais propriedades, 

o projeto e a otimização da unidade. Desta forma, na presente tese, primeiro foi proposto um 

método baseado na ortogonalização de Gram-Schmidt para analisar o impacto das variáveis 

operacionais na resposta dinâmica de uma unidade TMB, e ao mesmo tempo foi feita uma 

caracterização do comportamento dinâmico deste sistema. Os resultados demostraram que o 

caudal de reciclagem é a variável operacional com maior impacto num TMB usado para separar 

os enantiómeros do bi-naftol. Através de uma análise de resposta a perturbações foi possível 

demonstrar a consistência do método proposto e que algumas das variáveis do processo levam 

a uma  resposta inversa nas recuperações da unidade.  



 
 

 

Assim, o método da ortogonalização foi aplicado para a análise de duas unidades SMB, uma com 

oito e outra com quatro colunas, tendo sido feita também uma análise do comportamento 

transiente das unidades. Os resultados foram comparados com os obtidos para o caso do TMB. 

Foi possível observar que a equivalência TMB/SMB é válida apenas em condições em que as 

regiões de separação/regeneração não são violadas. Além disso, em casos específicos, o 

comportamento transiente do SMB com quatro colunas pode assemelhar-se mais com o do TMB.  

Desta forma, estudou-se o problema do controlo das unidades TMB, propondo-se uma nova 

estratégia para identificar funções de transferência e aplicá-las numa estratégia de controlo 

preditivo baseado em modelos (MPC). Além disto, propõe-se uma modificação na forma de 

predição do MPC, a qual consiste num sistema de seleção em que a função de transferência mais 

adequada é empregada na predição do controlador de modo a superar os problemas 

relacionadas com a dinâmica do processo. Os resultados demonstraram que o uso desta 

metodologia possibilita a fácil identificação das funções de transferência que representam o 

processo no seu ponto ótimo de operação, e que o MPC consegue controlar com eficiência o 

processo em regimes servo e regulatório. Foi também demonstrado que a estratégia de 

identificação das funções de transferência pode ser aplicada no controlo de unidades SMB de 

quatro colunas dentro das suas condições ótimas.  

 Estudou-se o problema da inferência através da proposta de um sistema composto por duas 

redes neuronais artificiais trabalhando concomitantemente com medições laboratoriais, 

nomeado como Analisador Quasi-Virtual (Q-VOA).  Apresenta-se o desenvolvimento do Q-VOA e 

o sistema proposto foi simulado de modo a verificar a sua eficiência. Os resultados 



 
 

 

demonstraram que o Q-VOA é capaz de reduzir os erros de predição e manter a previsão próxima 

das respostas reais do processo, apresentando melhor desempenho que os analisadores virtuais, 

os quais são baseados apenas em predições. Além disto, os resultados demonstraram a eficiência 

do Sistema mesmo perante perturbações não medidas.  

Para o projeto e otimização de unidades TMB, propõe-se um novo algoritmo de Otimização por 

Enxames de Partículas, Hierárquico e Auto-Organizado, com Coeficientes de Aceleração Variáveis 

e Regiões de Busca Mutáveis (HPSO-TVAC-MSR), juntamente com uma adaptação de um método 

estatístico para definição de regiões de confiança. Esta metodologia apresentou melhores 

resultados que o método tradicionalmente usado na literatura, a Teoria do Triângulo. A principal 

vantagem desta proposta é a possibilidade de rastrear os possíveis regimes de operação da 

unidade que satisfazem um determinado requisito.  

O passo seguinte da presente tese teve o foco na produção do n-Propil Propionato numa unidade 

TMBR. Desta forma, foi feita uma série de estudos experimentais sobre a separação dos 

compostos do sistema de reação de síntese do n-Propil Propionato numa coluna cromatográfica 

de leito fixo empacotada com a resina Amberlyst-46. Determinaram-se as isotérmicas de 

equilíbrio de adsorção e os correspondentes parâmetros do modelo de Langmuir.  Desenvolveu-

se um modelo fenomenológico para representar o processo, que foi validado com dados 

experimentais. Foi também aplicado um método para avaliação das incertezas de todos os 

passos, e sua propagação, para as previsões do modelo. Os resultados demonstraram que o 

modelo consegue prever com precisão as experiências de curvas de quebra. Além disto, a 



 
 

 

avaliação das incertezas possibilitou a estimativa dos parâmetros e a validação do modelo através 

de um número reduzido de experiências.  

De seguida, a síntese do n-Propil Propionato foi estudada experimentalmente num reator de leito 

fixo. Foi também desenvolvido um modelo fenomenológico para representar este sistema. Os 

resultados demonstraram que o modelo apresentado foi capaz de prever com precisão os 

resultados experimentais, abrindo caminho para o desenvolvimento de uma unidade TMBR para 

a produção do n-Propil Propionato.  

Finalmente, investigou-se a produção do n-Propil Propionato   usando uma unidade TMBR 

empacotada com resina Amberlyst 46. O HPSO-TVAC-MSR, desenvolvido anteriormente neste 

trabalho, foi aplicado para o projeto e otimização da unidade TMBR. Os resultados 

demonstraram que a unidade TMBR é capaz de produzir n-Propil Propionato com elevadas 

pureza e conversão, acima de 99%.  Além disto, a produtividade obtida, associada com o baixo 

consumo de eluente e com a operação a baixas temperaturas, são evidências de que o SMBR 

pode ser um processo eficiente e competitivo para a produção do n-Propil Propionato.  

Demonstrou-se também que o HPSO-TVAC-MSR é uma ferramenta poderosa para o desenho do 

processo, podendo providenciar simultaneamente informação relativa às regiões de operação. 
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Introduction 

Relevance and motivation 

 

The adaptation of the human activities in order to preserve the environment and avoid 

environmental degradation has become one of the main topics of interest in the last decades. 

Among those activities, the chemical industry can be highlighted as one of the most harmful to 

the environment. Thus, several studies have been developed in order to promote improvements 

and changes in the chemical processes that attend to the new environmental and social 

standards. Those changes were done in all the industrial structure, ranging from the development 

of new process units, to the replacement of chemical compounds considered as environmental 

harmful by ones that are considered more environmentally friendly. In this scenario, process 

intensification plays an important role, proposing new alternatives which are more suitable for 

nowadays standards, from which the use of multifunctional units are a relevant example (Duarte 

2006; Pereira et al. 2008; Graça et al. 2012; Xu et al. 2014).  

Multifunctional units are capable of integrating reaction and separation in the same unit, 

replacing the traditional way of production, in which it is usual to employ one specific unit for 

each step of the production route. Through these technologies, it is possible to improve the 

selectivity towards a given product, while potentially reducing the capital investment and the 

energy consumption. Therefore, multifunctional units usually lead to lower energy, operating 
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and investment costs. Furthermore, those processes are normally presented as safer and less 

harmful to the environment. 

Among multifunctional units, the Simulated Moving Bed Reactor (SMBR) can be highlighted. 

Several works have been published showing that Chromatographic Reactors can be efficiently 

applied to equilibrium limited reactions. Those units allow overtaking the equilibrium conversion 

by continuously removing at least one of the products from the reaction medium (Constantino 

et al. 2015a). Several studies were published in the last five years, reporting the work done with 

different types of esterification reactions in Chromatographic Reactors (Son et al. 2011; 

Constantino et al. 2015a; Regufe et al. 2016), but none with the focus on the n-Propyl Propionate 

system. 

In the field of industrial solvents, n-Propyl Propionate is among the chemicals considered as a 

better environmental option. This compound is readily biodegradable, non-toxic, and considered 

as a non-hazardous air pollutant by the U.S. Environmental Protection Agency. The n-Propyl 

Propionate may be used in several industrial applications, such as in drugs, coatings and inks 

production, in polymerization reactions, and as additive for foods and perfumes. It presents as 

main properties its high volatility, high electrical resistance, a good scent and non-toxicity (The 

Dow Chemical Company 2002; Duarte 2006).  

The aforementioned benefits of this compound and its complex synthesis reaction system led to 

several studies being presented in the literature about the ProPro production through an 
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alternative route which uses a multifunctional unit, the Reactive Distillation (RD) (Duarte 2006; 

Altman et al. 2010; Cruz-Díaz et al. 2012; Xu et al. 2014). 

The previous referred works have shown that the RD production route for n-Propyl Propionate 

presents a significant improvement to the traditional route (Duarte 2006; Altman et al. 2010; 

Cruz-Díaz et al. 2012; Xu et al. 2014). However, as in the traditional production route, the outlet 

steams of the unit are composed by a mixture of the main product and the non-converted 

reactants. Klöker et al., (2003) studied the impact of the operating variables of a Reactive 

Distillation unit, including the downstream purification by a conventional liquid-liquid separator. 

In the referred work, it was demonstrated that the downstream purification plays an important 

role in the process efficiency. In Altman et al. (2010), the problems related to the downstream 

purification are also addressed highlighting the fact that this is still a problematic point in the 

field. 

In this way, alternative improvements for n-Propyl Propionate production could be the 

employment of chromatographic separation in the downstream purification step of the Reactive 

Distillation production or in the traditional production route. A further improvement in this 

process could be performing the reaction and separation simultaneously in a continuous 

chromatographic unit like a Simulated Moving Bed Reactor. However, there isn´t any work in the 

literature with the focus on the behaviour of this system in a chromatographic unit.  

In this way, one of the focus of this work is to study the production of n-Propyl Propionate in 

chromatographic reactor units, presenting this route as one novel alternative to its synthesis.  
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However, the modelling, optimization and control of Simulated Moving Bed Reactor (SMBR) and 

Simulated Moving Bed (SMB) units are crucial steps to accomplish the implementation of this 

type of processes in industry, and deeper studies are still required. Therefore, another major 

focus of this work is the development of new methodologies for the modelling, optimization and 

control of these processes. Bibliographic reviews (Rajendran et al. 2009; Sá Gomes and Rodrigues 

2012; Aniceto and Silva 2015) show the increasing importance of SMB/SMBR processes revealing 

a high number of publications and patents on this topic. This shows the increasing interest in the 

development of the topic with special attention to industrial applications. This field of study is 

still in development in this area and many aspects need to be further investigated and deepened. 

Normally, True Moving Bed (TMB) and SMB units are employed in processes where the final 

product presents a high value and strict quality specifications, such as fine chemicals, 

pharmaceutical compounds and petrochemicals. Those factors associated with robust 

phenomenological models and complex process dynamics lead to challenging problems in the 

SMB/TMB units optimal design, inference, optimization and control. Thus, the first part of the 

present work addresses those problems considering as case study a well-known system, an 

enantiomers separation unit previously studied in the Laboratory of Separation and Reaction 

Engineering (LSRE). In this way, the methods here proposed could be applied and verified with a 

simpler and known case. First, a detailed simulation study of the dynamic behaviour of the 

TMB/SMB units for enantiomers separation is done, followed by the development of a new 

control strategy for these processes. Then, an alternative to the measuring problems found in 

the field is proposed and finally a methodology for process design and optimization by Particle 
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Swarm Optimization (PSO) is developed. Once the methodology is verified, it can be consistently 

applied to SMBR units. 

The present work is divided in two lines that are complementary to each other. One with the 

focus on the mathematical aspects and methodologies development and another focused on the 

experimental determinations for the n-Propyl Propionate system. The structure of the thesis, 

concomitantly with specific objectives are presented in the next section. 

 

Outline and Objectives 

As aforementioned, this work contemplates two different and complementary lines, each one 

with different objectives.  

The first part of this work (Part 1) is dedicated to the development of a deeper comprehension 

of the dynamics of the chromatographic systems True Moving Bed (TMB) and Simulating Moving 

Bed (SMB). To accomplish this, the bi-naphthol enantiomers separation using 3,5-dinitrobenzoyl 

phenylglycine bonded to silica gel as adsorbent and heptane-isopropanol as eluent is studied by 

simulation. The model parameters were estimated and previously validated experimentally by 

Pais et al. (2000) in a SMB pilot plant located at LSRE. Hence, the main objective of this part of 
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the present work is to study the dynamics, control, inference, design and optimization problem 

of TMB and SMB units.  

Part 1 is divided in four chapters that sequentially present: an introduction to the topics covered 

in P1-1; the developed methodologies - TMB and SMB models, study of the units dynamics, 

orthogonalization method, control system development and linear transfer functions 

identification, quasi-virtual analyzer development and process design and optimization by 

Particle Swarm technique – in P1-2; the results obtained for each point presented in the 

methodology  in P1-3; and the conclusions of this part in P1-4.  

The second part of this work (Part 2) is dedicated to the experimental studies about the 

production of n-Propyl Propionate. The main objective of this part is to study, through a series of 

experiments, the behaviour of the compounds that compose the reaction system of n-Propyl 

Propionate. In this step, a characterization of the system adsorption equilibrium, fixed bed 

separation and fixed bed reaction is done, concomitantly with the development and validation. 

Similarly to Part 1, Part 2 is divided in four chapters that sequentially present an introduction to 

the topics covered (P2-1); the applied methodologies: Fixed bed unit models, uncertainties 
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evaluation, confidence regions identification and TMBR model (P2-2); the results obtained (P2-

3); and the conclusions of this part (P2-4). 

 

Figure 1 - Schematic representation of the work developed in this Thesis. 

 

Table 1 presents a list of specific objectives of the work developed in this thesis with reference 

to the corresponding sub-chapters. 
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Table 1 - Specific objectives of the work developed. 

Sub-chapters Objective 

P1-2.2.1 

Development of a method to analyse the impact of the operating 

variables in a TMB unit response and characterization of the 

dynamic behaviour of the system. 

P1-2.3. 

Propose a method to identify the TMB unit transfer functions, 

development of several control strategies in order to control the 

unit purities and recoveries. 

P1-2.4. 

Development of a neural system capable of providing online and 

real-time information about the process purity of both raffinate and 

extract streams in a TMB unit. 

P1-2.5. 
Optimization of the operating conditions of a TMB unit through the 

particle swarm optimization method. 
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P1-3.1. 

P1-3.2. 

Application of the method previously developed to analyse the 

impact of the operating variables in a TMB/SMB unit response, 

characterization of the dynamic behaviour of the system and 

comparison with the results obtained for the TMB unit case. 

P1-3.3. 

Application of the method previously developed to identify the SMB 

unit transfer functions, development of several control strategies in 

order to control the unit purities and recoveries and comparison of 

the control strategies applied in the TMB and SMB units. 

P1-3.4. 

Development of a neural system capable of providing online and 

real-time information about the process purity of both raffinate and 

extract streams in a SMB unit. 

P1-3.5. 

Optimization of the operating conditions of a SMB unit through the 

particle swarm optimization method and comparison with the 

optimization of the TMB unit. 



Introduction 
 

P a g e  10 | 311 

P2-2.4 

P2-2.7 

P2-3.2 

Determine the adsorption equilibrium isotherms of the compounds 

of the n-Propyl Propionate reaction system, develop a model for the 

n-Propyl Propionate system separation in a fixed bed reactor and 

validate the model through laboratory experiments. 

P2-2.1 

P2-2.9 

P2-3.4 

Develop a model for the n-Propyl Propionate reaction in a fixed bed 

reactor and validate the model through laboratory experiments. 

P2-2.10 
Develop a model for the n-Propyl Propionate production in a TMBR 

unit. 

P2-2.11 

P2-2.12 

P2-3.5 

Design and optimization of the operating conditions of the TMBR 

unit through traditional methods and the particle swarm 

optimization method. Comparison of the design and optimization 

methods. 
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Part 1 – TMB and SMB systems analysis and methods 

development  
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P1-1. Introduction 

This part of the work is dedicated to the study of the dynamics of True Moving Bed (TMB) and 

Simulated Moving Bed (SMB) units. In this chapter the motivations that led to the 

developments of this part of the work are presented together with a brief bibliographic 

revision of the topics covered. 

P1-1.1. Processes Dynamics 

Separation processes based on simulated moving bed (SMB) units have acquired great 

importance. These processes are able to efficiently promote difficult separations of different 

mixtures. Several studies were published proving the application of these processes in complex 

systems such as propane/propylene separation (Martins et al. 2015); fructose-glucose separation 

(Azevedo and Rodrigues 2001); xylene isomers separation (Minceva et al. 2008) and enantiomers 

separation (Pais et al. 2000; Rajendran et al. 2009; Grossmann et al. 2010; Ribeiro et al. 2011a; 

Sá Gomes and Rodrigues 2012). Further developments in these processes allowed reaction and 

separation to be conducted simultaneously in the same unit, giving rise to the Simulated Moving 

Bed Reactor (SMBR). This type of reactors presents the advantage of producing separated 

products in conditions of lower temperature and pressure, when compared with the traditional 

units. Several works were published with the focus on the production of some compounds by 

SMBR showing the efficiency of these units when compared with the traditional routes of 

production (Kawase et al. 1999; Toumi and Engell 2004; Minceva et al. 2008; Pereira et al. 2008, 
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2009b). The high number of patents and publications about SMB and SMBR processes show the 

relevance that these processes have acquired over the years (Lehoucq et al. 2000; Lode et al. 

2001; Minceva and Rodrigues 2005; Zhang et al. 2007; Pereira et al. 2009b; Ribeiro et al. 2011b; 

Pereira and Rodrigues 2013; Suvarov et al. 2014a; Constantino et al. 2015b; Choi et al. 2017). 

Recent publications on the topic focus on the optimization and control of such units (Toumi and 

Engell 2004; Amanullah et al. 2007; Paredes and Mazzotti 2007; Toumi et al. 2007; Ribeiro et al. 

2011b; Bentley et al. 2013; Li et al. 2014; Aniceto et al. 2016; Vignesh et al. 2016). This is a newer 

field of study in this area and still many aspects need to be further developed and deepened. 

The modelling and design of moving bed processes can follow two approaches, the true moving 

bed (TMB) and the simulated moving bed (SMB). The concept of TMB is based on actual 

movement of the solid phase (the adsorbent) countercurrently to the movement of the fluid 

phase (eluent). A scheme of a TMB unit is shown in Figure 2. The unit is fed with a mixture (A+B), 

of which one of the compounds has higher affinity towards the adsorbent and is obtained in the 

extract stream (B). The less adsorbed component is obtained in the raffinate stream (A). The TMB 

unit is divided in four sections that have specific roles in the process. Sections II and III are 

responsible for promotion of the separation between the more and the less adsorbed 

components, while sections I and IV are responsible for the regeneration of the adsorbent and 

of the eluent, respectively.  
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Figure 2 – Scheme of a TMB unit. 

In practice, it is not trivial to promote the movement of the solid phase. Thus, the concept of TMB 

is applied through simulated moving bed units. The SMB operating principle is based on the 

concept of the true moving bed where the solid movement is simulated by the synchronized 

changing of the positions of the inlet and outlet streams (ports) at predefined times. In its 

conventional configuration, the SMB unit has two inlet streams, feed and eluent, and two outlet 

streams, extract and raffinate. Figure 3 shows a schematic representation of a SMB unit with 
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three columns in each section, where the switching of the ports in the direction of the fluid flow 

is shown by the dashed arrows. 

 

Figure 3 – Scheme of a SMB unit with three columns in each section. 

Usually, the design and simulation of the SMB unit is done using the TMB approach (Chu and 

Hashim 1995; Storti et al. 1995; Pais et al. 2000; Kaspereit et al. 2007; Minceva et al. 2008; Sá 

Gomes et al. 2009; Ribeiro et al. 2011a). The equivalence between the two units is demonstrated 

by comparing the results obtained for the steady state of the TMB with the average of the results 

obtained over a cycle in the cyclic steady state (CSS) of the SMB. Following this approach, it was 
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shown (Pais et al. 1998) that the results for the SMB unit approach the ones of the TMB as the 

number of columns in the SMB increases. 

However, in terms of dynamic behaviour, the two processes may follow quite distinct paths 

before reaching the respective steady (or cyclic steady) state. The study and evaluation of the 

dynamic behaviour is very important for the optimization and control of these units, as in 

industrial operation the units may be subject to external perturbations that can momentarily or 

definitively change the process state. Furthermore, it is important to know how the system 

behaves in the transition between different operating conditions. In spite of its importance, 

studies on the dynamic behaviour of these systems are still scarce in the literature. 

The SMB unit, as presented in Figure 3, is characterized by the synchronous movement in the 

position of its inlet and outlet streams in the direction of the fluid flow, at fixed time intervals. 

This leads to a complex dynamic behaviour where no steady state exists, and a cyclic steady state 

is reached instead. Furthermore, the dynamics of the system is highly sensitive to the process 

parameters, such as the adsorption isotherms, the column packing, etc. The process also presents 

a high sensitivity to changes in its operating conditions, such as perturbations in the process flow 

rates. These points make the SMB process optimization and control a difficult task that still 

requires further studies.  

Finally, the operation of these units is often designed with safety margins for purity and recovery 

to deal with uncertainties and disturbances which is a simpler way to overcome the 

aforementioned problems and is usually applied in the industry. This is done in order to make 
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the process less sensitive to the possible variations. On the other hand, the suboptimal operation 

leads to a more expensive production, far from the economical optimum. Hence, further 

developments in SMB optimization and control are required in order to improve the industrial 

operating performance of these units. Therefore, this is the focus of the first part of this work, to 

investigate the details of the dynamics of these processes in order to propose more efficient 

control and optimization strategies for those units while overcoming the system limitations. 

P1-1.2. Processes Control 

The control of SMB units was first introduced by Kloppenburg and Gilles (1999) where the authors 

proposed the process purity control through the manipulation of the extract and raffinate flow 

rates. In their work, the authors proposed a nonlinear model-based automatic controller based 

on a state estimator in order to predict the process purities. The referred work showed that SMB 

control could be a promising solution for operating these separation units in optimal conditions.  

In Klatt et al. (2002), a two layer controller system was proposed to control an SMB unit for 

fructose/glucose separation. The first layer of the proposed system was computed by an offline 

optimization of the operating trajectory. The optimization was based on the process 

phenomenological model. An indirect control of the process purities was proposed by the 

authors. To do this, the deviations from the optimal column internal concentration profile in four 

different points of the column, ∆p, were used as controlled variables. β factors, which depend on 

the process adsorption isotherms and process flowrates, were used as manipulated variables.  
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The process control through the manipulation of variables that depend on process parameters, 

such as the β factors, may not be the best option in terms of operational implementation, since 

these variables do not depend only on process operating flow rates, but also on process 

adsorption equilibria. This means that the changes made by the control system do not imply 

necessarily a direct change in the process variables, and therefore an indirect effect can be 

masked by other factors. Furthermore, the process control through the adsorption and 

desorption fronts could require several concentration measurements. Moreover, the real-time 

measurement of concentrations is still a problem in this type of processes, mainly in the 

enantiomers separation. Usually, the assembled elution profile (AEP) is used in order to reduce 

the number of measurements to obtain the internal concentration profile. Even in this case, a 

complex measurement system may be required. Finally, in the development of a control system, 

it is always better to have a strategy that requires minimal information about the 

phenomenological system.  

The repetitive model predictive control (RMPC) concept was well explored in the literature for 

controlling SMB units (Erdem et al. 2004; Abel et al. 2005; Grossmann et al. 2008). This control 

concept was first introduced by Lee et al. (2001) where the RMPC was developed from the idea 

of the repetitive control (RC) and the model predictive control (MPC). In Erdem et al. (2004) the 

RMPC is applied in the control of the concentration of the extract and raffinate streams of an 

SMB unit through the manipulation of the column internal flow rates. In the referred work, the 

model for the control system was identified from the phenomenological model through a model 

reduction method. One of the limitations of the RMPC control system is the assumption that the 
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switching time of the process is constant which limits the control system, since the switching time 

could be used as a manipulated variable of the controller.  

Table 2 - An overview of the publications with the focus in the SMB process control. 

Authors Year 
Control 

Strategy 

Process 

Variables 

Manipulated 

Variables 

Kloppenburg and Gilles 1999 FBC Pr ,Px QX,QR 

Klatt et al. 2002 IMC ∆p βIV, βI, βII, βIII 

Erdem et al.  2004 RMPC Cr ,Cx QIV,QI,QII,QIII 

Toumi and Engell 2004 NMPC Px βIV, βI, βII, βIII 

Abel et al. 2005 RMPC Pr ,Px mI,mII,mIII,mIV 

Song et al. 2006 MPC Pr ,Px mII,mIII 

Grossmann et al. 2008 RMPC Pr ,Px mI,mII,mIII,mIV 

Suvarov et al. 2012 NMPC Pr ,Px QIV,QE,QR,QF 

Suvarov et al. 2014 AC Pr ,Px mI,mII,mIII,mIV 

 Neto et al.  2016 NMPC Pr, Px QX,QE,QR,QF 

AC – Adaptive Control 
βIV, βI, βII, βIII – Internal factor 
FBC – Feedback Control 
IMC – Internal Model Control  
MPC –Model Predictive Control 
NMPC – Non-linear Model Predictive Control 
RMPC – Repetitive Model Predictive Control 
mI,mII,mIII,mIV – Internal flow rate ratios 
Cr – Raffinate concentration 
Cx – Extract concentration 

∆p - the deviations from the optimal 
column internal concentration profile 
Pr – Raffinate Purity 
Px – Extract Purity 
QE – Eluent Flow rate 
QF – Feed Flow Rate 
QR – Raffinate Flow Rate 
QX – Extract Flow Rate 
QIV,QI,QII,QIII – Internal flow rate 
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In Andrade Neto et al. (2016), a non-linear MPC (NMPC) system applied in the control of an SMB 

unit for a chiral separation is presented. The authors propose a control system with optimization 

and parameters reestimation which showed a good performance in different scenarios (Andrade 

Neto et al. 2016). Table 2 presents an overview of publications with focus on the control of SMB 

units. 

It is possible to note in Table 2 that the majority of the reviewed works used the purities as 

controlled variables. Only two works from these make direct use of process operating variables 

as direct manipulated variables. Furthermore, only a few number of works were found where the 

simultaneous control of the purity and recovery is done. Finally, it was not found in the literature 

works that identify the transfer functions of the processes in study. 

The employment of advanced control techniques instead of the traditional ones is justified in 

industrial processes with complex dynamic behaviour, strong interactions between  variables and 

with process and economic restrictions (Martins et al. 2014). Consequently, advanced control 

techniques are indicated to solve the SMB control problem. In the last two decades, significant 

advances on the control theory have been made, from the development of new control strategies 

as the infinite horizon model predictive control (Pannocchia et al. 2003; Rodrigues and Odloak 

2003) and the robust model predictive control (Badgwell 1997; Odloak 2004), to the studies 

about the control system stability (Rawlings and Muske 1993a; Mayne et al. 2000; Löfberg 2001; 

Lee 2007; Huang et al. 2011). In general, the application of NMPC technique for complex systems 

is common in the literature (Toumi and Engell 2004; Ali et al. 2007; Suvarov et al. 2012; Fontes 

et al. 2014; Andrade Neto et al. 2016). However, the available NMPC solutions seem still far from 



 

P a g e  22 | 311 

P1-1.2 Processes Control 

the practical application stage, mainly due to problems related with systematic methods to tune 

the controller parameters, guarantee of stability, and convergence of the NMPC coupled to the 

state estimator. On the other side, a linear MPC controller may overcome some of those 

problems, and some schemes may even guarantee stability. An MPC controller with guaranteed 

stability means that it will always find an optimal solution regardless of its tuning parameters. 

There is a vast number of strategies to ensure the robustness and nominal closed-loop stability 

of a predictive control system, which usually aim to reformulate the controller cost function in 

order to force it to play the role of a Lyapunov-like function (Rawlings and Muske 1993b; Mayne 

et al. 2000; Diehl et al. 2011).  

A great number of these techniques, that are available in the literature and have their robust 

stability proved, are based on linear models decomposed in the state-space form which has 

stability assured. In order to make use of such type of control systems in the SMB process, the 

first step is to define a way of identifying the linear models of the process and apply them in the 

control system. 

The transfer functions are linear models that can not only be identified through the process 

reaction curve (Seborg et al., 2003), but can also be directly and easily identified through 

experiments or industrial data, and therefore they are a different approach when compared to 

others proposed in the literature for SMB control, such as the state-space models. Additionally, 

the parameters of the transfer functions models can be easily re-estimated online, an advantage 

that can be used in an adaptive controller. In this way, the possibility of developing an advanced 

process control for a SMB unit through a simple identification procedure, without the need of a 
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process phenomenological model or more complex linearization methods, is an important 

contribution to the field, mainly for the industrial application of these units.  

In the present work, the development of a novel strategy to identify transfer functions of 

TMB/SMB units is also proposed, which allows the application of classical linear model predictive 

controllers based on transfer functions to control these processes. The identification of transfer 

functions is proposed since it is an easier way to identify the process linear model. The idea of 

using multiple linearized models within a control scheme for SMB control is employed in Erdem 

et al. (2004) where multiple state-space models are employed in a RMPC system. 

P1-1.3. Online Measurement 

A usual problem found in several engineering fields is the measurement of unmeasurable 

quantities. To overcome those problems the concept of soft sensors, or virtual analysers, was 

proposed, which is based on measurable variables and nonlinear function that correlate those 

first variables with the variable to be measured. Thus, the soft sensor is based on the 

mathematical representation of nonlinear systems, the predictors, which are developed to 

correlate measurable variables to unmeasurable ones. The soft sensor concept has been 

successfully applied in different fields, such as chemical processes (Sharmin et al. 2006; Jalee and 

Aparna 2016), mechanical systems (Capriglione et al. 2017), industrial applications (Roy et al. 

1999), and environmental field (Huang et al. 2015; Sánchez et al. 2018) 
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However, the development of those predictors is still an open problem in the literature. On one 

hand, the predictors can be developed through the Nonlinear Auto Regressive Moving Average 

with Exogenous inputs (NARX) approach, which is the most common in the literature (P. Menezes 

Jr. and Barreto 2006; Menezes and Barreto 2008; Ghosh and Maka 2011; Jalee and Aparna 2016). 

However, when the application is intended for performing long-term predictions or simulations, 

the NARX approach presents a degradation of its efficiency with time (Nelles 2001). On the other 

hand, the most suitable approach for long-term predictions or simulations is the Nonlinear 

Output Error (NOE). However, the development of a NOE model becomes much more complex 

than the training of a NARX model, since the partial derivative of its predictions in order to time 

depends on the partial derivative of its parameters, which are being estimated (Nelles 2001). In 

this way, the present work proposes the development of a NARX based artificial neural network 

(ANN) model concomitantly with a correcting error system, through the experimental 

measurements available, to perform long-term predictions in order to solve the concentration 

measurement problem, usually found in the cyclic adsorption processes field. 

The real-time measurement problem is in general associated with a low frequency of 

measurements of some property such as the concentration. The low frequency of measurements 

is a well-known problem in the chemical industry. This problem is usually associated with profit 

losses by production of out of specification products. For example, in polymerization processes 

the real time measurement of the polymers main properties, such as the melt flow index, density 

and molecular weight distribution, is an important subject of study (Gonzaga et al. 2009; Zhao et 

al. 2009; Nogueira et al. 2017). In other fields, these problems appear when the product main 
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property is associated with measurements of concentrations, since the online measurement of 

concentrations is not a trivial task.  

An important point in the enantiomers separation is the measurement of the concentration of 

each chiral compound. This is a problem that impairs further developments in the field, for 

example the application of an online controller. This has not been possible yet because an 

appropriate online monitoring system is not available. In the work of Amanullah et al. (2007), the 

authors present a system composed by a UV detector, that measures the enantiomers global 

composition and a polarimeter, that measures the composition of each enantiomer. The authors 

point as limitations of their technique the lack of information during the first switching period 

and the incomplete information during the last switching period of a cycle. Furthermore, these 

techniques involved a substantial effort to circumvent inherent limitations of the optical 

detectors as pointed by Grossmann et al. (2010).  

The empirical modelling based on artificial neural networks (ANN) to solve engineering problems 

acquired a significant importance nowadays (Behbahani et al. 2009; Yap and Karri 2013; 

Mirsoleimani-azizi et al. 2015; Yu et al. 2015; Torrecilla et al. 2016; Wang et al. 2016; Sorrosal et 

al. 2017). Wang et al. (2003) propose the prediction of the internal axial concentration profile of 

an SMB unit with a neural model. In the referred work, the ANN model was pointed as an efficient 

alternative to the use of the phenomenological model, since the complexity of the latter leads to 

a large computational effort (Wang et al. 2003). The authors conclude their work validating the 

ANN model and suggesting its implementation in a predictive control system based on the ANN 

model. 
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Other works in the chiral separations with SMB units employ an offline monitoring of the system 

outlet composition using HPLC measurements. This method can lead to a considerable 

measurement dead time, which compromises the process control and/or optimization. For 

example, in Ribeiro et al. (2011a), the authors measure flurbiprofen concentration by collecting 

samples at the end of a cycle (equivalent to 13.55 min) and later on they measure the samples in 

an HPLC. In Ribeiro et al. (2011b), the authors use the same procedure to measure the chiral 

concentration; in this case, their measurement dead time can reach 37.5 minutes. In Langel et al. 

(2009), an HPLC system is proposed in order to reduce the measurement dead time. However, 

the HPLC system still presents a low frequency of measurement, which in this case is equal to a 

cycle time. 

Therefore, on one hand, the ANN predictions might degrade over time due to its NARX structure, 

and on the other hand, offline measurements carry long dead times. In this way, this work 

proposes a quasi-virtual on-line analyser (Q-VOA) which combines the ANN and offline 

measurements to do online and real-time monitoring of the purity of a TMB unit. The 

combination of both techniques results in a pseudo-measurement soft-sensor that can provide 

reliable real-time estimations of the process purity. The measurement actualization is proposed 

to improve the ANN model prediction. However, this actualization cannot be done at every time 

instant since it would then incorporate the measurement time delay, as is explained in detail in 

Section P1-2.4. 
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P1-1.4. TMB design and optimization 

The design of a TMB consists in the definition of the unit internal flow rates that will meet the 

required conditions of quality and productivity. The unit internal flow rates are directly correlated 

to the external flow rates, or the operating variables of the process. One of the first design and 

optimization method in this field was proposed in 1993 based on a robust design concept, the 

triangle theory (Storti et al. 1993). Since then, this technique became the traditional way to 

design those processes. However, this technique is based on the equilibrium theory, and presents 

limitations when applied for systems in which the mass transfer is a significant factor. In those 

cases, the optimal point provided by the triangle theory does not guarantee the complete 

separation (Aniceto et al. 2016). Further development of the triangle theory was proposed by 

Azevedo and Rodrigues (1999), where the authors evaluate the effect of the mass transfer 

coefficient in the separation regions of the triangle theory. Furthermore, in the referred work, 

the authors propose an extension of the first theory into the separation volumes. Since then, the 

design of those type of units has been done mainly through the triangle theory or separation 

volumes technique. 

Those methods are well-known, and represent a simple and practical way to design TMB/SMB 

units; however they are computationally expensive and also present some limitations. Such as 

the mass transfer question aforementioned and the difficulty to evaluate all possible operating 

conditions simultaneously. This last one is due to the fact that the method presupposes to fix a 

low value of the unit feed flow rate and evaluate the remaining operating conditions in order to 
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draw the separation region limits. The procedure is then repeated, to evaluate different feed 

flow rates of increasing value through this method until a feed flow rate is reached for which no 

conditions that allow separation are found. This becomes a massive work because it is necessary 

to repeat the method for each feed flow rate value that is wished to be evaluated. This also leads 

to another problem, that is, the discrete nature of this method for the optimization of the system. 

In order to overcome those problems, Aniceto et al., (2016) proposed a robust design technique 

based on design of experiments and response surface to optimize SMB processes. In the referred 

work, the authors demonstrate that alternative techniques for TMB design and optimization can 

present superior results when compared with the traditional ones, triangle theory and separation 

volumes.  

The evaluation of new alternatives for the design and optimization of those type of processes is 

still an important contribution to the field. Furthermore, those type of processes deal with high 

value products and, in terms of its operation, it is important to have available tools capable of 

providing a range of possible operating points for which the process can reach its maximum 

potential. Concomitantly, after the process design and optimization, during the operation, the 

process is constantly under conditions where unexpected deviations from its optimal condition 

may occur. The system uncertainty, that cannot be predicted or accounted for in the design and 

optimization step, can led the process to a different behaviour than the previously analysed. In 

this way, besides the operating range, the evaluation of the confidence regions of the operating 

point is also an important tool to improve the process performance and avoid losses in the 

process due the unknown system uncertainty and deviations.  
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The traditional process design and optimization procedures normally provide a point where the 

process will meet the desirable requirements. However, it is important for continuous quality 

improvement to determine how accurate are these optimal operating conditions, in other terms, 

to determine the region within the operating range of the process for which these conditions are 

still satisfied. This can be done by considering interval estimation for a single variable or by joint 

confidence regions for multiple variables (Park 2013). A method based on bootstrap technique 

for the determination of the confidence region of optimal operating conditions in robust process 

design is proposed by Park (2013) where the author presents the importance of the evaluation 

of the accuracy of the optimal point in the process design. Schwaab et al. (2008) present a simple 

and efficient method to evaluate confidence regions of model parameters. In the referred work, 

the authors show that the determination of the confidence regions can be easily done through 

the results of an optimization using a method based on populations, such as the Particle Swarm 

Optimization (PSO).  

Particle Swarm Optimization is a method developed in 1995 by Kennedy and Eberhart (1995) 

where the authors propose a concept for the optimization of nonlinear functions based on social 

behaviour of living organism communities such as birds flocks or fish schools. Since then, the 

method has been applied to solve several optimization problems in different fields, such as 

parameters estimation (Koduru et al. 2007; Schwaab et al. 2008), control system (Nery et al. 

2014; Al-Dunainawi et al. 2017; Soufi et al. 2017) and to solve optimization problems in general 

(Hu and Eberhart 2002; Parsopoulos and Vrahatis 2002; Jiang et al. 2007; Engelbrecht 2012). For 
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the last two decades, studies have been published with developments and improvements in the 

PSO technique (Ratnaweera et al. 2004; Jiang et al. 2007; Engelbrecht 2012).  

The PSO algorithm is presented as an efficient way to optimize complex problems with a simple 

implementation. Furthermore, the population generated by the algorithm can be considered as 

a cloud of points that can be employed to plot the confidence region of the optimized variables. 

However, there  are still some open questions in the literature about this technique, such as the 

initialization velocity, which is addressed by Engelbrecht (2012); the acceleration coefficients 

addressed in Ratnaweera et al., (2004); the application of PSO in multi-objective problems 

addressed by Hu and Eberhart (2002).  

This topic of the work has as main objective to design and optimize a TMB unit and draw the 

confidence regions of its operating variables with an improved Self-Organizing Hierarchical 

Particle Swarm Optimizer with Time-Varying Acceleration Coefficients with mutable searching 

region technique. The main contribution of this work is to propose a technique capable of 

providing the set of best designs of a TMB unit, where all possible operating conditions that obey 

to the process design constraints are determined. It is an important tool for the operation of 

those type of processes and is presented as an alternative to the classical approach, where it is 

necessary to re-design the unit each time a new operating condition is desirable. Another 

contribution of the present work is to adapt the past developments in PSO algorithms and 

confidence regions evaluation which were employed in the field of parameters estimation, to 

process robust design and optimization. Furthermore, the PSO approach here proposed presents 

new contributions to the swarm optimization field.
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P1-2. Methods 

This chapter is dedicated to the description of the methods and developments proposed in 

this work. The methodologies here described will be applied for each process in study (TMB 

and SMB). The results obtained for the TMB and SMB studies will be presented at the end of 

this part in the results chapter. All steps of the work were conducted in a computer with an 

Intel core i5 processor and 8 GB of RAM memory. 

P1-2.1. TMB and SMB models 

Two phenomenological models were developed in order to describe the TMB and SMB processes 

presented in Section P1-1.1. In the True Moving Bed system model, a set of two partial 

differential equations (PDEs) describes the conservation (mass balance) of each component in 

the fluid and solid phases of a volume element of the bed. The model assumes multicomponent 

adsorption equilibrium, axial dispersed plug flow of the fluid phase and the linear driving force 

approximation to describe the intraparticle mass transfer.  The TMB unit is composed by four 

sections (𝑗 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉) and the system in study is a binary separation. In a volume element of 

the TMB column with a section length, 𝐿𝑗, where the solid phase moves with given velocity, 𝑢𝑠, 

and for a given component 𝑖, these PDEs can be expressed as: 

Mass balance to the fluid phase in a volume element of the section: 
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𝜕𝑐𝑖𝑗

𝜕𝜏
= 𝛾𝑗 {

1

𝑃𝑒𝑗

𝜕

𝜕𝑥
(𝐶𝑇 ∙

𝜕𝑦𝑖𝑗

𝜕𝑥
) − 𝑣𝑗

𝜕𝑐𝑖𝑗

𝜕𝑥
} −

(1 − 𝜀)

𝜀
𝛼(𝑞𝑖𝑗

∗ − 𝑞𝑖𝑗) (1) 

where  𝜏 =
 𝑡

(𝐿𝑗/𝑢𝑠)
 , 𝑥 =

𝑧

𝐿𝑗
 are the dimensionless time and axial coordinates, 𝐶𝑇 is the total 

concentration and 𝑦𝑖𝑗 is the molar fraction in the fluid phase, 𝑐𝑖𝑗 and 𝑞𝑖𝑗 are the fluid phase and 

average adsorbed phase solute concentrations, and 𝑞𝑖𝑗
∗  is the adsorbed phase concentration in 

equilibrium with 𝑐𝑖𝑗; 𝑣𝑗  is the interstitial fluid velocity, 𝑃𝑒 = 𝑣𝑗𝐿𝑗  /𝐷𝐿𝑗 is the Peclet number, 𝛼 =

𝑘 𝐿𝑗/𝑢𝑠  is the number of mass transfer units, 𝜀 is the bed porosity and  𝛾𝑗 = 𝑣𝑗/𝑢𝑠 is the ratio 

between fluid and solid interstitial velocities; t is time, z is distance from the section inlet, k is the 

mass transfer coefficient, and 𝐷𝐿𝑗 is the axial dispersion coefficient in section j of the column. 

