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ABSTRACT. Understanding grounding-line dynamics is necessary for predictions of long-term ice-sheet
stability. However, despite growing observations of the tidal influence on grounding-line migration, this
short-timescale migration is poorly understood, with most modeling attempts assuming beam theory to
calculate displacements. Here we present an improved model of tidal grounding-line migration that
treats migration as an elastic fracture problem, forced by the additional ocean water pressure from the
tide. This new model predicts that the grounding line cannot be assumed to be in hydrostatic
equilibrium and, furthermore, that migration is inherently asymmetric and nonlinear, with migration
distances that are not proportional to the tidal load. Specifically, for constant surface slope, the
grounding line migrates upstream approximately ten times further as the tide rises from mean sea level
to high tide than it migrates downstream as the tide falls from mean sea level to low tide, and migration
distances are substantially larger than simple flotation arguments suggest. Numerical tests also show
that the dependence of migration distance on elastic moduli and ice-sheet thickness are inconsistent
with predictions of beam theory for a range of realistic values. Finally, applying the new model to
observations in Antarctica results in new estimates of bed slopes, though these estimates remain
uncertain due to imperfect knowledge of the relevant rheological parameters.
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INTRODUCTION
The grounding line marks the division between the grounded
and floating parts of an ice sheet. Knowing the position of the
grounding line is important for a number of reasons. For
example, global mass balance (or rather imbalance) of ice
sheets can be estimated by subtracting mass flux across the
grounding line from the integrated surface mass balance of
the upstream catchment area. The calculated imbalance is
often the numerical difference between two much larger
numbers, and highly sensitive to any errors in the estimated
position of the grounding line (e.g. Shepherd and others,
2012). Accurate data on grounding-line position are also
required for any quantitative modeling work aimed at
understanding and quantifying the drivers of grounding-line
migration and the mechanical interaction between ice
shelves and ice sheets (e.g. Schoof, 2007).

Changes in the position of the grounding line may reflect
ongoing secular changes in ice geometry or long-term
changes in ice-shelf buttressing (e.g. Favier and others,
2014; Joughin and others, 2014; Rignot and others, 2014).
The grounding line can also move back and forth with the
tide, and tides can therefore serve as a natural experiment to
study the mechanical interaction between ice shelves and
ice sheets (Brunt and others, 2011). Interestingly, tides have
also been found to affect the flow of ice streams tens of
kilometers upstream of the grounding line, i.e. far further
upstream than the range of tidal flexure (Anandakrishnan
and Alley, 1997; Bindschadler and others, 2003; Gud-
mundsson, 2006). This discovery has led to a renewed
interest in understanding the effects of tides on ice flow
(Rosier and others, 2014; Thompson and others, 2014).

Tidally driven grounding-line dynamics have been de-
scribed in a number of different ways. Starting with

Holdsworth (1969, 1977), tidally induced flexure curves
around the grounding line have been modeled using simple
beam models with a fixed grounding-line position. Walker
and others (2013) modeled flexure of an elastic beam on an
elastic foundation. This approach allowed them to include
deformation upstream of the grounding line. However, they
assumed no vertical displacement at the grounding line, i.e.
the grounding line acts as a fulcrum. This assumption, which
eliminates the possibility of any grounding-line motion, is
unlikely to exist in reality, because this would imply the
grounding line supports large forces both in vertical tension
and compression, neither of which is possible given the
known properties of ice (Reeh, 1978; Rist and others, 1999;
Reeh and others, 2003).

Sayag and Worster (2011, 2013) used a beam model with
a migrating grounding line to model tidal flexure. Their
model allowed for the movement of the grounding line. In
their comparison between their model and data (Sayag and
Worster, 2013), however, they used multiple fitting par-
ameters to obtain satisfactory fits to the observed flexure
data. Given that the shift in grounding-line position depends
strongly on the (generally poorly known) shape of the
bedrock, this is a sensible practical approach, but the need
for many fitting parameters means that the modeled
migration may not be realistic.

