
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Tracking and Representing Objects in a
Collaborative Interchangeable Reality

Platform

Joana Whiteman Catarino

MESTRADO INTEGRADO EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Supervisor: Luís Filipe Teixeira

Co-supervisor: Rui Nóbrega

External Co-supervisor: Teresa Matos

June 8, 2020

Abstract

Over the last few years, with the constant technological evolution and the emergence of new
devices, the interest in topics such as remote collaboration has been increasing and, consequently,
several studies are being developed in this area. The desire to interact with someone on the other
side of the world as if it was on our side, both in a professional and in a playful context, led to
the idea of this work. It emerged as part of the PAINTER project. It consisted of developing a
collaborative application where several users can interact in real-time with the same virtual content
placed in the exact location where real objects were previously detected through a smartphone.

Due to the real-time goal of this work, the proposed implementation required avid research to
integrate all components, as they should interact in the best possible way. We studied different
Hardware Acceleration (HA) Software Development Kits (SDKs), and we chose the ArmNN to
achieve better performance on running the object detection using a Convolutional Neural Network
(CNN) model in our smartphone. It establishes a connection between the chosen Artificial Intelli-
gence (AI) framework and our device’s Arm-based CPU/GPU. We analyzed the different possibil-
ities of this type of frameworks and chose Tensorflow, which is compatible with the ArmNN SDK.
The choice of the CNN model was related to these two components and to the research conducted
to understand which are the most efficient models, that led us to the Tiny-YOLOv2 model.

We also did a tracking analysis and concluded that the best tracker for our application was
KCF. As we opted for Android OS, we chose ARCore as our AR framework, which was mainly
responsible for the collaboration implementation. The integration of these components was con-
sidered the best approach for the development of this system. However, each of them conditioned
each other’s performance.

We made an analysis of the frame’s processing time on different devices and obtained a frame
rate value of approximately 18 fps on the Samsung Galaxy S9 Plus. We also verified that its object
detection’s frame rate was 4 fps. The model achieved a mean Average Precision (mAP) of 13.6%,
considering a small sample of images collected and annotated. The KCF tracker showed a frame
rate of 10.2 fps and a mAP of 4.7%, under the same conditions used in the previous analysis.
Moreover, results show that the lack of GPU acceleration in object detection had a considerable
impact on our application’s performance. We demonstrated the fundamental goal of this work
by performing real object detection and tracking through a smartphone in real-time and allowing
users interaction with the corresponding virtual objects.

i

Resumo

A constante evolução tecnológica e o aparecimento de novos dispositivos ao longo dos últimos
anos, estimulou o interesse em temas como a colaboração remota, levando ao desenvolvimento
de vários estudos nesta área. A ideia deste trabalho surgiu da necessidade e do desejo de poder
interagir com alguém no outro lado do planeta como se estivesse mesmo ao nosso lado, tanto num
âmbito profissional como lúdico. Este integra o projeto PAINTER e consiste no desenvolvimento
de uma aplicação colaborativa onde múltiplos utilizadores podem interagir em tempo real com
objetos virtuais posicionados na localização exata dos objetos reais previamente detetados através
de um smartphone.

De acordo com o principal objetivo deste trabalho, a proposta de implementação envolveu
uma pesquisa direcionada à integração da melhor forma possível de todos os componentes. Inves-
tigámos diferentes SDKs de Aceleração de Hardware e optámos pelo ArmNN de forma a obter
uma melhor performance na deteção de objetos através de um modelo CNN num smartphone.
Este SDK estabelece uma ligação entre a ferramenta de AI escolhida e o CPU/GPU do disposi-
tivo, desde que estes componentes de hardware sejam da Arm. Analisámos as diferentes opções
existentes deste tipo de ferramenta e a sua compatibilidade com o SDK ArmNN que nos levou
a escolher o Tensorflow. A escolha do modelo CNN esteve diretamente relacionada com estes
dois componentes e, após a pesquisa que nos permitiu perceber quais os modelos mais eficientes,
optámos pelo Tiny-YOLOv2.

Realizámos ainda uma análise de forma a perceber qual o melhor tracker a utilizar na nossa
aplicação, na qual salientamos o KCF. Dada a decisão de utilizar smartphones com o Sistema Op-
erativo Android, escolhemos o ARCore como nossa ferramenta de AR, utilizada maioritariamente
na implementação da parte colaborativa. Considerámos que a integração destes componentes é a
melhor abordagem para o desenvolvimento deste sistema. No entanto, cada um deles condicionou
a performance dos restantes.

Fizemos uma análise do tempo de processamento de cada frame em diferentes dispositivos
e obtivemos aproximadamente 18 fps no Samsung Galaxy S9 Plus. Também verificámos que a
deteção de objetos apresentou um frame rate de 4 fps. O nosso modelo alcançou uma mAP de
13.6% quando submetido a uma análise de uma pequena amostra de imagens recolhida e ano-
tada por nós. O tracker KCF apresentou um frame rate de 10.2 fps e uma mAP de 4.7%, sob
as condições mencionadas anteriormente. Para além disso, os resultados mostraram que a falta
de aceleração do GPU na deteção de objetos teve um impacto considerável na performance da
nossa aplicação. Demonstrámos o objetivo principal deste trabalho implementando a deteção e o
tracking de objetos reais em tempo real através de um smartphone e permitindo a interação dos
utilizadores com os objetos virtuais correspondentes.

iii

Acknowledgements

I would like to thank my supervisors, Professor Rui Nóbrega and Teresa Matos, with a special
thanks to Professor Luís Teixeira, for all the guidance and the support in this work. Moreover, I
am grateful for the proposal of such interesting work to develop, explore, and learn.

I thank my colleague Isabel Oliveira for the technical support on the neural network training
part. I also thank my family, especially my parents and my sister, for all the moral support and for
being always available to help me with everything.

And last but not least, I special thanks to Diogo not only for the technical support but also for
encouraging the development of this work and for being always on my side no matter what.

Joana Catarino

v

Contents

1 Introduction 1
1.1 Document Structure . 2

2 Background and Related Work 3
2.1 Real-Time Object Detection and Classification 5

2.1.1 Methods’ Description . 6
2.1.2 Methods’ Analysis . 8
2.1.3 Related Works . 12

2.2 Real-Time Object Tracking . 12
2.2.1 How Does A Tracking Algorithm Work? 13
2.2.2 What Are The Different Approaches Used By Trackers? 14
2.2.3 Tracker Comparison . 16
2.2.4 Related Works . 17

2.3 Virtual Environment Development . 18
2.4 User Interaction and Collaboration . 21

3 Proposed System Architecture 23
3.1 Problem Characterization . 23
3.2 Proposed Solution . 24
3.3 Architecture . 25

3.3.1 ARCore (AR Frameworks) . 26
3.3.2 OpenCV . 28
3.3.3 ArmNN (Hardware Acceleration SDKs) 28
3.3.4 Tiny-YOLOv2 . 33
3.3.5 TensorFlow (or AI/DL Frameworks) . 36

4 Implementation 39
4.1 Unity Scene Development . 39
4.2 CNN Input Preparation . 41

4.2.1 Image Processing . 42
4.2.2 CNN Construction . 42

4.3 CNN Output Analysis . 42
4.3.1 CNN Output Processing . 42
4.3.2 Bounding Boxes Representation . 44

4.4 Tracking and Collaboration Between Users . 48
4.4.1 Tracking . 48
4.4.2 Collaboration . 49

vii

viii CONTENTS

5 Results and Analysis 51
5.1 Object Detection and Classification . 51
5.2 Tracking Analysis . 53
5.3 Processing Time . 57
5.4 Collaboration Demo . 61

6 Conclusion and Future Work 63
6.1 Future Work . 64

A YOLO Models 67
A.1 YOLOv1.0 . 67
A.2 Tiny-YOLOv1.0 . 67
A.3 YOLOv1.1 . 68
A.4 Tiny-YOLOv1.1 . 68
A.5 YOLOv2 [VOC] . 69
A.6 Tiny-YOLOv2 [VOC] . 69
A.7 YOLOv2 [COCO] . 70
A.8 Tiny-YOLOv2 [VOC] . 70
A.9 YOLOv3 . 71
A.10 Tiny-YOLOv3 . 72

B YUV-420-888 Format 73

C Protobuf 75

D Interconnection Between CV and AI 77

E Tiny-YOLOv2 Training 79

References 83

List of Figures

2.1 Remote interaction between users (taken from [1]) 4
2.2 People avatar representation (taken from [2]) 4
2.3 Representation of three frames recorded at distinct moments (taken from [3]) . . 5
2.4 Model’s mAP comparison . 10
2.5 Model’s frame rate comparison on PASCAL VOC 2007 dataset 10
2.6 Model’s mAP and frame rate comparison with COCO dataset 11
2.7 Best model’s mAP comparison on COCO dataset 11
2.8 Detection demonstration . 14
2.9 Tracking demonstration . 14
2.10 Occlusion caused by virtual objects integrated in a real environment (taken from [4]) 21
2.11 Human and its avatar counterpart (taken from [5]) 21

3.1 Integration of the required components . 25
3.2 System architecture . 25
3.3 ARCore main concepts description . 27
3.4 ARKit main concepts description . 27
3.5 Mobile SoCs with potencial acceleration support for AI applications (taken from [6]) 29
3.6 ArmNN connection with NN framework and the existing hardware 30
3.7 ArmNN SDK . 31
3.8 ArmNN approach . 31
3.9 IOU: (a) Intersection; (b) Union . 34
3.10 AR Frameworks characteristics . 36

4.1 Unity scene . 40
4.2 Implementation diagram . 41
4.3 Bounding box overlap . 44
4.4 Relation between processed images (1) . 45
4.5 Relation between processed images (2) . 45
4.6 Relation between processed images (3) . 46
4.7 Relation between processed images (4) . 48
4.8 Unity new scene . 49
4.9 Colaboration between users . 50

5.1 Images’ ground-truth . 51
5.2 Model’s detection results . 52
5.3 Model’s (a) mAP and (b) LAMR . 52
5.4 Trackers’ mAP . 53
5.5 KCF and MOSSE’s analyzed frames . 53
5.6 KCF’s processed frames . 54

ix

x LIST OF FIGURES

5.7 Trackers’ (a) detection, (b) tracking, and (c) total duration 54
5.8 Trackers’ (a) median, (b) 95th percentile, and (c) average processing time 55
5.9 Processed frames during detection . 55
5.10 KCF’s tracking results . 56
5.11 KCF’s (a) mAP and (b) LAMR . 56
5.12 OnePlus 6’s processed frames . 57
5.13 Devices’ (a) detection, (b) tracking, and (c) total duration 58
5.14 Devices’ (a) median, (b) 95th percentile, and (c) average processing time 59
5.15 OnePlus 6’s (a) processing time and (b) detection duration 59
5.16 Processed frames during detection . 60
5.17 TV monitor’s detection and virtual rendering 61

A.1 YOLOv1.0 model . 67
A.2 Tiny-YOLOv1.0 model’s specifications . 67
A.3 Tiny-YOLOv1.0 model . 67
A.4 YOLOv1.1 model’s specifications . 68
A.5 YOLOv1.1 model . 68
A.6 Tiny-YOLOv1.1 model’s specifications . 68
A.7 Tiny-YOLOv1.1 model . 68
A.8 YOLOv2 [VOC] model’s specifications . 69
A.9 YOLOv2 [VOC] model . 69
A.10 Tiny-YOLOv2 [VOC] model’s specifications 69
A.11 Tiny-YOLOv2 [VOC] model . 69
A.12 YOLOv2 [COCO] model’s specifications . 70
A.13 YOLOv2 [COCO] model . 70
A.14 Tiny-YOLOv2 [COCO] model’s specifications 70
A.15 Tiny-YOLOv2 [COCO] model . 70
A.16 YOLOv3 model’s specifications . 71
A.17 YOLOv3 model . 71
A.18 Tiny-YOLOv3 model’s specifications . 72
A.19 Tiny-YOLOv3 model . 72

B.1 Frame YUV420p . 73

E.1 Loss chart . 79
E.2 Detection results and mAP of each model for the 1st trial 80
E.3 Detection-results of each model . 80
E.4 Detection results and mAP of each model for the 2nd trial 81
E.5 Number of images and annotations in each dataset 81
E.6 Ground-truth of each dataset . 82

List of Tables

2.1 Model’s mAP and frame rate comparison on PASCAL VOC 2007 dataset 8
2.2 Model’s mAP comparison on PASCAL VOC 2012 dataset 9
2.3 Model’s mAP comparison on COCO dataset . 9
2.4 Tracking frame rate (taken from [7]) . 16
2.5 Tracking accuracy based on Jaccard Index (taken from [7]) 17

3.1 Devices specifications . 32
3.2 YOLO versions’ specifications . 34

5.1 Tracking frame rate (taken from [7]) . 56
5.2 Total and detection frame rate . 60

xi

Acronyms

AI Artificial Intelligence
API Application Programming Interface
APU AI Processing Unit
AR Augmented Reality
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
DSP Digital Signal Processor
FLOPS Floating-point Operations Per Second
FPN Feature Pyramid Network
HA Hardware Acceleration
HAL Hardware Abstraction Layer
HMD Head-Mounted Display
HRI Human-Robot Interaction
IDE Integrated Development Environment
IOU Intersection Over Union
KCF Kernelized Correlation Filter
LAMR Log-Average Miss Rate
mAP Mean Average Precision
ML Machine Learning
MR Mixed Reality
NN Neural Network
NNAPI Neural Network API
NPU Neural Processing Unit
OCR Optical Character Recognition
OS Operating System
R-CNN Regions with CNN features
RFCN Region-based Fully Convolutional Networks
RPN Region Proposal Network
SDK Software Development Kit
SLAM Simultaneous Localization and Mapping
SNPE Snapdragon Neural Processing Engine
SSD Single Shot Detector
SoC System on Chip
UI User Interface
VR Virtual Reality
YOLO You Only Look Once

xiii

Chapter 1

Introduction

Throughout the years, technology has become present everywhere and, with that, several devices

have undergone constant evolution. Smartphones are nowadays almost essential in our lives. We

can stay in touch with our friends and family, play a game, watch a video, and listen to music,

and we can do some tasks related to our work, simplifying it. We have access to our personal and

professional email, and we can schedule our appointments. So, we have almost everything we

could need with us, making our daily lives much more comfortable.

