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Abstract

In this work, we study the existence of limiting laws for dynamically defined stochastic processes. This
type of stochastic processes are constructed by evaluating a given observable function along the orbits
of a dynamical system. We consider observable functions maximized at uncountable sets that present
some fractal structure, such as the ternary Cantor set or the Cantor dust. Using such observables, we
establish the existence of extreme value laws for processes created using one dimensional and two
dimensional piecewise uniformly expanding maps.
By making use of tools from fractal geometry, for example box dimension or Digraph Iterated Function
Systems, we establish a link between the existence of clustering in the limiting law and the compatibility
between the dynamics and the limiting set of the observable function. This compatibility is translated
by the difference between the box dimension of the maximal set and the box dimension of its iterates.
In the examples considered throughout this work, we were able to show that when exists full compat-
ibility between the dynamics and the maximal set, in the sense that the set is preserved by the map,
then the high recurrence of the maximal set to itself leads to the appearance of clusters of exceedances
resulting in a Extremal Index strictly smaller than 1. On other hand, when the box dimension of the
maximal set is higher than that of its iterates then there exists a negligible recurrence effect of the
limiting set to itself resulting in low clustering that leads to an Extremal Index equal to 1.
To finish, we present a numerical study that intends to illustrate the usage of the Extremal Index as
an indicator of the compatibility between the dynamics and the fractal structure of a set. We tested
several different dynamics, such as uniformly and non-uniformly expanding maps or even irrational
rotations. By using the ternary Cantor set as a limiting set, we were able to obtain numerical values for
the Extremal Index of the correspondent stochastic process. The Extremal Index revealed itself as a
good indicator of the compatibility between the dynamics and the geometrical structure of the limiting
set. In particular, the simulations performed allowed the numerical validation of some of the theoretical
results proved in this work.





Resumo

Neste trabalho, foi estudada a existência de leis limite para processos estocásticos definidos dinamica-
mente. Este tipo de processos estocásticos é construído avaliando um observável ao longo das orbitas
do sistema. Foram considerados observáveis maximizados em conjuntos não contáveis que apresentam
uma estrutura fractal, como o conjunto ternário de cantor ou a poeira de Cantor. Usando este tipo
de observáveis foi estabelecida a existência de leis dos valores extremos para processos estocásticos
criados usando mapas uniformemente expansores unidimensionais e bidimensionais.
Usando ferramentas de geometria fractal, como por exemplo dimensão fractal ou “Digraph Iterated
Function Systems” foi estabelecida uma ligação entre a intensidade de aglomeração de observações
que excedem um certo patamar (“clustering”) e a compatibilidade entre a dinâmica e o conjunto maxi-
mizante. Esta compatibilidade é traduzida pela diferença entre a dimensão fractal do conjunto limitante
e dos seus iterados. Nos problemas considerados no decorrer deste trabalho foi possível demostrar que
quando existe compatibilidade completa entre a dinâmica e o conjunto limitante, no sentido em que o
conjunto é totalmente preservado pela dinâmica, então a alta recorrência do conjunto maximizante para
ele próprio resulta numa grande intensidade de aglomeração de excedências resultando num Índice
Extremal estritamente inferior a 1. Por outro lado, quando a dimensão fractal do conjunto maximizante
é superior á dos seus iterados isto resulta numa menor intensidade de aglomeração de excedências o
que leva a um Índice Extremal igual a 1.
Para finalizar, é apresentado um estudo numérico que pretende ilustrar o uso do Índice Extremal
como indicador da compatibilidade entre a dinâmica e um dado conjunto. Foram testados vários
exemplos, como dinâmicas uniformemente e não uniformemente expansoras ou rotações irracionais.
Usando o conjunto ternário de Cantor como conjunto limitante foram obtidos valores numéricos para o
Índice Extremal do respetivo processo estocástico. O Índice Extremal revelou-se um bom indicador da
compatibilidade entre a dinâmica e a estrutura geométrica do conjunto maximizante. Em particular, foi
possível validar numericamente alguns dos resultados teóricos obtidos.
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Chapter 1

Introduction

The study of extreme events has been a relevant field of investigation for a long time. An extreme event
or rare event is usually understood as an event that has a small probability of happening. Due to this
aspect, the study of such occurrences is tied to abnormal situations that pose serious hazard or cause
high stress in the human population.
We come across situations like these in many fields of science and technology. As a title of example,
we can consider geophysical extremes such as earthquakes, who do not only cause a huge number
of fatalities but also cause serious economic damage. Another example, linked this time to climate
dynamics, are heat waves or hurricanes that, again, pose a situation of serious risk to the affected
communities.
Due to the impact of such events, being able to predict their regularity is of the utmost importance.
This is one of the primary goals of the theory of extreme events and makes it a field of transdisciplinary
research by including tools from mathematics, engineering, finances or geosciences.
It is in the overlapping between mathematics and the theory of extreme values that we can find the
main subject of this thesis: the study of rare events for dynamically defined stochastic processes. A
dynamically defined stochastic process is a process created by evaluating a given observable ϕ through
the orbits of a system. In this context, a rare event is just an area of the phase space with small measure.
In recent years, this field of research has seen great development. We refer the book [30] and the review
paper [40] for a broad view of the field.

In this work, we will perform the study of rare events for stochastic processes arising from dynamical
systems by analyzing the distribution of the maximum of the process. For that purpose, we consider
that the observable ϕ is maximized in a region of the phase space denoted by M . The limiting laws
are achieved by considering a series of thresholds increasing to the maximum value of ϕ .
In the literature about this topic, the maximal set is usually considered as one single point. There
exists, however, a trend to consider more sophisticated maximal sets. In [23] and [3], it was considered
maximal sets containing a finite set of points and in [4] M was chosen to be a countable set. There
are even papers, such as [7], [25] or [16], that considers a one dimensional submanifold, such as the
diagonal of product spaces, as a maximal set of an observable.
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In here, we will follow up on this trend and consider maximal sets with a more irregular geometric
structure, such as Cantor sets. The motivation for such choice of maximal sets is the paper [31], where
the authors consider the situation of fractal landscapes, with M taken as the ternary Cantor set. They
performed a numerical study which sustained the conjecture that the same distributional limits observed
when M was a singular point should apply for such complex maximal sets.

The use of maximal sets with such complex fractal geometric structure can be justified by the possibility
of real-life applications. If one considers cases such as mine swiping, the movement of air masses, road
traffic, network communications, structural safety or stock market, we easily realize that the sensitive
regions of the phase space that worth study possess a complex structure.
To better illustrate the possible applications of considering more intricate maximal sets, we present a
few examples from the meteorology area. The models used in weather forecast often include strange
attractors. This means that the sensitive regions of the phase space that have interest may very well
have a fractal geometric structure.
To be more concrete, in the paper [17] the anomalies for the precipitation frequency data have a complex
geometric structure that is compatible with that of a fractal set. In a more recent paper [15], the authors
observe that when greenhouse gases are enhanced, the attractor acquires some fractal structure. To
finish, we mention the paper [29], where the basins of attraction of the two metastable states (Warm
and Snow Ball) have a fractal structure.
All the scenarios stated above could benefit from a fully developed theory of extremes based on fractal
maximal sets.

Throughout this thesis, we consider as maximal sets, various examples of low dimensional fractal sets.
We take sets like the ternary Cantor set or the Cantor dust and combine them with simple dynamics
such as piecewise uniformly expanding maps. This way, we present a framework that, in spite of being
simple, can still capture the fractal complexity of sensitive regions. In fact, we were able to demonstrate
rigorously some of the results conjectured in [31].
Furthermore, we were able to relate the appearance of clusters of exceedances to the fractal structure
of the iterates of the maximal set. The existence of clusters of exceedances, i.e a large number of
exceedances happening in a short period of time, plays a big role in the limiting laws achieved for a
stochastic process. The existence of such clusters determines a parameter usually referred to as the
Extremal Index (EI). This parameter ranges from 0 to 1 and essentially measures the intensity of the
clusters. The Extremal Index is higher when the intensity of clustering is smaller.
It was discovered in previous works, such as [23], [3] or [4], that the recurrence of the maximal set
to itself by the map T is the key to determine the intensity level of the clusters of exceedances and
therefore to determine the Extremal Index. For example, when M is composed of one single point
the periodicity of such point determines the Extremal Index. If a point is periodic, then there exists a
high tendency for the exceedances to agglomerate resulting in an Extremal Index strictly smaller than
1. On other hand, if a point is not periodic then there exists a low tendency for the exceedances to
agglomerate leading to an Extremal Index of 1.
In this case, however, due to complexity of the maximal sets it is necessary a finer analyses of the
sets T− j(M )∩M to determine the Extremal Index. Through the usage of concepts from fractal
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geometry, we were able to identify how the nature of T− j(M )∩M contributes for the agglomeration
of exceedances.
This clustering mechanism is linked to the compatibility between the dynamics T and the geometric
structure of the limiting set M . For example, when T = 3x mod 1, then the map preserves the ternary
Cantor set. Using such set as the maximal set, we obtain that M plays the role of a periodic point,
i.e T− j(M ) = M . This leads to clustering resulting in a low Extremal Index. If, however, the box
dimension of T− j(M )∩M is lower than the box dimension of M , this implies low compatibility
between the dynamics and the maximal set resulting in a Extremal Index of 1 and in the absence of
clustering.

The link identified between the Extremal Index and the compatibility of a map with a maximal set
opens a new possibility for the usage of the EI. One can think of using the Extremal Index as an
indicator of the compatibility between a map and a given set to indirectly express how relevant is
T− j(M )∩M when compared with M itself. To illustrate this possibility, we present a numerical
study where we test several dynamics. Using these dynamics in conjunction with the ternary Cantor
set, we created stochastic processes and obtain an estimate, using the formula presented by Hsing
in [24], for the correspondent EI. In our simulations, the EI has accurately detected the relevance of
T− j(M )∩M when compared with M . In particular, we were able to numerically confirm some of
the theoretical statements made in this work.

The contents of this thesis are largely based in the article “Rare Events for Cantor Target Sets” submitted
to the scientific magazine “Communications in Mathematical Physics” and already available as a pre-
print on arXiv (see [35]).
This thesis will follow the structure described below:

• In Chapter 2, we present an introduction to the general laws and concepts used in the classical
theory of extreme events. At the same time, we introduce some of the framework necessary to
study the limiting behaviour of dynamically defined stochastic processes.

• In Chapter 3, we establish sufficient conditions that allow to prove the existence of extreme value
laws. We provide results that guarantee the existence of limiting laws for stochastic processes
built using unidimensional and two dimensional maps with sufficiently fast decay of correlations.

• |n Chapters 4 and 5, using the ternary Cantor set and the Cantor dust as limiting sets of observ-
ables, we rigorously prove the existence of cylinder extreme value laws for the correspondent
stochastic processes. This results are achieved using unidimensional and two dimensional piece-
wise uniformly expanding maps. During the exposition, we identify a mechanism that links the
geometrical structure of the limiting set and the dynamics which is responsible for the value of
the Extremal Index.

• In Chapter 6, we provide a numerical study that intents to demonstrate that the Extremal Index
can be a good indicator of the compatibility between the dynamics and the geometrical structure
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of a given set. In particular, this study numerically validates some of the results presented in
Chapters 4 and 5.

• In the Appendix A, we state some preliminary definitions and results necessary for the theoretical
results presented in this work.



Chapter 2

Laws of Extreme Events

The purpose of the theory of extreme events is to analyze the occurrence of events that have a small
probability to happen. This small probability needs a quantification which requires a probabilistic
framework. The starting point of the Extreme Value Theory (EVT) is then a probability space X

associated with a σ -algebra β and a probability measure µ . This probability measure measures the
likelihood that an event, A ∈ B, has to occur. With this setup, the quantification of the word small
becomes more clear. We say that A is a rare event if µ(A) ≤ c, where c is chosen to be small. This
choice of c is still rather vague and depends upon the context of the events that we are studying. The
analyses of rare events draw its motivation from our necessity to understand unwanted scenarios or
high risk incidents, such as, climate incidents or financial crisis. The objective is, somehow, to assert
how likely is for such situations to repeat itself in the future. Due to this time concern, we consider that
X is the space of realization of a collection of random variables, X0,X1,X2, . . ., that can represent any
quantity that is relevant for the considered scenario. Such a collection of random variables is called a
stochastic process and is denoted by (Xn)n∈N.
To a random variable, Xi, we associate a distribution function, F , that is defined as

F(x) = µ(Xi ≤ x),

for all x in R.
Similarly, for all x ∈ R, the joint distribution function, Fj, of a finite collection of random variables,
Xi1 ,Xi2 ,Xi3 , . . . ,Xi j is defined as

Fi1,i2,...,i j(x) = µ(Xi1 ≤ x,Xi2 ≤ x,Xi3 ≤ x, . . . ,Xi j ≤ x).

We deal only with stochastic processes that are stationary. This means that the joint distribution of any
finite collection of random variables, Xi1 ,Xi2 ,Xi3 , . . . ,Xi j , that belong to the stochastic process is the
same as the joint distribution function of Xi1+t ,Xi2+t ,Xi3+t , . . . ,Xi j+t , for every time displacement t.
Under this setup, rare events become tied to abnormal observations in a collection of random variables
of the stochastic process. This abnormality can be expressed into very large or very small values taken

5
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by the random variables. Typically, we consider only very large values. So, a rare event corresponds to
an exceedance of a high threshold u by a random variable Xi, that is

U(u) := {Xi > u} .

To further justify the word rare, this threshold u is chosen to be close of the right endpoint of the
distribution function of Xi, i.e

uF = sup{x : F(x)< 1} .

As stated before, we are interested in the occurrence of exceedances of a high threshold. For that
purpose, we consider the collection of random variables X1,X2,X3, . . . ,Xn and define

Mn = max{X1,X2,X3, . . . ,Xn} . (2.0.1)

Note that, (Mn)n∈N is itself a stochastic process. The knowledge of Mn allows us to determine whether
an exceedance of a threshold u has occurred upon the first n observations. It is only necessary to
observe if {Mn ≤ u} has occurred or not. Hence, it is natural to ask if we can find a distributional limit
for Mn. This is the primary concern of EVT.

Definition 2.0.1. We have an Extreme Value Law (EVL) for Mn if it exists a non-degenerated distribu-
tion function H : R→ [0,1], with H(0) = 0 and for every τ > 0 and all n ∈ N, there exists a sequence
of thresholds un = un(τ) such that

nµ(X0 > un)→ τ as n → ∞, (2.0.2)

and for which the following holds:

µ(Mn ≤ un)→ (1−H)(τ) as n → ∞, (2.0.3)

for all continuity points of H(τ).

By non-degenerated distribution function, we mean that there is no x0 ∈ R such that H(x0) = 1 and
H(x) = 0, for all x > x0.
In the definition above, the limiting law for Mn is found using a normalizing sequence (un)n∈N satisfying
(2.0.2). This normalizing sequence has its roots in the case where the stochastic process Xn is composed
by independent identically distributed (i.i.d) random variables. In this case, the distribution function is
the same for all random variables. If F represents such a distribution function, then using (2.0.2),

µ(Mn ≤ un) = (1−µ(X0 > un))
n ∼

(
1− τ

n

)n
→ e−τ as n → ∞

and, in this case, H(τ) = 1− e−τ is the exponential distribution function.
In this setting, there exists a more heuristic view of condition (2.0.2). It expresses that, the mean
number of exceedances approaches τ as the time goes to infinity.
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The sequence of thresholds un is usually taken in the form

un =
y
an

+bn

where y ∈ R and an > 0, for all n ∈ N. Consequently, the distributional limit of Mn is written in the
form

µ(an(Mn −bn)≤ y).

It is for the i.i.d setting that appears the first main theorem of EVT. It is usually referred to as the
Extremal Types Theorem and is due to Gnedenko [22].

Theorem 2.0.2. Let X0,X1, ... be a sequence of i.i.d random variables and assume that there exists
linear normalizing sequences (an)n and (bn)n, with an > 0 for all n ∈ N, such that

µ(an(Mn −bn)≤ y))→ G(y), (2.0.4)

where G(y) is non-degenerate.
Then

G(y) = e−τ(y)

where, under linear normalization, τ(y) is one of the next three types:

• τ1(y) = e−y for y ∈ R

• τ2(y) = y−β for y,β > 0

• τ3(y) = (−y)γ for y ≤ 0 and γ > 0.

The three types mentioned in the Extremal Types Theorem are usually called Gumbel or Type 1 if
τ(y) = τ1(y), Fréchet or Type 2 if τ(y) = τ2(y) and Weibull or Type 3 if τ(y) = τ3(y). This theorem
is quite remarkable since it limits the search for limiting laws to only three types of non-degenerated
distribution functions.
Next, we present an example of how to compute an EVL for a stochastic process constituted by i.i.d
random variables.

Example 2.0.3. Let X0,X1, ... to be i.i.d random variables with exponential distribution of parameter 1,
that is,

F(x) = 1− e−x for x > 0.

For any τ > 0, consider un such that n(1−F(un)) = τ .
This implies that,

un = log(n)− log(τ).

Hence,
µ(Mn − log(n)≤− log(τ))→ e−τ .
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Putting τ = e−y, we get
µ(Mn − log(n)≤ y))→ e−e−y

.

Therefore, in this case, Mn follows a Gumbel EVL with an = 1 and bn = log(n).

With an i.i.d setting the computation of an EVL is very straightforward once we have access to the
distribution function, F , of the random variables. In fact, it is the behaviour of the tail of F that
determines the type of limiting law. More precisely, if F̄ = (1−F) then is the speed at which F̄(u)
approaches 0 when u → uF that determines the type of EVL. We can state necessary and sufficient
conditions on the tail of F that determine such type:

• G(y) is Gumbel if and only if there exists a strict positive h : R→ R such that, for all y ∈ R,

lim
s→uF

F̄(s+ yh(s))
F̄(s)

= e−y.

• G(y) is Fréchet if and only if uF =+∞ and there exists β > 0 such that, for all y > 0,

lim
s→uF

F̄(sy)
F̄(s)

= y−β .

• G(y) is Weibull if and only if uF <+∞ and there exists γ > 0 such that, for all y > 0,

lim
s→0

F̄(uF − sy)
F̄(uF − s)

= y−β .

2.1 Extreme Value Laws and Stationarity

What was written above is a very concise resume of EVT in the i.i.d. setting. After such accomplish-
ments, the focus was changed to the study of stationary dependent stochastic processes. This work
was started by Loynes in [28] and further developed by Leadbetter in [26]. It was Leadbetter who
proposed a sort of mixing conditions on the stochastic process that guarantee the existence of the same
distributional limits as in the i.i.d case.
These conditions depend upon the thresholds un and are called D(un) and D′(un).

Condition (D(un)). We say that condition D(un) holds for the sequence X0,X1, . . . if for any integers
i1 < .. . < ip and j1 < .. . < jk for which j1 − ip > m and any large n ∈ N,

|Fi1,...,ip, j1,..., jk(un)−Fi1,...,ip(un)Fj1,..., jk(un)| ≤ α(n, t) (2.1.1)

uniformly for every p,k ∈ N, where α(n, tn)→ 0 as n → for some sequence tn = o(n).

The form of condition D(un) resembles the condition of independence between samples of random
variables. This happens since condition D(un) is imposing that any two blocks of random variables,
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Xi1 , . . . ,Xip and X j1 , . . . ,X jk , that are separated by a sufficiently big time gap, are in some sort indepen-
dent.
It is in this context of breaking the stochastic process Xn into blocks of random variables, that appears
condition D′(un).
Let (kn)n∈N be a sequence satisfying

kn → ∞, lim
n→∞

knα(n, t) = 0 and kntn = o(wn). (2.1.2)

Condition (D′(un)). We say that condition D′(un) holds for the sequence X0,X1, . . . if it exists (kn)n∈N

and (tn)n∈N satisfying (2.1.2) such that,

limsup
n→∞

n
⌊n/kn⌋

∑
j=1

µ(X0 > un,X j > un) = 0. (2.1.3)

Condition D′(un) essentially breaks the stochastic process into kn blocks of ⌊n/kn⌋ random variables
and limits the number of exceedances in each of the blocks. The dependence of the process Xn may lead
to the occurrence of several exceedances in a short period of time. These bursts of extreme observations
happening in a short time gap are usually referred to as clustering. Since D′(un) limits the number of
exceedances in each of the blocks, this condition is seen as an anti-clustering condition.
When coupled together, these two conditions, D(un) and D′(un) sustain the following result.

Theorem 2.1.1 ([27], Theorem 1.2). Consider a stationary stochastic process (Xn)n∈N and let (un)n∈N

be a sequence of thresholds such that

nµ(X0 > un)→ τ as n → ∞,

for some τ > 0.
Assume that conditions D(un) and D′(un) hold. Then,

lim
n→∞

µ(Mn ≤ un) = e−τ .

Depending upon the dependence of τ on the thresholds un, the theorem above guarantees that the type
of limiting laws achieved for the stationary case are the same as in the i.i.d case.
The theorem depends upon two conditions, hence, we can ask what happens if condition D(un) holds
and condition D′(un) does not hold. In this case, we cannot assert the existence of a limiting law for
Mn. However, if such limit exists, we can say something about the type of law expected.

Theorem 2.1.2 ([27], Theorem 2.2). Consider a stationary stochastic process (Xn)n∈N and let (un)n∈N

be a sequence of thresholds such that (2.0.2) holds for some τ > 0.
Assume that condition D(un) holds for every τ. If the limit (2.0.3) exists, then exists a parameter
0 ≤ θ ≤ 1 such that

(1−H)(τ) = e−θτ .
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We stated before that condition D′(un) prevented the observation of clusters of exceedances. From
Theorem 2.1.2, we can deduce that clustering does not affect the type of limiting law one can expect. It
leads, however, to the appearance of a parameter θ . This parameter is called the Extremal Index (EI)
associated with the EVL.
Dependent stochastic processes may have a tendency to have memory. This implies that whenever
an exceedance occurs, this memory effect can result in the appearance of a large number of extreme
observations in a reduced time gap.
This Extremal Index is then a sort of measure of how much memory a stochastic process has.
If θ = 1 the process is low dependent and as practically no memory. The result is a low tendency to
observe clusters of exceedances. On other hand, if θ is close to zero, then the process carries a lot of
memory and we should expect exceedances to agglomerate.
It is possible to assert the existence of a distributional limit for heavy dependent stochastic processes.
It is only necessary to introduce a condition to replace D′(un). Here, we present a condition presented
in [8] and denoted by D(k)(un).