 Mass balance to the solid phase: 

𝜕𝑞𝑖𝑗

𝜕𝜏
=
𝜕𝑞𝑖𝑗

𝜕𝑥
− 𝛼𝑗(𝑞𝑖𝑗

∗ − 𝑞𝑖𝑗) 
(2) 

Similarly to the TMB, the SMB unit has four sections. Each section may have a different number 

of columns and each column may be considered as an independent fixed-bed unit connected to 

other columns. For a SMB unit with a given switching time 𝑡∗, and a given number of columns, 

each with a length 𝐿𝑐, the mass balance to each component 𝑖 in the fluid phase in a given column 

𝑐 is expressed by: 

𝜕𝑐𝑖𝑐
𝜕𝜏

= 𝑣𝑐 {
1

𝑃𝑒𝑐

𝜕

𝜕𝑥
(𝐶𝑇 ∙

𝜕𝑦𝑖𝑐
𝜕𝑥
) −

𝜕𝑐𝑖𝑐
𝜕𝑥
} −

(1 − 𝜀)

𝜀
𝛼(𝑞𝑖𝑐

∗ − 𝑞𝑖𝑐) (3) 
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where 𝜏 =
𝑡

𝑡∗
 is the dimensionless time obtained by the ratio between the actual 

operation/simulation time and the switching time; and 𝑥 =
𝑧

𝐿𝑐
  is the dimensionless axial 

coordinate; 𝑣𝑐  is the interstitial fluid velocity, 𝑃𝑒𝑐 =
𝑣𝑐
∗ 𝐿𝑐

𝐷𝐿𝑐
 is the Peclet number. 

The mass balance to the solid phase for each component, 𝑖, in each bed, 𝑐, is given by:  

𝜕𝑞𝑖𝑐
𝜕𝜏

= 𝛼(𝑞𝑖𝑐
∗ − 𝑞𝑖𝑐) 

(4) 

The case study adopted in this work was the bi-naphthol enantiomers separation using 3,5-

dinitrobenzoyl phenylglycine bonded to silica gel as adsorbent and heptane-isopropanol as 

eluent. The adsorbed quantities in equilibrium for this system can be evaluated by dual site 

Langmuir isotherms. The parameters of the isotherm were estimated by Pais et al. (2000) through 

tests performed in an adsorption column with the chemical components of the system. The bi-

Langmuir isotherms of this system are represented as: 

𝑞𝐴
∗ =

2.69𝑐𝐴
1 + 0.0336𝑐𝐴 + 0.0466𝑐𝐵

+
0.10𝑐𝐴

1 + 𝑐𝐴 + 3𝑐𝐵
 

(5) 

𝑞𝐵
∗ =

3.73𝑐𝐵
1 + 0.0336𝑐𝐴 + 0.0466𝑐𝐵

+
0.30𝑐𝐵

1 + 𝑐𝐴 + 3𝑐𝐵
 

(6) 

One SMB cycle consists of the number of switches necessary for the system to come back to its 

initial positions. In this way, each column, along one cycle, will be part of the different sections. 

This is considered in the mathematical model by the change of the boundary conditions used for 
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each section at different times. The initial and boundary conditions presented below are valid for 

the TMB and SMB and therefore the indexes j and c are omitted, those conditions being valid for 

each columns/sections of the units. Hence, the boundary and initial conditions for each section 

or column of the TMB and SMB units can be expressed as: 

𝜏 = 0; 𝑡 = 0:  𝑐𝑖 = 𝑞𝑖 = 0 (7) 

The index 0 represents the inlet of a column (𝑐) or a section (𝑗). For example, 𝑐𝑖,0, is the inlet 

concentration of the component 𝑖. 

𝑥 = 0;  𝑧 = 0:  𝑐𝑖 −
𝐷𝐿
𝑣𝑗

𝜕𝑐𝑖
𝜕𝑧
= 𝑐𝑖,0 (8) 

 𝑥 = 1;  𝑧 = 𝐿: 
 

𝑞𝑖𝐼𝑉 = 𝑞𝑖𝐼,0, 𝑞𝑖𝐼 = 𝑞𝑖𝐼𝐼,0, 𝑞𝑖𝐼𝐼 = 𝑞𝑖𝐼𝐼𝐼,0,

𝑞𝑖𝐼𝐼𝐼 = 𝑞𝑖𝐼𝑉,0, 
(9) 

For all columns in a node without an inlet stream (in the SMB process) including for the Extract 

and Raffinate nodes: 

𝑐𝑖(𝑗 𝑜𝑟 𝑐)−1 = 𝑐𝑖(𝑗 𝑜𝑟 𝑐),0 
(10) 

For the Eluent node: 

𝑐𝑖,𝐼𝑉 =
𝑄𝐼
𝑄𝐼𝑉

𝑐𝑖,𝐼,0 
(11) 
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For the Feed node: 

𝑐𝑖𝐼𝐼 =
𝑄𝐼𝐼𝐼
𝑄𝐼𝐼

𝑐𝑖𝐼𝐼𝐼,0 −
𝑄𝐹
𝑄𝐼𝐼
𝑐𝑖
𝑓 (12) 

 

The node global balances can be expressed as: 

𝑄𝐼 = 𝑄𝐼𝑉 + 𝑄𝐸 (13) 

𝑄𝐼𝐼 = 𝑄𝐼 − 𝑄𝑋 (14) 

𝑄𝐼𝐼𝐼 = 𝑄𝐼𝐼 +𝑄𝐹 (15) 

𝑄𝐼𝑉 = 𝑄𝐼𝐼𝐼 − 𝑄𝑅 (16) 

And the unit global balance is given by: 

𝑄𝐹 + 𝑄𝐸  = 𝑄𝑅 + 𝑄𝑋 (17) 

where 𝑄𝐸 is the eluent flow rate, 𝑄𝑋 the extract flow rate, 𝑄𝐹 the feed flow rate, 𝑄𝑅 the raffinate 

flow rate. 

The processes performance indicators are: 

𝑃𝑢𝑟𝑋 =
𝑐𝑋,𝑖

∑ 𝑐𝑋,𝑖
𝑛𝑖
𝑖=1

 (18) 
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𝑃𝑢𝑟𝑅 =
𝑐𝑅,𝑖

∑ 𝑐𝑅,𝑖
𝑛𝑖
𝑖=1

 (19) 

𝑅𝑒𝑐𝑋 =
𝑄𝑋𝑐𝑋,𝐵
𝑄𝐹𝑐𝐹,𝐵

 
(20) 

𝑅𝑒𝑐𝑅 =
𝑄𝑅𝑐𝑅,𝐴
𝑄𝐹𝑐𝐹,𝐴

 
(21) 

𝐸𝐶 =
𝑄𝐸+𝑄𝐹

𝑄𝐹∑ 𝐶𝐹,𝑖
𝑛𝑖
𝑖=1

  (22) 

𝑃𝑟 =
𝑄𝐹(𝑐𝐹,𝐴 + 𝑐𝐹,𝐵)

𝑉𝑇
 (23) 

where 𝑃𝑢𝑟𝑋, is the extract purity, 𝑃𝑢𝑟𝑅, is the raffinate purity, 𝑅𝑒𝑐𝑋, is the extract recovery, 𝑅𝑒𝑐𝑅, 

is the raffinate recovery,  𝐶𝑋,𝑖, is the concentration of the component 𝑖 in the extract stream, 𝐶𝑅,𝑖, 

is the concentration of the component 𝑖 in the raffinate stream and 𝐶𝐹,𝑖, is the concentration of 

the component 𝑖 in the feed stream, 𝑉𝑇, is the volume of the unit, EC, is the eluent consumption 

and 𝑃𝑟 is the unit productivity. As a chiral separation is being considered as case study, the eluent 

is also present in the feed and therefore the eluent consumption is usually calculated as defined 

by Equation (22) (Rodrigues et al. 2015). 

This model was validated by Pais et al. (2000) in a pilot plant  located in the Laboratory of 

Separation and Reaction Engineering (LSRE). Three models here presented were implemented in 

the gPROMS modelling builder (Process Systems Enterprise 2015), as this is a suitable software 

for modelling complex processes. One model corresponds to the true moving bed system and 
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the other two models to simulated moving bed processes, one with four columns and another 

with eight columns. Each zone of the TMB and column of the SMBs are defined by 4 partial 

differential equations (PDEs), while the node balances and the Langmuir isotherms are algebraic 

equations (AEs). Therefore, the TMB and SMB-4 systems are described by a set of 16 PDEs and 9 

AEs while the SMB-8 is described by a set of 32 PDEs and 9 AEs. The numerical method used to 

solve the PDE systems was orthogonal colocation in finite elements with 50 intervals and 2nd 

order polynomials. 

P1-2.2.  Study of the units dynamics  

It is well known that each process variable has a different effect on the process response. In 

process control and optimization, it is very important to know the behaviour of the process 

before any variation in the operating conditions. These effects depend on the importance of each 

variable in the system, where some process variables may be correlated with others. The 

dependence between the different variables can lead to a masked effect if they are observed 

individually. During real operation of the unit, one or more process operating variables can vary 

simultaneously. The effect of a simultaneous variation is generally more intense than the effect 

of the variation of only one variable at a time. However, even in this case, it is expected that the 

intensity of the effect be dominated by the response observed for the variable that has greater 

impact in the process.  

In terms of design, optimization and process control, it is important to know the isolated effect 

of each variable in the process performance parameters. Furthermore, a method to evaluate the 
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effect of each operating condition that takes in consideration the correlations between the other 

variables can be an important tool in this field. Once this is known the prediction of simultaneous 

variations can be done. Therefore, it is very important that all variables of the process be analysed 

simultaneously considering their correlations. It is well known that the effect of the variables in 

the response of a given system through time can be represented in a Jacobian or sensitivity matrix 

as Equation (24). 

   

𝑆 =

[
 
 
 
 
 
 
 
 
 𝑠

′
1,1|𝑡1

⋯ 𝑠′1,𝑛𝑝|𝑡1
⋮ ⋱ ⋮

𝑠′1,1|𝑛𝑡
⋯ 𝑠′1,𝑛𝑝|𝑡𝑛

⋮ ⋮ ⋮

𝑠′𝑛𝑦,1|𝑡1
⋯ 𝑠′𝑛𝑦,𝑛𝑝|𝑡1

⋮ ⋱ ⋮

𝑠′𝑛𝑦,1|𝑛𝑡
⋯ 𝑠′𝑛𝑦,𝑛𝑝|𝑛𝑡]

 
 
 
 
 
 
 
 
 

(𝑛𝑦×𝑛𝑡) × 𝑛𝑝

    
(24) 

 

Defining s as the partial derivative of a given response 𝑦
𝑖
 over a given operating condition, 𝜃𝑝, in 

a given time, 𝑡,  calculated by: 

𝑠𝑖,𝑝 =
𝜕𝑦

𝑖

𝜕𝜃𝑝
|
𝑡=𝑡𝑛

 ,   𝑝 = 1,2,3, … , 𝑛𝑝;  𝑖 = 1,2,3, … , 𝑛𝑦;   𝑡𝑛 = t1, … , 𝑛𝑡; (25) 

where  𝑛𝑦 is the number of process responses, 𝑛𝑝, the number of operating variables and 𝑛𝑡 the 

total instants of time taken into consideration. Each column of the sensitivity matrix (which 

corresponds to a specific process indicator) is evaluated at different time instants from t1 to nt. 
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As each variable has different dimensions and order of magnitude, it is recommended the scaling 

of the partial derivatives. Yao et al. (2003) suggested that the scaling is done by the following 

Equation: 

𝑠′𝑖,𝑝 =
𝜃𝑝

𝑦𝑖

𝜕𝑦
𝑖

𝜕𝜃𝑝
|
𝑡=𝑡𝑛

 
(26) 

where the 𝑠′𝑖,𝑝 are the coefficients of the sensitivity matrix given in Equation (24). In this 

equation, the indicators and response values are calculated by the mathematical model at each 

time instant. By scaling the coefficients (𝑠′𝑖,𝑝), they have the same order of magnitude allowing 

an efficient comparison between the effect of the variables. It should be noted that the scaling is 

essential for the analysis and that other authors also recommend that the scaling is done by 

Equation (26) (Lin et al. 2010; Benyahia et al. 2013). 

Since the objective of this analysis is to evaluate the effect of the operating conditions in the 

process, the scaled partial derivative presented in Equation (27) can be calculated through its 

numerical definition: 

𝜃𝑝

𝑦𝑖

𝜕𝑦
𝑖

𝜕𝜃𝑝
|
𝑡=𝑡𝑛

=
𝜃𝑝

𝒚𝒊
 
𝐲𝒊(𝑡𝑛, 𝜃𝑝 + ∆𝜃𝑝) − 𝐲𝒊(𝑡𝑛, 𝜃𝑝)

∆𝜃𝑝
 (27) 

Each column of the matrix represents the influence of a given operating variable and each line 

represents the response of the model in a given instant. The final dimension of this matrix is the 

number of responses evaluated, 𝑛𝑦  , times the number of instants considered, 𝑛𝑡, per number of 

process variables, 𝑛𝑝. It should be noted that this matrix takes into consideration the dynamics 
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of the system. Finally, the dynamic Jacobian matrix contains the influence of all operating 

variables on all responses in a given operating period. This is an important information about the 

influence of the operating conditions on the process behaviour. However, a tool that can extract 

this information from the matrix is still necessary.  

Considering each column of the Jacobian matrix as a vector, each vector can be correlated with 

the others, and one can use a statistic tool or an algebraic tool to analyse the behaviour of these 

vectors in the system. Many tools are available in literature, such as, the Principal Component 

Analysis, Height Values and Height Vector Analysis, and Gram-Schmidt Orthogonalization 

Method. Those methods are well known in the field of parameters estimation and model 

reduction analysis, used as tools of the process called “Identifiability or Estimability analysis” 

(Lund and Foss 2008; Quaiser and Mönnigmann 2009; Wu et al. 2012; Kravaris et al. 2013).  

Among the tools available, the orthogonalization method can be highlighted. It is an algebraic 

concept that takes into consideration the correlation between vectors. The method is simple to 

implement in an algorithm and has shown good results in the field of parameters estimation 

(Quaiser and Mönnigmann 2009; Zhao and Stadtherr 2011; Kravaris et al. 2013). With these 

considerations, the present work adopts this tool as the basis for the processes analyses here 

described.  
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P1-2.2.1. The orthogonalization method 

The orthogonalization method was first proposed by Yao et al. (2003). The method shows 

efficient results solving problems in the field of parameters estimation in complex models of 

systems with a large number of parameters. The methodology proposed in this work is based on 

the orthogonalization method introduced by Yao et al. (2003) for estimation analysis, adapted 

here for the assessment of the influence of operating conditions on the performance indicators. 

A method capable of investigating the influence of the operating variables along time in a cyclic 

adsorption process based on a True Moving Bed model is therefore developed. 

To use the orthogonalization method, first an indicator of the importance of each matrix column 

in the vector space is necessary. Considering each column of the Jacobian Matrix as a vector, its 

importance can be measured by the vector length calculated as: 

‖𝑎 ‖ =  √𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛𝑣
2     (28) 

where 𝑎  is a generic vector and 𝑛𝑣 represents the number of elements of the vector. To make 

the evaluation simpler a new variable can be defined, the magnitude (𝑀) that is equal to:  

𝑀 = ‖𝑎 ‖2 = ∑𝑎i
2

𝑛𝑣

𝑖=1

   (29) 
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The magnitude provides the information about the length of the vector and consequently the 

total influence of each process variable in its response. The larger the magnitude value, the more 

important is that variable in the process. 

For example, in a system with four main variables the influence of each variable in the process 

response over time can be represented as shown in Figure 4. The Jacobian matrix of the system 

is the vector space formed by the four vectors represented in the figure by: S(1)
1, S(1)

2, S(1)
3 e S(1)

4.  

 

Figure 4 - Gram-Schmidt Orthogonalization Method. (Adapted from: Kravaris et al., 2013). 

 

The magnitude of each vector can be evaluated and the variable with the highest impact in the 

process determined. In Figure 4, this variable corresponds to the vector S2. After selecting the 

main operating variable in the process, the importance of the remaining vectors is evaluated. At 
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this point the Gram-Schmidt Orthogonalization Method is applied in order to eliminate the 

possible correlations between the remaining process variables and the previously selected one. 

In the figure, it can be noted that the three remaining vectors are correlated with S2 since they 

are linearly dependent. The orthogonalization projects the remaining vectors in a plane 

perpendicular to the selected vector. Therefore, the remaining vectors have no influence from 

the previous ones and the analysis can continue with the projected vectors S(2). The 

orthogonalization can be done as: 

𝑆𝑂 = 𝑆𝑚𝑎𝑥(𝑆𝑚𝑎𝑥
𝑇𝑆𝑚𝑎𝑥)

−1
𝑆𝑚𝑎𝑥

𝑇𝑆 (30) 

where 𝑆𝑂 is a new matrix formed by the projected vectors in the new orthogonal vector space, 

𝑆𝑚𝑎𝑥 is the vector over which the system was orthogonally projected. Through Equation (30) one 

notes that the matrix 𝑆𝑂 has only one column that does not change in comparison with the 

Jacobian matrix. That column corresponds to the vector 𝑆𝑚𝑎𝑥. A new matrix that does not contain 

any information about the vector previously selected can then be used, the residual matrix (𝑅). 

This matrix can be calculated by: 

𝑅 = 𝑆 − 𝑆𝑜 (31) 

With the residual matrix, the magnitude of its columns can be calculated again and the next 

operating condition with the second largest effect in the process selected. The analysis follows 

the same procedure as described above until all vectors are analysed or until when the magnitude 

of the vectors reaches a minimum value that can be defined as a criterion to finish the analysis. 
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All these steps are generically represented in Figure 4, where the superscript in the vectors 

indicates the current step. In Figure 5, the analysis is detailed in a logical flowsheet. The main 

difference between the method here presented and the one proposed by Yao et al. (2003) can 

be observed in the second column of the flowsheet in Figure 5. In the previously proposed 

method, after the column of the residual matrix with greater magnitude is selected, the 

orthogonalization is done over the first Jacobian matrix 𝑆. Here, it is proposed to do the 

orthogonalization over the residual matrix 𝑅. Using this approach, the calculation of the residual 

matrix eliminates the columns of the previous selected vectors, and the successive 

orthogonalization of the produced residual matrix ensures that the method, at each step, takes 

into consideration only the vectors not yet selected. This cannot be guaranteed if the 

orthogonalization is continuously done over the 𝑆 matrix. As the main objective of the method 

here presented is to analyse the influence of the operating variables in the process response, the 

previous consideration is important. 

The limitation of this method is its dependence on the values of the process variables. That 

limitation can be suppressed by using information from the literature, by previous expertise on 

the process or by performing a previous steady state study of the process. The proposed method 

was first employed in the analysis of a chiral separation adsorption process represented by a true 

moving bed model in order to test the method consistence. After this, the method was used to 

analyse the other models studied in this work. 
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Figure 5 - Flowsheet of the proposed process analysis. 

The above presented method is the basis for the analysis of the influence of the operating 

parameters on the dynamics of the systems. Through the orthogonalization method, it is possible 

to verify the influence of the operating variables in the processes responses during the transient 

and steady states. The method will also serve as a basis for the identification of the manipulated 

variables in the processes control and in the empirical modelling. 

The Gram-Schmidt Orthogonalization analysis here presented was implemented in the MatLab 

software. To run the analysis, a communication between gPROMS, where the process models 
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were written, and MatLab, was used through the go:MATLAB extension (Process Systems 

Enterprise 2015). It was possible for MatLab to run externally the model and collect the responses 

of the process simulation. 

P1-2.3. Control system development and linear functions 

identification 

A plot of the output response of a process to a step change in input is sometimes referred to as 

the process reaction curve. If the process can be approximated by a linear model, the model 

parameters can be obtained by inspection of the process reaction curve (Seborg et al. 2003). The 

traditional way to identify transfer functions of complex processes consists in performing a step 

perturbation in an operating (inlet) variable and, through the process reaction (outlet) curve, 

adjust the parameters of a given transfer function.  

The dynamics of an SMB/TMB system becomes more complex as it gets closer to the optimal 

point, at which purity and recovery constraints are both satisfied. This can be seen in Figure 6, 

which presents responses of the purity in the extract stream of a TMB unit to step perturbations 

in the recycling flow rate, of a process operating in optimal conditions and of a process operating 

in non-optimal conditions. Four step perturbations were performed, two of 10% above the initial 

value of the recycling flow rate (before the instant 2500 min, the first between the instants 10 – 

800 min and the second between the instants 1400 – 2000 min), and two others of 10% below 

the initial value of the recycling flow rate (after the instant 2500 min, the first between the 
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instants 2500 – 3100 min and the second between the instants 3500 – 4100 min). In Figure 6, the 

line closer to 1 is the response of the system in its optimal point while the response line closer to 

the 0.7 value corresponds to the one in non-optimal conditions. It is possible to note that, at the 

non-optimal point, positive and negative steps correspond respectively to purity increase and 

decrease. On the other hand, the responses at optimal conditions show a decrease in purity for 

both types of steps.  It is in this sense that the process is referred as having a more complex 

dynamic. Consequently, the usual way to identify the process transfer function, through the 

process reaction curve, cannot be directly applied in this case. This occurs because any 

perturbation at the optimal condition may lead the process to a point outside of the zone of 

complete separation and adsorbent/eluent regeneration. In this way, in the industry these units 

are usually operated in suboptimal conditions to avoid these problems in the process. However, 

the process control at its optimal conditions would reduce the process loss due to a suboptimal 

operation. In order to allow the identification of linear models through the process reaction curve 

at the optimal point, it is proposed the employment of a transfer function switching system, 

Figure 7. 
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Figure 6 - Responses of the purity in the extract stream to step perturbations in the 
recycling flow rate. Comparison between the responses in the optimal and non-optimal 

conditions. 

In the present work, it is proposed the identification of two local transfer functions in order to 

overcome the aforementioned problems. One transfer function to a step perturbation 

corresponding to an increase in the process flow rates and another transfer function (TF) to a 

step perturbation corresponding to a decrease in the flow rates. Once the two local TFs are 

identified, they are employed in the controller through a switching system, Figure 7, where the 

most adequate TF is used to predict the process future behaviour. The system consists in an 

on/off switch, where the response of one of the transfer functions is selected in accordance to 

the variation in the flow rates, as presented in Figure 7. In this way, it is expected to improve the 

performance of the predictive control in comparison with the traditional employment of this 

technique.  A model predictive controller is based on an optimizer, where the future inputs are 

computed through the solution of the system objective function, and a predictive model, where 
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the predicted outputs are computed using the future inputs. In the present work, a switching 

system is proposed, which consists in the selection of the transfer function to perform the 

predictions in accordance with the variation of a given manipulated variable, 𝑄𝑀𝑉; this means 

that, depending on whether the difference between the future value of 𝑄𝑀𝑉 and its past value is 

positive or negative, ∆Q<0 or ∆Q>0, a different transfer function is chosen to perform the 

prediction.  

  

 

Figure 7 - Schematic representation of the switching system proposed. 
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As mentioned above, it was possible to note in Figure 6 that, as the operating point moves away 

from the optimal point, the process dynamic behaviour becomes simpler.  Then, using a point far 

from the optimal, it becomes possible to identify a transfer function through the traditional 

procedure (process reaction curve – GRC). In order to test the transfer function identification 

methodology here proposed, two matrices of transfer functions were generated from the 

operation of the process at non-optimal conditions (as shown in Figure 6) for the traditional 

identification method (GRC) and two matrices of transfer functions for the proposed method (GG 

non-opt). The matrices GRC and GG non-opt were applied in an MPC control system and the control 

performance was compared. It is expected to obtain equally efficient control systems with both 

transfer functions if the proposed methodology can represent the process with precision. 

Additionally, another set of TFs was identified with the methodology here proposed, but starting 

with the system operating at optimal conditions (GG opt). 

P1-2.3.1. Control Strategy 

The model predictive control is based on the future predictions of process output variables over 

a determined prediction horizon, 𝑝.  The process outputs are predicted with respect to their past 

values, 𝑦(𝑘 + 1|𝑘), and the present inputs, 𝑢, the manipulated variables.  

The control system is related with an optimization problem that minimizes the difference 

between the future values of the process output and the set point through smooth movements 
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in the input variables. The optimization problem is evaluated under the process restrictions, such 

as the limits of the manipulated variables. At each time instant, 𝑘, the controller sends to the 

process the optimal values of the manipulated variables in order to keep the process in the 

desirable operating point (Lee 2007).  

The general formulation of an MPC optimization problem can be expressed as: 

min
∆𝑢
𝑉(𝑘) =∑‖𝑦(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝‖𝑄

2
+ ∑‖∆𝑢(𝑘 + 𝑗|𝑘)‖𝑅

2

𝑚−1

𝑗=0

𝑝

𝑗=1

 (32) 

Subject to:  

∆𝑢(𝑘 + 𝑗) ∈ 𝕌, 

(33) 𝕌 =

{
 

 
−∆𝑢𝑚𝑎𝑥 ≤ ∆𝑢(𝑘 + 𝑗) ≤ ∆𝑢𝑚𝑎𝑥
∆𝑢(𝑘 + 𝑗|𝑘) = 0, ∀𝑗≥ 𝑚

−𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 1) +∑ 𝑢(𝑘 + 𝑗|𝑘)
𝑗

𝑖=1
≤ 𝑢𝑚𝑎𝑥

 

where 𝑄 and 𝑅 are the diagonal matrices that represent the weights of each term of the objective 

function. The controller objective function is given by: 

min
∆𝑢
𝑉(𝑘) =∑(‖𝑃𝑋(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑃𝑋‖𝑄1

2
+ ‖𝑃𝑅(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑃𝑅‖𝑄2

2

𝑝

𝑗=1

+ ‖𝑅𝑋(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑅𝑋‖𝑄3

2
+ (‖𝑅𝑅(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑅𝑅‖𝑄4

2
)

+ ∑(‖∆𝑄𝐼𝑣(𝑘 + 𝑗|𝑘)‖𝑅1
2 + (‖∆𝑄𝑋(𝑘 + 𝑗|𝑘)‖𝑅2

2 + (‖∆𝑄𝑆(𝑘 + 𝑗|𝑘)‖𝑅3
2

𝑚−1

𝑗=0

+ (‖∆𝑄𝐸(𝑘 + 𝑗|𝑘)‖𝑅4
2  

(34) 
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The control strategy is formulated here from an offset-free control law in a one-step optimization 

problem. This formulation is based on Alvarez and Odloak (2012), where the detailed rules to 

obtain the matrices can be found. Based on a state space representation, it considers the integral 

action through the incremental form of its inputs to predict the process future behaviour. In the 

present case, the state space approach is deduced from the transfer function matrices of the 

process obtained through the methodology here proposed: 

1 2 1

1 2 1

1 1

2 2
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(36) 

Where: 
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Φ 0

Ψ

0 Φ

ny nd
 
   
 
  

O R

,   .Φ 1 1 nu na L R
, ( )s nyx k R , 

,
,

max i j
i j

p  
,

. .max( )( )d nd ny nu nax k R

, 1( ), , ( ) nu

pz k z k K R
, ( ) nxx k C , and 𝑛𝑥 = 𝑛𝑦 + 𝑛𝑑 + 𝑝. 𝑛𝑢. 

Considering that a process system is composed of 𝑛𝑦 outputs and nu inputs, and each pair (𝑦𝑖, 

𝑢𝑗) comprises 𝑛𝑎 distinct stable poles and its corresponding time delay is designated as 𝛾𝑖,𝑗, the 

matrices 𝐵𝑙=0,𝐾 ,𝑝
𝑠  and 𝐵𝑙=0,𝐾 ,𝑝

𝑑  are expressions of the coefficients of the partial fractions 

expansion of the step response, 𝐹 is a diagonal matrix with components corresponding to the 

stable poles, and 𝐼𝑛𝑦 and 0𝑛𝑦 are the identity and null matrices of dimension 𝑛𝑦, respectively. 

Furthermore, in the system representation described by Equations (35) and Equation (36), the 

vector 𝑥𝑠 represents the integrating states produced by the incremental form of the inputs, 

which is associated with the predicted output steady-state, and 𝑥𝑑 corresponds to the stable 

states of the system. 

In this system, it is not possible to measure all state variables.  This is why it was necessary to 

employ a state estimator to predict future states from actual output measurements. For that 

purpose, a Kalman filter is used inside the controller in order to update the process present state 

at each instant. The details about the development of this filter can be found in the literature 

(Welch and Bishop 2006). 

The transfer functions and control strategy here presented were implemented in the MatLab 

software. To run the FTs identification and simulation, a communication between gPROMS, 

where the models were written, and MatLab, was used through the go:MATLAB extension 
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(Process Systems Enterprise 2015). It was possible for the control systems in MatLab to run 

externally the model and collect the responses of the process simulation. 

P1-2.4. Virtual analyser development 

The most common structure of an artificial neural network (ANN) model is the feedforward, in 

which there are no feedback communications between neural layers. This structure can solve 

efficiently complex problems, such as pattern recognition. However, in dynamic systems, in 

which the present output depends on the past inputs and outputs, these models need to be 

modified to be applied. To do that, a feedback system is built in which the outlet layer of the 

neural model is connected to the inputs layer. The backpropagation of the past outputs to make 

the future prediction is done in order to compute the process dynamics, i.e., in order for the 

virtual analyser to compute the influence of the past system state in the present response. The 

development of the predictor equations of the ANN model used in this work is presented in the 

next sub-section. 

P1-2.4.1. Predictor equations 

The Nonlinear Auto Regressive Moving Average with Exogenous inputs (NARX) and Nonlinear 

Output Error (NOE) are the most important representations of nonlinear systems (Koivisto 1995). 

The NARX model can be expressed by Equation (37) considering a given dynamic system with 
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white noise 𝑣(𝑡), its actual output 𝑦, which depends on the past behaviour and of the present 

inputs, 𝑢. 

𝒚(𝑡) = 𝑭[𝒚(𝑡 − 1),… , 𝒚(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1)] + 𝒗(𝑡)     (37) 

Where, 𝑦 are the output values, 𝑢  are the process input values, 𝑛𝑎 , 𝑛𝑏 the number of past values 

and 𝑑 is the delay.  

In the case of the Nonlinear Output Error model it can be described as below: 

𝒛(𝑡) = 𝑭[𝒛(𝑡 − 1),… , 𝒛(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1)]    

𝒚(𝑡) = 𝒛(𝑡) + 𝒗(𝑡)    
(38) 

where 𝒛 is the output prediction. These models are identified as normal one-step-ahead 

predictors but can be used for multistep purposes.  A minimum variance one-step-ahead NARX 

predictor is: 

𝒚̂(𝑡) = 𝒇[𝒚(𝑡 − 1),… , 𝒚(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1), 𝜽] (39) 

where, 𝒇(𝜑, 𝜽), is some parameterized function. The same representation can be applied to the 

NOE case, as: 

𝒛̂(𝑡) = 𝒇[𝒛̂(𝑡 − 1),… , 𝒛̂(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1), 𝜃]    

𝒚̂(𝑡) = 𝒛̂(𝑡)    
(40) 

As can be noted in Equation (40), the NOE model depends on its past predictions in order to 

evaluate the present output value. In the NARX, Equation (39), the prediction of the present 
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output relies only on independent variables, past values of inputs and outputs. Thus, the training 

of a NOE model becomes much more complicated than the training of a NARX model, since the 

partial derivative of its predictions in order to time depends on the partial derivative of its 

parameters, which are being estimated.  

The correct training of the NOE demands the use of gradient descent techniques with dynamic 

gradient calculation, because of its recurrent nature (Roy et al. 1999). Therefore, the normal 

approach in the literature is to employ a NARX model in the development of an ANN model. 

However, when the application is to perform long-term prediction or simulation, the NOE 

approach is more indicated. 

The present work proposes the development of a NARX based ANN model to perform long-term 

predictions. As previously stated, this approach is easier to train, but not the most adequate for 

the application. To overcome this problem, it is proposed to use a correcting error system, 

through the experimental measurements available, in an integrated system of predictions and 

measurement here called Quasi-Virtual Analyser (Q-VOA).  

The implementation of the NARX representation in a neural model is usually done in the 

literature to model dynamic systems (Su and McAvoy 1993; Wang et al. 2003; Costa et al. 2008; 

Noor et al. 2010). However, the NARX model, Equation (38) and Equation (39), is defined in the 

form of one-step-ahead prediction for the outputs. Therefore, this is not a recommended 

approach for systems with high dead time measurement, since for those systems it is necessary 

to perform multi-step-ahead predictions during the time for which there are no measurements. 
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In this sense, the multi-step-ahead prediction is similar to model predictive control systems, 

where it is necessary to perform multiple step predictions during the control. 

The NARX and NOE models here presented include a static nonlinear function approximation 

(function 𝒇) and time delay lines. Those approaches were proposed in a way that any efficient 

function approximator can be applied. Several different approximations have been used in 

literature, like Artificial Neural Network models (Gonzaga et al. 2009; Delnavaz et al. 2010; Li et 

al. 2016; Sánchez et al. 2018), Fuzzy models (Frank et al.; Lima et al. 2009), adaptive network-

based fuzzy inference system (ANFIS) (Jalee and Aparna 2016; Al-Dunainawi et al. 2017) models 

and support vector machine (SVM) models (Liu et al. 2010, 2016).  Among those approaches the 

ANN models with Multilayer Perceptron (MLP) structure have  been pointed out as easy to adapt 

to process time series and can solve complex problems efficiently (Narendra and Parthasarathy 

1990; P. Menezes Jr. and Barreto 2006; Menezes and Barreto 2008; Schaul et al. 2015). In this 

way, the present work applies ANN based on MLPs as function approximator, since it has been 

presented in the literature as suitable to solve complex problems and presents the required 

flexibility in its architecture, which is necessary to implement the Q-VOA system. 

P1-2.4.2. Multistep Predictor 

The main task is to formulate the predictive equations in the presence of Integrated (I) or 

Integrated Moving Average (IMA) noise.  
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For convenience purposes, the time 𝑡 here represents 𝑘 future step. The most recent 

measurement, 𝑦(𝑡), is known and the corrective prediction error, 𝜖(𝑡|𝑡), can be computed:  the 

task is to compute recursively future k-step ahead predictions 𝑦̂(𝑡 + 𝑖|𝑡), 𝑖 =  1, … , 𝑘 which take 

into account recent prediction errors. The final prediction 𝑦̂(𝑡 + 𝑘|𝑡) is used as Virtual Sensor 

output.  

The design task is now analogous to a normal MPC predictor design, except that, the future inputs 

u(𝑡 + 𝑖 − 1), 𝑖 =  1, … , 𝑘 are known. It is possible to adopt any additive noise model and use the 

existing literature for the multistep predictor design. Here, the development presented in 

Koivisto (1995) and Tian et al. (2014) is followed.  

A typical noise model for multistep prediction is additive integrated white noise. The NARX-I 

process is assumed: 

𝒚(𝑡) = 𝑭[𝒚(𝑡 − 1),… , 𝒚(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1)] +
𝒗(𝑡) 

∆
 

(41) 

here 𝒗(𝑡) is white noise and ∆ =  1 − 𝑞−1 is included to allow the representation of integrated 

noise / trend like disturbances. The corresponding NOE-I is: 

𝒛(𝑡) = 𝑭[𝒛(𝑡 − 1),… , 𝒛(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 𝑑),… , 𝒖(𝑡 − 𝑑 − 𝑛𝑏 + 1)]    

𝒚(𝑡) = 𝒛(𝑡) +
𝒗(𝑡) 

∆
    

(42) 

Therefore, for the NOE case, the correction is computed at every time step when the delayed 

measurement is available (assuming 𝑑 = 1 now to keep the notation simple): 
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𝝐(𝑡|𝑡) = 𝒚(𝑡) − 𝒛̂(𝑡) = 𝒚(𝑡) − 𝒇(𝝋(𝑡), 𝜽)  𝑤𝑖𝑡ℎ  

        𝝋(𝑡) = [𝒛̂(𝑡 − 1),… , 𝒛̂(𝑡 − 1 − 𝑛𝑎), 𝒖(𝑡 − 1), … , 𝒖(𝑡 − 𝑛𝑏)]     
(43) 

After that, the multistep predictors can be computed for 𝑖 = 1, … , 𝑘 as: 

𝒛̂(𝑡 + 𝑖) = 𝒇(𝝋(𝑡 + 𝑖), 𝜽)  𝑤𝑖𝑡ℎ  

𝝋(𝑡 + 1) = [𝒛̂(𝑡 + 𝑖 − 1),… , 𝒛̂(𝑡 + 𝑖 − 1 − 𝑛𝑎), 𝒖(𝑡 + 𝑖 − 1),… , 𝒖(𝑡 + 𝑖 − 𝑛𝑏)]    

𝒚̂(𝑡 + 𝑖) = 𝒛̂(𝑡 + 𝑖) + 𝜖(𝑡|𝑡) 

(44) 

Most of the internal predictor values 𝒛̂(𝑡 + 𝑖) are already computed. Only the newest should be 

computed and the recent correction 𝜖(𝑡|𝑡) is added to all of them. The final prediction value 

𝒚̂(𝑡 +  𝑘) is used as the soft sensor output. 

For the NARX-I case this is more complex. To perform multistep-ahead predictions, the past 

process output samples in the model input vector 𝝋 are gradually replaced by their predicted 

values. For this, an auxiliary measurement state vector, 𝒚𝒎(𝑡), is defined. At every time step: 

𝒚𝒎(𝑡 − 𝑗) = 𝒚(𝑡 − 𝑗), ∀𝑗= 1,… , 𝑛𝑎 − 1 (45) 

When a new measurement is available, the corrector is computed as: 

𝒚𝒎(𝑡) = 𝒚(𝑡) 

𝝐(𝑡|𝑡) = 𝒚𝒎(𝑡) − 𝒇(𝝋(𝑡), 𝜽)  𝑤𝑖𝑡ℎ  

        𝝋(𝑡) = [𝒚𝒎(𝑡 − 1), … , 𝒚𝒎(𝑡 − 𝑛𝑎), 𝒖(𝑡 − 1), … , 𝒖(𝑡 − 𝑛𝑏)]     

(46) 

After that, the multistep predictors can be computed for 𝑖 = 1, … , 𝑘 as: 
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𝒚𝒎(𝑡 + 𝑖) = 𝒇(𝝋(𝑡 + 𝑖), 𝜽) + 𝜖(𝑡|𝑡)  𝑤𝑖𝑡ℎ  

𝝋(𝑡 + 1) = [𝒚𝒎(𝑡 + 𝑖 − 1), … , 𝒚𝒎(𝑡 + 𝑖 − 1 − 𝑛𝑎), 𝒖(𝑡 + 𝑖 − 1),… , 𝒖(𝑡 + 𝑖 − 𝑛𝑏)]    

𝒚̂(𝑡 + 𝑖) = 𝒚𝒎(𝑡 + 𝑖) 

(47) 

Plant model mismatch is continuously compensated in the multistep recursive model prediction 

propagation, which improves the accuracy of multistep prediction. This requires the whole 

sequence to be recomputed at every time step. The final prediction value 𝒚̂(𝑡 + 𝑖) is used as the 

soft sensor output. Finally, the neural model that composes the virtual analyser can be expressed 

as presented in Figure 8.  

 

Figure 8 - General representation of the artificial neural network. 
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P1-2.4.3. Quasi-Virtual Analyser structure 

In this work, a measurement system based on a virtual analyser and an offline measurer are 

proposed to make the online monitoring of the purity of a SMB unit. To do this, the analyser must 

be linked to the process and receive the information of the process inputs in real time. Figure 9 

shows the schematic representation of the proposed system. 

 

Figure 9 - Schematic representation of the proposed virtual analyser. 

 

The system consists in a virtual analyser based on a neural model, which makes real time 

predictions using the process inputs and the past predictions, and is actualized by laboratory 
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measurements, when available, and if the measurements are in accordance with the process 

behaviour, as explained later on.  

From the previous deduction, presented in Section P1-2.4.2, it is possible to note that the Q-VOA 

takes in consideration the current measurement and the past predictions. However, due to the 

large delay, a past measurement can refer to a process behaviour different from the present one 

and it may impair the virtual analyser prediction. This is so because any prediction will be about 

10 minutes in advance of the measurement. In this case, the measurement can bring back the 

predictions to a past point that may be far from the present state.  

In order to avoid the previously mentioned problem, the virtual analyser should verify its own 

derivative and the variation between its prediction and the previous measurements. If the 

difference between the prediction and the measurement is large this can lead to two different 

conclusions, either the system is on a transient regime or the VOA presents an offset in its 

prediction. The derivative test provides a way to evaluate in which scenario the process is. If the 

derivative of the analyser predictions is large, it means that the process is in a transient regime. 

In this case, the analyser should not use that measurement to make its actualization. In other 

words, the virtual analyser has to assess the error between its prediction and the measurements, 

and its own derivative, and then make a balance. Two weights are introduced, one for each 

criterion, 𝑤𝑑, the derivative weigth, and 𝑤𝑚, the measurement/prediction error. The adjustment 

of these weights will lead to the tuning of the virtual analyser, as is presented in the Results 

chapter. The Q-VOA internal structure is schematically represented in Figure 10, where the 
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subscript n, refers to the total number of process inputs evaluated and T refers to the total 

number of past outputs used as inputs. 

 

Figure 10 - Schematic representation of the Q-VOA internal structure. 

 

The derivative of the system prediction, 𝑦̂, through time, 𝑡, is calculated at each instant by its 

numerical definition: 

𝜕𝑦̂

𝜕𝑡
|
𝑡=𝑡𝑠

= 
𝐏(𝑡 + ∆𝑡) − 𝐲(𝑡)

∆𝑡
 (48) 

The Q-VOA system is composed by two output variables, the purities of the extract and raffinate 

streams; consequently, it becomes a multiple-input and multiple-output system (MIMO). In order 

to simplify the modelling step, the system was reduced to a multiple-input and single-output 
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system (MISO) (Wang et al. 2003; Costa et al. 2008). In this way, two neural models, one for each 

process output, compose the virtual analyser. Finally, the Q-VOA model assumes the general 

representation shown in Figure 11. 

 

Figure 11 - MISO structure of the neural models in the virtual analyser. 