However, there are still many things we cannot do with our smartphone or computer. When

we want to be with someone, for instance, to play a board game like in old times, we need to be

with the person physically. Similarly, in a professional scenario, if we belong to an interior design

team, we must be together to discuss specific changes to be made. These are just two examples of

many things that we cannot do apart.

Consequently, the desire to interact with someone in another place, as represented in science

fiction movies, for instance, with holograms and other approaches, is continuously increasing.

Regarding the two cases mentioned above, if we are far from each other, it would be interesting

to play together as if we were in the same physical space. That is, each player has its pieces

and can position and move them according to the rules and can see the other player’s pieces and

interactions in real-time. Likewise, the interior design team can work simultaneously on the same

project even though they are in different locations if there was a virtual 3D model visible to all

where each one can add a separate piece of furniture.

That is the idea of a collaborative platform: several users may view and simultaneously interact

with the same virtual environment, cooperating, using Augmented Reality (AR), or Virtual Reality

(VR) devices. Our work is part of the PAINTER project that is being developed at FEUP and

emerged in this idea’s scope.

The creation of a bridge between VR and AR has been encouraged to represent virtual objects

in a real environment and allow users to interact with them. This bridge is called Mixed Reality

(MR). It joins both concepts mentioned above, i.e., the integration of VR, where the scene is

artificial, and AR, where virtual objects overlay over the real environment. It has been an area

of avid research because it can be applied in several professional settings, such as architecture,

1

2 Introduction

medicine, education, construction, and leisure activities, such as entertainment and games. This

work differs from others that will be presented in Chapter 2 since it aggregates the recognition of

particular objects, their tracking and consequently virtual representation in the real environment,

and the collaboration between users.

Objectives and Approach This work aims to represent real-world objects in a virtual or par-

tially virtual environment so that several users can interact with each other in real-time as if they

were present in the same physical space. The platform to be developed must detect an object and

track its position and orientation in the real environment. The tracking data should be used to

recreate the object’s movements in the virtual environment, based on the object’s position in the

real world. This position ensures that the virtual object is initially placed in the correct location in

the virtual environment. Finally, both users can share an interactive experience, since the virtual

objects can change their position and orientation based on real objects. This approach requires

several steps, such as recognition, detection, and virtual visualization of the scene. The goal is to

create a virtual collaboration tool that works in real-time, using simple cameras and VR headsets.

In this work, a simple collaborative interchangeable platform is proposed. A smartphone ap-

plication that detects and tracks multiple objects in real-time is created by taking advantage of

different available tools.

1.1 Document Structure

After this brief introduction, in which some basic concepts and topics that serve as motivation

for this work were presented, a deeper analysis of object detection, tracking, collaboration en-

vironment, and related background work is presented in Chapter 2. In Chapter 3, the problem

characterization is presented, and the proposed solution and the system architecture are described.

In Chapter 4, all implementation details are explained. In Chapter 5, a performance evaluation is

presented as well as some considerations about the system’s implementation. Finally, conclusions

and future work are presented in Chapter 6.

Chapter 2

Background and Related Work

In this chapter, we present several works carried out in multiple relevant areas to the development

of this system. These are: (a) objects’ classification and detection; (b) object tracking in real-time;

(c) 3D models’ representation of real objects in a virtual environment; and (d) users’ collaboration

and interaction. The coalescence of these areas results in the birth of complex systems that can

complement the detection and tracking of certain elements with their representation in a virtual

context so that multiple users can interact in real-time.

In this context, Gao et al. [8] developed a mobile remote collaboration system based on the

mixed reality that allows a specialist to offer real-time assistance in physical tasks to an individual

who so desires, independently of the distance between them. Google ARCore1, a tracking system

that can calculate the position of particular objects using an external depth sensor connected to a

mobile phone, is used to represent the physical environment in a virtual world. The scene where

the subject is present is captured and transmitted wirelessly to the expert that visualizes it on a

mobile VR headset (in this case, HTC VIVE Focus). In this way, the remote expert can immerse

himself in the virtual scenario and thus offer assistance as if they are sharing the same physical

location, simulating face-to-face cooperation. Also, the remote assistance is transmitted back in

the form of augmented reality that overlais the video in the subject’s display.

Some works such as Room2Room [1] and Mini-Me [2] attempt to represent a person in a

virtual environment. The former designed a telepresence system intending to create an image of

the person, while the latter creates a Mini-Me and a real-size virtual avatar. Through projected

augmented reality, Pejsa et al. [1] allow interaction between two remote participants, recreating a

face-to-face conversation experience. Users are captured with color and depth cameras to project

their size and features into the remote space. This system creates an illusion of the physical

presence of remote users in a given space, as well as the look and movements performed by them.

Figure 2.1, shows a representation of the remote interaction between users, wherein in (a) and (d),

it is possible to visualize the real people communicating with the projection of each other and, in

(b) and (c), a frontal plane shows the respective projections.

1 more details about this AR framework at https://developers.google.com/ar/ [accessed 24 September
2019]

3

https://developers.google.com/ar/

4 Background and Related Work

Figure 2.1: Remote interaction between users (taken from [1])

Piumsomboon et al. [2] take a slightly different approach by developing an adaptive avatar to

enhance remote MR collaboration between a local AR user and a remote VR user. The Mini-Me

avatar represents the gaze direction and body gestures of the VR user while transforms their size

and orientation to remain within the AR user’s field of vision. These authors also perform a user

study that evaluates their system in two possible collaborative scenarios: i) an asymmetric remote

expert in VR assisting a local worker in AR; ii) a symmetric collaboration in urban planning.

Piumsomboon et al. conclude that the presence of the Mini-Me significantly improves the social

presence and the entire collaborative experience in MR. In Figure 2.2, it is possible to visualize

some captures of the system in operation. (a) shows the real-size avatar projection and (e) shows

the Mini-Me avatar projection. (b) presents both avatars in the virtual environment and (d) shows

a user experience.

Figure 2.2: People avatar representation (taken from [2])

Recently, Rünz and Agapito [3] developed multiple moving objects’ real-time detection, track-

ing, and reconstruction system called MaskFusion. Since this is a Simultaneous Localization and

Mapping (SLAM) [9, 10] system capable of analyzing a real-time object-level scenario, a new ap-

proach was used to deal with the two significant limitations present in this type of systems. Most

SLAM methods assume that the environment is predominantly static and that moving objects are,

at best, detected as outliers and therefore ignored. Besides, the result of most of these SLAM

systems is a purely geometric map of the environment without the inclusion of any semantic in-

formation.

To overcome these limitations and to increase the accuracy of the object mask limits, the

authors combine the results of two algorithms:

2.1 Real-Time Object Detection and Classification 5

1. Mask-RCNN model [11], a powerful image-based instance-level segmentation algorithm

that can predict object category labels for up to 80 object classes;

2. a geometry-based segmentation algorithm capable of creating an object edge map from

depth and surface cues.

Through an RGBD camera, a rather crowded and cluttered scenario is captured, followed by

an image-based instance-level semantic segmentation capable of creating semantic object masks

that allow the detection of real-time objects and their subsequent representation. In the following

image, a sequence of three frames illustrating MaskFusion recognition, tracking, and mapping

capabilities are presented. The upper half of Figure 2.3 shows a rebuilt scenario with a white

background where each element was colored differently. Between frames (b) and (c), a user

changed the teddy bear and the bottle’s position. The bottom half of the image shows the overlap of

the frames captured by the RGBD camera with the semantic masks produced by the segmentation

neural network.

Figure 2.3: Representation of three frames recorded at distinct moments (taken from [3])

2.1 Real-Time Object Detection and Classification

To identify different objects in images, one should start by extracting their features and then pro-

ceed to the corresponding matching in the environment under study. For this purpose, several

feature extractors such as SIFT [12], SURF [13], and, later, ORB [14], were developed for re-

ducing the time spent on real-time detection. On the next step, it is necessary to train the model

for object classification, and it is within this context that machine learning appears. Features of

several analyzed images should be grouped by the corresponding label to identify the object.

6 Background and Related Work

Deep Learning (DL) emerges as a consequence of integrating Machine Learning (ML) in the

image feature extraction, representing an alternative approach, capable of acquiring new informa-

tion through feature extraction. In the last years, several algorithms based on this approach were

developed and used to detect, classify and locate objects in images. [15]

2.1.1 Methods’ Description

The performance of object detection was in a standstill stage, and the systems with higher perfor-

mance combined a sophisticated multiple low-level image features with high-level context from

object detectors and scene classifiers, when Girshick et al. [16] developed a scalable and straight-

forward object detection algorithm, R-CNN: Regions with CNN features. It improved by 30% the

highest results obtained until then with the PASCAL VOC 2012 dataset2. High capacity convolu-

tional neural networks were used for object location and segmentation, as well as a more effective

training approach since it is challenging to train considerable big CNNs when the labeled training

data is scarce. In these situations, the common practice involves a non-supervised pre-training

followed by a supervised fine-tuning process. However, these authors showed that it is highly

useful to perform a supervised pre-training of the network for an auxiliary task using abundant

data from classification datasets (in this case, ILSVR2012 [17]), and then adjust the network to

the target task, for which there is not so much data, from detection data sets (in this case, PASCAL

VOC). Girshick et al. also stated that possibly this "supervised pre-training / domain-specific fine-

tuning" paradigm would also be beneficial for a considerable diversity of problems concerning

vision where data it is not abundant.

Girshick improved the developed model, creating the Fast R-CNN [18], an object detection

method with several innovative features when compared with the former one, to improve both

the training speed and test as well as the detection precision. Existing object detection networks

like Fast R-CNN, depend on region proposal algorithms for predicting the object locations. The

reduction of the running time for these networks highlighted the problem related to the region

proposal calculations. Having this adversity in mind, Ren and Girshick, together with other au-

thors, developed a Region Proposal Network (RPN), capable of sharing full-image convolutional

features with the detection network, resulting in region proposals with a very reduced cost. RPN

is a convolutional network that, simultaneously, scores and predicts object limits for each position.

Furthermore, its training was end-to-end to generate region proposals of high quality, used by Fast

R-CNN on object detection. In this way, the same authors combined RPN and Fast R-CNN in one

single network, sharing their convolutional features, emerging the Faster R-CNN model [19].

Dai et al. [20] presented convolutional networks based on regions for precise and accurate

object detection. By opposition to the previous detectors based on regions that apply a subnetwork

hundreds of times per region with high costs, this detector named R-FCN: Region-based Fully

Convolutional Networks, shares almost all calculations made on the entire image. The authors

2 more details about this dataset at http://host.robots.ox.ac.uk/pascal/VOC/ [accessed 15 November
2019]

http://host.robots.ox.ac.uk/pascal/VOC/

2.1 Real-Time Object Detection and Classification 7

proposed score maps that are sensitive to a position to solve the translation invariance in image

classification and the translation variance in object detection.

Liu et al. [21], presented a method for detecting objects in images using a single deep neuronal

network, named as Single Shot Detector (SSD). When compared to other methods that make

use of object proposals, this SSD is rather pure, since it eliminates the proposal generation and

subsequent pixel or feature resampling stages, and performs all the computation with a single

network, becoming easy to train and simple to be integrated with systems requiring a detection

component.

On the other hand, Lin et al. [22] decided to study the feature pyramids, which stands for a

primary component of the object detection systems in different scales. This approach was avoided

by the present deep learning object detectors due to the required amount of memory and the re-

quired computation to improve object detection systems. The developed architecture, named as

Feature Pyramid Network (FPN), showed a significant improvement as general feature extraction

in several applications.

In the scope of Single Shot Detectors, Redmon et al. [23] developed YOLO: You Only Look

Once. This neural network architecture is based on the GoogLeNet model [24], trained with the

ImageNet classification dataset3 and evaluated with PASCAL VOC detection dataset. It is capable

of processing real-time images, with a frame rate of 45 fps, and representing a rectangle around the

selected object. Later, the same authors developed a second version of this model, YOLOv2, and

a different model named YOLO9000 [25], capable of detecting more than 9000 object categories

and presenting several improvements when compared with the previous version. For detecting

such a high number of objects, Redmon et Farhadi proposed a new training approach: an algorithm

capable of conjugating detection and classification datasets.

As stated by Girshick et al., the present object detection datasets are limited when compared

to the datasets directed for classification or tagging. The most common detection datasets contain

thousands or even hundreds of thousands of images, with tenths or hundreds of tags. On the other

hand, the classification datasets possess millions of images with tenths or hundreds of thousands of

categories. The image tagging for detection is more difficult to achieve than the image tagging for

classification. For that reason, the authors proposed a new method capable of taking advantage of a

large amount of data already available to expand the scope of current detection systems. Thus, this

pethood is capable of learning to locate an object with precision while it is using the classification

images to increase its robustness and vocabulary. For this purpose, were used, simultaneously, the

COCO detection dataset4 and the ImageNet classification dataset 3.