Condition (D(k)(un)). We say that condition D(k)(un) holds for the sequence X0,X1, . . . if it exists
(kn)n∈N and (tn)n∈N satisfying (2.1.2) such that,

lim
n→∞

nµ
(
X0 > un ≥ M1,k−1,Mk,⌊n/kn⌋−1 > un

)
= 0,

where Mi, j :=+∞ for i > j and Mi, j := max{Xi, . . . ,X j} for i ≤ j.

We point out that, when k = 1 condition D(k)(un) is equivalent to condition D′(un).
Together with D(un), condition D(k)(un) permits to prove the existence of an EVL given by

(1−H)(τ) = e−θτ ,

for a stationary stochastic process.
The computation of the EI is done using O’Brien’s formula presented in [37], that is

θ = lim
n→∞

θn = lim
n→∞

µ (X0 > un,X1 ≤ un, . . . ,Xk−1 ≤ un)

µ (X0 > un)
. (2.1.4)

The next result summarizes such findings.

Theorem 2.1.3 ([8]). Consider (Xn)n∈N to be a stationary stochastic process and let (un)n∈N be a se-
quence of thresholds satisfying (2.0.2). Assume that D(k)(un) holds and that liminfn→∞ µ (Mn ≤ un)> 0.
If, for each positive k, D(k)(un) holds, then

lim
n→∞

(
µ (Mn ≤ un)− e−θnτ

)
= 0.

Moreover, if the limit in formula (2.1.4) exists, then

lim
n→∞

µ (Mn ≤ un) = e−θτ .
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2.2 Extreme Value Laws and Dynamical Systems

The theory exposed so far does not make any assumption on how the information about the phenomena
we are analyzing is obtained. The starting point is simply a stochastic process.
Mathematical sciences are, however, able to provide a wide variety of mathematical models capable
of capture the time evolution of many natural, social or even engineering phenomena. One of the
mathematical research fields that is more capable of providing such models is called the field of
dynamical systems.
A dynamical system is composed by one phase space, X , where each point represents a state of the
system. The time evolution of the system is then represented by a map T : X → X . We are interested
in the probabilistic study of extremes. Therefore, we endow X with a measure-theoretical structure,
that is, there exists a σ− algebra B and a probability measure µ associated to X . We refer to this
structure as a probability space and denote it by (X ,B,µ).
The dynamics T is always a measurable map with respect to the measure µ . Moreover, we will require
µ to be an invariant measure for the map T .

Definition 2.2.1. Let (X ,B,µ) be a probabilistic space. We say that µ is an invariant measure for a
measurable map T : X → X if ∀A ∈ B,

µ(T−1(A)) = µ(A).

In this work, we always consider time-discrete models. We start with a random point, x ∈ X and
analyze the orbit of such point, that is, x,T (x),T 2(x), . . . ,T n(x), where

T n(x) = T ◦T ◦T . . .◦T (x)︸ ︷︷ ︸
n times

.

In the last section, we labeled a rare event as an event that has low probability to occur. In the framework
of dynamical systems, this can be translated by the orbit of a point entering a region A of the phase
space such that µ(A) is small.
Define the first hitting time rA : X → N∪{+∞} as

rA := inf{n ∈ N : T n(x) ∈ A} .

We say that a system is ergodic with respect to a probability measure µ if for all A ∈ B, where
T−1(A) = A, then either µ(A) = 0 or µ(A) = 1.
Under the ergodic assumption, there exists a theorem by Kac that states that the mean return time to
A is equal to 1/µ(A). This implies that, in average, rA should go to infinity as µ(A)→ 0. This way
the study of distributional limits for rA is an approach to the study of rare events in the context of
dynamical systems. This approach is usually called Hitting Time Statistics.
One can, however, build upon the classical Extreme Value Theory to present another approach.
We consider an observable function ϕ : X → R∪{+∞} and evaluate the value of ϕ along the orbit of
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a point x ∈ X . This way, we construct a stochastic process, (Xn)n∈N, such that

Xn = ϕ ◦T n. (2.2.1)

With this framework, having an exceedance of a threshold un is equivalent to say that the orbit of x has
entered the region of the phase space determined by

U(un) = {X0 > un} .

There is a connection between Hitting Time Statistics and this extremes based approach. The first hint
to such connection comes from noting that, if Xn shows no exceedances up to time n then rU(un) must
be larger than n, i.e

T−1 ({Mn ≤ un}) =
{

rU(un) > un
}
.

A link has, in fact, been established for the case where exists an exact correspondence between the
points where ϕ exceeds a high threshold and the sets used for the study of Hitting Time Statistics. We
will not go deep into such connection, but more information on the topic can be found in [19] and [30].

The dynamical systems considered for this analyses based on the extremes must exhibit a behaviour
that is hard to be understood. Chaotic dynamical systems provide excellent models of such behaviour.
These systems possess high sensibility to initial conditions and exhibit limits for the deterministic
prediction of the behaviour of its orbits. We can take as an example the doubling map. This map is a
uniformly expanding map defined on the circle S 1 such that, to each point x, it associates the point 2x
mod 1. Figure 2.1 shows a graphical representation of this system, where S 1 is identified with the
segment [0,1].

Fig. 2.1 Graphical representation of the doubling map.

The orbits of this system can be fully categorized depending upon its initial condition. If the initial
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condition is a rational number then we have a periodic orbit, however, if the initial condition is an
irrational number the resulting orbit is non-periodic and eventually reaches every subset of [0,1] that is
detected by the one dimensional Lebesgue measure.
It is this erratic behaviour that makes chaotic dynamical systems suitable for a probabilistic analysis.

The invariance of the probability measure, with respect to the map T assures the stationarity of the
stochastic process (Xn)n∈N given by (2.2.1). One could think about applying conditions D(un) and
D′(un), in association with O’Brien’s formula in (2.1.4) to obtain a distributional limit for the process
of partial maxima Mn. However, this approach is not adequate for stochastic processes arising from
dynamical systems.
To be able to prove condition D(un) of Leadbetter in the dynamical systems setting one must rely on
the mixing properties of the systems. But condition D(un) requires a bound that it is independent of
the number of random variables considered in the blocks. It is this requirement for a uniform bound
that makes this condition very hard to prove using the knowledge about mixing rates of the dynamical
systems.
Several attempts were made to find milder conditions that can be verified in this context. This revision
of the theory started with the work of Collet in [9]. In [18] Freitas and Freitas propose a condition
called D2(un). This condition was much weaker than the original condition D(un) of Leadbetter. Most
importantly, it was constructed to follow from the decay of correlations of the underlying dynamical
system.
The pursue for more weak mixing conditions continued and in [34] and [23] the authors were able
to obtain limiting laws for processes based on Benedicks-Carleson quadratic maps and other non-
uniformly expanding dynamical systems.
Nevertheless, all of these achievements were made in the absence of clustering.
The presence of clustering in dynamically generated stochastic processes is linked to the periodicity
of the points that constitute the set of maximal points of the observable ϕ . This link appeared in [49]
and new conditions were devised to prove limiting laws with θ < 1. These conditions were denoted
by Дq(un) and Д′

q(un). The use of such conditions also allowed the choice of more general maximal
sets, but always of finite nature. In the next chapter, we will present, in detail, the last achievements.
Following [4], we present conditions Дqn(un) and Д′

qn
(un). These conditions allow proving the

existence of extreme value laws for a large set of dynamically generated stochastic processes. In
particular, as we will see in this work, they allow the possibility of maximizing the observable function
in more intricate and geometrically rich sets of infinite nature, such as, one dimensional and two
dimensional fractal sets.

2.3 Observables and Maximal sets

There are two main ingredients to generate stochastic processes from dynamical systems. One is the
dynamics itself, where the mixing rates of the dynamical system, in the form of decay of correlations,
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play a big role in the dependence conditions necessary to achieve a distributional limit. The other
ingredient is the observable function, in particular, the set where it is maximized.
For a first approach to this matter one can consider observables whose maximal set, M , consists of
one point of the phase space, i.e., M = {ζ}, where, ζ ∈ X . To that purpose let ϕ : X → R∪{+∞}
be an observable, such that

ϕ(x) = g(dist(x,ζ )). (2.3.1)

We assume that, the function g : [0,+∞]→ R∪{+∞} achieves its global maximum at 0, possibly +∞,
and is a strictly decreasing bijection on a neighbourhood of 0. Note that, for an observable of this form
the set U(un) corresponds to a topological ball centered at the point ζ .
Under sufficiently fast decay of correlations of the map in some specific spaces, in [2] a dichotomy
was achieved:

• ζ ∈ X is a non periodic point and the EI associated with the EVL is 1.

• ζ ∈ X is a periodic point and the EI associated with the EVL is lower than 1.

This result starts to show the importance of the maximal set to determine the level of clustering in the
limiting law. The recurrence to itself of the maximal set, in this case determined by the periodicity of
the point ζ , is the responsible for the appearance of clusters of exceedances.
The next step was to consider larger maximal sets. In [23] and [3], it was considered a maximal set
formed by a finite group of points.
The observable considered was a version of the one presented in (2.3.1) adapted to the context of
multiple maximal points. More precisely, denoting by ζ1, . . . ,ζk the points of M , the observable ϕ

could by written in the form,
ϕ(x) = gi(dist(x,ζi)), (2.3.2)

for a family of functions gi, with i ∈ {1, . . . ,k}, satisfying similar conditions to the ones presented for
the function g.
In the first article, it was considered maximal points chosen independently as typical points for the
invariant probability measure. The result was uncorrelated maximal points in the sense that an orbit of
a point in M does not contain any other point in the maximal set. This assumption on M led to low
recurrence of the maximal set to itself and to an Extremal Index of 1.
On other hand, in [3] it was studied the effect of correlated maxima in the maximal set. It was con-
sidered that a point in M contains in its orbit the other points of the maximal set. The result was a
clustering effect created by this correlation even without considering periodic points in the composition
of the maximal set. Consequently, an Extremal Index lower than 1 was achieved.
Similar results were proved for the case where M is composed by a countable number of points. In [4],
the maximal set was considered to be the closure of the orbit of a point in the phase space. The type of
observable used was the one given by (2.3.2) considering, however, a countable family of functions gi.
It was discovered that a fast recurrence of the maximal set to itself results in EI smaller than 1 and a
slow recurrence of the maximal set to itself results in a negligible clustering effect leading, in the limit,
to an EI equal to 1.
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The common ground in these results, and ultimately responsibly for the clustering effect, is the orbit
of the maximal set as a whole. Denoting the dynamics by T , this recurrence of the maximal set
can be captured by the study of the sets T− j(M )∩M . In the case where M is reduced to a single
periodic point, we know that, due to this periodicity, T− j(M ) will collide with M creating multiple
exceedances in a short gap of time.
For a maximal set composed of uncorrelated maxima, the fact that the orbits of the points in M do
not hit M leads to an absence of clustering. If the maximal set is composed by a finite number of
correlated points, then T− j(M )∩M is a non-empty set and bursts of exceedances are expected.
The infinite nature of a countable maximal set in [4] adds something new to this mechanism. To
create cluster we not only need T− j(M )∩M to be non empty but also that the maximal set reoccurs
relatively fast.

In this work, we present an extension to the previous results. We will consider an observable that is
maximized in a fractal set. The prototype set chosen to demonstrate the results is the ternary Cantor
set, although some of the results are proven for more general Cantor sets such as attractors of Iterated
Functions Systems.
This work draws its motivation from the study published in [31]. It was conjectured that the same
limiting laws that apply to the case where M is a single point or a set of points should apply to this
more complicated sets. Using the ternary Cantor set, the authors were able to numerically verify the
existence of the distributional limits. We present here rigorous proofs of the existence of such limiting
laws for uniformly expanding maps.
The existence of clustering was not detected in any of the experiments made in [31]. However, in line
of the observations made for the cases where M is single point or a set of points, we were able to show
the existence of clusters depending upon the choice of dynamics.
We identified the mechanism leading to the appearance of clusters and, again, the recurrence of the
maximal set played a crucial role. Choosing the ternary Cantor set as the maximal set of an observable,
we selected a map that preserves the entire set. The choice was the map 3x mod 1. For this map the
ternary Cantor set acts as fixed point leading to a very big overlap between T− j(M ) and M , which
resulted in the appearance of an EI smaller than 1.
Using concepts from fractal geometry, we were capable of translating to a number the overlap between
T− j(M ) and M . This was done by evaluating the box dimension of the set T− j(M )∩M . The
relevance of the recurrence of the maximal set to itself was then assessed by comparing the box
dimension of the sets M and T− j(M )∩M . If the dynamics T is compatible with M , in the sense that
T− j(M )∩M and M have the same box dimension, we were able to show the existence of clustering
due to the big overlap between M and its own orbit.
However, if T− j(M )∩M has a smaller box dimension than M , then we prove the existence of
distributional limits with EI equal to 1.
These results follow the trend initiated with the case of a countable number of points in the maximal
set, where an EI equal to one was achieved even if T− j(M )∩M is not an empty set. In this case,
the recurrence velocity of the maximal set was a factor to have in consideration for the appearance of
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clusters. If M is a Cantor set, for example the ternary Cantor set, its distribution along the segment
[0,1] makes very easy for the set T− j(M )∩M to be non-empty. What dictates the appearance or not
of clusters of exceedances is how big is the overlap between T− j(M ) and M in terms of their box
dimension.

Building upon the one dimensional results achieved for one dimensional fractal sets, we were able to
extend the theory for two dimensional fractal maximal sets.
We considered two dimensional fractal sets constructed using the direct product between one dimen-
sional sets. This product structure allowed for a calculation of the EI based upon a decomposition of
(Xn)n∈N into processes generated by one dimensional maps and observables.
Under some compatibility conditions between the observable used to generate Xn and the observables
used to construct its one dimensional decomposition, we were able to assert the existence of limiting
laws independently of the level of clustering.



Chapter 3

Existence of Limiting Laws

The main purpose of this chapter is to provide sufficient conditions that allow us to prove the existence
of limiting laws for dynamically generated stochastic processes.
In this first part of the chapter, we rigorously establish the notation and concepts used throughout this
work.

Start by considering a discrete dynamical system (X ,B,T,µ), where X is a compact set, B is the
respective Borel sigma algebra, T : X → X is a measurable map and µ is an invariant measure with
respect to T .
Considering an observable function ϕ : X → R+∪{+∞}, we define a stochastic process, (Xn)n∈N, as
in (2.2.1), i.e

Xn(x) = ϕ ◦T n(x).

The process (Xn)n∈N, constructed as above, is stationary due to the invariance of the measure µ .
As seen in the last chapter, the extremal behaviour of the process is linked to the recurrence properties
of the set of global maxima of ϕ , hence, we assume that there exists Z = maxx∈X ϕ(x), where we
allow Z =+∞.
Following the notation already introduced, we define the set of maximal points of ϕ as

M = {x ∈ X : ϕ(x) = Z},

and denote by ζ a generic point of this set.
From the stochastic process (Xn)n∈N, we define the process of partial maxima (Mn)n∈N whose limiting
distribution we want to analyse:

Mn = max{X0, . . . ,Xn−1}. (3.0.1)

Given a sequence of thresholds (un)n∈N, our objective is to achieve a non-degenerated distribution law,
H, such that

µ(Mn ≤ un)→ (1−H)(τ) as n → ∞.

17
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In the definition of Extreme Value Law given by 2.0.1, this thresholds un are dependent on τ . This
dependence is translated by relation (2.0.2), i.e

nµ(X0 > un)→ τ as n → ∞.

When the observables are based on topological balls around the points that form the maximal set of
the observable, such as in (2.3.1) and (2.3.2), it is assumed that nµ(X0 > un) is sufficiently smooth to
allow the existence of thresholds un such that the limit in (2.0.2) exists. However, this is not always the
case. In [20], it was considered observables based on cylinders, such as

ϕ(x) = g(µ(Zn(ζ ))), (3.0.2)

where n is maximal, such that, x ∈ Zn(ζ ) and g is a function satisfying certain regularity conditions.
Using the tent map, T : [0,1]→ [0,1] given by

T (x) = 1−|2x−1|

and for this choice of observable, the quantity nµ(X0 > un) varies too much, hence, it does not exists a
sequence of thresholds un for which the limit in (2.0.2) is verified.
This issue was addressed in [20] and the authors introduced the concept of cylinder EVL. In this
definition, especially fitted for cylinders based observables, the thresholds un are taken such that,

wnµ(X0 > un)→ τ as n → ∞. (3.0.3)

In this normalization, we take a subsequence wn of the time n. Such modification makes more likely to
exist a sequence of thresholds un such that the limit in (3.0.3) holds, even if nµ(X0 > un) varies wildly.
For this type of limiting law, instead of built the dependence of nµ(X0 > un) on τ in the thresholds, we
built the dependence on τ into the time scale. This way for all n ∈ N, we can consider

wn = wn(τ) = ⌊τ(µ(X0 > un))
−1⌋. (3.0.4)

We now state the definition of cylinder EVL.

Definition 3.0.1. Let (Xn)n∈N and (Mn)n∈N be the stochastic processes defined as in (2.2.1) and (3.0.1).
Consider (wn)n∈N and (un)n∈N such that,

wnµ(X0 > un)→ τ as n → ∞. (3.0.5)

We say that a cylinder EVL for the stochastic process (Mn)n∈N exists if

µ(Mwn ≤ un)→ 1−H(τ) (3.0.6)

for some non-degenerate H.
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We note that, the definition of a cylinder EVL is weaker than the regular definition of EVL given
by 2.0.1. We are only require convergence for certain subsequences of the time. It is, however, this
weakness that allows a larger applicability assuring, nevertheless, the existence of a non-degenerated
distribution function.
When maximizing observables in Cantor sets, we will be considering observables based upon the
algorithmic construction of these sets, which is essentially a discrete process. The result is observables
that are not smooth and it is not possible to guarantee the existence of thresholds un as in (2.0.2). For
that reason, all the limiting laws we achieve are of the form given by (3.0.6).
Through the remaining of this work, we will be referring to a cylinder EVL simply as EVL.

3.1 Conditions Дqn(un,wn) and Д′
qn
(un,wn)

In this section, we present two conditions, Дqn(un,wn) and Д′
qn
(un,wn), acting on the dependence

structure of the stochastic process that, in conjunction, allow to prove the existence the distributional
limits stated in Definition 3.0.1.

Let (un)n∈N and (wn)n∈N be as in (3.0.5) and consider a sequence (qn)n∈N, such that

lim
n→∞

qn = ∞ and lim
n→∞

qn

wn
= 0. (3.1.1)

Denote the i-th preimage by the map T by T−i and fix u ∈ R and q ∈ N. We define the following
events,

U(u) := {X0 > u},

Aq(u) :=U(u)∩
q⋂

i=1

T−i(U(u)c) = {X0 > u,X1 ≤ u, . . . ,Xq ≤ u}. (3.1.2)

The event U(u) corresponds to the occurrence of an exceedance and the event Aq(u) corresponds to
the occurrence of an exceedance which terminates a cluster of exceedances, i.e., if T− j(Aq(u)) occurs,
then the next exceedance after the one observed at time j must belong to a new and different cluster of
exceedances. In particular, q can be thought as the maximal waiting time between two exceedances
within the same cluster.

Let B ∈ B be an event and for s, ℓ ∈ N, define,

Ws,ℓ(B) =
s+ℓ−1⋂

i=s

T−i(Bc).

Observe that, under the notation above W0,n(U(un)) = {Mn ≤ un}.
For each n ∈N, set Un :=U(un) and Aqn,n :=Aqn(U(un)). O’Brien’s formula to compute the EI, stated
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in (2.1.4) has a natural reformulation using the setting above. Just consider

θn :=
µ (Aqn,n)

µ(Un)
. (3.1.3)

and the Extremal Index is given by
θ = lim

n→∞
θn.

Using the notation established, we now state conditions Дqn(un,wn) and Д′
qn
(un,wn). This conditions

are a variation, adapted to cylinders and non-smooth observables, of conditions Дqn(un) and Д′
qn
(un)

that appear in [4]. Such conditions were primarily devised to deal with countable maximal sets where
a point ζ ∈ M has the possibility of having arbitrarily large periods. This was accomplished by
introducing a sequence (qn)n∈N, satisfying (3.1.1), to replace the static factor q ∈ N that appears in the
conditions Дq(un) and Д′

q(un). Conditions Дq(un) and Д′
q(un) appear in [2], [3] and [20], where they

are used to prove the existence of limiting laws in the case of finite maximal sets.
The uncountable structure of Cantor sets makes the possibility of a point to have arbitrarily large
periods a very likely scenario. This justifies our use of conditions based on a sequence of integers qn

instead of the more usual conditions Дq(un) and Д′
q(un) based on a fixed q.

Condition (Дqn(un,wn)). We say that condition Дqn(un,wn) holds for the stochastic process (Xn)n∈N

if for every ℓ, t,n ∈ N∣∣µ (Aqn,n ∩Wt,ℓ (Aqn,n))−µ (Aqn,n)µ (W0,ℓ (Aqn,n))
∣∣≤ γ(n, t), (3.1.4)

where γ(n, t) is decreasing in t for each n and there exists a sequence (tn)n∈N such that tn = o(wn) and
wnγ(n, tn)→ 0 when n → ∞.

Consider the sequence (tn)n∈N given by condition Дqn(un,wn) and let (kn)n∈N be another sequence of
integers such that

kn → ∞ and kntn = o(wn). (3.1.5)

Condition (Д′
qn
(un,wn)). We say that condition Д′

qn
(un,wn) holds for the sequence (Xn)n∈N if there

exists a sequence (kn)n∈N satisfying (3.1.5) such that

lim
n→∞

wn

⌊wn/kn⌋−1

∑
j=qn+1

µ
(
Aqn,n ∩T− j (Aqn,n)

)
= 0. (3.1.6)

Condition Дqn(un,wn) establishes a sort of asymptotic independence between the occurrence of the
event Aqn,n and the absence of occurrences of such an event in the time gap t − l. That is, if after a
cluster, we do not observe any exceedance for qn time steps, then the observation of the next exceedance
is almost an independent even. This type of reasoning is similar to that expressed by condition D(un)

stated in (2.1.1). As in D(un), condition Дqn(un,wn) requires an asymptotic independence on blocks of
random variables that are well spaced in time. In this case, this blocks are represented by the set Aqn,n.
There exists, however, a crucial difference. This new condition Дqn(un,wn) imposes a bound only on
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qn random variables. On the other hand, condition D(un) imposes a bound that is independent of the
number of random variables considered in the blocks. It is precisely this aspect that allows Дqn(un,wn)

to follow from the decay of correlations of the maps involved.
Condition Д′

qn
(un,wn) is pursuing the same objective as condition D′(un) stated in (2.1.3). It is impos-

ing that clusters of exceedances are spaced through time to prevent its concentration.

