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Resumo

O projeto Future Cities 1 transformou a cidade do Porto num laboratório à escala urbana. Até ao
ano de 2015, três plataformas de teste foram desenvolvidas: UrbanSense, BusNet e SenseMyCity.
Este projeto proporcionou as condições necessárias para que muitos investigadores, empresas e
startups pudessem testar as suas tecnologias, produtos e serviços.

A UrbanSense é formada por 19 unidades de sensorização ambiental instaladas por toda a
cidade. Por outro lado, a BusNet é uma rede ad-hoc veicular (VANET) formada por On-Board
Units (OBUs), instaladas nos autocarros da STCP, e por 43 Roadside Units (RSUs). Esta VANET
é atualmente operada pela Veniam, criada no seio do Instituto de Telecomunicações, da Universi-
dade do Porto e da Universidade de Aveiro.

A BusNet é, sem dúvida, uma boa solução para transportar os dados obtidos pela UrbanSense
até uma base de dados. No entanto, a BusNet não suporta endereçamento unicast, pelo que não
existe, atualmente, uma forma imediata de assegurar fiabilidade end-to-end. Consequentemente,
resultados de primeiras experiências da UrbanSense evidenciaram taxas de entrega baixas.

O principal objetivo desta dissertação é explorar possibilidades que solucionem o problema
referido, partindo do desenho de um protocolo ao nível da aplicação. Este deve garantir a fiabili-
dade na transmissão dos dados, sem que seja necessário um endereçamento unicast.

Os resultados obtidos provaram que o sistema proposto não possibilita a perda de mensagens.
Se isso ocorrer, o único motivo serão as limitações de memória das DCUs. Para além disso,
concluiu-se que a escolha do retransmission timeout (RTO) não deve ser baseado no round trip
time (RTT). Em vez disso, o RTO deve depender do número de contactos estabelecidos desde o
momento em que se dá a transmissão das mensagens.

1http://futurecities.up.pt/site/
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Abstract

The Future Cities Project 2 has turned the city of Porto (Portugal) into an urban-scale living lab.
Until 2015, three testbeds were developed: UrbanSense, BusNet and SenseMyCity. It allowed
many researchers, companies and startups to test their technologies, products and services.

The UrbanSense testbed is formed by 19 environmental sensing units installed around the city.
On the other hand, the BusNet is a vehicular ad-hoc network formed by On-Board Units (OBUs),
installed in the STCP buses, and by 43 Roadside Units (RSUs). This VANET is currently operated
by Veniam, an Instituto de Telecomunicações, Universidade do Porto and Universidade de Aveiro
spin-off.

The BusNet is undeniably a great option to carry the data gathered by UrbanSense to a storage
facility. However, as BusNet does not support unicast addressing, there is currently no strict way to
provide end-to-end reliability. Therefore, results of first UrbanSense experiments have highlighted
low delivery ratios.

The main goal of this thesis is to explore possibilities to address this problem, by designing
an application level protocol that provides reliability to the data transfer without requiring unicast
addressing.

Results proved the proposed system does not allow the bundles loss. If the bundles are lost,
the only reason will be the DCUs storage limitations. Furthermore, it was concluded the design
of the retransmission timeout (RTO) should not be based on the round trip time (RTT). Instead, it
should depend on the the number of established contacts since the bundle transmission.

2http://futurecities.up.pt/site/
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Chapter 1

Introduction

1.1 Context

The Future Cities 1 was an interdisciplinary project developed to turn the city of Porto into a

smart city. The project combined different areas of research such as mobility, urban planning and

communication technologies.

The main goal was to provide startups and researchers a way to validate their technologies.

To achieve this, different testbeds were developed and installed across the Porto region so that

city-scale experiments could be performed. The city has now become a living lab, known as

Porto.LivingLAB. Currently, it is composed by three main urban-scale testbeds: BusNet, Sense-

MyCity and UrbanSense. For the past years, they have been enabling many experiments in the

fields of Intelligent Transportation Systems (ITS) and urban sensor networks.

The UrbanSense testbed is composed by 19 Data Collecting Units (DCUs) for environmental

monitoring. Each unit includes a sensor board, a processing board and a control board. They

are spread over the city, strategically placed at relevant locations, thus sampling the overall urban

behaviour. Besides DCUs, the UrbanSense platform also comprises a backoffice, where the col-

lected data is stored, and a communications backbone, responsible for transporting the data from

the DCUs to the central database. This infrastructure consists of three optional communication

backhauls: cellular, fixed WiFi or vehicular delay tolerant networking (DTN) [3].

The cellular is a high cost solution so it is only used as a last resource, where there is no

other connectivity. The fixed WiFi alternative, provided by the municipality, does not cover all the

DCUs’ locations. For these reasons, the UrbanSense testbed takes advantage of the WiFi service,

BusNet, available in 400 buses of the STCP fleet, the main bus fleet in the city of Porto.

The platform which provides the WiFi service is licensed by Veniam. The startup has equipped

all the STCP buses and municipality vehicles with OnBoard Units (OBUs). These units work as

WiFi hotspots and support vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-

nication, thus establishing a vehicular ad-hoc network.

1http://futurecities.up.pt/site/
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Therefore, when a vehicle gets closer, the DCUs can establish a WiFi connection with the

OBU. Thus, the collected data can be forwarded to the OBU. From then on, the data is carried by

the vehicular network to the backoffice in a delay tolerant way. However, for this mechanism to

work, the DCUs have to be capable of keeping the samples locally stored until a communication

opportunity arises. For this purpose, the DCUs have a local database [3].

A brief architecture of the system is illustrated in the following image 2:

Figure 1.1: UrbanSense Architecture

1.2 Problem Definition

1.2.1 Motivation

For both cellular and fixed backhauls, it is possible to establish an end-to-end TCP/UDP socket to

transport the data from the DCUs to the central database. Since the communication is synchronous,

it is possible for the backoffice to acknowledge the DCUs that it is safe to erase the data from their

local storage [3].

On the other hand, the data transport using the vehicular ad-hoc network brings additional

challenges when it comes to implement end-to-end reliability.

When BusNet option is chosen as the communication backhaul, the DCUs are constantly wait-

ing for an opportunity to connect with an OBU. As soon as a connection is established, the data is

sent to the OBU using a Representational State Transfer (REST) API. After that, the transportation

2http://futurecities.up.pt/site/



1.2 Problem Definition 3

is carried out by a store-and-forward mechanism, until the data is delivered to a Road Side Unit

(RSU). From the RSU, it is carried via a fixed network to the backoffice.

This solution clearly does not provide end-to-end IP connectivity. Furthermore, within this

VANET, the DCUs do not have a fixed IP, they receive a local IP address via DHCP when they

connect to an OBU. For these reasons, an application-level unicast acknowledgement cannot be

addressed from the backoffice to the DCUs.

1.2.2 Goals

The UrbanSense testbed has been using the Constrained Application Protocol (CoAP) REST API

for the data transmission from the DCUs to the OBUs. However, low delivery ratios have been

recorded in this first link between the DCUs and the OBUs.

Thus, the main goal proposed is to improve the reliability when the vehicular ad-hoc network

is used. A solution to be exploited is to close the transportation loop with an application-level

acknowledge message from the central database to the DCUs. This possible solution demands

other specific challenges to be solved.

Firstly, as already mentioned, the DCUs have no fixed IP. For this reason, it will be necessary

to find an alternative way to address the ACKs. Moreover, the Veniam’s network has currently no

way of carrying information, such as a list of ACKs, from the cloud to an end node, as it is the

case of DCUs.

Finally, in every system which aims to provide reliability in data transmission, there is an im-

portant system variable that should be designed, the retransmission timeout (RTO). This variable

should be carefully set because it has an important effect on the number of retransmissions, thus

influencing the system efficiency.

1.2.3 Document Organization

This document is subdivided in different chapters:

• Chapter 1: presents an overview of the Future Cities project in order to provide a context

for this dissertation. The main challenges and goals are also discussed;

• Chapter 2: addresses the most important concepts that will be useful throughout this dis-

sertation. It also presents related work for each concept;

• Chapter 3: introduces the design of the end-to-end system. The protocol chosen to ensure

end-to-end reliability is presented, as well as the modifications applied when taking the

system in study into account;

• Chapter 4: exposes the implementation of each system component: DCU, OBU and re-

ceiver;

• Chapter 5: presents the results obtained in the experiments performed;
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• Chapter 6: discusses the results and some possible improvements are pointed out as future

work.



Chapter 2

Concepts and Literature Review

This chapter presents an overview of the most relevant concepts for the problem in question. In

addition, the main differences and similarities with existing solutions for each challenge will also

be introduced.

Firstly, the emerging field of the Vehicular Ad Hoc Networks will be addressed, just as their

unique characteristics and particular challenges. Thereafter, the main basic concepts of the Delay

Tolerant Network will be explored. Additionally, a brief discussion will look into the two main

approaches to ensure reliability - end-to-end and hop-by-hop - over DTN. Similarly, some of the

existing proposals for the estimation of the retransmission timeout will be referred, as the RTO

is one of the variables to be designed when reliability must be provided. Finally, the most used

REST APIs will be compared and evaluated.

2.1 Vehicular Networks

Nowadays, the presence of the internet in our daily lives is undeniable. The perfect scenario would

be to provide internet access to the citizens in every single corner of our cities. This would require

the installation of a huge amount of wireless routers across the cities in order to guarantee coverage

everywhere. The vehicular networks have emerged as one of the solutions for this painstaking task.

The Vehicular ad hoc networks, VANETs, can be seen as a subclass of MANETs, mobile

ad hoc networks, where each network node is a vehicle. By equipping the vehicles with wire-

less routers, these mobile nodes can increase, in fact, the coverage among the cities. Usually,

within a VANET, there are vehicle-to-vehicle communications. However, vehicular networks are

sometimes used in a hybrid architecture, which involves both vehicle-to-vehicle and vehicle-to-

infrastructure communications. The former corresponds to the transmission of information be-

tween two OBUs and the later between an OBU and a RSU. The RSUs are the nodes that provide

access to a fixed network.

Nevertheless, in more recent years, VANETs have been receiving an increasing attention from

both research and industry, given the emergent market research towards autonomous vehicles. The

characteristics of these networks make them the perfect ally for the self-driving cars industry. In

5



6 Concepts and Literature Review

the first place, the mobility of the nodes is restricted to the existing roads, which means that if

the city maps are known, the position of the vehicles can be predicted. Secondly, information of

interest can be delivered depending on the vehicles’ geographic position. Additionally, On-Board

Units have neither power constraints, nor limited computational power.

However, the VANETs frequently face some challenges. For example, since the nodes of these

networks are vehicles, a high mobility can be experienced, which means that the topology of these

networks will be constantly changing. In some cases, that can also lead to the establishment of

isolated clusters, which are a group of nodes that, due to the topology dynamic, were disconnected

from the rest of the network. Moreover, the number of nodes can easily increase. For this reason,

vehicular networks should be designed taking into account its scalability potential.

2.1.1 Data dissemination

One of the main decisions that a vehicular network designer has to take is the data dissemination

algorithm used for spreading the information among all the participating nodes.

Prior to mention the data dissemination algorithms, it is worth mentioning that, even the most

basic data transmission might require a multi-hop scheme. In fact, it demands the establishment

of more than one single-hop transmission which means that there will be some vehicles between

the source and destination that will perform the role of forwarders.