More recently, the same authors developed the third version of YOLO, named YOLOv3 [26],

with some improvements like the processing speed, the increase of correct detection precision, and

the modification of the bounding boxes predicting mode. Around the same time, He and Girshick,

along with others [11], developed the Mask R-CNN, an enhancement of Faster R-CNN, which

predicts an object mask in parallel with the bounding box recognition.

3 more details about this dataset at http://www.image-net.org/ [accessed 15 November 2019]
4 more details about this dataset at http://cocodataset.org/#home [accessed 15 November 2019]

http://www.image-net.org/
http://cocodataset.org/#home

8 Background and Related Work

2.1.2 Methods’ Analysis

According to the previously presented works, except for R-CNN and Mask-RCNN, in this section,

we briefly compare some of the mentioned models. However, we should consider that the results

came from different sources, meaning that the tests were probably not conducted precisely with

the same settings.

We analyzed the models’ results when tested with the following datasets: Pascal VOC 2007,

Pascal VOC 2012, and COCO.

• In Table 2.1, we present the models’ mAP and frame rate on Pascal VOC 2007 test set. All

models were pre-trained with Pascal VOC 07+12, which means that their train was on the

2007 trainval and 2012 trainval.

• In Table 2.2, we present only the models’ mAP on Pascal VOC 2012 test set, since there is

no information about the frame rate. All models were pre-trained with Pascal VOC 07++12,

which means that their train was on the 2007 trainval, 2007 test, and 2012 trainval.

• In Table 2.3 we also present only the models’ mAP on COCO test-dev set. All models were

pre-trained with COCO trainval dataset.

Mean Average Precision (mAP) is a metric used in measuring the accuracy of object detectors

like Faster R-CNN, SSD, YOLO, etc. It computes the average precision value for recall value over

0 to 1. We mention the papers that presented the exhibited values in the last column of all tables.

In all tables, we present two models of Faster R-CNN that used different feature extractors. The

original one used VGG-16, and the model presented by Dai et al. [20] used ResNet-101. In table

2.1 we also presented other YOLOv2 versions. However, we do not show them in Figure 2.4.

Table 2.1: Model’s mAP and frame rate comparison on PASCAL VOC 2007 dataset

Model mAP (%) fps Cited by

Fast R-CNN 70.0 0.5 [18]

Faster R-CNN (VGG-16) 73.2 5 [19]

Faster R-CNN (ResNet-101) 76.4 2.4
[20]

R-FCN 80.5 5.8

SSD 300 74.3 46
[21]

SSD 512 76.8 19

YOLO 63.4 45 [23]

YOLOv2 288 69.0 91

[25]
YOLOv2 351 73.7 81
YOLOv2 416 76.8 67
YOLOv2 480 77.8 59
YOLOv2 544 78.6 40

2.1 Real-Time Object Detection and Classification 9

Table 2.2: Model’s mAP comparison on PASCAL VOC 2012 dataset

Model mAP (%) Cited by

Fast R-CNN 68.4 [18]

Faster R-CNN (VGG-16) 70.4 [19]

Faster R-CNN (ResNet-101) 73.8
[20]

R-FCN 77.6

SSD 300 72.4
[21]

SSD 512 74.9

YOLO 57.9 [23]

YOLOv2 544 73.4 [25]

Finally, in table 2.3, we present two columns for mAP, since the MS COCO challenge intro-

duced a new evaluation metric. The mAP @.5 corresponds to the primary challenge metric, i.e.,

a threshold of 0.5, and it is equivalent to the measurement performed on the Pascal VOC dataset.

The mAP @[.5,.95] averages over different Intersection Over Union (IOU) thresholds, from 0.5

to 0.95, step 0.05 (0.5, 0.55, 0.6, ... 0.9, 0.95). In this table, we did not present YOLOv1’s results

because the authors did not analyze this version on the COCO dataset.

Table 2.3: Model’s mAP comparison on COCO dataset

Model mAP (%)
@.5

mAP (%)
@[.5,.95] Cited by

Fast R-CNN 39.3 19.3
[19]

Faster R-CNN (VGG-16) 42.7 21.9

Faster R-CNN (ResNet-101) 48.4 27.2
[20]

R-FCN 51.9 31.5

SSD 300 41.2 23.2
[21]

SSD 512 46.5 26.8

YOLOv2 544 44.0 21.6 [25]

Figure 2.4 presents the corresponding mAP’s plots of the previous three tables together. We

did not include the mAP @[.5,.95] since these values cannot be compared with the remaining,

as we previously explained. In Figure 2.5 we present the models’ frame rate comparison on the

Pascal VOC 2007 dataset, as shown in Table 2.1.

10 Background and Related Work

Figure 2.4: Model’s mAP comparison

Figure 2.5: Model’s frame rate comparison on PASCAL VOC 2007 dataset

The Pascal VOC 2007 dataset contains approximately 10k images and the corresponding an-

notations of 20 classes. As the Pascal VOC 2012 dataset is more recent than the previous one, it

contains the same number of images and annotations and an additional 23k, approximately. Thus,

the models’ mAP tested with the oldest dataset are slightly higher than the latest. With similar

reasoning, as the COCO dataset contains approximately 100k images and the corresponding an-

notations about 80 classes, the results are lower than the results with both Pascal VOC datasets.

The mAP @ [.5,.95] averaged on the COCO dataset places a significantly larger emphasis on lo-

calization compared to the PASCAL VOC metric, which only requires an IOU of 0.5, the standard

one. In other words, for the Pascal VOC 2007 dataset, the mAP was averaged over all 20 object

classes and over 1 IOU threshold; and for the COCO dataset, it was averaged over all 80 object

categories and all 10 IOU thresholds.

As we said before, the results came from different sources, which means that the tests were not

conducted with the same settings and parameters. Nevertheless, with these results, we verify that

R-FCN, followed by SSD 512, Faster R-CNN with Resnet-101, and YOLOv2 544, are probably

2.1 Real-Time Object Detection and Classification 11

the best models. However, when we compare these models regarding the processing time, as

shown in Figure 2.5, the SSD 300 and both YOLO models are considerably better than the R-

FCN, the SSD 512 and the Faster R-CNN with Resnet-101.

We also considered the analysis made by Redmon on his website5, that is constantly updated,

as illustrated in Figure 2.6. The presented models were pre-trained with the COCO trainval dataset

and tested on its test-dev. The plot (a) presents models’ mAP, and the plot (b) shows the corre-

sponding frame rate.

Figure 2.6: Model’s mAP and frame rate comparison on COCO dataset 5

In this case, all the models were trained and tested under the same conditions, which allows a

valid conclusion. As we can see, the top 3 models with a higher mAP are YOLOv3 spp, FPN, and

YOLOv3 608, followed by RetinaNet-101-800. On the other hand, the worst models regarding the

mAP are Tiny YOLOv2 and Tiny YOLOv3. We compared the best models of this analysis with

the best models of the previous one, and present the results in Figure 2.7. We verified that all the

best models of Figure 2.6 are better than the remaining models of Figure 2.4.

Figure 2.7: Best model’s mAP comparison on COCO dataset

5 more information about these models at https://pjreddie.com/darknet/yolo/ [accessed 27 November
2019]

https://pjreddie.com/darknet/yolo/

12 Background and Related Work

This time, we also have information about the processing time, and, in contrast to what hap-

pened with mAP, the only two models that stand out considerably from the rest are Tiny YOLOv2

and Tiny YOLOv3. A system with a processing time very high is necessarily worse at the object

detection part. Similarly, FPN and RetinaNet-101-800 have the worst processing time values.

2.1.3 Related Works

By further analyzing Redmon et al.’s developed models, one can find some practical examples

of YOLO, such as a study performed by Mallick et al. [15] on detection and location of objects

in overfilled environments using a robot. In this study, it was concluded that better results were

achieved by a model with ResNet as the backbone instead of YOLO. Duggal et al. [27] also made

use of YOLO for video analysis, as well as Zhou et al. [28] which have used it in the object

detection and tracking in Human-Robot Interaction (HRI).

Kharchenko et al. [29] decided to use the YOLOv3 model for aircraft detection on the ground

instead of SSD or RetinaNet. The model with less precision was SSD, YOLOv3 had a precision to

a two-stage detector, and RetinaNet stood for the most effective detector in this group. However,

YOLOv3 was the chosen one, due to the conjugated processed speed and acceptable precision

results.

In the textile industry, namely on fault detection on a textile factory [30], three models based

on the second version of YOLO were used and compared: YOLO9000, Tiny-YOLO, and YOLO-

VOC. According to the analysis made, the first two are not adequate for this kind of fault detection

due to the values obtained for the parameters under analysis. YOLO-VOC obtained the best result

inclusively on the IOU parameter, although with a not very high mark for this parameter, probably

due to the superposition of the fault’s small size and the reduced frame selection area. However,

when the IOU mark is approximately 50%, faults can successfully be detected and classified.

Wong et al. [31] developed a new model, inspired on the fire microarchitecture efficiency intro-

duced by SqueezeNet [32] and on the single-shot microarchitecture object detection performance

introduced by SSD. They create the Tiny-SSD model, a single shot detection deep convolutional

neural network for real-time embedded object detection similar to Tiny-YOLO. The authors con-

cluded that the size of their model is 2.3 MB, which is 26 times less than the size of Tiny-YOLO.

Furthermore, Wong et al. verify that Tiny-SSD presented a mAP of 61.3% using Pascal VOC 2007

dataset, representing a 4.2% increase when compared with Tiny-YOLO.

2.2 Real-Time Object Tracking

As seen in Section 2.1, in the last years, the use of deep learning together with computer vision,

improved object detection, and object classification. Consequently, visual tracking also using deep

learning considerably increased its performance.

Visual tracking stands for a way of detecting, extracting, identifying, and locating objects in

images or video sequences. This process starts with object detection in the video’s first frame.

Then, in the following frames, its position and attributes are followed. This technique is thus an

2.2 Real-Time Object Tracking 13

aggregation of different areas, such as image processing, pattern recognition, artificial intelligence,

among others, meaning that it does not only have object detection, extraction, recognition, and

location, but also a data organizing plan and decision support. The procedures performed in visual

tracking are interdependent, since the way the object features are detected and extracted establish

the method’s efficiency and robustness.

Most of the best algorithms for image classification and object detection use deep learning.

However, as a traditional computer vision task, visual tracking with deep learning started later and

developed slower than other tasks. Even with the advantages of deep learning methods on feature

extraction, complex video processing with deep networks makes it challenging to perform real-

time tracking. Moreover, the lack of tracking samples limits supervised training since it requires a

considerable number of them.

2.2.1 How Does A Tracking Algorithm Work?

In a video or a real-time transmission, while one frame is being processed, the tracking must be

performed on the remaining received frames. In contrast to detection algorithms that are trained

with many examples of an object, having more knowledge about it, tracking algorithms know

more about the specific instance of the class they are tracking. So, first, an object must be detected

to get its location and its dimensions. Then, with its speed and direction, the location of the object

in the next frame can be predicted. Hence, while a detection algorithm always has to start from

scratch, a good tracking algorithm uses all the provided information about the object to predict the

new location.

We cannot detect an object just once because an obstacle can overlap it for an extended period,

or it can move so fast that the tracking algorithm cannot follow it. Hence, tracking algorithms

usually accumulate errors, making the object’s bounding box to drift away from the object that

is being tracked slowly. Running a detection algorithm every so often can avoid these errors.

Therefore, while designing an efficient system, usually object detection runs on every Nth frame

while the N-1 frames in between employ the tracking algorithm. That is why, usually tracking

algorithms are faster than detector algorithms.

With this processing, the tracker understands how the object moves. It means that the motion

model is known. So, the new location of the object could be predicted based on the acquired

information about the object speed and its direction of motion. Besides, the object’s position and

size gave the object’s appearance in the previous frames, which is useful to search in a small

neighborhood of the location predicted by the motion model to predict the location of the object

more accurately.

As the appearance of an object can change dramatically, many modern trackers use a classifier

model trained online to predict the new appearance of the object. The classifier should take a

rectangular region of an image and classify it as an object or background. Thus, the classifier

takes an image patch as input and verifies if it contains the object. If the object is there, it classifies

the image patch with a 1; if it is guaranteed background, the assigned value is 0. The training

of this model is online because it learns on the fly at run time. On the other hand, the training

14 Background and Related Work

of a detection model is offline because it needs thousands of examples to learn and only a few

examples are not enough.6

Another useful characteristic of tracking algorithms is that they can preserve the identity of

the object. The algorithm responsible for drawing the bounding boxes in the images, uses the

same color sequence regardless of the detected object, as shown in Figure 2.8. However, in (b),

the Siamese cat should continue to show the red bounding box instead of the green one. On the

other hand, with tracking, we obtain a similar result to the one presented in Figure 2.9, i.e., in (b)

all cats still have the expected bounding box.

Figure 2.8: Detection demonstration

Figure 2.9: Tracking demonstration

2.2.2 What Are The Different Approaches Used By Trackers?

There are many types of trackers, but in this work, we decided to focus our research on the trackers

available in the OpenCV library. Next, we briefly describe how they work, based on the work of

Lehtola et al. [7].

The Boosting tracker is based on an online version of AdaBoost, and it is trained with the

object’s positive and negative examples at runtime. It considers the initial bounding box as a

positive example and regions in the outside as the background. Next, the classifier runs on every

6 more information about tracking at https://www.learnopencv.com/
object-tracking-using-opencv-cpp-python/

https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/

2.2 Real-Time Object Tracking 15

pixel near the previous location, applying the binary classifier. The maximum value gives the new

location of the object. As more frames come in, the classifier must be updated with the additional

data.

The MIL tracker is like the previous one. But for classification, it uses the "Multiple Instance

Learning" approach. Instead of considering only the object’s current location as a positive exam-

ple, it looks in a small neighborhood around it to generate several potential positive examples.