 

P1-2.4.4. Artificial neural network modelling 

In Figure 8, the generic structure of the neural model is presented. Generally, an artificial neural 

network has one input layer, one output layer and a given number of hidden layers and its 
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artificial neurons. In the input layer is located a number, n, of inputs that will be analysed by the 

model. In this layer, the retro-propagation of the past outputs is done through the NARX shown 

in Equation (37). In the hidden layer, the process inputs will be pondered by the weights and bias 

of this layer. The total number of weights is equal to the number of inputs evaluated, n, times 

the number of neurons, η, in this layer. The output layer has a number of neurons equal to the 

number of outputs evaluated. In addition, this layer has a given number of weights and bias that 

is equal to the number of neurons in the previous layer. The total number of weights and bias of 

an ANN forms the set of parameters of the empirical model that must be estimated in the 

learning/training phase. 

The modelling through an ANN structure can be divided in three phases: selection of the number 

of hidden layers, selection of the optimal number of neurons in the hidden layers and estimation 

of the model parameters, which is usually referred as the learning or training step. Hunt et al. 

(1992) showed that one hidden layer is enough to develop an ANN model (Hunt et al. 1992).  

To select the optimal number of neurons in the hidden layer, the cross-validation method was 

proposed by Schenker and Agarwal (1996), in order to guarantee that the recurrent neural 

networks can deal with dynamics of partial differential equations. It is important to note that the 

validation method here presented is different from what is usually applied in the literature. The 

cross-validation is normally referred in the literature as the simple division of the data set in three 

different groups and parameter estimation of the neural model from these groups (Ramaiah et 

al. 2010; Ventouras et al. 2011). However, the method proposed by Schenker and Agarwal (1996) 

consists in the use of two data sets to develop two different models and validate each model 
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with the training group that was used in the development of the other. For example, for a given 

number of neurons in the hidden layer, Nn, a set of data is used to train a network MA, and 

another set is used to train a network MB. The models are trained a given number of trials, Nt, 

and the model with the best training performance is selected.  After the training step, the 

network MA is validated with the data from the network MB and the reverse, i.e, MA is used to 

validate MB. The validation error is held in a vector and the process is repeated for another 

number of neurons in the hidden layer. When Schenker and Agarwal (1996) proposed the cross-

validation, they used a system with few data available. Previous work from Nogueira et al. (2017), 

though, showed that the cross-validation presents efficient results when applied to a larger 

database. The method to select the optimal number of neurons in the hidden layer is described 

in Figure 12. In this work, this method was applied but with a larger data set than the one used 

in the original work.  

Both virtual and quasi-virtual analysis, as well as the neural network identifications here 

proposed were implemented in the MatLab software. The go:MATLAB extension (Process 

Systems Enterprise 2015) was used in order to establish a communication between gPROMS, 

where the process models were written, and MatLab. Hence, it was possible for the virtual and 

quasi-virtual analysers in MatLab to run externally the model and collect the responses of the 

process simulation. 
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Figure 12 - Flowsheet of the cross-validation method; example for a total number of 50 neurons 
and a total number of 50 training trials. 
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P1-2.5. Process design and optimization – Particle Swarm 

technique 

 The PSO technique is based on the concept that a group composed by a given number of 

particles, 𝑝, will fly over a defined search region searching for the optimal point. Each member of 

the swarm presents its specific position, 𝑥𝑝, in the search space and a specific velocity, 𝑣𝑝, which 

are memorized and shared among all the particles after each iteration, 𝑘, of the method. It can 

be represented as: 

𝑣𝑝
𝑘+1 = 𝑣𝑝,𝑑

𝑘 + 𝑐1𝑟1(𝑥𝑝
𝑝𝑒𝑟 − 𝑥𝑝

𝑘) + 𝑐2𝑟2(𝑥𝑝
𝑔𝑙𝑜
− 𝑥𝑝

𝑘) 
(49) 

𝑥𝑝
𝑘+1 = 𝑥𝑝

𝑘 + 𝑣𝑝
𝑘+1 (50) 

where 𝑐1 and 𝑐2 are the search parameters known as the acceleration coefficients and 𝑟1 and 𝑟2 

are uniform distributions randomly generated in a range between 0 and 1. In general, those two 

equations represent the computation of the new velocity of each particle after each iteration, 

which depends on the best position of all the particles in all iterations, 𝑥𝑝
𝑔𝑙𝑜

, and the particle 

personal best position in the previous iterations, 𝑥𝑝
𝑝𝑒𝑟. 

Kennedy and Eberhart (1995) also proposed an alternative version of PSO where the term of the 

previous velocity is eliminated from the calculus of the next velocity term. The authors concluded 

that, though simplified, that version, was ineffective to find the global optimum. However, in 

Ratnaweera et al. (2004), the authors investigated this problem and proposed a Self-Organizing 
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Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients (HPSO-TVAC), 

where a PSO without the previous velocity term is proposed, introducing a necessary momentum 

for the particles, which overcame the problems pointed out previously and resulted in finding 

more rapidly the global optimum solution even in the absence of the previous velocity term. The 

authors showed that, for most part of the benchmark functions, the HPSO presented a better 

solution than the other PSO types evaluated, and for the other cases, it presented similar results 

with a faster convergence.  

As the design and optimization of TMB units is a heavy task, simple and fast methods are better 

suited in order to reduce the computational effort and optimization time. In this way, in the 

present work the HPSO-TVAC was chosen as the basis for the PSO here proposed, which can be 

represented as: 

𝑣𝑝
𝑘+1 = 𝑐1𝑟1(𝑥𝑝

𝑝𝑒𝑟 − 𝑥𝑝
𝑘) + 𝑐2𝑟2(𝑥𝑝

𝑔𝑙𝑜
− 𝑥𝑝

𝑘) 
(51) 

𝑥𝑝
𝑘+1 = 𝑥𝑝

𝑘 + 𝑣𝑝
𝑘+1 (52) 

with the acceleration coefficients computed as: 

𝑐1 = (𝑐1𝑓 − 𝑐1𝑖)
𝑘

𝑘𝑡𝑜𝑡𝑎𝑙
+ 𝑐1𝑖 (53) 

𝑐2 = (𝑐2𝑓 − 𝑐2𝑖)
𝑘

𝑘𝑡𝑜𝑡𝑎𝑙
+ 𝑐2𝑖 

(54) 

where the 𝑐1𝑓, 𝑐1𝑖, 𝑐2𝑓 and 𝑐2𝑖 are constants and 𝑘𝑡𝑜𝑡𝑎𝑙  is the total number of iterations. The 

acceleration coefficient 𝑐1 will decrease through the simulation while the acceleration coefficient 
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𝑐2 will increase. In Ratnaweera et al. (2004), the best solution was found employing a 𝑐1 varying 

from 2.5 to 0.5 and a 𝑐2 varying from 0.5 to 2.5. 

Another important point in the PSO application is the initialization velocity. In Engelbrecht (2012), 

the author evaluates the effect of the initialization velocity and concludes that the particles tend 

to leave the boundaries of the search space when the velocities are initiated randomly. The 

author demonstrated that the final result is directly dependent on the method of initialization of 

the particles velocity. Furthermore, the author shows that random initialization increases the 

number of roaming particles, and that this has a negative impact on the convergence time. 

Finally, it was also shown in the referred work, that using an initialization velocity equal to zero 

or random value around zero, presents the best solution, saving efforts and avoiding the 

significant number of roaming particles problem. In this way, the PSO-TVAC was here employed 

with initialization velocity equal to zero which differs from what was proposed originally by 

Ratnaweera et al. (2004). 

Another problem in the application of PSO to solve optimization problems is dealing with 

dynamic multi-modal landscapes. In this type of problems, where the peaks can vary in height as 

well as location, the ordinary PSO strategy cannot be successfully applied because small changes 

in the function peak height might lead to a large change in the position of the global optimum 

(Poli et al. 2007). In this way, the PSO tends to get stuck in one local minimum, depending on its 

searching region. The multi-population PSO is normally proposed to overcome this type of 

problems (Koduru et al. 2007). However, this strategy is more complex, more difficult to 

implement and requires more computational effort.  
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To avoid this problem, it is proposed here an approach in which the particles change their flying 

landscape during the simulation, here called as searching region mutation. This mutation is based 

on the social learning of the particles through the simulation. To illustrate better this problem, 

Figure 13 presents a given function that presents a total of five local minima when evaluated with 

a search region 𝑅3. In this case, an ordinary PSO algorithm will tend to one of those minima, 

depending on its parameters and its search region, and might not identify the whole topography 

of the region, which is a problem in the drawing of the operating confidence regions, since it is 

intended to evaluate all possible operating conditions that satisfy the process design conditions.  

 

Figure 13 - Schematic representation of the possible search spaces (𝑅1, 𝑅2 and  𝑅3 ) of a given 
function with 𝐿1, 𝐿2, 𝐿3, 𝐿4 and  𝐿5 as local minima. 

 

The concept of varying the size of the search region was presented in Koduru et al. (2007), where 

a dynamic multi-modal landscapes problem was solved through a hybridized PSO algorithm 

based on multi-population, mutation and crossover on particles cloud, the contour particle 
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swarm optimization C-PSO, and the results were compared with the uniform covering by 

probabilistic rejection (UCPR) technique. In the present work, a similar approach is proposed; 

however, instead of using a multi-population algorithm where each swarm searches a specific 

region, here only one particle swarm that changes its flying region during the simulation is 

applied. 

Given a function with a search space described by Figure 13, the methodology here proposed 

consists in the gradual expansion of the search region of the HPSO-TVAC from 𝑅1 to 𝑅3. Before 

each expansion of the searching region, the particles will memorize the previous information 

about the minimum point found and avoid flying over that region, which pushes the particles to 

move to different minimum points. This is done through the creation of a restriction inside the 

search space. The restrictions are created after a determined number of iterations for which the 

particles remain in a fixed optimal point. Following the space restriction, the search space is 

expanded and the process is repeated. In this way, the algorithm here proposed can be described 

as given in Table 3. 

Table 3 - Proposed methodology for the improved HPSO-TVAC. 

1 Set HPSO-TVAC parameters, 𝑐1𝑓, 𝑐1𝑖, 𝑐2𝑓 and 𝑐2𝑖, number of iterations, 𝑘, 

number of particles that compose the swarm, 𝑝, initial search region limits, 

𝑅1,and set the maximum number of iterations as criterion to change the region.   

2 Initialize randomly the particles position within the current search space: 

𝑥𝑝
1 = 𝑅𝑖,𝑚𝑖𝑛 + 𝑟𝑛𝑑(𝑅𝑖,𝑚𝑎𝑥 − 𝑅𝑖,𝑚𝑖𝑛) 
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where, 𝑅𝑖,𝑚𝑖𝑛 is the inferior limit of the initial search region, 𝑅𝑖,𝑚𝑎𝑥 is the 

superior limit and 𝑟𝑛𝑑 is a random value between 0 and 1. 

3 Initialize the velocities to zero. 

4 Calculate the maximum velocity: 

𝑣𝑚𝑎𝑥,𝑖 = (𝑅𝑖,𝑚𝑎𝑥 − 𝑅𝑖,𝑚𝑖𝑛)/2 

5 Evaluate the objective function for each particle position 𝑓𝑜𝑏(𝑥𝑝
1) 

6 Calculate the acceleration coefficients through Equation (53) and Equation (54). 

7 Evaluate the new velocity 𝑣𝑝
𝑘+1 through Equation (51). 

8 If the velocity 𝑣𝑝
𝑘+1  is higher than 𝑣𝑚𝑎𝑥, compute a new velocity value as 

proposed in Schwaab et al. (2008): 

𝑣𝑝
𝑘+1 = 𝑣𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝑣𝑝

𝑘+1) 

9 Calculate the new positions, 𝑥𝑝
𝑘+1, through Equation (52). 

10 If the particle position 𝑥𝑝
𝑘+1 is not inside the searching limits or if it is inside of 

one of the internal restrictions, 𝑥𝑟𝑒𝑠𝑡𝑟𝑖
𝑖 ,  then:  𝑥𝑝

𝑘+1 = 𝑅𝑖,𝑚𝑎𝑥 

11 If the minimum position, 𝑥𝑝
𝑔𝑙𝑜

, is repeated for the number of times set in the 

maximum criterion, then create a space restriction and go to step 12: 

𝑥𝑟𝑒𝑠𝑡𝑟𝑖
𝑖 = 𝑃𝑥𝑝

𝑔𝑙𝑜
 

where 𝑃 is a constant between 1 and 2, that defines the size of restricted space 

around 𝑥𝑝
𝑔𝑙𝑜

. If this criterion is not met return to step 5. 

12 Initialize a new iteration. 



 

P a g e  74 | 311 

P1-2.5.1 Definition of the objective function 

13 Expand the search region, return to step 2 and continue until the maximum 

number of regions is reached. 

 

The PSO is a simple algorithm and its implementation is easy. As Schwaab et al. (2008) stated, 

the computational time required for PSO calculations is very small when compared to the time 

required for computation of model predictions and evaluation of objective function values for all 

particles. Consequently, the total time required for optimization is basically the time required for 

model evaluations (Schwaab et al. 2008). The present work takes advantage of this to propose 

an alternative to solve the design and optimization of TMB and SMB processes. 

P1-2.5.1. Definition of the objective function 

 The definition of the optimization objective function is an essential step in an optimization 

problem. In the present case, the main goal is to define the set of operating flow rates 

(𝑄𝐹 , 𝑄𝐸 , 𝑄𝐼𝑉 and 𝑄𝑋) that will maximize the unit productivity while the eluent consumption is 

minimized, since these variables are the ones that mostly affect the process costs. However, 

while searching for economic goals, sometimes it is necessary to keep the process in its minimum 

quality requirement, in other cases it is also desirable to maximize its quality parameters, 

increasing the final product value. In order to comply with the quality requirement, the present 

work proposes the application of an objective function with penalties. This is a well-known 

optimization technique applied in the field of constrained optimization. The simplest approach 

to solve optimization problems with penalties is to apply a constant penalty to the solutions 



 

P a g e  75 | 311 

P1-2.5.1 Definition of the objective function 

which violate the defined constraints, the so-called static penalty functions. Given the following 

constrained optimization problem: 

min
𝜃
𝐽(𝒚) 

 
(55) 

subject to: 

𝑃𝑢𝑟𝑗 ≥ 𝑃𝑢𝑟𝑚𝑖𝑛 (56.R1) 

𝑃𝑢𝑥𝑗 ≥ 𝑃𝑢𝑥𝑚𝑖𝑛 
(57.R2) 

where 𝒚 is the vector of process performance parameters and 𝜃 is the set of process variables to 

be optimized. The constraints presented in Equation (56.R1) and Equation (57.R2) are set in order 

to satisfy a minimum quality specification of the production. However, it can be desirable to 

obtain a high as possible purity while the other criteria are satisfied. Thus, the differences 

between the purities and one were added in the objective function in order to maximize the 

purities over the minimum requirement. Therefore, for the present case the objective function 

can be defined as: 

J =
                 

∑((1 − 𝑃𝑢𝑟𝑘)
2+(1 − 𝑃𝑢𝑥𝑘)

2+(1 − 𝑅𝑒𝑐𝑟𝑘)
2+(1 − 𝑅𝑒𝑐𝑥𝑘)

2 +
1

𝑃𝑟𝑘

𝑛𝑘

𝑘

+ 𝐸𝑐𝑘) +∑𝐶𝑐𝛿𝑐

𝑛𝑐

𝑐=1

 

 

(58) 
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subject to: 

𝛿1 = 1, 𝑖𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (56. R1) 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 

 

(59.R1) 

𝛿1 = 0, 𝑖𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (56. R1)  𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 
(60.R1) 

𝛿2 = 1, 𝑖𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (57. R2)  𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 
(61.R1) 

𝛿2 = 0, 𝑖𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (57. R2) 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 
(62.R1) 

where 𝐶 is the penalty constant imposed  in case of violation of the constraint 𝑐 of the process 

variables to be optimized, 𝑛𝑘 is the total number of instants of evaluation of the performance 

parameters, 𝑃𝑢𝑥, is the extract purity, 𝑃𝑢𝑟, is the raffinate purity, 𝑅𝑒𝑐𝑥, is the extract 

recovery, 𝑅𝑒𝑐𝑟, is the raffinate recovery; as presented by the model equations in Section P1-2.1, 

these parameters are dependent on the concentration of  component 𝑖 in the extract stream, 

𝐶𝑋,𝑖, concentration of the component 𝑖 in the raffinate stream, 𝐶𝑅,𝑖, and concentration of the 

component 𝑖 in the feed stream, 𝐶𝐹,𝑖; EC, is the eluent consumption and 𝑃𝑟 is the TMB 

productivity.  

P1-2.5.2. Operating variables confidence region 

evaluation 

 In the present work, it is proposed the evaluation of the confidence region of the process 

variables. This provides important information in the process operation, since, instead of a fixed 

point, it is provided a region where the process can be operated meeting the optimal conditions, 
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giving more flexibility to the process. The confidence region evaluation based on PSO 

optimization for parameters estimation is presented in Schwaab et al. (2008). In Benyahia et al. 

(2013), a similar approach is used to determine the confidence regions of polymerization model 

parameters. In the present work, the methodology was adapted in order to evaluate the 

confidence regions of the process operating variables, after the optimization. The steps here 

presented were based on Benyahia et al. (2013) and Schwaab et al. (2008) works, where further 

information about the development  and assumptions, for the parameters estimation case, can 

be found. 

 

Figure 14 - Simplified representation of the model predictions through the global minimum, best 
minimum found and a given minimum found in the performance variables space, adapted from 

Benyahia et al. (2013). 
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Considering the optimization problem presented, the optimization space for two given process 

variables is presented in Figure 14. In this Figure, 𝑒 corresponds to the difference between the 

values (y) of a given process performance parameter, 𝑖, in a given optimization instant, 𝑘, 

evaluated at 𝜽∗ and 𝜽𝒈, and given by: 𝑦𝑖(𝜽
∗, 𝑘) and 𝑦𝑖(𝜽

𝒈, 𝑘); where 𝜽∗ is the vector of the best 

operating conditions values determined in the optimization (in the present case it means that 𝜽∗ 

corresponds to the best position found by the particles) and 𝜽𝒈 is the vector of operating 

conditions values of the global minimum of the objective function, which is a theoretical concept. 

By its turn, ℎ corresponds to the difference between the value of the process performance 

parameters 𝑦𝑖(𝜽, 𝑘) and 𝑦𝑖(𝜽
𝒈, 𝑘), where 𝜽 is the vector of best operating conditions values 

evaluated in a given iteration of the optimization. Thus, in a given instant, 𝑘, for a given process 

performance parameter, 𝑖, the squared error between the process optimal point and the global 

minimum is given by: 

𝑒2𝑖𝑘 = (𝑦𝑖(𝜽
∗, 𝑘) − 𝑦𝑖(𝜽

𝒈, 𝑘))2 (63) 

 This error can be normalized with respect to the variance as: 

𝑒2𝑖𝑘 =
(𝑦𝑖(𝜽

∗, 𝑘) − 𝑦𝑖(𝜽
𝒈, 𝑘))2 

𝑉𝑖
 (64) 

From Equation (64) and following an approach similar to the one presented by Benyahia et al. 

(2013), the error can be generalized to all instants, 𝑛𝑘, considered in the optimization. 
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𝑒2 = ∑∑𝑒𝑖𝑘
2

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

=∑∑
(𝑦𝑖,𝑘(𝜽

∗, 𝑘) − 𝑦𝑖,𝑘(𝜽
𝒈, 𝑘))2 ) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

 
(65) 

Where 𝑛𝑦 is the total number of process performance parameters considered in the 

optimization. Considering the variance of a given performance parameter with respect to the 

vector of the best position found for the process operating variables (𝑉𝑖(𝜽
∗)) as: 

𝑉𝑖(𝜃
∗) =  

1

𝑛𝑘
∑(𝑦𝑖,𝑘(𝜽

∗, 𝑘) − 𝑦𝑖,𝑘(𝜽
𝒈, 𝑘))2  

𝑛𝑘

𝑘=1

 
(66) 

Thus, from Equation (65) and Equation (66) the error can be presented as: 

𝑒2 =∑∑
𝑛𝑘𝑉𝑖(𝜽

∗) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

 

(67) 

Considering the assumption that the error 𝑒 is Gaussian distributed with zero mean, the 𝑒2 has a 

chi square distribution with 𝑛𝑘 − (𝑛𝑦 − 1) degrees of freedom, 𝜒2, where: 

𝑒2  →  𝜒2(𝑛𝑘 − 𝑛𝑦 + 1) 
(68) 

In the same way, the difference between the process performance parameters for the optimal 

set of operating conditions and for a given set of parameters can be represented as: 

ℎ2𝑖 = (𝑦𝑖(𝜽, 𝑘) − 𝑦𝑖(𝜽
𝒈, 𝑘))2 (69) 

ℎ2 =∑∑
𝑛𝑘𝑉𝑖(𝜽) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

 
(70) 
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The same development and assumptions presented for 𝑒 can be applied to ℎ, which in this way 

also has a chi square distribution with 𝑛𝑘 − (𝑛𝜃 + 𝑛𝑦 − 1) degrees of freedom. We finally obtain 

the approximation: 

ℎ2  →  𝜒2(𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) (71) 

where 𝑛𝜃 is the number of optimized operating variables. Thus: 

𝑒2 − ℎ2 → 𝜒2(𝑛𝜃) (72) 

The approximation, proposed in Benyahia et al. (2013), can be also applied here as: 

𝑏2

ℎ̂2
=
𝑒2 − ℎ2

ℎ̂2
≅
𝑒2 − ℎ2

ℎ2
 

(73) 

As Equation (73) presents the ratio between two chi square distributions, 𝑒2 − ℎ2 with 𝑛𝜃 

degrees of freedom and ℎ2 with 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1 degrees of freedom, and knowing that those 

distributions are independent, this can be represented as a Fisher-Snedecor distribution, as: 

𝑒2 − ℎ2

𝑛𝜃
ℎ2

𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1

→ 𝐹𝛼(𝑛𝜃, 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) 
(74) 

Furthermore, from Equations (67), (69) and (74): 
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∑∑
𝑛𝑘𝑉𝑖(𝜽

∗) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

−∑∑
𝑛𝑘𝑉𝑖(𝜽) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

→∑∑
𝑛𝑘𝑉𝑖(𝜽) 

𝑉𝑖

𝑛𝑘

𝑘=1

𝑛𝑦

𝑖=1

𝑛𝜃
𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1

𝐹𝛼(𝑛𝜃, 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) 
(75) 

 where 𝛼 is the confidence level considered. The objective function 𝐽(𝜃) can be expanded in a 

second-order Taylor expansion around the minimum point found in the optimization, 𝜃∗, 

Schwaab et al. (2008), as: 

𝐽(𝜃) = 𝐽(𝜃∗) + (𝜃 − 𝜃∗)∇𝐽𝜃∗ +
1

2
(𝜃 − 𝜃∗)𝑇𝑯𝜃∗(𝜃 − 𝜃

∗) 
(76) 

where ∇𝐽𝜃∗  is the gradient vector and 𝑯𝜃∗  the Hessian matrix of the objective function. This 

matrix is related to the covariance matrix of the process operating variables as (Bard 1974; 

Schwaab et al. 2008):  

𝑯𝜃∗ = 2𝑉𝜃
−1 (77) 

From Equation (77), Equation (76) can be rewritten as: 

𝐽(𝜃∗) − 𝐽(𝜃) = (𝜃∗ − 𝜃)𝑇𝑉𝜃
−1(𝜃∗ − 𝜃) ≡  𝜒2(𝑛𝜃) (78) 

Equation (75) can be rewritten through Equation (78) as: 

𝐽(𝜃) − 𝐽(𝜃∗) →∑
𝑛𝑘𝑉𝑖(𝜃) 

𝑉𝑖

𝑛𝑦

𝑖

𝑛𝜃
𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1

𝐹𝛼(𝑛𝜃, 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) (79) 
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And finally, considering that 𝑉𝑖 provides a good approximation of 𝑉𝑖(𝜃), the process operating 

conditions confidence region can be evaluated through: 

𝐽(𝜃) ≤ 𝐽(𝜃∗) +
𝑛𝑘𝑛𝜃

𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1
𝐹𝛼(𝑛𝜃, 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) 

(80) 

The above criterion is the Fisher–Snedecor test which is applied here to draw the confidence 

regions and also to verify the existence of local minima. 

The PSO-MSR, objective function and Fisher–Snedecor test here presented were implemented in 

the MatLab software. To run the optimization, a communication between gPROMS, where the 

process models were written, and MatLab was used through the go:MATLAB extension (Process 

Systems Enterprise 2015). It was possible for MatLab to run externally the model and collect the 

responses of the process simulation.
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P1-3 Results 

P1-3. Results 

In this chapter are presented all the results obtained from the application of the 

methodologies described in chapter P1-2. The presentation of the results follows the order 

of presentation of the methods described in the previous chapter. 

P1-3.1. TMB dynamics characterization  

P1-3.1.1. Gram-Schmidt Orthogonalization analysis 

The assessment of the performance of cyclic adsorption systems is usually addressed in literature 

in terms of steady state. To reach further developments in this field, the characterization of the 

dynamic behaviour of the processes becomes necessary. This step of the present work has the 

focus on the application of a method based on Gram-Schmidt Orthogonalization, presented in 

section P1-2.2.1, to analyse the impact of the operating variables in the dynamic response of a 

TMB unit where the chiral separation of a bi-naphthol enantiomers mixture using a 5-

dinitrobenzoyl phenylglycine bonded to silica gel is processed. Another objective is to 

characterize the dynamic system behaviour through a step perturbation analysis and compare it 

with the orthogonalization method results.  

A time horizon of 400 minutes and a sampling time of 0.001 minutes was considered to perform 

the analysis. The raffinate flow rate value was not defined in order to keep the degree of freedom 
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of the model. The method results first indicated the recycling flow rate as the most important 

operating variable of the TMB. The remaining variables were classified in the following sequence, 

from the one with the largest to the lowest influence: solid flow rate (𝑄𝑠), eluent flow rate (𝑄𝐸), 

extract flow rate (𝑄𝑥), feed flow rate (𝑄𝐹) and feed concentration. In Table 4 are presented the 

magnitude values obtained for all the operating variables in each iteration of the dynamic 

analysis. The selected variable in each iteration is highlighted. It is important to note that the 

value of each variable tends to zero in the next iteration after being selected by the analysis. It 

can also be noted that the zero value remains until the end of the analysis. This was expected 

since the method was modified with this objective. It ensures that, once selected, the variable is 

not taken in consideration in the next steps of the analysis. 

Table 4 - Magnitude of each operating variable of the TMB at each iteration of the dynamic 
analysis. 

 Operating Variables 

Iteration 𝑀𝐶𝑓,𝐴  𝑀𝐶𝑓,𝐵  𝑀𝑄𝑠 𝑀𝑄𝐼𝑉 𝑀𝑄𝐸 𝑀𝑄𝐹  𝑀𝑄𝑋 

1 1.13x103 2.94x103 3.26x106 9.84x108 7.75x105 1.32x104 2.18x105 

2 1.12x103 2.69x103 2.78x106 1.60x10-22 7.73x105 1.30x104 1.95x105 

3 9.36x102 2.34x103 2.63x10-25 1.17x10-22 5.91x105 1.19x104 4.62x104 

4 8.94x102 2.33x103 2.43x10-25 1.16x10-22 1.81x10-25 6.97x103 3.38x104 

5 8.75x102 2.25x103 2.32x10-25 1.16x10-22 1.38x10-25 6.95x103 4.12x10-27 

6 7.32x102 1.01x103 2.30x10-25 1.13x10-22 1.04x10-25 1.46x10-27 3.54x10-27 

7 5.63x102 1.37x10-28 2.26x10-25 1.13x10-22 9.90x10-26 1.02x10-27 3.14x10-27 

8 2.52x10-27 1.37x10-28 2.26x10-25 1.13x10-22 9.90x10-26 1.02x10-27 3.14x10-27 

 

It should be noted that the order of importance of the operating variables obtained in this 

analysis is characteristic of the case study considered and that it may change if another system is 

considered or if other constraints are imposed in the mathematical model (for example, if 
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pressure drop constraints are introduced). Nevertheless, the developed methodology, once 

validated in this case study, can still be applied to quantify the relative importance of the 

operating variables on the system behaviour. 

P1-3.1.2. Step perturbation analysis  

After this analysis, a step perturbation in each operating variable was done. The objective was to 

check and compare the results obtained with the ones of the previous analysis. As the system 

has only a few number of variables (7), the graphical analysis can be done easily. From simple 

observation of the graphical results, it is possible to assess visually the magnitude of the influence 

of the perturbations on the performance indicators and confirm the order of importance of the 

different operating parameters obtained in P1-3.1.1. Therefore, this analysis can be used as a 

tool to check the consistence of the method proposed. Furthermore, the step response analysis 

can provide important information about the dynamic behaviour of this process. Usually, in the 

literature, the results of the effect of the operating parameters on the performance indicators of 

the cyclic adsorption systems are only reported for cyclic steady state or steady state, even when 

transient models are developed (Pais et al. 1997, 1998, 2000; Minceva et al. 2003; Erdem et al. 

2004; Leão and Rodrigues 2004; Toumi and Engell 2004; Kaspereit et al. 2007; Sá Gomes and 

Rodrigues 2012). However, the dynamic characterization of the system is also an important 

aspect. 
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A step perturbation of 10% and 2% in the absolute value was done to each variable. The step 

perturbation was done over a given steady-state of the process which was obtained using the 

parameters given in Table 5, corresponding to the ones defined by Pais et. al (2000). 

Table 5 - Data used in the model simulation (Pais et. al 2000). 

Process Variables Model Parameters 

𝑐𝐴/𝐵 
𝑓 2.9 g.l-1 𝑘 0.1 s-1 

𝑄𝐸 21.45 ml.min-1 𝐷𝐿 0.025 cm2.s-1 

𝑄𝑋 17.98 ml.min-1 𝜀 0.4 

𝑄𝐹 3.64 ml.min-1 𝐿𝑗 21.0 cm 

𝑄𝑠 11.15 ml.min-1 Column diameter 2.6 cm 

𝑄𝐼𝑉 27.95 ml.min-1  

 

The mass transfer coefficient was chosen following the work of Pais et al. (1997) where its effect 

in these processes (TMB, SMB-4, SMB-8) steady state was studied. The value used in the 

simulation corresponds to a zone where the mass transfer effect in the process is not very 

significant although it cannot be neglected. This situation is closer to what is usually found in a 

TMB/SMB system. Even though 𝑘 is a lumped parameter that accounts for the film mass transfer 

resistance (which depends on the fluid velocity) and intraparticle mass transfer resistance, the 

latter is normally the controlling mechanism in this type of processes, and therefore the effect of 

fluid velocity is very small. Therefore, the same value of 𝑘 was used in all sections of the process. 

In this way, a variation in any flow rate was compensated by the value of the raffinate flow rate 

in the global mass balance. 
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The results from the step perturbations are presented in the following figures. All graphics are 

represented in terms of deviation variables (purity and recovery values from 0 to 1). The 

perturbations on the operating flow rates change the internal flow rates as can be seen from the 

global mass balances in Section P1-2.1, Equation (13) to Equation (16)(3). On the other hand, 

variations on the internal flow rates affect the fluid concentrations, which changes the unit 

concentration profiles and may consequently affect the process recovery and purity. The system 

separation and regeneration regions were also obtained in order to verify the system behavior 

in terms of its steady state performance. In the construction of the separation and regeneration 

regions a purity of 95% in the outlet streams was considered as process restriction. So, these 

regions represent the operating values that satisfy the purity restriction. The regions are 

represented in terms of the ratio between fluid and solid interstitial velocities,   𝛾𝑗 = 𝑣𝑗/𝑢𝑠. A 

given separation region is obtained for fixed flow rates in sections I and IV. But if the flow rates 

of sections I and IV are varied, and if mass transfer effects are being considered, separation 

volumes are obtained (Azevedo and Rodrigues 2001) from which other separation regions for 

given pairs of flow rates of sections I and IV are obtained. As explained above, the perturbations 

in the operating flow rates change the internal flow rates. When these changes affect the flow 

rate of section I and/or section IV, new separation regions must be calculated. This is the case, 

for example, for the perturbation on the recycling flow rate that increases the flow rate of all 

sections. However, perturbations in the extract flow rate (which, as explained above, are 

compensated by changes in the raffinate flow rate as given by the global balance) do not affect 
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the flow rates in sections I and IV and therefore it is not necessary to calculate a new separation 

region. 

The dynamic analysis together with the separation and regeneration regions can provide 

important information about the system behavior and enable the comparison between the 

steady and dynamic approaches. The results obtained are shown in the following figures, one for 

each operating variable, ordered by their magnitude of influence in the process (from the one 

with the largest to the one with the lowest influence as indicated by the analysis reported above). 

Figure 15 represents the step perturbation in the recycling flow rate and its effect on the 

separation and regeneration regions. It can be noted that a 10% perturbation in the recycling 

flow rate has a significant effect on the purity and recovery of both extract and raffinate streams. 

It can be also noted that this 10% perturbation gives rise to a significant decrease in the 

separation region and that the new operating point violates the separation and regeneration 

conditions. These effects were expected, since a variation in the recycling flow rate affect all 

separation zones in the TMB unit. In Figure 15 it can also be seen the dynamic behavior of the 

system after a variation in 𝑄𝐼𝑉. The extract recovery presents a strong inverse response, while 

the raffinate recovery presents a smooth inverse response.  

Analyzing the 2% perturbation in Figure 15 it is possible to conclude that the new operating point 

generated by this perturbation remains inside the separation and regeneration regions and high 

purity products are still obtained. The 2% perturbation has almost no effect in the system if only 

the steady state and separation regions are taken in consideration. But the same dynamic 

behavior as seen in the 10% perturbation was observed for this case. Taking in consideration the 
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dynamic behavior, in a period of time the system shows a strong inverse response which leads 

momentarily the process to a lower recovery. These variations can have great impacts on the 

process profit and/or quality control. In this way, the dynamic characterization of the process is 

an important information that must be taken in consideration in the field of process control and 

optimization. 
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a.I b.I 

 

  
a.II  b.II 
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c 

Figure 15 - Process response after a step perturbation in the recycling flow rate: a.I - extract 
response to a 10% perturbation; a.II - extract response to a 2% perturbation; b.I raffinate 

response to a 10% perturbation; b.II - raffinate response to a 2% perturbation; c - separation 
and regeneration regions. 

Following 𝑄𝐼𝑉, the next variable presented is the solid flow rate, Figure 16. This variable presents 

a considerable effect on the extract purity and raffinate recovery, but not as strong as the 𝑄𝐼𝑉 

effect, which is consistent with the orthogonalization analysis. In Figure 16, it can be noted that 

perturbations in the solid flow rate move the separation region to the left side of the graphic. For 

the 10% perturbation, the operating points move out of the separation and regeneration regions, 

resulting in lower product purity. Also, here the process recovery presents an inverse response 

after the perturbation and the 2% perturbation presents the same dynamic behavior as observed 

in the 10% perturbation. 
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Comparing the solid flow rate and the eluent flow rate effects, Figure 17, it can be observed that 

both variables have similar effects in terms of magnitude. Both variables originate a strong 

inverse response in the system recovery. With a smoother effect in the 𝑄𝐸 response when 

compared with the 𝑄𝑠 response. It is important to point out that only with a graphical analysis it 

is hard to evaluate which is the most influent variable, 𝑄𝑆 or 𝑄𝐸. But the orthogonalization 

analysis indicates that 𝑄𝑆 has a stronger effect in the system when compared with 𝑄𝐸. The 

perturbation on the eluent flow rate affects mainly the extract recovery and the raffinate purity. 

In terms of separation regions, for this particular case, the 𝑄𝐸 has no impact in the final zone. 

This may occur because, for the operating conditions considered, the size of the separation 

region within the separation volume is not affected by the value of 𝛾𝐼 (Azevedo and Rodrigues 

2001). 
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a.I b.I 

 

  
a.II b.II 
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c 

Figure 16 - Process response after a step perturbation in the solid flow rate: a.I - extract 
response to a 10% perturbation; a.II - extract response to a 2% perturbation; b.I raffinate 

response to a 10% perturbation; b.II - raffinate response to a 2% perturbation; c - separation 
and regeneration regions. 

 

As can be observed in Figure 17 the perturbations only move the operating point towards the 

right side of the graphic. In the case of the operating point, in the regeneration region, it can be 

noted that the movement is done over a horizontal line, as the raffinate flow rate compensates 

the eluent increase and therefore the flow rate in zone IV is kept constant. That means that the 

changes in eluent flow rate only affect the regeneration in zone I of the TMB column. The 10% 

perturbation operating point in the separation region is located in the limit of the region. This 

means that with the new steady state, generated by the perturbation, 95% purity is still obtained. 

This is an important information since, in this case, no changes in the separation regions are 

observed, but strong changes in the recovery happen momentarily. These changes are a 
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consequence of the system dynamics and can be as high as 30%, which can be significant in terms 

of process profit. 

Finally, the extract flow rate, Figure 18, has a smooth effect in the system response, with an 

inverse response for the recovery performance indicator. This operating variable presents no 

effect in the separation region, since the variation in the extract flow rate is compensated by the 

raffinate flow rate in order to keep the mass balance of the system. In the same way, the 

operating point in the regeneration zone is constant. While the operating point in separation 

zone moves outside the separation region after the 10% perturbation. 

 

  
a.I b.I 
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a.II b.II 

 
Figure 17 - Process response after a step perturbation in the eluent flow rate: a.I - extract 
response to a 10% perturbation; a.II - extract response to a 2% perturbation; b.I raffinate 

response to a 10% perturbation; b.II - raffinate response to a 2% perturbation; c - separation 
and regeneration regions.  
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a.I b.I 

 

  
a.II b.II 
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Figure 18 - Process response after a step perturbation in the extract flow rate: a.I - extract 
response to a 10% perturbation; a.II - extract response to a 2% perturbation; b.I raffinate 

response to a 10% perturbation; b.II - raffinate response to a 2% perturbation; c - separation 
and regeneration regions. 

 

For the operating conditions considered, the feed concentration and flow rate have almost no effect 

in the system response. However, the feed concentration usually tends to undergo a larger deviation 

than the flow rates in real industrial operations. This is because the feed concentration can vary 

within a relatively large interval according to the feed source or feed-preparation upstream 

conditions. Therefore, even though the feed concentration presents a weak effect in the process, it 

is important to know what happens to the process in the presence of perturbations of greater 

magnitude in it. To analyze this, Figure 19 presents the results for 2% and 10% perturbations on the 

feed concentration of compound A. The results for compound B present a similar behavior, and 

therefore are not presented. From this Figure, it can be seen that even in the presence of the 10% 
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perturbation in the feed concentration, the effect on the purity is not significant. On the other hand, 

the recovery performance indicator in the raffinate stream presents a major inverse response that 

momentarily assumes values 15% lager/lower than the steady state. The results for the 

perturbations on the feed flow are shown in Figure 20 where it can be seen that the perturbations 

have a very small effect on the purity and recovery. 

 



 

P a g e  100 | 311 

P1-3.1.2 Step perturbation analysis 

 

  
a.I b.I 

 

  
a.II b.II 

Figure 19 - Process response over a step perturbation in the feed concentration of the compound 
A: a.I - extract response to a 10% perturbation; a.II - extract response to a 2% perturbation; b.I 

raffinate response to a 10% perturbation; b.II - raffinate response to a 2% perturbation. 
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a b 

Figure 20 - Process response over a 10% step perturbation in the feed flow rate: a - extract 
response, b - raffinate response. 

 

In order to analyze the influence of a step perturbation in the separation process, the internal 

concentration profiles before and after a step perturbation in the recycling flow rate are shown 

in Figure 21, together with the dynamic change in the internal profiles. The recycling flow rate 

was the operating condition selected because it is the variable with the greater impact in the 

process. 

 
a 



 

P a g e  102 | 311 

P1-3.1.2 Step perturbation analysis 

 
b 

 
c 

Figure 21 - Internal concentration profiles after a 10% perturbation in recycling flow rate: a - 
internal concentration profile in transient state for the less retained compound; b - internal 

concentration profile in transient state for the stronger retained compound; c - internal 
concentration profile in steady state for both compounds, before and after the perturbation. 

 

This perturbation leads to an increase in the internal velocities of all TMB sections. As a 

consequence, the internal profiles of the two compounds move forward in the bed. The more 

retained compound reaches the raffinate port and contaminates this product. Also, the fluid is 

not efficiently cleaned in section IV, and the less retained compound is recycled to section I 

together with the eluent and therefore the extract stream is contaminated.  
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P1-3.2 SMB dynamics characterization and TMB/SMB comparison 

The methodology presented in this work was applied to a TMB model which is an approximation 

of the SMB operation. The results presented in this section validated the orthogonalization 

method and showed its consistency; the methodology was then applied to study the behavior of 

SMB processes as shown in the next section. 

P1-3.2. SMB dynamics characterization and TMB/SMB 

comparison 

P1-3.2.1. Gram-Schmidt Orthogonalization analysis 

 In order to compare the dynamic behaviour of a TMB unit and SMB units, two configurations for 

the SMB were considered, the SMB-4 and the SMB-8. The SMB-4, corresponding to the unit with 

four columns, has one column per section, while the SMB-8 unit with eight columns has two 

columns per section. The processes operating conditions and parameters used for each process 

are presented in Table 6. The parameters and conditions used keep the equivalence between the 

TMB unit and the SMB units. 



 

P a g e  104 | 311 

P1-3.2.1 Gram-Schmidt Orthogonalization analysis 

Table 6 - Processes operating conditions. 