In the survey [4], the dissemination techniques are classified in:

• Geocast and Broadcast - the data is sent from the source to all of the nodes (or to all nodes

located in a specific geographic position)

• Multicast - the data is sent from the source to specific group of nodes

• Disruption Tolerant Dissemination - the data is delivered to the destination with a delay

When it comes to broadcast, it most basic algorithm is flooding, in which every node relays

a receiving packet to all of its neighbours. Obviously, this is an inefficient solution, particularly

in dense networks, where a large amount of duplicates will be generated. Flooding in wireless

ad hoc networks presents two alternatives that optimize the “blind flooding” algorithm by taking

into consideration the information about the nodes’ neighbourhood. In most of the cases, it is the

right selection of a group of nodes responsible for relaying the packets that can accomplish better

results and that can avoid the broadcast storm problem [5].

More efficient algorithms can be developed if the geographical position is considered - geocast.

Multi-Hop Vehicular Broadcast (MHVB) [6] and Enhanced MHVB [7] propose a position-based

which comprises two main algorithms: the congestion detection which first deals with wasteful

data generated by congestion and then the Backfire algorithm that, based on the distance between

each node and the sender one, defines which network participants will be in charge of relaying

packets. Similarly, [8] introduce a prototype implementation of Content-Based AODV which

uses, as input data of the algorithm, information collected in the vehicles such as their position,
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velocity and trajectory. Another example is [9], it presents the Smart Broadcast (SB), in which

the strategy is to minimize the time required to perform a single-hop transmission.

Within a vehicles network, there are a lot of situations, such as car accidents or adverse weather

conditions, that can take advantage of a mechanism which enables a certain group of vehicles to

be notified with some information of interest - multicast. The TMA technique, Trajectory-based

Muti-Anycast [10], explores the possibility of having a central server who tracks each vehicle of

the multicast group. As this server knows the position and trajectory of each element, it is this en-

tity who is in charge of determining the path a message needs to follow. Currently, algorithms that

were firstly designed for MANETs are applied to VANETs, such as [11], which introduces the

Position-based multicast, PBM. This technique demands a location service responsible for trans-

lating destinations in positions. The path between the source and the group of recipients is chosen

according to their position and their primary neighbours location. This technique has revealed to

be inefficient in VANETs, particularly in dense networks with high mobility. Scalable Position-

based multicast (SPBM) [12] was later developed and it accomplished a better performance by

attributing different hierarchical levels to different geographical regions.

Lastly, the disruption tolerant dissemination, also known as delay tolerant networking, focuses

on the challenges caused by the high nodes mobility such as the frequent disconnections and

resulting network partitions. As this subject is of particular interest, it will be addressed in more

detail later on.

2.1.2 Standards for vehicular communication

As mentioned previously, within a VANET, there are V2V and V2I communications - frequently

referred to as vehicle-to-any (V2X) communication. In order to overcome the specific challenges

of these networks and to guarantee an efficient communication between the participating nodes, a

specific spectrum band was reserved by FCC and a set of standards were proposed by the IEEE.

2.1.2.1 DSRC - Dedicated Short-Range Communications

In 1999, the Federal Communication Commission (FCC) decided to allocate a specific band in the

frequency spectrum for the vehicular environment. Thus, a band of 75MHz, around the 5.9GHz

frequency, was reserved for V2I and V2V communications. This spectrum allocation is known as

DSRC [13]. It can be freely used, no payment will be charged to the users.

The DSRC spectrum is divided into seven channels:

Figure 2.1: DSRC spectrum [1]
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The centre channel, 178, is called the Control Channel (CCH) and it is only for safety-critical

communications, transmitted in the WAVE short message (WSM) format. There are two channels,

172 and 184, which have a special purpose. The other four are Service Channels (SCH) can be

used for common IP traffic. Both CCH and SCH allow the transmission of WSM. In contrast, IP

datagrams should be delivered in the SCH band [1].

This allocation was done in the US. However, other continents and countries have also made

some efforts in order to reserve spectrum regions for vehicular communications. The following

schematic outlines the decisions made in Europe, North America and Japan:

Figure 2.2: DSRC spectrum allocation in different countries [2]

2.1.2.2 WAVE standards

Wireless Access in Vehicular Networks (WAVE) standards include both IEEE 802.11p and 1609.x

protocols. The target of the IEEE 802.11p are the lower levels: the PHY and MAC layers. On the

other hand, the higher layers are defined by the IEEE 1609.x.

The following schematic presents the overall stack of these protocol families.
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Figure 2.3: IEEE 802.11p/1609.x (WAVE) protocol suite [1]

As shown in the previous image, both IPv6 and WSMP are supported by the WAVE standards.

The advantage is that it allows the coexistence of common messages and safety messages with

higher priorities.

Relying on the spectrum allocation for DSRC, the IEEE has been defining the IEEE 1609.x

standard, which are composed by a group of sub-standards. In January 20016, the IEEE Standards

Association Standards Board approved 1:

• IEEE 1609.2 - Security Services;

• IEEE 1609.3 - Networking Services;

• IEEE 1609.4 - Multi-channel Operations;

• IEEE 1609.12 - Identifier Allocation.

The IEEE 1609.2 defines secure message formats and processing. The IEEE 1609.3 specifies

services placed at network and transport layers such as routing and addressing services. The IEEE

1609.4 presents some improvements to the IEEE 802.11 in order to support WAVE operations.

The IEEE 1609.12 was later defined, it specifies procedures for the management of a Provide

Service Identifier (PSID) 2.

The IEEE 802.11p is a result of some improvements applied to the 802.11a [13] in order to

better respond to the challenges faced by the vehicular networks. In particular, it should be capable

of dealing with high mobility patterns and the consequent frequent disconnections [14]. Similarly,

the standard should also address relevant issues such as interference and multipath [15].

Therefore, there are some differences between IEEE 802.11a and IEEE 802.11p [15]. The

main change applied was related to the channels bandwidth, the IEEE 802.11p has 10MHz chan-

nels because the the previous ones (20MHz channels) were not able to avoid inter-symbol interfer-

ence. The 10MHz channels were proved to be a better option in [16]. Additionally, the receivers

improved their performance regarding the adjacent channels rejection.

1https://www.standards.its.dot.gov/Factsheets/Factsheet/80
2https://standards.ieee.org/findstds/standard/1609.12-2016.html
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In future versions of the IEEE 802.11p, the PHY and the MAC layer are not expected to suffer

large modifications. Nevertheless, safety and network performance can still be improved by the

application of more robust information dissemination algorithms [17].

2.2 Delay Tolerant Network

The Delay Tolerant Network concept was firstly applied as an approach to interplanetary inter-

net. For interplanetary communications, there are some characteristics that must be taken into

consideration. Namely, there are long paths with low data rates and high latencies. Addition-

ally, an end-to-end path might not be available so these communications have round trip delays

considerably high (they can take hours or even some days) [18].

Similarly, there are terrestrial networks, such as terrestrial mobile networks, which experience

the same difficulties - due to nodes mobility, they usually have to deal with intermittent connec-

tivity between the source and the destination entities. They are also frequently composed by end

nodes that are resource limited, both in power and memory. Moreover, there might exist some

disparities between the protocols used by the different networks. A mechanism to manage the

interoperability between regions with different architectures is also required.

Given these similarities between the interplanetary and terrestrial networks, the DTN concept

was extended to terrestrial networks. The broadly used TCP/IP protocol is not able to handle

such challenges because it was designed under some assumptions that cannot be applied to the

mentioned challenged networks. For example, it is expected a permanent connection between the

end nodes, a short round trip delay, an existing bidirectional path for each communication and a

low probability of packets loss [19].

In order to overcome the challenges related to the intermittent connections between the nodes,

the DTN proposes a store-and-forward mechanism which requires storage capability in each node.

As a result, if a connection is down, the source node can hold the data until the link comes back

up. This method is often compared to the postal service - messages are retained in a storage node

before being forwarded to the next one. This process is repeated until the message reaches the

destination entity.

The DTN acts as an overlay network, thus enabling it to operate over the existing protocol

stacks. Thanks to that, the data units, called bundles, can be forwarded over the network, even if

it implies the bundle to cross different subnets (for example, crossing IP-based and non IP-based

regions). The protocol which determines how the bundles are delivered in DTN is named Bundle

Protocol.

2.2.1 Regions and DTN Gateways

Two nodes are said to be within the same region if they can exchange messages with no other in-

tervening entity. For end nodes placed in dissimilar regions, their messages are forwarded through

DTN gateways. They are placed at region boundaries and its role is to ensure the interoperability
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between two neighbour regions. For instance, DTN gateways must know both protocol networks

so they can translate a message from the source to the destination region [19].

2.2.2 Naming and Addressing

One requirement of every network is that nodes can be identified, thus enabling them to receive

and send data. In DTN, the identifiers of the nodes are called name tuples. At first, these identifiers

were compounded by three tuples - region, host and application - which could identify the service

in interest besides the host itself. However, in subsequent improvements, the last two tuples were

merged. The general structure of a name tuple is: {Region name, Entity name} [19] [20].

Consequently, every node and each DTN gateway half is assigned with one name tuple. These

are variable length fields. The first is the region name and it should be a globally-unique identifier.

The second one, the entity name, is only resolvable in the destination region so singularity is not

required for this portion.

The Region names should be hierarchically structured, hence the size of the forwarding tables

can be optimized. This portion is the one that is used to find the message path to the destination

region. When the bundle is finally delivered to that region, the Entity name is locally resolvable.

The application tuple referred in the early version is obtained by demultiplexing this field. If

needed, it might also be translated to a specific-region address. This mechanism is usually defined

as late binding. Since the name tuple’s second portion is later interpreted, a DNS Internet naming

approach would not be so appropriate. It would require an end-to-end name resolution, which is

not so efficient given the long delays between each transaction [19].

However, the referred name tuples methodology only works efficiently for stationary networks.

On the other hand, for mobile ad-hoc networks, for example, a different solution is demanded for

naming each node. A more recent article [20] mentions other option for assigning nodes an

identifier. The proposed mechanism uses URIs rather than name tuples. By doing so, it is possible

to have multiple namespaces, which enables the nodes to have multiple identifiers.

2.2.3 Routing

The routing problem consists of determining the best path to forward a message. For conventional

networks, this might be solved by selecting the path which requires the less number of hops, for

example. However, in DTN, the most valuable criterion when assigning a path to a bundle is

not the same. For instance, a shorter path with a previous intermittent connectivity may not be

preferable when compared to a longer “always-on” link.

In challenged networks, the most likely situation is that an end-to-end path may never exist.

For this reason, the current connectivity between the nodes, the available buffer space, the band-

width capacity and message size are some of the aspects that have to be taken into account when

assigning a path to a bundle. The ultimate goal of every routing decision should be to maximize

the messages delivery ratio.
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The routing may be either defined at the source node, source routing, or during its path until

the destination endpoint, per-hop routing. For the first case, the path selection is done once so it

is not modified after the message leaves the source node. This option is not the most efficient for

the networks that frequently suffer from topology changes. Conversely, per-hop routing does use

local information in each hop, which tends to achieve a better performance. One drawback of this

approach is that it might lead to loops in the global path chosen.

Routing algorithms are also commonly divided into two methodologies: proactive and reac-

tive routing. Proactive routing determines routes within a connected subgraph. It does not attend

to traffic arrivals and it fails when responding to a request in which the destination node is not con-

nected to that subgraph. Nevertheless, they can inform about the current connected nodes which

is the key point for routing decisions. In contrast, reactive routing issues the routing computation

when traffic has to be sent to a destination. Unknown endpoints are allowed but they require a

route discovery protocol to be applied. Similarly, a reactive routing will fail if the endpoint is not

connected to the subgraph [21].

Another useful feature that might facilitate the routing process is the route stability. It com-

putes the ratio of the topology change. In other words, it measures the time interval during which

the current connections will remain active. For networks characterized by low topology changes,

it turns to be really efficient to use route caching thus avoiding same routes to be calculated more

than once [21].