MIL calls them "bags". It groups similar samples into bags, where it considers an overall positive

sample if at least one of the individual samples it contains is positive, and negative otherwise. This

approach is useful when the current location of the tracked object is not accurate because it is

possible to have a positive neighborhood sample in the bag, which means that the object is in that

location.

The Kernelized Correlation Filter (KCF) tracker, with a similar approach to the previous meth-

ods, takes advantage of the large overlapping regions caused by the multiple positive samples. The

KCF employs the shift-invariance property of Fourier transform to simplify the correlation com-

putation created by the overlapping data to make it extremely fast. The KCF avoids the inability

to use a large enough number of training data available from each input frame due to a high com-

putational load through its lightweight implementation.

The TLD tracker stands for Tracking, Learning, and Detection. The tracker must follow the

object, while the detector localizes all appearances to correct the tracker if necessary. The learn-

ing part is responsible for estimating the detector’s errors and updates the tracker to avoid them

posteriorly. It avoids learning from misinformation, disabling online learning if the object is out

of frame or wholly occluded by other objects. With this approach, this method is better than the

previous ones when these situations occur. However, it has lots of false positives, which makes it

not reliable.

The MedianFlow tracker’s approach is based on tracking error measures. It tracks the points of

each object both forward and backward in time and compares the resulting trajectories. Minimiz-

ing this error enables us to reliably detect tracking failures and select reliable trajectories in video

sequences. The MedianFlow tracks and measures the points inside a bounding box for error, and

then classifies them as inliers and outliers by the result. Outliers are filtered out, and the bounding

box motion is estimated based on the inliers.

OpenCV library also has three more trackers available. GOTURN is the only one based on

CNNs, and it uses a Caffe model for tracking. Minimum Output Sum of Squared Error (MOSSE)

uses an adaptive correlation for object tracking. When initialized, it produces stable correlation

filters using a single frame. Finally, the Discriminative Correlation Filter with Channel and Spatial

Reliability (DCF-CSR) uses the spatial reliability map to adjust the filter support to the frame’s

selected region for tracking, improving the non-rectangular regions or objects’ tracking and en-

larging the selected region.

16 Background and Related Work

2.2.3 Tracker Comparison

Lehtola et al. [7] demonstrated that in terms of processed frames per second, MedianFlow is typi-

cally the fastest and KCF the second fastest, although the last one reaches very high performance

on a few sequences. MIL and TLD are the slowest ones, and the Boosting algorithm sits in the

middle. They concluded that only MedianFlow and KCF could perform at speeds that could be

considered as real-time. The other ones can be used in a practical application reducing the video’s

resolution. MedianFlow and KCF allow the most significant resolution while maintaining real-

time performance.

The same authors used the Jaccard Index as a measure of accuracy when comparing bounded

boxes of the tracked object with the corresponding ground-truth. In this case, the MedianFlow has

notably low accuracy. The rest share similar average accuracies, but KCF has the best average and

can reach better accuracy than the others in the best cases. They also analyzed the Jaccard index

as a function of a video frame. They concluded that MedianFlow presents a high frame rate and

is the fastest one, but it shows a low accuracy, and it is not able to detect the target again once

lost. Therefore, KCF has a more robust tracking accuracy while keeping the second-highest frame

rate. At the time the paper was published, GOTURN had recently been introduced to the OpenCV

library, so Lehtola et al. only referred to the results shown by its authors. They showed that the

tracker could run at 165 fps on a GPU, but only 2.7 fps on CPU, a much lower value.

In terms of reliability, when tracking fails, Boosting and MIL are the worst. KCF has shown

some improvements in this field, and MedianFlow is much better than the previous ones, especially

if there was no occlusion. MIL and KCF trackers can handle partial occlusion, but they cannot

recover from full occlusion, unlike TLD, which deals better with this.

GOTURN is robust to variations in lighting, scale, pose, and non-rigid deformations, as well as

MOSSE. However, the first one does not handle occlusion very well. On the other hand, MOSSE

tracker detects occlusion based upon the peak to sidelobe ratio (SLR), enabling the tracker to

pause and resume where it left off when the object reappears. It also can operate at a high frame

per second values, like 450 fps, and is accurate and fast, but on a performance scale, it lags behind

trackers based on deep learning. Lastly, DCF-CSR can operate at a comparatively lower frame per

second value (25 fps) but gives higher accuracy for object tracking.6

In Table 2.4, we present the approximate median value of the frame rate obtained by the

analyzed trackers in work presented by Lehtola et al. And in Table 2.5, we show the accuracy

results.

Table 2.4: Tracking frame rate (taken from [7])

Trackers

Tracking
Boosting MIL KCF TLD MedianFlow

3.5 fps 1.5 fps 7.5 fps 1 fps 16.5 fps

2.2 Real-Time Object Tracking 17

Table 2.5: Tracking accuracy based on Jaccard Index (taken from [7])

Trackers

Jaccard Index
Boosting MIL KCF TLD MedianFlow

0.35 0.36 0.40 0.30 0.20

2.2.4 Related Works

Due to the superiority shown concerning image recognition, CNNs became the mainstream model

in computer vision and, consequently, in visual tracking. Feng et al. [33], mentioned two visual

tracking algorithms based on deep learning: FCNT, a fully convolutional network tracker [34] and

MD Net, a multi-domain convolutional neural network [35].

Ren et al. [36] proposed a collaborative deep reinforcement learning (C-DRL) model for mul-

tiple object tracking. The authors also developed a deep prediction-decision network with the

purpose of simultaneously detect and preview objects under a unified network, since the most of

the multi-object tracking methods make use of the strategy of tracking by detection. They start

to detect objects in every frame and associate them to different frames, resulting in a limitation

on the performance obtained in the detection phase, which can be affected by occlusions or over-

crowded environments. So, the authors considered each object as an agent and performed its

tracking through the prevision network, looking for the optimal tracked results found through the

exploration of collaborative interactions of different agents and environments.

Still regarding object location prediction, Ehsani, Bagherinezhad, and Mottaghi, together with

the leading authors from the three YOLO versions [37], developed DECADE a dataset of ego-

centric videos from a dog’s perspective as well as its corresponding movements. The developed

model gathers the existent visual information and directly predicts the agent’s actions, i.e., how

the dog is going to act and how to predict its movements. Moreover, the representation that is

learned by this model codifies distinct information when compared with representations trained in

image classification so that it can be generalized to other domains.

Scheidegger et al. [38] developed a multiple object tracking algorithm that receives an image

and determines the trajectories of the detected objects in a world coordinate system. For that

purpose, the authors used a deep neural network trained to detect and estimate the distance to the

objects from a given image. The detection of a sequence of images is inserted in a state-of-the-art

Poisson multi-Bernoulli mixture tracking filter, which in combination with the detector, results

in an algorithm capable of performing 3D tracking just using images from a monocular camera

as input. A mono-camera exclusively captures the image’s bidimensional plan and thus, with no

information regarding the object distances. The KITTI object tracking dataset [39] evaluates the

model’s performance in 3D world coordinates and 2D image coordinates. The authors obtained

impressive results that proved the algorithm’s efficiency, processing an average of 20 fps and the

capability of performing precise object tracking, correctly manipulating data associations, even in

the presence of image occlusion.

18 Background and Related Work

The previously mentioned dataset developed by Gaidon et al. [39] had as primary objective

to aid modern computer vision algorithms to perform data acquisition and labeling. They took

advantage of the growing computer graphics technology to create wholly labeled proxy virtual

worlds, photorealistic, and dynamic. The purpose was to develop an efficient real-to-world cloning

method and validate it through a new set of video data, named "Virtual KITTI", automatically

labeled with precise information of the ground for object detection, tracking, scene segmentation,

depth, and optical flux.

The same authors also presented quantitative experimental evidence suggesting that: i) modern

deep learning algorithms pre-trained with real data behave similarly in real and virtual environ-

ments and ii) the pre-training made with virtual data improves the model’s performance. Since

the differences between virtual and real worlds are relatively small, the first allows measuring the

impact of different meteorological and image conditions in the recognition performance. They

also showed that these factors drastically affect high-performing deep models for tracking.

Held at al. [40] showed that, contrary to most of the object tracker that exist and perform their

training online, it is possible to do real-time generic object tracking through visualizing offline

videos of moving objects. To accomplish this goal, they created GOTURN, Generic Object Track-

ing Using Regression Networks, which, through offline training, learn to perform the tracking of

new objects in a rapid, robust, and precise way.

Computer vision frequently uses machine learning techniques due to their capability of dealing

with large quantities of data to improve systems performance. However, most of the generic object

trackers are trained online from scratch, and thus they do not benefit from the number of offline

available’s videos for training purposes. The method developed by Held at al. is significantly faster

than the previous methods that used neural networks for tracking. These networks are generally

very slow and present small viability for real-time applications. GOTURN uses a simple feed-

forward network without the need for online training. It learns a generic relationship between

object movement and appearance that can be used for tracking new objects that are not present in

the dataset. When in test and new objects are tracked, the network weights are freeze, and it is not

necessary an online tuning. The network was tested in a standard tracking benchmark to score the

method’s performance and is capable of tracking objects at 100 fps.

Recently, Wang et al. [41] presented a new approach of efficient regression-based object track-

ing, which is related to the GOTURN tool. Inspired on the IC-LK tool, they created Deep-LK and

proved that their tool substantially overcomes the tool created by Held at al., showing a comparable

tracking performance to the current state-of-the-art deep trackers on high frame-rate sequences.

2.3 Virtual Environment Development

The development of a virtual environment based on a real-world scenario may be useful in several

areas like architecture, construction, decoration, games, a collaboration between users, among

others. The automatic creation of 3D virtual content in the context of a real-world scenario requires

2.3 Virtual Environment Development 19

image analysis where relevant features such as leading lines, point features, vanishing points or

3D structures can be detected. [42]

Some works developed in this area, use different features detection techniques than the previ-

ously discussed. Arnaud et al. [43] developed a mobile platform that uses a new tablet equipped

with a depth sensor to rebuild a 3D real-time environment. This platform builds a model by iden-

tifying only four structural elements: floor, ceiling, walls, and windows/doors. Generally, the

three-dimensional model of buildings is drawn manually by professionals using CAD software, a

very exhaustive process, especially in large buildings. The main objective is to simplify the eval-

uation of the geometric characteristics of buildings and their energy performance. In this way, the

use of depth sensors is considered a promising solution to accelerate and simplify the 3D modeling

process, while improving the efficiency of the professionals in the design of these models.

The most popular sensors in 3D reconstruction are stereoscopic and Time of Flight cameras.

These guarantee high resolution but require lots of processing power to extract the depth data,

which makes it challenging to have a system that is powerful enough to operate in real-time with-

out disrupting the user’s mobility. Recently, a new generation of intelligent depth sensors for

mobile devices, inspired by famous RGBD sensors such as Kinect, has emerged. Sensors like

StructureSensor can be plugged into standard tablets, or Google Project Tango7, a new generation

of tablets with a built-in depth sensor allows for the development of several augmented reality ap-

plications and 3D modeling of real objects while providing low-cost mobile platforms. However,

most RGBD sensors face some shortcomings, such as occlusion of regions by opaque objects,

transparent surfaces, harmful reflection properties, and an inadequate distance to the sensor. For

this reason, the authors of this platform, simplified the detection of windows/doors, considering

that windows are transparent, and doors are always open, facilitating the selection of previously

detected regions of interest when detecting the walls.

A few years earlier, when RGBD sensors were still starting to appear, Izadi et al. [44] used

a standard Kinect camera to perform detailed reconstruction of existing interior space objects,

creating KinectFusion. They only used the depth data obtained by the camera for tracking the 3D

pose of the sensor and for a geometrically precise real-time reconstruction of 3D models of the

physical environment. Besides, they developed a GPU based pipeline that demonstrated that object

segmentation and user interaction in front of the camera did not interfere with the reconstruction,

nor did degrade the tracking performed by the camera. Extensions added to the core GPU pipeline

allow multi-touch interactions anywhere and in real-time.

Recently, Nóbrega et al. [42] developed an interactive mixed-reality application where virtual

objects interact with images of real-world scenarios. The user only needs to capture images of

the real environment with a simple camera or use pre-existing images. The introduction of virtual

objects into photographs presents some challenges, such as pose estimation and creation of a

visually correct interaction between virtual objects and the boundaries of the scene. The proposed

system detects the scene automatically from an image, with additional features obtained through

7 Tango Project was an AR computing platform, developed and authored by the Advanced Technology and Projects
(ATAP), a skunkworks division of Google. In 2018, ARCore replaced it.

20 Background and Related Work

simple annotations to facilitate its usage by non-experienced users. Through the analysis of one

or more images, the system detects the most relevant features, such as those described in the first

paragraph of this subsection, to allow the creation of mixed and augmented reality applications

in which the user can introduce fully integrated virtual objects in the environment’s image in

real-time. The principal motivation of this work was to create a system capable of mixing virtual

content with real-world scenarios without using additional sensors, such as depth-sensing cameras,

relying only on image recognition and automatic reconstruction of the scene.

Sra et al. [45] presented a new system capable of automatically generating immersive and

interactive virtual reality environments using the real world only as a model. This system starts

by capturing 3D interior scenarios, detecting obstacles such as furniture or walls, and mapping

walkable areas. The main objective is, through the recognition of physical space, generate a virtual

world with the same dimensions and characteristics, while representing a different scenario, to

allow the user to walk through the real space with a completely different perception of reality.

The recognition and object tracking during the virtual reality experiment use additional depth

data. The detected objects are paired with their virtual counterparts to make the virtual experience

even more real, allowing a tactile experience with real objects with a different meaning in the

virtual context. Sra et al. implemented this fully functional system in a Google Project Tango

tablet 7.