Process Variables Models Parameters 

TMB SMB  SMB-4/TMB SMB-8 

𝑐𝐴/𝐵 
𝑓 2.9 g.l-1 𝑐𝐴/𝐵 

𝑓 2.9 g.l-1 𝑃𝑒 2000 1000 

𝑄𝐼𝑉 27.95 ml.min-1 𝑄𝐼𝑉 35.38 ml.min-1 𝜀 0.4 0.4 

𝑄𝐸 21.45 ml.min-1 𝑄𝐸 21.45 ml.min-1 𝐿𝑐 21.0 cm 10.5 cm 

𝑄𝑋 17.98 ml.min-1 𝑄𝑋 17.98 ml.min-1 𝐿𝑗 21.0 cm 21.0 cm 

𝑄𝐹 3.64 ml.min-1 𝑄𝐹 3.64 ml.min-1 𝛼 36.0 18.0 

𝑄𝑠 11.15 ml.min-1 𝑡∗ 
SMB-4 SMB-8 Column 

diameter 
2.6 cm 2.6 cm 

6 min 3 min 

  

Again, in order to keep the degree of freedom of the model, the raffinate flow rate value was not 

defined. This means that a variation in any inlet or outlet flow rate was compensated by the value 

of the raffinate flow rate in mass balance as expressed by Equation (1) to Equation (16).  

An analysis of the impact of the operating variables (feed concentrations, extract, recycle, eluent 

and feed flow rates) of the different processes on their performance parameters (purity, recovery 

and eluent consumption) was carried out first. In this analysis, it was considered a time horizon 

of 400 minutes and a sampling time of 0.1 minutes. Since the main goal of the present work is to 

analyse the process in its dynamic regime, the smallest sampling time for which any decrease in 

this variable has no effect on the resulting ranking was used (which leads to a total time instants 

of 𝑛𝑡 = 4000). This provides detailed information about the process dynamics. 
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P1-3.2.1 Gram-Schmidt Orthogonalization analysis 

The results from these analyses for the SMB units and the TMB unit are shown in Table 7. The 

processes variables with the largest magnitude in each iteration are highlighted in this table. 

These values represent the operating variable with the greatest influence in the process at the 

corresponding iteration. As described in section P1-2.2.1, at the end of an iteration, the remaining 

variables are projected in a space orthogonal to the selected variable. Thus, the new space will 

be free from the influence of this variable. This can be seen in the following table, where the 

magnitude of a variable that has been selected has a value of approximately zero on the 

remaining iterations after its selection. The magnitude values presented in Table 7 for the TMB 

are different from the ones presented in Table 4 because a different sampling time was 

employed. However, the same order of importance was obtained and therefore the conclusions 

are the same. 
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P1-3.2.1 Gram-Schmidt Orthogonalization analysis 

Table 7 - Magnitude of each operating variable at each iteration of the orthogonalization 

analysis for the SMB-8, SMB-4 and TMB. 

 Operating Variables 

Iteration 𝐶𝑓,𝐴 𝐶𝑓,𝐵 𝑄𝐼𝑉 𝑄𝑋 𝑄𝐹 𝑄𝑒 𝑡∗ or 𝑄𝑠 

SMB-8 1 9.48X105 3.11X106 4.89X109 7.31X108 6.11X106 4.29X107 7.68X107 

SMB-4 1 2.97X106 3.75X106 1.39X109 1.37X108 9.00X106 1.30X108 4.51X108 

TMB 1 5.15X102 1.59X102 1.25X107 4.21X106 5.14X103 5.97X106 5.16X106 

SMB-8 2 9.95X104 2.98X106 3.59x10-21 6.04X107 6.07X106 4.22X107 7.65X107 

SMB-4 2 2.71X106 3.61X106 3.58x10-22 1.23X108 8.55X106 1.17X108 4.12X108 

TMB 2 4.79X102 1.22X102 2.73x10-24 3.13X105 1.91X103 3.79X105 3.86X105 

SMB-8 3 9.80X104 2.96X106 1.92x10-22 6.03X107 6.05X106 4.14X107 1.48x10-23 

SMB-4 3 1.80X106 2.69X106 8.31x10-23 9.89X107 6.15X106 1.01X108 5.79x10-23 

TMB 3 4.79X102 1.22X102 2.67x10-24 1.15X105 1.69X103 3.04X105 8.19E-26 

SMB-8 4 7.81X104 1.65X106 1.68x10-22 6.69x10-23 4.42X106 1.60X107 2.47E-24 

SMB-4 4 1.58X106 2.04X106 8.27x10-23 7.78X107 5.84X106 1.07x10-23 2.39x10-23 

TMB 4 4.75X102 1.14X102 2.66x10-24 6.44X103 1.02X103 6.41x10-26 6.91x10-26 

 

The first iteration of the method indicates that the recycle flow rate, 𝑄𝐼𝑉, is the operating variable 

with the greatest influence in the process performance parameters for all processes.   
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P1-3.2.1 Gram-Schmidt Orthogonalization analysis 

In the second iteration, the method indicates the switching time/solid flow rate as the variable 

with the second largest influence on the processes. After the orthogonalization around the 

recycle flow rate, it is possible to observe for the SMB-8 and TMB, a significant reduction (an 

order of magnitude) in the value of the magnitude of the extract flow rate, 𝑄𝑋. This indicates the 

existence of correlations between 𝑄𝑋 and 𝑄𝐼𝑉. Such correlations can be identified through the 

node balances (equations presented in chapter P1-2.1). Besides being correlated with 𝑄𝐼𝑉,  𝑄𝑋 is 

also correlated with other variables and some of the main performance parameters of the 

process, as can be observed in the model equations. Consequently, and as expected from the 

phenomenological knowledge about the processes, the orthogonalization indicates this variable 

as one of the most important variables in the process.  

After the orthogonalization of the system around the switching time/solid flow rate (𝑡∗/𝑄𝑆) the 

extract flow rate showed a higher reduction in its magnitude for the SMB-4 and TMB when 

compared with the SMB-8. This is an indication that the higher the 𝑡∗, the greater is its impact on 

the other variables of the process. Since 𝑡∗ will decrease with the increase in number of columns, 

the SMB-4 is the limit case for the switching time value (larger value).  

For the SMB-8, after selecting the switching time in the second iteration, 𝑡∗, the method indicated 

the following order: extract flow rate (third iteration), effluent flow rate (fourth iteration), feed 

flow rate (fifth iteration) and feed concentrations (sixth and seventh iterations).  

In the case of SMB-4 and TMB the order was: eluent flow rate (third iteration), extract flow rate 

(fourth iteration), feed flow rate (fifth iteration) and feed concentrations (sixth and seventh 
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iteration). The feed flow rate and concentrations present a very small effect in the processes 

responses and their iteration is not presented in Table 7. In terms of rank it is possible to observe 

that the SMB-4 unit is more similar to the TMB unit. This conclusion is opposite to what is 

commonly reported in the literature for the comparison between the SMB cyclic steady state and 

TMB steady state conditions, that is, as the number of columns in the SMB increases, the process 

approaches the TMB behaviour. 

P1-3.2.2. Models comparison: from initial conditions to 

cyclic steady state  

In order to analyse the evolution of the different processes, simulations of the three units from 

the start-up conditions to (cyclic) steady state were performed. The evolution over time of the 

concentration of the more retained component in the extract stream and of the less retained 

component in the raffinate stream are represented in Figure 22.a and Figure 22.b, respectively. 

Each graphic represents the values obtained for the TMB unit, for the SMB-8 unit and for the 

SMB-4 unit, as well as the average concentrations obtained for the SMB units. In order to 

maintain the equivalence between the models, the switching time for the SMB unit with eight 

columns was set equal to 3 min, while the switching time for the unit with four columns was set 

equal to 6 min. Such graphical representation is commonly presented in the literature when the 

comparison between the different models is made. 
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P1-3.2.2 Models comparison: from initial conditions to cyclic steady state 

 
a  

 
b  

Figure 22 – Concentrations history for: a – most adsorbed component in the extract stream; b - 
less retained component in the raffinate stream. 

 

It is observed that the trend of the average concentrations of the more retained component in 

the extract stream of the SMB units, Figure 22.a, is equivalent to the evolution over time in the 

TMB unit, although the SMB with eight columns resembles more the behaviour of the TMB. In 

the case of the raffinate stream, Figure 22.b, comparing with the TMB unit, there is a greater 

difference in the evolution of the average concentrations of the less retained component. 



 

P a g e  110 | 311 

P1-3.2.3 Models comparison: dynamic regime 

However, the results obtained for the SMB-8 are closer to the results of the TMB when compared 

to those of the SMB-4. These results are in accordance with the literature. This indicates that the 

history until the steady state of the average concentrations of the SMB will approximate the TMB 

as the number of columns of the SMB increases. However, the analysis based on the 

orthogonalization method, which resulted in a different conclusion, considers the instantaneous 

concentrations and is based on the sensitivity matrix of the process response over time relative 

to the operating variables.  

In order to assess the dynamic behaviour of the different processes, the effect of step changes in 

operating variables on the responses of the performance parameters (purity and recovery) will 

be presented in the next section. 

P1-3.2.3. Models comparison: dynamic regime 

The initial conditions of the simulations presented in this section correspond to the (cyclic) steady 

state of each process as presented in Figure 22. Two individual step perturbations were 

performed to each of the operating variables, corresponding respectively to more and less 10% 

of  their values for feed concentrations, and eluent, extract and feed flow rates. In the case of 

perturbations to the recycling flow rate and switching time, in order to keep the equivalence 

between the processes, the perturbations were done as follows. A 10% perturbation on the value 

of the solid flow rate was considered and equivalent perturbations on the switching times of the 

SMB-4 and SMB-8 were set from the equation 𝑢𝑠 =
𝐿𝑐
𝑡∗⁄ . For the recycling flow rate a 
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perturbation of 10% for the TMB case was performed and the equivalence to the SMB was 

considered by 𝑄𝐼𝑉 = 𝑄𝐼𝑉
𝑆𝑀𝐵 −

𝜀

1−𝜀
𝑄𝑠. The results are presented in deviation values, relative to the 

corresponding steady state, which facilitates the analysis of the results. In the following figures, 

the processes (TMB, SMB-4 and SMB-8) responses in terms of average and instantaneous purity 

and recovery values are given. 

The responses to the steps perturbations in the recycling flow rate are shown in Figure 23. From 

Figure 23.a and Figure 23.c it is possible to observe that after the first perturbation (increase of 

10%), all processes reach a new steady state, in which the values for the SMB-4 unit are higher 

than that of the SMB-8 and closer to the TMB results.  

In terms of dynamic behaviour, all units present an inverse response to the perturbation. It is also 

possible to observe that in all cases the instantaneous values obtained for the SMB-4 unit present 

larger amplitude when compared to the SMB-8. 
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P1-3.2.3 Models comparison: dynamic regime 

 

  
a b 

  
c d 

Figure 23 - TMB, SMB-4 and SMB-8 responses to step perturbations in the recycling flow rate: a 
– responses of the recovery in extract; b. responses of the recovery in raffinate; c – responses of 

the purity in extract; d – responses of the purity in raffinate. 
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a b 

  
c d 

Figure 24 - TMB, SMB-4 and SMB-8 responses to step perturbations in the solid flow rate (TMB 
unit) and switching time (SMB units): a – responses of the recovery in extract; b. responses of 
the recovery in raffinate; c – responses  of the purity in extract; d – responses of the purity in 

raffinate. 

 

In Figure 24, the responses to the step perturbations in the solid flow rate 𝑢𝑠 (in the case of the 

TMB unit) or to the switching time (in the case of the SMB units) are given. It is possible to observe 

that the processes responses to perturbations in the recycling flow rate and solid flow 

rate/switching time are almost mirror images. Just by simple graphical analyses, it is practically 
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impossible to detect which of these two operating parameters has the greatest influence on the 

processes. In this point, the orthogonalization method is a complementary method to the 

graphical analysis and essential for this distinction. 

In this case, the results of the SMB-4 are also closer to the TMB, Figure 24.a and Figure 24.c, but 

with a significant deviation between the TMB and the SMB units, Figure 24.c, Figure 24.b and 

Figure 24.d. This occurs because the perturbations lead the process to an operating condition 

outside the separation region, as previously shown in Section P1-3.1.2; perturbations of this kind 

can easily occur in industrial operation and, if not taken into account, can lead to low productivity 

and to the production of products out of specification.  

Figure 25 presents the processes responses to the steps perturbations on the eluent flow rate. In 

this case, all processes tend to similar states and exhibit similar dynamics. However, in Figure 

25.a and Figure 25.b, in the early stages after the first perturbation, the SMB units have different 

dynamic behaviours when compared to the TMB unit. Although it does not influence the final 

state, this fact is important in the optimization and control of these processes and can lead to 

conflicts in the resolution of optimization problems if not considered. For example, in the case of 

the processes control, when a TMB model is considered to control a SMB unit, this can be a 

complex task due to the measurement problems characteristic of these units (Zenoni et al. 2000; 

Langel et al. 2009) and the huge effort that requires to run non-linear models over large 

prediction horizons, which is required due the significant differences found in the dynamics of 

both systems. 
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P1-3.2.3 Models comparison: dynamic regime 

 

 

  
a b 

  
c d 

Figure 25 - TMB, SMB-4 and SMB-8 responses to step perturbations in the eluent flow rate: a – 
responses of the recovery in extract; b. responses  of the recovery in raffinate ; c – responses  of 

the purity in extract; d – responses  of the purity in raffinate. 

 

The processes response to step perturbations in the extract flow rate are shown in Figure 26. A 

similar behaviour to that observed for variations in the eluent flow rate can be seen, but reversed. 

This occurs because an increase in the eluent flow rate will cause an increase in the flow rate of 
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P1-3.2.3 Models comparison: dynamic regime 

section II while an increase in the extract flow rate will cause a reduction in flow rate of section 

II. So the two variables have opposite effects in the separation zone of the units.  

 

  
a b 

  
c d 

Figure 26 - TMB, SMB-4 and SMB-8 responses to step perturbations in the extract flow rate: a – 
responses of the recovery in extract; b. responses of the recovery in raffinate ; c – responses of 

the purity in extract; d – responses of the purity in raffinate . 

 

As noted in Figure 25 and Figure 26, the perturbations in these variables cause a small change in 

the steady state condition. Section P1-3.1.2 also presented the effect of these variations in the 

regeneration zone of the TMB unit, showing that after these variations the operating conditions 
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were still inside both separation and regeneration zones. Furthermore, the results obtained from 

the orthogonalization method also showed that these variables have less influence in the process 

when compared with the recycling flow rate and the solid flow rate/switching time. 

Figure 27 shows the response of the different processes to perturbations in the feed flow rate. It 

can be seen that the processes have a lower sensitivity to variations in this variable. However, 

the decrease disturbance has higher impact in the instantaneous purities and recoveries in 

opposition to what is observed for the increase disturbance. In Figure 27.a and Figure 27.b, in the 

early stages after the second perturbation, an opposite response of the SMB processes relative 

to the TMB is observed. 
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P1-3.2.3 Models comparison: dynamic regime 

 

  
a b 

 
 

c d 

Figure 27 - TMB, SMB-4 and SMB-8 responses to step perturbations in the feed flow rate: a – 
responses of the recovery in extract; b. responses of the recovery in raffinate; c – responses of 

the purity in extract; d – responses  of the purity in raffinate. 

 

A series of step perturbations was performed in the feed concentration in order to ascertain the 

effect of changing the feed composition in the systems. The responses to perturbations in the 

feed concentration of the more adsorbed component are given in Figure 28, where once again it 

can be seen that the processes have little sensitivity to this variable. However, in this case, the 

SMB-8 results are closer to those of the TMB when compared to the SMB-4 results, which 
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presents a significant deviation. Comparing Figure 28.c with Figure 28.d it is possible to note a 

mirror effect on the process purities. The variation of the feed concentration will lead the system 

to two different situations, where more or less compound B will be fed to the column. This way, 

when the concentration of B is increased, the purity of the raffinate stream decreases and the 

purity of the extract stream increases, while in the reverse situation, the reverse effect is 

observed. Consequently, a mirror effect is observed on the graphics. 
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P1-3.2.4 Effect of the perturbation size and frequency 

 

  
a b 

  
c d 

Figure 28 - TMB, SMB-4 and SMB-8 responses to step perturbations in the feed concentration of the more 
adsorbed component: a – responses of the recovery in extract; b. responses of the recovery in raffinate; c – 

responses of the purity in extract; d – responses of the purity in raffinate. 
 

 

P1-3.2.4. Effect of the perturbation size and frequency  

A sequence of step perturbations with different sizes and time lengths was performed in the 

processes in order to do a deeper analysis in the systems dynamic response. Figure 29 presents 

a sequence of four steps with a short time length equal to one cycle. This was done in order to 
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avoid the process to reach the cyclic steady state, contrarily to what was done in the previous 

analysis. The objective in this new situation is to analyse the process behaviour in the presence 

of an intermittent perturbation. From Figure 29.a and Figure 29.b it is possible to note an 

interesting behaviour in the response of the recovery in the extract to the sequence of 

perturbations in recycling flow rate and the response of the purity in the extract to a sequence 

of perturbations in solid flow rate. The response of these two variables after the short step shows 

that the SMB-4 gets closer to the TMB while the SMB-8 becomes more distant. After the 

perturbation ends, this order is reversed and the SMB-8 gets again closer of the TMB. This 

behaviour repeats at every step perturbation done in the system. From Figure 29.c and Figure 

29.d a different behaviour can be noted in the responses of the recovery in the raffinate and of 

the recovery in extract to the sequence of perturbations in extract flow rate. In this case, both 

responses of the SMB4 and SMB8 units are far from the response of the TMB but a long time 

after the second step perturbation, the processes get closer.  
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P1-3.2.4 Effect of the perturbation size and frequency 

 

  
a b 

  
c d 

Figure 29 - TMB, SMB-4 and SMB-8 responses to a sequence of step perturbations: a – Recovery 
in extract response to a sequence of perturbations in the recycling flow rate; b – Purity in extract 
response to a sequence of perturbations in the solid flow rate; c – Recovery in raffinate response 
to a sequence of perturbations in the extract flow rate; d – Response of the recovery in extract 

to a sequence of perturbations in the extract flow rate. 
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In Figure 30 and Figure 31 are presented the responses of the recovery and purity in raffinate to 

two (sequential up and down) step perturbations of different intensities, 10%, 5% and 2%. In the 

two figures it is also presented the step response of systems with linear isotherm to a 10% step 

perturbation. From the two figures it is possible to note that, when the intensity of the 

perturbations decreases, the processes dynamic behaviour gets closer to each other. This 

happens because there is a minimum perturbation strength after which the system operating 

point leaves the respective separation region. In this way, it is possible to conclude that, when 

the process is operated in a zone outside of the separation region, the dynamic behaviour of the 

process is clearly different of what was expected from the steady state analysis previously done 

in the literature. This conclusion is very important in the process control where the process takes 

the risk of suffering perturbations of any intensity. This dynamic behaviour must be taken into 

consideration in the formulation of a control problem to this system. The same conclusions can 

be drawn from the analyses of the step perturbations in the other process operating variables.  
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P1-3.2.4 Effect of the perturbation size and frequency 

 

 
 

 

a b 

  

c d 

Figure 30 - TMB, SMB-4 and SMB-8 recovery in raffinate responses to step perturbations in the 
recycling flow rate: a – 10% step; b - 5% step; c – 10% step linear isotherm; d – 2% step.  
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a b 

  

c d 

Figure 31 - TMB, SMB-4 and SMB-8 purity in raffinate responses to step perturbations in the 
recycling flow rate: a – 10% step; b 5% step; c – 10% step linear isotherm; d – 2% step. 

 

Figure 32 presents the internal concentration profile after a +10% perturbation in the recycling 

flow rate is imposed, as showed in Figure 23. It can be seen that the new steady state moves the 

processes towards a region of less purity in both outlet streams. For this case, the extract stream 
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of the SMB units, Figure 23.c, presents a lower purity when compared with the TMB, and a similar 

value when compared to each other. However, in the raffinate stream, Figure 23.c, the SMB-4 

unit presents the highest purity and closer to the TMB when compared with the SMB-8. This 

difference can be observed in terms of internal profile concentrations, Figure 32, where in the 

raffinate stream, after reaching the new steady state, the SMB-8 presents a concentration of the 

stronger retained compound 77% higher than the concentration of the same compound in the 

SMB-4. Figure 32.d and Figure 32.e present the evolution of the internal concentration profiles 

of the stronger and less retained compounds along time and column length. It is possible to note 

that although the evolution of the SMB-8 profile seems closer to the TMB profile after the 

perturbation, the SMB-4 unit presents a better separation than both the other units. As a matter 

of fact, the perturbations lead the processes to regions outside the equilibrium triangle inducing 

an unexpected behaviour in the units.  
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P1-3.2.4 Effect of the perturbation size and frequency 

 

a. 

  
b. c. 
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P1-3.3 TMB linear advanced model predictive control 

d.I.TMB – Stronger retained 
compound. 

d.II.SMB-4 – Stronger retained 
compound. 

d.III.SMB-8 – Stronger retained 
compound. 

   
e.I.TMB – Less retained 

compound 
e.II.SMB-4 – Less retained 

compound 
e.III.SMB-8 – Less retained 

compound 
 

Figure 32 - Units internal concentration profiles. Effect of a +10% perturbation in the recycling 
flow rate. 

 

P1-3.3. TMB linear advanced model predictive control  

P1-3.3.1. Manipulated variables selection  

The main objective of this work is to control the purities and recoveries of an SMB unit. The first 

step to do this is to carefully choose the set of process variables to be used in the system control 

as manipulated variables (MV). In order to identify the set of MVs, the mathematical method 

based on the orthogonal projection described in P1-2.2.1 was applied. 

As presented in P1-3 the recycling flow rate, 𝑄𝐼𝑉, presents a major effect in this process response. 

Following the 𝑄𝐼𝑉, the extract flow rate, 𝑄𝑋, the eluent flow rate, 𝑄𝐸, and the solid flow rate, 𝑄𝑆, 

present the major effects in this sequence. The feed flow rate and feed concentrations have a 
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minor impact, as can be noted by their magnitude values. As a consequence, the recycling, solid, 

eluent and extract flow rates were used as manipulated variables. This leads to a 4x4 system with 

four manipulated variables and four controlled variables. Following the proposed method in 

Section P1-2.3  for the definition of GG, 32 transfer functions must be identified, 16 TFs for each 

local linear model.  

The SMB optimal operating conditions and the model parameters used were based on Pais et al. 

(2000). The process was moved from its optimal conditions in order to identify the transfer 

functions as previously described. This was done through a perturbation of -15% in the solid flow 

rate.  The data used in the simulations at the optimal condition are given in Table 8. 

P1-3.3.2. Transfer functions identification 

As explained in Section P1-2.3, the strategy suggested in this work requires the determination of 

transfer functions at optimal operating conditions and at non-optimal operating conditions. For 

the simulations at the optimal conditions, the operating conditions determined in Pais et al. 

(2000) were employed. For the simulations at non-optimal conditions a perturbation of -15% in 

the solid flow rate was considered. The corresponding operating parameters are given in Table 

8. 
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Table 8 - Data used in the model simulation, suboptimal and optimal conditions used to validate 
the identification approach. 

Process Variables Model Parameters 

 
Suboptimal 
Conditions 

Optimal Conditions 
𝑘 0.1 s-1 

𝑐𝐴/𝐵 
𝑓 2.9 g.l-1 2.9 g.l-1 𝐷𝐿 0.025 cm2.s-1 

𝑄𝐸 21.45 ml.min-1 21.45 ml.min-1 𝜀 0.4 

𝑄𝑋 17.98 ml.min-1 17.98 ml.min-1 𝐿𝑗 21.0 cm 

𝑄𝐹 3.64 ml.min-1 3.64 ml.min-1 Column diameter 2.6 cm 

𝑄𝑠 10.03 ml.min-1 11.15 ml.min-1  

 

At the non-optimal point, three different matrices of transfer functions, relating the manipulated 

with the controlled variables, were identified, two using the method here proposed (GG non-opt) 

and another from the full process reaction curve (GRC). This was done in order to make a 

comparison between the two methods and to assess the method consistency, as shown in the 

next section. Furthermore, the control strategy proposed in this work was applied to the process 

operating in optimal conditions and two other matrices of TFs were obtained (GG opt).  

To identify the transfer functions, the unit was simulated under a series of step perturbations in 

its manipulated variables. For the method here proposed, a total of 9600 points were generated 

from the process simulation, where 2400 were used for each process condition previously 

mentioned, optimal (positive and negative perturbations) and non-optimal (positive and negative 

perturbations). To evaluate the method, more 2400 points were generated in the non-optimal 
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condition to be applied in the traditional reaction curve identification. Table 9 presents the 

process transfer functions identified at the optimal point. Table 10 presents the transfer function 

identified by the Reaction Curve and the here presented method for the non-optimal point.  

Table 9 - Transfer functions at the optimal point. 
 

𝒈↓ 𝑸𝒔 𝑸𝑰𝑽 𝑸𝑿 𝑸𝑬 

𝑷𝒖𝒓𝑿 
6.229

72.98𝑠 +  1
 

0.0245

59.29𝑠 +  1
 

1.22

88.78𝑠 +  1
 

−0.03455

6.671𝑠 +  1
 

𝑷𝒖𝒓𝑹 
4.367

 40.23𝑠 +  1
 

1.192

62.55𝑠 +  1
 

−0.4388

185.1𝑠 +  1
 

1.517

 106.9𝑠 +  1
 

𝑹𝒆𝒄𝑿 
1.904

 60.55𝑠 +  1
 

 265.2𝑠 +  0.7857

 1365 𝑠2 +  84.15𝑠 +  1
 

 −349.5𝑠 −  0.2683

 55.06𝑠2  +  74.65𝑠 +  1
 

 390.4𝑠 +  1.036

 766.1𝑠2  +  55.36𝑠 +  1
 

𝑹𝒆𝒄𝑹 
4.761

 0.001𝑠 +  1
 

 −202.8𝑠 +  0.04866

 924.5𝑠2  +  60.81𝑠 +  1
 

  669𝑠 +  0.6388

 2320𝑠2  +  153.2𝑠 +  1
 

 −216.7𝑠 +  0.0142

 993.8𝑠2  +  63.05𝑠 +  1
 

𝒈↑ 𝑸𝒔 𝑸𝑰𝑽 𝑸𝑿 𝑸𝑬 

𝑷𝒖𝒓𝑿 −0.2139

55.16𝑠 +  1
 

−2.625

88.79𝑠 +  1
 

0.134

61.12𝑠 +  1
 

−1.532

91.6𝑠 +  1
 

𝑷𝒖𝒓𝑹 −1.916

 62.45𝑠 +  1
 

−2.654

42.1𝑠 +  1
 

−1.373

109𝑠 +  1
 

0.395

 207𝑠 +  1
 

𝑹𝒆𝒄𝑿 −348.1𝑠 −  1.294

 1651𝑠2  +  81.27𝑠 +  1
 

−1.38

64.28𝑠 +  1
 

 −377.5𝑠 −  0.9327

 744.1𝑠2  +  54.56𝑠 +  1
 

 242.8𝑠 +  0.3477

 471.7𝑠2  +  43.44𝑠 +  1
 

𝑹𝒆𝒄𝑹 308.4 𝑠 −  0.1416

 847.1𝑠2  +  58.21𝑠 +  1
 

−2.187

0.001𝑠 +  1
 

  280.1𝑠 +  0.02945

 835.3𝑠2  +  68.91𝑠 +  1
 

 −1.72

  0.001𝑠 +  1
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P1-3.3.2 Transfer functions identification 
Table 10 - Transfer functions for the Reaction curve, and proposed method at the non-optimal point. 

 

GRC 𝑸𝒔 𝑸𝑰𝑽 𝑸𝑿 𝑸𝑬 

𝑷𝒖𝒓𝑿 
0.238

21.62𝑠 +  1
 

0.2389

21.62𝑠 +  1
 

0.155

23.13𝑠 +  1
 

0.3972

28.34𝑠 +  1
 

𝑷𝒖𝒓𝑹 
0.0809

 21.62𝑠 +  1
 

0.1211

27.16𝑠 +  1
 

0.1347

28.34𝑠 +  1
 

0.1347

 28.34𝑠 +  1
 

𝑹𝒆𝒄𝑿 
0.1259

 21.62𝑠 +  1
 

0.1882

27.16𝑠 +  1
 

 0.0819

 23.13𝑠 +  1
 

0.2094

 28.34𝑠 +  1
 

𝑹𝒆𝒄𝑹 
0.1577

 27.16𝑠 +  1
 

0.1577

27.16𝑠 +  1
 

  0.0687

 23.13𝑠 +  1
 

 0.1755

  28.34𝑠 +  1
 

GG non-opt 

𝒈↓ 
𝑸𝒔 𝑸𝑰𝑽 𝑸𝑿 𝑸𝑬 

𝑷𝒖𝒓𝑿 
0.1473

41.87𝑠 +  1
 

0.3935

24.72𝑠 +  1
 

0.1286

34.52𝑠 +  1
 

0.3017

47.58𝑠 +  1
 

𝑷𝒖𝒓𝑹 
0.0499

 41.87𝑠 +  1
 

0.1334

42.1𝑠 +  1
 

0.0435

34.52𝑠 +  1
 

0.1023

 47.58𝑠 +  1
 

𝑹𝒆𝒄𝑿 
0.07765

 41.87𝑠 +  1
 

0.2074

24.72𝑠 +  1
 

 0.0677

 34.52𝑠 +  1
 

 0.159

 47.58𝑠 +  1
 

𝑹𝒆𝒄𝑹 
0.0650

 41.87𝑠 +  1
 

0.1739

24.72𝑠 +  1
 

  0.0568

 34.52𝑠 +  1
 

 0.133

  47.58𝑠 +  1
 

GG non-opt 

𝒈↓ 
𝑸𝒔 𝑸𝑰𝑽 𝑸𝑿 𝑸𝑬 

𝑷𝒖𝒓𝑿 
0.329

30.26𝑠 +  1
 

0.3199

2.471 × 107𝑠 +  1
 

0.1758

51.47𝑠 +  1
 

0.5008

36.49𝑠 +  1
 

𝑷𝒖𝒓𝑹 
0.1116

 30.26𝑠 +  1
 

0.00828

6.685 × 104𝑠 +  1
 

0.05962

51.45𝑠 +  1
 

0.1697

 0.001𝑠 +  1
 

𝑹𝒆𝒄𝑿 
0.1734

 30.26𝑠 +  1
 

0.2003

1.710 × 105𝑠 +  1
 

 0.09268

 51.48𝑠 +  1
 

 0.264

 36.49𝑠 +  1
 

𝑹𝒆𝒄𝑹 
0.1454

 30.26𝑠 +  1
 

0.2394

1.959 × 106𝑠 +  1
 

  0.07769

 51.47𝑠 +  1
 

0.2213

  36.49𝑠 +  1
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P1-3.3.2 Transfer functions identification 

Figure 33 presents an example of the models identification using process data that were 

generated through a sequence of two 10% increase and two 10% decrease step changes in all 

manipulated variables, simulated at the optimal point. As can be noted, the transfer function can 

adjust the reaction curve with a significant precision. The selection of the transfer functions 

structure and their parameters estimation was done with the MatLab identification toolbox. 

Following a parameter estimation procedure, the best fit criterion was used, based on the MSE 

(mean squared error) between the test data and models prediction, in order to select the best 

models structure and parameters. The procedure consists in a two-step identification; the first is 

the definition of the transfer function characteristics followed by the estimation of its 

parameters. The procedure was repeated until the best MSE is found. 

 

 

Figure 33 - Local Transfer Function Identification for the responses in recovery and purity to step 
perturbations in recycling and extract flow rates respectively. 
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P1-3.3.3 Control systems tests 

P1-3.3.3. Control systems tests  

Several tests were done in order to evaluate the performance of the control systems presented.  

First, a simulation was conducted at the process non-optimal condition in order to validate the 

methodology here proposed. After the first test, the methodology was applied in the optimal 

condition and its performance was evaluated. It is important to highlight that, when applied the 

traditional MPC or PID controller at the optimal condition, the problem becomes infeasible.  

The following scenarios were tested during the control systems simulations for the non-optimal 

condition: 

1. Set point changes, which is usual during the operation. Those were performed in 

both directions of increase and decrease of process purities and recoveries; 

2. A perturbation in the extract flow rate, which can happen due to several reasons, 

for example a malfunction in the pump. 

Figure 34 presents the results of the system control by the MPC using the transfer functions 

identified in the suboptimal condition; in this case, the process is represented by the 

phenomenological model. The control system is turned on when the process reaches its steady 

state. After that, a set point change is simulated by setting purity and recovery in both streams 

equal to 99%. Using the equivalence between the TMB/SMB, where an equivalent cycle 

corresponds to 6 minutes, with a controller sample interval of 1 minute, it is possible to note that 

both MPCs can easily lead the process to its new set point of purity, in a period of approximately 

16 cycles or 100 minutes. Analysing the recovery response, it can be noted that the MPCs need 

more time to lead the process to the new set point, about 30 cycles.  
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P1-3.3.3 Control systems tests 

After the set point change, an external perturbation in the extract flow rate was simulated. The 

MPCs show an efficient result in keeping the process in the set point. Finally, a new set point 

change was simulated, a reduction to 95% of both purity and recovery. The MPCs again show a 

significant efficiency leading the process to its new set point in a short period of time.  A 

comparison between the two controllers shows that both present similar behaviour. The major 

difference is observed in the control of the raffinate recovery, where the MPC that makes use of 

the transfer function identified through the method here proposed leads the process to a larger 

variation in the transient state. However, the results show that both MPCs can control the 

process with success. 
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P1-3.3.3 Control systems tests 

 
(a) 

 
(b) 

Figure 34 - Process control at the non-optimal condition: (a) Controlled variables; (b) 
Manipulated variables. 

 

A new simulation was done in order to verify if the process can be efficiently controlled using the 

transfer functions identified at the optimal point. In this case, it is expected that the proposed 



 

P a g e  137 | 311 

 

P1-3.3.3 Control systems tests 

transfer function switching system makes the control problem feasible and leads to an efficient 

control of the unit. The following scenarios were tested during the control systems simulations 

for the optimal condition: 

1. A perturbation in the extract flow rate; 

2. Set point changes; 

3. A perturbation in the solid flow rate. 

4. Plant model mismatch, through simulation of measurement noise. 

Figure 35 shows the results obtained for the process control with the last MPC that makes use of 

the 𝐺𝐺𝑜𝑝𝑡 transfer function. Two external perturbations of approximately +10% and -10% were 

simulated in the extract flow rate and the solid flow rate at the cycles 5 and 80. It was also 

simulated a set point change from the optimal point to a value of 95% in the process purities and 

recoveries (in cycle 40). From Figure 35 it is possible to note that the control system can efficiently 

control the process in all simulated scenarios. It is important to note that, in a period of less than 

5 cycles (30 minutes), the MPC can lead the process recovery to the established set point. In the 

process purities case, the MPC presents a slower response when compared with the recovery 

but, even in this case, the controller presents efficient results when compared with the usual 30 

cycles. The worst case was 25 cycles to conduct the process to the new set point of purity in the 

raffinate. In the other cases, the process was conducted to its established set point faster than 

usually. Finally, it is important to note, from Figure 35.b, that the controller could control the 

process through smooth movements in the manipulated variables. 
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P1-3.3.3 Control systems tests 

 
(a) 

 
(b) 

Figure 35 - Process control at the optimal condition: (a) Controlled variables; (b) Manipulated 
variables. 
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P1-3.3.3 Control systems tests 

 
(a) 

 
(b) 

 
Figure 36 - Process control at the optimal condition and open loop responses: (a) Solid and 

recycling perturbations responses (b) Solid perturbation responses. 
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P1-3.3.3 Control systems tests 

 

Figure 36 presents the open loop and controlled responses for the TMB unit. In this simulation, 

the process is kept at its optimal point and two external perturbations are introduced, first in the 

solid flow rate followed by a perturbation in the recycling flow rate. It is possible to observe that 

the controller is capable of keeping the process in the optimal condition after each perturbation. 

Figure 36.b presents a zoom to the instant where the process responds to the solid flow rate 

perturbation, where it is possible to verify in more detail the open loop behaviour. 

Figure 37 presents the control system simulation with a four columns SMB as plant and the 

previously identified transfer function for the TMB. After the SMB unit reaches its cyclic steady 

state, the controller is started in order to keep the process in its optimal point. First, one external 

perturbation in the switching time is simulated (at a time corresponding to 1.45 cycles), followed 

by a setpoint change (at a time corresponding to 7.5 cycles). As presented in Figure 37, the 

controller is capable of keeping the process in its setpoint in both situations, taking approximately 

4 cycles for the control to stabilize the process after both disturbances. 



 

P a g e  141 | 311 

 

P1-3.3.3 Control systems tests 

 
 

Figure 37 - Control system simulation with a four columns SMB as plant and the previously 
identified transfer for the TMB. 

 

 

Figure 38 - Process control under feed concentration fluctuations, setpoint (Red line), controller 
(Black line) and open loop (Blue line) responses. 
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P1-3.4 Quasi-Virtual Analyser development 

Finally, as showed by the orthogonalization analysis, the feed concentrations and flow rates have 

a small effect on the quality parameters (purities and recoveries). However, in order to verify the 

purities sensitivity to feed concentration, which can sometimes fluctuate in SMB operation, a 

new simulation with feed concentration fluctuation was performed. In a simulation, two 

perturbations were done, one of +15% and another of -20%. The following Figure 38 presents the 

controller (Black line) and open loop (Blue line) responses for the simulation. It is possible to see 

in the result that the perturbations were not enough to change the process steady state. 

However, it is also possible to note that, for the recoveries, the controller was able to conduct 

the process back to its steady state faster than the open loop response.  

P1-3.4. Quasi-Virtual Analyser development 

The main objective of the quasi-virtual analyser here proposed is to do a real-time monitoring of 

the purity of the process raffinate and extract streams. To do this, the analyser must receive the 

information about the process inputs and past outputs. The problem with the past outputs was 

presented in the P1-2.4 section. In terms of the process inputs, it is necessary to identify the set 

of process inputs that have the greatest impact on the process. For nonlinear identification 

problems, the dimension of the model inputs is a crucial factor which greatly affects the 

computational expense and the performance of the resulting model (Wang et al. 2003). This 

problem here is addressed applying the orthogonalization method presented in section P1-2.2.1.  

Thus, the selection analysis of the input variables was done through the orthogonal analysis. The 

set of process variables with greater impact only in the process purity was identified and the 
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P1-3.4 Quasi-Virtual Analyser development 

operating variables to be used in the development of the Q-VOA were selected. In this way, based 

on the results of the application of the orthogonalization method to the TMB unit, presented in 

Section P1-3.1.1, the set of input variables for the virtual analysers was selected. From those 

results it was concluded that the magnitude of the feed flow rate (𝑄𝐹) and feed concentrations 

(𝐶𝑓,𝐴 𝑎𝑛𝑑 𝐶𝑓,𝐵) present the lowest order when compared with the magnitude of the other 

variables. Furthermore, the step perturbation analysis presented in Section P1-3.1.2 shows that 

these three variables present a low influence on the process. In order to simplify as much as 

possible the ANN model, only the recycling (𝑄𝐼𝑉), eluent (𝑄𝐸), solid (𝑄𝑠) and extract (𝑄𝑋) flow 

rates were selected as the operating variables to be computed in the Q-VOA system. 

Hence, it was possible to build a database of the process responses to variations in these four 

flow rates (𝑄𝐼𝑉, 𝑄𝐸, 𝑄𝑠, 𝑄𝑋). The data were acquired through the simulation of the 

phenomenological model. The data to develop the ANNs models were generated through a 

sequence of step perturbations in these four process flow rates. The steps had different 

magnitudes in order to analyse if the process dynamic behaviour, under different conditions, is 

kept in the ANN model. All step perturbations had a time length enough for the process to reach 

a new steady state. This was done in order to transmit the process steady states information to 

the ANN model, which is an important information for the process operation. A total of 39,000 

points were acquired corresponding to a period of approximately 40 hours of operation. The data 

obtained was divided in three groups and the cross-validation method was applied in the 

development of the neural model (Schenker and Agarwal 1996). 
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P1-3.4.1 Virtual analyser structure definition 

P1-3.4.1. Virtual analyser structure definition 

From Section P1-2.4.1 and Figure 8 it can be noted that the number of past outputs, 𝑛𝑎, used to 

update the ANN model is an adjustable parameter. In the present work, the parameters of the 

NARX structure were defined as: 𝑛𝑎 = 2, 𝑛𝑏 = 1 and 𝑑 = 1. This numbers showed efficient 

results when compared with the other predictors configurations.  

The training was done using the Levenberg–Marquardt algorithm (Schenker and Agarwal 1996). 

This step was conducted to avoid the so-called overtraining problem. This problem happens 

when the network is overflowed with the training data specific information, but with a poor 

prediction capacity (Schenker and Agarwal 1996; Bowden et al. 2002; Hoque et al. 2011). To avoid 

this, the early stop method was adopted. This method consists in stopping the training after a 

given number of iterations in which the validation error grows instead of decreasing, the early 

stop criterion. If the early stop criterion is not satisfied, the training finishes when the total 

number of iterations or a minimum gradient of the error derivative is reached. The errors in the 

training and validation steps were calculated by the mean squared error (MSE) function. In order 

to analyse the final model prediction, the mean absolute percentage deviation (MAPE) was 

calculated. The MAPE will give a general idea about the total prediction error in comparison with 

the simulation, and can be calculated as: 

𝑀𝐴𝑃𝐸 = 
1

𝑛
 ∙  ∑ |

𝑦 − 𝑦̂

𝑦̂
|

𝑛

𝑡=1

∙ 100 (%) (81) 

where 𝑛 is the length of the data set available. The parameters used to develop the neural models 

and the MAPE of each model are presented in Table 11. It is important to note that the number 
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P1-3.4.1 Virtual analyser structure definition 

of trainings done corresponds to the repetition of the same training to the same number of 

neurons. This means that, for each neuron, 45 or 40 neural models (for the purity in the extract 

or purity in the raffinate respectively) were trained, and the one with the minimum MAPE was 

selected to represent the corresponding neuron number. Furthermore, the number of neurons 

corresponding to the smallest MAPE and which respect the performance criteria of minimum 

gradient and early stop was selected as the optimal network structure. The optimal number of 

neurons in the hidden layer corresponds also to the one which leads to a model that presents 

the minimum error, as proposed by Schenker and Agarwal (1996) and presented in Figure 39 and 

Figure 40. 