Routing has nearly become an independent field of study within the DTN subject. There are a

lot of published articles that explore different routing algorithms.

In Zhao et al. approach [22], the control of nodes mobility is used for data transportation.

Message Ferries are the entities in charge of collecting bundles and delivering them to the des-

tination nodes, which are assumed to be stationary. The main focus of this work was to design

different ferry routes and test their performance. In contrast to the conventional systems, the pro-

posed solution requires the network to adapt itself in order to serve the application needs. There

are several networks that might benefit from this solution. For example, in sensor networks, the

message ferries, such as robots or vehicles, can save power resources to the sensors by collecting

their data. Although this network seems to be particularly similar to the one proposed for this dis-

sertation, the routes of the message ferries, buses in this case, cannot be assumed to be controllable

once they have predefined paths to follow.

Daly and Haahr [23] explore a different solution which considers social phenomenons within

the network. Each node is locally analysed and its ability to forward data to other network mem-

bers is estimated. This feature, named as centrality, reflects the relative importance of a node and

it allows to identify the bridge nodes of the network. Additionally, the similarity between nodes,

which is related to the number of common neighbours between two network entities, is also cal-

culated . The proposed forwarding algorithm, SimBet Routing, takes its routing decisions based

on the centrality and similarity estimations. Therefore, when the destination entity is unknown for

the source node, this algorithm chooses to forward the bundle to a node where the probability of

finding a suitable bearer is higher.
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2.2.4 Fragmentation

As previously mentioned, challenged networks are characterised by intermittent connectivity. For

this reason, the bundles transmission should take advantage of every established connections, even

if it does not allow the message to be fully transmitted.

Bundles fragmentation may occur when the connection between the nodes was lost during

the transmission, reactive fragmentation, or when the receiver has no sufficient memory to store

the entire message, proactive fragmentation. Obviously, this brings advantages when transmitting

large messages because they may not fit in a single destination node. On the other hand, it brings

additional complexity for the bundle’s reception.

The reassembly of the fragments might be performed during their path over the network or

at the destination. For handling their reconstruction, the fragments use a special header which

indicates their offset relative to the original bundle. A common identifier is also used for enabling

fragments originated by the same bundle to be grouped [20] [24].

2.2.5 Custody Transfer

The DTN also provides an optional mechanism which allows the improvement of the end-to-end

reliability. By taking the custody of a message, a node promises to keep the bundle in its persistent

memory until another node accepts the custody of that bundle.

To provide reliability hop-by-hop, these nodes, called custodians, wait for a custody acknowl-

edgment message from the next node. At that moment, they can safely delete the bundle of their

local memory. It is worth mentioning that the custody acknowledgment differs from an end-to-end

acknowledgment message. It delegates to a custodian the responsibility of reliable delivery on

behalf of the source endpoint [19] [20].

Depending on their current state, nodes might refuse the custody transfer of a message. This

case may occur if the node has not enough available storage, for example. Additionally, some of

the bundle’s characteristics can influence that decision: its size, priority and lifetime.

Thus, a buffer space analysis has to be performed in each node. A poor local memory man-

agement may cause a congestion of the DTN routers. This might happen when a node becomes

unexpectedly isolated from the others that are closer to the destination endpoint. If its memory is

fulfilled with messages requiring a custody transfer, the node has no way to get free space unless

a connection with another entity (which is accepting custody transfers) is reestablished. On the

other hand, if there is a connected node which is waiting for messages without custody, its recep-

tion will not occur because the congested node cannot forward them. This phenomenon, called

head-of-line blocking, is undesirable as it wastes opportunities to transmit bundles [24].

2.3 End-to-End vs Hop-by-Hop Reliability

The end-to-end argument is one of the most discussed fields in computer networking. It was firstly

introduced in the 1980s and it has been subject to many reviews.
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The argument helps system designers to decide where to implement functions in a communi-

cation network, either in the endpoints or in the network itself. It states that some functions can

only be effectively implemented if they have information and resources of the application (placed

at endpoint nodes). For this reason, those functions should be placed in the application on behalf

of the low levels [25].

One of the study cases used to exemplify the end-to-end argument is the reliable transfer of

a file between two hosts. A reasonable question that can be raised is where to check if the file is

being correctly transferred. It can be done at lower levels, in the communication network, which

ensures reliability in each hop along the file path. Alternatively, those tests can be performed only

at the endpoints, by comparing the original checksum with the one calculated at the destination

host. However, the first solution was proven to be insufficient once some of the possible failures

can occur outside the communication network. In the article, a situation where the gateways

introduced errors while copying the file’s content between two buffers is described. Therefore,

the end-to-end argument should be applied for this study case. The authors also defend that if

functions should be placed at the endpoints, it might be a waste of resources to place them in

the lower levels as well. Nevertheless, if reliability is also placed in the communication system,

that would reduce the number of the end-to-end retransmissions, which are more time consuming

[25].

Later on, Tim Moors published a critical review [26] of the first article . It starts to notice that

the ends should be precisely identified. In the study case of a “careful file transfer”, it is common

to assume that the endpoint is the transport layer, such as TCP. This assumption is against the first

article which argues that it should be the application to be responsible for checking the integrity of

the operation, thus avoiding undetected errors while writing on the disk, for example. However, the

author raises another issue related to trust. Since the integrity checks are costly at the application

side and once the transport layers are robust nowadays, it is reasonable to trust the transport layer

to do so.

The review also points out new arguments for and against the end-to-end argument. Namely,

it refers that placing some functions at lower levels represents an extra cost for clients, even for

those who do not benefit from the services. Furthermore, an end-to-end approach turns to be

a more flexible implementation because no extra functionality implemented at lower levels will

interfere with new services that might be provided at the endpoints. On the other hand, there are

other functions, such as routing and congestion control, that are not suitable for an end-to-end

method.

Obviously, this discussion is also relevant for the DTN subject. Both options, either to ensure

reliability in each hop or at the end nodes, have their advantages and drawbacks.

The custody transfer ensures hop-by-hop reliability. By doing so, the source nodes, frequently

resource-limited devices, are able to free their storage resources quicker, since an end-to-end ac-

knowledge has to follow a longer path when compared to the path of a custody acknowledge-

ment. With an end-to-end approach, the retransmission buffer space must be increased in order to

avoid memory overflows. Furthermore, when data loss occurs, the instant to retransmit is delayed.
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Moreover, that might not even be a reasonable solution if the time it takes to receive an end-to-end

acknowledge exceeds the lifetime of the source nodes [24] [18] [19].

On the other hand, the end-to-end approach is usually addressed as a more robust mechanism

to assure reliability than hop-by-hop. For example, the Data MULEs article [27] points out

the possibility of the MULEs’ failure (entities responsible for carrying the bundles). In these

circumstances, only the end-to-end approach would ensure reliability. Anyhow, if hop-by-hop

reliability is also implemented, the overall performance is increased.

2.4 Retransmission Timeout

One of the key points for a reliable end-to-end approach is to estimate the best time to retransmit a

message, retransmission timeout, RTO. In reliable systems, the source entity sends a message and

keeps it on its persistent storage. As soon as an ACK is received, the message can be removed from

the local memory. On the other hand, if no ACK is received during RTO time units, the sender

concludes that the message was lost and resends it. This challenge has been hardly studied for the

TCP transport layer, which also requires an receipt confirmation. Dolev et al. [28] propose an

online algorithm for selecting the RTO which maximizes the performance when compared to an

offline algorithm, (comparative analysis). Ekstrom and Ludwig [29] introduce the Peak-Hopper

Algorithm which decreases the time needed to detect a packet lost and the number of spurious

timeouts. Kesselman and Mansour [30] suggest a new estimate of an optimal RTO which depends

on the TCP window size.

In fact, the RTO timer demands for a cautious assessment. If it is set too short, the source might

decide beforehand that the message was lost. This leads to worthless retransmissions, therefore

increasing the channel overload. On the other hand, if the RTO timer is set too long, the loss of a

message will be later noticed, so its retransmission will be delayed. For these reasons, a balance

must be found when setting the RTO timer so that a maximum efficiency can be achieved.

In most cases, the RTO is set higher or equal to the the round-trip time (RTT), which includes

the time for the message to reach the destination and the time for the ACK to be received by the

sender. However, in delay tolerant networks, the RTO estimation is certainly more challenging

due to the unforeseen links connectivity, unbalanced data rates and high latencies. Furthermore, it

is worth mentioning that both message and ACK can be lost.

Wang et al. [31] suggest a new RTO estimation for deep-space communications, operating

over DTN. In contrast to common proposals, the authors proved that an RTO lower than the RTT

maximizes the goodput of the bundle protocol. The proposal was firstly defined by an analytical

model and then it was proved experimentally. The model is illustrated for the transmission of

a long message, such as a file. For the sake of simplicity, only some of the last steps will be

addressed.

Firstly, the time to release a message from the source node can be approximated to:

Ttotal = RT T +(K−1)×RTO (2.1)
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where RT T is the round-trip time, RTO is the retransmission timeout (to be determined) and

K is the total number of retransmissions. The calculation of k is also demonstrated in the article

and it depends on the channel bit-error-rate (BER).

Thus, the goodput can be estimated as follows:

γ =
Lmessage

Ttotal
=

Lmessage

RT T +(k−1)×RTO
(2.2)

As the equation suggests, a shorter RTO leads to a greater goodput. On the other hand, the

number of retransmissions is increased, therefore overloading the channel. For deep-space com-

munications this is not the main concern because the channels are usually devoted for specific data

transmissions and their bandwidth is larger enough to handle those retransmissions.

For these reasons, the authors decided to explore the option of setting the RTO lower than the

RTT. However, the range of the RTO values has a lower limit, which is equal to the time required

to transmit the message. This ensures the RTO timer does not expire before the message actually

reaches the destination.

The total number of transmitted bundles required to the complete reception of the original

message is given by:

Dtotal =

⌈
RT T
RTO

⌉
×Nbundle +(k−1)×Nbundle−

k−1

∑
i=1

i×NB(k−1)th (2.3)

where NB is the number of bundles a file is divided for transmission and NBxth is the total

number of bundles in the xth transmission effort.

Finally, the goodput, normalized with regard to the amount of data transmitted, can be deter-

mined as:

γ =
L f ile×Nbundle

[RT T +(k−1)×RTO]× [(

⌈
RT T
RTO

⌉
+ k−1)×Nbundle−

k−1

∑
i=1

i×NB(k−1)th]

(2.4)

Once it is difficult to obtain the RTO which maximizes the goodput performance from this

equation, some tests were performed and the results were compared with the analytical model 2.4.

The experiment results showed that the best performance is achieved when the RTO is approxi-

mately one-half of the RTT.

Lastly, it is worth to think about the application of the presented model in this dissertation. The

research performed by Wang et al. was developed regarding deep-space communications, where

the channels have an higher bandwidth available. Thus, an increased amount of data transmissions

can be handled by them. However, in the VANET in question, that assumption cannot be strictly

applied since the channels are not dedicated to a specific data transmission.
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2.5 REST APIs

According to Cisco IBSG prediction in 2011, by the end of 2020, there will be 50 billion of

devices connected to the Internet 3. IoT devices will mainly transmit real-time data, collected

by their sensors. The data exchanged are not expected to be heavy but the amount of messages

will be large. Moreover, these devices are power-limited devices. As a result, networks formed

by IoT devices require the development of communication protocols which take power-efficiency

into consideration.

The Representational State Transfer (REST) approach has came up as a solution to this chal-

lenge. REST APIs allow the sensor devices to upload their data on demand. As they do not need to

maintain a constantly open connection with the server, they can save power energy in the intervals

during which they have nothing to transmit. The client and the server entities are independent and

the connection between them are said to be stateless since no session data is shared between two

different requests.