Further work was developed to solve problems related to the occlusion of virtual objects inte-

grated into physical spaces. It is critical to deal dynamically with occlusion to ensure realistic and

immersive experiences, and to have correct depth perception in augmented reality applications.

An existing solution is data storage; however, this requires the assumption of a static scene or high

computational complexity. Thus, Du et al. [46] proposed an algorithm to improve depth maps for

dynamic manipulation of occlusion in augmented reality applications. This algorithm uses an edge

snapping approach, formulated as discrete optimization, capable of correctly defining the bound-

aries of objects according to RGB and depth data. This optimization problem runs efficiently on a

tablet in near real-time.

Kasperi et al. [47] proposed an alternative method that uses smartphones without depth sen-

sors to dynamically construct virtual buildings in the exterior without interfering with existing

buildings. To do so, it uses geospatial data to construct geometric models of real buildings around

virtual buildings. This method removes target regions from virtual buildings through masks con-

structed from real buildings. Although this method is not pixel perfect, which means that the

simulated occlusion is not entirely realistic, the results indicate that the authors achieved their

goal.

Another study by Walton and Steed [4] proposes a method that uses the color and depth data

provided by an RGBD camera to provide better occlusion. It is possible to be executed in real-time

and can manipulate the occlusion of virtual objects by dynamically moving objects, such as the

hands of the user. This method is applied to individual RGBD frames and, therefore, can work in

unfamiliar environments and respond appropriately to sudden changes. Figure 2.10 represents the

occlusion performed by virtual objects integrated into a real environment. In (a), a virtual laptop

2.4 User Interaction and Collaboration 21

overlapping the real world is presented. In (b), it is possible to see some occlusion improvements

provoked by the virtual object, and in (c), the virtual laptop and the whole scenario agree in terms

of virtual and real objects.

Figure 2.10: Occlusion caused by virtual objects integrated in a real environment (taken from [4])

2.4 User Interaction and Collaboration

The rapid advances of AR technologies have accompanied the idea that the interaction between

people located in different environments is possible in a space shared among all. Recently, telep-

resence based on the creation of a virtual avatar in which a user that is wearing a Head-Mounted

Display (HMD) communicates with the image of another remote user superimposed on their phys-

ical space, has been increasingly explored.

In this context, Kim et al. [5] presented a new method capable of representing the movements

of a human associated with a particular object in an avatar that is posteriorly associated with an

object similar to the real one, as can be visualized in Figure 2.11. To achieve this goal, they

developed a spatial map that defines the correspondences between any points in three-dimensional

space around their objects. This spatial map can identify the desired locations of the avatar’s body

parts for any detected movement of the person, and, as its creation is offline, the redirection of

the movements can be performed in real-time. The movement’s redirection preserves essential

features of the original movement, such as the human’s position and the spatial relation to the

object.

Figure 2.11: Human and its avatar counterpart (taken from [5])

22 Background and Related Work

In a completely different theme, Bonfert et al. [48] implemented a multiplayer mixed-reality

game prototype in which they use a smartphone and an HMD in outdoor environments. Many

virtual and mixed-reality games focus on single-player experiences. As such, these authors chose

to develop a game that allows multiplayer interaction that forms teams to combat alien drones.

Their implementation obtains the players’ position relative to each other using GPS and relies on

the rear camera of the smartphone to augment the environment and arm teammates with virtual

objects. The combination of many factors such as multiplayer, mixed reality, geographic location,

and group action outdoors using accessible mobile equipment allow for a new strategic and social

gaming experience.

Casarin et al. [49] verified that the rapid evolution of VR, AR, and MR devices has significantly

affected the maintenance and portability of applications. As such, they developed a model for

designing AR, VR, or MR applications utterly agnostic of the device type used for its realization.

To do so, they used freedom degrees to define the interaction limits between the tasks performed

and the device.

Chapter 3

Proposed System Architecture

This chapter begins by presenting the problem and the corresponding solution proposal. Next,

it describes the proposed system architecture, including the description of the different decisions

taken concerning each of its constituent parts. Thus, the first section presents a characterization

of the problems addressed by this work. The subsequent section exposes an overview of the

solutions proposed to address these problems. Finally, the last section of this chapter describes all

the constituents of this architecture and the reasons that motivated the decisions made.

3.1 Problem Characterization

Especially in a professional context, the possibility to collaborate remotely is an area that has

been increasingly explored. International corporations require extreme communication between

teams separated by thousands of kilometers; therefore, remote collaboration tools are essential.

Moreover, at times like this, when a pandemic has been declared, prophylactic isolation as a

preventive measure is indispensable. Being able to maintain social and professional activities

through remote collaboration is a viable solution.

Countless companies allow their employees to work remotely, providing greater schedule free-

dom and comfort, but also a more significant responsibility in fulfilling and monitoring the pro-

posed tasks.

Considering that a coworker is not physically present in the same place as the other team ele-

ments induce some drawbacks, such as the inability to interact beyond speech, sight, and hearing.

Physically interacting with particular objects as if they were present in the same environment is an

ambitious challenge that is increasingly desirable and can be easily extended to other areas.

This work focuses on developing a system capable of interacting with the real world and a

virtual environment in real time. It emerged under the PAINTER project with the necessity of

establishing a connection between both sides. The principal purpose is to perceive some objects

from the real world and represent them in a specific location in the virtual environment. It requires

the detection of some real objects in the real world to define a three-dimensional axis that relates

23

24 Proposed System Architecture

the two worlds. Afterward, the detected objects must be tracked so that the virtual environment

stays up to date with the real world.

After the completion of the first two stages, i.e., (1) object detection and (2) object tracking,

the (3) collaboration between users should be developed. One of the users must have a smartphone

where he sees the real world and, through AR, perceives what the other user sees in the virtual

environment. These three phases have very distinct goals and requirements and, thus, are handled

in different ways.

3.2 Proposed Solution

To detect objects in the real world using a smartphone, we start by collecting frames from the

device’s camera and then apply preprocessing methods so that the images can be processed through

a CNN. Due to their effectiveness in the acquisition of new information through feature extraction,

as we mentioned in Section 2.1, we opted for this approach in the development of our work. The

CNN model needs to be previously trained with a suitable dataset. Then, the output of CNN is

analyzed to understand which and how many objects were found and where.

After an object has been detected and classified, its position coordinates are used to overlay

some information in the device’s screen, such as bounding boxes and a corresponding virtual

representation of the object. From this moment on, the detected objects are efficiently followed

with a tracking algorithm, ensuring that the users’ perception is always as close as possible to

reality.

For collaboration development, the shared three-dimensional axis is essential. So, it is required

to determine the position of the detected objects in the real world relative to the origin coordinate

of the defined axis. Hence, it is possible to find its position in the virtual environment. Then, it

is required to establish communication between users, so that all relevant information in the real

world gets translated to the virtual environment in real-time.

At an early stage, the detected object is treated as a mark, i.e., only the coordinates of its

position relative to the environment and the camera are calculated to represent it in the parallel

environment or the virtual space. After the conclusion of this step, the object’s orientation should

be computed to feature this data in its representation. However, this is out of the scope of this

work. This extra information would allow the user to hold the object, move it, and rotate it so that

the remote user can have a better perception of the interaction that is occurring. Finally, both users

would be able to, in different environments, view and interact with the object and with each other.

The biggest challenge of this work and what differentiates it from other work already done is

the complex integration of all the elements that take part in this cooperation environment. Like

in a puzzle, we must find out the best way to fit the pieces correctly, as shown in Figure 3.1.

Firstly, one of the main requirements is the development of an application that works in real-time.

As such, one option is to use a tool that can speed up all the processing required as a Hardware

Acceleration SDK, which implies a selection of a compatible AI framework for object detection

and, consequently, a CNN model based on it. Also, not every smartphone is compatible with

3.3 Architecture 25

Figure 3.1: Integration of the required components

the chosen HA SDK and with the AR framework. Furthermore, as this work should run on a

smartphone, it is also required to obtain all the necessary shared files that allow these frameworks

and SDKs to work together.

3.3 Architecture

We chose to develop this work for Android devices due to the market share dominance of its

Operating System (OS). Our application splits into two parts: Computer Vision (CV) and Artificial

Intelligence (AI), on the right side and left side of Figure 3.2, respectively. In the CV component,

we capture the camera image of the chosen Android device using ARCore. Next, we implement

image processing, applying the OpenCV library.

Figure 3.2: System architecture

26 Proposed System Architecture

On the left side of the image, we prepare the image data to agree with the chosen CNN model

requirements, Tiny YOLOv2. We accomplish all the processes associated with CNN using Ten-

sorflow, the selected AI framework. Finally, we use ArmNN SDK as an attempt to accelerate

the machine learning computations on the mobile device, connecting both sides. In the following

subsections, we describe all these components and explain the reasons why they were selected.

3.3.1 ARCore (AR Frameworks)

Nowadays, AR technologies are continually changing and evolving. To keep with the pace, de-

velopers rely on AR SDKs or dedicated frameworks. They provide a coding environment where

users can create and implement all functionalities of their AR applications. These frameworks are

helpful because they also offer a set of tools, libraries, relevant documentation, code samples, and

guides to develop applications on specific platforms, known as Integrated Development Environ-

ment (IDE). For the development of this work, we opted to use Unity, which is the most popular

AR/VR/MR platform.

There are many SDKs and AR frameworks available, but we decided to focus our research only

on a few of them that are supported by Unity. The best known are ARCore, ARKit, and Vuforia,

which facilitate some components that can be useful in the development of the application, for

instance: recognition, tracking, and content rendering.

ARCore1, is Google’s platform for building AR experiences. It was designed to work on a

wide variety of qualified Android smartphones running Android 7.0 (Nougat) and later. ARCore

can also work on iOS but requires an ARKit compatible device running iOS 11.0 or later. It

enables the chosen gadget to understand the surrounding world and interact with the information

in it. ARCore has some fundamental concepts to integrate virtual content with the real world, as

seen through the phone’s camera, which we briefly described in Figure 3.3.

In the same way, ARKit2 is a platform for building AR experiences developed by Apple. It

is a direct competitor of ARCore because both do almost the same things, but ARKit can only

work with the iOS operating system. It combines device motion tracking, camera scene capture,

advanced scene processing, and display conveniences to simplify the task of building an AR ex-

perience. In Figure 3.4, we show the main concepts of this platform.

1 more information about this framework at https://developers.google.com/ar/discover/concepts
[accessed 12 October 2019]

2 more information about this framework at https://developer.apple.com/augmented-reality/ [ac-
cessed 12 October 2019]

https://developers.google.com/ar/discover/concepts
https://developer.apple.com/augmented-reality/

3.3 Architecture 27

Figure 3.3: ARCore main concepts description

Figure 3.4: ARKit main concepts description

Vuforia Engine3 is the most widely AR development platform used to create Android, iOS

or Windows apps with advanced computer vision functionalities to obtain AR experiences that

realistically interact with objects and the environment. Currently, the main advantage of Vuforia

when compared with ARCore or ARKit is that it can run on any smartphone with a rear camera.

This SDK does not depend on the smartphone’s OS or CPU. Despite having several features sim-

ilar to the other frameworks in terms of detection and tracking, Vuforia is based on image targets,

i.e., simple images with non-uniform patterns to facilitate feature point detection. This capability

3 more information about this framework at https://developer.vuforia.com/ [accessed 12 October 2019]

https://developer.vuforia.com/

28 Proposed System Architecture

requires less computing power. It can also recognize elementary 3D objects, but it is limited when

compared with ARCore and ARKit.

For all these reasons, and since we decided to use an Android smartphone, our choice for the

development of our application was the ARCore framework integrated with Unity.

3.3.2 OpenCV

OpenCV is an open-source computer vision and machine learning software library, built to acceler-

ate the use of machine perception in commercial products and to provide a common infrastructure

for computer vision applications.4 This library is helpful in image processing and, in this work,

we used it in the following parts:

• Converting camera image from YUV to RGB: the camera image from ARCore has its data

accessible from the CPU in YUV-420-888 format. However, the image input required by

the CNN model is RGB.

• Resizing camera image: another requirement from the CNN model is specific image size.

• Drawing bounding boxes: to test our application and analyze the obtained results, we draw

a rectangle over the image. When the app is running, we do not use this tool because we

want to represent an augmented bounding box on the smartphone screen.

• Tracking: to implement a tracking system. In the most recent versions of this library, there

are available the following trackers: Boosting, MIL, KCF, TLD, MedianFlow, GOTURN,

MOSSE, and CSRT. The details of these trackers were explored in Section 2.2. For our

work, we chose the KCF tracker based on the results presented in Section 5.2.

3.3.3 ArmNN (Hardware Acceleration SDKs)

Considering acceleration solutions [6] is fundamental to achieve a real-time result in object detec-

tion and tracking. Over the last years, some innovations in computer processing capabilities have

emerged. Initially, computers were mostly equipped with a single, stand-alone, CPU, but it was

soon evident that the computational performance was too limited for running multiple applica-

tions. Special co-processors were created, with optimized architecture for many signal processing

tasks, to work in parallel with the main CPU, the Digital Signal Processors (DSPs).

DSPs were advantageous with, for instance, applications related to computer graphics, sound,

video decoding, and even for running the first deep learning Optical Character Recognition (OCR)

models. However, at the end of the millennium, their popularity started to decrease. They began to

be replaced by CPUs with integrated DSPs instructions, GPUs for efficient parallel computations,

and FPGAs.