Table 11 - Neural network parameters. 

 
ANN model for Purity 

in extract 

ANN model for Purity 

in raffinate 

Total number of neurons evaluated 45 40 

Total number of trainings 45 40 

Total iterations in training step 300 300 

Minimum gradient 10-6 10-6 

Early stop criteria 10 10 

Transfer function in the first layer 
Hyperbolic tangent 

sigmoid 

Hyperbolic tangent 

sigmoid 

Transfer function in the output layer Linear function Linear function 

Mean absolute percent deviation 0.060 0.0035 
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P1-3.4.1 Virtual analyser structure definition 

Table 11 presents also the performance criteria used to select the final ANN structure. Those 

criteria were chosen in accordance with the literature in order to select the most suitable 

structure to be employed in the problem in study. As it is possible to note, the ANNs models 

presented a very low mean percentage deviation from the validation data, less than 1%. Finally, 

following the cross-validation method, Figure 39 and Figure 40 present the simulations of those 

models employed as a simulator. Figure 39 presents the results of the neural model identification 

for the purity in the raffinate stream. In Figure 39.a, it can be noted that the five neurons in the 

hidden layer structure presented the smallest absolute error. In Figure 39.b, the validation of the 

final neural model is presented. This model is composed by five neurons in its hidden layer and 

six inputs: four process operating variables and two past predictions. As can be noted in Figure 

39.b, the model predicts the data with a good precision, presenting a mean absolute percentage 

deviation of 0.0035%. The computational time taken in the development of this neural model 

was approximately 10.5 hours.  
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P1-3.4.1 Virtual analyser structure definition 

 

(a) 

 

(b) 

Figure 39 – Raffinate purity ANN model identification: (a) selection of the optimal number of 
neurons in the hidden layer; (b) final model validation. The neural model prediction, red dashed 

lines, cover the process data, black line, during all the represented time. 

 

Figure 40 presents the results of the neural model identification for the purity in the extract 

stream. In Figure 40.a we can note that 17 neurons is the optimal number of neurons in the 
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P1-3.4.1 Virtual analyser structure definition 

hidden layer, presenting the smallest absolute error. In Figure 40.b the validation of the final 

neural model is presented.  

 

(a) 

 

(b) 

Figure 40 – Extract purity ANN model identification: (a) selection of the optimal number of 
neurons in the hidden layer; (b) final model validation. The neural model prediction, red dashed 

lines, cover the process data, black line, during all the represented time. 
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P1-3.4.2 Quasi-Virtual analyser structure definition 

This model has a similar structure to the previous one, albeit with a different number of neurons 

in the hidden layer. The computational time taken in the development of this neural model was 

approximately 38 hours. In order to reduce the computational effort, the number of neurons and 

training trials was reduced, in this case to 40. With 17 neurons, a structure with the minimum 

validation error was found. Even with 40 neurons, an error close to the global minimum error 

showed in Figure 40.a is found and therefore, an evaluation with a larger number of neurons, 

greater than 20, is not necessary. An excessive number of neurons produces a model with a large 

number of parameters, which can lead to problems in the estimation step or to an overfitting 

problem that will degenerate the prediction capability of the final model (Schenker and Agarwal 

1996). After selecting the number of neurons, a final model is developed with this number. 

P1-3.4.2. Quasi-Virtual analyser structure definition 

The system simulation was done with the help of the phenomenological model in order to imitate 

the case where the Q-VOA is implemented in a laboratory plant to do the online monitoring. It 

was considered a dead time of 10 minutes for the measurements. In this way, the process model 

gave the measurements while the Q-VOA made the real-time predictions. At each 10 minutes, 

the Q-VOA evaluates the system steady state, as explained in Section P1-2.4.3. The 

phenomenological model responses are used to compare and verify the Q-VOA efficiency. To do 

this, the process model is kept running in parallel with the Q-VOA system, giving information 

about the real state of the process and allowing the evaluation of the Q-VOA performance. In 

order to make the tuning of the Q-VOA parameters and verify its efficiency, addressing the 

capacity of the proposed system to predict the process dynamic behaviour, a series of 
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P1-3.4.2 Quasi-Virtual analyser structure definition 

perturbations in the process inputs are made. The responses in the performance parameters of 

both the process model and the Q-VOA are presented. Perturbations were performed in all 

variables indicated by the orthogonalization method. Table 12 presents the characteristics of 

each perturbation made. In Section P1-3.4.3 is presented the Q-VOA prediction, measurements, 

measurements used in the Q-VOA actualization and phenomenological model response. 

Table 12 - Step perturbations performed for the Q-VOA tuning. 

Process Variable Perturbation Value (%) Time (min) 

Initial Steady State - - 0 - 31 

Extract flow rate ↓ 15% 31 - 261 

Initial Steady State - - 261 - 391 

Recycling flow rate ↓ 14% 391 - 521 

Initial Steady State - - 521 - 651 

Recycling flow rate ↑ 8% 651 - 881 

Initial Steady State - - 881 - 911 

Feed flow rate ↑ 20% 911 - 1141 

Initial Steady State - - 1141 - 1271 

Eluent flow rate ↓ 17% 1271 - 1401 

Initial Steady State - - 1401 - 1500 
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P1-3.4.2.1 Virtual analyser parameters tuning 

P1-3.4.2.1. Virtual analyser parameters tuning 

The two weights of the virtual analyser must be tuned to ensure the Q-VOA effectiveness. 

Furthermore, the ANN models use the two most recent past outputs as input, meaning that the 

Q-VOA can use the measurement, when necessary, in two different positions. As mentioned in 

Section P1-2.4.1, the present response, 𝑦, depends on the number of past responses evaluated, 

that here is defined as 𝑛𝑦 = 2. It means that the input vector of the VOA will contain 2 past 

outputs, one corresponding to the instant 𝑦(𝑡 − 1), the most recent value, and another 

corresponding to the instant 𝑦(𝑡 − 2), the older value. In this way, there are two possibilities for 

the VOA to use a measurement to actualize itself, either with the most recent value or with the 

older value. Therefore, the way which the VOA uses a measurement can improve or not the Q-

VOA performance. This can be also considered as a tuning parameter of the Q-VOA system, giving 

a total number of three parameters to be tuned.  

The first step is to choose the position that will be used in the Q-VOA actualization. This can be 

easily done through the simulation of the system using both cases. In this way, to evaluate the 

best case, the two options were implemented and the results are presented in Figure 41. In order 

to select the best option, the MAPE criterion was used. The selected option is the one with the 

smaller MAPE. 
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P1-3.4.2.1 Virtual analyser parameters tuning 

 
  

 

(a) 

 

(b) 

Figure 41 - Virtual analyser actualization tuning in the prediction of the purity in the raffinate 
stream: (a) Last measurement used as most recent value; (b) Last measurement used as older 

value.  
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P1-3.4.2.1 Virtual analyser parameters tuning 

 

From Figure 41, we can note that the system responds smoother when the Virtual analyser uses 

the measurement as the older value. However, in this case the system presents a small offset 

when the predictions are compared with the phenomenological model results. On the other side, 

the system responds aggressively with no offset when the VOA uses the measurements as the 

most recent value. This means that the VOA gives a major importance to the immediately past 

value than to the older one. As can be noticed from Figure 41, the best option in this case is to 

use option (a). The disadvantage of this case is that the VOA presents some instability after the 

last perturbation and a delay after the first perturbation. However, this last case shows a global 

result better than the one that uses the older value. The MAPE was computed for the two cases; 

when the measurement is used as the older value, the error was 𝑀𝑃𝐸1 = 8.66 × 10
−4 and, in 

the other case, the error was 𝑀𝑃𝐸1 = 9.51 × 10
−4.  

The difference between the two cases becomes clearer when comparing the results obtained for 

the purity in the extract stream, Figure 42. When the measurement is used as the older value, 

for this system, the actualization is detrimental to the VOA making the analyser lose the process 

response, Figure 42.b. On the other hand, when the actualization is used as the most recent 

value, the VOA can predict the purity and follow the process dynamics with a significant precision. 

Here the MAPE was also computed for the two cases; when the measurement is used as the older 

value, the error was 𝑀𝑃𝐸1 = 2.92 × 10
1  and, in the other case, the error was 𝑀𝑃𝐸1 =

4.51 × 10−2. 
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P1-3.4.2.1 Virtual analyser parameters tuning 

 
  

 

(a) 

 

(b) 

Figure 42 - Virtual analyzer actualization tuning in the prediction of the purity in the extract 
stream: (a) Last measurement used as most recent value; (b) Last measurement used as older 

value.  
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P1-3.4.2.1 Virtual analyser parameters tuning 

After selecting the method by which the VOA should be actualized with the measurement, the 

next step is to define the analyser weights. These weights are used in order for the virtual 

analyser to decide if it is necessary to use the measurement to actualize itself. A bad choice of 

values for these parameters can introduce instability in the system predictions. For example, a 

high value for the weight of the measurement implies that all measurements must be used in the 

VOA actualization. This leads the analyser to a state closer to the measurements than to the real 

process. Consequently, the VOA predictions will have a dead-time equal to the dead-time of the 

measurements. On the other hand, if the weight of the virtual analyser derivative is high, the 

system will give a great importance to the process dynamics, which will introduce an offset in the 

analyser prediction at some points. An intermediate value must be defined in order to obtain a 

good performance of the VOA.  No work was found in the literature that uses a VOA based on 

these considerations. Consequently, there is not an established method to tune the parameters 

of the Q-VOA system considered in this work. A deeper study about this question can be 

developed in the future. Here, a trial and error method was used to define these parameters. The 

values of these parameters were varied from 1 to 10-10 and the system responses were analysed. 

In Figure 43, three cases for different values of the parameters (𝑤𝑚 and 𝑤𝑑) are presented. In 

the first case, Figure 43.a, the results using a value of 𝑤𝑚 larger than the optimal weight for the 

measurement variation are shown; in Figure 43.b, the results using the optimal weights are 

presented while in Figure 43.c the results with a larger than the optimal weight to the VOA 

derivative (𝑤𝑑) are shown. From this figure, it is possible to note that, in the optimal case, the 

VOA actualization eliminates the offset and the system does not show dead time. The optimal 

set of weights found corresponds to values of 𝑤𝑚 =  4.2x10
−4 and 𝑤𝑑 = 2.0x10

−4  . 
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P1-3.4.2.1 Virtual analyser parameters tuning 

 
  

 

(a) 

 

(b) 
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P1-3.4.2.1 Virtual analyser parameters tuning 

 

(c) 

Figure 43 - Virtual analyser tuning in the prediction of the purity in the raffinate stream: (a) 
using a value of 𝒘𝒎 larger than the optimum found; (b) using the optimum values of 𝒘𝒎 and 

𝒘𝒅; (c) using a value of 𝒘𝒅 larger than the optimum found.  

 

For the purity in the extract stream, the VOA system is more sensitive to the tuning parameters. 

The results of the tuning in this case are presented in Figure 44 where it is possible to observe 

that a large weight of the derivative term induces the system to an unstable zone. On the other 

hand, a very small weight introduces a time delay to the system, as seen in the previous case. 

The optimal set of weights found corresponds to 𝑤𝑚 =  1x10
−6    and 𝑤𝑑 =  2x10

−7 . 
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P1-3.4.2.1 Virtual analyser parameters tuning 

 
  

 

(a) 

 

(b) 
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P1-3.4.3 Measurement system test 

 

(c) 

Figure 44 - Virtual analyser tuning in the prediction of the purity in the extract stream: (a) using 
a value of 𝒘𝒎 larger than the optimum; (b) using the optimum values of 𝒘𝒎 and 𝒘𝒅; (c) using a 

value of 𝒘𝒅 larger than the optimum.  

 

P1-3.4.3. Measurement system test 

Once the Q-VOA system is tuned, the final step was to test the measurement system through a 

process simulation. This was done in order to compare the Q-VOA performance with the simple 

VOA. It is expected that the VOA presents a poor performance, since that it is employed as a NOE 

model. A sequence of step perturbations was performed with different durations in order to 

evaluate different dynamic behaviours. It should be noted that a step variation was even done 

to the feed flow rate in order to verify the Q-VOA efficiency under the presence of an external 

perturbation. Table 13 presents the sequence of perturbations done in the system. 



 

P a g e  160 | 311 

 

P1-3.4.3 Measurement system test 

Table 13 - Step perturbations performed on the Q-VOA simulation. 

Process Variable Perturbation Value (%) Time (min) 

Initial Steady State - - 0 - 31 

Extract flow rate ↓ 15% 31 - 261 

Initial Steady State - - 261 - 391 

Recycling flow rate ↓ 4% 391 - 521 

Initial Steady State - - 521 - 651 

Recycling flow rate ↑ 9% 651 - 881 

Initial Steady State - - 881 - 911 

Feed flow rate ↑ 20% 911 - 1141 

Initial Steady State - - 1141 - 1271 

Eluent flow rate ↓ 25% 1271 - 1401 

Initial Steady State - - 1401 - 1500 

Extract flow rate ↓ 15% 1500 - 1540 

Initial Steady State - - 1540 - 1650 

Solid flow rate ↓ 5% 1650 - 1750 

Initial Steady State - - 1750 - 1800 
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P1-3.4.3 Measurement system test 

In Figure 45 and Figure 46 are presented the simulation results for the TMB unit over the 

perturbations presented in Table 13. The quasi-virtual online analyser response is presented in 

Figure 45.a and the virtual analyser is presented in Figure 45.b. Comparing both cases, it is 

possible to note that, after the actualizations, the Q-VOA is conduced to a state closer to the real 

state of the plant, while the VOA presents an offset. The most important point is that, under the 

presence of an external perturbation (an unmeasured perturbation in feed flow rate  from the 

instant 911 to 1141, Table 13), the Q-VOA was capable to identify, with the help of the 

measurements, the new state even not having the information about this input process variation. 

This can be performed by the system actualization through the HPLC measurement. Finally, it is 

possible to note that both the VOA and the Q-VOA represent with precision the process dynamic 

behaviour. 
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P1-3.4.3 Measurement system test 

 
  

 

(a) 

 

 

 

 

(b) 

Figure 45 - Extract stream purity for the measurement system simulation: Q-VOA simulation (a); 
Simple VOA simulation (b). 
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P1-3.4.3 Measurement system test 

 
  

 

(a) 

 

 

 

 

(b) 

Figure 46- Raffinate stream purity for the measurement system simulation: Q-VOA simulation 
(a); Simple VOA simulation (b). 

 

A further analysis can be done through the relative deviation of both systems, with and without 

measurement actualization. In order to evaluate the system efficiency, Figure 47 and Figure 48 



 

P a g e  164 | 311 

 

P1-3.4.3 Measurement system test 

show the relative deviations in the case of the purities in extract stream and in raffinate stream 

respectively. In those figures, the predictions of the Q-VOA and VOA are evaluated in terms of 

deviation from the phenomenological model predictions. Since the model was previously 

validated through experiments, it can be a reliable source of information about the process 

behaviour in real time. Therefore, the phenomenological model dynamics is taken as reference 

to the analysis of the methods here proposed. Hence, as closer as to the zero deviation for longer 

time, the better is the performance of the methods here evaluated. This information can be 

verified graphically in Figure 47 and Figure 48.   
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P1-3.4.3 Measurement system test 

  

 

(a) 

 

(b) 

Figure 47 - Relative deviation of the purity in extract between the system prediction and the 
process response over the simulation time: Q-VOA (a); simple VOA (b). 

 

From Figure 47 it is possible to note that the Q-VOA is capable of keeping the process prediction 

closer to the process response for longer than the simple VOA case. This shows the reliability of 



 

P a g e  166 | 311 

 

P1-3.4.3 Measurement system test 

the measurement system and the improvement achieved by the Q-VOA when compared to the 

simple VOA.  

  

 

(a) 

 

(b)  

Figure 48- Relative deviation of the purity in raffinate between the system prediction and the 
process response over the simulation time: Q-VOA (a); simple VOA case (b). 
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P1-3.5 TMB design, optimization and determination of operational confidence regions 
through HPSO-TVAC-MSR 

From Figure 48 it is also possible to note that the Q-VOA can keep the process prediction closer 

to the process response for longer than the simple VOA case. In this case, the differences are 

smaller than the previous ones, but the Q-VOA still has a better prediction than the simple VOA. 

The greater error observed in the simple VOA structure is due to its wrong application, since that 

it was developed as a NARX model and employed as a predictor. However, it is the usual approach 

in the literature, and in some cases the error can be neglected. 

P1-3.5. TMB design, optimization and determination of 

operational confidence regions through HPSO-TVAC-MSR  

P1-3.5.1. HPSO-TVAC-MSR method validation: 

Benchmark functions tests 

In this section, it is presented a series of tests that were done with benchmark functions in order 

to evaluate the efficiency of the improved HPSO-TVAC and compare its results with the previous 

techniques presented in the literature. In all the cases, the evaluation of the confidence region 

was done considering a confidence interval equal to 95%, 𝛼 = 0.95, and the method was ran 10 

times for each case and the average result is presented. The HPSO-TVAC parameters were set 

equal to 𝑐1𝑖 = 2.5, 𝑐1𝑓 = 0.5, 𝑐2𝑖 = 0.5 and 𝑐2𝑓 = 2.5. The numbers of particles and iterations 

were set in accordance with each case in order to do a fair comparison with the literature. 

The first two cases deal with parameter estimation problems and evaluation of the parameters 

confidence regions. These two cases were applied by Schwaab et al., (2008) to test the method 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

presented in their work. Here, those two functions were used with the same goal. The results 

obtained through the method here proposed and the results of Schwaab et al. (2008) were 

compared in order to verify the consistence of the present method. For this purpose, the same 

objective function used by the referred authors was used, which is the well-known least-squares 

function. 

The first function tested is a linear model with two parameters, a very simple case of parameter 

estimation, expressed as: 

𝑦 = 𝜃1𝑥 + 𝜃2 (82) 

This first step was taken in order to evaluate the confidence region construction by the method 

here presented. The data used to estimate the parameters are presented in Table 14. 

Table 14 - Parameter estimation data for Equation (82). 

𝑥 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

𝑦 9.92 16.89 17.12 26.03 30.71 33.28 39.83 42.44 50.44 53.63 

 

Figure 49 - Confidence region and objective function surface for Equation (82).Figure 49 presents 

the parameters confidence region and objective function surface. From the objective function 

surface, it is possible to note that the PSO was capable of evaluating a vast region and finding the 

minimum value of the objective function while its results provide important information to draw 

the parameters confidence region in an efficient way.  
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

 

Figure 49 - Confidence region and objective function surface for Equation (82). 

 

The second function is a nonlinear model that represents a first-order irreversible reaction in a 

batch stirred tank. This model represents the variation of oxygen demand through time in a 

biochemical system. This function is expressed as:  

𝑦 = 𝜃1(1 − 𝑒
−𝜃2𝑥) (83) 

The data used to estimate the parameters are presented in Table 15. 

Table 15 - Parameter estimation data for equation (83). 

𝑥 1.0 2.0 3.0 4.0 5.0 7.0 

𝑦 8.3 10.3 19.0 16.0 15.6 19.8 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

Figure 50 presents the parameters confidence region and objective function surface. From the 

objective function surface it is again possible to note that the PSO was capable of evaluating a 

vast region and finding the minimum value of the objective function. In this case, the confidence 

region presents an unusual shape, as it represents a nonlinear model.  

 

Figure 50 - Confidence region and objective function surface for Equation (83). 

 

Table 16 presents the values of the functions parameters (𝜃1 and 𝜃2), for each case previously 

presented (Equation 82 and Equation 83) and also the value obtained for the minimum of the 

objective function in each case. 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

Table 16 - Comparison between the results obtained with the method here presented and by 
Schwaab et al. (2008). 

  
Schwaab et al., (2008) 

(𝑘 = 100, 𝑝 = 20) 
Improved HPSO- TVAC 

(𝑘 = 100, 𝑝 = 20, 𝑅 = 1) 

𝑦 = 𝜃1𝑥 + 𝜃2 

𝜃1 4.85 4. 84 

𝜃2 5.28 5.40 

𝑓𝑜𝑏 20.80 20.75 

𝑦 = 𝜃1(1 − 𝑒
−𝜃2𝑥) 

𝜃1 19.15 19.14 

𝜃2 0.5273 0.5311 

𝑓𝑜𝑏 26.00 26.00 

 

From Table 16 it is possible to note that the improved PSO-TVAC was able to find results very 

close to the ones found by Schwaab et al. (2008); for the first case, the method was able to find 

a slightly better value of the objective function.  

Then, two more benchmark functions were employed in order to evaluate the efficiency of the 

method here proposed with the objective of evaluating the performance of the method dealing 

with dynamic multimodal landscapes and confidence region estimation for multiple minima. The 

same functions were employed by Koduru et al. (2007) to evaluate their proposed method.  

The next equation represents a model of a biological organism, which depends on two 

independent variables. This case is again a parameter estimation case and the model can be 

expressed as: 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

𝑦 =
1

(1 + (𝑥1 − 𝜃1)2)(1 + (𝑥2 − 𝜃2)2)
 (84) 

The data used to estimate the parameters are presented in Table 17.  

Table 17 - Parameter estimation data for Equation (84). 

𝑥1 15 15 20 20 

𝑥2 15 20 15 20 

𝑦 0.6 0.7 0.7 0.8 

 

Figure 51 presents the parameters confidence region and objective function surface. From the 

objective function surface, it is possible to note a very irregular region. The PSO was able to cover 

a vast region and all the minimum points of the objective function, including the global minimum, 

were found. Comparing these results with the C-PSO presented by Koduru et al. (2007), it is 

possible to note that the searching region mutation here proposed is an efficient improvement 

in the method, as it was capable of identifying all the minimum points of the function, which was 

not achieved in the referred work with the PSO. However, the method needs to be better tuned 

in order to improve the drawing of the confidence region, which is not the focus of the present 

evaluation. The initial search region was defined within 𝑅1,𝑚𝑖𝑛 = [13 13] and 𝑅1,𝑚𝑎𝑥 = [16 16] 

and expanded ten times until 𝑅𝑓,𝑚𝑖𝑛 = [13 13] and 𝑅𝑓,𝑚𝑎𝑥 = [25.6 26.6] with 𝑘 = 200 and  𝑝 =

40. 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

 

Figure 51 - Confidence region and objective function surface for Equation (84). 

 

The last benchmark equation represents another model of a biological organism. This case is 

again a parameter estimation case and the model can be expressed as: 

𝑦 =
𝑒𝜃1𝑥

(𝑒𝜃2 + 𝑥)
 (85) 

The data used to estimate the parameters are presented in Table 18.  

Table 18 - Parameter estimation data for Equation (85). 

𝑥 0.9 0.9 1 1 

𝑦 0.4 0.55 0.4 0.6 
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P1-3.5.1 HPSO-TVAC-MSR method validation: Benchmark functions tests 

Figure 52 presents the parameters confidence region and objective function surface. Once again, 

the objective function surface is very irregular. In this case, the improved HPSO-TVAC presents 

an even more efficient result. It was able to cover a vast region and identify the minimum points 

of the objective function, including the global minimum. Furthermore, the method was able to 

draw all the confidence regions of each minimum with significant precision. Comparing these 

results with the C-PSO presented by Koduru et al. (2007), again it is possible to note that the 

searching region mutation here proposed is an efficient improvement in the method. The initial 

search region employed was 𝑅1,𝑚𝑖𝑛 = [0 0] and 𝑅1,𝑚𝑎𝑥 = [0.5 0.5] which was expanded ten 

times until 𝑅𝑓,𝑚𝑖𝑛 = [0 0] and 𝑅𝑓,𝑚𝑎𝑥 = [4.875 4.875 ]. In this case, it is possible to see in the 

centre of the figure a very dense zone (0.5 < 𝜃1 < 1.5 and 0.5 < 𝜃2 < 1.5); this is one effect of 

the search region expansion, that was slow at the beginning to ensure that the method could 

describe well the surface and confidence region.  

 

Figure 52 - Confidence region and objective function surface for Equation (85). 
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P1-3.5.2 TMB optimal design 

P1-3.5.2. TMB optimal design 

In this section, the methodologies previously presented are applied in order to identify the 

optimal designs of the TMB unit and evaluate the operating confidence regions. The design of a 

TMB unit consists in the definition of a set of flow rates which will lead to the desired separation. 

Thus, the HPSO-TVAC with the proposed modification was applied in order to identify the set of 

recycle flow rate (𝑄𝐼𝑉), extract flow rate (𝑄𝑋), feed flow rate (𝑄𝐹), eluent flow rate (𝑄𝐸) and 

solid flow rate (𝑄𝑆), that will lead to minimum points of the objective function presented in 

Section P1-2.5.1 and the requirements described in the next subsections where different 

scenarios are considered.  

The confidence regions and objective function surfaces for all scenarios for a confidence level of 

99%, the likelihood confidence region, are also presented. Those regions are drawn from the 

particles population after the optimization and following the methodology presented in Section 

P1-2.5.2. This can be an important tool for the process operation, making the process control and 

management more flexible. Concomitantly, the elliptical confidence regions were drawn through 

statistical test with 99% of confidence interval. 

In the following subsections three different scenarios of design and optimization are presented. 

The first one refers to a classical approach, where the goal is to find the process optimal operating 

conditions under the desirable conditions of purities and recoveries. Then, the second case, 

presents a multi-optimal points optimization, where the goal is to find the set of different 

operating conditions in which the process can operate, providing different values of purities and 

recoveries. Finally, in the last scenario, physical limitations are introduced in the process design. 
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P1-3.5.2.1 First scenario – Process design for minimum purities and recoveries of 95% 

In this last case, limitations in the operating regions of the pumps are considered in order to find 

the process optimal operating points.   

P1-3.5.2.1. First scenario – Process design for minimum purities and 

recoveries of 95%  

The present scenario has the objective of finding the process optimal operating conditions for a 

minimum requirement in the purities and recoveries of 95%. This scenario follows a similar goal 

as when these types of units are designed through the triangle theory.  

In order to gradually verify a different range of operating conditions (recycle flow rate(𝑄𝐼𝑉), 

extract flow rate (𝑄𝑋), feed flow rate (𝑄𝐹), eluent flow rate (𝑄𝐸) and solid flow rate (𝑄𝑆), 

respectively) the initial search region was set equal to 𝑅1,𝑚𝑖𝑛 = [1, 1, 1, 1, 1] and 𝑅1,𝑚𝑎𝑥 =

[18, 15, 5, 10, 16] and expanded until  𝑅𝑓,𝑚𝑎𝑥 = [36, 30, 10, 20, 32]. A number of 100 particles 

and a maximum of 600 iterations were used in this optimization. 

Table 19 and Table 20 present the results of the optimal point found by the improved HPSO-

TVAC; this result corresponds to the smallest local minimum found. Those tables also present the 

value obtained previously in the literature for the design of the same system with the triangle 

theory (Pais et al. 1998).  

From Table 19 and Table 20, it is possible to note that the operating point found by the method 

here proposed corresponds to a productivity of approximately two times more than the value of 

Pais work (Pais et al. 1998), while the optimal eluent consumption is approximately half of the 

value provided by the triangle theory. Furthermore, from the range of values (maximum and 
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P1-3.5.2.1 First scenario – Process design for minimum purities and recoveries of 95% 

minimum) obtained by the 99% confidence interval, it can be seen that the productivity and 

eluent consumption are over and below the triangle theory values respectively. On the other 

hand, for the optimal point, the obtained purities are lower than the values obtained by the 

triangle theory. This is because 95% was the minimum value imposed in the fob constraints for 

the purity. This was also the value used to design the separation region in Pais et al. work (Pais 

et al. 1997, 1998).  

Table 19 - Optimal unit design comparison, between the present work and the Triangle theory 
approach by Pais et al. (1998). 

 Optimal Point 

 Value 
Standard 
Deviation 

Triangle theory 
Pais et al. (1998) 

𝑄𝐼𝑉 (ml/min) 22.821 0.979 27.950 

𝑄𝑋 (ml/min) 14.332 0.382 17.980 

𝑄𝐹 (ml/min) 6.994 0.172 3.640 

𝑄𝐸 (ml/min) 14.585 1.135 21.450 

𝑄𝑆 (ml/min) 9.653 0.118 11.150 

𝑓𝑜𝑏 0.931 0.001 - 
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P1-3.5.2.1 First scenario – Process design for minimum purities and recoveries of 95% 

Table 20 - Optimal unit performance parameters, comparison between the present work and 
Triangle theory approach by Pais et al. (1998). 

 Optimal Point 

 

Value 
99% confidence region 

Triangle theory 
Pais et al. (1998) 

 Maximum Minimum Value 

𝑃𝑢𝑟 (%) 95.000 99.700 95.000 99.300 

𝑃𝑢𝑥 (%) 95.000 99.100 95.000 97.600 

𝑅𝑒𝑐𝑟 (%) 95.100 99.600 95.000 97.600 

𝑅𝑒𝑐𝑥 (%) 95.400 100.000 95.400 99.300 

𝑃𝑟 (g/day l of bed) 126.011 126.836 71.416 61.200 

𝐸𝑐 (l/g) 0.540 0.864 0.528 1.190 

 

Figure 53 and Figure 54 present the confidence regions and objective function map for the 

operating variables 𝑄𝑆/𝑄𝑒, 𝑄𝑆/𝑄𝑓 and 𝑄𝑆/𝑄𝑋, 𝑄𝑆/𝑄𝐼𝑉 respectively surface for a confidence level 

of 99%. The regions were drawn from the particles population after the optimization and 

following the methodology presented in Section P1-2.5.2. The method was able to identify the 

local minimum points and define the confidence region. Hence, for the operating point presented 

in Table 19, the confidence region will present the set of operating variables that will keep the 

process in conditions of purity and recovery over 95% and inside the intervals of productivity and 

eluent consumption presented in Table 20. One limitation of the present method is that the 

objective function with penalties, defined in Section P1-2.5.1, leads to a loss of a considerable 
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P1-3.5.2.1 First scenario – Process design for minimum purities and recoveries of 95% 

number of particles, as can be noted in the 3D graphics.  This happens because slight changes 

around the optimal point will lead to conditions where the purity requirements are not met.  

 

Figure 53 - Scenario 1: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑒 and 𝑄𝑆/𝑄𝑓. 
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P1-3.5.2.1 First scenario – Process design for minimum purities and recoveries of 95% 

 

Figure 54 - Scenario 1: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑋 and 𝑄𝑆/𝑄𝐼𝑉. 

 

From Figure 53 and Figure 54 it is possible to note that the elliptical confidence region does not 

represent the likelihood confidence region with precision. This happens due to the nonlinear 

nature of the model leading to a poor representation of the confidence region through the 

elliptical representation based on statistics test. Through the shape of the confidence regions it 

is possible to verify the nonlinearities and strong correlation between the solid flow rate, 𝑄𝑠, and 

the flow rate in the section 4, 𝑄𝐼𝑉, and the extract flow rate, 𝑄𝑋, which can be verified by the 

model equations in Section P1-2.1.  

Finally, through Figure 53 and Figure 54 it is possible to define a set of operating conditions which 

obey the purities and recoveries restrictions. To do this, first it is necessary to choose a pair of 

flow rates inside of a confidence region; for example, choosing in Figure 54 a pair of  𝑄𝑆/𝑄𝑒, in 
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P1-3.5.2.2 Second scenario – Process design for 95%, 97% and 99% of purities and 
recoveries 

this way with a value of 𝑄𝑆 fixed, it is possible to define the other variables through the remaining 

regions presented in the other graphics, which leads to the final set of operating conditions inside 

the group of possible sets. This is one of the main advantages of this method, the capacity of 

drawing the possible region of operating conditions, by mapping all process operating conditions 

that meet the imposed constraints. 

P1-3.5.2.2. Second scenario – Process design for 95%, 97% and 99% of 

purities and recoveries 

The present scenario has as objective to find the process optimal operating conditions for 

different minimum requirements in the purities and recoveries, 95%, 97% and 99% respectively. 

This will lead to different local minimum values of the objective function during the optimization 

step, which as previously shown the modified PSO is capable of identifying. This scenario has the 

goal of providing information about the different zones in which the process can be operated to 

produce products with different requirements.  

For this case, in order to gradually verify a different range of operating conditions (recycle flow 

rate(𝑄𝐼𝑉), extract flow rate (𝑄𝑋), feed flow rate (𝑄𝐹), eluent flow rate (𝑄𝐸) and solid flow rate 

(𝑄𝑆), respectively) the initial search region was set equal to 𝑅1,𝑚𝑖𝑛 = [1, 1, 1, 1, 1] and 𝑅1,𝑚𝑎𝑥 =

[18, 15, 5, 10, 16] and expanded until  𝑅𝑓,𝑚𝑎𝑥 = [36, 30, 10, 20, 32]. A number of 100 particles 

and a maximum of 600 iterations were used in this optimization. Table 21 and Table 22 present 

the results of the optimal point found by the improved HPSO-TVAC; this result corresponds to 

the smallest local minimum found.  
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P1-3.5.2.2 Second scenario – Process design for 95%, 97% and 99% of purities and 
recoveries 

 

Table 21 - Optimal unit design for different requirements of purities and recoveries. 

 Purity 95% Purity 97% Purity 99% 

 Value Standard Deviation Value Standard Deviation Value Standard Deviation 

𝑄𝐼𝑉(ml/min) 23.749 0.347 19.813 0.509 16.831 0.541 

𝑄𝑋(ml/min) 14.551 0.233 12.814 0.327 11.074 0.341 

𝑄𝐹(ml/min) 7.060 0.317 5.679 0.444 4.180 0.479 

𝑄𝐸(ml/min) 14.908 0.296 13.397 0.412 12.117 0.432 

𝑄𝑆(ml/min) 10.024 0.130 8.341 0.188 7.014 0.199 

𝑓𝑜𝑏 0.933 0.004 1.072 0.009 1.339 0.121 

 

 

Table 22 - Optimal unit performance parameters for different requirements of purities and recoveries. 

 
Purity 95% Purity 97% Purity 99% 

Triangle theory 
(Pais et . al; 

1998) 

 
Optimal 

Point 
Max. Min. Optimal 

Point 
Max. Min. Optimal 

Point 
Max. Min. 

𝑃𝑢𝑟 (%) 95.000 99.300 95.000 97.000 99.600 97.000 99.000 99.300 99.000 99.300 

𝑃𝑢𝑥 (%) 95.000 99.100 95.000 97.000 99.300 97.000 99.000 99.200 99.000 97.600 

𝑅𝑒𝑐𝑟 (%) 95.100 99.300 95.000 97.200 97.900 97.000 99.300 99.800 99.200 97.600 

𝑅𝑒𝑐𝑥 (%) 95.500 100.000 95.500 97.700 99.800 97.000 100.00 100.000 100.000 99.300 

𝑃𝑟 (g/day l 
of bed) 

123.012 123.181 77.099 100.539 100.541 74.468 74.009 74.010 70.995 61.200 

𝐸𝑐 (l/g) 0.528 0.910 0.528 0.579 0.801 0.577 0.672 0.801 0.577 1.190 

 

From Table 21 and Table 22 it is possible to note that the optimizer leads the process to operating 

zones where the flow rates are smaller while the minimum requirements are increased. 
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Furthermore, those regions are stricter as higher are the purities and recoveries, as it would be 

expected. Figure 55 and Figure 56 present the confidence regions and objective function map for 

the operating variables 𝑄𝑆/𝑄𝑒, 𝑄𝑆/𝑄𝑓 and 𝑄𝑆/𝑄𝑋, 𝑄𝑆/𝑄𝐼𝑉 respectively. 

 In the objective function maps, it is possible to note that the particles flow towards a direction 

where the feed flow rate is always progressively increased, the eluent flow rate decreased, but 

the extract and the recycling flow rates start with dispersed values and converge to the optimal 

zone. Those movements are related with the objective function and the process model, since the 

goal is to maximize the productivity and minimize the eluent consumption, while keeping the 

process over the minimum requirements of purities and recoveries. Hence, as expressed in Table 

21, the increase in the feed flow rate and the decrease in the eluent flow rate are related to the 

increase in the production rate and the reduction in the eluent consumption, respectively. 

Finally, in this case scenario, the elliptical confidence regions become an interesting tool. As 

previously stated, the elliptical regions do not represent well the true process confidence regions 

obtained by the likelihood. However, elliptical regions represent a region within the likelihood 

region which respect all the process requirements. In this way, the ellipticals can be used as a 

simplified representation of the operating regions for the different requirements of purities and 

recoveries.  

For the analysis in this point, it is important to remember that the 95% regions include all the 

purities and recoveries  above this value, by its turn the 97% includes all values  above it and in 

the same way the 99%, which can be verified in the Table 21 and Table 22. The main difference 

of the present case to the one presented in the previous section is that, further than just 
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providing  the operating region for values  above 95%, now it is possible to identify the operating 

regions which will lead to a product with higher purities and recoveries. This is important for 

processes where the final product type is related to its purities, which is usual in the fine 

chemicals and pharmaceutical industries. 

 

Figure 55 – Scenario 2: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑒 and 𝑄𝑆/𝑄𝑓. 
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recoveries with pumps limitations 

 

Figure 56 - Scenario 2: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑋 and 𝑄𝑆/𝑄𝐼𝑉. 

P1-3.5.2.3. Third scenario – Process design for a minimum of 95% in 

the purities and recoveries with pumps limitations 

The present scenario has the objective of finding the process optimal operating conditions in the 

presence of limitations in the operating region of the pumps. In this case, it is considered that 

the process pumps can operate only inside of specific regions, which are defined by the search 

regions bellow. This will lead to different local minimum values of the objective function inside 

each operating region of the pump.   

During the optimization, in order to simulate the aforementioned process limitation, four 

different set of searching regions limited by 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 were considered, which are: 𝑅1,𝑚𝑖𝑛 =
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[1, 1, 1, 1, 1] and 𝑅1,𝑚𝑎𝑥 = [28, 20, 10, 20, 25]; 𝑅2,𝑚𝑖𝑛 = [14, 10, 5, 10, 12.5] and 𝑅2,𝑚𝑎𝑥 =

[32, 23, 11, 23, 29]; 𝑅3,𝑚𝑖𝑛 = [16.5, 12.5, 5.5, 12.5, 14.5] and 𝑅3,𝑚𝑎𝑥 = [37, 26,13, 26, 33] ]; 

𝑅4,𝑚𝑖𝑛 = [18.5, 13,6.5, 13, 16.5] and 𝑅4,𝑚𝑎𝑥 = [42, 30,15, 30, 40], where each element of the 

region vector is recycle flow rate(𝑄𝐼𝑉), extract flow rate (𝑄𝑋), feed flow rate (𝑄𝐹), eluent flow 

rate (𝑄𝐸) and solid flow rate (𝑄𝑆), respectively. A number of 100 particles and a maximum of 

400 iterations were used in this optimization.  

Table 23 and Table 24 present the results of the optimal point found by the improved HPSO-

TVAC; these results correspond to the smallest local minimum found.  

Table 23 - Optimal unit design for the different operating regions. 

 
Operating region 1 Operating region 2 Operating region 3 

 
Value Standard Deviation Value Standard Deviation Value Standard Deviation 

𝑄𝐼𝑉(ml/min) 22.821 0.609 28.953 0.488 32.815 0.076 

𝑄𝑋(ml/min) 14.333 0.200 19.740 0.268 21.751 0.046 

𝑄𝐹(ml/min) 6.995 0.206 8.066 0.192 7.846 0.139 

𝑄𝐸(ml/min) 14.586 0.240 21.707 0.376 26.216 0.066 

𝑄𝑆(ml/min) 9.653 0.192 12.513 0.048 14.566 0.057 

𝑓𝑜𝑏 0.932 0.004 0.984 0.009 1.106 0.099 

 

 



 

P a g e  187 | 311 

 

P1-3.5.2.3 Third scenario – Process design for a minimum of 95% in the purities and 
recoveries with pumps limitations 

Table 24 - Optimal unit performance parameters for the different operating regions. 

 Operating region 1 Operating region 2 Operating region 3 

 Optimal 
Point 

Max. Min. 
Optimal 

Point 
Max. Min. 

Optimal 
Point 

Max. Min. 

𝑃𝑢𝑟 (%) 95.000 99.800 95.000 95.000 98.100 95.000 95.000 95.800 95.000 

𝑃𝑢𝑥 (%) 95.000 99.200 95.000 96.000 97.800 95.000 95.000 95.800 95.000 

𝑅𝑒𝑐𝑟 (%) 95.100 99.600 95.000 95.000 97.900 95.000 95.000 95.800 95.000 

𝑅𝑒𝑐𝑥 (%) 95.500 100.900 95.400 95.500 98.800 95.000 95.500 96.300 95.500 

𝑃𝑟 
(g/day l 
of bed) 

123.012 123.836 71.416 142.798 142.798 102.516 138.907 138.907 129.415 

𝐸𝑐 (l/g) 0.528 0.864 0.528 0.636 0.853 0.532 0.749 0.853 0.532 

 

Figure 57 and Figure 58 present the confidence regions and objective function map for the 

operating variables 𝑄𝑆/𝑄𝑒, 𝑄𝑆/𝑄𝑓 and 𝑄𝑆/𝑄𝑋, 𝑄𝑆/𝑄𝐼𝑉 respectively. In the present case, 

discontinuities in the production are simulated. In this way, it were expected different operating 

points for each operating region. As presented in the following figures and previous tables, the 

optimization method found three optimal points. Within the three first regions 𝑅1, 𝑅2 and 𝑅3. 

However, there was no minimum point found inside of the region 𝑅4. This happens due to the 

fact that for the high flow rate regions, for the present case, it is not possible to meet the 

minimum requirements for purities and recoveries. Furthermore, over those regions the process 

eluent consumption starts to be significantly high. This can be verified in Figure 57 and Figure 58, 

where the feasible operating regions are reduced as the processes approximate high values of 

flow rates. 

 



 

P a g e  188 | 311 

 

P1-3.5.2.3 Third scenario – Process design for a minimum of 95% in the purities and 
recoveries with pumps limitations 

 
Figure 57 – Scenario 3: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑒 and 𝑄𝑆/𝑄𝑓. 