Usually, REST APIs provide the same set of methods of the HTTP protocol: POST, GET,

PUT and DELETE. In fact, these methods fulfill the needs of any IoT application. The sensors

are able to upload their samples and the devices can also receive some instructions to be applied

to their actuators. Generally, the data is transmitted in XML or JSON formats and the devices are

addressed using Universal Resource Indicators (URI) [32].

Many REST APIs have been developed for the last years. CoAP (Constrained Application

Protocol) 4 and MQTT (Message Queue Telemetry Transport) 5 are two of the most known exam-

ples.

In short, MQTT defines a multi-client publish/subscribe messaging scheme, where the sensor

nodes (clients) are allowed to upload their data and, at the same time, to subscribe a broker (MQTT

server) in order to receive updates of interest. It was designed with the goal of saving both power

and memory.

CoAP usually runs over UDP and its datagrams are more lightweight than the HTTP packets.

As CoAP uses UDP, reliability is not guaranteed. However, there is an option available which

allows to label messages as confirmable. If this option is set, the client should expect to receive

an acknowledge message from the server. Just as MQTT, CoAP was developed in order to answer

the needs of nodes with constrained resources [33].

Nevertheless, there are other alternatives to MQTT and CoAP, such as XMPP (Extensible

Messaging and Presence Protocol), DDS (Data Distribution Service) and STOMP (Simple Text

Oriented Messaging Protocol).

Given the increasing interest in IoT, REST APIs have been largely used by application devel-

opers. Many studies have been made either to evaluate or to improve the performance of these

APIs.

3http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
4http://coap.technology/
5http://mqtt.org/
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Kovatsch et al. [34] argue that the key point to support power-limited devices is to keep a low

duty cycle. This can be achieved by using the radio the minimum as possible. Thus, they propose

a low-power CoAP implementation. On the other hand, Raza et al. [35] were more concerned

with security and safety issues so they suggested a CoAP integration with a lighter version of the

DTLS (Datagram Transport Layer Security). Castellani et al. [32] also took a look at possible

improvements in the CoAP, this time by applying a conversion technique to the XML data sent by

the sensor nodes. There are also some proposals that explore enhancements in the cloud side, as is

the case of [36]. It presents a system architecture that is prepared to handle data from numerous

connected devices so that the system efficiency is not affected when the number of participating

nodes increases significantly.

As for MQTT, Hunkeler et al. [37] developed the MQTT-S, which is an extension of the

original version. Its main target is the wireless sensor networks (WSN). A more recent proposal,

MQTT-SN [38], introduces the concepts of sleeping clients that allow the messages to be buffered

at the broker side until the client wakes up. As it happened with CoAP, the security was also an

issue to work on. Singh et al. [39] analysed the integration of the elliptic curve cryptography in

MQTT. Lee at al. [40] focused on the three QoS (Quality of Service) levels of MQTT and studied

the correlation between the messages loss and delay in each level.

Thangavel et tal. [41] performed a comparison between these two REST APIs. They firstly

developed a middleware that both supported CoAP and MQTT. After that, they performed tests in

order to evaluate the performance of these protocols. They concluded that the network conditions

can influence the results obtained. When the packet loss is lower, MQTT has a better performance

regarding the delays. In contrast, for higher packet losses, CoAP has lower delays. Additionally,

in order to ensure reliability, the CoAP consumes less bandwidth if the messages are small in their

size and if the packet loss is lower.

2.6 Chapter Considerations

This chapter introduced the most relevant concepts and technologies for this dissertation.

Firstly, the concept of VANETs was presented, as well as the data dissemination techniques

and the WAVE standards.

Secondly, the delay tolerant networking approach was analysed in more detail as it is used in

Veniam’s mesh networks.

Since the main goal of this dissertation is to implement a reliable system, two design options

were discussed. The first one is related with the methodologies to achieve reliability over DTN:

hop-by-hop and end-to-end. The second one was the RTO setting.

Finally, since the system is indeed formed by sensor units which need to upload their data to

the Veniam’s network, the main REST APIs were presented.



Chapter 3

System Characterization

3.1 System Architecture

The following schematic illustrates the system architecture when the DTN backhaul was used:

Figure 3.1: System Architecture

In short, the system operated as follows: the DCUs established a WiFi connection with the
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OBUs that passed by. The protocol used to transmit the bundles from the DCUs to the OBUs was

the CoAP.

It is worth mentioning that the path illustrated between the DCU and the RSU is the most

simple version among the possible ones. For example, the first OBU could send the bundles to

other OBUs, before they actually be delivered to the RSU.

3.2 System Implementation

As highlighted in the figure 3.1, the two main components of the system were the DCUs and the

OBUs. The implementation of each one will now be addressed.

At the OBU side, there was a service, spencer server, that was waiting for the arrival of the

bundles. As soon as they were received, an ACK was sent back to the DCU. From then on, the

bundles were carried by the vehicular network.

At the DCU side, there were three services:

• datacollector - responsible for getting the samples from the sensors

• datasender - accountable for building and managing the bundles

• spencer client - in charge of sending the bundles to the spencer server running on the OBUs

The datasender and the spencer client established a TCP socket between them so that the

former could send the bundles to the later. In the datasender there was a periodic task which

tried to ping an OBU. As soon as a response was received, the bundles were started to be sent to

the spencer client, who was acting as a bundle forwarder. Similarly, it was also responsible for

receiving the ACKs sent from the spencer server and forwarding them to the datasender.

The entire management of the bundles was done by the datasender. The bundles were sent

and preserved on local storage. If an ACK was not received from the spencer server after a given

amount of time, they would be retransmitted. This process was repeated until a maximum number

of retransmissions was reached. However, it is important to enhance that this was an “one hop

ACK”, which means that, when the datasender removed the bundles from the local storage, it did

not actually know if they were indeed stored on the database.

The number of bundles being sent simultaneously, the number of seconds to wait until a bundle

retransmission and the maximum number of retransmissions were some of the system parameters

that could be set by the user.

3.3 First Hop Analysis

From September 2015 to July 2016, while the bundles related to the sensors data were being sent,

the DCUs recorded relevant information that allows the first link to be characterized. For each

contact (connection establishment between a DCU and an OBU), it was recorded the start time of

the contact, its duration, the number of packets sent and the number of ACKs received.
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This data was analysed in detail because it can be used to perform an evaluation of the first

hop (DCU->OBU). Although there is not enough information to characterize the full path, from

the DCU to the database, the characterization of the first link can give useful insights regarding

the impact of this link in the overall system performance.

However, it is worth pointing out that this information, just like the sensors data, has arrived to

the database via DTN. This means that there might be some contacts that were indeed established

but for which there is not information about, due to the loss of the bundles that carry this type of

data.

Even so, with the information available about each contact, it was possible to assess some of

the first link key performance indicators such as the distribution of contacts, their duration and the

delivery ratio along the day.

This analysis was performed for the DCUs which have this type of information available in the

UrbanSense database: Damião Góis, Bolhão, 24 de Agosto, Combatentes, Campo Alegre, Casa

da Música, Praça da Galiza, Praça da Liberdade and FEUP.

3.3.1 Number of Contacts per Day

In order to highlight the relevance of each DCU in future conclusions, the number of contacts per

day, during the mentioned period, will be firstly presented. As it can be seen, Damião Góis’s DCU

is the least relevant since their contacts can be only characterized by the period of four days.
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Figure 3.3: Number of Contacts Per Day in Each DCU

3.3.2 Distribution of Contacts per Hour

The following charts summarize the results obtained for the number of contacts established per

hour. As expected, the amount of contacts is higher during the daytime, when there are more

buses moving around.

The DCU placed at Damião Góis has no contacts established during the night hours because

a STCP route does not exist at these hours. This is also the case for the DCUs located at Campo

Alegre and Bolhão, where there is not a defined route at night-time. However, as it can be seen, the

graphs obtained show a different result, which might be explained by the establishment of contacts

with out-of-service buses and garbage collectors, which also carry OBUs.
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Figure 3.4: Number of Contacts Per Hour in Each DCU
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3.3.3 Contacts Duration

The next graphs are related to the contact duration. The contact’s start time is the instant when the

DCU connects to an OBU and receives a local IP via DHCP. A contact is considered to be finished

when the connection with an OBU is lost (the DCU does not receive an answer when it pings the

OBU).

Since almost DCUs are located next to bus lines there are no evident reasons that may justify

differences in the duration values at different hours. This behaviour is mainly verified in Bolhão,

Combatentes, Campo Alegre and Praça da Liberdade. At the other locations there are some outliers

that could be caused by periods during which there is a driver shift. Additionally, when a bus

gets delayed (due to accidents, for example), it will find the following stops with a large amount

of passengers which will greatly increase the contact duration. If this situation has frequently

occurred, it can influence the average duration of the contacts at a given hour, as it is the case in

Campo Alegre at 11am.
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Figure 3.6: Contacts Duration Per Hour in Each DCU

3.3.4 Delivery Ratio

The last link characterization performed is related to the delivery ratio. This indicator was obtained

by calculating, for each contact, the ratio between the number of received ACKs and the number

of sent bundles.

Once this is the main topic of this dissertation, the results were analysed in more detail. They

are presented in the form of boxplots. The hours in blue are considered as peak hours in the STCP

case. As it can be concluded, the delivery ratio of the first link is not so high as desired.
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Figure 3.8: Boxplots of the Delivery Ratio Per Hour in Each DCU

Three possible causes might explain the low delivery ratios obtained: the contact duration, the

quality of the link and the OBU’s load. If the OBU’s load is the main reason, the delivery ratio

values calculated at peak time would be lower than the ones at off-peak hours. By looking at the

boxplots, it does not seem to be the case, but with the available data it is possible to perform tests

to either validate or not this hypothesis.

Firstly, a normality test - Shapiro-Wilk - was applied to the distributions of the delivery ratio

at peak time and off-peak time. For the peak time case, for example, the null and the alternative

hypothesis state the following:

• H0: The values of the delivery ratio at peak time are normally-distributed

• Ha: The values of the delivery ratio at peak time are not normally-distributed

In every distribution, the null hypothesis was rejected, which validates the alternative hypothe-

sis. For this reason, any subsequent test applied to this data should be a non-parametric test, which

does not require the distributions to be normally-distributed.
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Finally, in order to either validate or not the influence of the OBU’s load on the delivery ratio,

the Mann-Whitney test, a non-parametric test, was performed. It was used an one-tailed test with

the alpha value of 5%. The considered hypothesis were:

• H0: The distribution of the delivery ratio of the two groups (at peak time and off-peak time)

are equal

• Ha: The distribution of the delivery ratio at peak time is stochastically lower than the dis-

tribution of the delivery ratio at off-peak time

The following table sums up the Mann-Whitney tests results in each DCU. They will be later

discussed in the chapter considerations.

DCU Result
Damião Góis Id H0 rejected
Bolhão H0 not rejected
24 de Agosto H0 not rejected
Combatentes H0 not rejected
Campo Alegre H0 not rejected
Casa da Música H0 not rejected
Praça da Galiza H0 not rejected
Praça da Liberdade H0 not rejected
FEUP H0 not rejected

Table 3.1: One-tailed Mann-Whitney test results

3.4 Chapter Considerations

This chapter analysed the data that was recorded by the DCUs between September 2015 and July

2016. With the information available it was possible to evaluate the performance of the first link

(DCU->OBU) regarding the contact duration, the distribution of contacts per hour and the delivery

ratio, for example.

Since the most relevant key performance indicator for this dissertation is the delivery ratio,

three possible reasons were pointed out to justify the low delivery ratio.