4 more details about this library at https://opencv.org/

https://opencv.org/

3.3 Architecture 29

Unlike what happened with desktop computers, at the beginning of the 1990s, DSPs started

to appear in mobile phones, and they were not replaced by CPUs and GPUs, because they often

offered superior performance at lower power consumption, which is useful for portable devices.

In recent years, the computational power of mobile DSPs and other System on Chip (SoC)

components has grown drastically. Consequently, complemented by GPUs, Neural Processing

Units (NPUs), and dedicated AI cores, they enable AI and deep learning-based computations.

Following this, some companies developed mobile SoCs with potential acceleration support for

third-party AI applications. The four most prominent companies that we are going to talk about

are Qualcomm, Huawei, MediaTek, and Samsung, as shown in Figure 3.5.

Figure 3.5: Mobile SoCs with potencial acceleration support for AI applications (taken from [6])

Qualcomm One of the leading companies dedicated to developing mobile SoCs is Qualcomm.

Currently, about 55% of the smartphone SoC market uses Qualcomm chipsets, known as Snap-

dragon. There are different SoC components integrated into Snapdragon chipsets, like CPU and

GPU. The primary CPU cores are based on the Arm architecture and usually have a custom de-

sign by Qualcomm itself, also based on Arm Cortex cores. They additionally develop their GPU,

named Adreno, instead of using Arm Mali, like other companies.

Qualcomm implemented HA for AI computations for the first time in Snapdragon 820 in

2015. One year later, Qualcomm announced its proprietary Snapdragon Neural Processing Engine

(SNPE) SDK, which offers runtime acceleration across all Snapdragon’s processing components.

The SDK supports common deep learning model frameworks, such as Caffe, Tensorflow, among

others, and it was designed to enable developers to run their own custom neural network models

on various Qualcomm-powered devices.

Huawei Another big company in this area is HiSilicon, a Chinese semiconductor company

founded in 2004 as a subsidiary of Huawei. Unlike Qualcomm, HiSilicon does not create cus-

tomized CPU and GPU designs, so all Kirin chipsets are based on off-the-shelf Arm Cortex CPU

cores and various versions of Arm Mali GPUs.

For accelerating AI computations, HiSilicon has developed a different approach. They intro-

duced a specialized NPU aimed at fast vector and matrix-based computations widely used in AI

and deep learning algorithms, instead of relying on GPUs and DSPs. To give external access to

Kirin’s NPU, Huawei released in 2017 the HiAI Mobile Computing Platform SDK, which also

30 Proposed System Architecture

supports Caffe, and TensorFlow Mobile and Lite frameworks. However, these chipsets are only

available for Huawei devices.

MediaTek MediaTek’s approach is like HiSilicon in terms of CPU and GPU design but some-

times replaces Mali GPUs with PowerVR graphics. In 2018, MediaTek launched its Helio P60

platform, an embedded AI Processing Unit (APU). Their approach lies in between the solutions

from Huawei and Qualcomm: a dedicated chip for quantized computations (as in Kirin’s SoC) and

CPU/GPU for float ones (as in Snapdragon chipsets).

At this time, MediaTek also introduced NeuroPilot SDK constructed around Tensorflow Lite

and Android Neural Network Application Programming Interface (NNAPI). Nonetheless, the SDK

only supports purely MediaTek NeuroPilot-compatible chipsets (currently on their SoCs only),

and, beyond this, only one smartphone in the whole current market uses Helio P60.

Samsung There is still one more big company dedicated to mobile SoCs development, Sam-

sung. Initially, they chose to use Arm Cortex CPU cores and Arm Mali GPU, but in the eighth

generation of Exynos chipsets, their in-house developed Mongoose Arm-based CPU cores were

integrated into high-end SoCs. Unfortunately, no drivers, SDKs, or additional details were re-

leased by Samsung, making it inaccessible by third-party applications.

Arm Currently, all CPU cores integrated into mobile SoCs are based on the Arm architecture,

and they are responsible for running all AI algorithms when there is no support for HA. Con-

sidering that not all devices support HA for machine learning applications, in the last few years,

Arm has developed different approaches to deal with this issue. One of them was ArmNN5, an

open-source SDK to speed-up the computations.

Figure 3.6: ArmNN connection with NN framework and the existing hardware 5

5 more details about this SDK at https://developer.arm.com/ip-products/processors/
machine-learning/arm-nn [accessed 8 October 2019]

https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn

3.3 Architecture 31

ArmNN SDK provides a bridge between existing neural network (NN) frameworks, such as

Tensorflow and Caffe, and power-efficient Arm Cortex-A CPUs, Arm Mali GPUs, and Arm Ethos

NPUs, as shown in Figures 3.6 and 3.7.

Figure 3.7: ArmNN SDK 5

ArmNN takes networks from these frameworks, translates them to the internal ArmNN format,

and then, through the Compute Library, deploys them efficiently on Cortex-A CPUs, or, if present,

Mali GPUs, such as the Mali-G71 and Mali-G72. Although the ArmNN is compatible with Cortex-

A CPUs, it does not provide support for Cortex-M CPUs. Figure 3.8 (a) shows the integration of

ArmNN on our smartphone at high-level.

Figure 3.8: ArmNN approach 5

32 Proposed System Architecture

ArmNN is also available for Android NNAPI, a Google’s interface for accelerating neural

networks on Android devices only available for the Android O version. Google has introduced

Android NNAPI as an Android C Application Programming Interface (API) designed for running

computationally intensive machine and deep learning operations on mobile devices. They want to

solve a common problem present in different Hardware Acceleration SDKs, which only provide

access to specific chipsets, and are additionally incompatible with each other.

By default, NNAPI runs neural network workloads on the device’s CPU cores but also provides

a Hardware Abstraction Layer (HAL) that can target other processor types, such as GPUs. ArmNN

for Android NNAPI can provide this HAL for Mali GPUs. Figure 3.8 (b) shows the integration

of ArmNN on our smartphone at low-level. A further release adds support for the Arm Machine

Learning processor. This support for Android NNAPI gives more than a 4x performance boost.

After this analysis, we chose ArmNN SDK to provide Hardware Acceleration to our applica-

tion. In Table 3.1, we present the selected mobile devices for this work, their chipsets, CPU, and

GPU, to compare their performance and the obtained results with different specifications. One

of the reasons that made us choose these devices was because all of them are compatible with

ARCore.

Table 3.1: Devices specifications

Name Chipset CPU GPU

OnePlus 6
Snapdragon

845
Kryo 385 Adreno 630

Samsung Galaxy S9 Plus Exynos 9810
Mongoose +
Cortex-A55

Mali-G72

Huawei Mate 20 Lite
HiSilicon Kirin

710
Cortex-A73 +
Cortex-A53

Mali-G51

OnePlus 7 Pro
Snapdragon

855
Kryo 495 Adreno 640

Samsung Galaxy S10e Exynos 9820
Mongoose M4 +

Cortex-A75 +
Cortex-A55

Mali-G76

As we chose smartphones from diverse brands or, at least, distinct models, the chipset present

in each of them belongs to different companies, as mentioned above. We selected two differ-

ent generations of smartphones from OnePlus and from Samsung to understand if there was any

generational improvement.

Both OnePlus devices have a Qualcomm chipset, which has a CPU and a GPU developed

by them. However, only the Adreno series GPUs are fully developed by Qualcomm, both Kryo

3xx and Kryo 4xx series CPUs have an Arm-based architecture. The first one features semi-

custom Gold and Silver cores derivative of Arm’s Cortex-A75 and Cortex-A55, respectively, and

the second one features Gold Prime/Gold and Silver cores derivative of Arm’s Cortex-A76 and

3.3 Architecture 33

Cortex-A55, respectively as well. For these two options, it’s possible to use Qualcomm’s SNPE

SDK or ArmNN SDK.

In the case of Samsung Galaxy S9 Plus and Samsung Galaxy S10e, both CPU and GPU belong

to Arm. Samsung designs the Mongoose CPU part, but it is also based on the Arm architecture.

So, both components of Exynos chipset can work with ArmNN SDK. Similarly, Huawei Mate 20

Lite chipset is composed of an Arm CPU and GPU, so it’s also possible to run ArmNN or their

SDK, HiAI.

As all the chosen mobile devices are compatible with ArmNN SDK, and not all of them can

run SNPE SDK or HiAI SDK, we assumed that using ArmNN SDK and their libraries was the

best option for the development of this work.

3.3.4 Tiny-YOLOv2

Following the analysis in Section 2.1 on existing detection and classification methods, we decided

to focus on YOLO for this work. Contrary to prior detection systems that repurpose classifiers or

localizers to perform detection, YOLO uses an entirely different approach. These methods apply

the model to an image at multiple locations and scales to detect the highest scoring regions. On the

other hand, YOLO applies a single neural network to the full picture, which divides it into parts

and predicts bounding boxes and probabilities for each one. The predicted probabilities weight

these bounding boxes to find out which ones are relevant detections.

This approach has several advantages over classifier-based systems, such as looking at the

whole image at test time to ensure that predictions are made based on the global context of the

image and making predictions with a single network evaluation. For instance, R-CNN requires

thousands of networks for evaluating a single figure, which makes it 1000x slower than YOLO.

Even Fast R-CNN is 100x slower than YOLO, which is an essential feature for our goals on real-

time detection and tracking.

YOLOv2 was built as an improved version of YOLOv1 with better training and increased per-

formance. Like SSD, this new version uses a fully convolutional model. Similar to Faster R-CNN,

it adjusts priors on bounding boxes, obtained from the dataset annotations, instead of predicting

the width and height outright, both presented in Section 2.1. However, YOLOv2 still predicts the

x and y coordinates directly. To increase detection speed, Tiny-YOLOv2 was created, but as ex-

pected, accuracy decreased. Recently, it was developed a new version. YOLOv3 brought training

improvements, increased performance, multi-scale predictions and a better backbone classifier6.

We made an analysis of which models could be used on our application. Through a tool

provided by TensorFlow, we find out which operations are carried out in each of the networks.

Then, we realized that only the Tiny-YOLOv2 model was compatible with the ArmNN SDK since

all the others required some functions not currently supported by it. Based on YOLO’s official

website, we present in Table 3.2 the available models and their expected mAP.

6 more information about this model at https://pjreddie.com/darknet/yolo/ [accessed 23 October 2019]

https://pjreddie.com/darknet/yolo/

34 Proposed System Architecture

Table 3.2: YOLO versions’ specifications

Name Training Dataset Test Dataset mAP (%) fps

YOLOv1.0 - - - -
Tiny-YOLOv1.0 - - - -

YOLOv1.1 Pascal VOC 07+12 - - 45
Tiny-YOLOv1.1 Pascal VOC 07+12 - - 155

YOLOv2 Pascal VOC 07+12 Pascal VOC 07 76.8 67
Tiny-YOLOv2 Pascal VOC 07+12 Pascal VOC 07 57.1 207

YOLOv2 COCO trainval COCO test-dev 48.1 40
Tiny-YOLOv2 COCO trainval COCO test-dev 23.7 244

YOLOv3 COCO trainval COCO test-dev 55.3 35
Tiny-YOLOv3 COCO trainval COCO test-dev 33.1 220

Unfortunately, we were forced to choose the model with the worst displayed value, although it

has the highest frame rate. The blank cells mean that there was no information about that model’s

performance. However, we had access to their configuration file and their weights, so we analyzed

the operations performed by them as well. In Appendix A, we present the analysis of each model

and the respective network design.

This version of YOLO [50] requires an input image divided into an SxS grid of cells, where S is

the size, which in this model is 13. Each grid cell predicts B bounding boxes. And each bounding

box predicts N class probabilities, i.e., the probability of each object exists in that bounding box.

For this model, B is 5 and N is 20, as there are 20 classes to be detected. The correct way to

calculate the confidence scores of each class (cs(ob ject)) is to multiply the probability of being

that class by the IOU, that represents a fraction between 0 and 1, as shown by Equation 3.1:

CS(class) = P(class)∗ IOU truthpred (3.1)

The intersection, represented in Figure 3.9 (a), is the overlapping area between the ground-

truth (A) and the predicted bounding box (B). The union, illustrated in Figure 3.9 (b), is the total

area between both. Preferably, the IOU must be close to 1, to indicate that the predicted bounding

box is near to the ground-truth.

Figure 3.9: IOU - (a) Intersection; (b) Union

3.3 Architecture 35

The bounding box prediction has 5 Components: x, y, width, height, and confidence. There-

fore, the output size is 21125, according to Equation 3.2:

S∗S∗ (B∗ (5∗Components+N)) (3.2)

The (x, y) coordinates represent the center of the bounding box, relative to the grid cell loca-

tion, and are normalized to be between 0 and 1. The bounding box dimensions, width and height,

are also normalized to the same interval. In this context, the loss function is used to correct the

center and the bounding box of each prediction, and YOLO uses Equation 3.3 to calculate loss and

ultimately optimize confidence:

Loss =

λcoord

s2

∑
i=0

A

∑
j=0

1ob j
i j [(bxi−bx̂i)

2 +(byi−bŷi)
2]

+λcoord

s2

∑
i=0

A

∑
j=0

1ob j
i j [(

√
bwi−

√
bŵi)

2 +(
√

bhi−
√

bĥi
)2]

+
s2

∑
i=0

A

∑
j=0

1ob j
i j (Ci−Ĉi)

2

+λnoob j

s2

∑
i=0

A

∑
j=0

1noob j
i j (Ci−Ĉi)

2

+
s2

∑
i=0

1ob j
i ∑

c∈classes
(CSi(c)−ĈSi(c))2

(3.3)

In this equations, the bw and bh refer to the bounding box dimensions, while bx and by vari-

ables refer to the center of each prediction. The λcoord variable emphasizes boxes with objects,

and λnoob j variable depreciates boxes with no objects. CS(c) refers to the classification predic-

tion of each object, and C refers to the confidence. The 1ob j
i j is equal to 1 if the jth bounding box

in the ith cell is responsible for the object’s prediction, and 0 otherwise. 1ob j
i is equal to 0 if the

object is not in cell i, and 1 if it is present. The loss indicates the model’s performance. Therefore,

a lower loss indicates higher performance.