One of the key assumptions made in a number of studies
of grounding-line dynamics is that the ice directly down-
stream of the grounding line is in hydrostatic equilibrium.
This assumption is made in all vertically integrated large-
scale ice-flow models, and has also been made in a number
of recent studies of tidally induced motion of ice streams
(e.g. Bindschadler and others, 2003; Goldberg and others,
2014). Although it seems plausible that the errors in
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calculated grounding-line positions introduced by this
assumption will be no larger than a few ice thicknesses,
the effects of these errors on grounding-line motion have not
been quantified. Comparisons of numerical work using the
full-Stokes system (FS, which does not use the hydrostatic
assumption), and the shallow ice-stream approximation
(SSA, which does use the hydrostatic assumption), suggest
that the grounding-line position is located at a greater depth
in SSA models than in FS models (Gudmundsson and others,
2012; Pattyn and others, 2013).

Here we propose a new model for tidally modulated
grounding-line motion. We treat the grounding-line migra-
tion over a tidal cycle as an elastic fracture problem and we
formulate and solve a problem of elastic crack growth using a
well-established criterion for fracture. In essence, we are
viewing the interface between the ice and the bed as a
horizontal fracture that opens at the ice-shelf front and
extends to a tip at the grounding line, defined by where the
ice rests on the bed without an intervening layer of sea water.
This approach is fundamentally different from most of the
previous work on tidal flexure, which has been based on
beam theory. Like beam-theory descriptions, though, our
approach also does not rely on the assumption of hydrostatic
equilibrium, and we are therefore able to quantify errors in
calculated grounding-line motion due to that assumption.

We show that the back-and-forth motion of the ground-
ing line in response to tide is, in general, an inherently
asymmetrical problem, and that the inland migration from
equilibrium to high tide is expected to be different from that
of low tide to equilibrium. To some degree, this is a simple
consequence of the fact that downstream of the equilibrium
grounding line the upper and the lower surface profiles are
related (e.g. in the hydrostatic limit, one can be calculated
directly from the other), whereas upstream of the grounding
line they are not. Partly, though, the asymmetry is due to the
nonlinear relationship between pressure forcing and frac-
ture growth.

ASSUMPTIONS AND FLOTATION HEURISTICS
The aim of this paper is simply to determine how far the
grounding line migrates under tidal forcing in the simple
case of a flowline (one-horizontal-dimension) model. Before
describing and justifying our model in full, it is worth
considering the main physical principles that govern our
solution. First, we make the simplifying assumption that only
elastic stresses are important over the 12 hour timescales of
interest. This will be justified later, but can be understood
intuitively as a consequence of there not being sufficient
time for significant viscous ice deformation to occur. The
second assumption we make is that the ice deforms
elastically in response to ‘excess’ water pressures at the
ice/water interface, caused by the difference between
hydrostatic water pressure and hydrostatic ice pressure,
and that prior to loading, the water and ice pressures were in
hydrostatic balance. This hydrostatic assumption may be
reasonable for the 12 hour tidal load, since it is expected
that water can quickly flow to accommodate deformation
over these timescales and grounding-line geometries. The
degree to which neglecting the hydrodynamics of water
flow is justified can be estimated as follows: Given
maximum migration distances of 10 km, fluid velocities of
�0.2m s� 1 are needed to fill any void created. But with tidal
motions of �1m, turbulent flow velocities up to �0.4m s� 1

can be accommodated (Tsai and Rice, 2010). Thus, even in
cases where the migration distance is quite large, it is
expected that hydrodynamics is only of second order.