The first one was the OBU load. By analysing the table 6.3, it can be seen that the null

hypothesis was not rejected. This conclusion was obtained in every DCU, except in the one placed

at Damião Góis. Nevertheless, as outlined previously in subsection 3.3.1, this DCU is not so

representative as the others once its available data only refers to the period of four days. The non

rejection of the null hypothesis means that there is not enough evidence to reject it and to accept

the alternative hypothesis. This means the data could not prove that the peak time influences

the delivery ratio of the first link. Therefore, it can be concluded that the OBU’s load was not

responsible for the low delivery ratio recorded in the first link.
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As for the contact duration, it was verified that this indicator has a wide range, it can vary from

a few seconds to more than three hundred seconds. In fact, there are contacts that are too short,

which might have caused the loss of most of the sent bundles.

The other possible reason introduced was the link quality. This hypothesis could be tested if

the same measures were applied in a different link, instead of the CoAP one.
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End-to-End System Design

As evidenced in the previous chapter, there is a lot of information generated by the DCUs that is

being lost. This negative result asks for the design of a new system in which the bundles delivery

is guaranteed.

As discussed in the section 2.3, the reliability can be ensured either by an end-to-end or by a

hop-by-hop mechanism. The former was chosen in the design phase. This way, the bundles will

unquestionably be delivered to the cloud, even in the worst case possible. In particular, the failure

of an intermediate node (OBU). It is important to note that a hop-by-hop approach would not be

sufficient in this situation, as it was discussed in the referred section.

Therefore, an end-to-end system will be implemented. In order to achieve reliability, there are

some specific challenges that should be addressed during its design.

Firstly, the system will need to deal with the bundles transmission, retransmission and ACKs

generation. These tasks are well defined by an existing sliding window mechanism - the selective

repeat protoco. The choice of this protocol will become clear later on.

Additionally, for the proper system operation, the ACKs have to be delivered to the DCUs.

This challenge, in fact, hides two problems that ask to be solved. Firstly it is necessary to figure

out how the ACKs will be delivered and secondly, how they will be addressed. Each generated

ACK will be handed over to a specific DCU. However, the DCUs have no fixed IP, they only

receive an IP after connecting to an OBU. At that moment, they receive a local IP via DHCP but

that IP is no longer valid as soon as the connection is lost. For this reason, no downlink unicast

exists. The solution found was to assign an identifier to each DCU. This way, when an OBU

receives a bundle from a DCU it has to discover to which DCU is communicating. After that, the

OBU knows which ACKs has to deliver. As for the delivery itself, the OBUs will send the ACKs

after receiving a bundle from a DCU. The ACKs will be effectively carried in the message-body

of the OK message that will be sent back to the DCUs.

Lastly, there is another challenge that needs to be reminded. In any reliable system, the sender

entity, in the absence of an ACK, will have to retransmit the bundle. However, if the retransmission

is too soon, it might represent bandwidth waste. On the other hand, if the retransmission occurs too
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late, it means that the retransmission was delayed. This variable should be carefully set because it

has a straight impact on the number of retransmissions and therefore on the system efficiency.

To sum up, the main purpose of the system is to deliver end-to-end application-level acknowl-

edgements. This way, the bundles will only be completely removed from the DCUs when those

acknowledgements arrive.

4.1 Architecture of the Proposed System

The following schematic outlines the main architecture of the proposed system:

Figure 4.1: Architecture of the Proposed System
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As highlighted, there are three main components: the DCU, the OBU and the receiver. The

DCU and the OBU are familiar components since they were also presented in the subsection 3.1.

As for the receiver, it is an endpoint that will run in a machine with a public IP address and it will

be accountable for verifying which bundles have been effectively stored in the database.

In short, the proposed system operates as following: firstly, the datasender sends its messages

to a service called OBUComm, which has the role of a forwarder, as it was the case of the spencer

client. Thus, the bundles are effectively sent to the OBU by the OBUComm service. Afterwards,

when the OBU finds an RSU, it offloads the bundles and they are stored in UrbanSense’s database.

Later on, the receiver looks at the bundles that were recently stored in the database and it generates

a list of ACKs accordingly. At the same time, the OBU periodically asks the receiver for the ACKs

so that it can deliver them to the DCU in the following established contact.

The existence of the receiver could be questioned. In fact, it seems that a simpler solution

would be to have the database itself generating the lists of ACKs. However, this solution is in-

compatible with the way the Veniam’s system is operating. Currently, Veniam provides an API for

its clients so they can access to the data they have previously uploaded and that has reached the

database. In this way, the existence of a receiver is justified. Using this API, this endpoint is able

to find out which bundles have successfully arrived to the database and generate a list of ACKs

accordingly.

4.2 Timelines of the System Components

In order to clarify the role of each component in the system, the timeline of each one is presented

in the following images. Each one gives an overview of the main events occurring in each system

component.

At the DCU side:

Figure 4.2: DUC Timeline

The DCU waits for an opportunity to send its bundles. As soon as a connection is established,

the DCU sends its bundles and, as a response, it gets a list of ACKs. Finally, the DCU can remove

from local storage the bundles that were acknowledged.

At the OBU side:
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Figure 4.3: OBU Timeline

The OBU timeline was split in two in order to highlight the existence of concurrent events.

The first one is a periodic event and it is related to the communication with the receiver entity.

The OBU needs to ask to the receiver for the list of ACKs that was generated for each DCU. This

is a periodic event for the sake of simplicity. However, as this is a periodic request, it is done

even when the OBU is not within the coverage of an RSU, which means the cellular backhaul is

sometimes used. This solution is not free of cost so an improvement can be later applied. For

example, perform the request only when the OBU is within the range of an RSU.

At the same time, if a DCU connects to an OBU, the later receives the bundles and sends back

the list of ACKs it has previously received from the receiver.

At the receiver side:

Figure 4.4: Database Timeline

Similarly, the receiver has two concurrent timelines.
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The first one is a periodic event. It checks the database in order to find out which bundles have

recently been stored. According to that, a list of ACKs is generated for each DCU.

The second one deals with the communication with the OBUs. As soon as a request arrives,

the receiver answers with the lists of ACKs that were previously generated.

4.3 Choice of the Sliding Window Protocol

The bundles arriving from the OBU are inserted in the database. At this point, two options could

be used: acknowledge those bundles either with cumulative acknowledgements or selective ac-

knowledgements. This decision should take the channel characteristics into account. As analysed

in the subsection 3.3.4, the first hop has low delivery ratio so it would be wrong to assume, for

example, that if a given bundle has arrived to the database, all the previous ones have also reached

the destination. For this reason, selective acknowledgments will be used, which means that ev-

ery bundle will be independently acknowledged. Therefore, each ACK will be identified by the

sequence number of the bundle to which it refers.

This design option is related to one of the sliding window protocols, the selective repeat. The

other option, go-back-n protocol, uses cumulative acknowledgements, which is not a good solu-

tion for the system being studied. As discussed before, the use of cumulative acknowledgements

would cause a lot of retransmissions, even of bundles that actually arrived to the database. The

immediate disadvantage of this would be the bandwidth waste. On the other hand, the trade-off

of the selective repeat approach requires extra memory resources at the sender entity, the window

buffers. Additionally, it adds complexity on both sender and receiver endpoints.

4.3.1 Selective Repeat Protocol

The selective repeat protocol will be now explained in more detail, as well as some of the design

options that differ from its standard implementation.

This is one type of the sliding window protocols. As the system uses application level ac-

knowledgements, the protocol will be implemented in the application layer of the OSI model.

As its name suggests, the sliding window protocols define a window for the sender and the

receiver endpoints. On the sender side, there is a window of sequence numbers that are allowed to

be sent. Similarly, on the receiver side, there is a window for the messages that can be accepted as

valid.

Here is how the protocol operates: the sender starts sending a number of bundles that can go

from zero to window size minus one. It starts an individual timer for each bundle and it stores

them in the window. Each element of the window is, in fact, a buffer that keeps a bundle that had

already been sent but not acknowledged yet. The number of buffers is equal to the window size.

Possibly, the bundles are likely to arrive to the receiver. This endpoint will send back to the sender

an individual ACK for each bundle, whenever the received bundle fits in its window. At the time

the sender receives the ACKs, it can finally remove the acknowledged bundles from the window,
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“slide” its window and send new bundles. If, for some reason, the bundles or the ACKs are lost,

the timer of the bundles will eventually expire and the sender will resend the bundles [42].

The protocol frequently uses NACKs, which are sent by the receiver to notify the sender that

something went wrong with a given bundle. When receiving this message, the sender does not

need to wait for the timer to expire, it can immediately resend the lost/damaged bundle [42].

However, the system in study relies on an opportunistic scenario, which means that the DCUs will

take advantage of every contact to send new bundles and resend the ones that were not acknowl-

edged. For this reason, the reception of a NACK would not change this scenario. Thus, the use of

NACKs would bring a disadvantage to the system since it would represent a bandwidth waste.

Since the bundles will be independently acknowledged, it is important to carefully identify

each one. Therefore, one of the design options of this protocol is to decide the number of bits that

will be devoted to the sequence numbers. This field will be appended to the data itself. As a result,

the size of the bundles is increased, which has an impact in the amount of bandwidth consumed to

transmit each bundle.

Thus, if an N-bit field for representing the sequence numbers is defined, that means the maxi-

mum sequence number that can be sent is MAX_SEQ = 2N−1. Since there are N bits available, it

could be concluded that the window’s size of both sender and receiver was MAX_SEQ. However,

that is not possible. The following example will illustrate the reason behind that. The images were

adapted from the animation available in 1.

In the image below there is a sender that, at instant t0, starts sending its bundles to the receiver.

The sender and the receiver window size is four and the MAX_SEQ is also four.

Figure 4.5: Incorrect Example of the Sliding Window Protocol, instant t0

Later, at instant t1, the receiver receives the bundles. Since the sequence numbers of these

bundles fit in its window, the receiver generates the ACKs, identified with the sequence numbers

1CCS LABS, Johannes Kessler, 2012. URL: http://www.ccs-labs.org/teaching/rn/animations/gbn_sr/
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of the bundles to which they refer, and it sends them to the sender. However, the ACKs are lost on

its path for some reason.

Figure 4.6: Incorrect Example of the Sliding Window Protocol, instant t1

Since the receiver is unaware of the ACKs lost, it “slides” its window and starts waiting for

the next bundles. As no ACKs were received on the sender side, the timers expire and the bundles

are retransmitted at instant t2.

Figure 4.7: Incorrect Example of the Sliding Window Protocol, instant t2

Afterwards, when the retransmitted bundles arrive, the receiver has no way of knowing that

these bundles are duplicates. It will look at them as if they were new bundles.
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For this reason, the range of a new window on the server side cannot contain sequence numbers

that were acknowledged in the immediately preceding window. The way to guarantee this is to

define WINDOW_SIZE = (MAX_SEQ+1)/2.

4.3.2 N-bit field for sequence numbers

In order to compute the number of bits needed for representing the sequence numbers field, the

window size will be firstly calculated. The maximum efficiency of the sliding window protocol

can be achieved if the link utilization is at its maximum. To accomplish that, the number of sent

bundles should be the maximum number of bundles that can fit inside the channel. This value is

given by the bandwidth-delay product (BD), which is calculated as follows:

BD = B×OWD (4.1)

where B is the bandwidth in bits/sec and OWD is the one-way delay (or one-way transit time)

[42].

However, in the system in question, the maximum performance will be accomplished if the

entire duration of a contact is used to send bundles. It would not be reasonable for a DCU, during

a contact with an OBU, to stop sending bundles because the number of the allowed outstanding

bundles (window size) was reached. For this reason, the above equation should be replaced by:

BD = B×DurMax (4.2)

where B is the bandwidth in bundles/sec and DurMax is the maximum duration of the contacts

in the DCU in question.