Coupling conditions Дqn(un,wn) and Д′
qn
(un,wn) provides a general result that allows us to establish

the existence of a limiting extreme value law.

Theorem 3.1.1. Let (Xn)n∈N be a stochastic process constructed as in (2.2.1). Consider the sequences
(un)n∈N and (wn)n∈N satisfying (3.0.5) for some τ ≥ 0. Assume that conditions Дqn(un,wn) and
Д′

qn
(un,wn) hold for some qn ∈ N0 satisfying (3.1.1). Moreover, assume that the sequence (θn)n∈N

defined in (3.1.3) converges to some 0 ≤ θ ≤ 1, i.e. θ = limn→∞ θn.
Then,

lim
n→+∞

µ(Mwn ≤ un) = e−θτ .

The proof of this theorem follows from an easy adjustment of the proof of [30, Corollary 4.1.7].

3.2 Application to One Dimensional Systems

The main advantage of the conditions presented in the previous section, when compared with the usual
ones from the classical Extreme Value Theory, is that they were constructed to follow easily for system
with nice decay of correlations.

Definition 3.2.1 (Decay of correlations). Let C1,C2 denote Banach spaces of real-valued measurable
functions defined on X . We define the correlation of non-zero functions φ ∈ C1 and ψ ∈ C2 with
respect to a measure µ as

Corµ(φ ,ψ,n) :=
1

∥φ∥C1∥ψ∥C2

∣∣∣∣∫ φ (ψ ◦T n)dµ −
∫

φ dµ

∫
ψ dµ

∣∣∣∣ .
We say that the dynamical sytem (X ,B,T,µ) has decay of correlations, with respect to the measure
µ , for observables in C1 against observables in C2 if there exists a rate function ρ : N→ R, with

lim
n→∞

ρ(n) = 0,

such that, for every φ ∈ C1 and every ψ ∈ C2, we have

Corµ(φ ,ψ,n)≤ ρ(n).
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The definition of decay of correlations presumes that the observables used belong to some Banach
space. For that purpose, we will define the Banach space of functions of Bounded Variation, starting
with the concept of variation of an observable.

Definition 3.2.2. Given an observable ψ : I → R∪{+∞} defined on an interval I, the variation of ψ

is denoted by

Var(ψ) := sup

{
n−1

∑
i=0

|ψ(xi+1)−ψ(xi)|

}
,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0 ⊂ I.

Using the norm ∥ψ∥BV = sup |ψ|+Var(ψ), the space of functions of Bounded Variation,

BV := {ψ : I → R : ∥ψ∥BV < ∞} ,

is a Banach space.
The one dimensional systems that we will work with have decay of correlations of functions of
Bounded Variation against observables in L1(µ). It is our objective to see that conditions Дqn(un,wn)

and Д′
qn
(un,wn) follow from the above mentioned type of decay of correlations of the underlying

dynamical system.

Theorem 3.2.3. Let (X ,B,T,µ) be a dynamical system and consider an observable ϕ achieving
a global maximum on a set M . Let (Xn)n∈N be the stochastic process constructed as in (2.2.1) and
consider (un)n∈N, (wn)n∈N and (qn)n∈N as sequences such that (3.0.5) and (3.1.1) hold. If the system
has decay of correlations of observables in C1 against observables in L1(µ) and if

1. lim
n→∞

∥1Aqn ,n
∥C1wnρ(tn) = 0 or lim

n→∞
wn (∥1Un∥C1ρ(tn)+2µ(Un \Aqn,n)) = 0, for some sequence

(tn)n∈N such that tn = o(wn)

2. lim
n→∞

∥1Un∥C1

∞

∑
j=qn

ρ( j) = 0

and if the sequence (θn)n∈N defined in (??) converges to some 0 ≤ θ ≤ 1, then conditions Дqn(un,wn)

and Д′
qn
(un,wn) are satisfied and

lim
n→∞

µ(Mwn ≤ un) = e−θτ .

Remark 3.2.4. We remark that, under the assumption of summable decay of correlations against L1,
hypothesis (1) implies Дqn(un,wn), while hypothesis (2) implies Д′

qn
(un,wn).

Proof. By Theorem 3.1.1, we only need to check that the stochastic process (Xn)n∈N satisfies conditions
Дqn(un,wn) and Д′

qn
(un,wn).

Consider φ = 1Aqn ,n
and ψ = 1Wt,ℓ(Aqn ,n)

in Definition 3.2.1. Then, there exists C > 0, such that, for
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any positive numbers ℓ and t, we have

|µ(Aqn,n ∩Wt,ℓ(Aqn,n))−µ(Aqn,n)µ(W0,ℓ(Aqn,n))|

=

∣∣∣∣∫
X

1Aqn ,n
· (1W0,ℓ(Aqn,n)

◦T t)dµ −
∫

X
1Aqn ,n

dµ

∫
X

1W0,ℓ(Aqn,n)
dµ

∣∣∣∣
≤C∥1Aqn ,n

∥C1ρ(t).

Hence, if there exists a sequence (tn)n∈N such that tn = o(wn) and lim
n→∞

∥1Aqn ,n
∥C1wnρtn = 0 condition

Дqn(un,wn) follows.
To verify the alternate version of hypothesis (1), consider φ = 1(Un\Aqn ,n)∪Aqn ,n

and ψ = 1Wt,ℓ(Aqn ,n)
in

Definition 3.2.1. Again, there exists a C > 0, such that, for any positive numbers ℓ and t,

|µ ((Un \Aqn,n)∪Aqn,n)∩Wt,ℓ(Aqn,n))−µ ((Un \Aqn,n)∪Aqn,n)µ(W0,ℓ(Aqn,n))|
≤C∥1Un∥C1ρ(t). (3.2.1)

Moreover, since Un \Aqn,n and Aqn,n are disjoint, note that

|µ((Un \Aqn,n)∪Aqn,n)∩Wt,ℓ(Aqn,n))−µ((Un \Aqn,n)∪Aqn,n)µ(W0,ℓ(Aqn,n))|
=|µ((Un \Aqn,n)∩Wt,ℓ(Aqn,n))∪ (Aqn,n ∩Wt,ℓ(Aqn,n))−µ((Un \Aqn,n)∪Aqn,n)µ(W0,ℓ(Aqn,n))|
=|µ((Un \Aqn,n)∩Wt,ℓ(Aqn,n))−µ(Un \Aqn,n)µ(W0,ℓ(Aqn,n))

+µ(Aqn,n ∩Wt,ℓ(Aqn,n))−µ(Aqn,n)µ(W0,ℓ(Aqn,n))|.

Let A := µ((Un\Aqn,n)∩Wt,ℓ(Aqn,n))−µ(Un\Aqn,n)µ(W0,ℓ(Aqn,n)) and B := µ(Aqn,n∩Wt,ℓ(Aqn,n))−
µ(Aqn,n)µ(W0,ℓ(Aqn,n)), then using (3.2.1), we obtain that

|A+B|+ |A| ≤C∥1Un∥C1ρ(t)+ |A|.

But, using the triangular inequality,

|A| ≤ 2µ(Un \Aqn,n)

and, therefore
|A+B|+ |A| ≤C∥1Un∥C1ρ(t)+2µ(Un \Aqn,n).

Using again the triangular inequality, we achieve that

|µ(Aqn,n ∩Wt,ℓ(Aqn,n))−µ(Aqn,n)µ(W0,ℓ(Aqn,n))| ≤C∥1Un∥C1ρ(t)+2µ(Un \Aqn,n).

Consequently, condition Дqn(un,wn) follows if there exists a sequence (tn)n∈N such that tn = o(wn) and

lim
n→∞

wn (∥1Un∥C1ρ(tn)+2µ(Un \Aqn,n)) = 0.
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To prove that condition Д′
qn
(un,wn) holds, start by observing that

wn

⌊wn/kn⌋

∑
j=qn+1

µ
(
Aqn,n ∩T− j(Aqn,n)

)
≤ wn

⌊wn/kn⌋

∑
j=qn+1

µ
(
Un ∩T− j(Un)

)
Then, we take φ = ψ = 1Un in Definition 3.2.1, to obtain that

µ
(
Un ∩T− j(Un)

)
=
∫

X
φ · (φ ◦T j)dµ ≤ (µ(Un))

2 +∥1Un∥C1
µ (Un)ρ( j).

Let tn be as above and take (kn)n∈N as in (3.1.5).
Recalling that limn→∞ wnµ(Un) = τ , it follows that

wn

⌊wn/kn⌋

∑
j=qn+1

µ
(
Un ∩T− j(Un)

)
≤ wn

⌊wn
kn

⌋
µ (Un)

2 +wn ∥1Un∥C1
µ (Un)

⌊wn/kn⌋

∑
j=qn+1

ρ j

≤ w2
nµ(Un)

2

kn
+wn ∥1Un∥C1

µ (Un)
∞

∑
j=qn

ρ( j)

≤ τ2

kn
+ τ ∥1Un∥C1

∞

∑
j=qn

ρ( j)−−−→
n→∞

0,

by choice of kn and hypothesis (2).

3.3 Application to Two Dimensional Systems

Similarly to the last section, the objective is to achieve a set of sufficient conditions that guarantee that
Дqn(un,wn) and Д′

qn
(un,wn) hold for a class of systems defined in a two dimensional space with some

sort of decay of correlations against L1. When working with maps defined in a two dimensional space,
we will assume that they have decay of correlations for quasi-Hölder functions against observables in
L1(µ).
We start by defining the space of quasi-Hölder functions.

Definition 3.3.1. Given an observable ψ : I → Rn and a Borel set Z ⊆ Rn, we define the oscillation of
ψ ∈ L1(µ) over Z as

osc(ψ,Z) := ess
Z

sup ψ − ess
Z

inf ψ.

It is possible to verify that x 7→ osc(ψ,Bε(x)) is a measurable function (see [39, Proposition 3.1]).
Consider real numbers 0 < α ≤ 1 and ε0 > 0. The α-seminorm of ψ is defined as

|ψ|α = sup
0<ε≤ε0

ε
−α

∫
Rn

osc(ψ,Bε(x))dµ.
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The space of functions with bounded α-seminorm is denoted by

Vα =
{

ψ ∈ L1(µ) : |ψ|α < ∞
}
.

If we endow Vα with the norm,
∥.∥α = ∥.∥L1(µ)+ |.|α ,

then, it becomes a Banach space, called the space of quasi-Hölder functions.

We will be considering two dimensional dynamical systems that are constructed as the product of
unidimensional maps.
Consider the dynamical systems (X ,B,T1,µ) and (X ,B,T2,µ). From these maps, we define a
product map T : X 2 → X 2, whose invariant measure is µ ×µ , as

T (x1,x2) = (T1(x1),T2(x2)) . (3.3.1)

Choosing an observable ψ : X 2 → R, we will see that conditions Дqn(un,wn) and Д′
qn
(un,wn) hold

for the stochastic process Xn = ψ ◦T n and follow from the decay of correlations mentioned above.
Moreover, we will show that is possible to prove that condition Д′

qn
(un,wn) holds using only the decay

of correlations of the maps T1 and T2.
For that purpose, let ϕ1 and ϕ2 be two observables achieving a global maximum in the sets M1 and
M2, respectively. Define the stochastic processes

X1
n = ϕ1 ◦T n

1 (x) and X2
n = ϕ2 ◦T n

2 (x).

Let (un)n∈N be a sequence of thresholds and consider the sets

UT1
n = {x ∈ X : ϕ1(x)> un} and UT2

n = {x ∈ X : ϕ2(x)> un}

associated with X1 and X2, respectively.
Assume that the observable ψ achieves a global maximum on the set M1 ×M2, such that, the set
Un = {x ∈ X 2 : ψ(x)> un} can be written as

Un =UT1
n ×UT2

n . (3.3.2)

Denoting µ × µ by µ2 and using the setting presented above and under the hypothesis of decay
of correlations against L1 of the maps involved, the next Theorem states sufficient conditions for
Дqn(un,wn) and Д′

qn
(un,wn) to hold.

Theorem 3.3.2. Let T be a dynamical system defined as in (3.3.1) and consider an observable ψ ,
achieving a global maximum on a set M1 ×M2. Let (Xn)n∈N be the stochastic process constructed as
in (2.2.1) and consider sequences (un)n∈N, (wn)n∈N and (qn)n∈N such that (3.0.5), (3.1.1) and (3.3.2)
hold. Assume that T has decay of correlations of functions in C1 against observables in L1(µ2) and
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that T1 and T2 have decay of correlations of functions in C2 against observables in L1(µ).
If,

1. lim
n→∞

∥1Aqn ,n
∥C1wnρ(tn) = 0 or lim

n→∞
wn
(
∥1Un∥C1ρ(tn)+2µ

2(Un \Aqn,n)
)
= 0, for some sequence

(tn)n∈N such that tn = o(wn)

2. lim
n→∞

∥∥∥1
UT1

n

∥∥∥
C2

µ
(
UT2

n
) ∞

∑
j=qn

ρ
1
j = 0

3. lim
n→∞

∥∥∥1
UT2

n

∥∥∥
C2

µ
(
UT1

n
) ∞

∑
j=qn

ρ
2
j = 0

4. lim
n→∞

∥∥∥1
UT1

n

∥∥∥
C2

∥∥∥1
UT2

n

∥∥∥
C2

∞

∑
j=qn

ρ
1
j ρ

2
j = 0

then conditions Дqn(un,wn) and Д′
qn
(un,wn) are satisfied. Furthermore, if the sequence (θn)n∈N defined

in (3.1.3) converges to some 0 ≤ θ ≤ 1 then

lim
n→∞

µ
2(Mwn ≤ un) = e−θτ .

Remark 3.3.3. As in Theorem 3.2.3, we remark that, under the assumption of summable decay of
correlations against L1, hypothesis (1) implies Дqn(un,wn), while hypothesis (2) implies Д′

qn
(un,wn).

Proof. The dynamical system T has decay of correlations, with respect to the measure µ2, for functions
in C1 against observables in L1(µ2). Denote the correspondent rate function by ρ .
Similarly, the maps T1 and T2 have decay of correlations, with respect to the measure µ , for functions
in C2 against observables in L1(µ). Let ρ1 and ρ2 denote the respective rate functions.
By Theorem 3.1.1, we only need to check that the stochastic process (Xn)n∈N satisfies conditions
Дqn(un,wn) and Д′

qn
(un,wn).

As in the proof of Theorem 3.2.3, consider φ = 1Aqn ,n
and ψ = 1Wt,ℓ(Aqn,n)

in Definition 3.2.1. Then,
there exists C > 0, such that, for any positive numbers ℓ and t, we have

|µ2(Aqn,n ∩Wt,ℓ(Aqn,n))−µ
2(Aqn,n)µ

2(W0,ℓ(Aqn,n))|

=

∣∣∣∣∫
X 2

1Aqn ,n
· (1W0,ℓ(Aqn ,n)

◦T t)dµ
2 −

∫
X 2

1Aqn,n
dµ

2
∫

X 2
1W0,ℓ(Aqn ,n)

dµ
2
∣∣∣∣

≤C∥1Aqn ,n
∥C1ρ(t).

If there exists a sequence (tn)n∈N such that tn = o(wn) and limn→∞ ∥1Aqn ,n
∥C1wnρtn = 0, which is the

content of the hypothesis (1), then condition Дqn(un,wn) follows.
Again, as in the proof of Theorem 3.2.3, to verify the alternate version of hypothesis (1), consider
φ = 1(Un\Aqn ,n)∪Aqn ,n

and ψ = 1Wt,ℓ(Aqn ,n)
in Definition 3.2.1. Then, there exists a C > 0, such that, for
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any positive numbers ℓ and t,

|µ2((Un \Aqn,n)∪Aqn,n)∩Wt,ℓ(Aqn,n))−µ
2((Un \Aqn,n)∪Aqn,n)µ

2(W0,ℓ(Aqn,n))|
≤C∥1Un∥C1ρ(t). (3.3.3)

Since Un \Aqn,n and Aqn,n are disjoint, we have that

|µ2((Un \Aqn,n)∪Aqn,n)∩Wt,ℓ(Aqn,n))−µ
2((Un \Aqn,n)∪Aqn,n)µ

2(W0,ℓ(Aqn,n))|
=|µ2((Un \Aqn,n)∩Wt,ℓ(Aqn,n))∪ (Aqn,n ∩Wt,ℓ(Aqn,n))−µ

2((Un \Aqn,n)∪Aqn,n)µ
2(W0,ℓ(Aqn,n))|

=|µ2((Un \Aqn,n)∩Wt,ℓ(Aqn,n))−µ
2(Un \Aqn,n)µ

2(W0,ℓ(Aqn,n))

+µ
2(Aqn,n ∩Wt,ℓ(Aqn,n))−µ

2(Aqn,n)µ
2(W0,ℓ(Aqn,n))|.

Let A := µ2((Un\Aqn,n)∩Wt,ℓ(Aqn,n))−µ2(Un\Aqn,n)µ
2(W0,ℓ(Aqn,n)) and B := µ2(Aqn,n∩Wt,ℓ(Aqn,n))−

µ2(Aqn,n)µ
2(W0,ℓ(Aqn,n)), then using (3.3.3), we obtain that

|A+B|+ |A| ≤C∥1Un∥C1ρ(t)+ |A|.

Using the triangular inequality,
|A| ≤ 2µ

2(Un \Aqn,n)

and
|A+B|+ |A| ≤C∥1Un∥C1ρ(t)+2µ

2(Un \Aqn,n).

Using again the triangular inequality, we finally achieve that

|µ2(Aqn,n ∩Wt,ℓ(Aqn,n))−µ
2(Aqn,n)µ

2(W0,ℓ(Aqn,n))| ≤C∥1Un∥C1ρ(t)+2µ
2(Un \Aqn,n).

Therefore, condition Дqn(un,wn) follows if there exists a sequence (tn)n∈N such that tn = o(wn) and

lim
n→∞

wn
(
∥1Un∥C1ρ(tn)+2µ

2(Un \Aqn,n)
)
= 0.

To prove condition Д′
qn
(un,wn), we start by noting that, due to (3.3.2) and since Aqn,n ⊆Un, we have

µ
2 (Aqn,n ∩T− j(Aqn,n)

)
≤ µ

2 ((UT1
n ×UT2

n )∩T− j(UT1
n ×UT2

n )
)

= µ
2
(
(UT1

n ×UT2
n )∩ (T− j

1 (UT1
n )×T− j

2 (UT2
n ))

)
= µ

(
UT1

n ∩T− j
1 (UT1

n )
)

µ

(
UT2

n ∩T− j
2 (UT2

n )
)
.

The last inequality allows us to write

wn

⌊wn/kn⌋

∑
j=qn+1

µ
2 (Aqn,n ∩T− j(Aqn,n)

)
≤ wn

⌊wn/kn⌋

∑
j=qn+1

µ
(
UT1

n ∩T− j(UT1
n )
)

µ
(
UT2

n ∩T− j(UT2
n )
)
. (3.3.4)
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Take φ = ψ = 1
UT1

n
in Definition 3.2.1, to obtain that

µ

(
UT1

n ∩T− j
1 (UT1

n )
)
=
∫

X
φ · (φ ◦T j

1 )dµ ≤
(
µ(UT1

n )
)2

+
∥∥∥1

UT1
n

∥∥∥
C2

µ
(
UT1

n
)

ρ
1( j). (3.3.5)

Likewise, choosing φ = ψ = 1
UT2

n
in Definition 3.2.1, we obtain that

µ

(
UT2

n ∩T− j
2 (UT2

n )
)
=
∫

X
φ · (φ ◦T j

2 )dµ ≤
(
µ(UT2

n )
)2

+
∥∥∥1

UT2
n

∥∥∥
C2

µ
(
UT2

n
)

ρ
2( j). (3.3.6)

Take (kn)n∈N as in (3.1.5) and consider tn as above. Recalling that limn→∞ wnµ(Un) and combining
(3.3.4), (3.3.5) and (3.3.6), we can state that

wn

⌊wn/kn⌋

∑
j=qn+1

(
µ(UT1

n )2 +
∥∥∥1

UT1
n

∥∥∥
C2

µ(UT1
n )ρ1

j

)(
µ(UT2

n )2 +
∥∥∥1

UT2
n

∥∥∥
C2

µ(UT2
n )ρ2

j

)
≤ τ2

kn
+ τ

∥∥∥1
UT2

n

∥∥∥
C2

µ
(
UT1

n
) ∞

∑
j=qn

ρ
2
j + τ

∥∥∥1
UT1

n

∥∥∥
C2

µ
(
UT2

n
) ∞

∑
j=qn

ρ
1
j + τ

∥∥∥1
UT1

n

∥∥∥
C2

∥∥∥1
UT2

n

∥∥∥
C2

∞

∑
j=qn

ρ
1
j ρ

2
j .

Hence, condition Д′
qn
(un,wn) holds if we can verify the following conditions,

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
C2

µ
(
UT2

n
) ∞

∑
j=qn

ρ
1
j = 0

lim
n→∞

∥∥∥1
UT2

n

∥∥∥
C2

µ
(
UT1

n
) ∞

∑
j=qn

ρ
2
j = 0 (3.3.7)

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
C2

∥∥∥1
UT2

n

∥∥∥
C2

∞

∑
j=qn

ρ
1
j ρ

2
j = 0.

Remark 3.3.4. When the maps T1 and T2 denote the same dynamics, that is T1 = T2, the conditions in
(3.3.7) can be further simplified. Under this assumption, condition Д′

qn
(un,wn) holds if

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
C2

µ(UT1
n )

∞

∑
j=qn

ρ
1
j = 0 and lim

n→∞

∥∥∥1
UT1

n

∥∥∥2

C2

∞

∑
j=qn

ρ
1
j ρ

2
j = 0. (3.3.8)

Assuming that relation (3.3.2) holds, one can determine a lower bound for the level of clustering
associated with Xn by means of the level of clustering appearing in the processes X1

n and X2
n .

For that purpose, let A T1
qn,n denote the set Aqn(U

T1
n ) and A T2

qn,n denote the set Aqn(U
T2
n ).

Assume that exists (qn)n∈N such that the following limits exist:

θ1 := lim
n→∞

µ(A T1
qn,n)

µ(UT1
n )

and θ2 := lim
n→∞

µ(A T2
qn,n)

µ(UT2
n )

. (3.3.9)
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The product structure of the maximal set M1 ×M2 permits us to find a partial decomposition of Aqn,n

using A T1
qn,n and A T2

qn,n. Such fact will allow us to prove the following result.