Note that although we refer here to the ‘hydrostatic
assumption’, we are not implying that the state of stress
within the ice is hydrostatic. The hydrostatic assumption
here means that where the ice is afloat, it sinks to a depth
where the weight of the ice equals the weight of the ocean
column, i.e. �igH ¼ �gd, where �i and � are the ice and
ocean densities, respectively, g is the acceleration due to
gravity, H is the ice thickness and d is the draft. This will
hold if, for example, vertical stresses within the ice are equal
to �ig times depth, which can be referred to as a cryostatic
stress state. This is the state of stress if horizontal gradients in
shear stress are small compared with vertical gradients in
vertical stress. In most approximations used to describe
large-scale ice flow (e.g. both the SSA and shallow ice-sheet
approximation (SIA)), this holds and the stress state is
therefore cryostatic. Our modeling approach does not
assume the stress within the ice is either hydrostatic or
cryostatic. Here the position of the grounding line is
determined by a fracture criterion (given below) and the
state of stress will be similar to that obtained by solving the
full equilibrium equations. The grounding-line location that
fulfills our fracture criterion will, in general, not be the same
as the position obtained from the type of hydrostatic
considerations employed in most ice-flow models today.

If there were no elastic stresses in the ice, but hydrostatic
assumptions still applied, the amount of grounding-line
migration would be determined simply by flotation condi-
tions, as is often assumed to be the case in large-scale ice-
sheet models. That is, with no elastic stresses, hydrostatic
arguments would dictate that upstream of the grounding
line, ice pressure is in excess of the water pressure and
downstream of the grounding line, ice pressure is equal to
the water pressure on the bottom face of the ice shelf.
Assuming a constant surface slope � and bed slope �

(sloping down towards the coast; Fig. 1a) at the grounding
line, hydrostatic for positive tidal amplitude �hþ (i.e. from
equilibrium to high tide), implies

ð� � �Þ�i�Lþ ¼ ��hþ � ���Lþ, ð1Þ

where �Lþ is the upstream migration distance, which can
be rewritten as �Lþ ¼ �hþ=�þ, where

�þ ¼ � þ
�i

�
ð� � �Þ ¼

�i

�
�þ 1 �

�i

�

� �

�: ð2Þ

The hydrostatic assumption for negative tidal amplitude
�h� (i.e. from equilibrium to low tide) implies

1þ
�i=�

1 � �i=�

� �

��i�L� ¼ ��h� � ���L� , ð3Þ

or �L� ¼ �h� =�� , where �� ¼ �þ=ð1 � �i=�Þ � 9�þ and
�L� is the downstream migration distance. Thus, even
without elastic effects, tidally modulated grounding-line
migration is expected to be asymmetrical, with nine to ten
times larger migration upstream than downstream (from
equilibrium) for the same tidal amplitude, average surface
slope and average bed slope. In other words, we find that
the horizontal shift in grounding-line position at high tide, as
measured from the position at zero/neutral tide, is not equal
in magnitude to that at low tide, and we define this as an
asymmetrical tidal response. The asymmetry between high
tide and low tide does not imply that the grounding-line
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motion does not recover its original position through a
complete tidal cycle. In both the hydrostatic model con-
sidered here and the elastic model below, the position of the
grounding line is the same for the same tidal height, whether
the tide is rising or falling.

While the average surface and bed slopes are potentially
different immediately upstream versus immediately down-
stream of the grounding line, the differences are unlikely
ever to be �10 times different, so this result suggests that
grounding-line migration over the positive part of the tidal
cycle (high tide) dominates the migration over the negative
part of the tidal cycle (low tide). Here we therefore
concentrate entirely on describing migration over positive
tidal amplitudes. In the hydrostatic limit, we note that this
asymmetry always exists provided that dH=dx (the ice
thickness gradient) is not constant across the grounding
line. In particular, if the surface slope is constant across the
grounding line then hydrostatic conditions would imply
that the thickness gradient is not constant (see Fig. 1a) and
hence that the migration is asymmetric. Our general
conclusion of asymmetry is different from the symmetric
migration of Sayag and Worster (2011), because their study
assumes ice of constant thickness across the grounding line,
and hence satisfies the special condition that the thickness
gradient is constant.