The bandwidth can be given by the throughput - number of acknowledges received divided by

the duration of each contact. The data analysed in the chapter 3 can be used to calculate it. Since

it is important to ensure that, even the best performance of the link is fully used, the maximum

value of the throughput will be chosen for the calculations. These results are presented in the

appendix A. As for the maximum duration of the contacts, it can be obtained from the graphs in

the subsection 3.3.3. The exact values are listed in the appendix A as well.

The product of these two variables gives the maximum number of bundles that can be sent

from the DCU to the OBU during each contact. In fact, this result reflects the window size. As

discussed before, the maximum sequence number is given by:

MAX_SEQ =WINDOW_SIZE×2−1 (4.3)

And finally, the number of bits needed for representing the sequence numbers is:

N = log2 (MAX_SEQ) (4.4)
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As highlighted in the subsection 3.3.1, the DCU placed in Praça da Galiza is the one which

has more recorded contacts. The calculation of the N-bit field for the sequence numbers will be

exemplified for this DCU.

Thus, for this DCU, the bandwidth-delay (which will correspond to the window size) is:

BD = B×DurMax = 2,11×92 = 194bundles

The maximum sequence number is:

MAX_SEQ =WINDOW_SIZE×2−1 = 194×2−1 = 387

Finally, the number of bits for the N-bit field is:

N = log2 (MAX_SEQ) = log2 (387)' 8,57→ 9bits

which allows a maximum sequence number of:

MAX_SEQ = 2N−1 = 29−1 = 511

The window should be recalculated in order to get its value as a power of two:

WINDOW_SIZE =
MAX_SEQ+1

2
=

512
2

= 256

4.4 Fields of the Bundles

A sum up of the fields of the bundles will now be presented . As mentioned before, apart from the

data itself, the bundles are also formed by other fields that enable the ACKs management and the

bundles retransmission. They are the following:

• Data - carries the sensors samples

• Sequence Number - identifies each particular bundle

• DCU Id - identifies one DCU among the total of 19

The point of having the DCU Id field is that, although there is a sequence number which

identifies a given bundle, there might be more than one outstanding bundle with the same sequence

number. This happens with bundles that were generated in different DCUs. In order to solve this

ambiguity, the bundles will also identify the DCU where they were generated.

In short, each bundle is a variable-length message, depending on the data it carries. As an

example, the following table outlines the number of bits reserved for each field of the bundle in

the DCU placed at Praça da Galiza:
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Field Number of Bits
DCU Id 5
Sequence Number 9
Data Variable

Table 4.1: Bundle’s Fields for the DCU placed at Praça da Galiza

4.5 Retransmission Timeout

The RTO is another system parameter that needs to be carefully assigned. In fact, in order to

achieve the maximum system efficiency, it is desired that the number of retransmissions is the

minimum possible, which could be achieved with a larger RTO. On the other hand, a larger RTO

would cause the delay of the bundles loss detection. For these reasons, a balance should be found

between the number of retransmissions and the time required to detect the loss of a bundle.

Different approaches for the RTO estimation could be applied to the system in study. Each

one will be conceptually addressed, as well as their advantages and disadvantages.

4.5.1 Static RTO

The most simple approach would be to have a static RTO. The variable would be set offline and

would not change during the system execution. Its value would be equal to the summation of the

highest response times of each system component.

The implementation of this approach is simple but it does not shape according to the system

conditions. Moreover, the delays added by the DTN are very difficult to predict. For this reason,

it is most likely that this solution will have a higher number of retransmissions.

4.5.2 Dynamic RTO based on the RTT

A second alternative would be to start with a static RTO for the first bundles. From that point

onwards, the RTTs calculated for the previously acknowledged bundles could be used to determine

new estimations for the RTO.

This option has the disadvantage that the computed RTTs will include not only the time needed

to effectively carry the bundle and the ACK, but also the time added by the delay tolerant network,

which can be highly variable.

4.5.3 RTO based on the number of established contacts

Another RTO estimation could be based on the number of contacts. The main reasoning of this

approach would be the following: if a bundle is transmitted in a given contact, it could be expected

that, in the following contact, the next OBU would have the correspondent ACK available. If no

ACK was received in that contact, it could be concluded that the bundle was lost. For that reason,

the subsequent contact would correspond to the best moment for the retransmission.
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Thus, the DCU starts sending its bundles in the first contact. In the second contact, it expects

to receive the ACKs of the bundles sent in the first contact. However, in order to receive them,

the DCU needs to retransmit at least one of them. Thus, the first window bundle is retransmitted

during the second contact. Finally, the bundles that were not acknowledged will be retransmitted

in the third contact.

In general, the bundles are sent in any contact. On the other hand, the retransmission of the

bundles will only occur during odd contacts, with the exception of the first window bundle that is

retransmitted in even contacts.

The implementation should also be prepared to deal with long contacts. During these con-

tacts, the bundles are retransmitted according to an RTO, that could be either static or dynamic.

As for too short contacts, caused by some instantaneous interruptions, they should not be inter-

preted as new contacts, because that miss-interpretation would trigger improper retransmissions

and decrease the system efficiency.

This solution is likely to have a good efficiency in the DCUs placed at areas within the coverage

of an RSU. In these situations, the OBU can immediately offload the bundles to the RSU. On the

other hand, if messages are stored in cache in the OBUs, the efficiency will decrease because the

assumption that the bundle sent in a contact will have its ACK available in the following contact

might not be true.

4.5.4 RTO based on the number of contacts required to receive an ACK

Two improvements could be performed to the previous approach in order to make it more suitable

for the DTN.

Firstly, the RTO estimation could be similarly performed based on the number of established

contacts. However, rather than assuming the ACK is available on the second contact, it could

be made an analysis on the already acknowledged bundles. For each one, it could be recorded

the number of established contacts since the bundle transmission to the ACK reception. That

information seems to provide a better estimate for the RTO.

Besides the RTO estimation, there is an alternative for the window size design that could lead

to even better results. In the calculation of the bandwidth-delay, the duration of a single contact

should not be used. Instead, it could be considered the duration of a contact multiplied by the

expected number of contacts needed until the first ACK is received. This way, the DCU will be

continuously sending bundles, without wasting established contacts. Moreover, the window size

calculation could be performed during the system execution, which would lead to a window size

that shapes according to the service provided by the vehicular network.

4.6 Chapter Considerations

This chapter outlined the main design options adopted in order to ensure end-to-end reliability.

To sum up, the main system components will be the DCU, the OBU and the receiver. The

selective repeat protocol will be implemented at the application level.
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Additionally, there will be some “control” information that will be appended to the sensors

data. Thus, the bundles will be formed not only by the sensors data, but also by the bundle

sequence number and the DCU ID.

Finally, the chapter addressed the possible RTOs estimation. Each one will be tested in the

experiments presented in the results chapter.



Chapter 5

End-to-End System Implementation

This chapter provides details on the prototype implementation. Initially, the OBUComm module

that replaces the spencer client on the DCU is detailed, followed by the receiver module on the

cloud server, and finally the changes to the local API on the OBU.

5.1 OBUComm

On the proposed implementation it was decided to maintain the main architecture on the DCU

side. As it can be seen in the following images, the spencer client was replaced by the OBUComm.

They both act as bundle forwarders. However, in the proposed implementation, the data sender

has less responsibilities since the management of the bundles (their retransmission and the ACKs

reception) is now done by the OBUComm.

Figure 5.1: Previous and Current DCU components

Another option would be to include the sliding window protocol in the datasender. This way,

the bundles could be directly transmitted to the OBU, without the need for a forwarder. However,

by having the OBUComm, an independent entity responsible for applying the sliding window

protocol and the bundles transmission, it is possible, for any service, either the datasender or

another one, to have their data being reliably sent to the cloud. The only requirements to the use

of the OBUComm service are:

• a TCP socket should be used to send the messages to this service;

• the message format should be json string.

41
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The OBUComm has two different buffers. The first one is a queue and it stores the bundles

which are waiting for an opportunity to be sent to an OBU. The second one is actually not one,

but a set of buffers, which are responsible for saving the bundles that were already sent but not

acknowledged yet. The number of buffers corresponds to the number of the allowed outstanding

bundles. They will be further mentioned as window buffers.

This service runs three main threads. The following is an explanation of each one.

5.1.1 Connection State Thread

This thread is the simplest one. Each second, it tries to ping an OBU in order to conclude if

the current state is connected or not connected. Therefore, to avoid pointless transmissions, the

bundles will only be sent or retransmitted to the OBUs if the state is connected.

5.1.2 Receiver Thread of the Bundles

This thread establishes a TCP socket with the datasender and it waits for incoming messages.

Each message received is immediately added to a queue, where it will be stored until there is a

free position in the window.

In order to prevent the DCU to run out of memory, a maximum number of bundles that

could wait in the queue was established. If the queue is full and a new message arrives from

the datasender, this message will be discarded.

The queue dimension was performed by inspecting the amount of free storage of a DCU.

Since the DCUs are running the same services, this probably does not significantly vary from

DCU to DCU. It was then decided that only 5% of that space would be used for storing the queue

elements. That result was divided by an estimation of each bundle size (section 4.4) and the

maximum number of queue elements was obtained.

5.1.3 Window Management Thread

This thread is the most complex. It deals with the transmission/retransmission of the bundles, the

reception of the ACKs and the subsequent window management.

The Window Management Thread runs a cycle which will be executing the following steps:

firstly, if there are free positions in the window, the messages waiting for an opportunity to be sent

are picked up from the queue. A sequence number and the DCU ID are appended to them. Each

one is stored in a different position of the window and they are sent to the OBU through a POST

request. Simultaneously, the timers of these window positions are initiated. If the reception is

successful, a 201 OK message is received. Besides, if the OBU has ACKs to deliver to the DCU,

an ACKs list is received in the message-body of the 201 OK message. Thus, the thread in question

is also responsible for looking at the arrived ACKs list and managing the window accordingly.

In order to facilitate the implementation of the selective repeat protocol, there are some fields

associated to each window position:
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• bundle (string) - json string message picked up from the queue, with an appended DCU ID

and a sequence number;

• seqNr (int) - equal to the sequence number that was appended to the field bundle;

• acked (boolean) - equal to true if the correspondent ACK has already been received; equal

to false if not;

• nRetransm (int) - counter that calculates the number of times the bundle has already been

retransmitted;

• timeSent (int) - epoch time when the bundle was transmitted or retransmitted.

• timeFstTransm (int) - epoch time when the bundle was transmitted for the first time. This

variable will be used to calculate the time it was needed for the correspondent ACK to be

received.

Thus, in each cycle, the acked element of each position will be checked. If the first elements of

the window were acknowledged, their bundle field can be cleaned and the window can be shifted

up.

An example will be presented in order to illustrate the window evolution according to the

reception of a given list of ACKs. For the sake of simplicity, some of the above fields will not

be represented. As for the bundle field, it will also be presented in an incomplete version. In this

example, the WINDOW_SIZE = 4 will be considered.

At instant t0, the bundles with the sequence numbers 0,1,2,3 have already been sent. None of

them has been acknowledged yet.

Figure 5.2: Example of the OBUComm window, instant t0
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Later on, the timer of the first bundle expires and the bundle is resent. In the message-body of

the 201 Ok message, the following list of ACKs is received: "acks_list: 1,2". At this moment, the

DCU knows the bundles with the sequence numbers 1 and 2 were already stored in the database,

thus the correspondent acked field can be set to true. However, the window positions will remain

the same. The window can only be shifted up if the first element has already been acknowledged;

in this case, the bundle with the sequence number 0. Thus, the window will remain as following:

Figure 5.3: Example of the OBUComm window, instant t1

In the meanwhile, the bundle with the sequence number 3 is retransmitted and a new list of

ACKs arrives: "acks_list: 0". The following two images present the evolution of the window that

this received ACK will enable:
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Figure 5.4: Example of the OBUComm window, instant t2 and t3

Finally, at instant t3, if the queue is not empty, three new bundles can be picked up and added

to the three free positions of the window.