Theorem 3.3.5. Let T be a dynamical system defined as in (3.3.1) and consider an observable ψ ,
achieving a global maximum on a set M1 ×M2. Let (Xn)n∈N be the stochastic process constructed as
in (2.2.1) and consider sequences (un)n∈N, (wn)n∈N and (qn)n∈N such that (3.0.5), (3.1.1), (3.3.2) and
(3.3.9) hold.
Assume, moreover, that conditions Дqn(un,wn) and Д′

qn
(un,wn) hold and that the Extremal Index θ

exists. Then,
lim
n→∞

µ
2(Mwn ≤ un) = e−θτ , (3.3.10)

where,
θ > θ1 +θ2 −θ1θ2. (3.3.11)

Proof. Since conditions Дqn(un,wn) and Д′
qn
(un,wn) hold, to conclude the proof of the Theorem it is

only necessary to obtain a lower bound for θ .
Let x = (a,b) be a point in Un and assume that T j

1 (a) ∈ (UT1
n )c or T j

2 (b) ∈ (UT2
n )c for all j ≤ qn. This

implies that x ∈ T− j(Uc
n ), for all j ≤ qn and consequently x ∈ Aqn,n. Hence, we can state that(

A T1
qn,n ×UT2

n
)
∪
(
UT1

n ×A T2
qn,n
)
⊆ Aqn,n. (3.3.12)

But, the union of sets described above is not disjoint. The elements of the set A T1
qn,n ×A T2

qn,n are being
counted twice in (3.3.12). This implies that, we can write

µ
2(Aqn,n)≥ µ(A T1

qn,n)µ(U
T2
n )+µ(A T2

qn,n)µ(U
T1
n )−µ(A T1

qn,n)µ(A
T2

qn,n).

Using O’Brien’s formula, we obtain a lower bound for θ ,

lim
n→∞

θn = lim
n→∞

µ2(Aqn,n)

µ2(Un)

≥ lim
n→∞

µ(A T1
qn,n)µ(U

T2
n )+µ(A T2

qn,n)µ(U
T1
n )−µ(A T1

qn,n)µ(A
T2

qn,n)

µ(UT1
n )µ(UT2

n )

≥ θ1 +θ2 −θ1θ2.

The closed formula achieved in Theorem 3.3.5 for the lower bound of the EI supports some useful
conclusions. Not only allows us to prove the existence of the Extremal Index, but also allows us to
show, as illustrated by Figure 3.1, that θ will be 1 if and only if θ1 or θ2 is also 1. This implies that the
absence of clustering in either X1

n or X2
n will imply an absence of clustering in the process Xn.

One can take this reasoning one step further and state that the level of clustering appearing in Xn is
always smaller than the level of clustering appearing in X1

n or X2
n . This conclusion can be reached by
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Fig. 3.1 The relation between θ , θ1 and θ2.

noting that, for θ1,θ2 ∈]0,1[, we have

θ1 < θ1 +θ2 −θ1θ2 and θ2 < θ1 +θ2 −θ1θ2.

This smoothing effect of the clustering can be linked to the product structure present in M1 ×M2. Due
to this nature of the maximal set, if T− j

1 (M1)∩M1 or T− j
2 (M2)∩M2 is negligible, this is enough

to guarantee that T− j(M1 ×M2)∩ (M1 ×M2) has low relevance when compared with M1 ×M2

resulting in a low level of clustering appearing in Xn.
This fact will be used to prove Theorem 5.3.1 and Theorem 5.3.2 of Chapter 5.



Chapter 4

Existence of Clustering with Fractal
Maximal Sets

Our primary goal is to achieve limiting laws for dynamically generated stochastic processes whose
observable is maximized in a set with fractal properties. We will use, as a prototype, the ternary Cantor
set that we shall denote by C .
To construct C , we start by removing the middle third of the interval C0 := [0,1] and define in this
way the first approximation C1. Then, we start an iterative process where we build Cn by removing
the middle third of each connected component of Cn−1, as represented in Figure 4.1. Repeating this
process indefinitely, we obtain the set C = ∩n≥1Cn.

[0,1]

C1

C2

C3

Fig. 4.1 The construction of the ternary Cantor set.

The ternary Cantor set C has features that are commonly linked to a possible definition of a fractal
set. It is a simple set that, as we saw above, can be defined recursively leading to self-similarity. In
fact, if we could zoom in, for example, on the first third of the set, we would see a set identical to the
original set C . It is also an example of a more general type of sets designated by attractors of Iterated
Function Systems (IFS), which are usually characterized as fractal sets.
In addition to these aspects, it is an uncountable set of Lebesgue measure zero which makes it a good

31
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candidate to extend the previous results concerning extreme value laws on more general maximal sets.

Through the use of the algorithm described above to generate C , we define the observable to be the
Cantor ladder function. This observable was also used in [31] to model a fractal landscape.
For each n ∈ N, let Bn := Cn−1 \Cn so that B1 =

(1
3 ,

2
3

)
, B2 =

(1
9 ,

2
9

)
∪
(7

9 ,
8
9

)
, . . ., i.e., the sets Bn

correspond to the gaps of the Cantor set formed at the n-th step of its construction.
Now, the Cantor ladder function is taken to be

ϕ(x) =

{
n, if x ∈ Bn, n = 1,2,3 . . .
∞, otherwise.

(4.0.1)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

Fig. 4.2 The Cantor ladder function.

Note that, if x ∈ C then x ̸∈ Bn for all n ∈ N, which implies that ϕ(x) = ∞. If x /∈ C then x ∈ Bn for
some n ∈ N. Therefore, in this case, we have that the set of maximal points M of ϕ is exactly C .
We will be considering dynamical systems given by:

T : [0,1]−→ [0,1]

x 7−−−→m · x mod 1, (4.0.2)

where m ∈ N.
These are full branched uniformly expanding maps, which preserve Lebesgue measure (that we shall
denote by Leb) and have exponential decay of correlations of BV observables against L1(Leb), accord-
ingly with [6, Corollary 8.3.1].

In [31, Section 3], the authors considered the same observable ϕ defined in (4.0.1) and the dynamics
generated by an asymmetric tent map. This map is also a full branched uniformly hyperbolic map
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and the authors conjectured the existence of a limiting extreme value law with an EI equal to 1. This
conjecture was supported by the numerical simulations performed.
We prove, in Chapter 5, that when the dynamics considered is not compatible with the self-similar
structure of the maximal set (which happens here when m ̸= 3k for all k ∈N) then indeed the conjectured
extreme limiting behaviour applies. The numerical simulations performed in [31, Section 3] also
showed that, interestingly, the same limiting laws seem to apply when the dynamics is replaced by that
of irrational rotations. The fact that these ergodic maps are not mixing and yet the agreement was still
good, lead the authors of [31] to conjecture that the role of the fast decay of correlations in assuring
the validity of conditions such as Дqn and Д′

qn
was played, in this situation, by the complexity of the

observable function.
In all numerical studies performed in [31] with observables maximized on fractal sets, with strictly
positive Hausdorff dimension, the observed EI was always 1. In this chapter, however, not only we
provide examples where the EI is strictly less than 1, as we explain how the EI is related with the
compatibility between the dynamics and the fractal structure of the maximal set.

Theorem 4.0.1. Let (Xn)n∈N be the stochastic process constructed as in (2.2.1) for a dynamical system
T defined in (4.0.2), with m = 3k for some k ∈ N. Consider a sequence of thresholds (un)n∈N such that
un = n+ k−1 and a sequence of times (wn)n∈N such that wn =

⌊
τ (3/2)n+k−1

⌋
.

Then, condition (3.0.5) holds and, moreover

lim
n→∞

Leb(Mwn ≤ n) = e−
(

1− 2k

3k

)
τ
.

In fact, in Section 4.1, we prove Theorem 4.0.1 as a corollary of Theorem 4.1.2 which applies to more
general Cantor sets, namely attractors of IFS. In the context of both Theorems 4.0.1 and 4.1.2, the
compatibility between the dynamics and the maximal set becomes obvious when we observe that
T (M ) = M . This means that T preserves the structure of the Cantor set, which play the role of a
periodic point in the context of when M is reduced to a single point.
The proof of the existence of the limiting laws will follow more or less the same strategy used in
[21] and generalised later in [3, 4]. This strategy basically exploits the periodicity of the maximal
set in order to be able to compute the EI from the O’Brien’s formula (3.1). Then, it proceeds to the
verification of conditions Дqn(un,wn) and Д′

qn
(un,wn) that were designed to be easily checked from

the decay of correlations of the systems considered.

4.1 Compatibility and Clustering

When the dynamics is compatible with the self-similar structure of the maximal set, we observe
the appearance of clustering and a limiting law with a non-trivial EI. In this context, we consider
more general fractal sets. Namely, we will consider Cantor sets generated by an IFS satisfying some
regularity conditions. These Cantor sets can also be identified as survivor sets for some conveniently
chosen dynamical systems, which will also provide a common ground to assess the compatibility of the
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self-similarity structure with the original dynamics. We will start by providing a description of these
more general dynamically defined Cantor sets. Then, we establish the existence of a limiting law with
a non-trivial EI when the dynamics is compatible with the system generating the Cantor set and, finally,
we apply it to the usual ternary Cantor set.

4.1.1 Dynamically Defined Cantor Sets

We start with a description of a class of Iterated Function Systems.
Consider a finite family of contractions, F= { f1, f2, . . . , fs}, where each fi is a C1 diffeomorphism on
[0,1] and satisfies

| fi(x)− fi(y)| ≤ λi|x− y|,

for some ratio λi.
Let Ji = fi([0,1]) and assume that Ji∩J j = /0, for all i, j ∈N. The family F defines an Iterated Function
System satisfying certain regularity conditions that assert the existence of a unique attractor Λ, i.e, a
unique compact set that satisfies the equation Λ = ∪s

i=1 fi(Λ). In this case, both the Hausdorff and box
dimension of the attractor (see Definitions A.1.1 and A.1.2) are equal to d, where ∑

s
i=1 λ d

i = 1.
We call this set a dynamically generated Cantor set in the sense that it can be identified as the survivor
set of a dynamical system G : R→ R defined as

G(x) =

{
f−1
i (x), if x ∈ Ji

2, otherwise.

Using the function G(x), Λ can be described as the set of points whose orbit never leaves the interval
[0,1], that is

Λ = {x ∈ [0,1] : Gn(x) ∈ [0,1], for all n ∈ N}.

We can define the n-th approximation to Λ, denoted by Λn, by letting Λ0 = [0,1] and setting for all
n ∈ N

Λn = G−1(Λn−1) = {x ∈ [0,1] : Gl(x) ∈ [0,1], for all l = 1, . . . ,n}.

Under this notation, note that Λ = ∩n≥0Λn. For more details on IFS, we refer to [13, Chapter 9].

4.1.2 Limiting Laws and Dynamically Defined Cantor Sets

We adapt the definition of the observable function ϕ : [0,1]→ R of (4.0.1) so that, in this case, the
maximal set is Λ.
We set,

ϕΛ(x) =

{
n, if x ∈ Λn \Λn+1, n = 1,2,3 . . .
∞, if x ∈ Λ.

(4.1.1)

Note that, when Λ = C the observable ϕ of (4.0.1) follows directly from ϕΛ.
Now, we define a dynamics T̄ that is compatible with the set Λ. This map is constructed using the
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function G(x).
Let I denote a connected component of [0,1]\∪s

i=1Ji and set gI(x) to be a linear function that maps I
onto [0,1]. With this notation, we define F : [0,1]→ [0,1] as

F(x) =

{
G(x), if x ∈ ∪s

i=1Ji

gI(x), if x ∈ I.

The function F is a piecewise uniformly expanding map and, henceforth, admits an absolutely continu-
ous invariant measure µ . Also, accordingly to [6, Corollary 8.3.1] this maps have decay of correlations
of BV observables against L1(µ) as stated in Definition 3.2.1.
The dynamics T̄ is constructed by setting T̄ = Fk, for some k ∈ N. Now, we prove a result that
formalizes the compatibility of T̄ with Λ.

Lemma 4.1.1. If j ≤ n/k, then, T̄− j(Λn)∩Λn = Λn+k j.

Proof. Let x ∈ T̄− j(Λn)∩Λn, we start by establish that T̄− j(Λn)∩Λn ⊆ Λn+k j.
Since x ∈ Λn then Gl(x) ∈ [0,1] for all l = 1, . . . ,n. Moreover, if x ∈ T̄− j(Λn) and as j ≤ n/k then
Gk j(x) ∈ Λn and Gk j(x) ∈ [0,1] for all integers j not bigger than n/k.
Hence, Gl(Gk j(x)) ∈ [0,1] for l = 1, . . . ,n and in particular, Gn+k j(x) ∈ [0,1]. It follows that Gl(x) ∈
[0,1] for all l = 1, . . . ,n+ k j and x ∈ Λn+k j.
To prove the remaining inclusion, consider x ∈ Λn+k j. Since Λn+k j ⊆ Λn then x ∈ Λn. Furthermore,
as x ∈ Λn+k j then Gl(x) ∈ [0,1] for all l = 1, . . . ,n + k j. In particular, we have that Gn+k j(x) =
Gn(Gk j(x)) ∈ [0,1]. Hence, Gk j(x) = T̄ j(x) ∈ Λn and x ∈ T̄− j(Λn).

Lemma 4.1.1, in particular, implies that T− j(Λ) = Λ and, therefore, the system preserves the whole
maximal set. It is this recurrence of the maximal set to itself by effect of the dynamics, which we call
compatibility, that results in clusters of exceedances. The next theorem formalizes this idea.

Theorem 4.1.2. Let (Xn)n∈N be the stochastic process constructed as in (2.2.1) for the dynamical
system T̄ = Fk, for some k ∈ N, where F and the observable ϕ are as defined just above. Consider a
sequence of thresholds (un)n∈N and a sequence of times (wn)n∈N such that wn =

⌊
τ(µ(Λ⌊un⌋))

−1
⌋
.

Assume that there exists a sequence (tn)n∈N, with tn = o(wn), and a sequence (qn)n∈N, with 1 ≤ qn ≤
un/k, satisfying (3.1.1).
Assume, moreover, that

lim
n→∞

∥∥1Aqn ,n

∥∥
BV wnrtn = 0

lim
n→∞

∥1Un∥BV rqn = 0

and that there exists 0 ≤ θ ≤ 1, such that

θ = lim
n→∞

µ(Λ⌊un⌋ \Λ⌊un⌋+k)

µ(Λ⌊un⌋)
.
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Then,
lim
n→∞

µ(Mwn ≤ n) = e−θτ .

Proof. Start by noting that for any sequence of thresholds un, we have Un =Λ⌊un⌋ and then the definition
of wn makes condition (3.0.5) satisfied.

Using Lemma 4.1.1, we can easily characterize the sets Aqn,n. Observe that Λc
n ⊂ Λc

n+1 for all n ∈ N.
Hence, for n sufficiently large, such that 1 ≤ qn ≤ un/k and recalling the definition of Aqn,n, we obtain:

Aqn,n =
qn⋂

i=1

T−i(Λc
⌊un⌋)∩Λ⌊un⌋ = Λ

c
⌊un⌋+k ∩Λ⌊un⌋ = Λ⌊un⌋ \Λ⌊un⌋+k.

The fact that F has decay of correlations of BV against L1, together with the assumptions

lim
n→∞

∥∥1Aqn ,n

∥∥
BV wnrtn = 0 and lim

n→∞
∥1Un∥BV rqn = 0,

guarantee that conditions (1) and (2) from Theorem 3.2.3 hold.
Moreover, the assumption on θ , gives that

θn =
µ(Λ⌊un⌋ \Λ⌊un⌋+k)

µ(Λ⌊un⌋)
−−−→
n→∞

θ ,

as required.
Consequently, the result follows from direct application of Theorem 3.2.3.

4.1.3 Application to the Ternary Cantor Set

The objective of this subsection is to apply Theorem 4.1.2 to the ternary Cantor set and prove the
limiting law stated in Theorem 4.0.1.

Proof of Theorem 4.0.1. We start by checking the hypothesis of Theorem 4.1.2 and then verify the
formula provided for the Extremal Index θ . In this case, the IFS is given by f1(x) = 1/3x and
f2(x) = 1/3x+2/3, the map F is given by F(x) = 3x mod 1, the fractal set Λ is C and Λn = Cn.
The invariant measure µ is the Lebesgue measure, denoted by Leb, and the rate of decay of correlations
expressed in Definition 3.2.1 is such that r = 1/3.
We set un = n+k−1, qn = ⌊(n+k−1)/k⌋ and observe that Un =Cn+k−1 and Aqn,n =Cn+k−1\Cn+2k−1.

Since Cn ⊂ Cn−1, for all n ∈ N, and µ(Cn) = (2
3)

n, then wn =
⌊

τ (3/2)n+k−1
⌋

, qn = o(wn) and we
obtain

Leb(Aqn,n) =

(
2
3

)n+k−1

−
(

2
3

)n+2k−1

=

(
1− 2k

3k

)(
2
3

)n+k−1

and, moreover,
∥1Un∥BV ≤ 2n+k+1, ∥1Aqn ,n

∥BV ≤ 2n+2k +1 ≤ 2n+2k+1.
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Let tn = n2 and note that clearly tn = o(wn). Since r = 1/3, then

lim
n→∞

∥∥1Aqn ,n

∥∥
BV wnrtn ≤ lim

n→∞

⌊
τ (3/2)n+k−1

⌋
2n+2k+1rn2

≤ 2 lim
n→∞

2k−1
τ3n+k−1

(
1/3k

)n2

+2n+2k
(

1/3k
)n2

= 0.

Furthermore, there exists some constant C′ > 0 such that

lim
n→∞

∥1Un∥BV rqn = lim
n→∞

2n+k+1rqn ≤ lim
n→∞

2n+k+1(1/3k)n/k+1−1/k ≤C′ lim
n→∞

(2/3)n = 0.

Finally, we use O’Brien’s formula to compute the EI:

lim
n→∞

θn = lim
n→∞

Leb(Aqn,n)

Leb(Un)
= lim

n→∞

(
1− 2k

3k

)(2
3

)n+k−1(2
3

)n+k−1 =

(
1− 2k

3k

)
=: θ .

As a consequence of Theorem 4.1.2, we obtain limn→∞ Leb(Mwn ≤ n) = e−
(

1− 2k

3k

)
τ
.

4.2 Clustering and Two Dimensional Uniformly Expanding Maps

In the last section, we achieved limiting laws for dynamically generated stochastic processes built upon
unidimensional uniformly expanding maps. The presence of clusters of exceedances was linked to
the compatibility between the maps and the maximal set of the observable function. The objective,
here, is to expand these results to stochastic processes whose underlying dynamics is defined in a two
dimensional space.
Our starting point is the Cantor set C used in the last section. Using this set, we can define a new
fractal set given by C := C ×C . This set, usually called Cantor dust, is a self-similar set contained in
the two dimensional space [0,1]× [0,1] and will be the prototype chosen to illustrate the results.
The Cantor dust can be seen as the final product of an algorithmic construction similar to the one
presented for C and represented in Figure 4.3. One can define the n-th approximation to C, denoted by
Cn, as the product Cn ×Cn. The set C can then be described as ∩n≥1Cn.

Fig. 4.3 Representation of the algorithmic construction leading to the Cantor dust.
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Using the Cantor ladder function in (4.0.1), we construct an observable, ψ : [0,1]2 →R, whose maximal
set M is exactly C in the following way:

ψ(x,y) =

{
n, if min(ϕ(x),ϕ(y)) = n
∞, otherwise.

(4.2.1)

Fig. 4.4 The observable ψ .

The two dimensional dynamical systems that we will consider are given by,

T : [0,1]2 −→ [0,1]2

(x,y) 7→ (m1 · x mod 1,m2 · y mod 1), (4.2.2)

where m1,m2 ∈ N.
Again, we will use Leb to denote the Lebesgue measure in R. The systems in (4.2.2) preserve the
product measure Leb×Leb, that we will denote by Leb2 and belong to a larger class of maps defined
by Saussol in [39], designated by multidimensional piecewise expanding systems. Moreover, assuming
that the system is sufficiently expanding and following the setting presented by Saussol, it is possible
to prove that these systems have decay of correlations for quasi-Hölder observables against L1(Leb2)

for some 0 < α ≤ 1.
We will rely on the results achieved in Section 3.3 of Chapter 3 to prove the existence of the distribu-
tional limits, so, accordingly with (4.2.2), the natural choice for the maps T1 and T2 are the uniformly
expanding maps m1 · x mod 1 and m2 · y mod 1, respectively.
For this type of maps, in conjunction with the observable ϕ whose maximal set is C , it was proved in
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Section 4.1.3 the existence of a limiting extreme value law for the associated stochastic process. We
were able to link the value of the Extremal Index to the compatibility between the maximal set and the
dynamics. It was discovered that, when for example m1 = 3k, for some k ∈ N, then T1(C ) = C and the
Cantor set is playing the role of a periodic point resulting in clustering.
In the same sprit, we will demonstrate that if m1 = 3k1 and m2 = 3k2 for some k1,k2 in N, then, there
exists full compatibility between C and T− j(C). This will lead to the following theorem.

Theorem 4.2.1. Consider (Xn)n∈N to be the stochastic process constructed as in (2.2.1) for the
dynamical system T defined in (4.2.2) with m1 = 3k1 and m2 = 3k2 , for some k1,k2 in N satisfying

1+
min{k1,k2}
max{k1,k2}

> log3(4).

Consider a sequence of thresholds (un)n∈N such that un = n and a sequence of times (wn)n∈N, such
that wn =

⌊
τ (3/2)2n

⌋
.

Then, condition (3.0.5) holds and

lim
n→∞

Leb2(Mwn ≤ n) = e−
(

1− 2k1+k2
3k1+k2

)
τ
.

The strategy followed to prove this statement is identical to the one adopted to prove Theorem 4.0.1.
We will prove a Theorem analogous to Theorem 4.1.2 that will guarantee the existence of limiting laws,
with a non-trivial EI, for stochastic processes where M is the direct product of two dynamically gener-
ated Cantor Sets, Λ1 and Λ2. This is done by defining a dynamics, adapted from T̄ , fully compatible
with Λ1 ×Λ2.
Theorem 4.2.1 will then follow as a direct application of such result when Λ1 = Λ2 = C .

4.2.1 Clustering and Product Structure

Start by considering the observable ϕΛ stated in (4.1.1), i.e

ϕΛ(x) =

{
n, if x ∈ Λn \Λn+1, n = 1,2,3 . . .
∞, otherwise.