MODEL DESCRIPTION

Governing equations
In this model of grounding-line migration over tidal periods
(1 day), we start by assuming purely elastic ice deformation.
Ice is well known to be a nonlinear viscoelastic material
(Budd and Jacka, 1989), and it is straightforward to calculate
the Maxwell time, which is the timescale over which the
deformation transitions from being well approximated as

being purely elastic to purely (nonlinear) viscous. For a non-
linear viscous deformation with Glen’s flow law exponent
n ¼ 3, rate factor A ¼ 3� 10� 25 s� 1 Pa� 3 (Paterson, 1994)
and effective Young’s modulus E � 109 Pa (Reeh and others,
2003), an estimate of this Maxwell time is ��=E � 3� 105 s,
�4 days at an effective stress of 100 kPa. Thus, over forcings
with periods <4 days and stresses of less than �100 kPa,
purely elastic models should be a reasonable approximation.
In particular, tidal forcings (period 1 day) over ice plains or
ice streams (stresses 30 kPa) should be well approximated by
elastic models (Gudmundsson, 2007).

We further assume constant surface slope � (ds=dx ¼ � �)
and bed slope � (db=dx ¼ � �) near the grounding line, and
simplify the grounding-line geometry to that of a two-
dimensional plane strain crack, with the crack tip denoting
the grounding line (Fig. 1a), homogeneous ice of elastic
modulus E 0 ¼ E=ð1 � �2Þ ¼ 2� 109 Pa, where � is Poisson’s
ratio, and water at hydrostatic pressure filling the crack. As
discussed above, it is expected that grounding-line migration
is �10 times larger over positive forcing (i.e. crack opening
from equilibrium) compared with negative forcing (i.e. crack
closure from equilibrium). This implies that the migration
calculated from equilibrium to high tide is accurate to within
10% of the total migration (from low tide to high tide). For the
remainder of this work, we therefore only treat the positive
forcing case, where the crack is expected to grow by a
positive value, �L > 0. It is worth noting that the zero-stress,
equilibrium reference point cannot be chosen arbitrarily. For
example, one cannot choose the low tide as the reference
point from which crack growth occurs because this low tide
configuration is not an unstressed state. As discussed in more
detail below, grounding-line migration is an inherently
nonlinear problem.

To account for the pre-tidally stressed geometry (which is
set by viscous deformation), for the unstressed state, we

Fig. 1. (a, b) Schematic geometry under (a) unstressed and (b) tidally loaded cases. Water pressure, p, is assumed hydrostatic, pðxÞ ¼ phyd,
and both surface slope and bed slope are assumed constant near the grounding line. (c, d) Modeled crack-opening problem corresponding
to the (c) unstressed and (d) tidally loaded cases.
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assume zero elastic crack opening and zero excess pressure
over the unstressed crack. Over the tidally stressed crack,
we assume that the pressure over the original crack face is
the hydrostatic pressure difference caused by the difference
between the new crack opening, w, and the tidal forcing,
�h, whereas the pressure over the newly created crack face
is this same hydrostatic pressure difference plus the hydro-
static adjustment due to bed slope (see Fig. 1b). (Note that
the crack face can be interpreted as the icy roof of the
horizontal fracture.) Specifically, within the crack
(� L � � L0 � �L < x < 0), we set the excess pressure to be

pðxÞ¼ �g �h � wðxÞ½ �, � L0 < x < 0 ð4aÞ
pðxÞ¼ �g �h � wðxÞ þ � xþ L0ð Þ½ �, � L0 � �L < x < � L0, ð4bÞ

where �h is the tidal height difference, wðxÞ is the
displacement from the unstressed state, � is the density of
water, and the extended crack is from x ¼ � L0 � �L to x ¼ 0
(with a new grounding line at x ¼ � L0 � �L and the ice-
shelf edge still at x ¼ 0). The � factor accounts for both
hydrostatic ice and water pressure variations within the
extended part of the crack, and therefore is given by Eqn (2),
i.e. � ¼ �þ. For simplicity, we assume constant ice thickness
H. While this may be a crude assumption in some cases, the
general behavior of the final solution is not expected to be
significantly different, as long as H thins moderately slowly,
which is the case for many Antarctic ice streams and ice
plains. Finally, we assume that w� L0, such that linear
elasticity applies.