To sum up all this thread’s cycle, the following flowchart is presented:
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Figure 5.5: OBUComm Flowchart
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5.2 Receiver

The receiver implementation is simpler. This entity has mainly two tasks. The first one is to

generate the lists of ACKs for each DCU and the second one is to send those lists to the OBUs.

These tasks will be implemented by two threads.

5.2.1 ACKs Producer Thread

This is a periodic task which looks at the messages stored in the database in order to generate an

list of ACKs for each DCU of the system. As illustrated in the examples regarding the selective

repeat protocol of the subsection 4.3.1, the receiver has a window for the messages that can be

accepted as valid. Since the system is composed for more than one DCU, the receiver should have

a window for each one. Thus, the receiver will have a data structure - DCU_Windows - to save the

information related to the window of each DCU. Each element of this data structure is formed by:

• the DCU ID (int);

• the window itself (data structure);

• the ACKs list (list) - generated for the DCU in question.

On its turn, the window field is a data structure as well. Each of its elements contains the fields:

• seqNr (int) - sequence number that is expected to be received;

• acked (boolean) - it indicates if the bundle with the seqNr has already arrived or not.

In order to generate an ACKs list for each DCU, the receiver needs to know which bundles

have been stored in the database. For that, it periodically makes a GET request (defined by the

Veniam’s API) with two query arguments - tsinit and tsend - that allow the specific range of time

in interest to be specified. As a result, it gets all the messages stored in the database during the

mentioned period. They are then filtered by the DCU ID so that an ACKs list can be generated for

each DCU.

This process will be illustrated with an example. The following parameters will be considered:

WINDOW_SIZE = 4 and MAX_SEQ = 7. The steps presented will be for the DCU with the

DCU_ID = 2. Obviously, the process will be the same for all the DCUs.

At instant t0, the element of the DCU_Windows which refers to the DCU with the DCU_ID= 2

is the following:
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Figure 5.6: Example of one of the DCU_Windows elements, instant t0

The ACKs Producer Thread then makes a GET request in order to discover which bundles

have been stored in the database:

http://api.veniam.com/api/v2.5/local/urbanSense/events?tsinit=2017-06-02T10:19:54.000Z&tsend=2017-

06-02T10:20:15.313Z
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The response it receives is the following:

[{"_id":":test_device::2017-06-02T10:20:05.259Z","_data":"{\"

temperature\":12,\"seqNr\":3,\"DCU_ID\":3}","_context":{"

device_id":":test_device","sys_time":"2017-06-02T10

:20:05.000Z","netrider_id":2297,"serial_id":"VENIAM_2297

"}},{"_id":":test_device::2017-06-02T10:20:08.313Z","_data

":"{\"temperature\":31,\"seqNr\":0,\"DCU_ID\":3}","_context

":{"device_id":":test_device","sys_time":"2017-06-02T10

:20:08.000Z","netrider_id":2297,"serial_id":"VENIAM_2297

"}},{"_id":":test_device::2017-06-02T10:20:08.452Z","_data

":"{\"temperature\":5,\"seqNr\":2,\"DCU_ID\":2}","_context

":{"device_id":":test_device","sys_time":"2017-06-02T10

:20:08.000Z","netrider_id":2297,"serial_id":"VENIAM_2297

"}},{"_id":":test_device::2017-06-02T10:19:54.111Z","_data

":"{\"temperature\":15,\"seqNr\":3,\"DCU_ID\":2}","_context

":{"device_id":":test_device","sys_time":"2017-06-02T10

:19:54.000Z","netrider_id":2297,"serial_id":"VENIAM_2297

"}},{"_id":":test_device::2017-06-02T10:19:54.170Z","_data

":"{\"temperature\":30,\"seqNr\":4,\"DCU_ID\":2}","_context

":{"device_id":":test_device","sys_time":"2017-06-02T10

:19:54.000Z","netrider_id":2297,"serial_id":"VENIAM_2297"}}]

As it can be seen, the response is a list of all the messages that were saved in the database,

filtered by the period specified in the query arguments. It is worth mentioning that the only in-

formation sent from the DCU was the _data field. All the other fields were added by the service

running on the OBU, implemented by Veniam, which is responsible for receiving the bundles.

After filtering the response by the _data field, the receiver gets the following bundles:

"{\"temperature\": 12, \"seqNr\":3, \"DCU_ID\":3}"

"{\"temperature\":31, \"seqNr\":0, \"DCU_ID\":3}"

"{\"temperature\":5, \"seqNr\":2, \"DCU_ID\":2}"

"{\"temperature\":15, \"seqNr\":3, \"DCU_ID\":2}"

"{\"temperature\":30, \"seqNr\":4, \"DCU_ID\":2}"

With the above information, for the DCU with DCU_ID = 2, the receiver knows that the

bundles with the sequence numbers 2, 3 and 4 have already been stored in the database. Taking

the window of the figure 5.6 into account, the receiver will append the numbers 2 and 4 to the ACKs

list. As it can be seen in the figure 5.6, the bundle with the sequence number 3 has the acked field

equal to true, which means the above bundle is a duplicate. However, the receiver should also

append the number 3 to the ACKs list because the OBUComm might have not received this ACK.

The following two images illustrate the window evolution after the analysis of the GET re-

sponse. The ACKs list field might increase in subsequent requests. Its content is only cleaned

when the list is sent to an OBU.
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Figure 5.7: Example of one of the DCU_Windows elements, instant t1 and t2

5.2.2 ACKs Sender

The second thread acts as an HTTP server. It waits for GET requests from the OBUs and, as a

response, it sends the ACKs lists generated by the ACKs Producer thread. Each GET request from

the OBUs specifies the DCI_ID so that the receiver knows which ACK list to send.

To enable the communication between the receiver and the OBUs, this endpoint will be run-

ning on a machine with a public IP address.

5.3 Implementation in the OBUs

The OBUs will have two roles in this system. Firstly, they will be in charge of communicating

with the receiver in order to get a list of ACKs for each DCU. Secondly, they are accountable for

receiving the bundles sent from the DCUs and sending back the ACKs list for that specific DCU.

5.3.1 Requesting ACKs Thread

This is a thread which acts as an HTTP client. Its role is to periodically ask to the receiver for the

lists of ACKs. In the current implementation, the OBUs ask for the list of ACKs of each DCU. For

example, if there are 19 DCUs available, the OBU will make 19 requests to the receiver, which

one specifying the DCU in interest for that particular request. This was implemented in this way

so that, in the future, some intelligence can be added in these requests, as it will be later discussed

in the section 7.2.

The OBU has a file for each DCU. The receiver responses are appended to the existing contents

of each file. The contents of the files are cleaned when their data is sent to the DCU in question.
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5.3.2 Veniam’s Local API

Veniam removed the Spencer server, which used CoAP, from the OBUs in November 2016. As

an alternative, it developed a local API, which uses HTTP2, in order to allow the client’s devices

to upload data when connected to Veniam’s network. The data upload is done through a POST

request. This is almost enough for the system in study.

However, as mentioned above, the OBU should respond back to the DCUs with an ACKs list,

in case of a proper request. These were the changes that were performed on the local API. Every

time a message is received, the DCU looks for the DCI_ID field in the received bundle. After

knowing which DCU is communicating with, it reads the content of the correspondent file and

adds it to the message-body of the 201 OK message that sends to the DCU.

Just to exemplify, here is the output at the DCU side, when a bundle is sent:

SEND BUNDLE {’temperature’: 19, ’seqNr’: 3, ’DCU_ID’: 2}

Response from server:

201

[’0, 1’]

The first line was printed after the displayed bundle was sent. The message itself is just an

example. The fields seqNr and DCU_ID are the relevant ones. The last lines display the response

got from the DCU. It was received the 201 code and the list of ACKs {0,1}.

5.4 Used Technologies

Three different elements in the system were implemented. The OBUComm, running on the DCU,

was implemented in python. The receiver, running on the backoffice, was also implemented in

python. The changes in the local API on the OBU were done in C, the language used by Veniam in

the OBUs. Additionally, it was also used the command tool curl in order to test the implementation

in the OBU.

5.5 Chapter Considerations

This chapter looked into the implementation of the three main elements of the end-to-end system.

The OBUComm has the role of a sender. It is implemented by three threads. The first one

figures out whether the DCU is connected to an OBU. The second receives the messages created

by a “message generator”, also running on the DCU, such as the data sender. The third one

deals with the communication with the OBU, by transmitting or retransmitting the bundles and by

receiving the list of ACKs.

The receiver is a service with a public IP address, so that the OBUs can communicate with it.

This endpoint periodically checks which messages were stored in the database and it generates the

lists of ACKs accordingly. At the same time, it answers to the OBU requests by sending them the

lists of ACKs.
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Finally, the OBU receives the bundles from the DCUs. It looks for the DCU ID in order

to understand to which DCU is talking to. After that, it sends back the list of ACKs that was

generated by the receiver for that specific DCU.



Chapter 6

Results of the End-to-End System
Experiments

The end-to-end system was tested in two different environments. Firstly, some experiments were

performed in a controlled environment, with the OBU and the DCU used during the implemen-

tation phase. The variations of the RTO estimation presented in the section 4.5 were tested. The

one with the best results was also tested in a more realistic environment, with one of the DCUs

available in Porto (24 de Agosto) and with the same OBU.

In both locations, the backhaul used by the OBU was mainly the cellular. Tests using the DTN

are not feasible for these experiments because when the OBUs cannot forward the bundles to an

RSU or to another OBU, they add them to its cache. The OBUs will only retry to forward them

24 hours later. The only way possible to perform the tests was to set the bundles with a critical

priority. In this way, if the OBU has no way of offloading the bundles immediately, it uses the

cellular backhaul.

Additionally, it is worth mentioning that it was not possible to perform tests in the STCP bus

fleet because the implementation in the OBUs would have to go through a validation process, such

as a code review phase. Since the validation process is long, it would not be possible to finish it in

time, given the dissertation deadline.

6.1 Performance Metrics

During the experiments, the following performance metrics were recorded:

• for each successfully sent bundle, the number of retransmissions that occurred before the

ACK was received;

• the number of discarded/lost bundles;

• the evolution of the estimated values regarding the retransmission timeout.
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6.2 Test Results in Controlled Environment

6.2.1 Experiments Setup

The following map shows the area where the experiments were performed. The line in blue in-

dicates the path followed by the car which was carrying the OBU. The circle in red signals the

location where the DCU was placed.

Figure 6.1: Location of the first experiments

The experiments had approximately the same duration, between 20 and 25 minutes.

As for the system settings, a 5-bit field was chosen for representing the sequence numbers. A

larger number was not chosen in order to facilitate the logs analysis in real time.

6.2.2 Static RTO

This test used a static RTO and it was performed to evaluate the RTO design option presented in

the subsection 4.5.1.

The RTO was set to 16 seconds. The value was obtained by the summation of the longest

response times of each system element. Starting on the receiver side, the ACKs Producer Thread

runs a cycle each 8 seconds, which means that, in the worst case, it will produce an ACK with

8 seconds of delay. As for the OBU, the Requesting ACKs Thread asks for the lists of ACKs to

the receiver every 8 seconds. Thus, if the OBU and the DCU are connected, the DCU can upload

a bundle at a given instant and, 16 seconds later, the correspondent ACK will be available in the

OBU.