 

Figure 58 - Scenario 3: Likelihood confidence regions, elliptical confidence region (dashed lines) 
and objective function map for the operating variables  𝑄𝑆/𝑄𝑋 and 𝑄𝑆/𝑄𝐼𝑉. 
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P1-4. Conclusions 

This part of the present thesis had the focus on the mathematical aspects of the systems in study, 

TMB and SMB units. Firstly, a method based on the Gram-Schmidt Orthogonalization was applied 

to a True Moving Bed system in order to analyze the influence of its operating variables in the 

process response. This method was able to take in consideration the dynamics of the system and 

indicate the most important process operating variable. The method also used the recovery and 

the eluent consumption as performance indicators besides the purity. The results obtained for 

the case study considered showed the following order from the most to the less important 

operating variable: recycling flow rate (𝑄𝐼𝑉), solid flow rate (𝑄𝑠), eluent flow rate (𝑄𝐸), extract 

flow rate (𝑄𝑥), feed flow rate (𝑄𝐹), and feed concentration (𝐶𝐹). This characterization is an 

essential step towards the development of further works in the SMB research field, such as 

processes design, optimization and control. 

A step perturbation analysis was conducted in the TMB system in order to check the 

orthogonalization method response. The graphical analysis demonstrated that the variables 

indicated by the orthogonalization method as having the greatest impact in the process were the 

ones for which higher deviation in the products purity and recovery were observed. Furthermore, 

significant changes in the separation region and operating points position were also observed for 

these variables. The graphical analysis revealed an interesting case about the dynamic behavior 

of the TMB system. Through the step perturbation it was possible to see that perturbations in 

some process variables result in a system inverse response in recovery. These results also show 

the consistence of the orthogonalization based method. 
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It was also observed that, even for perturbations of lower magnitude for which, at steady state, 

only minor deviations are observed, the system still presents the same dynamic behavior and, 

for some instances, it presents strong deviations from its steady state, of the order of 10%. This 

means that the dynamics of this system cannot be ignored.  

Since this method is based on the sensitivity Matrix, which depends only on the variations of the 

process operating variables and on the observed variation of the process responses, it is possible 

to apply it even without a mathematical model of the system. For example, the analysis can be 

done directly in the plant by performing perturbations on the operating variables and measuring 

the process responses. The sensitivity matrix can be constructed and the system analysis can be 

done. The method is capable of making an overall analysis of the system taking in consideration 

not only the purity, but all desired performance parameters over its dynamic behavior. The 

method is therefore a powerful tool to analyze efficiently the system behavior and provide 

consistent information about the process operating variables. This can be easily employed in 

more complex systems to develop studies in the field of system optimal design, control and 

optimization. 

Afterwards, the orthogonalization method was employed to analyse two SMB units, one with 4 

and another with 8 columns, simultaneously with a step perturbation analysis. Analysing the 

impact of the switching time it was observed that, after the orthogonalization around this 

variable, there was a divergence in results of the SMB-8 unit compared to the TMB and SMB-4 

units. For the SMB-8 a small correlation between this variable and the remaining was found while 

for the TMB and SMB-4 large correlations were found. The results indicate that the correlation 
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between the switching time and the remaining operating variables decreases with the decrease 

of the switching time value. From this point of view, the SMB-4 resembles more the TMB unit 

than the SMB-8. These conclusions were confirmed by the graphical analysis of the simulation 

results of perturbations induced in several operating variables.  

Furthermore, analysing the processes responses to the other operating variables, it was possible 

to observe, for some cases, a large inverse response of the SMB processes. This indicates that, 

for a period of time, the SMB processes have different dynamic behaviour when compared to the 

TMB.  

It is therefore possible to conclude that TMB/SMB approximation is valid only for restricted 

conditions for which the regeneration and separation regions are not violated and also that the 

approximation is not valid in the dynamic regime.  

However, industrial operation of these units are subject to perturbations, which can momentarily 

lead the process to regions outside the regeneration/separation zones.  

After evaluating the efficiency of the orthogonalization method, the method was applied in the 

identification of the process manipulated variables of a control system strategy of a TMB unit. 

The method proved to be suitable to be applied in this case, since it takes in consideration the 

possible correlations between the operating variables, and it is capable of ranking those variables 

in descending order of their influence in the process controlled variables.  

A control system was developed with the objective of controlling the purities and recoveries of 

an SMB unit used for the separation of a bi-naphthol enantiomers mixture using a 5-

dinitrobenzoyl phenylglycine bonded to silica gel as adsorbent. The objective was to apply an 
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advanced control technique based on a linear model. However, it was found that the process 

presents an unusual dynamic behaviour becoming more complex as the process gets closer to its 

optimal point. At the optimal point, it is not possible to identify a process transfer function 

through the traditional way, using the process reaction curve. It was then proposed the division 

of the process response in two local points, one corresponding to the process response to a 

perturbation equal to an increase in its operating variables and another corresponding to a 

decrease in its operating variables.  

In order to validate the approach here proposed for the identification of the global transfer 

function, the process was simulated when operating in a non-optimal point and three matrices 

of transfer functions were identified. One matrix using the traditional way, and two other using 

the method here proposed. After the identification, two control systems based on a model 

predictive control were developed and the process real time control was simulated using the 

phenomenological model as the plant simulator. Both control systems showed to be capable of 

controlling the process efficiently. Furthermore, the two controllers presented a very similar 

behaviour and, consequently, it was possible to conclude that the methodology proposed for the 

identification of the process transfer function was validated. 

Finally, a set of transfer functions was identified at the optimal point through the alternative 

methodology proposed in this work. The transfer functions were identified to the specific system 

in study; however, the strategy here proposed can be applied in the transfer function 

identification of different configurations of TMB/SMB units. A control system was built and the 

controller was applied in a real time simulation. The control system showed efficient results in all 
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simulated scenarios. It was possible to conclude that, with this methodology, it is possible to 

control the process at its optimal operating conditions through a process transfer function, which 

cannot be done with the traditional methodology. In order to evaluate the strategy here 

proposed, a final simulation was performed, where a model of an SMB with four columns were 

used as plant and the transfer function identified for the optimal condition of the TMB unit as 

prediction model in the MPC. It was possible to conclude that, under the optimal conditions, the 

controller was able to keep the SMB under the setpoint. Furthermore, it was possible to conclude 

that the orthogonalization method is a powerful tool for process control when applied in the 

identification of the set of process manipulated variables. 

Then, the development of a Virtual Online Analyzer was presented to make real time predictions 

of the purities in the raffinate and extract streams of an equivalent True Moving Bed unit, and an 

extension of a virtual on-line analyser (VOA) is proposed in order to improve the analysis system. 

This extension consists in the implementation of a system that uses two artificial neural network 

(ANN) models concomitantly with an offline measurement system. The system proposed in this 

work was named Quasi-Virtual Online Analyser because of its mixed nature, offline 

measurement, and online prediction. 

The two ANN models that compose the Q-VOA system were developed based on the process 

data generated with the phenomenological model previously validated. A MISO system of 

Artificial Neural Networks was proposed to build the VOA analyser. The main structure of the 

neural model was based on a NARX approach to keep the system dynamics in the empirical 

model. The system inputs were chosen through a dynamic analysis done with the 
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orthogonalization method. This analysis indicated four process operating variables as the main 

variables with most influence on the purities response.  

The Q-VOA system here proposed is composed by three parameters that were tuned to obtain 

the best system representation. The results show that the Q-VOA can predict with reasonable 

accuracy the SMB system dynamics and steady behaviour as simulated by the phenomenological 

model. The results of the Q-VOA were compared with the simple VOA results. Through this 

comparison, it was possible to conclude that the Q-VOA can reduce the system errors and keep 

the prediction closer to the process real response that, in this case, was the phenomenological 

model response. Finally, this work shows that the Q-VOA presents efficiency even under the 

presence of non-measured perturbations. 

Finally, an improved Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying 

Acceleration Coefficients and Mutable Searching Region concomitantly with an adapted method 

to define the operating variables confidence region were introduced. Those methods were 

applied in the design and optimization of a True Moving Bed unit where a chiral separation of a 

bi-naphthol enantiomers mixture using a 5-dinitrobenzoyl phenylglycine bonded to silica gel as 

adsorbent is processed.  

First, the proposed methodology was applied in a series of standard cases in order to evaluate 

the efficiency of this approach. The method showed good results when applied to the benchmark 

functions and compared with traditional methods found in the literature. Once the consistence 

of the method was tested, it was possible to apply it to the case in study, the design and 

optimization of a TMB unit. 
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Three different scenarios were simulated here in order to verify the consistency and efficiency of 

the method. In the first case, a traditional TMB unit design was tackled and its results were 

compared to the ones obtained by the triangle theory, the traditional design method for these 

types of units. The method was capable of identifying an operating region in which the process 

can be operated with purities and recoveries above 95%, productivity two times higher and a 

solvent consumption 30% lower than the operating point provided by the triangle theory. 

In the second case, a further discretization of the operating regions was performed, through the 

variation of the minimum requirements of purities and recoveries during the optimization. In this 

point, the method proved to be able to identify the sub regions, within the 99% confidence 

operating regions where the process can be operated producing purities above the minimum 

products requirements. This is important for processes where the final product type is related to 

its purity, which is usual in the fine chemicals and pharmaceutical industries. 

Finally, it was simulated the situation where the unit design is constrained by instruments 

limitations. In this case, the pumps capacities were limited and the process was designed for four 

different possible operating regions. In this last scenario, the method was able to identify all the 

feasible operating regions where the process can be operated meeting the minimum recoveries 

and purities requirements. 

It is possible to conclude that the method can efficiently solve the problem of the optimal design 

of TMB units while providing a map of the process possible operating regions, which is a useful 

tool for the process control and operation.  
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One of the main advantages of this method is the possibility of tracking all possible operating 

regimes of the unit that meet a given process requirement. The main limitation of this method is 

that the objective function here defined lead to losses of a considerable number of particles 

during the simulation, since it makes use of penalties and when the particles fly over the penalty 

region they are eliminated from the iteration. This limitation must be deeper studied, which can 

lead to improvements in the method computational effort.  

By its turn, the present method is suitable for different types of objective functions, which can 

include economic factors, such as the cost of the eluent and price of the product, leading to a 

robust and efficient unit design and optimization. Furthermore, the method can be applied to 

different and more complex separation systems and it is independent of the process 

characteristics such as the mass transfer resistance. 
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Part 2 – N-Propyl Propionate experimental studies and 

process modelling
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P2-1. Introduction 

This part of the work is dedicated to the study of the n-Propyl Propionate reaction system, 

leading to its production in a True Moving Bed Reactor unit. In this chapter a brief 

introduction of the main topics covered in this part of the work is presented. 

P2-1.1. N-Propyl Propionate 

The use in large scale of readily biodegradable and environmentally friendly solvents is limited 

by the high cost of these products in comparison with the common solvents. Their high cost is 

normally associated with their production that is usually done through traditional routes which 

are expensive and generate several ecological impacts. The research about alternative routes of 

production of these solvents is an important challenge to be addressed in order to make them 

more prone to large scale use in industry. 

As pointed out in the Introduction of this thesis, in the field of industrial solvents, n-Propyl 

Propionate (ProPro) can be considered an alternative solvent with environmental advantages. 

The ProPro can be produced by esterification, which is a reversible reaction in which 1-Propanol 

(POH) reacts with Propionic Acid (AcidPro) producing water as a by-product. This reaction system 

presents a complex Vapor Liquid Equilibrium with four azeotropes; among those, two are 

homogeneous azeotropes (Water/1-Propanol and Water/Propionic Acid) and two are 

heterogeneous azeotropes (Water/n-Propyl Propionate and Water/1-Propanol/n-Propyl 

Propionate). The reaction system can be represented as follows: 
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𝐶3𝐻8𝑂 + 𝐶3𝐻6𝑂2 ↔ 𝐶6𝐻12𝑂2 + 𝐻2𝑂 
 

n-Propyl Propionate is normally produced through a catalytic reaction in liquid phase in a Plug 

Flow Reactor (PFR) which is followed by a separation step in a distillation column. With the 

objective of improving the production process, several works in the literature reported the study 

of the ProPro production through an alternative route applying a multifunctional unit, the 

Reactive Distillation (RD) (Duarte 2006; Altman et al. 2010; Cruz-Díaz et al. 2012; Xu et al. 2014). 

However, the RD route presents some limitations, as the aforementioned system complexity in 

the liquid vapor equilibrium. Furthermore, in those units the outlet streams are composed by a 

mixture of the main product and the non-converted reactants. Thus, those processes present 

difficulty to achieve high purity products. In order to obtain a higher conversion and purity in a 

RD system it is necessary to employ auxiliary units, which increase even more the complexity and 

energy consumption of the process (Altman et al. 2010; Cruz-Díaz et al. 2012; Xu et al. 2014). 

In this way, alternative improvements for ProPro production could be the employment of 

chromatographic separation in the downstream purification step of the Reactive Distillation 

production or in the traditional production route. A further improvement in this process could 

be performing the reaction and separation simultaneously in a continuous chromatographic unit 

like a Simulated Moving Bed Reactor (SMBR). However, there isn´t any work in the literature with 

the focus on the behaviour of this system in a chromatographic unit. This is why the study of the 

chromatographic separation of the compounds of this reaction system could be an important 

contribution. 
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P2-1.2. Chromatographic separation 

Chromatographic separations are considered as one of the most important and powerful 

techniques for continuous separation of complex multicomponent mixtures, and have been 

employed with success in pharmaceutical, food and petrochemical industries (Faria et al. 2014). 

These processes are based on the difference of affinities between the chemical compounds of a  

given fluid mobile phase and a solid stationary phase. The compounds which have higher affinity 

with the solid phase will be more retained than the components with weaker affinity. This results 

in that the different components travel at different velocities along the column. Thus, the 

components separation is promoted, since components are obtained at the column outlet 

stream in increasing order of their affinity to the adsorbent solid phase. Several possible 

combinations of mobile and stationary phases, together with simple configuration, operation and 

scale-up procedures make this technology very versatile, which is one of its major advantages 

(Faria et al. 2014). 

Hence, the employment of chromatographic units seems to be an important point to be explored 

in the field of ProPro production. However, deeper experimental studies and modelling 

developments are necessary to evaluate the eventual benefits that such units may bring to this 

process. One of the objectives of the present work is to study the separation of the non-reactive 

pairs of the compounds involved in the n-Propyl Propionate formation in a fixed bed adsorptive 

column packed with Amberlyst-46 resin, a typical catalyst used in the ProPro synthesis, and in 

this way determine the adsorption equilibrium isotherms. 
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P2-1.3 Uncertainties Evaluation in Chromatography 

 Several papers have been published investigating the application of chromatographic separation 

as an alternative to the synthesis or separation of traditional compounds (Ziyang et al. 2001; 

Pereira et al. 2009a; Faria et al. 2014; Regufe et al. 2016). Thus, there is a consolidated 

methodology in the literature for the validation of chromatographic separation models through 

laboratory experiments. However, it was not found any report about the evaluation of the 

performance of the optimization method used in the parameters estimation step. Furthermore, 

it was also not found any deeper study about the uncertainties evaluation in both laboratory 

experiments and model prediction. As it will be demonstrated in this work, those are important 

points to be addressed as they can have a significant impact in the final results of this procedure. 

Therefore, in parallel to the studies about the ProPro reaction system adsorptive separation, it is 

also objective of the present work to evaluate the efficiency of the optimization method in the 

parameters estimation step, which will be done based on the HPSO-TVAC-MSR presented and 

applied in the first part of this work (Sections P1-2.5 and P1-3.5.1), and to evaluate the 

uncertainties associated with the experiments and model parameters, which are also important 

contributions to the field as it will be shown in the next Section. 

P2-1.3. Uncertainties Evaluation in Chromatography 

Based on the principle that there is no measurement which can provide an absolute and true 

value, the uncertainty is an inherent characteristic of any measurement performed. The Guide to 

the Expression of Uncertainty in Measurement (GUM) defines uncertainty as: “parameter, 

associated with the result of a measurement, that characterizes the dispersion of the values that 

could reasonably be attributed to the measurand” (International Organisation for 
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P2-1.3 Uncertainties Evaluation in Chromatography 

Standardisation 2008).  In this definition, the measurand is an unknown property which is to be 

determined by the measurement; it is composed by a value and a respective character that gives 

meaning to the measurand.  

As mentioned by Konieczka and Namieśnik (2010) there are only a few original papers on the 

metrological characterization of analytical procedures that use chromatographic techniques. In 

the present work the chromatographic analysis is an essential step in the determination of the 

experimental results. Furthermore, there are even fewer works in the literature that perform the 

uncertainty evaluation of chromatographic separation experiments and models. Usually, these 

works are limited to the calculation of the standard deviation (SD) or the relative deviation (RSD) 

(Konieczka and Namieśnik 2010a).  

The evaluation of the uncertainty is a crucial step to characterize properly the experiments and 

model predictions. Furthermore, it leads to a better understanding about the experimental 

results increasing the confidence while applying the experimental data. Hence, it allows reducing 

the number of experiments performed, which are usually done in excessive number in order to 

reduce the experimental error. Normally, each experiment is associated with a long period of 

time mainly related with analytical procedures, with reactants cost and with generation of waste. 

Those factors, with the knowledge of the experiments uncertainties, can be reduced generating 

benefits to the laboratory, researcher and research quality. Moreover, it should be a good 

practice to represent an analytical result according to the values of a continuous random variable, 

as a confidence interval, i.e., the interval likely to include the expected value (Konieczka and 

Namieśnik 2010a). 
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P2-1.4 True Moving Bed Reactor 

Hence, this work has one of its focus on the uncertainty evaluation of the experimental data and 

the model parameters. The parameters uncertainty is determined through the parameters 

confidence region. 

P2-1.4. True Moving Bed Reactor 

Similar to the chromatographical separations units True Moving Bed, presented in the Part 1 of 

this thesis, and based on the same concept, the True Moving Bed Reactor (TMBR) system consists 

in the countercurrent flow of liquid (eluent) and solid phases (adsorbent) that plays the role of 

adsorbent and catalyst at the same time.  The countercurrent movement promotes the 

separation of the components based on their affinity to the phases in play. The liquid phase 

becomes richer in the less retained compound while the more retained compound will be 

dragged by the solid phase, as in the TMB. However, as the solid has also the function of catalyst, 

the contact with it will promote the reaction. Hence, while being produced, the products are 

carried by the phase for which they have more affinity. As the products are being adsorbed, i.e. 

being removed from the reaction medium, it is possible to overcome the equilibrium conversion.  

Considering a simple reversible reaction 𝐴 + 𝐵 ↔ 𝐶 + 𝐷, where 𝐶 is the most retained 

compound and 𝐷 the less retained one, Figure 59 presents a schematic representation of a 

generic TMBR unit. It is possible to observe in Figure 59 that each section of the column must 

accomplish a different role in the separation system. Sections II and III are responsible for the 

reaction and simultaneous separation of the products, while sections I and IV are responsible for 

the regeneration of the adsorbent and eluent respectively. Hence, the Raffinate stream will be 

composed mainly by the compound 𝐷 and the Extract stream by the compound 𝐶.  
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P2-1.4 True Moving Bed Reactor 

Figure 59 - True Moving Bed Reactor unit representation 
As in the TMB case, the movement of the solid phase is not simple to perform. Therefore, the 

Simulated Moving Bed Reactor (SMBR) is presented as a feasible application of the TMBR 

concept. The SMBR, as the Simulated Moving Bed units, is operated through the synchronized 

changing of the positions of the inlet and outlet ports at predefined times, the switching time, 

which simulates the solid phase movement.  

The relationship between the TMBR and SMBR is established through the correlation of the solid 

flow rate and the switching time, which is defined as: 𝑢𝑠 =
𝐿

𝑡
, where 𝐿 is the bed length. Several 

works make use of this relation to apply the TMBR phenomenological model in order to 

characterize a SMBR system (Minceva and Rodrigues 2005; Minceva et al. 2008; Pereira et al. 

2008; Graça et al. 2012; Santos et al. 2015). Furthermore, several studies have been published 
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P2-1.4 True Moving Bed Reactor 

addressing the application of TMBR/SMBR units to systems characterized by equilibrium-limited 

reactions (Son et al. 2011; Faria et al. 2014; Constantino et al. 2015a; Regufe et al. 2016).  

Thus, one of the main objectives of this work is to study the production of the n-Propyl 

Propionate through a True Moving Bed Reactor, presenting this route as one novel alternative to 

the ProPro synthesis. Therefore, a proper design and optimization of the TMBR are the main 

steps to accomplish the aforementioned objective, as previously demonstrated in Part 1. 

However, there is a lack of studies addressing this point for those units. In this way, it is also 

proposed the application of the design method presented in P1-3.5.1 as an alternative method 

for the design of the TMBR unit for the ProPro production, comparing the proposed method with 

the traditional one employed in the literature.
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P2-2. Methods 

As mentioned before, there are no studies about the production of n-Propyl Propionate using an 

adsorption system. In order to study the production of n-Propyl Propionate by a SMBR unit, it is 

first necessary to assess the following points: 

i. Adsorption equilibrium isotherms determination. 

ii. Reaction kinetics study. 

iii. Fixed-bed adsorption and reaction system tests. 

iv. TMBR design and optimization. 

The methodologies used to address the different points of the problem in study are described 

in this chapter. Those are the experimental tests that should be performed in order to 

characterize the ProPro synthesis system, the modelling of the different units in study, i.e. 

the fixed bed chromatographic unit, the fixed bed chromatographic reactor and the TMBR. 

The results obtained from the application of those methods are presented at the end of this 

part in the results chapter.  

P2-2.1. Reaction system 

P2-2.1.1. Reaction kinetics 

As aforementioned, the n-Propyl Propionate is formed by a reversible reaction that can be 

represented as follows: 
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𝑃𝑂𝐻 +  𝑃𝑟𝑜𝐴𝑐
𝑘1
→  𝑃𝑟𝑜𝑃𝑟𝑜 + 𝐻2𝑂 (86) 

𝑃𝑟𝑜𝑃𝑟𝑜 + 𝐻2𝑂
𝑘−1
→ 𝑃𝑂𝐻 +  𝑃𝑟𝑜𝐴𝑐 (87) 

where 𝑘1 is the rate constant of the formation of n-Propyl Propionate and 𝑘−1 is the rate constant 

of the consumption of n-Propyl Propionate. Considering the non-ideality of the liquid phase and 

considering a pseudo-homogeneous model, which leads to the assumption that the behaviour of 

the reactive mixture in presence of a heterogeneous catalyst is equivalent  to the behaviour in 

the presence of a homogeneous catalyst, and from Equations (86) and Equation (87), the reaction 

rate of formation of ProPro can be written, in terms of activity (𝑎), as follows: 

𝑟𝑃𝑟𝑜𝑃𝑟𝑜 = 𝑘1𝑎𝑃𝑂𝐻𝑎𝑃𝑟𝑜𝐴𝑐 − 𝑘−1𝑎𝑃𝑟𝑜𝑃𝑟𝑜𝑎𝐻2𝑂 (88) 

Considering reaction equilibrium, the equilibrium constant (Keq) of this reaction can be defined 

as:  

𝐾𝑒𝑞 =
 𝑘1
𝑘−1

=
𝑎𝑃𝑟𝑜𝑃𝑟𝑜𝑎𝐻2𝑂

𝑎𝑃𝑂𝐻𝑎𝑃𝑟𝑜𝐴𝑐
 (89) 

Finally, rearranging Equation (88) with Equation (89), the reaction rate law for n-Propyl 

Propionate can be described as: 

𝑟𝑃𝑟𝑜𝑃𝑟𝑜 = 𝑘1 (𝑎𝑃𝑂𝐻𝑎𝑃𝑟𝑜𝐴𝑐 −
𝑎𝑃𝑟𝑜𝑃𝑟𝑜𝑎𝐻2𝑂

𝐾𝑒𝑞
) (90) 

The relation between a rate constant and temperature can be described by the Arrhenius 

equation: 

𝑘1 = 𝑘0𝑒
−
𝐸
𝑅𝑇 (91) 
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Where, 𝑘0 is the pre-exponential factor and 𝐸 is the activation energy. 

The Van´t Hoff equation expresses the relation between the equilibrium constant and the 

temperature: 

𝐾𝑒𝑞 = 𝐾∞𝑒
−
∆𝐻
𝑅𝑇  (92) 

Where, 𝐾∞ is the pre-exponential factor and ∆𝐻 is the reaction enthalpy. Duarte (2006) studied 

this reaction through experiments in a batch reactor.  

P2-2.1.2. Catalyst/Adsorbent 

Several works in the literature employ heterogeneous catalysis in the production of ProPro using 

catalysts with strong acidic functional group (Duarte 2006; Keller et al. 2011; Cruz-Díaz et al. 2012; 

Xu et al. 2014). As mentioned above, ProPro can be produced by esterification of 1-Propanol 

(POH) with Propionic Acid (AcidPro). However, this system can lead to several secondary 

reactions, as the production of di-n-Propyl Ether (DPE) by etherification of two Propanol 

molecules or production of Propene (Pro) by the dehydration of 1-Proponol (Cruz-Díaz et al. 

2012). Not only because of economic questions but also because of safety questions (propene is 

a highly flammable gas), the presence of these compounds in the reaction system is undesirable 

(Duarte 2006). Figure 60 presents the reaction path of the synthesis of the ProPro. 
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Figure 60 - Reaction routes for the formation of the n-Propyl Propionate (Adapted from: (Duarte 
2006)). 

 

In order to overcome these problems, Amberlyst 46 catalyst was developed (Lundquist 1995).  

In that work, mass transfer effects inside the Amberlyst 46 resin were studied and this resin 

showed to be capable of catalyzing the ester production, while at the same time reducing or 

eliminating the secondary products formation (Lundquist 1995). The author´s study indicates that 

the production of secondary products in ester formation is directly proportional to the 

functionalized groups position in the catalyst. When the active sites are located further from the 

catalyst surface more ether is produced during the esterification reaction. In this way, Lundquist 

proposed the functionalization of the catalyst only in the beads surfaces, leaving the inner surface 

inactivated. 
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Furthermore, an advantage presented by Amberlyst 46 is that the esterification reaction occurs 

at low temperatures. Another is its selectivity to preferably adsorb water in presence of the 

ProPro reaction system compounds, which is ideal to its simultaneous application as catalyst and 

adsorbent. Hence, Amberlyst 46 presents all the necessary characteristics to be applied in the 

present work. Therefore, Amberlyst 46 was adopted as Catalyst/Adsorbent in this study. Table 

25 presents the main properties of this resin, which was gently provided by The Dow Company 

for the experimental developments of this work. 

Table 25 - Catalyst characterization, Amberlyst 46 physical properties (Duarte 2006; The Dow 
Chemical Company 2014). 

 Value Standard Deviation 

Maximum Operating Temperature (°C) 120 - 

Water Content (%) 21 0.1 

Concentration of active Sites (eq.kg-1) 0.95 0.01 

Surface area (m2g-1) 75 - 

Average particle diameter (mm) 2.450 - 

 

Duarte (2006) studied the reaction equilibrium and kinetics of this system and estimated the 

respective parameters as presented in Equation (91) and Equation (92) of the previous section. 

These values are presented in Table 26. In that work, the UNIQUAC thermodynamic model was 

employed for the calculation of the activity coefficients. 
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Table 26 - Reaction equilibrium and kinetic constants (Duarte 2006). 

 𝒌𝟎 (𝒎𝒐𝒍. 𝒔
−𝟏. 𝒆𝒒−𝟏) 𝑬 (𝑱.𝒎𝒐𝒍−𝟏) 𝑲∞  ∆𝑯(𝑱.𝒎𝒐𝒍−𝟏) 

𝒌𝟏 6.848 × 107 5.918 × 104 - - 

𝑲𝒆𝒒 - - 7.504 −4.161 × 103 

 

P2-2.1.3. Thermodynamic model 

In order to develop a rigorous model of the reaction system, the liquid phase activity coefficients 

must be calculated through a thermodynamic model developed using realistic liquid-liquid 

equilibrium (LLE) determinations. The liquid phase non-idealities for the n-Propyl Propionate 

system is usually addressed in the literature through the UNIQUAC model (Duarte 2006; Keller et 

al. 2011; Cruz-Díaz et al. 2012). However, in Samarov et al. (2016) a complete liquid-liquid 

equilibrium study is presented for the quaternary system and ternary subsystems composed by 

1-Propanol, Propionic Acid, Water and n-Propyl Propionate, in which the NRTL model parameters 

are estimated and validated. The referred work carried out the study at three different 

temperatures (293.15 K, 313.15 K and 333.15 K) and atmospheric pressure. The authors 

demonstrated that the NRTL model can describe well the LLE systems. Furthermore, the referred 

work provided enough experimental data to allow the estimation of the NRTL parameters 

uncertainty in the present work, and respective propagation of these uncertainties to the activity 

coefficients. In this way, the NRTL model was here used to describe the liquid-liquid equilibrium. 

The activity coefficients, 𝛾𝑖, in the solution of 𝑛𝑐  components can be described by the NRTL model 

as: 
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ln(𝛾𝑖) =
∑ 𝑥𝑗𝜏𝑗𝑖𝐺𝑖𝑗
𝑛𝑐
𝑗=1

∑ 𝑥𝑗𝐺𝑗𝑖
𝑛𝑐
𝑗=1

+∑
𝑥𝑗𝐺𝑖𝑗

∑ 𝑥𝑙𝐺𝑙𝑗
𝑛𝑐
𝑙=1

𝑛𝑐

𝑗=1

(𝜏𝑖𝑗 −
∑ 𝑥𝑙𝜏𝑙𝑗𝐺𝑙𝑗
𝑛𝑐
𝑙=1

∑ 𝑥𝑙𝐺𝑙𝑗
𝑛𝑐
𝑙=1

) (93) 

where: 

𝜏𝑗𝑖 =
𝑔𝑖𝑗 − 𝑔𝑖𝑖

𝑅𝑇
=
∆𝑔𝑖𝑗

𝑅𝑇
 (94) 

𝐺𝑖𝑗 = exp (−𝛼𝑖𝑗𝜏𝑗𝑖) (95) 

𝛼𝑖𝑗 = 𝛼𝑗𝑖  (96) 

where, 𝑔𝑖𝑗 is an energy parameter that characterizes the interaction of components 𝑖 and  𝑗,  𝛼𝑖𝑗is 

related to the non-randomness in the systems. 

The NRTL binary parameters determined in the work of Samarov et al. (2016) are given in Table 

27. This model was implemented in the gPROMS modelling builder (Process Systems Enterprise 

2015). 
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Table 27 - NRTL binary parameters (Samarov et al. 2016). 

 Propionic Acid Propionic Acid Propionic Acid 

 1-Propanol Water n-Propyl Propionate 

∆𝑔𝑖𝑗 (J mol-1) 1120.8 1631.9 590.0 

∆𝑔𝑗𝑖 (J mol-1) 1754.0 -182.3 32.1 

𝛼𝑖𝑗 0.3 0.3 0.3 

 1-Propanol 1-Propanol n-Propyl Propionate 

 Water n-Propyl Propionate Water 

∆𝑔𝑖𝑗 (J mol-1) 1744.7 566.0 3505.0 

∆𝑔𝑗𝑖 (J mol-1) -93.5 236.9 1142.5 

𝛼𝑖𝑗 0.06 0.3 0.3 

 

P2-2.2. Experimental setup and analytical method  

The experiments here presented were done in a Fixed Bed unit, composed by a jacketed column 

of 12.1 cm of length and 2.6 cm of diameter packed with the resin Amberlyst-46 wet, pre-treated 

in 1-Propanol. The complete experimental unit has the column; a thermostatic bath (Julabo, 

Model F12), which was responsible for keeping the column and the feed at a constant 

temperature (313 K); a sample collector, responsible for performing the periodic and 

automatized sampling of the column outlet stream; a liquid chromatographic pump (Gilson, 

Model 302), responsible for feeding the solutions at a constant and pre-defined flow rate. The 

described experimental set-up is presented schematically in Figure 61. 
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Figure 61 - Experimental setup. 

All the collected samples were analyzed in a gas chromatograph (Master GC Dani) using a fused 

silica capillary column (PoraBOND Q 12 m x 12 µm) to separate the compounds and a thermal 

conductivity detector (TCD) to quantify the samples. For the analysis, the GC column temperature 

was initially at 323 K during 3.0 min, then the temperature was increased up to 393K using a ramp 

of 7 K min–1 and this temperature was held for 10.0 min. The TCD temperature was 473 K. The 

carrier gas was helium. The analyses were done by injecting 1µL of the collected sample. 

Two types of experiments were performed. The first one was breakthrough curve adsorption 

tests with non-reactive pairs for the determination of the adsorption equilibrium isotherms 

which are presented in Section P2-2.3.2. The second one was sorption enhanced fixed bed tests 

for mathematical model validation that are presented in Section P2-2.3.4. 
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P2-2.3. Fixed bed hydrodynamics 

The characterization of the fixed-bed column hydrodynamics was done through tracer 

experiments. In this way, the bed porosity, 𝜀𝑏 and axial dispersion coefficient, measured by the 

Peclet number, 𝑃𝑒 were determined. The experiments consisted in the injection of an inert 

compound (tracer) in the column and the measurement of the column outlet concentration. The 

tracer used was the Blue Dextran because it is a substance that does not enter the pores of the 

Amberlyst 46 resin. Through the experimental data and the following equations, it is possible to 

characterize the fixed-bed column: 

where 𝐸(𝑡) represents the residence time distribution, 𝐶𝑜𝑢𝑡 the tracer concentration in the 

column outlet stream and 𝑡𝑟̅ the mean residence time. 

P2-2.4. Langmuir competitive adsorption parameters 

estimation 

Once the fixed bed hydrodynamics is characterized, adsorption tests with the non-reactive pairs 

were performed. In order to do it, a series of breakthrough experiments was done. This 

𝐸(𝑡) =  
𝐶𝑜𝑢𝑡(𝑡)

∫ 𝐶𝑜𝑢𝑡(𝑡)𝑑𝑡
∞

0

 (97) 

𝑡𝑟̅ = ∫ 𝑡𝐸(𝑡)𝑑𝑡
∞

0

 (98) 

𝜎2 = ∫ (𝑡 − 𝑡𝑟̅)
2𝐸(𝑡)𝑑𝑡

∞

0

=
2

𝑃𝑒
𝑡𝑟̅
2
 (99) 
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methodology is based on the successive change in the feed concentration of the column with it 

in equilibrium with a previous concentration. After each change, the concentration is kept until 

a new steady state is reached. When the new steady state is reached, the column will in 

equilibrium with the feed concentration and the composition of the liquid and solid phases are a 

new point in the adsorption equilibrium isotherm. Then, through the experimental data it is 

possible to determine the solid composition in each equilibrium. This is done through a global 

mass balance to the system which corresponds to: 

∆𝑛𝑖 = 𝑄∫ (𝑐𝑖𝑛 − 𝑐𝑜𝑢𝑡)
𝑡𝑒𝑥𝑝

0

𝑑𝑡 (100) 

∆𝑛𝑖
𝑉
= [𝜀𝑏 + (1 − 𝜀𝑏)𝜀𝑝](𝑐𝑖𝑛,𝑖 − 𝑐𝑜𝑢𝑡,𝑖) + (1 − 𝜀𝑏)(1 − 𝜀𝑝) × [𝑞𝑖(𝑐𝑖𝑛,𝑖)

− 𝑞𝑖(𝑐0,𝑖)] 

(101) 

where∆𝑛𝑖 is the change in number of moles of the compound 𝑖 in the empty space between the 

particles and in the solid phase from the previous steady state to the new one, 𝑐𝑖𝑛,𝑖, 𝑐𝑜𝑢𝑡,𝑖 and 𝑐0,𝑖 

are the concentrations of the compound 𝑖 in the liquid phase of the new feed stream, of the 

outlet stream of the column and of the previous steady state (initial concentration), respectively 

and 𝑞𝑖 is the adsorbed concentration of the compound 𝑖 in equilibrium with the liquid phase. 

Hence, through Equations (100) and (101) and the breakthrough experiments it was possible to 

determine the value of the adsorbed concentration (𝑞) in equilibrium with the liquid phase 

concentration (𝑐). 

The Langmuir competitive adsorption model was adopted to represent the liquid phase 

adsorption equilibrium. This was done following previous works in the literature where similar 
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systems were addressed and the Langmuir model was indicated as the most suitable to describe 

this phenomenon (Faria et al. 2014; Constantino et al. 2015a; Regufe et al. 2016). The Langmuir 

competitive adsorption model is represented as: 

𝑞𝑖 =
𝑄𝑚𝑎𝑥,𝑖𝐾𝑖𝑐𝑖

1 + ∑ 𝐾𝑖𝑐𝑖
𝑛𝑐
𝑖

 (102) 

where 𝑄𝑚𝑎𝑥,𝑖 is the equilibrium adsorption capacity and 𝐾𝑖 is the Langmuir adsorption constant 

for component 𝑖.  

The parameters of the Langmuir isotherm model were estimated through the same PSO 

approach presented in Section P1-2.5.  

As previously mentioned, the Particle Swarm Optimization method has been applied successfully 

in the literature to solve parameters estimation problems (Ratnaweera et al., 2004; Schwaab et 

al., 2008). This method presents as its main advantages the easy implementation, the easy 

improvement of the computational performance through parallelization and, moreover, its 

results can be directly applied in the evaluation of the parameters confidence region and 

uncertainty (Schwaab et al. 2008). 

In P1-2.5 it was proposed a Self-Organizing Hierarchical Particle Swarm Optimizer with Time-

Varying Acceleration Coefficients and mutable searching region, HPSO-TVAC-MSR, in order to 

verify the local minimums of the objective function. The results presented in section P1-3.5.1 

demonstrated that it is possible for the PSO to find the local minima of several benchmark 

functions that were tested. Thus, in this part the proposed PSO was employed in order to avoid 

that only a possible local minimum is found during the parameter estimation.   
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In this way, this optimization method is here applied to determine the set of parameters that 

composes the Langmuir model for the system here in study. The system has a total of 8 

parameters. The optimization will minimize the objective function, 𝐽(𝜃), that accounts for the 

least-squares function described by the difference between the model predictions and the values 

obtained in the breakthrough experiments, Equation (103). The method evaluates a vast range 

of parameters values and indicates the optimal value and the possible local minima, in case they 

exist. Through the particle swarm results it is possible to define the parameters confidence 

region, as described in the next Section. 

𝐽(𝜃) =∑∑(𝑞𝑖𝑗
∗ − 𝑞𝑖𝑗

𝑒)2

𝑛𝑒

𝑗=1

𝑛𝑐

𝑖=1

 (103) 

In Equation (103), 𝑛𝑐  is the number of compounds and NE the number of experiments. 

The HPSO-TVAC-MSR, objective function and Langmuir model were implemented in the MatLab 

software. Thus, it was possible to perform the parameters estimation. 

P2-2.5. Parameters confidence region evaluation 

The parameters confidence region was determined in a different way than the process 

confidence region described in the Part 1 of this thesis. In this Section an approach similar to the 

one described in Section P1-2.5.2 is presented. However, in the present case new considerations 

were necessary to be introduced, because now a parameter estimation problem is being 

addressed. In this way, the new deduction is presented. 
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 As described by Benyahia et al. (2013), the evaluation of the confidence regions of the 

parameters is a useful tool to verify the estimation accuracy (Benyahia et al. 2013). A poor 

evaluation of the true confidence regions can mislead the reliability of a mathematical model. 

The referred authors indicate that the high nonlinearity of the parameters, which is normaly 

found in pratical cases as the present one, is the main limitation to an accurate evaluation of the 

true confidence region of the parameters. Furthermore, those cases, particulary when the 

number of measurements is too low, present a non-normal distribution of the measurements 

errors which makes the evaluation of the paramters confidence region a complex task (Schwaab 

et al., 2008). In this way, Benyahia et al. (2013) and Schwaab et al. (2008) presented a 

methodology to define the parameters confidence region taking in consideration the 

aforementioned peculiarities of these systems. A similar method is here adopted with the same 

goal. 
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Figure 62 - Simplified representation of the experimental measurements and the model 
predictions in the parameters space, adapted from Benyahia et al. (2013). 

 

Considering the optimization problem presented in Equation (103) and the optimization space 

given in Figure 62, 𝑒 corresponds to the difference between the value of the measured variable 

𝑦𝑒 and the model prediction 𝑦∗(𝜽∗, 𝑘) where 𝜽∗ is the vector of the best parameters values found 

in a  given optimization instant, 𝑘 (in the present case it means that 𝜃∗ corresponds to the best 

position found by the particles inside of a  given search zone). On the other hand, ℎ corresponds 

to the difference between the measured variable 𝑦𝑒 and the value of the process performance 

parameters 𝑦∗(𝜽, 𝑘) where 𝜽 is the vector of parameters values evaluated in a given instant 𝑘 of 
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the optimization. Thus, in a given iteration 𝑘, the squared error between the value of the 

measured variable and the model prediction with the optimal set of parameters, 𝜽∗ is: 

𝑒2𝑘 = (𝑦
𝑒 − 𝑦∗(𝜽∗|𝑘))2 

(104) 

This error can be normalized with respect to the variance of the measured variable 𝑖 in a 

measurement 𝑗 as: 

𝑒2𝑖𝑗𝑘 =
(𝑦𝑒

𝑖𝑗
− 𝑦∗

𝑖𝑗𝑘
(𝜽∗, 𝑘))

2

 

𝑉𝑖
 (105) 

From Equation (105) and following a similar approach to the one used by Benyahia et al. (2013), 

the error can be generalized to all instants 𝑛𝑘 considered in the optimization as: 

𝑒2 =∑∑∑𝑒2𝑖𝑗𝑘

𝑛𝑒

𝑗=1

𝑛𝑐

𝑖=1

𝑛𝑘

𝑘=1

=∑∑∑
(𝑦𝑒

𝑖𝑗
− 𝑦∗

𝑖𝑗
(𝜽∗, 𝑘))2 ) 

𝑉𝑖

𝑛𝑒

𝑗=1

𝑛𝑐

𝑖=1

𝑛𝑘

𝑘=1

  
(106) 

Considering the variance of a measured variable with respect to the vector of estimated 

parameters (𝑉𝑖(𝜽)) as: 

𝑉𝑖(𝜽) =  
1

𝑁𝐸
∑(𝑦𝑒

𝑗
− 𝑦∗

𝑗
(𝜽, 𝑘))

2
𝑛𝑒

𝑗=1

 
(107) 

Thus, from Equation (106) and Equation (107) the error can be presented as: 

𝑒2 =∑∑𝑁𝐸
𝑉𝑖𝑘(𝜽

∗) 

𝑉𝑖

𝑛𝑐

𝑖=1

𝑛𝑘

𝑘=1

 (108) 
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Considering the assumption that the error 𝑒  follows a Gaussian distribution with zero mean and 

that there is only one possible set of parameters values which will compose the vector 𝜽∗, then 

𝑒2 has a chi square distribution, 𝜒2 given by: 

𝑒2  →  𝜒2(𝑛𝑘 + 𝑛𝑒 − 1) (109) 

Also, the squared error of the value of the measured variable and the model prediction through 

a given set of parameters 𝜽 is expressed as: 

ℎ2𝑖 = (𝑦
𝑒 − 𝑦∗(𝜽|𝑘))2 (110) 

ℎ2 =∑∑𝑛𝑒
𝑉𝑖(𝜽) 

𝑉𝑖

𝑛𝑐

𝑖=1

𝑛𝑘

𝑘=1

 
(111) 

Identical assumptions to the ones considered for 𝑒 can be employed for ℎ.  Then, ℎ2 has a chi 

square distribution with 𝑛𝑘 + 𝑛𝑒 − (𝑛𝜃 + 1) degrees of freedom. In this way, it is finally obtained 

the approximation: 

ℎ2  →  𝜒2(𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1) (112) 

Where 𝑛𝜃 is the length of the vector 𝜽 which corresponds to the number of model parameters; 

hence: 

𝑒2 − ℎ2 → 𝜒2(𝑛𝜃) (113) 
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From Figure 62, it is possible to define an approximation, which is proposed by Benyahia et al. 