To complete the description of the elastic crack problem,
we need to provide conditions for crack growth and
conditions at x ¼ 0. Since the fracture toughness of ice
(KIC � 150 kPam1=2; Rist and others, 1999) is small com-
pared with �g�h

ffiffiffiffiffi
L0
p
� 600 kPam1=2 for �h > 2m and

L0 > 1 km, and the fracture toughness of the ice/till/bedrock
interface is expected to be even lower than that of pure ice,
we assume the fracture toughness is approximately zero, so
there is no resistance to crack opening. Note that this is in
contrast to the fulcrum assumption of Walker and others
(2013), which would require a much larger fracture
toughness than is observed to accommodate the large
stresses that would result in such a case. Our fracture
criterion is then

K ¼ KIC ¼ 0, ð5Þ

where K is the stress intensity factor. For an ice shelf that is
significantly longer than the flexural length scale, elastic
stresses within the ice shelf are expected to decay, so that
stresses are nearly zero at x ¼ 0. For this case, the problem
to be solved is equivalent to a crack of length 2ðL0 þ�LÞ
that is symmetric with respect to x ¼ 0. We assume this is
the case. It may be noted that this symmetry assumption is
not a limitation of the model, since the bending stresses in
our solutions at x ¼ 0 are negligible (for long enough L0),
implying that the symmetric assumption is virtually identical
to the more realistic free ice face condition.

With the previous assumptions, the elastic crack equa-
tions are well posed and can be written as a set of two
coupled equations (Tsai and Rice, 2012)

0 ¼ � �xzðxÞ ¼
Z L0þ�L

� L0� �L

1
s � x

þ k11
� �

@u
@s
þ k12

@w
@s

� �

ds, ð6aÞ

�
4�pðxÞ
E 0

¼

Z L0þ�L

� L0� �L
k21

@u
@s
þ

1
s � x

þ k22
� �

@w
@s

� �

ds, ð6bÞ

along with the fracture criterion of Eqn (5). Here the
kij ¼ kijðx, s;HÞ are the elasticity kernels, as in Tsai and Rice
(2012) (which depend on H), and Eqns (6) describe the
relationship between shear stress �xzðxÞ and pressure pðxÞ
along the crack, and crack-opening displacements uðxÞ and
wðxÞ (horizontal and vertical displacement, respectively).

Finally, although not realistic for ice shelves, it is worth
noting that when H� L0, kij ¼ 0, uðxÞ ¼ 0, and the three
governing equations of Eqns (5) and (6) simplify to two
equations

K ¼
Z L0þ�L

� L0� �L

pðxÞdx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL0 þ�LÞ2 � x2
q ¼ 0 ð7Þ

and

4�pðxÞ
E 0

¼

Z L0þ�L

� L0� �L

@w
@s

ds
x � s

, ð8Þ

as in Tsai and Rice (2010). For this simplified model (which
could be applied to a tidewater glacier without an ice
shelf), it can be observed that Eqn (7) implies that pðxÞ must
take both positive and negative values in order to be
satisfied. Since pðxÞ is expected to be positive over the
original crack face (for a positive �h) and decrease over the
newly formed crack face, it is impossible for the perturbed
grounding-line position xpGL ¼ � L0 � �L to be achieved at
local flotation, where p ¼ 0. In other words, even without
performing the full calculation, we can show that an
important consequence of the governing equations is that
the new grounding-line position xpGL will be upstream of the
position of local flotation. This is also true of the non-
simplified Eqn (5), and is discussed in more detail in the
following sections.