Using this observable and the dynamics T̄ , we constructed in Section 4.1.1, a stochastic process
Xn = ϕΛ ◦ T̄ n. In Theorem 4.1.2, it was established sufficient conditions for the existence of a limiting
law, with a non-trivial EI, for Xn using the compatibility between the dynamics and the set Λ.
In what follows, we consider two dynamically generated sets, Λ1 and Λ2, with associated compatible
maps denoted, respectively, by T1 = Fk1

1 and T2 = Fk2
2 , for k1,k2 ∈ N.

The direct product of Λ1 and Λ2 represented by Σ, is a fractal set contained in [0,1]2. The n-th
approximation to Σ is defined as Σn = Λ1,n×Λ2,n, where Λ1,n and Λ2,n represent the n-th approximation
to, respectively, Λ1 and Λ2.
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Consider the map T : [0,1]2 → [0,1]2, given by

T (x,y) = (T1(x),T2(y)). (4.2.3)

Due to the product structure present in Σ, we can use Lemma 4.1.1 to establish the compatibility
between T and Σ.
Let k = max{k1,k2}, we claim that, if j ≤ n/k, then

T− j(Σn)∩Σn = Λ1,n+k1 j ×Λ2,n+k2 j. (4.2.4)

Using the properties of the direct product, we write that,

T− j(Σn)∩Σn =
(

T− j
1 (Λ1,n)∩Λ1,n

)
×
(

T− j
2 (Λ2,n)∩Λ2,n

)
. (4.2.5)

Applying Lemma 4.1.1 to 4.2.5 we obtain that

T− j(Σn)∩Σn = Λ1,n+k1 j ×Λ2,n+k2 j

and the claim follows.
We remark that this result implies that T− j(Σ) = Σ and clustering is to be expected when Σ is defined
to be the maximal set of the considered observable.
To construct an observable whose maximal set is Σ, we use the function ϕΛ.
The observable that we will be considering depends upon the chosen sets Λ1 and Λ2 and it is defined as

ψ̂(x,y) =

{
n, if min(ϕΛ1(x),ϕΛ2(y)) = n
∞, otherwise.

(4.2.6)

The maximal set of this observable is, precisely, the set Σ. Moreover, the function ψ follows directly
from ψ̂ when Λ1 = Λ2 is the ternary Cantor set C .
The map T is a multidimensional piecewise expanding map as defined by Saussol in [39]. Consequently,
it has decay of correlations for quasi-Hölder observables against L1, with respect to the invariant
measure µ ×µ denoted by µ2. This allows us to prove the following Theorem.

Theorem 4.2.2. Consider (Xn)n∈N to be the stochastic process constructed as in (2.2.1) for the
dynamical system T in (4.2.3) and the observable ψ̂ in (4.2.6). Consider a sequence of thresholds
(un)n∈N and a sequence (wn)n∈N such that,

wn =
⌊

τ
[
µ(Λ1,⌊un⌋)µ(Λ2,⌊un⌋)

]−1
⌋
.

Let k = max{k1,k2} and consider a sequence (qn)n∈N as in (3.1.1) satisfying 1 ≤ qn ≤ un/k.
Assume that exists (tn)n∈N, where tn = o(wn), such that the following conditions hold:

1. lim
n→∞

∥1Aqn ,n
∥αwnρ(tn) = 0 for some 0 < α ≤ 1
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2. lim
n→∞

∥∥∥1
UT1

n

∥∥∥
BV

µ
(
UT2

n
) ∞

∑
j=qn

ρ
1
j = 0

3. lim
n→∞

∥∥∥1
UT2

n

∥∥∥
BV

µ
(
UT1

n
) ∞

∑
j=qn

ρ
2
j = 0

4. lim
n→∞

∥∥∥1
UT1

n

∥∥∥
BV

∥∥∥1
UT2

n

∥∥∥
BV

∞

∑
j=qn

ρ
1
j ρ

2
j = 0.

Furthermore, assume that exists 0 ≤ θ ≤ 1 such that

θ = lim
n→∞

µ2(Σ⌊un⌋ \ (Λ1,⌊un⌋+k1 ×Λ2,⌊un⌋+k2))

µ2(Λ1,⌊un⌋×Λ2,⌊un⌋)
.

Then,
lim
n→∞

µ
2(Mwn ≤ n) = e−θτ .

Proof. Start by considering a sequence of thresholds (un)n∈N.
Due to the definition of ϕΛ,

UT1
n = {x ∈ [0,1] : ϕ̂Λ1(x)> un}= Λ1,⌊un⌋

and
UT2

n = {y ∈ [0,1] : ϕ̂Λ2(y)> un}= Λ2,⌊un⌋.

By construction of ψ̂ , the point (x,y) ∈ [0,1]2 satisfies the equation ψ̂(x,y) > un, if and only if,
ϕΛ1(x)> un and ϕΛ2(y)> un.
Hence,

Un =
{
(x,y) ∈ [0,1]2 : ψ̂(x,y)> un

}
= Λ1,⌊un⌋×Λ2,⌊un⌋ =UT1

n ×UT2
n .

Moreover, condition (3.0.5) is verified since,

wnµ
2(Un) =

⌊
τ(µ(Λ1,⌊un⌋)µ(Λ2,⌊un⌋))

−1⌋
µ(Λ1,⌊un⌋)µ(Λ2,⌊un⌋)−−−→n→∞

τ.

The maps T1 and T2 have decay of correlations for observables in BV against L1(µ). Moreover, the
dynamics T has decay of correlations for quasi-Hölder observables against L1(µ2). Denote the rate
functions of T1, T2 and T by ρ1, ρ2 and ρ , respectively.
Using Theorem 3.3.2, we obtain that conditions (1) thru (4) guarantee that conditions Дqn(un,wn) and
Д′

qn
(un,wn) hold.

Noting that, Λ1,i+i∗ ×Λ2, j+ j∗ ⊆ Λ1,i ×Λ2, j, for all i, i∗, j, j∗ ∈ N and using relation (4.2.4), we can
establish that

Aqn,n = Σ⌊un⌋ \
(
Λ1,⌊un⌋+k1 ×Λ2,⌊un⌋+k2

)
.
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for all qn satisfying 1 ≤ qn ≤ un/k.
The value of the EI follows from O’Brien’s formula.

4.2.2 Application to the Cantor Dust

As pointed out before, we now use Theorem 4.2.2 to prove the limiting law stated in Theorem 4.2.1.

Proof of Theorem 4.2.1. The set C is dynamically generated by the IFS f1 = x/3 and f2 = x/3+2/3.
Theorem 4.2.1 follows by making Λ1 = Λ2 = C and applying Theorem 4.2.2.

The map considered is T = (T1(x),T2(y)), where T1(x) = 3k1x mod 1 and T2(x) = 3k2x mod 1, for
k1,k2 ∈ N satisfying

1+
min{k1,k2}
max{k1,k2}

> log3(4).

Observe that, the invariant measure associated with T is Leb2 and the invariant measure associated
with T1 and T2 is Leb.
Set un = n, wn = ⌊τ(2/3)−2n⌋ and qn = ⌊n/k⌋, where k = max{k1,k2} and observe that,

UT1
n =UT2

n = Cn.

Consequently,

µ(UT1
n ) = µ(UT2

n ) =

(
2
3

)n

and
∥∥∥1

UT1
n

∥∥∥
BV

=
∥∥∥1

UT2
n

∥∥∥
BV

≤ 2n+1.

The maps T1 and T2 have decay of correlations of BV observables against L1(Leb), with rate functions
ρ1

n = (1/3)k1n and ρ2
n = (1/3)k2n.

It is necessary to show that conditions (2) thru (4) of Theorem 4.2.2 hold.
Making the necessary substitutions, there exists constants C,C′,C′′ > 0 such that,

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
BV

Leb(UT1
n )

∞

∑
j=qn

ρ
1
j ≤C lim

n→∞

4n

3n(1+k1/k)
= 0

lim
n→∞

∥∥∥1
UT2

n

∥∥∥
BV

Leb(UT2
n )

∞

∑
j=qn

ρ
2
j ≤C′ lim

n→∞

4n

3n(1+k2/k)
= 0

and

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
BV

∥∥∥1
UT2

n

∥∥∥
BV

∞

∑
j=qn

ρ
1
j ρ

2
j ≤C′′ lim

n→∞

4n

3n(k1/k+k2/k)
= 0.

Therefore, considering the restrictions imposed on k1 and k2, conditions (2) thru (4) hold.
The next step is to prove that condition (1) of Theorem 4.2.2 holds. For that purpose, it is necessary to
achieve a value for ∥1Aqn ,n

∥α .
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Let C(A) denote the number of connected components of a set A and P denote the maximum perimeter
of the connected components of Aqn,n.
Then, for a given 0 < α ≤ 1 and ε0 > 0,

|Aqn,n|α ≤ sup
0<ε≤ε0

ε
−α (εC(Aqn,n)P) .

Hence, we achieve that
|Aqn,n|α ≤ PC(Aqn,n)

and
∥1Aqn ,n

∥α ≤ Leb2(Aqn,n)+PC(Aqn,n).

We now estimate the values of Leb2(Aqn,n), C(Aqn,n) and P.
Set Σ = C then, following the proof of Theorem 4.2.2, we can write,

Aqn,n = Cn \ (Cn+k1 ×Cn+k2)

and we obtain

Leb2(Aqn,n) = (2/3)2n(1− (2/3)k1+k2).

Each connected component of the set Cn is a square with side length equal to 1/3n and each connected
component of Cn+k1 ×Cn+k2 is a rectangle, where the sides measure 1/3n+k1 and 1/3n+k2 . This implies
that, each candidate to a connected component of Aqn,n is a square, with side length 1/3n, with
rectangular holes where the sides of each hole measure 1/3n+k1 and 1/3n+k2 . Figure 4.5 aims to
represent this reasoning when k1 = 1 and k2 = 2.
It is necessary to show that, this candidates to connected components form indeed one single connected
component of Aqn,n. To make such verification, it is enough to note that, due to scaling properties of
the ternary Cantor set, the pattern of the rectangular holes in each square is similar to the scheme of the
connected components of the set Ck1 ×Ck2 . Since Ck1 and Ck2 always have a gap between each interval
that belongs to the set, this suffices to show that

C(Aqn,n) =C(Cn) = 4n.

Moreover, the regularity of the connected components of Aqn,n allows to estimate its maximum
perimeter. Each connected component of Aqn,n is a square with 2k1+k2 rectangular holes. Since each
hole is a rectangle contained in [0,1]× [0,1] the maximum perimeter of each hole is 4. Hence, the
maximum perimeter of each connected component is 4(2k1+k2 +1).
Making the necessary substitutions, we obtain that

∥1Aqn ,n
∥α ≤ Leb2(Aqn,n)+4(2k1+k2 +1)C(Aqn,n). (4.2.7)
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Fig. 4.5 Representation of each connected component of the set Aqn,n when k1 = 1 and k2 = 2. The
white rectangular holes in the picture correspond to the connected components of the set Cn+1 ×Cn+2
that we delete from each connected component of Cn. The remaining part of each connected component
of Cn forms a connected component of the set Aqn,n.

The map T has decay of correlations for quasi-Hölder observables against L1(Leb2) with rate function
ρn = 1/3n.
Let tn = n2, then tn = o(wn) and there exists a constant C′′′ > 0 such that

lim
n→∞

∥1Aqn ,n
∥αwnρtn ≤ lim

n→∞

(
Leb2(Aqn,n)+4(2k1+k2 +1)C(Aqn,n)

)
wnρtn

≤ lim
n→∞

(C′′′(2/3)2n +(2k1+k2 +1)4n+1)(τ(2/3)−2n)
1

3n2

= 0

and condition (1) of 4.2.2 holds.
To finish the proof, we use O’Brien’s formula to establish that

θ = lim
n→∞

Leb2(Cn \ (Cn+k1 ×Cn+k2))

Leb2(Cn)

= lim
n→∞

(2/3)2n(1− (2/3)k1+k2)

(2/3)2n

= 1− (2/3)k1+k2 .



Chapter 5

Absence of Clustering with Fractal
Maximal Sets

In the last chapter, we established the existence of an extreme value law for the stochastic process
Xn constructed using an observable maximized in the ternary Cantor set C . The dynamics used was
the map mx mod 1, where m = 3k for some integer k. This choice of m allowed us to guarantee the
preservation, by the dynamics, of the maximal set C leading to the appearance of an extremal index
lower than 1.
Following the same setting introduced in Chapter 4, we now generalize this result by proving the
following theorem.

Theorem 5.0.1. Let (Xn)n∈N be the stochastic process constructed as in (2.2.1) for a dynamical system
T defined in (4.0.2), with N ∋ m ̸= 3k for all k ∈ N. Consider a sequence of thresholds (un)n∈N such
that un = n and a sequence of times (wn)n∈N such that wn = ⌊τ (3/2)n⌋.
Then, condition (3.0.5) holds and, moreover

lim
n→∞

µ(Mwn ≤ n) = e−τ .

We saw that, when m = 3k the maximal set was acting like a periodic point for the dynamics, i.e
T j(M ) = M for all j ∈ N. This led to a big recurrence of the maximal set to itself resulting in the
existence of clusters of exceedances.
When m ̸= 3k for all k ∈N, although T j(M ) ̸= M for all j ∈N, one can easily check that, most of the
times, we have that T− j(M )∩M ̸= /0 and this was enough to create clustering when M was a finite
or countable set (see [3, 4]). However, here, the maximal set has a much more complex structure and
one needs to evaluate how relevant the intersections T− j(M )∩M are when compared with M itself,
which translates to how compatible the dynamics of T is with the fractal structure of M . We will see
that, since C has a thickness not less than 1 (i.e., the extractions in the construction of the Cantor set
are relatively not too large), then the relevance of the intersections (or the compatibility between T
and M ) can be measured by the box dimension of the intersections T− j(M )∩M , when compared
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with the box dimension of M itself. We will show that the box dimension of T− j(M )∩M is strictly
smaller than that of M (Proposition 5.2.1), which means that the possible clustering created by the fact
that T− j(M )∩M ̸= /0 is negligible and, in the limit, the EI is still 1.
The computation of the EI is much more subtle than the previous cases. We need results from fractal
geometry in order to compute the dimension of the intersections T− j(M )∩M and then we need to
study its impact on O’Brien’s formula (3.1), for which we will perform a finer analysis using the notion
of thickness of dynamically defined Cantor sets introduced by Newhouse in [36].
The proof of Theorem 5.0.1 will be done by ensuring the existence of an EI equal to 1 and the validity
of conditions Дqn and Д′

qn
. This will be done throughout Section 5.2.

The computation of the EI will be performed using the box dimension of the sets T− j(M )∩M . For
the purpose of calculating the box dimension of such sets, we start by introducing the concept of
Digraph Iterated Function Systems.

5.1 Digraph IFS and Intersection of Sets

The notion of Digraph IFS generalizes the most common set up of Iterated Function Systems and it
was introduced in [32]. A Digraph IFS consists of a digraph G where the set of vertices is denoted
by V and the set of edges is denoted by E. To each of the vertices, we associate a metric space Xv.
Furthermore to each of the edges between two vertices u and v, denoted by e ∈ Euv, we associate a
similarity fe : Xv → Xu with ratio re.
For every path α in the graph G, we form the function fα by composing the functions fe along the path
in reverse order. The ratio rα of fα is just the multiplication of the ratios of the composed function.
If every rα is less than one, then, there exists a set W which is a union of compact sets Wv, one for
every vertex, such that for every u ∈V ,

Wu =
⋃
v∈V

⋃
e∈Euv

fe(Wv). (5.1.1)

This invariant set W is called the attractor of the Digraph IFS. The existence of this set W is guaranteed
if the similarities fe have ratios smaller than one (see [12]).
It is possible to represent a Digraph IFS in matrix notation. For that purpose, we construct a Digraph
IFS matrix M∗ with entries indexed by (u,v) ∈V ×V . The value of each entry will be the set of edges
that link one vertex to another. To a Digraph IFS, G, we also associate a Digraph IFS substitution
matrix M which is no more than the adjacency matrix of the digraph G.

If E is an attractor of a standard IFS, Mark McClure found in [33] a way to represent the set E ∩g(E),
where g is bijection, as an attractor of a Digraph IFS.
For that purpose he proved the following theorem.

Theorem 5.1.1. Let E be an attractor of an IFS, { fi}m
i=1, such that all functions fi are bijective

contractions. Assume that exists a finite set of bijections S such that, for all g∈ S satisfying E∩g(E) ̸= /0
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and for all i, j = 1, . . . ,m satisfying E ∩ f−1
i g f j(E) ̸= /0 then f−1

i g f j ∈ S. Under this condition the list
of sets {E ∩g(E) : g ∈ S} forms the attractor of a Digraph IFS.

To construct the Digraph IFS whose attractor is E ∩g(E) it is necessary to use an iterative process to
find the set of functions S.
We start with a set S0 = {g}, then we define the set

Sk+1 = Sk ∪
{

f−1
i h f j : h ∈ Sk and i, j = 1, . . . ,m

}
.

To fulfill the hypotheses of Theorem 5.1.1, in each step, we select only those functions h such that,
E ∩h(E) ̸= /0. We continue the procedure until no new function is produced.
The functions in S will work as the vertices of the Digraph IFS while the edges will be labeled by the
functions fi. So each row and line of the matrix M∗ can be labeled by a function that belongs to the set
S. Each entry of this matrix can then be represented by a par of functions (g,h) ∈ S×S. Each of the
entries (g,h) will be a finite set of functions

{ f1, f2, . . . , fk} ,

whose cardinal is the number of directed edges from g to h, where a function fi belongs to the set if
and only if

h = f−1
i g f j,

for some j.
The substitution matrix M of the Digraph IFS, will be the matrix M∗ but with each entry replaced by
the cardinal of the corresponding set.

Definition 5.1.2 (Open Set Condition). A Digraph IFS satisfies the open set condition if and only if
there exists open sets Ωv ∈ Xv such that, for every u,v ∈V and e ∈ Euv,

fe(Ωv)⊆ Ωu

and for all u,v,v′ ∈V , e ∈ Euv and e′ ∈ Euv with e′ ̸= e,

fe(Ωv)∩ fe′(Ωv′) = /0.

From [32], one has that the Hausdorff dimension of the attractor W of a Digraph IFS satisfying the
open set condition, which by [10] and under certain conditions that are verified in our setting, is equal
to its box dimension, can be written in terms of the spectral radius of M and the common ratios of the
similarities of the Digraph IFS. We refer the reader to Appendix A for more a detailed discussion on
the fractal dimension of attractors of Digraph IFS and spectral radius of matrices.
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5.2 Dimension Estimates and Absence of Clustering

This section is dedicated to the proof of Theorem 5.0.1. The first step will be to estimate the dimension
of the sets T−q(C )∩C using the procedure described in Section 5.1. Then, using the notion of
thickness, we will link dimension estimates to EI estimates. The proof will become complete by
verifying conditions Дqn and Д′

qn
.

5.2.1 Dimension Estimates

We will apply the procedure described in Section 5.1 to estimate the box dimension of the set T−q(C )∩
C . Our main goal is to show the following proposition.

Proposition 5.2.1. Let T = mx mod 1, where N ∋ m ̸= 3k for any k ∈N. Then, for all q ∈N, we have:

dimH(T−q(C )∩C ) = dimB(T−q(C )∩C )≤ 1
2
.

We start by noting that, for any q integer,

T q(x) = mqx mod 1.

Therefore, the set T−q(C ) is a union of sets formed by taking the preimage of C by each one of the
branches of T q. When restricted to each of the branches T q is a bijection. Therefore, we will use the
algorithm described in the previous section to represent the intersection of the preimage of C , by each
one of the branches of T q, with C as a Digraph IFS attractor.
Due to the form of T , the functions g of interest to us to start the algorithm described in Theorem 5.1.1
are of the form

g =
1

mq x+bg, (5.2.1)

where bg is of the form k/(mq) with k an integer less than mq.
The algorithm leads to the construction of mq sets of functions, which we denote by Sk

q for k ∈
{0, . . . ,mq −1}, depending on the constant term of the function g that initiates the algorithm. Each of
the sets Sk

q yields a substitution matrix Mk
q associated with the respective Digraph IFS.

Define the functions fi = x/3+ bi, where bi is either 0 or 2/3. This set of functions forms an IFS
whose attractor is the ternary Cantor set C .
For a given q and k, the functions h = f−1

i g f j that belong to the set Sk
q, are of the form,

f−1
i g f j =

1
mq x+3

(
1

mq b j +bg −bi

)
,
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where g already belongs to the set in question. Hence, for h to belong to Sk
q, it is necessary that its

constant term satisfies

3
(

1
mq b j +bg −bi

)
∈
{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
. (5.2.2)

This implies that, all the functions in Sk
q are of the form,

1
mq x+

s
mq ,

where s ∈ {−1,0, . . . ,mq}.
For the computation of the box dimension of a Digraph IFS attractor, it is necessary to caracterize the
respective substitution matrix. Hence, we proceed now to the characterization of the matrices Mk

q . For
better understanding, we divided this process into the following smaller results.

Lemma 5.2.2. Let q ∈ N0 and k ∈ {0, . . . ,mq −1}, then, every entry of the matrix Mk
q is either 0 or 1.

Proof. Fix q, k and let g be a function in Sk
q. As seen in (5.2.2), any other function h that belongs to

the set Sk
q must be equal to

h =
1

mq x+bh,

where bh is of the form s/(mq) with s ∈ {−1, . . . ,mq}.
To prove the Lemma, we will need to address two different cases, each with two different possibilities:

• If h = f−1
1 g f2 then h ̸= f−1

2 g f1,

• If h = f−1
1 g f2 then h ̸= f−1

2 g f2,

• If h = f−1
1 g f1 then h ̸= f−1

2 g f1,

• If h = f−1
1 g f1 then h ̸= f−1

2 g f2.

For the first case, assume that h = f−1
1 g f2 and h = f−1

2 g f1. Then, we would obtain

1
mq x+3

(
1

mq b1 +bg −b2

)
=

1
mq x+3

(
1

mq b2 +bg −b1

)
.

Since b1 = 0 and b2 = 2/3, we are led to −1 = 1
mq , which is an a contradiction.

Consider that h = f−1
1 g f2 and h = f−1

2 g f2. Then,

1
mq x+3

(
1

mq b1 +bg −b2

)
=

1
mq x+3

(
1

mq b2 +bg −b2

)
,
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and 2/mq = 0, which is a contradiction.
Consider that h = f−1

1 g f1 and h = f−1
2 g f1. Then,

1
mq x+3

(
1

mq b1 +bg −b1

)
=

1
mq x+3

(
1

mq b2 +bg −b1

)
,

and 2/mq = 0 which is, again, a contradiction.
For the last case, assume that h = f−1

1 g f1 and h = f−1
2 g f2 and observe that

1
mq x+3

(
1

mq b1 +bg −b1

)
=

1
mq x+3

(
1

mq b2 +bg −b2

)
implies 1 = 1/mq, which is a contradiction and the Lemma is proved.