The following table sums up the results obtained for the number of retransmissions needed

until the ACK reception.
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Number of Retransmissions Percentage (%)
0 29,6
1 40,9
2 21,6
3 5,7
4 2,2

Table 6.1: Test Results of static RTO - Number of bundles retransmissions

As expected, the efficiency obtained regarding the number of retransmissions was not so good

as desired. The following alternatives will add some improvements in order to increase the per-

centage of the 0 retransmissions.

6.2.3 Dynamic RTO based on RTT

This experiment used a dynamic RTO, it implemented the alternative discussed in the subsection

4.5.2.

In this case, the RTO was computed online, during the program execution. The first bundles

(in number equal to the window size) were retransmitted according to the static RTO used pre-

viously. From that point onwards, the RTO was estimated every time a new set of bundles were

acknowledged. The RTO was then computed based on the round trip times calculated for those

acknowledged bundles. The RTTs were ordered and the lowest/highest 5% values were discarded.

Finally, the RTO estimation was the average of the remaining values.

The following table and chart summarize the results obtained for the number of bundles re-

transmissions and for the evolution of the RTO estimation.

Number of Retransmissions Percentage (%)
0 20,8
1 72,7
2 6,5

Table 6.2: Test Results of dynamic RTO - Number of bundles retransmissions

Figure 6.2: Test Results for dynamic RTO - RTO Estimation Evolution
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By analysing the results, it can be seen that an improvement was obtained in the number of

retransmissions performed until the ACK reception.

As for the RTO estimation evolution, the results obtained show that the RTO estimations did

not converge to a value. On the other hand, they increased until the end of the experiment.

6.2.4 Dynamic RTO based on RTT, with improvement for the number of retrans-
missions

This simulation was similar to the previous one. However, an optimization was applied in order to

increase the percentage of the 0 retransmissions case.

In fact, there is a maximum theoretical percentage that can be achieved for the 0 retransmis-

sions. The maximum efficiency can be achieved in the following scenario: the sender window is

full of bundles waiting for the arrival of the corresponding ACKs. If only one of those bundles

is retransmitted and the response from the OBU brings ACKs for all of them, the number of re-

transmissions is the minimum possible. Thus, the percentage of the 0 and 1 retransmissions would

be:

#0 =
WINDOW_SIZE−1

WINDOW_SIZE
×100

#1 =
1

WINDOW_SIZE
×100

The change applied in order to approximate the results to these theoretical percentages was to

establish a shorter RTO for the first element of the window. By doing so, it is expected that the

first window element is retransmitted before the other ones, so that its retransmission can bring

the ACKs for all of the bundles in the window.

The results obtained were as follows:

Number of Retransmissions Percentage (%)
0 50
1 35,7
2 10,7
3 3,6

Table 6.3: Test Results of dynamic RTO - Number of bundles retransmissions
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Figure 6.3: Test Results of dynamic RTO - RTO Estimation Evolution

As highlighted, the change applied on the RTO of the first window element has allowed the

achievement of even better results. However, they are lower than the theoretical ones. Recalling

that the number of bits used for the sequence numbers was 5, this results in a window size equal

to 16. Thus, the theoretical percentage for the number of 0 and 1 retransmissions is 15
16 × 100 =

93,75% and 1
16 ×100 = 6,25%, respectively.

The difference between the results obtained and the theoretical percentages can be explained

by the fact that the situation where only the first window element was retransmitted rarely oc-

curred. In most of the cases, what happened was that when a contact was established, all the RTOs

had already expired, which caused the retransmission of all of them and not only the first one. The

retransmission of only the first window element is rare and is more likely to occur during long

contacts.

As for the RTO estimation evolution, the results were similar to the ones of the previous

experiment. The evolution of the estimated values was not stable. In contrast, the computed RTO

values increased from estimation to estimation.

6.2.5 RTO based on the number of established contacts

The previous approaches to estimate the RTO proved to be inefficient. The estimated RTO values

did not stabilize and kept increasing from estimation to estimation. This affects the system perfor-

mance because, in the worst case, there are contacts that are completely wasted because no RTO

has expired.

For this reason, an improvement was performed on the decision of the best time to retransmit.

This approach, addressed in the subsection 4.5.3, is based on the number of established contacts.

The following table outlines the results obtained for the number of retransmissions:
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Number of Retransmissions Percentage (%)
0 70
1 27,7
2 2
3 0,3

Table 6.4: Test Results of RTO based on the number of contacts- Number of bundles retransmis-
sions

This alternative is clearly the one with the best results. Besides good results regarding the

number of retransmissions per bundle, it also has a higher efficiency since no contacts are wasted

due to unsuitable RTOs.

6.3 Test Results with the 24 de Agosto DCU

The implementation which achieved the best results (RTO based on the number of contacts) in the

controlled environment was also tested in Porto, with the 24 de Agosto DCU.

6.3.1 Experiment Setup

The following map shows the area where the experiments were performed. The line in blue in-

dicates the path followed by the car which was carrying the OBU. The circle in red signals the

location where the DCU was placed.

Figure 6.4: Location of the last experiment

The experiment had a duration of approximately 30 minutes.

As for the system settings, a 9-bit field was chosen for representing the sequence numbers.

This value was previously determined in the subsection for the DCU placed at Praça da Galiza.

This DCU was used as reference as it is the DCU with more recorded contacts.
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6.3.2 RTO based on the Number of Contacts

The approach presented in the subsection 4.5.3 was also tested in the DCU of 24 de Agosto.

Number of Retransmissions Percentage (%)
0 48,4
1 39,5
2 10,8
3 1,3

Table 6.5: Test Results of RTO based on the number of contacts- Number of bundles retransmis-
sions

The system efficiency was not so high as in the controlled environment. Nevertheless, the

number of retransmissions equal to 0 was still the case with the highest percentage.

6.4 Results Summary

The following charts sum up the results obtained for the number of retransmissions obtained in

the controlled environment for each RTO estimate approach.

Figure 6.5: Results of the Experiments performed in controlled environment - Number of Re-
trasmissions

As it can be seen, the last RTO estimate was the one which has reached the results closer to

the theoretical percentages presented previously in the subsection 6.2.4. With this approach, it

was possible to increase the percentage of 0 retransmission in 40%, approximately. It is worth

mentioning that two improvements allowed this result to be achieved. Firstly, the RTO of the first

window element was anticipated, which sometimes avoided the retransmission of the remaining
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bundles of the window. Secondly, instead of being based in the RTTs, the choice of the RTO was

based in the number of the established contacts.

There is still another RTO estimate approach, discussed in the subsection 4.5.4, that could be

implemented and tested. It is expected that this alternative will increase the efficiency of the pre-

vious approaches when DTN is used. However, the available testing conditions do not allow any

conclusion to be obtained. If for some reason the OBU could not offload a bundle, it would keep

it on its cache for 24 hours, which would not be feasible for the type of experiments performed.



Chapter 7

Conclusions

The results presented in the previous chapter will now be discussed. Later on, some improvements

that could be applied to the proposed system will be addressed as future work.

7.1 Discussion of Results

From the results obtained in the previous chapter it can be concluded that the approaches of the

static RTO and of the dynamic RTO based on the RTTs do not achieve the best performance.

The static RTO does not take the system conditions into consideration. A wrong initial predic-

tion of the RTO will permanently affect the efficiency of the system. Even a first good estimation

could become unsuitable as the system evolves.

The estimation of the RTO based on the previous RTT is also not the best option. The RTT

should not be taken as a reference for the RTO because it includes not only the effective time

needed to carry the bundle and the ACK, but also the time the bundle was kept in cache by the

delay tolerant network. Other disadvantage that was highlighted during the experiments was that

because this RTO estimation increased from estimate to estimate, there were some contacts that

were totally wasted.

The last alternative, the one which predicts the RTO based on the number of established con-

tacts, achieved the best results regarding the number of retransmissions and the contacts utilization.

However, this approach, if tested using DTN, might have a lower performance. This RTO estima-

tion is based on the assumption that the ACK of a given bundle will be available in the contact

which follows the one when the bundle was transmitted. This approach has great results if the

OBU can offload the bundles in a short range of time. On the other hand, when DTN is used, this

assumption will fail because the bundles can be stored in intermediate nodes by long periods of

time.

Additionally, it was found a maximum theoretical percentage for the number of retransmis-

sions equal to 0. It is obtained by:

#0 =
1−WINDOW_SIZE

WINDOW_SIZE
×100
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This situation happens when the RTO of one of the window elements expire before the others

and that retransmission gets, as response from the OBU, the list of ACKs for all of the window

elements. When the RTO is set based on the number of contacts, it is easier to make this scenario

to happen frequently. On the other hand, when the RTO is set according to the RTTs, it is not so

likely that this situation will happen. Most probably, when a contact is established either all of the

RTOs will have already expired or none will.

As for the delivery ratio, the selective repeat protocol itself does not allow the loss of the

bundles. Also, in the experiments performed, the delivery ratio was not an issue to worry about

because the tests were of short duration. However, it is important to recall that the DCUs are

resource constrained devices, namely in storage capabilities. Therefore, if the messages generation

rate is higher than the messages upload rate, the situation where the DCUs have to discard bundles

will eventually happen.

Nevertheless, the bundles will only be discarded for limitations in the DCUs storage capabili-

ties. This is the only possible way the bundles will be lost, which represents a great improvement

from the first system implementation that used CoAP.

7.2 Future Work

Throughout this dissertation, there are some implementation details that can be improved and may

be pointed out as future work.

Firstly, some intelligence could be added on the receiver side. Rather than delivering the lists

of ACKs to any DCU, it would be preferable to make that decision based on some relevant OBU

current status. For example, when the OBU asks to the receiver for the lists of ACKs, it could

inform it about its current position and even about its storage status. Therefore, the receiver could

decide to respond with the lists of ACKs only for the DCUs that were inside a region, larger or

smaller depending on the storage status of the DCU. Alternatively, that intelligence could also be

added on the OBU side. As mentioned, the OBUs, when asking to the receiver for the lists of

ACKs, can specify which DCU they are interested in. Thus, the OBU could learn about the DCUs

to which it usually connects, for example. This way, the OBUs could avoid making requests for

the DCUs they never found on their route.

Another implementation that could be improved is related to the periodic thread running on

the OBU. It is responsible for communicating with the receiver in order to get the lists of ACKs.

However, the request is done without taking the current communication technology available into

consideration, whether it is cellular or not. This might have an higher cost to the network manager.

For this reason, the thread implementation could be changed so that this request is only done when

the OBUs are in the range of an RSU.



Appendix A

System Characterization

A.1 First Hop Analysis

A.1.1 Maximum Throughput per DCU

The following table presents the maximum throughput (number of acknowledges received per

second) recorded in each DCU. These values were useful to determine the N-bit field used for

representing the sequence numbers of the selective repeat protocol.

DCU Throughput
Damião Góis Id 0,88
Bolhão 1,60
24 de Agosto 3,70
Combatentes 2,15
Campo Alegre 1,04
Casa da Música 1,94
Praça da Galiza 2,11
Praça da Liberdade 2,43
FEUP 2,5

Table A.1: Maximum Throughput per DCU (bundles/second)
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A.1.2 Maximum Average Contact Duration per DCU

In contrast to the throughput, the values chosen for the duration were not the maximum contact

duration ever registered in each DCU. Alternatively, it was selected the maximum average contact

duration from the values presented in 3.3.3. This decision was adopted because the duration

values are highly variable. For example, in the DCU placed at Praça da Galiza the maximum

contact duration is 5685 seconds, which has only occurred once during the mentioned period.

The following table lists those values:

DCU Duration
Damião Góis Id 63
Bolhão 36
24 de Agosto 32
Combatentes 178
Campo Alegre 158
Casa da Música 260
Praça da Galiza 92
Praça da Liberdade 62
FEUP 340

Table A.2: Maximum Average Contact Duration per DCU (seconds)
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