Numerical method
For given values of �h, �, L0, H=L and E 0 (hereafter called
‘fixed parameters’), Eqns (4–6) can be solved uniquely for
pðxÞ, wðxÞ, uðxÞ and �L. To numerically obtain a solution,
we follow the approach of Tsai and Rice (2012) and use the
Chebyshev method of Erdogan and others (1973) to solve
Eqns (6) for wðxÞ and uðxÞ for a given pðxÞ and �xz ¼ 0. For
given values of the fixed parameters, and a choice of �L, a
nonlinear least-squares routine is used to minimize the
difference between the pressure pðxÞ as calculated from
Eqn (6b) and that calculated from Eqn (4). This solution for
pðxÞ and wðxÞ generally does not satisfy the fracture criterion
of Eqn (5), and we use a secant method to iteratively solve
for the �L that satisfies Eqn (5). For all calculations shown,
we use a 35-term Chebyshev series to approximate pðxÞ and
wðxÞ, and a 45-point Chebyshev–Gauss quadrature to
evaluate integrals.

NUMERICAL RESULTS
In Figure 2, we show the excess pressure profile pðxÞ and the
opening profile wðxÞ for a representative set of fixed
parameters, �h ¼ 2m, � ¼ 0:001, L0 ¼ 10 km, H ¼ 1 km,
E 0 ¼ 2� 109 Pa. First, we observe that for this case,
�L � 3:71 km, so the new crack length is 13.7 km. For a
given �h and �, one can calculate the migration expected to
maintain flotation at the grounding line, �Lfl � �h=�. In this
case, then, �Lfl ¼ 2 km. Thus, as pointed out above, the
grounding line migrates substantially further over a tidal
cycle than is predicted by a simple flotation argument,
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because of the elastic stresses that exist within the ice. Also,
one may note that wð0Þ ¼ �h, so that pð0Þ ¼ 0, which are
both expected when L0 is long enough. It is also worth
noting that the opening profile, wðxÞ, is consistent with the
beam-theory approximation that would have been produced
for the same pressure profile, pðxÞ, for regions sufficiently far
away from the grounding line (crack tip), explaining why
beam-theory models have produced reasonable fits to

observed ice-shelf flexure profiles. However, close to the
grounding line (i.e. within a few ice thicknesses), our profile
is different from the beam-theory approximation and data
from this region could be used to distinguish the present
fully elastic model from approximate beam-theory models.
Finally, we note that there is a small numerical artifact (slight
smoothing of the pressure profile) near the original crack tip
location, x ¼ � 10 km, due to the truncation of terms in the
Chebyshev series, which could be lessened by taking more
terms in the series. Since we do not aim to interpret any
results to a high degree of accuracy (<1%), we ignore such
features and do not discuss them further.

To show how changes to individual fixed parameters
affect �L, in Figure 3 we show parametric studies, where we
systematically vary L0, E 0, H and �h=�. For this study, we
maintain constant values of all other fixed parameters and
only vary the parameter in question. For variable L0 (Fig. 3a),
we observe two notable features. First, for L0 >�5 km,
�L � 3:7 km, i.e. �L is independent of L0. This is expected,
since ice-shelf flexure can accommodate wðxÞ � �h and
pðxÞ ¼ 0 for x sufficiently downstream of the grounding line.
The second notable feature is the limit of L0 ¼ 0. In this case,
�L=�Lfl ¼ 1:57. Examination of the pðxÞ profile shows that
pðxÞ is nearly linear over the entire crack, i.e.
pðxÞ � a0ðx � x0Þ. Since H=L� 1, Eqn (7) applies (with
L0 ¼ 0), and substituting the linear profile for pðxÞ results in
x0 ¼ � 2=�. In other words, �L=�Lfl ¼ �=2 � 1:57, which is
numerically verified. Finally, it may be observed that with L0