While the loss is used to train a model, the accuracy of predictions in object detection is

calculated through the average precision equation shown below:

avgPrecision =
n

∑
k=1

p(k)∗∆r(k) (3.4)

Here, ∆r(k) refers to the change in a recall, while p(k) refers to the precision at threshold k.

The precision measures how accurate are predictions and the recall measures how accurate are the

positive results.

The YOLO’s NN architecture contains twenty-four convolutional layers and two fully con-

nected layers. Versions 2 and 3 of YOLO can minimize localization errors and increase mAP. As

36 Proposed System Architecture

seen in Figure 2.6, Tiny-YOLOv2 has a mAP of 23.7% and the lowest Floating-point Operations

Per Second (FLOPS) of 5.41 billion. However, according to Rachel Huang et al., when Tiny-

YOLOv2 runs on a non-GPU laptop (in that case, Dell XPS 13), the model speed decreases from

244 fps to about 2.4 fps. With this constrain, real-time object detection is not easily accessible on

many devices without a GPU, such as most cellphones or laptops.

3.3.5 TensorFlow (or AI/DL Frameworks)

Currently, there are many machine learning frameworks available for developing applications in

this area. In Figure 3.10, we will describe some of them to explain why and how we decide which

one was the best AI framework for this work7.

Figure 3.10: AR Frameworks characteristics

As shown in Figure 3.1, the choice of the AI framework was directly related to the chosen

detection model and the Hardware Acceleration SDK. Since we decided to use Tiny-YOLOv2, we

had to analyze which AI frameworks can work with it. All YOLO versions are based on Dark-

net, an open-source neural network framework written in C and CUDA. However, this framework

is incompatible with the chosen Hardware Acceleration SDK. For instance, there are implemen-

tations of YOLO in Caffe, but the scarce community support made the cross-compile part for

the smartphone complex. Although Pytorch and MxNet are compatible with both requirements,

there is even less documentation and support for their use. As mentioned in Figure 3.10, Theano

is deprecated. The HA SDK does not support Keras and CNTK. Therefore, we decided to use

7 more information about these frameworks at https://pathmind.com/wiki/
comparison-frameworks-dl4j-tensorflow-pytorch [accessed 25 October 2019]

https://pathmind.com/wiki/comparison-frameworks-dl4j-tensorflow-pytorch
https://pathmind.com/wiki/comparison-frameworks-dl4j-tensorflow-pytorch

3.3 Architecture 37

TensorFlow8, despite it being considerably slower than other frameworks. However, TensorFlow

does not work directly with YOLO models. So, we needed to implement this integration using

Darkflow9, which acts as a middleware between Darknet10 and TensorFlow.

8 more information about this framework at https://www.tensorflow.org/ [accessed 26 October 2019]
9 more details about this framework at this Github repository: https://github.com/thtrieu/darkflow

[accessed 26 October 2019]
10 more details about this framework at this Github repository: https://github.com/pjreddie/darknet

[accessed 26 October 2019]

https://www.tensorflow.org/
https://github.com/thtrieu/darkflow
https://github.com/pjreddie/darknet

Chapter 4

Implementation

In this chapter, we explain how this work was implemented. It is divided into four sections to

clarify all the steps performed. In the first section, we explain how the Unity Scene was developed

for the integration of every part, as we had shown in Figure 3.1 in the previous chapter. The second

section is about CNN input preparation, which includes image processing and network creation.

In the third section, we explain how the frames pass through CNN and how we parse the output

to represent the obtained bounding boxes on the smartphone screen. Finally, the fourth section

addresses the user’s collaboration, including object tracking and the constant sharing between

both devices to maintain the system synchronized in real-time.

4.1 Unity Scene Development

As previously mentioned, we opted to use the Unity Engine to develop our application. The first

step was to create a scene to build the entirety of the work. This main scene is composed of six

elements, known as Game Objects, as shown in Figure 4.1 and described below.

• ARCore Device - manages the ARCore session and holds the main camera, responsible for

capturing real-world images through the back camera of the Android device and making

them available as the AR scene’s background.

• Environmental Light - is responsible for adjusting the lighting in the AR scene.

• Point Cloud - manages the feature points detected in the current frame captured by the main

camera.

• Session Controller - manages the background session, responsible for the basic actions, such

as quit and sleep.

39

40 Implementation

Figure 4.1: Unity scene

• Plane Discovery - provides plane discovery visuals that guide the user to scan surroundings

and discover planes, representing their feature points.

– Canvas - is the User Interface (UI) part associated with this Game Object. Here is

where all the panels corresponding to the bounding boxes and virtual objects that in-

teract with the user are created.

– UI Camera - is responsible for all UI elements, unlike the main camera that can see

everything except these elements. This approach is required because, otherwise, real-

world overlaps UI elements. It is also necessary to set the depth parameter of this

second camera to a higher value than the depth parameter of the main camera to get

that result.

• Controller - has the controller script that manages the AR scene. This script has references

to the following Game Objects:

– Canvas - to establish a connection to the UI part;

– Panel - to visualize the bounding boxes on the screen;

– Text - to show the label and the confidence value of the detected object;

– Prefab - a list of virtual objects to interact with the user. 1

1 all virtual objects were obtained through the Unity Asset Store. They are available at https://
assetstore.unity.com/packages/3d/props/furniture/bedroom-architect-series-85476 and
https://veg3d.com/ [accessed 2 December 2019]

https://assetstore.unity.com/packages/3d/props/furniture/bedroom-architect-series-85476
https://assetstore.unity.com/packages/3d/props/furniture/bedroom-architect-series-85476
https://veg3d.com/

4.2 CNN Input Preparation 41

All the Game Objects and their children belong to the Default layer. Only Canvas and their

children, including the UI camera, belong to the UI layer. Thus, each of the cameras knows what

elements should render.

With the Unity Scene set up, it was possible to develop the next three parts of this work. Figure

4.2 shows a simple diagram of the implementation with a brief description of the different steps of

the process. In the next sections, we explain all these steps in detail.

Figure 4.2: Implementation diagram

4.2 CNN Input Preparation

This part consists of preparing the network’s input, creating the necessary structure for processing

the images received by the camera in real-time, transforming them into the input of the network,

and building the network itself.

The Controller module mentioned in the previous section is also responsible for establishing

the link between the computer vision part and the artificial intelligence part, helped by another

module, named Detector. The first one receives frames from the camera through the ARCore

library to render them in a new thread created to ensure that frame processing coincides with

camera operation. Thus, all new frames are ignored until the previous frame is processed. The

Detector module makes that frame the CNN input, creating a connection with the network. All

the work performed by CNN is done separately, i.e., outside the Unity framework. That code is

written in C++ language, and, as Unity works with C#, it’s necessary to import shared object files

to create the connection between them and the Unity scene.

42 Implementation

4.2.1 Image Processing

The image processing part was mostly done in the Controller module. The application is con-

tinually receiving camera frames. If an image is available, its bytes are acquired by ARCore in

YUV420p format, which is briefly explained in Appendix B. As the network was trained to receive

the image bytes in RGB format, it was necessary to make a conversion.

Furthermore, the camera frame dimensions are higher than the expected values, and the image

is inverted in the x-axis. To solve these issues, we decided to use the OpenCV library. We created

a shared object because this part of the code was written in C++ instead of C#, as shown in Figure

4.2. At this time, the image is ready to be sent to the network.

If an image is available, but another frame is being rendered, this new frame is ignored. So,

a new thread handles the image processing and its passage through the network, to obtain the

detection results in the end.

4.2.2 CNN Construction

In the Controller module, memory is allocated for the network input and output. Then, the network

is created in the ArmNN module. The parameters used in the network’s creation depend on the

chosen model and mainly on the AI framework. The first parameter of this function is the model

name. As we chose Tensorflow, the second parameter is the name of the input tensor, followed

by the image batch size, image height, image width, and channels’ number. The third parameter

corresponds to the name of the output tensor. These two names can be found in one of the first and

last lines of the model, respectively, as shown in Appendix A.

The ArmNN library has three different options for network creation. We opted by protobuf

binary file, and we explain its concept in Appendix C. After the network creation, it is necessary

to get the network input and output binding info, to optimize the network and to load it onto the

runtime device.

The interconnection between CV and AI is explained in detail in Appendix D. At this stage,

we send the image to the network to obtain the output for further analysis.

4.3 CNN Output Analysis

This part consists of analyzing the network’s output, understanding how to save the data after

passing through CNN, and organizing the results to represent them on the device’s screen.

4.3.1 CNN Output Processing

The CNN output depends on the chosen model. In Subsection 3.3.4, we explained why we de-

cided to use Tiny-YOLOv2 and how it works. Since the network output is a pointer with all data

sequentially stored, we created the CNN Model module to organize it.

First, we iterate through all the cells, traversing all rows and columns of the grid and getting

the 5 components of each bounding box, as shown in the first 5 lines of Algorithm 1. Then, we

4.3 CNN Output Analysis 43

calculate the correct value of x, y, width, height and confidence, as presented in BoundingBox,

using the Sigmoid and the Exponential functions, described in Equations 4.1 an 4.2, respectively.

Furthermore, we store all class confidence scores.

Algorithm 1 Output Organization Algorithm

1: for cy = 0; cy < 13; cy++ do← going through image’s lines
2: for cx = 0; cx < 13; cx++ do← going through image’s columns
3: for b = 0; b < 5; b++ do← going through each bounding box
4: BOUNDINGBOX(outputBuffer, outputIndex, cx, cy, b)
5: outputIndex = outputIndex + 20 + 5← 20 classes + 5 components per each bb

6: function BOUNDINGBOX(*output, index, cx, cy, b)
7: x = cx + sigmoid(output[index]) * 416/13← image’s width divided by cell’s size
8: y = cy + sigmoid(output[index + 1]) * 416/13← image’s height divided by cell’s size
9: w = exponential(output[index + 2]) * anchor[2*index]* 416/13← w for width

10: h = exponential(output[index + 3]) * anchor[2*index+1]* 416/13← h for height
11: c = sigmoid(output[index + 4])← c for confidence
12: for i = 0; i < 20; i++ do
13: classes[i] = output[i + index + 5]← to obtain each class confidence score
14: CLASSES(classes)

15: function CLASSES(*classes)
16: newClasses = softmax(classes)
17: bestClass = argmax(newClasses)

f (x) =
1

1+ ex (4.1)

f (x) = ex (4.2)

The confidence score of each class can be greater or less than zero, it can be a few tens or

even hundreds, or it can have no value (nan) at all. These values indicate the likelihood of the

bounding box matching with the presented class. To give some statistical meaning to these values,

we used the Softmax function, presented in Equation 4.3 and in the first line of Classes function

in Algorithm 1.

σ(z)i =
ezi

∑
K
j=1 ez j

, for i = 1, ...,K (4.3)

K means the number of classes for each bounding box, in this case, 20. The purpose of this

function is to normalize a set of real numbers into a probability distribution. Thus, it is verified

that the larger input components will correspond to larger probabilities. In case the sum is less than

zero or does not have a valid value (nan), all classes will have the same probabilty. The softmax

function is often used in neural networks to map the non-normalized output of a network into a

probability distribution over predicted output classes.

44 Implementation

After all probabilities are ordered, we apply the Argmax function, represented by Equation 4.4

and the second line in Classes function in Algorithm 1.

argmaxx f (x) := {x|∀y : f (y)≤ f (x)} (4.4)

In this case, we find the highest probability and save the corresponding index in the array. Then,

this probability is multiplied by the confidence value. If the result is higher than a threshold that

has been defined, we assume that this bounding box is valid, and we save all its information in a

priority queue.

We checked if any element overlaps with those in front of it. Only the elements completely

separated from each other are inserted into a list created to store the successfully detected bounding

boxes. Then, we returned the completed priority queue to the ArmNN module. As shown in Figure

4.3, the approach used to detect the existence of overlaps consists of verifying if:

• the left side of the object A is smaller than the right side of the object B (Figure 4.3 (b));

• the right side of the object A is bigger than the left side of the object B (Figure 4.3 (c));

• the top side of the object A is smaller than the bottom side of the object B (Figure 4.3 (d));

• the bottom side of the object A is bigger than the top side of the object B (Figure 4.3 (e)).

Figure 4.3: Bounding box overlap

4.3.2 Bounding Boxes Representation

After completing the object detection process, it was required to have access to the bounding boxes

information in the C# side. In Appendix D, we explained the correct way to communicate between

the two sides. With all data correctly organized and stored, the Controller module can represent

bounding boxes and the corresponding virtual objects.

For that, we needed the Game Objects associated with the module mentioned in Section 4.1.

The panel served to represent the bounding box on the screen. And the text was used for the object

name and its confidence. The list of Game Objects was required to represent the corresponding

virtual object on the screen overlapping the real object. As the model that we chose only recognizes

20 classes, we only had the corresponding 20 virtual objects on our list.

First, we need to understand the relation between the image that we send to the network and

the image seen on the device’s screen. In Figure 4.4 we present an example of this relation.

4.3 CNN Output Analysis 45

Figure 4.4: Relation between processed images (1)

The image marked with a 1 inside Figure 4.4 is an example of the image seen on the screen,

with 992 x 744px, despite the default smartphone resolution being 2280 x 1080px. The image 2 is

the corresponding example of the image read by ARCore, and it decreases the original resolution

to 640 x 480px. However, the resolution of the frame received by this YOLO’s version must be

416 x 416px, so we resized it like image 3, as mentioned in Subsection 4.2.1.