Lemma 5.2.3. Let q ∈ N0 and k ∈ {0, . . . ,mq − 1}, then the sum of the elements of each row of the
matrix Mk

q is at most 2.

Proof. Consider a function g in Sk
q. As seen before, any other function h ∈ Sk

q must be of the form

h =
1

mq x+bh,

where bh = s/(mq) with s ∈ {−1, . . . ,mq}.
Accordingly to the possible values of bi and b j there are four different possibilities for the line of Mk

q

indexed by g to have entries equal to 1. We will prove that these cases form two disjoint groups of two
elements, which will prove the claim of the Lemma.

Assume that bi = 0 and b j = 0 and that h = f−1
i g f j belongs to Sk

q. By (5.2.2), the constant term of h
satisfies

3bg ∈
{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
. (5.2.3)

By contradiction, assume that h∗ = f−1
i g f j belongs to Sk

q with bi = 2/3 and b j = 0. Again, by (5.2.2),
the constant term of h∗ satisfies

3bg −2 ∈
{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
. (5.2.4)

Since 2 is larger than the length of the interval
[−1

mq ,1
]
, for any m considered, then the two conditions,

(5.2.3) and (5.2.4), cannot be simultaneously fulfilled for any bg and the two cases are therefore
necessarily disjoint.
Now, assume that bi = 0 and b j = 2/3 and that h = f−1

i g f j belongs to Sk
q.

By (5.2.2), we obtain that the constant term of h satisfies

2
mq +3bg ∈

{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
. (5.2.5)
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Assume further that h∗ = f−1
i g f j belongs to Sk

q with bi = 2/3 and b j = 2/3. Again, by (5.2.2), the
constant term of h∗ satisfies

2
mq +3bg −2 ∈

{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
. (5.2.6)

Since 2 is larger than the length of the interval
[−1

mq ,1
]
, for any possible m, then the two conditions,

(5.2.5) and (5.2.6), cannot be simultaneously fulfilled for any bg and the two cases are, again, disjoint
and the Lemma is proved.

Lemmas 5.2.2 and 5.2.3 allow us to characterize the substitution matrices Mk
q . Each matrix Mk

q is a
(0,1)-matrix, whose spectral radius is less or equal to 2. We will show that, in fact, the spectral radius
is strictly less than 2. In order to do that, we will consider a matrix Nq. This matrix will correspond to
the substitution matrix of the Digraph IFS, D, whose nodes are all possible functions of the form

1
mq x+

s
mq ,

where s ∈ {−1, . . . ,mq}.
The Digraph IFS, D, has an edge from a node g to a node h if

h = f−1
i g f j, (5.2.7)

which implies that the entry (g,h) of the matrix Nq will be different from zero.
Note that, due to relation (5.2.7), then, relation (5.2.2) holds for the constant term of h and Lemmas
5.2.2 and 5.2.3 apply to the matrix Nq without any change in the respective proof. So, Nq is a (0,1)-
matrix whose row entries sum at most 2.
Furthermore, under these assumptions, the matrices Mk

q are principal submatrices of Nq, which means
that if we are able to bound the spectral radius of Nq away from 2, uniformly on q, then, by A.3.1, the
same will apply to Mk

q .

In what follows, we will use the notation a ≡ b mod p, to express the fact that a and b are congruent
modulo p.

Lemma 5.2.4. Assume that m in the definition of T , in (4.0.2), is such that m is not divisible by 3, i.e.,
m ̸≡ 0 mod 3. Then, the matrix Nq has a spectral radius less or equal to

√
3, i.e.,

ρ(Nq)≤
√

3.

Proof. Let g be a function of the form
1

mq x+
s

mq ,

for s ∈ {−1, . . . ,mq}.
If the entry (g,h) of Nq is different from zero, then h = f−1

i g f j and relation (5.2.2) holds. This means
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that the constant term of h satisfies

3
(

1
mq b j +bg −bi

)
∈
{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
.

Depending on the value of bi and b j, we have four different cases.

If b j = 0 and bi = 2/3, then, the constant term of h satisfies

3s−2mq

mq ∈
{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
.

If b j = 0 and bi = 0, then, the constant term of h satisfies

3s
mq ∈

{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
.

If b j = 2/3 and bi = 0, then, the constant term of h satisfies

3s+2
mq ∈

{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
.

If b j = 2/3 and bi = 2/3, then, the constant term of h satisfies

3s−2mq +2
mq ∈

{
−1
mq ,0,

1
mq ,

2
mq , . . . ,1

}
.

Up to this point, every entry of the matrix is indexed by functions of the form 1
mq x+ s

mq , with s ∈
{−1, . . . ,mq}. Hence, we can associate to the entry of the matrix (g,h) the index (s,s∗), where s and
s∗ are the numerators of the constant terms of g and h, respectively. An entry (s,s∗) of Nq is nonzero if
and only if s is such that one of the above cases is verified.

If the first case occurs, then 3s−2mq ∈ {−1, . . . ,mq}. Hence, if Nq
ss∗ ̸= 0, we have that s∗ = 3s−2mq.

If the second case occurs, then 3s ∈ {−1, . . . ,mq} and if Nq
ss∗ ̸= 0 then s∗ = 3s. For the third case,

we need 3s+2 to belong to the set {−1, . . . ,mq} and if Nq
ss∗ ̸= 0 then s∗ = 3s+2. If the last case is

verified, then 3s−2mq +2 belongs to {−1, . . . ,mq} and if Nq
ss∗ ̸= 0 then s∗ = s−2mq +2.

Changing the indices for the more usual set {1, . . . ,mq +2}, we obtain that Nq can be characterized by

Nq
i,3i−2 = 1 if i,3i−2 ∈ {1, . . . ,mq +2}

Nq
i,3i−4 = 1 if i,3i−4 ∈ {1, . . . ,mq +2}

Nq
i,3i−2mq−4 = 1 if i,3i−2mq −4 ∈ {1, . . . ,mq +2}

Nq
i,3i−2mq−2 = 1 if i,3i−2mq −2 ∈ {1, . . . ,mq +2}

Nq
i, j = 0 otherwise.

(5.2.8)
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For a more visual representation of Nq, we may write:

Nq =



1 0 0 . . . . . . . . . . . . 0 0 0 0
0 1 0 1 0 . . . . . . . . . 0 0 0
0 0 0 0 1 0 1 0 . . . 0 0
0 0 0 0 0 0 0 1 0 1 . . .
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

. . . 1 0 1 0 0 0 0 0 0 0
0 0 . . . 0 1 0 1 0 0 0 0
0 0 0 . . . . . . . . . 0 1 0 1 0
0 0 0 0 . . . . . . . . . . . . 0 0 1



. (5.2.9)

The shape of the matrix Nq will depend on how many sequences of (1,0,1) will fit in mq +1 columns.
Since m is not divisible by 3, by Fermat’s Little Theorem, we have m2 ≡ 1 mod 3.
Let q = 2k, for some k ∈ N, then

m2k +1 ≡ 2 mod 3.

If q = 2k+1 for some k ∈ N, then, we have m2k+1 +1 ≡ m+1 mod 3. Hence, in this case

m2k+1 +1 ≡ 0 mod 3 or m2k+1 +1 ≡ 2 mod 3,

depending on whether m ≡ 2 mod 3 or m ≡ 1 mod 3, respectively.
This means that we have two different cases to address, either mq+1 ≡ 0 mod 3 or mq+1 ≡ 2 mod 3.

Let q be such that mq +1 ≡ 2 mod 3. Denote by x = (x1,x2, . . . ,xmq+2) a vector in Rmq+2.
Note that there is no i such that Nq

i,3i−2 = 1 and Nq
i,3i−2mq−2 = 1, in conjunction, or Nq

i,3i−2 = 1 and
Nq

i,3i−2mq−4 = 1, together. Similarly, there is also no i such that Nq
i,3i−4 = 1 and Nq

i,3i−2mq−4 = 1, together,
or Nq

i,3i−4 = 1 and Nq
i,3i−2mq−2 = 1.
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Hence, we can write

Nqx =



x1

x2 + x4

. . .

x2+3α + x4+3α

xmq+1

0
. . .

0
x2

xmq−1−3β + xmq+1−3β

. . .

xmq−1 + xmq+1

xmq+2



,

where α,β are integers that satisfy 0 < α,β < (mq +1)/3.
Consider the sets

A = {i ∈ N : i = 2+3α and 0 < α < (mq +1)/3}

and
B = {i ∈ N : i = mq −1−3β and 0 < β < (mq +1)/3} .

Then, ∥Nqx∥2 can be written as

x2
1 + x2

2 + ∑
i∈A

(xi + xi+2)
2 + ∑

j∈B

(x j + x j+2)
2 + xmq+1 + xmq+2. (5.2.10)

For simplicity, let
A := ∑

i∈A

(xi + xi+2)
2

and
B := ∑

i∈B

(x j + x j+2)
2.

Each coordinate of the vector x appears, at most, once in A and once in B. Let i∗ be such that, xi∗

appears both in A and B and assume that i∗ ∈ A . Then i∗ = j+2 for some j in B. To prove this, we
proceed by contradiction.
Assume that i∗ = j for some j ∈ B. Then,

2+3α = mq −1−3β ,

for some integers α,β . But, this implies that 3 divides m which is a contradiction. With a similar
argument, we prove that, if i∗ = i+2 for some i ∈ A , then i∗ = j for some j ∈ B.

Now, let i∗ be such that xi∗ appears in A and in B and assume that i∗ ∈ A . Then i∗ = j+2 for some
j ∈ B. We will show that xi∗+2 does not appear more than once in (5.2.10).
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If xi∗+2 = x1 or xi∗+2 = x3, then i∗+2 = 1 or i∗+2 = 3 and i∗ cannot belong to A . On other hand, if
xi∗+2 = xmq+2 then

i∗+2 = mq +2

and for some β ∈ N,
mq +1−3β = mq +2

which implies that 3β =−1. This is a contradiction.
A similar argument can be made to show that xi∗+2 ̸= xmq .
To finish, assume that exists a j∗ ∈ B such that i∗+2 = j∗ or i∗+2 = j∗+2. If i∗+2 = j∗, then there
exist integers β and β ∗ such that

mq +1−3β = mq −1−3β
∗.

Hence, 2 = 3(β −β ∗) which is also a contradiction. If i∗+2 = j∗+2, then j∗ ∈A . This is impossible
as proved earlier.
Similarly, if xi∗ appears in A and B and i∗ = i+2 for some i ∈A , then xi cannot appear more than once
in (5.2.10).

Using Proposition A.3.2, we can write that, for any ε > 0,

(xi + xi+2)
2 ≤ (1+ ε)x2

i +(1+1/ε)x2
i+2.

As proved above and due to the matrix pattern, for xl to appear in the sum A and B then l = i for some
i ∈ A and l = j+2 for some in j ∈ B. Hence, for all ε > 0,

∥Nqx∥2 ≤ x2
1 + x2

2 + ∑
i∈A

(1+ ε)x2
i +(1+1/ε)x2

i+2+

∑
i∈B

(1+1/ε)x2
j +(1+ ε)x2

j+2 + x2
mq+1 + x2

mq+2 (5.2.11)

and we can establish that there are coefficients cl such that

∥Nqx∥2 ≤
mq+2

∑
l=1

clx2
l . (5.2.12)

So, choosing ε = 0.5 and if xl appears in both sums A and B, then cl = 2(1+ε) = 3. Furthermore, if xl∗

is another coordinate such that the term (xl + xl∗)
2 appears only in A or in B, then cl∗ = (1+1/ε)≤ 3,

since xl∗ does not appear anywhere else in (5.2.11). On other hand, if x1 appears either in A or B then
c1 is equal to 1+1+ ε ≤ 3 and the same conclusion holds for c2, cmq+1 or cmq+2.
Hence, for every 1 ≤ l ≤ mq +2, we have cl ≤ 3 and, therefore

∥Nqx∥2 ≤ 3
mq+2

∑
l=1

x2
l ≤ 3∥x∥2.
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Consequently, by (A.3.1),
ρ(Nq)≤

√
3.

If mq +1 ≡ 0 mod 3, in a very similar way, we obtain

∥Nqx∥2 = x2
1 + ∑

i∈A

(xi + xi+2)
2 + ∑

j∈B

(x j + x j+2)
2 + xmq+2.

Then using the inequality

∥Nqx∥2 ≤ x2
1 + ∑

i∈A

(1 + 1/ε)x2
i + (1 + ε)x2

i+2 + ∑
j∈B

(1 + ε)x j + (1 + 1/ε)x2
j+2 + xmq+2,

with ε = 0.5, the proof follows for all q.

We point out that each of the Digraph IFS associated to the intersection T−q(C )∩C satisfies the open
set condition. Each digraph is composed of only two different similarities, x/3 and x+2/3. Hence,
choosing Ωv = (0,1) for every v ∈V , we can check that the conditions in Definition 5.1.2 are easily
satisfied. Using this remark and the discussion made in Section A.2 of the Appendix A regarding the
fractal dimension of attractors of Digraph IFS, we can proceed to the proof of Proposition 5.2.1.

Proof of Proposition 5.2.1. Recalling that the matrices Mk
q of each Digraph IFS associated to the

intersection T−q(C )∩C are principal submatrices of Nq, then A.3.1 implies that

ρ(Mk
q)≤ ρ(Nq).

Hence, if m is not divisible by 3, Lemma 5.2.4 gives us ρ(Mk
q)≤

√
3. Consequently, noting that each

Digraph IFS associated with a (0,1)-matrix Mk
q satisfies the open set condition and is composed of

only two different similarities, x/3 and x+2/3, both with ratio 1/3, we can apply Theorem A.2.1 and
A.2.2 to estimate the Hausdorff dimension of T−q(C )∩C , namely,

dimH(T−q(C )∩C )≤ log
√

3
− log1/3

=
1
2
,

for all q ∈ N.
Moreover, as checked in Section A.2 of the Appendix A, conditions of Theorem A.2.4 and Theorem
A.2.3 are satisfied in our setting and therefore dimH(T−q(C )∩C ) = dimB(T−q(C )∩C ), which allows
us to obtain:

dimB(T−q(C )∩C )≤ log
√

3
− log1/3

=
1
2
<

log2
log3

= dimB(C ). (5.2.13)

So far, m is not divisible by 3. Using the self-similarity of the Cantor set C it is possible to extend our
findings to the cases where m = 3kc, for some integers c,k > 1 such that c is not divisible by 3. Figure
5.1 intends to illustrate our reasoning for the case where k = 1, c = 2 and q = 1.
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Consider the map T̃ (x) = cx mod 1. We claim that

dimB(T−q(C )∩C ) = dimB(T̃−q(C )∩C ).

Let gγ : R→ R be given by g(x) = γx for all x ∈ R. The set T−q(C )∩C is obtained by intersecting
3kqcq copies of the set g3−kqc−q(C ) distributed side by side along the interval [0,1], with the set C .

C1
10

T−1(C )

Copy of
g3−12−1(C )

Copy of
g3−1(T̃−q(C ))

Fig. 5.1 For c = 2 and k = 1 this figure illustrates the relation between T̃−1(C )∩C and T−1(C )∩C .

Note that because of the self-similarity of C , the intersection of each of the 2kq connected components
of Ckq with C is a copy of g3−kq(C ). Moreover, each of the 2kq connected components of Ckq meets
exactly cq of the copies of the set g3−kqc−q(C ) that constitute T−q(C ). Therefore, the intersection of
the set T−q(C )∩C with each of the 2kq connected components of Ckq is a copy of g3−kq(T̃−q(C )∩C )

and the claim follows.

Remark 5.2.5. We note that when m = 3k for some k ∈ N, one can check that the matrices Nq have
a spectral radius equal to 2, which means that the box dimension of T−q(C )∩C is equal to the box
dimension of C . For example, if m = 3 and q = 1 then

Nq =


1 0 0 0 0
0 1 0 1 0
0 0 0 0 1
0 1 0 1 0
0 0 0 0 1

 ,

which can be easily checked to have a spectral radius equal to 2. This is consistent with what we proved
in Theorem 4.0.1.

5.2.2 From Dimension Estimates to EI estimates

In this section, we show how to make use of the information regarding the irrelevance of the intersection
of C with its iterates, in order to compute the EI of the limiting law stated in Theorem 5.0.1. Essentially,
we have to translate the difference between the box dimension of C and T−q(C )∩C to the difference
between the Lebesgue measure of the respective convex hull approximations of decreasing size. We
will use some ideas used by Newhouse in [36], such as thickness, to study invariants of Cantor sets to
prove the abundance of wild hyperbolic sets.
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Again, let C denote the ternary Cantor set and Cn its n-th approximation consisting of 2n disjoint
intervals of length 3−n and let Cn denote the collection of intervals whose disjoint union forms Cn.
Note that Cn is a set while Cn is a collection of sets. Consider that T−q(Cn) is the collection of all
the connected components of T−q(Cn). We consider the set C ∩T−q(C ). Note that Cn ∩T−q(Cn) ↓
C ∩T−q(C ).
Let A denote the closure of A, Å its interior and Ac its complement. Define

N3−n = #{I ∈ Cn : I̊ ∩ (C ∩T−q(C )) ̸= /0}, (5.2.14)

N∗
3−n = #{I ∈ Cn : I̊ ∩ (Cn ∩T−q(Cn)) ̸= /0}. (5.2.15)

Since C ∩T−q(C )⊂Cn∩T−q(Cn), then N3−n ≤N∗
3−n . However, one can prove that something stronger.

Proposition 5.2.6. If n is sufficiently large so that 3−n ≤ m−q, we have that N3−n = N∗
3−n .

In order to prove the proposition, we need the following result which follows from the thickness
property of the ternary Cantor set C .

Definition 5.2.7. Let Λ be a Cantor set (not necessarily the ternary Cantor set C but homeomorphic to
C ). To define thickness, we consider the gaps of Λ: a gap of Λ is a connected component of R\Λ; a
bounded gap is a bounded connected component of R\Λ.
Let U be any bounded gap and u be a boundary point of U such that u ∈ Λ. Let B be a bridge of Λ at u,
i.e. the maximal interval in R such that

• u is a boundary point of B;

• B contains no point of a gap U ′ whose length |U ′| is at least the length of U .

The thickness of Λ at u is defined as ρ(Λ,u) = |B|/|U |. The thickness of Λ, denoted by ρ(Λ), is the
infimum over these ρ(Λ,u) for all boundary points u of bounded gaps.

In the construction of the ternary Cantor set C the gaps created at the n− th step of its construction
have the exact same size as the connected components of Cn, therefore, the thickness of C is equal to 1.
The next lemma resembles the Gap Lemma in [36, 38], which was stated for two Cantor sets Λ1 and
Λ2 such that ρ(Λ1) ·ρ(Λ2)> 1. The conclusion was that either their intersection is nonempty or one
of them is contained inside a gap of the other. Since, here, we need to consider two Cantor sets, both
with thickness equal to 1, we prove the following result which allows, in particular, to generalise the
statement of the Gap Lemma.
Note that, if the maximal set M was such that ρ(M )> 1 then, we could skip this step.

Lemma 5.2.8. Let f ,g : R→ R be two affine transformations such that f ([0,1])∩g([0,1]) ̸= /0, and
let Λ1 = f (C ) and Λ2 = g(C ). Then, either Λ1 ∩Λ2 ̸= /0 or one of them is contained inside a gap of
the other (i.e., f ([0,1]) is contained inside a gap of Λ2 or g([0,1]) is contained inside a gap of Λ1).



59

Proof. Let us assume that neither Λ1 nor Λ2 are contained inside a gap of the other and assume that
Λ1∩Λ2 = /0, and derive a contradiction. Let us denote by G1 a gap of Λ1 and G2 a gap of Λ2. We say that
(G1,G2) form a gap pair if G2 contains exactly one boundary point of G1, which also contains exactly
one boundary point of G2. Recall that the boundary points of G1 belong to Λ1, as the boundary points of
G2 must belong to Λ2. Observe that such a gap pair must always exist because f ([0,1])∩g([0,1]) ̸= /0
and otherwise the points of Λ2 could never be removed from f ([0,1]) in order to have that Λ1 ∩Λ2 = /0
(having in mind that neither f ([0,1]) nor g([0,1]) are contained inside a gap o Λ2 and Λ1, respectively).
Given such a pair we build a sequence of gap pairs (G(i)

1 ,G(i)
2 )i∈N such that either |G(i+1)

1 |< |G(i)
1 | or

|G(i+1)
2 | < |G(i)

2 |. Let
(

G(i)
1 ,G(i)

2

)
be given. Let m, p ∈ N be the smallest integers such that G(i)

1 ,G(i)
2

appear as gaps of f (Cm),g(Cp), respectively. Let Cℓ
1,C

r
1 and Cℓ

2,C
r
2 be the intervals of f (Cm),g(Cp),

respectively, that appear to the left and right of the gaps G(i)
1 and G(i)

2 and share the respective border
points. Note that by construction we have that |Cℓ

1|= |Cr
1|= |G(i)

1 | and |G(i)
2 |= |Cℓ

2|= |Cr
2|. Therefore,

we must have that the right endpoint of G(i)
2 belongs to Cr

1 or the left endpoint of G(i)
1 belongs to Cℓ

2,
or both. Let us assume w.l.o.g. that the first case happens and denote by T the right endpoint of G(i)

2 .
Clearly, T ∈ Λ2 and, since we are assuming that Λ1 ∩Λ2 = /0, we have T /∈ Λ1. Hence, T must fall
into some gap of Λ1 inside Cr

1, which we will denote by G(i+1)
1 . Since |Cr

1| = |G(i)
1 |, it follows that

|G(i+1)
1 | < |G(i)

1 |. In this case, we set G(i+1)
2 = G(i)

2 and define
(

G(i+1)
1 ,G(i+1)

2

)
as the new gap pair.

It follows that limi→∞ |G(i)
1 | = 0 or limi→∞ |G(i)

2 | = 0, or both. Assume the first and let yi ∈ G(i)
1 and

y be an accumulation point of (yi)i∈N. Then y is also an accumulation point of the right endpoints
of G(i)

1 , which belong to Λ1, and of the left endpoints of G(i)
2 , which belong to Λ2 and, by definition

of gap pair, are all inside G(i)
1 . But since Λ1 and Λ2 are compact sets, then y ∈ Λ1 ∩Λ2, which is a

contradiction.