(2013), represented as: 

𝑏2

ℎ̂2
=
𝑒2 − ℎ2

ℎ̂2
≅
𝑒2 − ℎ2

ℎ2
 (114) 

Equation (114) presents the ratio between two independent chi square distributions, 𝑒2 − ℎ2 

with 𝑛𝜃 degrees of freedom, and ℎ2 with 𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1 degrees of freedom; therefore, it can 

be represented as a Fisher-Snedecor distribution, given by: 

𝑒2 − ℎ2

𝑛𝜃
ℎ2

𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1

→ 𝐹𝛼(𝑛𝜃, 𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1) 
(115) 

Moreover, from Equation (108), Equation (111) and Equation (115) the following is obtained: 

∑ ∑ 𝑛𝑒
𝑉𝑖𝑘(𝜽

∗) 
𝑉𝑖

𝑛𝑐
𝑖=1

𝑛𝑘
𝑘=1 − ∑ ∑ 𝑛𝑒

𝑉𝑖(𝜽) 
𝑉𝑖

𝑛𝑐
𝑖=1

𝑛𝑘
𝑘=1

∑ ∑ 𝑛𝑒
𝑉𝑖(𝜽) 
𝑉𝑖

𝑛𝑐
𝑖=1

𝑛𝑘
𝑘=1

→

→
𝑛𝜃

𝑛𝑘 + 𝑁𝐸 − 𝑛𝜃 + 1
𝐹𝛼(𝑛𝜃, 𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1) 

(116) 

 where 𝛼 is the confidence level to be taken in consideration. The objective function at the 

optimal point 𝐽(𝜃) can be expanded in a second-order Taylor expansion around a given point 

found in the optimization, 𝜃∗ (Schwaab et al., 2008): 

𝐽(𝜃∗) = 𝐽(𝜃) + (𝜃∗ − 𝜃)∇𝑆𝜃 +
1

2
(𝜃∗ − 𝜃)𝑇𝑯𝜃(𝜃

∗ − 𝜃) (117) 
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where ∇𝐽𝜃 is the gradient vector and 𝑯𝜃 the Hessian matrix of the objective function; this matrix 

is related to the covariance matrix of the model parameters (Bard 1974; Schwaab et al. 2008) by:  

𝑯𝜃 = 2𝑉𝜃
−1 (118) 

Considering Equation (117), Equation (118) can be rewritten as: 

𝐽(𝜃∗) − 𝐽(𝜃) = (𝜃∗ − 𝜃)𝑇𝑉𝜃
−1(𝜃∗ − 𝜃) ≡  𝜒2(𝑛𝜃) (119) 

and consequently, Equation (116) can be rewritten as: 

𝐽(𝜃∗) − 𝐽(𝜃) →∑
𝑛𝑘𝑉𝑖(𝜃) 

𝑉𝑖

𝑛𝑦

𝑖

𝑛𝜃
𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1

𝐹𝛼(𝑛𝜃, 𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1) 
(120) 

Given that 𝑉𝑖 provides a good approximation to 𝑉𝑖(𝜃), the parameter confidence region may be 

assessed by: 

𝐽(𝜃∗) ≤ 𝐽(𝜃) +
𝑛𝜃

𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1
𝐹𝛼(𝑛𝜃, 𝑛𝑘 + 𝑛𝑒 − 𝑛𝜃 + 1) (121) 

The criterion above is the Fisher–Snedecor test that is used here to draw the confidence regions 

and also to verify if local minima exist. The Fisher–Snedecor test was implemented in the MatLab 

software. The test was done after the PSO optimization using its final results. 
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P2-2.6. Uncertainties evaluation 

The uncertainty of an experimental procedure can be originated by errors of the method, the 

instrument or personal error. Those factors are found in all the steps that compose an 

experimental analysis. The Guide to the Expression of Uncertainty in Measurement (GUM) 

indicates a series of factors which must be satisfied in order to determine the analytical 

uncertainty (International Organisation for Standardisation, 2008). Those factors can be listed as: 

• A defined measurand and its measurement procedure; 

• The analytical results must be able to be calculated through a model and the measured 

parameters; 

• All the possible parameters that can affect the final results must have their values and 

uncertainties determined; 

• The principles of uncertainty propagation must be applied when the standard uncertainty 

of an analytical result is being calculated; 

• The result of the analysis is presented as a value and its parameters, which express the 

dispersion of the quantity values, attributed to a measurand. 

By its turn, Konieczka and Namieśnik (2010) listed the main sources of uncertainties in a 

chromatographic analysis and  their respective procedure to compute as: 

• The amount of sample used for a determination; 

o This source of uncertainty is very often not taken into account since it has a small 

impact in the uncertainty of the measurement. It is associated with the 

measurement of the weight of a sample and it is inherent to the measurement 
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procedure. Hence, in the present work, this source was approximated to the 

uncertainty of the measurement equipment. 

• The recovery value of the analytical procedure; 

The recovery, 𝑅, is normally defined by the ratio between  𝑐𝑜𝑏𝑠, the observed 

concentration of the sample and 𝑐𝑟𝑒𝑓, the true concentration in the reference 

material. Thus, it is desirable that the recovery is equal to the unity. However, if 

the recovery deviates from the unity, the uncertainty associated is included in the 

uncertainty budget of results. While addressing the sample recovery, or trueness, 

there is always a probability to evaluate incorrectly its influence. In order to cope 

with this uncertainty source, a sample pre-treatment is normally done in the 

chromatographic analysis which tries to ensure that the trueness will be as close 

as possible to the unity and consequently the uncertainty is negligible. This 

component can be computed through the average value obtained from a large set 

of test results and an accepted reference value (Vanatta and Coleman 2007), as 

given by: 

𝑅 =
𝑐𝑜𝑏𝑠
𝑐𝑟𝑒𝑓

 (122) 

For the relative standard deviation 𝑆𝑡𝑑 of the 𝑛 results obtained when analysing, 

this uncertainty component, 𝑢𝑡𝑟𝑢𝑒, can be calculated as: 

𝑢𝑡𝑟𝑢𝑒 =
1

𝑅

𝑆𝑡𝑑

√𝑛
 

(123) 
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• The repeatability; 

o It is associated with the measurements repeatability for true samples. This is 

usually the main source of uncertainty and can be calculated according to 

Equation (124), where 𝑆𝐷 is the standard deviation, 𝑛 is the number of repetitions 

and 𝛿 is the coverage factor: 

𝑢𝑟𝑒𝑝 = 𝛿
𝑆𝑡𝑑

√𝑛
 

(124) 

• The concentration associated with the upper detection limit; 

o The limit of detection is a property of the equipment used to perform the analysis. 

In this case, the uncertainty has a proportional relationship with the limit of 

detection (LOD) and the measured concentration (𝑐) which can be expressed as: 

𝑢𝐿𝑂𝐷 =
𝐿𝑂𝐷

𝑐
 

(125) 

• Calibration. 

o The procedure to determine the uncertainty of this step is more complex and it 

will be detailed in the next sub-section. 

P2-2.6.1. Uncertainty associated with calibration 

This is a step done in the majority of the analytical measurements, normally with support of linear 

regression to establish a relationship between the chromatographic signal and the amount of 
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measurand, the calibration curve. Again, Konieczka and Namieśnik (2010) enumerate the main 

sources of uncertainties which can be listed and evaluated as: 

• The repeatability with which the value of a signal is read, both for standard samples 

(based on measurements for which the calibration curve is determined) and for study 

samples, 𝑢𝑠𝑎𝑚𝑝𝑙𝑒,𝑐𝑎𝑙; 

• The determination of the reference value for the standard samples, 𝑢𝑠𝑎𝑚𝑝𝑙𝑒,𝑠𝑡𝑑; 

• The method to prepare the standard samples; 

• The incorrect approximation of measurement points using a regression curve. 

The uncertainty due to the calibration and linear regression method, 𝑢𝑠𝑎𝑚𝑝𝑙𝑒 is determined by 

the linear regression parameters through: 

𝑢𝑠𝑎𝑚𝑝𝑙𝑒,𝑐𝑎𝑙 =
𝑆𝐷𝑥𝑦

𝑏
√
1

𝑝
+
1

𝑛
+
(𝑥𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑥𝑚)

2

𝑄𝑥𝑥
 (126) 

where 𝑥𝑠𝑎𝑚𝑝𝑙𝑒 is the signal value of the sample, 𝑏 the coefficient of the calibration curve, 𝑝 is the 

number of repetitions made for one sample, 𝑛 is the total number of standard samples used for 

plotting the calibration, 𝑥𝑚 is the average of the signals value for all samples used to plot the 

regression curve. Thus, considering 𝑥𝑖  as the signal value of the standard 𝑖, 𝑄𝑥𝑥 is calculated as: 

𝑄𝑥𝑥 =∑(𝑥𝑖 − 𝑥𝑚)
2

𝑛

𝑖=1

 
(127) 

This component of the uncertainty in the calibration step is the main source of uncertainty; in 

this way, the following approximation can be done (Konieczka and Namieśnik 2010b): 
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𝑢𝑐𝑎𝑙 ≅ 𝑢𝑠𝑎𝑚𝑝𝑙𝑒,𝑐𝑎𝑙 (128) 

P2-2.6.2. Combined and expanded uncertainty for 

chromatographic analysis 

Finally, the combined uncertainty for the chromatographic analysis (U) can be computed by the 

previously mentioned elements through the following equation: 

𝑈 = 𝛿√(𝑢𝑠𝑎𝑚𝑝𝑙𝑒)
2
+ (𝑢𝑡𝑟𝑢𝑒)2 + (𝑢𝑟𝑒𝑝)

2
+ (𝑢𝐿𝑂𝐷)2 + (𝑢𝑐𝑎𝑙)2 (129) 

where 𝛿 is the coverage factor, usually equal to 2. 

P2-2.7. Fixed-bed chromatographic separation model 

A phenomenological model that describes the dynamic behavior of the internal concentration 

profile of a chromatographic adsorptive column was developed. It is expected that the model is 

capable of representing with precision the breakthrough experiments done in this work. This 

model is based on a series of assumptions which are listed below: 

• Isothermal process; 

• Plug flow model of the fluid phase with axial dispersion;  

• Negligible radial dispersion;  

• Constant bed porosity and length; 

• External mass transfer resistance to the particle;  
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• Internal mass transfer resistance negligible due to the Amberlyst 46 properties 

(only the particles surface is functionalized); 

• Velocity variation along the bed due to composition variation. 

Hence, the mass balances to the liquid and adsorbed phases can be described as: 

𝜕𝑐𝑖
𝜕𝑡
= 𝐷𝑎𝑥

𝜕

𝜕𝑧
(𝐶𝑇 ∙

𝜕𝑦𝑖
𝜕𝑧
) −

𝜕(𝑢𝑐𝑖)

𝜕𝑧
−
(1 − 𝜀)

𝜀

3

𝑅𝑝
𝑘𝐿,𝑖(𝑞𝑖

∗ − 𝑞𝑖) (130) 

𝜕𝑞𝑖
𝜕𝑡
=
3

𝑅𝑝
𝑘𝐿,𝑖(𝑞𝑖

∗ − 𝑞𝑖) 
(131) 

Where, z is the axial coordinate, t is the time, 𝐷𝑎𝑥, is the axial dispersion coefficient, 𝑐𝑖 is the 

liquid phase molar concentration of compound 𝑖, 𝑞𝑖 is the adsorbed phase concentration of 

compound 𝑖, 𝑞𝑖
∗ is the adsorbed concentration of compound 𝑖 in equilibrium with 𝑐𝑖, 𝑦𝑖 is the 

molar fraction of the compound 𝑖 in the liquid phase, 𝑢 is the interstitial fluid velocity, 𝑅𝑝 is the 

particle radius, 𝑘𝐿,𝑖 is the external mass transfer coefficient and 𝐶𝑇 is the total molar 

concentration in the liquid phase which is related with the molar volume 𝑉𝑀,𝑖 of each compound 

and can be calculated as: 

𝐶𝑇 =
1

∑𝑦𝑖𝑉𝑀,𝑖
 (132) 

The boundary and initial conditions are described as:  

𝑧 = 0:  𝑢𝑐𝑖,𝑧=0 − 𝐷𝑎𝑥𝐶𝑇
𝜕𝑦𝑖
𝜕𝑧
|
𝑧=0

= 𝑢𝑐𝑖,𝑓 (133) 

𝑧 = 𝐿: 
𝜕𝑦𝑖
𝜕𝑧
|
𝑧=𝐿

= 0 
(134) 
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𝑡 = 0: 𝑐𝑖 = 𝑐𝑖,0 (135) 

where 𝐿 is the column length, 𝑐𝑖,𝑓 is the feed concentration and 𝑐𝑖,0 is the initial concentration. 

As described above, one of the assumptions of this model is that the (particle) internal resistance 

to mass transfer is negligible. This is due to the characteristics of the resin Amberlyst 46, which 

was developed in order to avoid side reactions as explained in Section P2-2.1.2. Therefore, 

internal mass transfer resistances can be neglected and only the external mass transfer kinetics 

should be accounted for. The external mass transfer coefficient can be calculated through the 

correlation of Wilson and Geankoplis (Glueckauf and Coates 1947) as: 

𝑆ℎ𝑝 =
1.09

𝜀
(𝑅𝑒𝑝𝑆𝑐)

0.33 (136) 

where 𝑆ℎ𝑝, 𝑅𝑒𝑝 and 𝑆𝑐 are respectively the Sherwood, Reynolds and Schmidt numbers and they 

can be calculated as: 

𝑆ℎ𝑝 =
𝑘𝐿,𝑖𝑑𝑝

𝐷𝑖,𝑚𝑖𝑥
 (137) 

𝑅𝑒𝑝 =
𝜌𝑢𝑑𝑝

𝜂
 (138) 

𝑆𝑐 =
𝜂

𝜌𝐷𝑖,𝑚𝑖𝑥
 (139) 

 

where 𝜌 is the fluid density, 𝜂 is the fluid viscosity, 𝑑𝑝 is the particle diameter 𝐷𝑖,𝑚𝑖𝑥 is the 

diffusivity coefficient of compound 𝑖 in the mixture. The diffusivity coefficient can be calculated 

by the correlation of Perkins and Geankoplis (Ruthven 1984). For a compound 𝐴 in a multi-

component mixture, this correlation is presented as: 
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𝐷𝐴,𝑚𝜂𝑚
0.8 =∑𝑦𝑖𝐷𝐴,𝑖

0

𝑛

𝑖=1
𝑖≠𝐴

𝜂𝑖
0.8 (140) 

where 𝜂𝑖  is the viscosity of the pure compound 𝑖, 𝜂𝑚 is the mixture viscosity, 𝐷𝐴,𝑖
0  is the diffusion 

coefficient of the compound 𝐴 diluted in the compound 𝑖. The diffusivity coefficient for a solution 

of two compounds 𝐴 and 𝐵 can be determined through the infinite diffusivity coefficients 

(Scheibel 1954), as: 

𝐷𝐴,𝐵 = 𝐷𝐵,𝐴 = (𝐷𝐴,𝐵
0 )𝑦𝐵(𝐷𝐵,𝐴

0 )𝑦𝐴  (141) 

And the infinite diffusion coefficient for a mixture 𝐷𝐴,𝐵
0 , with 𝐴 diluted in the solvent 𝐵, can be 

calculated through the Scheibel correlation (Scheibel 1954), as: 

𝐷𝐴,𝐵
0 =

8.2 × 10−8𝑇

𝜂𝐵𝑉𝑀,𝐴
1/3

[1 + (
3𝑉𝑀,𝐵
𝑉𝑀,𝐴

)

2/3

] (142) 

Finally, the variation of the internal velocity due to the composition changes can be represented 

as: 

𝜕𝑢

𝜕𝑧
= −

1 − 𝜀

𝜀

3

𝑅𝑝
∑𝑘𝐿,𝑖𝑉𝑀,𝑖

𝑁𝐶

1=1

(𝑞𝑖
∗ − 𝑞𝑖) (143) 

where 𝑁𝐶 is the total number of compounds, and the boundary condition for Equation (143) can 

be represented as: 

𝑧 = 0: ∀𝑡 → 𝑢 = 𝑢|𝑧=0 (144) 

The Langmuir competitive adsorption model, Equation (102), as described in section P2-2.4, was 

used to represent the adsorption equilibrium. 
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The fixed-bed chromatographic separation model was implemented in gPROMS, where it can be 

ran externally by MatLab, using the go:MATLAB extension (Process Systems Enterprise 2015). 

P2-2.8. Batch Reactor Model 

As presented in Section P2-2.1, the reaction rate model here employed was based on the work 

of Duarte (2006); however, in the referred work, the model was developed considering the 

UNIQUAC model in the calculation of the activity coefficients while here it is proposed to apply 

the NRTL thermodynamic model, as presented in Section P2-2.1.3. Therefore, a batch reactor 

model was developed and simulated in order to verify the validity of the proposed modification 

in the reaction rate model through Duarte’s experimental data. This model was simulated based 

on the reaction rate here presented and compared with the experimental results for the ProPro 

production in a batch reactor, presented by Duarte (2006). 

Considering the mass balance to a batch reactor operated in a time interval varying from 𝑡 to 𝑡 +

∆𝑡 presented as:   

𝑛𝑖,𝑡+∆𝑡 = 𝑛𝑖,𝑡 + 𝜗𝑖𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴𝑚𝑐𝑎𝑡
𝑑𝑟𝑦
∆𝑡 (145) 

where 𝜗𝑖  is the stoichiometric coefficient of component 𝑖, 𝑟𝑃𝑟𝑜𝑃𝑟𝑜 is the reaction rate given by 

Equation (88), expressed in [ 𝑚𝑜𝑙. 𝑠−1. 𝑒𝑞−1], 𝐴 is the concentration of active sites in 

[𝑒𝑞. (𝑘𝑔𝑐𝑎𝑡
𝑑𝑟𝑦
)−1] and 𝑚𝑐𝑎𝑡

𝑑𝑟𝑦
 is the mass of dried catalyst. The dry mass of catalyst is calculated 

through the water content, presented in Table 25, which is given by: 𝑚𝑐𝑎𝑡
𝑑𝑟𝑦

= 𝑚𝑐𝑎𝑡[1 −

𝑊𝑎𝑡𝑒𝑟(%)].  
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Equation (145) can be rewritten as: 

𝑛𝑖,𝑡+∆𝑡 − 𝑛𝑖,𝑡
∆𝑡

= 𝜗𝑖𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴𝑚𝑐𝑎𝑡
𝑑𝑟𝑦

 (146) 

And at the limit when ∆𝑡 → 0 the differential form is written as: 

𝑑𝑛𝑖
𝑑𝑡
= 𝜗𝑖𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴𝑚𝑐𝑎𝑡

𝑑𝑟𝑦
 (147) 

Therefore, knowing that 𝑛𝑖  can be presented as the molar fraction 𝑥𝑖  times the total number of 

moles in the system, 𝑁𝑡 (which is taken as constant in the present case), the final representation 

is obtained: 

𝑑𝑥𝑖
𝑑𝑡
= 𝜗𝑖𝑟𝑃𝑟𝑜𝑃𝑟𝑜

𝐴𝑚𝑐𝑎𝑡
𝑑𝑟𝑦

𝑁𝑡
 (148) 

where 𝑁𝑡 is the total number of moles in the system, which is taken as constant in the 

present case. 

Initial condition: 

 

𝑡 = 0;  𝑥𝑖 = 𝑥𝑖,0 (149) 

This model was simulated based on the reaction rate here presented and compared with the 

experimental results for the ProPro production in a batch reactor, presented by Duarte (2006). 

The present batch reactor model was implemented in gPROMS. 

P2-2.9. Fixed bed chromatographic reactor model 

A detailed phenomenological model was developed to describe the dynamic behaviour of the 

internal concentration profile of a fixed-bed adsorptive reactor. Similar assumptions, as the ones 

presented in P2-2.7 for the fixed-bed chromatographic separation model, were used here: 
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• Pseudo-homogeneous reaction system; 

• Isothermal system; 

• Constant length and bed porosity; 

• Axial dispersed plug flow model; 

• No radial dispersion; 

• Negligible internal mass transfer resistance; 

• External mass transfer resistance; 

• Langmuir isotherm model for multicomponent adsorption; 

• Velocity variation along the bed due to the composition variation. 

Hence, the model for the fixed-bed reactor unit is similar to the one already presented in P2-2.7. 

The main different in the present case is the reaction term, which is added to the solid phase 

balance and variation of the internal velocity due to the composition changes, as: 

𝜕𝑞𝑖
𝜕𝑡
=
3

𝑅𝑝
𝑘𝐿,𝑖(𝑞𝑖

∗ − 𝑞𝑖) − 𝜗𝑖
𝜌𝑏
1 − 𝜀

𝑟𝑃𝑟𝑜𝑃𝑟𝑜 
(150) 

𝜕𝑢

𝜕𝑧
= −

1 − 𝜀

𝜀

3

𝑅𝑝
∑𝑘𝐿,𝑖𝑉𝑀,𝑖

𝑁𝐶

𝑖=1

(𝑞𝑖
∗ − 𝑞𝑖) +

𝜌𝑏
1 − 𝜀

𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴∑𝜗𝑖𝑉𝑀,𝑖

𝑁𝐶

1=1

 (151) 

In this way, the mathematical model is composed by equations (131) to (142), (144), (150) and 

(151). The model was implemented in gPROMS. 
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P2-2.10. True Moving Bed Reactor model 

Finally, based on the models presented in P2-2.3, P2-2.7 and P2-2.9, a detailed phenomenological 

model was developed in other to describe the concentration profiles of the production of n-

Propyl Propionate in a TMBR unit.  This model is based on a series of considerations previously 

described in Section P2-2.9. For each section 𝑘 of a TMBR unit, the mass balances to the liquid 

and adsorbed phases can be described as: 

𝜕𝑐𝑖,𝑘
𝜕𝑡

= 𝐷𝑎𝑥
𝜕

𝜕𝑧
(𝐶𝑇 ∙

𝜕𝑥𝑖,𝑘
𝜕𝑧
) −

𝜕𝑢𝑘𝑐𝑖,𝑘
𝜕𝑧

−
(1 − 𝜀)

𝜀

3

𝑅𝑝
𝑘𝐿,𝑖(𝑞𝑖,𝑘

∗ − 𝑞𝑖,𝑘) (152) 

𝜕𝑞𝑖,𝑘
𝜕𝑡

=
3

𝑅𝑝
𝑘𝐿,𝑖𝑘(𝑞𝑖,𝑘

∗ − 𝑞𝑖,𝑘) + u𝑠
𝜕𝑞𝑖,𝑘
𝜕𝑧

− 𝜗𝑖
𝜌𝑏
1 − 𝜀

𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴 
(153) 

where, u𝑠, is the solid velocity, 𝑧, is the position in the section, 𝑡 is the time,  𝜗𝑖  is the 

stoichiometric coefficient of component 𝑖, 𝑟𝑃𝑟𝑜𝑃𝑟𝑜 is the reaction rate given by Equation (90), 𝐴 

is the concentration of active sites, 𝜌𝑏  is the solid bulk density,  𝐷𝑎𝑥, is the axial dispersion 

coefficient, 𝑞𝑖,𝑘
∗  is the adsorbed concentration (based on the Langmuir competitive adsorption 

model presented in Equation (102)) of a determined 𝑖 compound in equilibrium with 𝑐𝑖,𝑘 in 

section 𝑘, 𝑞𝑖,𝑘 is the adsorbed phase concentration of compound 𝑖 in section 𝑘, 𝑥𝑖,𝑘 is the molar 

fraction of the compound 𝑖 in the liquid phase in the section 𝑘, 𝑢𝑘 is the section interstitial 

velocity, 𝑅𝑝 is the particle radius, 𝑘𝐿,𝑖𝑘 is the external mass transfer coefficient calculated as 

described in P2-2.7 and 𝐶𝑇 is the total molar concentration in the liquid phase which is related 

with the molar volume 𝑉𝑀,𝑖 of each compound and can be calculated as: 
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The variation of each section internal velocity due to the composition changes can be 

represented as: 

𝜕𝑢𝑘
𝜕𝑧

= −
1 − 𝜀

𝜀

3

𝑅𝑝
∑𝐾𝐿,𝑖𝑉𝑀,𝑖

𝑁𝐶

𝑖=1

(𝑞𝑖
∗ − 𝑞𝑖) +

𝜌𝑏
1 − 𝜀

𝑟𝑃𝑟𝑜𝑃𝑟𝑜𝐴∑𝜗𝑖𝑉𝑀,𝑖

𝑁𝐶

1=1

 (155) 

The boundary and initial conditions for each section of the TMBR unit can be expressed as: 

𝑡 = 0:   𝑐𝑖(𝑖≠𝑒𝑙𝑢𝑒𝑛𝑡)𝑘 = 𝑞𝑖𝑘 = 0;  𝑐𝑖(𝑖=𝑒𝑙𝑢𝑒𝑛𝑡)𝑘 = 𝑐𝑖
𝑒;   𝑞𝑖(𝑖=𝑒𝑙𝑢𝑒𝑛𝑡)𝑘 = 𝑞(𝑐𝑖

𝑒) (156) 

 𝑧 = 0:  𝑐𝑖𝑘 −
𝐷𝐿𝑘
𝑣𝑘
𝐶𝑇
𝜕𝑥𝑖,𝑘
𝜕𝑧

= 𝑐𝑖𝑗,0 
(157) 

 𝑧 = 𝐿: 
 

 
𝜕𝑥𝑖,𝑘
𝜕𝑧
|
𝐿
= 0 (158) 

𝑐𝑖,𝐼𝑉|𝐿 =
𝑢𝐼
𝑢𝐼𝑉
𝑐𝑖,𝐼|0 − 

𝑢𝑒
𝑢𝐼𝑉
𝑐𝑖
𝑒 (159) 

𝑐𝑖,𝐼|𝐿 = 𝑐𝑖,𝐼𝐼|0     (160) 

𝑐𝑖,𝐼𝐼|𝐿 =
𝑢𝐼𝐼𝐼
𝑢𝐼𝐼
𝑐𝑖,𝐼𝐼𝐼|0 −

𝑢𝐹
𝑢𝐼𝐼
𝑐𝑖
𝑓 (161) 

𝑐𝑖,𝐼𝐼𝐼|𝐿 = 𝑐𝑖,𝐼𝑉|0 (162) 

𝐶𝑇 =
1

∑𝑥𝑖,𝑘𝑉𝑀,𝑖
 (154) 
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𝑞𝑖,𝐼𝑉|𝐿 = 𝑞𝑖,𝐼|0, 𝑞𝑖,𝐼|𝐿 = 𝑞𝑖,𝐼𝐼|0, 

𝑞𝑖,𝐼𝐼|𝐿 = 𝑞𝑖,𝐼𝐼𝐼|0, 𝑞𝑖,𝐼𝐼𝐼|𝐿 = 𝑞𝑖,𝐼𝑉|0,  

(163) 

The global node balances of the unit are expressed as: 

𝑢𝐼 = 𝑢𝐼𝑉 + 𝑢𝑒 (164) 

𝑢𝐼𝐼 = 𝑢𝐼 − 𝑢𝑥 (165) 

𝑢𝐼𝐼𝐼 = 𝑢𝐼𝐼 + 𝑢𝑓 (166) 

𝑢𝐼𝑉 = 𝑢𝐼𝐼𝐼 − 𝑢𝑟 (167) 

𝑐𝑖
𝑒𝑢𝑒 + 𝑐𝑖

𝑓𝑢𝑓 = 𝑐𝑖
𝑥𝑢𝑥 + 𝑐𝑖

𝑟𝑢𝑟 (168) 

where 𝑢𝑒 is the eluent, 𝑢𝑥 the extract, 𝑢𝑓 the feed, and 𝑢𝑟 the raffinate velocities. 

The performance indicators are: 

𝑃𝑢𝑟𝑟 =
𝑐𝑃𝑟𝑜𝑃𝑟𝑜

𝑟

∑ 𝑐𝑖𝑟
𝑛𝑐
𝑖=1

 
(169) 

𝑃𝑢𝑟𝑥 =
𝑐𝑊𝑎𝑡𝑒𝑟

𝑥

∑ 𝑐𝑖𝑥
𝑛𝑐
𝑖=1

 
(170) 

𝐶𝑜𝑛𝑣 = 100
𝑐𝐴𝑐𝑖𝑑𝑃𝑟𝑜

𝑓𝑢𝑓 − (𝑐𝐴𝑐𝑖𝑑𝑃𝑟𝑜
𝑥𝑢𝑥 + 𝑐𝐴𝑐𝑖𝑑𝑃𝑟𝑜

𝑟𝑢𝑟)

𝑐𝐴𝑐𝑖𝑑𝑃𝑟𝑜
𝑓𝑢𝑓

 
(171) 

𝐸𝐶 =
𝑐𝑃𝑂𝐻

𝑒𝑢𝑒 − 𝑢𝑓(𝑐𝑃𝑂𝐻
𝑓 − 𝑐𝑃𝑂𝐻

𝑓 𝐶𝑜𝑛𝑣
100 )

𝑐𝑃𝑟𝑜𝑃𝑟𝑜𝑟𝑢𝑟
 

(172) 
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𝑃𝑟 =
𝑐𝑃𝑟𝑜𝑃𝑟𝑜

𝑟𝑢𝑟
𝑉𝑇

 (173) 

where 𝑃𝑢𝑟𝑥, is the extract purity, 𝑃𝑢𝑟𝑟, is the raffinate purity,  𝑐𝑖
𝑥, is the concentration of the 

component 𝑖 in the extract stream, 𝑐𝑖
𝑟, is the concentration of the component 𝑖 in the raffinate 

stream, 𝑐𝑖
𝑒, is the concentration of the component 𝑖 in the eluent stream and 𝑐𝑖

𝑓, is the 

concentration of the component 𝑖 in the feed stream, 𝑉𝑇, is the volume of the bed, EC, is the 

eluent consumption and 𝑃𝑟 is the unit productivity. This model was implemented in the gPROMS 

modelling builder (Process Systems Enterprise 2015). 

P2-2.11. TMBR design and optimization 

The PSO-TVAC-MSR algorithm previously developed and validated in the Part 1 (P1-2.5 and P1-

3.5) of this thesis was here applied in order to define the set of optimal operating conditions for 

the production of ProPro in a TMBR unit.  

It is expected that the methodology previously proposed is able to deal with the TMBR design 

problem. However, it is necessary first to define an objective function that computes the main 

goals of the optimization problem. In this way, the definition of the optimization objective 

function is an essential step for the optimization problem solution. The main goal of this work is 

to design and optimize a TMBR unit. Therefore, in those type of processes, the main design 

variables are the set of external operating flow rates (𝑄𝑓 , 𝑄𝑒 , 𝑄𝐼𝑉,𝑄𝑥 and 𝑄𝑠) and consequently 

the internal flow rates. The optimal set of those variables is the one which will lead to the 

maximization of the unit productivity and conversion while the eluent consumption is minimized 
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attending to the minimum quality requirement of the final product (streams purity), 𝑃𝑠𝑡. Hence, 

considering a general optimization problem: 

min
𝜃
𝐽(𝒚) 

 
(174) 

where 𝒚 is the vector of process performance parameters and 𝜃 is the set of process variables to 

be optimized, the objective function for the present case can be defined as: 

J =
                 

∑((𝑃𝑠𝑡 − 𝑃𝑢𝑟𝑘)
2+(𝑃𝑠𝑡 − 𝑃𝑢𝑥𝑘)

2 +
1

𝐶𝑜𝑛𝑣𝑘
+
1

𝑃𝑟𝑘
+ 𝐸𝑐𝑘)

𝑛𝑘

1

 

 

(175) 

where, 𝑃𝑠𝑡 is the minimum requirement for the purities,  𝑛𝑘 is the total number of instants of 

evaluation of the performance parameters. Hence, the objective function presented was 

employed with the methodology defined in Part 1 to design the TMBR unit. 

P2-2.12. Confidence region evaluation 

The final result of the HHPSO-TVAC-MSR optimization provides a matrix containing all the 

evaluated positions by the particles during the sworn flight over the search region. In this way, 

as it was previously demonstrated in P1-2.5 and P1-3.5, it is possible to draw the unit operating 

variables confidence regions through the statistical verification of the optimization results as 

function of the optimal point found in the complete optimization, as shown in: 

𝐽(𝜃) ≤ 𝐽(𝜃∗) +
𝑛𝑘𝑛𝜃

𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1
𝐹𝛼(𝑛𝜃, 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1) (176) 
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The above equation represents the Fisher–Snedecor test, which relates the minimum point found 

in the optimization, 𝜃∗, and its corresponding value of objective function, 𝐽(𝜃∗), with a 

determined position 𝜃 with objective function value of 𝐽(𝜃), evaluating if this condition respects 

the Fisher-Snedecor distribution 𝐹𝛼, with confidence level of 𝛼 and 𝑛𝑘 − 𝑛𝜃 − 𝑛𝑦 + 1 degrees of 

freedom, where 𝑛𝑦 is the total number of process performance parameters considered, 𝑛𝑘 is the 

number of iterations considered in the optimization and 𝑛𝜃 is the number of optimized operating 

variables. In Section P1-2.5.2 the full deduction of the above test, Equation (176), is presented. 

Here the test is employed in the same way as in P1-3.5, to perform the robust design of the TMBR 

unit. 

The HPSO-TVAC-MSR, objective function and Fisher–Snedecor test here presented were 

implemented in the MatLab software. To run the optimization, a communication between 

gPROMS, where the process models were written, and MatLab was used through the go:MATLAB 

extension (Process Systems Enterprise 2015). It was possible for MatLab to run externally the 

model and collect the responses of the process simulation. 
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P2-3 Results 

P2-3. Results 

In this chapter all the results obtained from the application of the methodologies presented 

in chapter P2-2 are presented.  

P2-3.1. Fixed bed adsorptive unit hydrodynamics 

In order to characterize the fixed-bed chromatographic column, a series of tracer experiments 

was performed. Thus, pulses of 200 µL of Blue Dextran solution were injected in the fixed bed 

previously in equilibrium with water. The Blue Dextran is a substance of high molecular size which 

prevents its access to the pores of the Amberlyst 46 resin. The flow rates ranged from 1.0 to 7.9 

mL min–1 using water as eluent and the temperature was kept constant at 313 K. While the 

concentration of the outlet stream was online monitored with a UV-Vis detector at 300 nm.  

This first step had as objective the determination of the column porosity, 𝜀𝑏, and axial dispersion 

coefficient, evaluated by the Peclet number, 𝑃𝑒. Through the experimental data and the 

equations described in Section P2-2.3. The results obtained are shown in Table 3. 
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P2-3.1 Fixed bed adsorptive unit hydrodynamics 

Table 28 - Tracer experiments results. 

Experiment Q (mL/min) 𝒕̅𝒓 (min) ε Pe 

1 2.00 ± 0.03 13.05 ± 0.20 0.042 ± 0.014 218 ± 10 

2 4.96 ± 0.07 5.29 ± 0.08 0.041 ± 0.014 181± 9  

3 7.88 ± 0.12 3.35 ± 0.05 0.042 ± 0.014 163± 8 

 

In order to verify the parameters estimated through the experiments, a mathematical model was 

proposed to represent the fixed bed adsorptive unit hydrodynamics. This model is based on the 

mass balance to the system taking in consideration the dispersive effect in the bed. The mass 

balance is represented by: 

𝜕𝐶𝑏,𝑖
𝜕𝑡

+ 𝑢
𝜕𝐶𝑏,𝑖
𝜕𝑧

= 𝐷𝑎𝑥
𝜕2𝐶𝑏,𝑖
𝜕𝑧2

 (177) 

where 𝐶𝑏,𝑖, is the concentration of the compound 𝑖, 𝑢 is the interstitial velocity and 𝐷𝑎𝑥  is the 

axial dispersion coefficient determined through 𝐷𝑎𝑥 =
𝑢𝐿

𝑃𝑒
. 

The previous model was simulated for the same conditions in which the tracer experiments were 

performed. Figure 63 presents the tracer residence time distribution curves, experimental points 

and model predictions. It is possible to conclude that the model is able to predict with precision 

the fixed bed adsorptive unit hydrodynamics. 
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P2-3.2 Adsorption equilibrium isotherms 

 

Figure 63 - Tracer residence time distribution curves, for the experiments presented in Table 28. 

 

P2-3.2. Adsorption equilibrium isotherms 

After the fixed bed column hydrodynamics characterization, adsorption experiments with the 

non-reactive pairs were performed. The first step is to determine the uncertainty of the 

concentration measurement through the methodology presented in Section P2-2.6. The results 

of the uncertainty evaluation of the concentration measurement are presented in Table 29. 
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P2-3.2 Adsorption equilibrium isotherms 

Table 29 - Calculated values of relative standard uncertainties, combined standard uncertainties 
and expanded uncertainties for the determination of the experimental concentrations. 

Parameter Value 

𝑄𝑥𝑥 133.222 

𝑛 11.000 

𝑝 3.000 

𝑏 0.163 

𝑆𝐷𝑥𝑦 0.031 

𝑆𝐷rrf 0.024 

𝑢cal 0.002 

𝑢rep 0.010 

𝑢LOD 0.011 

𝑢sample 0.002 

𝑢rec 0.028 

𝑈 0.064 
 

Then, a series of breakthrough experiments was done using the methodology described in 

section P2-2.4 and multicomponent adsorption equilibrium points were calculated.  

The first experiment was done with the column in equilibrium with 1-Propanol (POH) and 

successive increases of the feed concentration of n-Propyl Propionate (ProPro) and at the end 

the column was fed with pure POH. In the second experiment, the same procedure was applied, 

but in this case the column was first filled with Propanoic Acid (AcidPro) and fed with different 

concentrations of ProPro. Finally, the column was filled with Water and fed with different 

concentration of AcidPro. This experimental data can be used to estimate the parameters of the 

Langmuir competitive adsorption isotherm and finally to validate the model proposed in Section 

P2-2.7. The isotherm parameters values and uncertainties are presented in Table 30. 
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P2-3.2 Adsorption equilibrium isotherms 

Table 30- Langmuir competitive adsorption parameters over Amberlyst-46 and their uncertainties, 

calculated from the parameters confidence regions and HPSO-TVAC-MSR, with 𝑄 in (𝑚𝑜𝑙 𝐿𝑎𝑑𝑠
−1 ) and 𝐾 

in (𝐿 𝑚𝑜𝑙−1). 