Fig. 3. Grounding-line migration, �L, as a function of (a) L0, (b) E 0, (c) H and (d) �h=�, where other parameters are kept constant. Blue
crosses are model results, and the green line denotes �Lfl, the value of �L at flotation. When not varied, the default values of parameters
chosen here are �h ¼ 4m, � ¼ 2� 10� 3, L0 ¼ 10 km, H=L ¼ 0:1 and E 0 ¼ 2GPa. In (a) H=L� L0 is kept at a constant value of 0.1, except
when L0 ¼ 0, where H=L ¼ 100. The red dashed curves in (b) and (c) denote the scaling expected of beam theory (e.g. Holdsworth, 1969;
Sayag and Worster, 2011) added to the hydrostatic migration. (c) is calculated by fixing H=L ¼ 0:1 and varying L0 from 6 to 20 km. Since
L0 >� 5 km, it is expected that the only effect of changing L0 is changing H. (d) shows that �L is nonlinearly related to �h.

Fig. 2. Excess pressure, pðxÞ (green), and opening profile,wðxÞ (blue).
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fixed (e.g. to a value >5 km), our model has four remaining
parameters (E 0, H, �h and �).

Figure 3b shows the dependence of �L on E 0. The general
form of the dependence is as expected, with �L increasing
with E 0, from an expected value of �L � �Lfl at E 0 ¼ 0.
Similarly, the increase of �L with H (Fig. 3c) is expected,
since larger values of H result in a stiffer overall system. For
example, in the limit of beam theory, the effective stiffness is
proportional to H3E 0 (Holdsworth, 1969; Vaughan, 1995).
However, it should be observed that the dependence of �L
on E 0 and H does not follow the scaling expected of beam
theory, �L / ðH3E 0Þ1=4 (red curves in Fig. 3b and c, which
denote the hydrostatic prediction added to the beam-theory
scaling with an arbitrary scale factor). Importantly, this
suggests that calculations of grounding-line behavior utiliz-
ing beam theory are not quantitatively accurate over a range
of parameter space. Specifically, although beam theory may
fit tidal flexure observations reasonably well (as mentioned
above), the predicted grounding-line migration distances are
somewhat different for the realistic parameter choices shown
in Figure 3. It is also interesting to note that the beam-theory
results of Sayag and Worster (2011) agree well with their
‘constant-thickness’ deformation experiments, and that this
agreement implies that our results are also inconsistent with
the laboratory experiments Sayag andWorster (2011) used to
test the appropriateness of their beam-theory calculations.
While a complete understanding of why this inconsistency
exists is beyond the scope of this paper, we provide one
possible reason for this. Perhaps the most important differ-
ence is that the experiments of Sayag and Worster (2011) (as
well as their beam-theory numerical calculations) are per-
formed without first achieving a state of equilibrium stress,
where all stresses within the elastic sheet would be zero,
whereas our calculations explicitly assume there exists a state
of equilibrium stress at the equilibrium tide reference state, as
expected of a real ice shelf, given that long-term viscous ice
deformation should relax stresses to zero for equilibrium tidal
conditions (over long enough time). Thus, the experiments
and calculations of Sayag and Worster (2011) may not be a
good approximation of the real grounding-line problem,
where there is long-term viscous deformation.

For the dependence of �L on �h and �, we first note that
a simplification can be made if we can rewrite the governing
equations in non-dimensional form, where bp ¼ p=ð�E 0Þ,
bw ¼ w=�h and bx ¼ �x=�h. With this substitution, it is clear
that the governing equations only contain �h and � as the
ratio, �h=�. Thus, the solution (including �L) is affected
equally by changes in �h and �� 1. Figure 3d shows the
dependence of �L on �h=�. As shown, �L > �Lfl � �h=�
for all values of �h=�, with �L=�Lfl ! 1 as �h=� !1,
and the ratio growing as �h=� ! 0. Despite the large values
of �L=�Lfl, the absolute value of �L! 0 as �h=� ! 0, as
expected. It is of interest to point out that the nonlinearity of
�L vs �h=� implies that grounding-line migration is not
equal for each increment of forcing, �h. This nonlinear
dependence of grounding-line migration on tidal forcing
highlights the asymmetry inherent in grounding-line migra-
tion, which has also been seen in recent full viscoelastic
modeling of grounding-line migration (Rosier and others,
2014), and also implies that the solution depends on the
(zero stress) reference state. Unlike linear problems where
the reference state can be chosen arbitrarily, grounding-line
tidal migration is sensitive to what the true unstressed
reference state is.