Proof of Proposition 5.2.6. Observe that T−q(Cn) corresponds to mq copies of Cn contracted by the
factor m−q and placed side by side on [0,1]. Let I ∈ Cn be an interval such that I̊∩ (Cn ∩T−q(Cn)) ̸= /0.
Let J ∈ T−q(Cn) be an interval of T−q(Cn) such that J ∩ I̊ ̸= /0. Note that Λ1 := I ∩C and Λ2 :=
J ∩T−q(C ) are copies of the original Cantor set, due to its self-similarity property. In fact, if we
let f ,g to be affine transformations such that f ([0,1]) = I and g([0,1]) = J, then I ∩C = f (C ) and
J∩T−q(C ) = g(C ). Noting that |J| ≤ |I|, then if J is not contained in any gap of Λ1, by Lemma 5.2.8,
it follows that Λ1 ∩Λ2 ̸= /0 and therefore I ∩ (C ∩T−q(C )) ̸= /0. If J is contained in some gap of Λ1,
we consider J1 to be the interval of T−q(Cn−1) that contains J. If J1 is not contained entirely in the
same gap in which J is contained, then, since by the structure of the Cantor sets we must still have that
|J1| ≤ |I|, then by the argument above we are lead to the same conclusion that I ∩ (C ∩T−q(C )) ̸= /0.
If J1 is still contained in the same gap of Λ1, we define J2 as the interval of T−q(Cn−2) that contains J
and so on, until, eventually, we find some k ≤ n so that Jk is not contained entirely in the same gap in
which J is contained and |Jk| ≤ |I|. This is guaranteed because the size of the gap of Λ1 ⊂ I is smaller
than 3−n ≤ |Jn|.

Using the results above, we can proceed with the computation of the Extremal Index θ .
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Let Ñ3−n denote the minimum number of balls of radius 3−n to cover the set C ∩T−q(C ). By definition
of box dimension stated in Appendix A, we have that

lim
n→∞

log Ñ3−n

log3n ≤ log
√

3
log3

=
1
2
.

Hence, there exists an ε > 0 such that

γ :=
1
2
+ ε <

log2
log3

,

and, for n sufficiently large,
Ñ3−n < eγn log3. (5.2.16)

Observe that 3Ñ3−n balls of radius 3−n are enough to cover the set Cn−1 ∩T−q(Cn−1). Since Cn ∩
T−q(Cn)⊆ Cn−1 ∩T−q(Cn−1), we have

Ñ3−n ≤ N3−n ≤ 3Ñ3−n .

Applying Proposition 5.2.6, we obtain that, for n sufficiently large (in particular, such that 3−n < m−q),

Ñ3−n ≤ N∗
3−n ≤ 3Ñ3−n .

This implies that

µ(Cn ∩T−q(Cn)) =
1
3n N∗

3−n ≤
3Ñ3−n

3n .

Hence, by 5.2.16,

µ(Cn ∩T−q(Cn))≤
3eγn log3

3n . (5.2.17)

Recall that the sequence of thresholds (un)n∈N is such that un = n, which means that Un = Cn and then
O’Brien’s formula (3.1) gives:

lim
n→∞

1−θn = lim
n→∞

µ(Cn \Aqn,n)

µ(Cn)
. (5.2.18)

The set Aqn,n depends on a sequence (qn)n∈N that we are going to choose in the following way:

qn :=
⌈

n
log3
logm

⌉
. (5.2.19)

Note that qn = o(wn) as required and, moreover, we have 3−n ≤ m−qn , for all n ∈ N, which guarantees
that we can apply Proposition 5.2.6 and estimate (5.2.17) holds, for all q ≤ qn. Then, observing that
Cn \Aqn,n ⊆

⋃qn
i=1(Cn ∩T−i(Cn)), we get

µ (Cn \Aqn,n) = µ

(
qn⋃

q=1

(Cn ∩T−q(Cn))

)
≤

qn

∑
q=1

µ(Cn ∩T−q(Cn))≤ 3qn
eγn log3

3n .
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Picking up on (5.2.18) and since γ log3 < log2, we finally obtain

lim
n→∞

1−θn = lim
n→∞

µ(Cn \Aqn,n)

µ(Cn)
≤ lim

n→∞
3qn

eγn log3

3n

(2
3)

n
≤ 3 lim

n→∞
qnen(γ log3−log2) = 0.

Therefore, θ = 1.

5.2.3 The Existence of Limiting Laws

To finish the proof of Theorem 5.0.1, it is only necessary to guarantee that conditions Дqn and Д′
qn

are satisfied. We recall that the system ([0,1],T,µ) has exponential decay of correlations of BV
observables against L1 observables, i.e., , for all φ ∈ BV and ψ ∈ L1(µ), there exist C > 0 and r = 1

m
such that

Corµ(φ ,ψ,n)≤Crn.

The BV norm of 1Aqn ,n
is directly related with the number of connected components of Aqn,n, which

we need to control. In order to do that, we start by estimating, for each q = 1, . . . ,qn, the number of
intervals of T−q(C c

n ) that intersect a single connected component of Cn, which we will denote by I.

Recall that our choice for qn made in (5.2.19) guarantees that |I| = 3−n ≤ m−q, for all q ≤ qn. This
implies that an interval I from Cn can intersect at most 2 of the mq copies of Cn that were contracted to
fit on equally sized intervals of length m−q which form the set T−q(Cn). We also note that Cn is built
in a symmetrical way by choosing 2n intervals of equal length, 3−n, which alternate with 2n −1 holes
of different sizes. This means that the number of holes of Cn is just about its number of connected
components. In order to estimate the maximum number of connected components of T−q(Cn) (with
length m−q3−n) that intersect the interval I, we define κ ∈ N such that

3κ−1m−q ≤ 1 ≤ 3κm−q,

i.e., we take κ =
⌈

q logm
log3

⌉
.

As represented by Figure 5.2, the structure of the Cantor set C dictates that the maximum number
of components of size m−q3−n of one of the mq copies of Cn that compose T−q(Cn) and fit into the
interval I is at most 2κ .

I

i = 1

i = 2

i = 3 = κ

Fig. 5.2 The impact of the structure of C on the maximum number of connected components of
T−q(Cn) that fit into each interval I.
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As seen above, the number of holes of one of the mq copies of Cn (or connected components of
T−q(C c

n )) that fit into the interval I is bounded above also by 2κ . Since there are at most 2 of the mq

copies of Cn that form T−q(Cn) which intersect I, then the maximum number of connected components

of T−q(C c
n ) that intersect I is 2κ+1 = 2

⌈
q logm

log3

⌉
+1.

Observing that the intersection of a collection of i subintervals of I with another collection of j
subintervals of I produces at most i+ j connected components, then Cn is formed by 2n intervals
like I. Having in mind the choice of qn in (5.2.19), then the number of connected components of
Aqn,n = Cn ∩T−1(C c

n )∩ . . .∩T−qn(C c
n ) is bounded above by

2n
qn

∑
q=1

2
⌈

q logm
log3

⌉
+1

= 2n+2
qn

∑
q=1

2
⌊

q logm
log3

⌋
≤ 2n+2

qn

∑
q=1

mq log2
log3 ≤ 2n+3mqn

log2
log3

≤ 2n+3m(n log3
logm+1) log2

log3 ≤ 8m4n

and, consequently
∥1Aqn ,n

∥BV ≤ 16m4n +1 ≤ 32m4n.

Choosing, for example, tn = n2 then tn = o(wn) and

lim
n→∞

∥∥1Aqn ,n

∥∥
BV wnrtn ≤ lim

n→∞

⌊
τ

(
3
2

)n⌋
32m4n m−n2

= 0,

which implies that condition Дqn(un,wn) holds by Theorem 3.2.3.

Observe that the choice of qn implies that for q ≥ qn > n log3
logm we have m−q < 3−n. Recall that T−q(Cn)

corresponds to mq copies of Cn contracted by the factor m−q and placed side by side on [0,1] and, since
µ(T−q(Cn)) = µ(Cn) = (2/3)n, then each such copy has a measure equal to m−qµ(Cn) = m−q(2/3)n.
We point out that each of the 2n connected components of Cn intersects at most

⌊
3−n

m−q

⌋
+2 intervals of

size m−q. Hence,

µ(Cn ∩T−q(Cn))≤ m−q
(

2
3

)n(⌊ 3−n

m−q

⌋
+2
)

2n ≤ m−q
(

2
3

)n( 3−n

m−q +2
)

2n

≤
(

2
3

)2n

+2
(

2
3

)n

m−q2n ≤ 3
(

2
3

)2n

. (5.2.20)

We choose kn = n. Note that kn −−−→
n→∞

∞ and kntn = n3 = o(wn). Now, observing that Aqn,n ⊂ Cn, then
(5.2.20) implies that:

wn

⌊wn/kn⌋−1

∑
j=qn+1

µ
(
Aqn,n ∩T− j (Aqn,n)

)
≤ wn

⌊wn/kn⌋−1

∑
j=qn+1

µ
(
Cn ∩T− j (Cn)

)
≤ wn

⌊wn/kn⌋−1

∑
j=qn+1

3
(

2
3

)2n

≤ 3
w2

n

kn

(
2
3

)2n

≤ 3
kn

τ
2
(

3
2

)2n(2
3

)2n

=
3τ2

kn
−−−→
n→∞

0
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and, therefore Д′
qn
(un,wn) also holds. Since we have already proved that θ = 1, by Theorem 3.1.1, we

conclude the claim of Theorem 5.0.1, i.e.,

lim
n→∞

µ(Mwn ≤ n) = e−τ , (5.2.21)

when m ∈ N is not a power of 3.

5.3 Absence of Clustering and Two Dimensional Uniformly Expanding
Maps

The starting point of this section is the stochastic process Xn, constructed using the two dimensional
setting presented in Section 4.2 of Chapter 4.
We again consider the map T given by,

T : [0,1]2 −→ [0,1]2

(x,y) 7→ (m1 · x mod 1,m2 · y mod 1), (5.3.1)

and the observable

ψ(x,y) =

{
n, if min(ϕ(x),ϕ(y)) = n
∞, otherwise,

(5.3.2)

whose maximal set is C= C ×C .
If m1 = 3k1 and m2 = 3k2 , we are able to demonstrate in Section 4.2 that there exists full compatibility
between C and T− j(C). This enabled us to demonstrate the existence of a limiting law for the stochastic
process Xn, constructed using T and ψ , with an Extremal Index strictly smaller than 1.
We will now show that if m1 = m2 cannot be written as 3k for any integer k, then the compatibility
between T and C is broken and T− j(C)∩ (C) will have a smaller box dimension than C. The result is
an insignificant clustering effect which, in the limit, will lead to a Extremal Index equal to 1.

Theorem 5.3.1. Consider (Xn)n∈N to be the stochastic process constructed as in (2.2.1) for the
dynamical system T defined in (5.3.1) and the observable ψ defined in (5.3.2). Assume that m1 = m2

cannot be written as 3k, for any k ∈ N. Set un = n and let (wn)n∈N be a sequence of times, such that
wn =

⌊
τ (3/2)2n

⌋
.

Then, condition (3.0.5) holds and

lim
n→∞

Leb2(Mwn ≤ n) = e−τ .

We also will be considering the case where the map T is such that m1 = 3k for some k ∈ N, and m2

cannot be written in the form 3 j for all j ∈N. This case represents a middle ground between Theorems
4.2.1 and 5.3.1. If for one side we should expect clustering to appear, due to compatibility between
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T1 and the ternary Cantor set C , the reality is that the incompatibility between T2 and C is enough to
guarantee the absence of clustering in the stochastic process Xn.

Theorem 5.3.2. Consider (Xn)n∈N to be the stochastic process constructed as in (2.2.1) for the
dynamical system T defined in (5.3.1) and the observable ψ defined in (5.3.2). Assume that m1 = 3k

and m2 cannot be written as 3 j, for all j ∈ N. Moreover, assume that k and m2 satisfy the inequality⌈
n

log3
logm2

⌉
≤
⌊n

k

⌋
. (5.3.3)

Set un = n and let (wn)n∈N be a sequence of times, such that wn =
⌊

τ (3/2)2n
⌋

.
Then, condition (3.0.5) holds and

lim
n→∞

Leb2(Mwn ≤ n) = e−τ .

To prove the results stated in Theorem 5.3.1 and Theorem 5.3.2, we will rely on the formula for
the lower bound of the Extremal Index θ , achieved in Theorem 3.3.5. This formula, when used in
conjunction with Theorem 5.0.1, is sufficient to guarantee that θ is equal to 1. The proof becomes
complete by showing that conditions Дqn(un,wn) and Д′

qn
(un,wn) hold.

Proof of Theorem 5.3.1. Let T be the dynamical system, presented in (5.3.1), where m1 = m2 cannot
be written as 3k, for any k ∈ N. Consider the stochastic process Xn = ψ ◦T .
We point out that, the invariant measures associated with T and with T1 = m1x mod 1 and T2 = m1y
mod 1 are Leb2 and Leb, respectively.
Let un = n be the sequence of thresholds and set wn =

⌊
τ (3/2)2n

⌋
. Due to the construction of the

observable ψ , we have that

UT1
n =UT2

n = Cn and Un = Cn.

Checking that,

wnLeb2(Un) =
⌊

τ (3/2)2n
⌋(2

3

)2n

−−−→
n→∞

τ,

we obtain that condition (3.0.5) is verified.
Now, we apply Theorem 3.3.5 to prove that θ = 1. Set qn = q∗n =

⌈
n log3

logm1

⌉
. Then, qn = o(wn) and

Theorem 5.0.1 guarantees that

θ1 = 1 and θ2 = 1.

Applying formula (3.3.11) of Theorem 3.3.5 for the Extremal Index, we achieve that

1 ≥ θ ≥ θ1 +θ2 −θ1θ2 = 1.
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The map T has decay of correlations for quasi-Hölder observables against L1(Leb2), with rate function
ρn = 1/mn

1. Moreover, the maps T1 and T2 have decay of correlations for BV observables against
L1(Leb), with rate functions ρ1

n = ρ2
n = ρn. Hence, to prove the validity of conditions Дqn(un,wn) and

Д′
qn
(un,wn) it is only necessary to check hypothesis (1) thru (4) of Theorem 3.3.2.

Since T1 = T2 then, using Remark 3.3.4, hypothesis (2) thru (4) of Theorem 3.3.2 are reduced to

lim
n→∞

∥∥∥1
UT1

n

∥∥∥
BV

Leb(UT1
n )

∞

∑
j=qn

ρ
1
j = 0 and lim

n→∞

∥∥∥1
UT1

n

∥∥∥2

BV

∞

∑
j=qn

ρ
1
j ρ

2
j = 0.

Since ∥1Cn∥BV ≤ 2n+1, there exists a constant C > 0 such that

lim
n→∞

∥1Cn∥BV ≤ 2n+1Leb(Cn)
∞

∑
j=qn

ρ
1
j ≤C lim

n→∞

4n

3n
1

mqn
1

≤Cm1 lim
n→∞

4n

32n

= 0.

Similarly, there exists a constant C′ > 0 such that

lim
n→∞

∥1Cn∥BV

∞

∑
j=qn

ρ
1
j ρ

2
j ≤C lim

n→∞

4n

m2qn
1

≤Cm2
1 lim

n→∞

4n

32n

= 0.

To prove hypothesis (1), we will show that exists a sequence (tn)n∈N, such that tn = o(wn) and

lim
n→∞

wn
(
∥1Cn∥αρ(tn)+2Leb2(Cn \Aqn,n)

)
= 0.

Following the same reasoning as in the proof of Theorem 4.2.1, we have that

∥1Cn∥α ≤ Leb2(Cn)+PC(Cn),

where P denotes the maximum perimeter of the connected components of Cn and C(Cn) represents the
maximum number of connected components of Cn.
Since, Leb2(Cn) = (2/3)2n, C(Cn) = 4n and P = 4/3n, we can write that,

∥1Cn∥α ≤
(

2
3

)2n

+
4n+1

3n . (5.3.4)

It is necessary to estimate Leb2(Cn \Aqn,n). For that purpose, we point out that

Leb2(Cn ∩T−q(Cn)) = Leb(Cn ∩T−q
1 (Cn))Leb(Cn ∩T−q

2 (Cn)) =
(

Leb(Cn ∩T−q
1 (Cn))

)2



66

and consequently,

Leb2

(
qn⋃

q=1

Cn ∩T−q(Cn)

)
≤

qn

∑
q=1

(
Leb(Cn ∩T−q

1 (Cn))
)2

.

Using the estimative (5.2.17) of Chapter 5, we get that

Leb2

(
qn⋃

q=1

Cn ∩T−q(Cn)

)
≤ qn

9e2γn log3

32n

and since Cn \Aqn,n ⊆
⋃qn

q=1Cn ∩T−q(Cn), we obtain that

Leb2(Cn \Aqn,n)≤ qn
9e2γn log3

32n , (5.3.5)

where γ satisfies the inequality γ log3 < log2.
Let tn = n2, then tn = o(wn). Using (5.3.4) and (5.3.5), we get that, for all m1 > 1,

lim
n→∞

wn
(
∥1Cn∥αρ(tn)+2Leb2(Cn \Aqn,n)

)
≤ lim

n→∞
τ

(
3
2

)2n
((

2
3

)2n

+
4n+1

3n

)
1

mn2

1

+ τ

(
3
2

)2n

qn
9e2γn log3

32n

≤ lim
n→∞

(
τ + τ

4n+19n

3n4n

)
1

mn2

1

+9τqne2n(γ log3−log2)

=0.

This implies that hypothesis (1) of Theorem 3.3.2 holds and Theorem 5.3.1 follows.

Theorem 5.3.1 is an example where there is no clustering associated with either X1
n or X2

n . For that
reason, the existence of clustering in the process Xn was not expected.
A more interesting situation is the setting presented in Theorem 5.3.2. In this case, the map T is
composed of two unidimensional dynamics with one of them preserving the structure of the Cantor
set, C . We already saw that it is this compatibility, between the dynamics and the maximal set of the
observable function, that leads to clustering. However, due to the structure product in C, the presence
of a second dynamics that does not preserve the structure of C is enough to guarantee that T− j(Cn)∩C

as low relevance in the set C. In fact, formula 3.3.11 is the mathematical translation of this thought.
This low relevance is then translated into a Extremal Index of 1.
One could use the strategy followed in Theorem 5.0.1 and prove that the box dimension of T− j(Cn)∩C

is indeed smaller than the box dimension C and from here establish the value of θ . But, the nature of C,
allows a more direct calculation of θ using the formula in (3.3.11). With this remark, we proceed to
the proof of Theorem 5.3.2.
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Proof of Theorem 5.3.2. This proof follows the same structure as the proof of Theorem 5.3.1.
Consider the dynamical system T given by (5.3.1) and the stochastic process Xn = ψ ◦T . Let m1 = 3k

mod 1 for some k ∈ N and assume that m2 cannot be written as 3 j for any integer j. Moreover, assume
that k and m2 are such that ⌈

n
log3

logm2

⌉
≤
⌊n

k

⌋
. (5.3.6)

The sequence of thresholds is un = n and we set wn =
⌊

τ (3/2)2n
⌋

. Again, we have that

UT1
n =UT2

n = Cn and Un = Cn,

which implies that condition 3.0.5 is satisfied.
Again, we use Theorem 3.3.5 to show that θ = 1. Make qn = q∗n =

⌈
n log3

logm2

⌉
. Under the hypothesis in

(5.3.6) and due to Theorem 4.1.2, we have that

A T1
qn,n = Cn \Cn+k and θ1 = 1− (2/3)k.

Moreover, Theorem 5.0.1 guarantees that θ2 = 1.
Applying formula (3.3.11) of Theorem 3.3.5 for θ , we achieve that

1 ≥ θ ≥ θ1 +θ2 −θ1θ2 = 1.

Put r = min{3k,m2}, then T has decay of correlations for quasi-Hölder observables against L1(Leb2)

with rate function ρn = 1/rn. The maps T1 = 3kx mod 1 and T2 = m2y mod 1 have decay of correla-
tions for BV observables against L1(Leb) with rate functions ρ1

n = (1/3k)n and ρ2
n = (1/m2)

n.
We will check conditions (1) thru (4) of Theorem 3.3.2 to prove Дqn(un,wn) and Д′

qn
(un,wn).

To prove hypothesis (1), we will show that exists a sequence (tn)n∈N, such that tn = o(wn) and

lim
n→∞

wn
(
∥1Cn∥αρ(tn)+2Leb2(Cn \Aqn,n)

)
= 0.

Similarly to the proof of Theorem 5.3.1, we can write that

∥1Cn∥α ≤ Leb2(Cn)+PC(Cn),

where P denotes the maximum perimeter of the connected components of Cn and C(Cn) represents the
maximum number of connected components of Cn.
Again, as in the proof of Theorem 5.3.1, Leb2(Cn) = (2/3)2n, C(Cn) = 4n and P = 4/3n.
Therefore,

∥1Cn∥α ≤
(

2
3

)2n

+
4n+1

3n . (5.3.7)
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We need an estimated value for Leb2(Cn \Aqn,n). We can put that,

Leb2(Cn ∩T−q(Cn)) = Leb(Cn ∩T−q
1 (Cn))Leb(Cn ∩T−q

2 (Cn))≤ Leb(Cn ∩T−q
1 (Cn))Leb(Cn)

and consequently,

Leb2

(
qn⋃

q=1

Cn ∩T−q(Cn)

)
≤

qn

∑
q=1

Leb(Cn ∩T−q
1 (Cn))Leb(Cn).

Using the estimative (5.2.17) of Chapter 5, we get that

Leb2

(
qn⋃

q=1

Cn ∩T−q(Cn)

)
≤ qn

(
3eγn log3

3n

)(
2
3

)n

and since Cn \Aqn,n ⊆
⋃qn

q=1Cn ∩T−q(Cn), we obtain that

Leb2(Cn \Aqn,n)≤ qn

(
3eγn log3

3n

)(
2
3

)n

, (5.3.8)

where γ satisfies the inequality γ log3 < log2.
Set tn = n2, then tn = o(wn) and using (5.3.7) and (5.3.8), we obtain that,

lim
n→∞

wn
(
∥1Cn∥αρ(tn)+2Leb2(Cn \Aqn,n)

)
≤ lim

n→∞
τ

(
3
2

)2n
((

2
3

)2n

+
4n+1

3n

)
1

rn2 + τ

(
3
2

)2n

qn

(
3eγn log3

3n

)(
2
3

)n

≤ lim
n→∞

(
τ + τ

4n+19n

3n4n

)
1

rn2 +3τqnen(γ log3−log2)

=0.