 HPSO-TVAC-MSR 

  𝑸𝒎𝒂𝒙,𝑷𝑶𝑯 𝑸𝒎𝒂𝒙,𝑨𝒄𝒊𝒅𝑷𝒓𝒐 𝑸𝒎𝒂𝒙,𝑾𝒂𝒕𝒆𝒓 𝑸𝒎𝒂𝒙,𝑷𝒓𝒐𝑷𝒓𝒐 𝑲𝑷𝑶𝑯 𝑲𝑨𝒄𝒊𝒅𝑷𝒓𝒐 𝑲𝑾𝒂𝒕𝒆𝒓 𝑲𝑷𝒓𝒐𝑷𝒓𝒐 

Value 9.13 10.06 43.07 5.11 11.66 9.04 2.35 5.08 

Mean 9.13     10.07 43.07 5.11 11.67 9.06 2.36 5.10 

Std. 0.10 0.06 0.23 0.16 0.96 1.24 0.63 1.06 

Uncert. 0.19 0.12 0.47 0.33 1.92 2.47 1.25 2.12 

  Objective function 18.83      

 

Figure 64 presents the parameters confidence regions. In the parameter estimation step, the PSO 

was applied  to the system in study with a 𝑐1 varying from 0.5 to 2.5, 𝑐2 varying from 2.5 to 0.5, 

number of particles 𝑝 equal to 200, number of iterations 𝑘𝑡𝑜𝑡𝑎𝑙  equal to 400 and finally the 

searching region starting from 𝑅1,𝑚𝑖𝑛 = 10
−5 × [1, 1, 1, 1, 1, 1, 1, 1] and 𝑅1,𝑚𝑎𝑥 = 10 ×

[1.2, 1, 1.4, 5, 1.4, 1.2, 1, 1] to 𝑅𝑖,𝑚𝑎𝑥 = 1.05 × 𝑅𝑖−1,𝑚𝑎𝑥, 𝑖 = 2, … ,5, where 𝑅𝑖 =

[𝑄𝑚𝑎𝑥,𝑃𝑂𝐻, 𝑄𝑚𝑎𝑥,𝐴𝑐𝑖𝑑𝑃𝑟𝑜, 𝑄𝑚𝑎𝑥,𝑊𝑎𝑡𝑒𝑟 , 𝑄𝑚𝑎𝑥,𝑃𝑟𝑜𝑃𝑟𝑜, 𝐾𝑃𝑂𝐻, 𝐾𝐴𝑐𝑖𝑑𝑃𝑟𝑜, 𝐾𝑊𝑎𝑡𝑒𝑟 , 𝐾𝑃𝑟𝑜𝑃𝑟𝑜]. From Figure 

64  it is possible to see that an elliptical approximation of the confidence region is close to the 

likelihood confidence region, which is an indication that the optimal point follows a normal 

distribution. In Figure 64,  it is also possible to note that the axes of the ellipses shape are parallel 

to the parameter axes which means that there are no correlations between the parameters. This 

is coherent with the phenomenological knowledge of the system, since each parameter presents 

a property of a given compound, which are not correlated with each other. 
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Figure 64 - Parameters confidence regions, elliptical confidence region (dashed line) and optimal 
point (cross), with 𝑄 in (𝑚𝑜𝑙 𝐿𝑎𝑑𝑠

−1 ) and 𝐾 in (𝐿 𝑚𝑜𝑙−1). 
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Traditionally in the literature, the estimation of the Langmuir parameters is done through the 

simple solution of the optimization problem employing a gradient based method. The 

parameters uncertainty assessment is rarely done; in some few cases, the error of the 

parameters is calculated, as for example in Faria et al. (2014) where the Jack Knife method is 

applied in the parameter estimation and the parameters error is computed for the synthesis of 

glycerol ethyl acetal in a chromatographic column. In order to compare with the results 

presented in Table 30, a Generalized Reduced Gradient (GRG) algorithm was applied to solve the 

same optimization problem solved by the PSO. Table 31 presents the results obtained through 

the method, where it is possible to note that the minimum value of the objective function found 

by the HHPSO-TVAC-MSR is significantly lower than the GRG algorithm. 

Table 31 - Langmuir adsorption competitive parameters over Amberlyst 46 estimated by the 
Generalized Reduced Gradient algorithm. 

 GRG algorithm 

 
𝑸𝒎𝒂𝒙,𝑷𝑶𝑯 𝑸𝒎𝒂𝒙,𝑨𝒄𝒊𝒅𝑷𝒓𝒐 𝑸𝒎𝒂𝒙,𝑾𝒂𝒕𝒆𝒓 𝑸𝒎𝒂𝒙,𝑷𝒓𝒐𝑷𝒓𝒐 𝑲𝑷𝑶𝑯 𝑲𝑨𝒄𝒊𝒅𝑷𝒓𝒐 𝑲𝑾𝒂𝒕𝒆𝒓 𝑲𝑷𝒓𝒐𝑷𝒓𝒐 

Value 8.99 9.94 42.86 5.70 8.61 10.06 2.48 5.18 

 
Objective function 24.05      

 

From the results presented in Table 30 and Table 31 it is possible to see that, as expected, the 

water is the most retained compound in the resin Amberlyst 46, while the ProPro is the 

compound with less affinity to the resin. Figure 65, Figure 66 and Figure 67 present the Langmuir 

model predictions with the parameters presented in Table 30 and their uncertainties; the 

experimental points with their uncertainty intervals are also presented.  
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Figure 65 - Langmuir competitive adsorption isotherm for the binary 1-Propanol (a) – n-Propyl 
Propionate (b) over Amberlyst-46 at 313 K. The lines represent the theoretical adsorption 

isotherm considering the parameters presented in Table 30. 

 

Figure 66 - Langmuir competitive adsorption isotherm for the binary Propionic Acid (a) – n-
Propyl Propionate (b) over Amberlyst-46 at 313 K. The lines represent the theoretical adsorption 

isotherm considering the parameters presented in Table 30. 
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Figure 67 - Langmuir competitive adsorption isotherm for the binary Propionic Acid (a) – Water 
(b) over Amberlyst-46 at 313 K. The lines represent the theoretical adsorption isotherm 

considering the parameters presented in Table 30. 

 

Finally, the model here proposed for the fixed bed unit was used to simulate the breakthrough 

experiments. The methodology here proposed allows the evaluation of the uncertainties of the 

model prediction, based on the uncertainties of the model parameters and measurements. 

Figure 68, Figure 69 and Figure 70 present both model predictions and experimental data, as well 

as their uncertainties for the performed breakthrough experiments. 
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Figure 68 - Experimental and predicted breakthrough curves for the binary 1-Propanol– n-Propyl 
Propionate and the respective uncertainties at 313 K and a flowrate of 7.88 mL/min-1. The lines 

represent the breakthrough curves predicted by the model while the dots represent the experimental 
data. 

 

 

Figure 69 - Experimental and predicted breakthrough curves for the binary Acid Propanoic – Water 
and the respective uncertainties at 313 K and a flowrate of 7.88 mL/min-1. The lines represent the 

breakthrough curves predicted by the model while the dots represent the experimental data. 
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Figure 70 - Experimental and predicted breakthrough curves for the binary Acid Propanoic – n-
Propyl Propionate and the respective uncertainties at 313 K and a flowrate of approximately 7.88 

mL/min-1. The lines represent the breakthrough curves predicted by the model while the dots 
represent the experimental data. 

From the previous figures, it is possible to verify that the model predictions range overlaps the 

experimental points range. This leads to a more reliable model prediction, even under a reduced 

number of experiments. In terms of number of experiments, the present work performed a total 

of 16 breakthrough experiments in order to estimate the necessary parameters. While in the 

literature it can be found reports where it were performed for example: 32 breakthrough 

experiments (Faria et al. 2014); 20 experiments (Regufe et al. 2016); 21 experiments (Pereira et 

al. 2009a). It is also important to highlight that each experiment produces several samples to be 

analysed which have a significant analysis  time associated. 

Therefore, the experimental work was performed through a faster methodology and with a 

reduced number of experiments, when compared with other works in the literature. This enables 

the verification of the consistency of the method here proposed. 

 



 

P a g e  254 | 311 

P2-3.3 Reaction rate model validation: Batch Reactor 

P2-3.3. Reaction rate model validation: Batch Reactor 

As previously mentioned, the reaction rate presented in Section P2-2.1 was originally proposed  

by Duarte (2006) considering the UNIQUAC model. However, the present work proposes to apply 

a different thermodynamic model for the calculation of the activity coefficients. Therefore, in 

order to verify the validity of these modifications, a batch reactor model, presented in Section 

P2-2.8, was used to simulate experimental data reported in Duarte’s work (Duarte 2006) 

considering the reaction rate and the thermodynamic model presented in Section P2-2.1.1 and 

Section P2-2.1.3. Table 32 presents the conditions in which the experiments were done and the 

model simulated. 

Table 32 - Experimental and batch model simulation conditions of Duarte (2006). 

 POH:AcidPro Temperature (K) 𝒎𝒄𝒂𝒕 𝑵𝒕 

Experiment 1 1:1 333.15 10.00 10.00 

Experiment 2 1:1 343.15 10.03 6.75 

 

Figure 71.a) and Figure 71.b) present the experimental points and model predictions respectively 

for experiment 1 and experiment 2. From these graphics it is possible to note that the present 

model can represent with precision the experimental data. Hence, it is possible to conclude that 

the reaction rate model based on the NRTL and its kinetic parameters are suitable for the present 

case. 
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(a) 

 

(b) 

Figure 71 - Experimental and simulation results for the production of ProPro in a batch reactor, 
(a) Experiment 1; (b) Experiment 2 of Table 5. 
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P2-3.4. Fixed-bed reactor model validation 

In order to validate the fixed-bed reactor model presented in section P2-2.9, a series of 

experiments was done in the experimental unit described in Section P2-2.2. First, a stream 

composed by 100% of Propanoic Acid was fed to the column in equilibrium with 1-Propanol 

(experiment 1). Following the first experiment, a stream composed by 100% of 1-Propanol was 

fed to the column in order to regenerate it to its initial state (experiment 2). Then, two 

experiments with binary feed mixtures, starting with the column filled with 100% of 1-Propanol, 

were performed with different feed compositions (experiments 3 and 4). The experimental 

conditions used are presented in Table 33. All experiments were done at a constant temperature 

of 313.15 K. 

Table 33 - Fixed bed reactor experimental conditions. 

 Compound 𝒙𝟎 𝒙𝒇𝒆𝒆𝒅 𝑸𝒇𝒆𝒆𝒅 (ml min-1) 

Exp. 1 

POH 1 0 

2 

AcidPro 0 1 

Exp. 2 

POH 0 1 

1.2 

AcidPro 1 0 

Exp. 3 

POH 1 0.6 

1.8 

AcidPro 0 0.4 

Exp. 4 

POH 1 0.76 

1.8 

AcidPro 0 0.24 
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The model here proposed for the production of the ProPro through a fixed bed reactor was used 

to simulate these experiments. The experimental results together with the model predictions 

and its uncertainty are presented in Figure 72 and Figure 73.  

 

 

Exp. 1 
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P2-3.4 Fixed-bed reactor model validation 

 

Exp. 2 

Figure 72 - Synthesis of ProPro in a fixed bed adsorptive reactor at 313 K under the conditions 
presented in Table 33. 

 

 

Exp. 3 
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Exp. 4 

Figure 73 - Synthesis of ProPro in a fixed bed adsorptive reactor at 313 K under the conditions 
presented in Table 33. 

From the previous figures, it is possible to note that the predictions curves are in agreement with 

the experimental data. Hence, the mathematical model here proposed was capable of predicting 

with precision the concentration histories for the synthesis of n-Propyl Propionate in a fixed bed 

adsorptive reactor. Furthermore, the predictions are presented with their uncertainties which 

gives a more complete information about the system behaviour. From Figure 72 and Figure 73 it 

is possible to note that the Propanoic Acid was the first species to elute from the column. As the 

reactants contact with the resin active sites, the esterification reaction is promoted and 

consequent production of n-Propyl Propionate and Water. As the ProPro presents a lower affinity 

to the resin, it elutes first than water, at 16.23 min and 17.00 min respectively. The evolution of 

the concentration history proceeds until the resin is in equilibrium with water. Afterwards, the 

outlet stream composition remains constant, where is found a maximum concentration of ProPro 
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equal to 0.81 mol.L-1 in  experiment 4 and 1.03 mol.L-1 in experiment 3. 

P2-3.5. True Moving Bed Reactor design and optimization  

The system here presented was simulated taking in consideration a pilot scale SMBR unit located 

in the Laboratory of Separation and Reaction Engineering. The unit model is a LICOSEP1 12–26 

unit by Novasep, which can be operated up to 332 K and 60 bar and where 12 Superformance SP 

columns with 2.3 dm of length and 0.26 dm of diameter are installed. The columns are considered 

to be packed with the resin Amberlyst 46. For the simulation of the TMBR process, a unit with 

four sections of equal size, corresponding to two LICOSEP columns, that is 4.6 dm in length, was 

assumed. The operating conditions considered are presented in Table 34. It was also considered 

that pure 1-Propanol was used as process eluent. 

Table 34 – Conditions considered in the simulations of the TMBR unit. 

Section length 4.6 dm 

Column diameter 0.23 dm 

Operating temperature 313 K 

Bed porosity 0.4 

Peclet number 166 

Particle diameter 245.5 µm 

Feed composition 60% AcidPro -40% POH 
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P2-3.5.1. Triangle Theory 

The design and optimization of a TMBR unit is a complex task because it must assure the 

separation and reaction simultaneously and efficiently. Some studies in the literature propose a 

two steps approach for this problem based on the Equilibrium Theory, which is usually applied in 

the design and optimization of TMB/SMB units. This approach consists in starting with the 

determination of the necessary conditions that guarantee the regeneration of the liquid and solid 

recycling streams. That means to specify the conditions for which pure eluent/solid are obtained 

at the outlet streams of sections IV and I respectively. Those conditions can be determined setting 

the limits of the ratio between the fluid internal flow rates and solid flow rate as: 

𝛾𝐼 =
𝑢𝐼
𝑢𝑠
>
(1 − 𝜀)

𝜀

𝑞𝑊𝑎𝑡𝑒𝑟,𝐼(𝑐𝑊𝑎𝑡𝑒𝑟
𝑥)

𝑐𝑊𝑎𝑡𝑒𝑟𝑥
 (178) 

𝛾𝐼𝑉 =
𝑢𝐼𝑉
𝑢𝑠
<
(1 − 𝜀)

𝜀

𝑞𝑃𝑟𝑜𝑃𝑟𝑜,𝐼(𝑐𝑃𝑟𝑜𝑃𝑟𝑜
𝑟)

𝑐𝑃𝑟𝑜𝑃𝑟𝑜𝑟
 (179) 

Hence, the values of the ratio between the fluid interstitial velocity and solid velocity for sections 

I and section IV were calculated for the system in study based on the previously presented results, 

𝛾𝐼 > 0.9693 and 𝛾𝐼𝑉 < 0.2484. It is important to note that the ratio values for sections I and IV 

mentioned above are obtained based on the Equilibrium theory. However, as mass transfer 

resistance is present in the system it is necessary to add a safety factor (𝑆𝐹) to the values 

obtained above. The next step of the approach is to fix a value for the switching time, which 

consequently fixes the values of solid, section IV and section I flow rates. After that, the reactive 

separation region can be defined for a specific requirement of purity. This is done by simulating 

the process for different values of 𝛾𝐼𝐼 and 𝛾𝐼𝐼𝐼. That means, starting with a low value of the feed 
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stream flow rate and a low value of the extract flow rate, the process is simulated and the 

performance parameters determined. Then, the extract flow rate is gradually increased until the 

two limits of the reactive separation region that obey the purity restriction are found. Afterwards, 

the value of the feed flow rate is increased and the simulation procedure with different values of 

extract flow rate repeated. This is done until the separation region is closed, that is, the maximum 

feed flow rate for which it is possible to obtain the required purity is found. 

Table 35 - Operating conditions and performance parameters obtained through the triangle theory. 

Operating 
Conditions 

𝑸𝒇(ml/min) 𝑸𝒆(ml/min) 𝑸𝑰𝑽(ml/min) 𝑸𝒙(ml/min) 𝑸𝒔(ml/min) 

Value 0.14 2.56 0.12 0.90 2.45 

Performance 
Parameters 

𝑷𝒖𝒓 (%) 𝑷𝒖𝒙 (%) 𝑪𝒐𝒏𝒗 (%) 
𝑷𝒓 (mol/day l 

of bed) 
𝑬𝑪 (l/g) 

Value 96.55 96.72 97.10 26.12 10.54 

 

In the present case, after a preliminary analysis, the 𝑆𝐹 was fixed to a value equal to 1.7. After 

an analysis of the influence of the switching time, which is presented in the next section, it was 

fixed at 60 minutes. Figure 74 presents the reactive separation region evaluated through the 

aforementioned procedure for different purity values of 80%, 90% and 95% in both extract and 

raffinate streams. Those simulations are based on the process conditions described in Table 34. 

The considered operating point on the regeneration region (𝛾𝐼 and 𝛾𝐼𝑉) is also shown in the 

Figure. An operating point within the 95% region was selected. Table 35 presents the 
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corresponding operating conditions and its performance parameters obtained through the 

Triangle Theory. From the results it is possible to note that a conversion of 97.1% was obtained, 

which is significantly higher than the equilibrium conversion for the same initial conditions, which 

is 51.7%. As previously mentioned, the moving bed reactor unit, as other multifunctional units, 

presents the advantage of overtaking the equilibrium limitation due to the continuous removal 

of the products from the reaction medium. This can be clearly seen from the results presented 

in Table 35 and, later on this section, it will be demonstrated that applying these units for the 

production of ProPro it is possible to achieve a conversion over 99%. 

 

Figure 74 - Reactive separation regions with 𝒕∗ = 𝟔𝟎 min and 𝑺𝑭 = 𝟏. 𝟕 for purities of 80%, 90% and 95%. 
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P2-3.5.1.1. Influence of the switching time 

This Section is dedicated to the evaluation of the influence of the switching time on the process 

performance parameters. To do this, the values of 𝛾𝑖 were kept constant and equal to the ones 

that are obtained by the operating conditions presented in Table 35 while the solid flow rate is 

changed within a range of switching time from 3 minutes to 120 minutes.  

Figure 75 presents the influence of the solid velocity (switching time) on the process purities, 

conversion, productivity and internal concentration profiles. The change of the switching time 

affects different phenomena within the process. Higher switching times result in lower solid flow 

rates. For the same 𝛾 values, this means lower feed flow rates and lower internal flow rates. 

Therefore, higher residence times within each section are obtained which consequently increases 

the conversion and decreases the mass transfer effects. Looking at Figure 75, it is possible to see 

that for low switching times (for example 40 min), the raffinate and extract purities are low. This 

happens because the lower conversion results in lower ProPro concentration and contamination 

of the raffinate stream with water, which spread through the column due to the mass transfer 

effects and unreacted AcidPro. The extract stream is also contaminated with unreacted AcidPro 

and a small amount of ProPro, which also spreads through the column due to the mass transfer 

effect. On the other hand, if the switching time is increased to 120 min, as previously mentioned, 

the feed flow rate tends to decrease and the reaction conversion to increase. As presented in 

Section P2-2.10, Equation (173), the productivity is proportional to the feed flow rate, thus the 

productivity tends to decrease while the switching time increases. Hence, at a switching time of 

60 minutes it is possible to obtain purities and conversion over 95%. 
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(a) 

 

(b) 

Figure 75 - Influence of the switching time on the performance parameters and internal concentration 
profiles of the TMBR unit.  
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In order to better visualize the aforementioned effects, Figure 76 presents the 3D concentration 

profiles and heat map graphics of ProPro, AcidPro and Water inside the TMBR where it is possible 

to note the behaviour of the profile waves as function of the different switching times. 
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Figure 76 - TMBR internal concentration profiles as function of the switching time, 3D and heat 

map graphics. 

 

P2-3.5.1.2. Influence of the feed concentration 

The influence of the feed concentration on the process performance was also analysed in order 

to better describe the system behaviour through the Equilibrium Theory. A switching time of 60 

min was used. 
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(a) 

 

(b) 

Figure 77 - Influence of the molar fraction of AcidPro in the feed stream on the performance 
parameters and internal concentration profiles. 
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Figure 77 presents the influence of the molar fraction of Propanoic Acid in the feed stream on 

the process performance parameters and internal concentration profile. It is possible to note that 

a better compromise is obtained when the molar fraction of the acid in the feed stream is around 

0.6. It can be seen that an increase in AcidPro molar fraction results in a decrease of extract purity 

and an increase on raffinate purity. This is because higher concentrations are obtained within the 

bed as the AcidPro molar fraction increases. And although more water reached the raffinate port, 

the increase in ProPro concentration over compensates this effect and higher raffinate purities 

are obtained. However, in the extract port the amount of AcidPro that reaches that port is 

enough to cause a decrease in purity. 

These effects can be better verified in the 3D concentrations profiles and heat maps presented 

in Figure 78.  
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Figure 78 - TMBR internal concentration profiles as function of the molar fraction of AcidPro on the feed stream, 
3D and heat map graphics. 
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P2-3.5.2. HPSO-TVAC-MSR 

P2-3.5.2.1. Optimal design for 95% of purities 

requirement 

First, the HPSO-TVAC-MSR was applied in order to solve the optimization problem described in 

Equation (176) for a 95% of minimum requirement of purities. This was done to compare the 

TMBR design and optimization through both methodologies here described. In this way, the PSO 

was applied to the system in study with a 𝑐1 varying  from 0.5 to 2.5, 𝑐2 varying  from 2.5 to 0.5, 

number of particles 𝑝 equal to 60, number of iterations 𝑘𝑡𝑜𝑡𝑎𝑙  equal to 120 and finally the 

searching region (where 𝑅𝑖 = [𝑄𝑓 , 𝑄𝑒 , 𝑄𝐼𝑉, 𝑄𝑥, 𝑄𝑠]) starting from 𝑅1,𝑚𝑖𝑛 = [0.050, 0.20, 0.070,

0.070, 0.080] and  𝑅1,𝑚𝑎𝑥 = [0.80, 7.00, 0.700, 2.00, 3.00] to 𝑅2,𝑚𝑎𝑥 = 1.05 × 𝑅1,𝑚𝑎𝑥, 

considering the 𝑅𝑖,𝑚𝑖𝑛 constant and that the search  region was enlarged twice. Under those 

conditions the algorithm was able to find one optimal minimum; the set of operating variables 

and performance parameters corresponding to the minimum found are presented in Table 36; 

the same table presents the values obtained through the Equilibrium Theory in order to  compare 

both results. For both cases the feed composition was 60% of AcidPro and 40% of POH. 
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Table 36 - Operating conditions and performance parameters obtained through the HHPSO-TVAC-MSR 
and triangle theory. 

Operating 
Conditions 

𝑸𝒇(ml/min) 𝑸𝒆(ml/min) 𝑸𝑰𝑽(ml/min) 𝑸𝒙(ml/min) 𝑸𝒔(ml/min) 

Equilibrium 
Theory 

0.14 2.56 0.12 0.90 2.45 

HHPSO-TVAC-
MSR 

0.26 0.77 0.30 0.21 1.1 

Performance 
Parameters 

𝑷𝒖𝒓 (%) 𝑷𝒖𝒙 (%) 𝑪𝒐𝒏𝒗 (%) 
𝑷𝒓 (mol/day l 

of bed) 
𝑬𝑪 (l/g) 

Equilibrium 
Theory 

96.55 96.72 97.10 26.12 10.54 

HHPSO-TVAC-
MSR 

95.47 95.50 97.17 48.76 2.48 

 

From Table 36 it is possible to note that the PSO could lead to a set of operating conditions for 

which the process presents two times higher productivity and approximately five times lower 

eluent consumption comparing with the Equilibrium Theory values. An analysis of the TMBR 

internal concentration profiles obtained from both methods is presented by Figure 79. From this 

figure, it is possible to note that the unit design through the PSO leads to a better usage of 

sections I and IV of the TMBR. This happens since there are no restrictions for the PSO algorithm, 

while the Equilibrium Theory is restricted by its own nature, as previously described. Hence, the 

PSO optimal design provides a significant higher productivity and lower eluent consumption, 

while keeping the process in its minimal requirements of purities. 
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Equilibrium Theory operating conditions HHPSO-TVAC-MSR operating conditions 

Figure 79 - Internal concentration profiles  for a TMBR unit designed through the equilibrium 
theory, left side and a TMBR unit designed through the HHPSO-TVAC-MSR, right. 

 

P2-3.5.2.2. Optimal design for 99% of purities 

requirement 

As presented in P1-2.5 the HPSO-TVAC-MSR leaded to a better TMBR design than the Equilibrium 

theory. Furthermore, this method presents the flexibility to evaluate all possible operating 

conditions inside of the search area. Moreover, through this technique it is possible to map all 

the operating conditions which respect the process performance parameters optimal conditions. 

Hence, in this Section the TMBR unit is redesigned in order to attend to a 99% purities 

requirement and the confidence regions for the optimal operating condition are drawn. 

Therefore, the PSO was applied to the system in study with a 𝑐1 varying  from 0.5 to 2.5, 𝑐2 varying  
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from 2.5 to 0.5, number of particles 𝑝 equal to 60, number of iterations 𝑘𝑡𝑜𝑡𝑎𝑙  equal to 180 and 

finally the searching region (where 𝑅𝑖 = [𝑄𝑓 , 𝑄𝑒 , 𝑄𝐼𝑉, 𝑄𝑥, 𝑄𝑠]) starting from 𝑅1,𝑚𝑖𝑛 = [0.050,

0.20, 0.070, 0.070, 0.080] and  𝑅1,𝑚𝑎𝑥 = [0.80, 7.00, 0.700, 2.00, 3.00] to 𝑅2,𝑚𝑎𝑥 = 1.05 ×

𝑅1,𝑚𝑎𝑥, considering the 𝑅𝑖,𝑚𝑖𝑛 constant and that the search  region was enlarged twice. Under 

those conditions the algorithm was able to find the optimal minimum; the set of operating 

variables and performance parameters corresponding to the minimum found are present in Table 

37. Here it should be highlighted that a conversion over 99% was obtained. The corresponding 

concentration profiles are presented in Figure 80.  

Table 37 - Operating conditions and performance parameters obtained through HHPSO-TVAC-MSR for 
99% of purities. 

Operating 
Conditions 

𝑸𝒇(ml/min) 𝑸𝒆(ml/min) 𝑸𝑰𝑽(ml/min) 𝑸𝒙(ml/min) 𝑸𝒔(ml/min) 

HHPSO-TVAC-
MSR99% 

0.14 0.35 0.087 0.097 0.41 

Performance 
Parameters 

𝑷𝒖𝒓 (%) 𝑷𝒖𝒙 (%) 𝑪𝒐𝒏𝒗 (%) 
𝑷𝒓 (mol/day l 

of bed) 
𝑬𝑪 (l/g) 

HHPSO-TVAC-
MSR99% 

99.93 99.27 99.49 27.40 1.34 

 

 In Figure 80 is possible to note how the optimization led the process to a condition of 99% 

purities. A comparison between the 99% purities profile and the 95% one indicates that the 

sections I and IV are performing a better purification of the solid and liquid streams respectively. 

This leads to a higher purity while costing a reduction in the productivity, since that it was 



 

P a g e  275 | 311 

P2-3.5.2.3 Confidence region evaluation 

necessary to reduce the solid and feed flow rates. However, this productivity is of the same order 

of magnitude of  the one found in the Equilibrium theory design.  

  

99% purities concentration profiles 95% purities concentration profiles 

Figure 80 - Internal concentration profiles for TMBR optimal design through the HPSO-MMSR 
with 99% vs 95% of purities requirements. 

 

P2-3.5.2.3. Confidence region evaluation 

The Fisher–Snedecor test described in Section P2-2.12 was here applied. The optimization results 

can be also evaluated in terms of the ratios between the interstitial velocities and the solid 

velocity, providing a tool for direct comparison with the results as they are commonly presented 

for Equilibrium theory. Thus, Figure 81 provides the values of the ratios evaluated during the PSO 

optimization that obey the Fisher–Snedecor test, for a 99% purity requirement, and the 

respective optimal point, where in the left side is presented a two dimensions graphic containing 
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the information about all values of 𝛾𝐼𝐼 vs 𝛾𝐼𝐼𝐼 and 𝛾𝐼 vs 𝛾𝐼𝑉 that were evaluated. On the right side 

of Figure 81 it is presented a 3 dimensions graphic, with the values of  𝛾𝐼𝐼 vs 𝛾𝐼𝐼𝐼  as function of 

the 𝑓𝑜𝑏, where it is possible to observe the general behavior of the system through the 

optimization. It is also possible to note that, under the conditions evaluated, the system presents 

only one minimum point. Comparing the optimal values of interstitial velocities ratio, the PSO 

found 𝛾𝐼𝐼 = 0.55, 𝛾𝐼𝐼𝐼 = 0.78, 𝛾𝐼 = 0.70 and 𝛾𝐼𝑉 = 0.14 for a minimal requirement of purity 

equal to 99%. This optimization has more freedom to search the best process operating point 

than the triangle theory, since it has no restrictions such as the fixed value of solid flow rate or 

the safety factor.  
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(a) 

 
(b) 

Figure 81 – Confidence regions for the interstitial velocities ratios and objective function vs the 
values of interstitial velocities ratios in sections II and III. 

 

Figure 82 presents the confidence regions for the process operating variables as function of the 
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solid flow rate for a confidence level of 99%. The confidence regions are obtained through the 

evaluation of the Fisher–Snedecor test. In the parameters estimation, a usual approach is to 

simplify the problem of confidence regions drawing, through the consideration that the 

parameter estimates follow a normal distribution, leading to the well-known elliptical regions. 

However, it was demonstrated in the literature that this can be a poor simplification when 

applied to non-linear systems (Schwaab et al. 2008). In this way, as a comparison tool, Figure 82 

also presents the elliptical regions, and as can be noted, for the present case, those regions can 

be a good approximation; thus, the simplification can be employed for the determination of  the 

confidence regions. This can also be considered a verification that the PSO results can be 

efficiently employed to draw the operating variables confidence region. Finally, it is possible to 

verify, through the orientation of the ellipses, a strong and positive correlation between the 

operating variables. This correlation is related to the influence of the solid flow rate and the other 

flow rates on the performance parameters. The strength of the influence can also be evaluated 

by the form of the ellipse, that is the more elongated the shape, the bigger is the correlation. In 

this way, from Figure 82, it is possible to see that the correlation strength increases from graphic 

a to d. 
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(a) (b) 

  

(c) (d) 

Figure 82 – Optimal points, elliptical confidence regions and confidence regions for the 
operating variables. 

 

Finally, the method here proposed to design and optimize the TMBR unit employs the confidence 

region as a process operating map, containing all the possible operating conditions which will 
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comply with the pre-established requirements. From the confidence regions, Figure 82, the 

definition of an operating condition with 99%  purities can be done by setting first a desirable 

value of solid flow rate in Figure 82.a, and  selecting  the corresponding  value of recycling flow 

rate; doing the same for the remaining graphics it is possible to obtain a set of operating 

conditions that, even though not optimal,  are inside the process performance requirements. 

Table 38 presents the maximum and minimum values of the performance parameters that can 

be obtained through this procedure.  

Table 38 - Performance variables limits for the previously presented operating confidence 
regions. 

Performance 
Parameters 

𝑷𝒖𝒓 (%) 𝑷𝒖𝒙 (%) 𝑪𝒐𝒏𝒗 (%) 
𝑷𝒓 (mol/day l 

of bed) 
𝑬𝑪 (l/g) 

Maximum 99.93 99.42 99.61 28.45 1.36 

Minimum 99.93 98.99 99.27 26.52 1.32 

 

P2-3.6. Comparison between the Chromatographic Reactor 

and Distillation Reactor 

A detailed comparison between the SMBR and Distillation Reactor production routes should be 

the focus of future studies, since this analysis requires the scale up design of the SMBR unit and 

addressing the problem including economic concerns.  However, a straight comparison based on 

the performance parameters can be done in order to evaluate if the chromatographic unit 
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appears to be a viable alternative worth of further investigation. Therefore, using the available 

information in the literature, it is possible to note that reactive distillation (RD) processes present 

a complex operation and purities and conversion under 90% (Altman et al. 2010; Keller et al. 

2011). Significant higher reaction conversion and purities were obtained here, over 99%. In order 

to obtain a higher conversion and purity in a RD system it is necessary the employment of 

auxiliary units, which increases even more the complexity and energy consumption of the process  

(Altman et al. 2010; Cruz-Díaz et al. 2012; Xu et al. 2014). However, those systems present a high 

productivity, which is not certain to be attained with a SMBR unit. However, the actual 

productivity, associated with low eluent consumption and operation at significant lower 

temperature, gives enough evidence that the SMBR can be an efficient and competitive route for 

the production of the n-Propyl Propionate. 
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P2-4. Conclusions 

The separation of the compounds involved in the n-Propyl Propionate production was studied in 

a chromatographic separation unit packed with Amberlyst 46 resin. Through a series of 

breakthrough experiments, it was possible to determine the Langmuir adsorption equilibrium 

model parameters for the system in study, where it was verified that the water is the most 

retained compound in the resin Amberlyst 46, while the ProPro is the compound with less affinity 

to the resin. The uncertainty evaluation of the experimental work was conducted. Also, a 

phenomenological model to describe the adsorption system was proposed. A modified PSO 

algorithm was applied to perform the model parameters estimation successfully, allowing to 

draw the parameters confidence regions. Through the parameters confidence regions, it was 

possible to evaluate the parameters uncertainty and concomitantly with the experimental 

uncertainty, the evaluation of the extended uncertainty of the model predictions.  

The results showed that the model was capable of predicting the experiments accurately. 

Furthermore, it was possible to estimate the model parameters with a reduced number of 

experiments, when compared with other reports in the literature; nevertheless, the final results 

lead to a statistically more reliable model. In this way, it was possible to reduce the costs 

associated with the experiments. Therefore, the main contributions of this work are the 

methodology for the parameters estimation with uncertainty evaluation, the Langmuir isotherms 

parameters for the n-Propyl Propionate reaction system and the validated model for the Fixed 

Bed adsorptive separation. 

Then, the synthesis of n-Propyl Propionate in a fixed bed adsorptive reactor packed with 
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Amberlyst 46 resign was investigated. A series of experiments were done in an experimental fixed 

bed unit in order to characterize the system; concomitantly, a phenomenological model was 

proposed.  The proposed model includes the liquid-liquid non-linearities and the most suitable 

thermodynamic model to represent the system was investigated. Finally, the uncertainties 

evaluations were carried out and extended to the model predictions. 

The simulation of a batch reactor for the production of the ProPro and comparison with 

experimental data demonstrated that the thermodynamic and the reaction rate models were 

suitable for the case in study. Then, the model for the fixed bed adsorptive reactor was simulated 

and compared with the experimental data. It is possible to conclude that the model is capable of 

describing the system dynamic behaviour with precision, providing simultaneously a 

characterization of its uncertainties. 

The results obtained allow the characterization of the synthesis of the n-Propyl Propionate 

through a novel route, leading to the possibility of the application of a more complex 

chromatographic process which may lead to a more efficient production of this compound. 

Finally, the synthesis of n-Propyl Propionate through a True Moving Bed reactor packed with 

Amberlyst 46 resin, simultaneously with the proposal of a method for the design and 

optimization of a TMBR unit, was studied.  

The TMBR unit design parameters, the external flow rates, were firstly defined through the 

traditional method based on the Equilibrium Theory, demonstrating that the unit is capable of 

producing ProPro with high purity and conversion, over 95%. The system was also designed 

through a Particle Swarm Optimization algorithm which provided better results than the 

Equilibrium Theory. However, it is important to note that the Equilibrium Theory is an important 
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tool providing initial notion about the system behaviour, information that can be used to improve 

the swarm optimization. 

Finally, the HPSO-TVAC-MSR was applied in order to design and optimize the process for high 

purity conditions, over 99%. The method identified successfully the set of operating conditions 

which lead to the required purity. Moreover, the method provided a data base which was used 

to draw the operating confidence region. Hence, a map with all the possible operating conditions 

that meet the minimum purity requirement is also provided, in which the process can be 

operated with a high productivity, small eluent consumption and conversion above 99%. 

The present work demonstrated that the HPSO-TVAC-MSR can be a powerful tool to optimize 

and simultaneously provide deep information about the TMBR operation. Furthermore, the 

results of the present report provide evidences that the SMBR can be an efficient and competitive 

route to produce n-Propyl Propionate. However, deeper studies are necessary in order to take in 

consideration the scale of the systems and their economic factors. 
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General conclusions 

This thesis presented a series of mathematical and experimental developments with focus on 

chromatographic units. The present work was divided in two parts, each one with different but 

complementary objectives. Part 1 had the focus on methods development addressing the 

control, inference and design problems of TMB and SMB units and performing a dynamics 

analysis of the processes. Part 2 presented the experimental studies about the n-Propyl 

Propionate production in chromatographic units concomitantly with the parameters estimation, 

uncertainties evaluation, models validation and the application of the design and optimization 

methods, developed in Part 1, in the design of a True Moving Bed Reactor to produce n-Propyl 

Propionate with high purity.  

Through Part 1 developments, it was possible to propose a tool to assess the influence of the 

processes operating conditions on their performance parameters based on the 

Orthogonalization method. The method was capable of ranking all process variables in order or 

their influence on predefined process performance parameters. Due to its simplicity and 

efficiency, the Orthogonalization method can be employed to analyze any type of process if there 

is a model available, or it is even possible to do small perturbation in the operating variables of 

the actual process. This method was used as a basis for the other developments presented in 

Part 1.   

Therefore, in Part 1 it was also discussed a different point of view for the comparison between 

the dynamics of a TMB and a SMB unit, concluding that, in some specific cases, the representation 

of a SMB process by a TMB model is not the best approach.  
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The work presented in the first part of this thesis continued by proposing a new methodology to 

address the control problem of these units. A novel approach based on the identification of 

multiple transfer functions for different types of process perturbations was presented. The 

proposed strategy was compared with the traditional one and tested for different scenarios. The 

results showed that the method can efficiently control the process on its optimal operating 

condition, which could not be done employing a traditional model predictive control.  

Then, the inference problem was addressed, which is related to the real-time measurement of 

the unit purities and consequently its main performance parameters. In this way, a hybrid system 

called Quasi-Virtual Analyzer was proposed which makes use of an Artificial Neural Network 

model and laboratory measurements. The Quasi-VOA was tested through simulations and the 

approach was successfully validated allowing a real-time estimation of the process purities.  

Part 1 finished with a study about the robust design of TMB units. To address this problem a novel 

PSO algorithm was proposed, based on previous developments presented in the literature. 

Futhermore, a methodology to draw the confidence regions of the operating variables was also 

developed. The combination of those two methodologies provided an efficient tool to perform 

the robust design of the unit, giving better results than the traditional method used in the field. 

Thus, it is possible to conclude that Part 1 contributes to the growing discussions about the 

control, inference and optimization of Moving Bed units. The methods and their results showed 

that it is possible to deal with some of the key points in this field, making use of the computer 

power available nowadays. Therefore, further investigations should be conducted in order to 

deeper evaluate the methodologies potentialities.   
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On the other hand, Part 2 of this thesis addressed the problem of the production of n-Propyl 

Propionate on a TMBR unit. Hence, a series of experimental studies was done in order to 

characterize the reaction system adsorption parameters, which were estimated concomitantly 

with their uncertainties. For the parameters estimation, the PSO algorithm developed in Part 1 

was used, while a modified version of the confidence region test was applied to draw the 

parameters confidence region and define their uncertainties. Then, a model for the separation 

of the non-reactive pairs in a chromatographic unit was presented and validated through the 

experimental work. The uncertainties were expanded to the model predictions and it was shown 

that the uncertainty evaluation can be an important tool in order to reduce the number of 

experiments necessary to study the system. Furthermore, it is part of the contributions of this 

step of the work the determination of the Langmuir isotherm parameters for the system at the 

temperature of 313 K. 

Moreover, the synthesis of the ProPro in a chromatographic fixed bed reactor was studied. A 

series of experiments were done and a phenomenological model of the process was presented. 

Thus, the phenomenological model was validated and its prediction uncertainty evaluated based 

on the previous development of this part. The results showed that the model predicted with 

precision the synthesis of the n-Propyl Propionate in the fixed bed reactive column. 

Hence, the aforementioned steps of the Part 2 culminated on the development of a model for 

the production of the n-Propyl Propionate on a True Moving Bed Reactor. The model was based 

on the validated fixed bed reactor unit and in the experimental unit located in the Laboratory of 

Separation and Reaction Engineering. The TMBR unit optimal operating conditions was defined 

by the PSO-MSG and its confidence regions were drawn by the methodology presented in Part 1. 
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Concomitantly, the system optimal design was also defined through the Triangle Theory. Hence, 

both methodologies were compared and also for this case the PSO-MSG with confidence regions 

presented better results. Finally, it was shown that the TMBR unit presented a ProPro production 

with higher purity and conversion, when compared with the Reactive Distillation technology.  

Hence, the second part of this thesis contributes to the solution of a problem faced by the 

chemical industry nowadays, namely its adaptation in order to face its environmental impacts. 

The results of this part showed that the production of the n-Propyl Propionate, considered a 

green solvent, can be done through another environmentally friendly way, the TMBR unit, 

providing a better conversion and purities than the other alternative, the Reactive Distillation. 

However, it is still necessary to study, from the economic point of view, the advantages and 

disadvantages of each route.  

Furthermore, on one hand it was shown that part of the methodology presented in Part 1 has 

the potential to be applied in the design of experiments, in order to reduce the experimental 

costs. On the other hand, it was demonstrated that the design and optimization problem of TMBR 

units can be simplified by using the methodology developed in Part 1.  
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Future Works 

The two parts of this thesis have several contributions starting with new methodologies to 

experimental results, as described in the general conclusions. However, this work is a very small 

part of what can still be done. The methods here presented should be deeper explored in the 

future. On one hand, all the methods presented in Part 1 can be applied to other types of cycling 

processes, such as Pressure Swing Adsorption units or other types of processes in which similar 

problems can be found. On the other hand, inside of the TMB/SMB units there are still a myriad 

of possibilities to be developed which will be further detailed in this section. 

The control system strategy here proposed could be applied for a SMB case comparing its 

performance with the case here presented, TMB application. Moreover, the identification 

strategy here proposed allows the application of more complex MPC strategies, such as the 

infinite horizon model prediction control or the robust model prediction control; this last case, is 

very suitable for those types of units, since it considers the systems uncertainties. In the same 

way, the Quasi-Virtual analyzer can be applied for a SMB case and compared with the results 

here presented. 

It is important to highlight that the previous mentioned suggestions contemplate only 

simulations and computational work. A further development of the works started in this thesis 

could be the experimental implementation/application of those methods for the dynamics 

evaluation, control, inference and design of an SMB pilot unit. 

In the sense of True or Simulated Moving Bed Reactor units, the Orthogonalization method here 

presented was not applied to the TMBR case. A similar approach to the one presented here could 
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be done using a TMBR vs SMBR in order to verify the dynamic behavior of those units, their 

similarities and differences. Furthermore, the control and inference methodology could be 

applied also in the case of those units, since they present the same problems as the TMB/SMB 

cases, with deeper implication due their complexity. Moreover, the present thesis only applied 

the PSO-MSG to the design of the TMBR case. It could be of interest to apply all the other 

methods: dynamics analysis, control, inference and robust design to the TMBR and/or SMBR 

units also. All those points can also lead to their experimental applications on a SMBR pilot unit. 

Finally, a complete evaluation considering the economic questions should be carried out for the 

case of the application of the TMBR to produce n-Propyl Propionate. Eventually, the application 

of chromatographic processes as downstream units should be also considered in order to 

improve the current production routes of the ProPro. Then, a comparison of all possible routes 

can be properly done and further conclusions could be obtained. 
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