ESTIMATING BED SLOPE
We provide here one simple application of the modeling
framework presented above in estimating bedrock slopes
using tidal observations. Brunt and others (2011) used
satellite observations of grounding-line migration to estimate
bed slopes at a few ice plains of the Filchner–Ronne Ice
Shelf, West Antarctica, based on a hydrostatic argument.
Our results suggest that these estimates can be improved in
two ways.

First, even for hydrostatic migration, Eqns (2) and (3)
suggest that the full tidal migration slope, �h=�L (full tidal
amplitude divided by migration distance), is approximately
given by 1:8�þ. For example, taking at face value the values
of �h=�L ¼ 6m=7000m¼ 8� 10� 4 and � ¼ 1� 10� 4,
measured by Brunt and others (2011) for Bungenstrock-
rucken Ice Plain, a hydrostatic assumption would imply a
local bed slope of � � 3� 10� 3. This is larger than the value
estimated by Brunt and others (2011) of 1–2� 10� 3, which is
an invalid estimate, partly due to their unjustified assumption
that bed slope can be equated to the tidal migration slope.

Inclusion of the elastic stresses further increases the
predicted bed slopes. Taking h � 1000m from Bedmap2
(Fretwell and others, 2013) and assuming E 0 � 2� 109 Pa,
Figure 3d suggests that �hþ=�þ � 4 km, or �þ �

1:75�hþ=�Lþ and so � � 6� 10� 3. While this value of
bed slope is uncertain, due to large uncertainties in the
parameters used, this comparison demonstrates that the
resulting bed slope can be significantly larger than estimates
based on hydrostatic assumptions. This result suggests that,
at a minimum, care should be taken in using tidal
grounding-line migration to quantitatively infer bed slopes.
If precise values for bed slope are desired from such an
approach, it is necessary to have well-constrained measure-
ments of surface slopes, (effective) elastic moduli, ice
thicknesses and grounding-line migration distances.

SUMMARY AND CONCLUSIONS
We have introduced a new approach to the treatment of
grounding-line motion over tidal cycles, based on elastic
fracture mechanics. The movement of the grounding line is
recast as a crack-growth problem with the grounding line
representing the tip of an elastic crack. The equations
governing the movement of the grounding line are similar to
those controlling the opening and closing of a water-filled
crack under pressure.

We show that even when assuming hydrostatic ground-
ing-line migration, the migration is greater from equilibrium
to high tide than from low tide to equilibrium (by a factor of
ten, for the same surface and bed slopes). This asymmetry is
also found to be the case in our more general elastic
treatment of this problem, as again we find that the
grounding-line migration is nonlinear with respect to tidal
forcing. In qualitative (but not quantitative) agreement with
beam-theory models, elastic stresses within the ice cause the
grounding line to migrate substantially further than a simple
flotation argument would suggest. In fact, inspection of the
governing equations of the elastic fracture problem already
reveals that the grounding-line position at high tide is always
upstream of the position of local flotation. Application of this
new framework to observations of grounding-line migration
therefore results in estimates of bed slopes that are greater
thanwould be predicted by purely hydrostatic migration. The
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new framework also suggests differences in the ice stresses
near the grounding line, which has implications for ice-shelf
damage, crevassing and ice seismicity, but a quantitative
analysis of such effects is left for future work.

Although our analysis here focuses on grounding-line
migration in response to tides (and therefore includes elastic
stresses only), we suggest that some of our conclusions may
also hold for the purely viscous case. In particular, we
surmise that our finding that the grounding line is located
further upstream when additional stresses beyond the
cryostatic stress state are included is not limited to the
purely elastic case. If true, this could explain why
grounding-line positions in full-Stokes models are generally
located upstream of those in SSA models.
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