Before proving hypothesis (2) thru (4), we point out that⌈
n

log3
logm2

⌉
≤
⌊n

k

⌋
⇒ k ≥ 1

logm2
(3)

.

With this assumption on k there exists a constant C′ > 0 such that

lim
n→∞

∥1Cn∥BV Leb(Cn)
∞

∑
j=qn

ρ
1
j ≤C′ lim

n→∞
2n(2/3)n

(
1
3k

)n logm2
(3)

≤C′ lim
n→∞

4n

3n(1+k logm2
(3))

= 0.
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Similarly, there exists a constant C′′ > 0 such that

lim
n→∞

∥1Cn∥BV Leb(Cn)
∞

∑
j=qn

ρ
2
j ≤C′′ lim

n→∞
2n(2/3)n

(
1

m2

)n logm2
(3)

≤C′′ lim
n→∞

4n

9n

= 0.

To finish, there exists another constant C′′′ > 0 such that

lim
n→∞

∥1Cn∥
2
BV

∞

∑
j=qn

ρ
1
j ρ

2
j ≤C′′′ lim

n→∞
4n 1

m2

n logm2
(3)( 1

3k

)n logm2
(3)

≤C′′ lim
n→∞

4n

3n(1+k logm2
(3))

= 0.

This computation shows that conditions (2) thru (4) of Theorem 3.3.2 hold and Theorem 5.3.2 follows.





Chapter 6

The Extremal Index as a Geometrical
Indicator of Compatibility

In the chapters above, we have seen that the compatibility between the dynamics and the fractal
structure of the maximal set plays a big role in the determination of the Extremal Index. In this
chapter, we intend to illustrate the viability of the EI as an indicator between the compatibility of the
fractal structure of a set and a certain dynamics. We perform several numerical simulations using
different dynamical systems and fractal sets. We began by testing numerically some of the theoretical
results stated in Chapter 4 and Chapter 5. Then, we kept the same maximal set and tested several
different uniformly expanding and non-uniformly expanding dynamical systems and even irrational
rotations. Finally, we considered a different maximal set, which consisted on a dynamically defined
Cantor set obtained from a quadratic map, and tested it against both linear dynamics (which should be
incompatible) and systems compatible with the one that generated the Cantor set.
We remark that in some cases (such as with irrational rotations), the systems are outside the scope of
application of the theory considered earlier. In other cases, with some adjustments to the arguments,
one could actually check that conditions Дqn and Д′

qn
hold.

We will use the EI estimator introduced by Hsing in [24]. Namely, we will consider:

θ̂n(u,q) =
∑

n−1
i=0 1T−i(Aq(u))

∑
n−1
i=0 1T−i(U(u))

, (6.0.1)

where the sets U(u) and Aq(u) are defined in (3.1.2).
The parameters u and q are tuning parameters which determine the quality of the estimate. In principle,
one should consider high values of u so that the tail behaviour is captured by the quantities in θ̂n(u,q).
But, if u is too high there may not be enough information to estimate accurately the EI. Since when
Д′

q∗(un,wn) holds for some fixed q∗ ∈ N then Д′
q(un,wn) holds for all q > q∗, then the parameter q

should not affect as much the quality of the estimator. We will test several values of u and a few for q
and then we analyse the data to identify regions of stability of the estimator.
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Fig. 6.1 On the y-axis, mean values of θ̂n(u,q) for each u of the x-axis, with n = 50.000 and ℓ= 500.
The full line corresponds to q = 1, the dashed line to q = 5 and the dotted line to q = 10. The black
horizontal line represents the exact value of the EI given by Theorem 4.0.1. On the left, we have
T (x) = 3x mod 1 and, on the right, T (x) = 9x mod 1.

6.1 The Ternary Cantor Set and Linear Dynamics

We numerically illustrate the existence of an EI equal to 1 when m is not a power of 3, as stated in
Theorem 5.0.1, and the validity of the formula for the EI stated in Theorem 4.0.1, when m = 3k for
some k ∈ N, in which case the Cantor set is invariant by the dynamics.
The numerical simulations performed consisted in randomly generating ℓ uniformly distributed points
on [0,1] (recall that Lebesgue measure is invariant for the linear maps considered in Theorems 5.0.1 and
4.0.1) and, for each one, compute the first n iterates of the respective orbit and evaluate the observable
function ϕ , defined in (4.0.1), along each orbit. Then, for each the ℓ time series obtained as described
above, we compute θ̂n(u,q) for several values of u and q, which are adequately chosen for the range
of u values. We observe an excellent agreement between the theoretical value of θ and the observed
estimates of θ̂n(u,q), in the regions of stability which correspond to the values of u in [5,15], in the
case m = 3, and [10,15], in the case m = 9.
In the case m = 5, there is also an excellent agreement between the theoretical value θ = 1 and the
observed estimates of θ̂n(u,q), in the regions of stability which correspond to higher values of u, namely,
for u ∈ [15,28]. We note that the agreement improves considerably when we increase the number
of iterations n, which allows to have more information on the tails. The simulations results show an
excellent performance of the EI in order to distinguish between the compatibility and incompatibility
of the dynamics with the structure of the Cantor set.
In the previous cases, either T (C ) = C or T (C )∩C is negligible. We consider a case where we have
a relevant intersection T (C )∩C , although T (C ) ̸= C . The idea is to consider a map that maps the
left side component of C onto C , while the right side component is sent to a set with a negligible
intersection with C .
Let T : [0,1]→ [0,1] be the linear map whose first branch coincides with the first branch of 3x mod 1
and the others send each of the 5 equally lengthed subintervals of [2/3,1] onto [0,1]. See Figure 6.3.
Although this map was not considered in the previous sections, it is easy to adjust the arguments to
show that an EVL applies with an EI, which is the mean between 1/3 (the contribution from the left
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Fig. 6.2 On the y-axis, mean values of θ̂n(u,q) for each 5 ≤ u ≤ 20 of the x-axis, with n = 50.000.
The full line corresponds to q = 1, the dashed line to q = 5 and the dotted line to q = 10. The black
horizontal line represents the exact value of the EI given by Theorem 5.0.1. The dynamics is T (x) = 5x
mod 1. On the left, n = 50.000 and ℓ= 500. On the right, n = 500.000 and ℓ= 100.
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Fig. 6.3 Mixed linear map

side) and 1 (the contribution from the right side). Namely, using the estimates in Section 5.2.2, one can
show that

lim
n→∞

µ(Aqn,n ∩ [2/3,1])
µ(Cn ∩ [2/3,1])

= 1

and, as in Section 4.1, one can show that

Aqn,n ∩ [0,1/3] = (Cn \Cn+1)∩ [0,1/3],

which imply:

θ = lim
n→∞

µ(Aqn,n)

µ(Un)
= lim

n→∞

µ((Cn \Cn+1)∩ [0,1/3])+µ(Cn ∩ [2/3,1])
µ(Cn)

=
1
2
· 1

3
+

1
2
·1 =

2
3
. (6.1.1)

As it can be seen in Figure 6.4, the numerical estimates for the EI point to the theoretical value θ = 2/3
and the performance of the EI estimator improves when n is increased, as expected.
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Fig. 6.4 On the y-axis, mean values of θ̂n(u,q) for each u of the x-axis. The full line corresponds to
q = 1, the dashed line to q = 5 and the dotted line to q = 10. The black horizontal line represents the
exact value of the EI given in (6.1.1). The dynamics is described in Figure 6.3. On the left, n = 50.000
and ℓ= 500. On the right, n = 500.000 and ℓ= 100.

6.2 The Ternary Cantor Set, Nonlinear Dynamics and Irrational Rota-
tions

We considered two different nonlinear dynamics and an ergodic rotation. The first is a uniformly
expanding map resemblant to the doubling map but in which the branches are convex curves.
Namely, we let

T : [0,1]−→ [0,1]

x 7−−−→

{
4
3 x(x+1) 0 ≤ x < 1

2
4
3

(
x− 1

2

)(
x+ 1

2

) 1
2 ≤ x ≤ 1

(6.2.1)

This map does not seem to have any compatibility with the ternary Cantor set and in fact the simulation
results illustrate an EI estimate equal to 1, which is observed for high values of u ≈ 20. (See top left
panel in Figure 6.5). We note that, for this particular map, some adjustments to the arguments presented
in 5.2.3 would allow to check conditions Д(un,wn) and Д′(un,wn). However, the box dimension
estimates used in Section 5.2.1 cannot be easily adapted and therefore we cannot state that the EI is
indeed 1, despite the numerical evidence.
Then, we also considered the Gauss map, which is a non-uniformly expanding map, but still with very
good mixing properties,

T : [0,1]−→ [0,1]
x 7−−−→ 1

x −
⌊1

x

⌋
.

(6.2.2)

We remark that for this map is not possible to adapt easily the arguments used in 5.2.3 in order to check
conditions Д(un,wn) and Д′(un,wn), since it has countably many branches, which makes the estimates
for the number of connected components of Aqn,n, obtained earlier, useless. Nonetheless, the numerical
simulations also reveal that, on the region of stability of the estimator (for high values of u), one gets
an EI equal to 1, which indicates that the dynamics is incompatible with the structure of the ternary
Cantor set C (See top right panel in Figure 6.5).
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Fig. 6.5 On the y-axis, mean values of θ̂n(u,q) for each 5 ≤ u ≤ 20 of the x-axis, with n = 50.000 and
ℓ= 500. The full line corresponds to q = 1, the dashed line to q = 5 and the dotted line to q = 10. The
black horizontal line represents the expected value for the EI. On the top left T is given by (6.2.1), on
the top right T is given by (6.2.2) and on the bottom T (x) = x+π/3 mod 1.

Finally, we also considered an irrational rotation T : [0,1]→ [0,1] given by T (x) = x+ π

3 mod 1, as
in [31], and, in coherence with the numerical simulations performed there, we also obtain a numerical
evidence that the EI is 1. We remark that irrational rotations are completely outside the scope of
application of the theoretical results obtained here, which depend heavily on the exponential decay of
correlations of the systems considered.

6.3 A Different Cantor Set

In this section, we consider for maximal set a dynamically defined Cantor set as described in Sec-
tion 4.1.1. In this case, Λ is generated by the quadratic dynamical system g : R → R such that
g(x) = 6x(1− x), i.e.,

Λ = {x ∈ [0,1] : gn(x) ∈ [0,1] for all n ∈ N}.

In this case, we define the observable map

ϕ : [0,1]−→ [0,1]

x 7−−−→

{
n, if n = inf{ j ∈ N : g j(x) /∈ [0,1]}
∞, x ∈ Λ

. (6.3.1)
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Fig. 6.6 On the y-axis, mean values of θ̂n(u,q) for each 5 ≤ u ≤ 20 of the x-axis, with n = 50.000 and
ℓ= 500. The full line corresponds to q = 1, the dashed line to q = 5 and the dotted line to q = 10. On
the left T is given by (6.3.2) and on the right T is given by T (x) = 5x mod 1.

We studied numerically the behaviour of two systems.
The first one is defined by

T : [0,1]−→ [0,1]

x 7−−−→


g(x) 0 ≤ x < 1

6

(
3−

√
3
)

x+ 1
6(

√
3−3)

1
6(

√
3−3)+ 1

6(3+
√

3)
1
6

(
3−

√
3
)
≤ x < 1

6

(
3+

√
3
)

g(x) 1
6

(
3+

√
3
)
≤ x < 1

, (6.3.2)

which is compatible with the structure of the Cantor set Λ since its left and right branches coincide with
the map g that generated Λ, just as F was compatible with G in Section 4.1.2. The second is the linear
system T : [0,1]→ [0,1], where T (x) = 5x mod 1, which, a priori, has no reason to be compatible
with the geometric structure of Λ. Both these systems are full branched Markov maps, which means
that have decay of correlations against L1 observables.
We note that, if we adapt the the arguments presented in Sections 4.1 and 5.2.3, one could check
that conditions Д(un,wn) and Д′(un,wn) hold for these systems and the observable ϕ defined in
(6.3.1). Hence, these examples fit the theory and we expect the existence of an EVL, but the analytical
computation of the EI is much more complicated and cannot be carried as for the ternary Cantor set, in
Sections 4.1 and 5.2.2.
As in the usual ternary Cantor set and the linear dynamics, the EI easily detects the compatibility
between the dynamics and the fractal structure of Λ. In the first case, where T is given by (6.3.2), the
numerical simulations reveal an EI approximately equal to 0.61, which is consistent with the expected
connection between g and T , while in the second case, where T (x) = 5x mod 1, we obtain an EI equal
to 1 (see Figure 6.6).
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Appendix A

Definitions and Preliminary Results

In this appendix, we will present some definitions and results that are necessary to the theoretical
coherence of the statements proved through this doctoral thesis. We divide the appendix in three
different sections. In the first section, we state the definition of box dimension and Hausdorff dimension.
We also state some necessary properties of these two concepts of fractal dimension. In the second
section, we present results that allow to characterize the fractal dimension of an attractor of a Digraph
Iterated Function System. For last, we state results that allow to better comprehend the spectral radius
of a matrix.
Most of the time, the theorems are written without the respective proof. Nevertheless, a reference for
such proof will always be provided.

A.1 Fractal Dimension

The concept of fractal dimension is widely used to help characterize a set that presents some fractal
structure. There exists more than one definition of fractal dimension, each one having its advantages
and disadvantages. In here, we state two definitions of fractal dimension: box dimension and Hausdorff
dimension.
For a more detailed analysis of fractal geometry, the reader is referred to [14].

Definition A.1.1 (Box Dimension). Let F de a subset of Rd , then, the box dimension of F is defined
as

dimB(F) = lim
ε→0

logNε(F)

− logε
, (A.1.1)

where Nε(F) denotes the smallest number of balls of radius ε that cover F .

Definition A.1.2 (Hausdorff Dimension). Let F be a subset of Rd and {Fi}i∈N be a countable collection
of sets, with diameter at most δ , that cover F . For α ≥ 0, we define the α - dimensional Hausdorff
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measure of F as

Hα(U) = lim
δ→0

inf

{
∞

∑
i=1

|Fi|α : where {Fi} is a δ − cover of F

}
.

The Hausdorff dimension of F is defined as

dimH(F) = inf{α : Hα(F) = 0}= sup{α : Hα(F) = ∞}.

The computation of the dimension of a set, using the definition of box dimension or the definition
of Hausdorff dimension, leads often to different results. For example, if we consider the set of the
rationals in [0,1], its Hausdorff dimension will be 0 since it is a countable set. However, if we calculate
the box dimension of the same set, we will obtain the value of 1.
Nevertheless, it exists a huge number of sets where the dimensions coincide. For fractal sets displaying
some self-similar structure, as the attractor of an IFS satisfying the open set condition, we can prove
that the box dimension and the Hausdorff dimension have the same value.

To finish this small tour in fractal dimensions, we state a property of both definitions that will be very
useful in Chapter 5.
The box dimension and the Hausdorff dimension are finitely stable. If we consider a finite collection of
subsets of Rd , denoted by {E1, . . . ,En}, then

dimB

(
n⋃

i=1

Ei

)
= max

i
dimB(Ei)

and

dimH

(
n⋃

i=1

Ei

)
= max

i
dimH(Ei).

A.2 Fractal Dimension and Digraph Iterated Function Systems

As introduced in Chapter 5, a Digraph IFS is constituted by a digraph G, where the set of vertices
is denoted by V and the set of edges is denoted by E. To each of the vertices is associated a metric
space Xv and to each edge that links the vertice u to the vertice v, denoted by e ∈ Euv, we associate a
similarity fe : Xv → Xu with ratio re.
If re is smaller than 1 for every edge of G, then there exists a unique attractor W which is the union of
compact sets Wv, one for every vertex, such that for every u ∈V ,

Wu =
⋃
v∈V

⋃
e∈Euv

fe(Wv). (A.2.1)
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To each Digraph IFS, G, we associate a substitution matrix M that corresponds to the adjacency matrix
of the digraph. For simplicity, we are going to assume in this discussion, that M is a (0,1)-matrix and
that every similarity has a common ratio r smaller than 1. Note that, this assumption on M implies that
Euv consists of only, at most, one element for each possible (u,v).
In [32], the authors found a way to compute the Hausdorff dimension of the attractor W of a Digraph IFS
satisfying the open set condition stated in Definition 5.1.2. For that purpose, we define the construction
matrix AG associated with a Digraph IFS, G. When the Digraph IFS satisfies the assumptions stated
above, this matrix AG is given by,

AG = rM. (A.2.2)

For a given δ > 0, let AG,δ denote the matrix rδ M and let Φ(δ ) denote its spectral radius.

Theorem A.2.1 ([32], Theorem 3). For each strongly connected Digraph IFS, G, the Hausdorff
dimension of the attractor W is the number ε such that Φ(ε) = 1. Moreover, the ε- dimensional
Hausdorff measure of W is finite.

The theorem above implies that the Hausdorff dimension of an attractor W , of a strongly connected
Digraph IFS G, satisfying the assumptions stated above, is given by

dimH(W ) =
− log(λ )

logr
, (A.2.3)

where λ denotes the spectral radius of M.
When the Digraph IFS is not strongly connected Mauldin and Williams, again in [32], discovered that
dimH(W ) is the maximum of the Hausdorff dimensions of the attractors of the Digraph IFS created by
considering the strongly connected components of G.
To be more formal, let SC(G) denote the set of the strongly connected components of G and consider
εH to be the Hausdorff dimension, as given by Theorem A.2.1, of the attractor of a Digraph IFS H,
contained in SC(G).

Theorem A.2.2 ([32], Theorem 4). For a Digraph IFS, G, the Hausdorff dimension of the attractor W
is given by the number,

ε = max{εH : H ∈ SC(G)} .

These two results allow us to characterize the Hausdorff Dimension of the attractor of a Digraph IFS.
The next step is to characterize its box dimension.
In the article [10], Manav Das and Sze-Man Ngai proved a theorem that characterizes the box dimension
of the attractor W of a Digraph IFS satisfying the so called graph finite type condition. Here, we will
not state in detail the definition of the graph finite type condition due to its complexity. It suffices to
say that this condition was devised to allow the computation of the fractal dimension of an attractor
even if the correspondent Digraph IFS has overlaps that make impossible for the open set condition to
hold. We refer the reader to [10] for more information on this topic and for the proof of the following
theorem.
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Theorem A.2.3 ([10], Theorem 1.1). Let G be a Digraph IFS of contractive similarities on Rn,
satisfying the graph finite type condition. Then, the correspondent attractor W, satisfies:

• dimH(W ) = dimB(W ),

• Hα(W )> 0, where α := dimH(W ),

• If G is strongly connected, then Hα(W ) is finite.

Recall that, an algebraic integer β > 1 is called a Pisot number if all of its algebraic conjugates are in
modulus less than one. Manav Das and Sze-Man Ngai, again in [10], proved that a Digraph IFS, where
the similarities have a specific form, satisfies the graph finite type condition.

Theorem A.2.4 ([10], Theorem 2.7). Let G be a Digraph IFS of contracting similarities in Rn such
that, for every e ∈ E, each similarity, fe can be written as

β
−seRex+be,

where β > 1 is a Pisot number, se is a positive integer, Re is an orthogonal transformation and be ∈Rn.
Assume that, {Re} generates a finite group H and

H{be : e ∈ E} ⊆ k1Z[β ]× . . .× knZ[β ]

for some k1, . . . ,kd in R.
Then, G satisfies the graph finite type condition.

As a title of example, we can show that a Digraph IFS G, constituted by the similarities x/3 and
x/3+2/3 satisfies the conditions of Theorem A.2.4.
Since, accordingly with [5], all integers bigger than 1 are Pisot numbers, it is only necessary to consider
βe = 3, se = 1 and Re equal to the identity transformation on R for both similarities. Clearly, Re

generates a finite group and choosing k1 = 2/3, we obtain H{0,2/3} ⊆ 2/3Z[3] which implies that all
of the assumptions of the Theorem are satisfied.
The Theorems A.2.1, A.2.2, A.2.3 and A.2.4, when used together, allows us to compute the box
dimension and Hausdorff dimension of an attractor W of a Digraph IFS, G, that meets the following
assumptions:

• G satisfies the open set condition,

• all of the similarities have a common contractive ratio r,

• the set Euv is formed by one single element,

• the similarities can be written as in Theorem A.2.4.
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For such Digraph IFS, the box dimension and the Hausdorff dimension coincide and are equal to

dimB(W ) = dimH(W ) =
− log(λ )

logr
,

where λ denotes the spectral radius of the substitution matrix M of G.
The Digraph IFS systems considered in Chapter 5, which are constituted by the similarities x/3 and
x/3+2/3 considered in the example above, satisfy all of the conditions stated here. It is precisely that
fact that allows us to compute the box dimension of the correspondent attractors.

A.3 Spectral Radius of a Matrix

In this section, we introduce the concept of spectral radius of a matrix.
Start by considering a complex matrix A ∈ M n(C). The spectral radius of A is defined as

ρ(A) = max{|λ | : λ is an eigenvalue of A} .

To aid in the computation of such value, we recall that the Euclidean norm of a complex matrix
A ∈ M n(C) is defined as

∥A∥2 = sup
x ̸=0

∥Ax∥2
∥x∥2

,

where ∥x∥2 is the usual Euclidean vector norm.
This norm is multiplicative, in some literature also called consistent or sub-multiplicative, in the sense
that satisfies

∥AB∥2 ≤ ∥A∥2 ∥B∥2 ,

for arbitrary matrices A and B.
Following a result from [11], we have that the spectral radius of any complex matrix satisfies

ρ(A)≤ ∥A∥2 . (A.3.1)

Recall that, a submatrix of a matrix A is a matrix created by deletion of some rows and columns
that have the same index in the original matrix. It is possible to characterize the spectral radius of a
submatrix of a matrix A, where each entry of A is either positive or zero. The proof of this statement
can be found in [1].

Proposition A.3.1. Assume that A is a nonnegative matrix, that is, every entry is either positive or 0,
then, if B is a principal submatrix of A the spectral radius of B satisfies,

ρ(B)≤ ρ(A).

To finish this appendix, we prove a result that, in spite of not being related to this subject at first glance,
it will be useful to bound the spectral radius of the matrices in Chapter 5.
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Proposition A.3.2. Let a,b by any positive real numbers and consider ε > 0. Then,

2ab ≤ a2

ε
+ εb2.

Proof. Young's inequality states that, for any positive reals c and d,

cd ≤ c2

2
+

d2

2
.

Let a,b be any positive reals and consider ε > 0.
Put c = a/

√
ε and d = b

√
ε . Applying Young's inequality, we obtain that,

ab ≤ a2

2ε
+

εb2

2
.

Hence,

2ab ≤ a2

ε
+ εb2.