In Figure 4.5, we present an object detection’s example, a cat, one of the objects belonging to

the 20 detectable classes.

Figure 4.5: Relation between processed images (2)

46 Implementation

Considering the resolution of the bounding box is 143 x 149px on the CNN image, the resolu-

tion on the device’s screen would correspond to 341 x 267px. To get these values, first, we need to

obtain the resolution of the bounding box on the original frame, which is 220 x 172px. Equations

4.5, 4.6, 4.7 and 4.8 correspond to these steps.

widthoriginal f rame = widthCNNimage ∗
640
416

(4.5)

heightoriginal f rame = heightCNNimage ∗
480
416

(4.6)

widthscreendevice = widthoriginal f rame ∗
992
640

(4.7)

heightscreendevice = heightoriginal f rame ∗
744
480

(4.8)

Another thing that we need to consider is that the axis of origin of the image represented on

the screen differs from the network output. The axis origin of the bounding box (x, y) coordinates

obtained with the CNN is in the upper left corner of the image, as we show in Figure 4.6 in

yellow. On the other hand, the axis origin of the virtual objects added to the screen is on its center,

represented in blue in the figure.

Figure 4.6: Relation between processed images (3)

Supposing that the coordinates of the bounding box obtained by the network are (200, 120),

indicated in the figure with a 1, we obtained the coordinates of the corresponding bounding box in

4.3 CNN Output Analysis 47

the original frame marked with a 2 through Equations 4.9 and 4.10.

xoriginal f rame = xCNNimage ∗
640
416

(4.9)

yoriginal f rame = yCNNimage ∗
480
416

(4.10)

Note that for these coordinates, the origin is also in the upper left corner. Next, we need to do

a translation to get the origin in the center of the image, signaled with a 3. To do this, we must

apply Equations 4.11 and 4.12.

xoriginal f rame = xoriginal f rame−
640

2
(4.11)

yoriginal f rame = yoriginal f rame−
480

2
(4.12)

Then, we can calculate the corresponding coordinates in the device’s screen represented in

Figure 4.6 with a 4 with Equations 4.13 and 4.14.

xscreendevice = xoriginal f rame ∗
992
640

(4.13)

yscreendevice = yoriginal f rame ∗
744
480

(4.14)

However, to finish, we must do a translation of the coordinates from the upper left corner to

the image center, obtaining the corresponding coordinates (150, -25) indicated with a 5. Equations

4.15 and 4.16 correspond to this final step.

xscreendevice = xoriginal f rame +
widthboundingbox

2
(4.15)

yscreendevice = yoriginal f rame +
heightboundingbox

2
(4.16)

After determining the central coordinates of the detected object, we represent the name of the

object and its confidence percentage above the bounding box. We also place the corresponding

virtual object in the location where the real object was detected, as shown in Figure 4.7.

48 Implementation

Figure 4.7: Relation between processed images (4)

4.4 Tracking and Collaboration Between Users

This section describes the approaches used in the development of tracking and collaboration.

4.4.1 Tracking

We initialize the object’s tracking whenever the CNN has detected at least one object. To do so,

we first create the chosen tracker using the OpenCV library. Then, we initialize the tracker with

the processed frame and the corresponding object detection result, i.e., the bounding box.

As explained in Section 5.2, we decided to use the Kernelized Correlation Filter (KCF) on

our application, a tracking framework proposed by Henriques et al. [51]. To initialize this tracker,

OpenCV creates a ROI of the provided bounding box and adjusts the corresponding center coor-

dinates (x,y) to its corner. They initialize the Hann Window Filter to select a sample subset and

later apply a Fourier Transform. It provides low aliasing with just a small reduction in image reso-

lution. With a calculated output sigma, they apply the Fourier Transform to the Gaussian response

and record the compressed and non-compressed descriptors of the Principal Component Analysis

(PCA) feature extractor. A valid intersection between the ROI and the image enables the tracking

in the following frames.

As mentioned in Section 4.2, when the CNN is processing one frame, the other frames received

from the camera are ignored. In these frames, we apply the tracker update function from the

OpenCV library. We send this frame to the tracking algorithm and analyze its output: a new

bounding box with a prediction of the object location.

4.4 Tracking and Collaboration Between Users 49

The tracking update starts by performing a detection. It extracts, pre-processes the patch, and

gets the compressed and the non-compressed descriptors. It compresses the Kernel Regularized

Least Squares (KRLS) model to merge all the features, computes the Gaussian kernel and the

Fourier transform to the kernel, calculates the filter response and extracts the maximum response

to update the bounding box. Lastly, it extracts the patch for learning purposes and gets all the

descriptors to update the training data and the KRSL model for the next frame.

4.4.2 Collaboration

We extended our Unity Scene to integrate the new required files for the collaboration’s develop-

ment. We added two new Game Objects, as shown in Figure 4.8 and which we briefly describe

below.

Figure 4.8: Unity new scene

• Network Manager - establishes a connection between the application and the cloud service

where the location of the virtual objects that are shared by more than one user is stored.

• Cloud Anchor Controller - has a controller script that manages user’s actions related to the

collaboration. Before, Main Controller managed prefabs, but now, this script has references

to this list of virtual objects to place them on a surface that allows the collaboration between

multiple users through a cloud service.

50 Implementation

ARCore has a Cloud Anchor2 service available that allows multiplayer or collaborative AR

experiences that Android and iOS users can share. Cloud Anchors let multiple users add virtual

objects to the AR scene, view, and interact with these objects simultaneously from different po-

sitions in a shared physical space. To enable these shared experiences, ARCore connects to the

ARCore Cloud Anchor service to host and resolve anchors, which requires a working Internet

connection.

First, to use Cloud Anchors, we need to add a Google ARCore Cloud Anchor API Key to our

app. We can generate this key through the Google Cloud Platform and then include it in our app.

When the smartphone launches the app, ARCore starts searching for planes in front of the camera.

Once planes are found, the user can touch the screen to place an anchor on a plane. The user action

launches a host request to the cloud service that includes data representing the anchor’s position

relative to the visual features near it. If this request is successful, a unique ID is assigned to this

anchor. This ID allows other users to share the same room. If another user decides to join this

room, a resolve request is sent to the ARCore Cloud Anchor service to recreate the same anchor

and render the 3D virtual objects attached to it. Figure 4.9 shows the interaction between two users

using this service.

Figure 4.9: Colaboration between users 2

After placing the anchor, we can start object detection and tracking. When an object is de-

tected, a similar virtual object is placed in front of it in the near plane detected by ARCore. From

this moment on, any user who enters the same room can see the virtual object placed by the initial

user and can share a collaborative experience.

2 more information about this service at https://developers.google.com/ar/develop/java/
cloud-anchors/overview-android [accessed 4 January 2020]

https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android

Chapter 5

Results and Analysis

In this chapter, we present the obtained results in different stages of this work. It is divided

into three sections. The first section is about object detection and classification results. In the

second section, we present the tracking analysis. Finally, the processing time obtained by different

devices, as mentioned in Section 3.3, is addressed in the third section.

5.1 Object Detection and Classification

For object detection and classification analysis, we collected a sample of 148 images with the

OnePlus 6’s camera to annotate all the objects present in the images. Figure 5.1 presents all the

classes annotated in the collected files.

Figure 5.1: Images’ ground-truth

We obtained the results presented in Figure 5.2 by applying these images to the model in the

application runtime. We found that only 66 of the tv monitors’ 88 annotations were detected.

Furthermore, 46 were classified as true positives and 20 as false positives, which gave a mAP of

13.59%, as shown in Figure 5.3 (a).

51

52 Results and Analysis

Figure 5.2: Model’s detection results

Figure 5.3: Model’s (a) mAP and (b) LAMR

The Tiny-YOLOv2 model that we use in our application has a mAP of 23.7% registered in

the YOLO official website1. We verified a lower mAP, probably due to the significantly smaller

sample used for testing.

In Figure 5.3 (a), we present the mAP result and, in Figure 5.3 (b), we show the Log-Average

Miss Rate (LAMR). Contrary to the mAP that refers to the detected objects, LAMR refers to the

objects that were not detected. For example, the tv monitor class has a mAP of 42%; and the chair

class has a LAMR value of 100%, since the only time a chair was detected, that object was not a

chair.

To improve our detection and classification results, we tried different training approaches de-

scribed in Appendix E.

1 more information about this model at https://pjreddie.com/darknet/yolo/ [accessed 26 January 2020]

https://pjreddie.com/darknet/yolo/

5.2 Tracking Analysis 53

5.2 Tracking Analysis

For tracking analysis, we follow a similar approach. We applied different trackers to the previous

sample of images. We registered the mAP of each tracker based on the Intersection Over Union

(IOU) or Jaccard Index to understand the tracking precision. As mentioned in Section 2.2, there are

some trackers available in the OpenCV library, such as Boosting, MIL, KCF, TLD, MedianFlow,

MOSSE, GOTURN, and CSRT. We decided to use them in our application to compare and evaluate

their performance. However, we cannot use the last two trackers. GOTURN uses a Caffe model

for tracking since it is CNN based. Furthermore, as we decided to work with TensorFlow, all the

required shared files for the integration of every component of this work were based in this model,

which makes this tracking algorithm’s implementation hard. And CSRT is not available in the

OpenCV version used.

Figure 5.4 shows a comparison between the trackers concerning the mAP. We verified that

KCF and MOSSE are the best options. However, this analysis does not consider the percentage of

the analyzed frames of each algorithm. Due to this, in Figure 5.5 we present a comparison between

the previous best trackers, whereas MOSSE seems to be closer to KCF, but it only tracked 8.55%

of the frames available for that, unlike KCF that did 44.55%.

Figure 5.4: Trackers’ mAP Figure 5.5: KCF and MOSSE’s analyzed frames

In Figure 5.6, we present a bar chart of frames’ processing time obtained with the KCF tracker.

We obtained this plot by applying the same sample of images used in Section 5.1 directly to the

neural network. Considering that each bar corresponds to 10ms, the tracking takes between 90ms

and 100ms in more than 30% of the samples. Similarly, almost 20% of detections take around

340ms to be processed.

54 Results and Analysis

Figure 5.6: KCF’s processed frames

Next, we present a comparison between all these trackers regarding the detection duration

(Figure 5.7 (a)), the tracking duration (Figure 5.7 (b)), with the scale adjusted for better visibility,

and the total duration of each frame (Figure 5.7 (c)) when the app is running.

Figure 5.7: Trackers’ (a) detection, (b) tracking, and (c) total duration

As we can see, despite the different scales, the MOSSE tracker is the fastest, and MIL is the

slowest. KCF is followed by MedianFlow, TLD, and Boosting, respectively. We can also verify

that the performance of each tracker has a small effect on the correspondent detection duration,

and consequently, in the total processing time of a frame.

5.2 Tracking Analysis 55

We compare each tracker with three different metrics: average, median, and 95th percentile,

as shown in Figure 5.8 (a), (b), and (c), respectively.

Figure 5.8: Trackers’ (a) median, (b) 95th percentile, and (c) average processing time

We can see that the Boosting algorithm has the worst performance. During its execution, the

application responsiveness significantly decreased, which is the most plausible assumption to do

concerning the 95th percentile value and its average in the total duration. On the other hand,

MOSSE is the best, probably due to the number of ignored frames in tracking despite its clear

performance superiority. However, considering the previous analysis, the best algorithm option is

the KCF, since it has the best mAP and is the second-fastest.

In Figure 5.9, we present the number of frames processed during detection evaluated by the

same metrics used above.

Figure 5.9: Processed frames during detection

56 Results and Analysis

As we can see, all the trackers have close values, except for the Boosting and the TLD algo-

rithms regarding the 95th percentile value. In Table 5.1, we present the median value of the frame

rate obtained by all trackers concerning the tracking duration.

Table 5.1: Tracking frame rate (taken from [7])

Trackers

Tracking
Boosting MIL KCF TLD MedianFlow MOSSE

4.40 fps 3.29 fps 10.20 fps 5.46 fps 10.10 fps 20.00 fps

Next, we present the detailed results of the KCF tracker obtained with a similar approach as

the one used in Section 5.1 for detection results. In Figure 5.10, we can see, for instance, that the

tv monitor was successfully tracked 21 times, despite the 27 false-positive values.

Figure 5.10: KCF’s tracking results

Finally, in Figure 5.11 (a), we show the mAP and, in Figure 5.11 (b), we present the LAMR

result.

Figure 5.11: KCF’s (a) mAP and (b) LAMR

5.3 Processing Time 57

For instance, 15% of the time, cat class was correctly tracked; but 87%, it was not detected

when it should be.

We verified that our results were similar to the results obtained by Lehtola et al. [7] presented

in Table 2.4 from Section 2.2. Except for MedianFlow, that presented a lower frame rate, 10.1 fps

instead of 16.5 fps and TLD, that showed a higher value, 5.46 fps instead of 1 fps. Thus, in our

analysis, both are no longer the ones with the best and the worst frame rate, respectively. In our

analysis, KCF was the tracker with the best frame rate.

With regards to mAP, all trackers were below expectations when compared to the results ob-

tained by Lehtola et al. presented in Table 2.5 from Section 2.2.

5.3 Processing Time

The execution of our application embraces many stages, as we describe in Section 4.1. However,

we focused our analysis on the most important ones, i.e., detection and tracking. We start by

presenting a bar chart of the frames’ processing time obtained through the OnePlus 6’s camera

simultaneously with the application execution. In the normalized histogram of Figure 5.12, we

compare the time spent in detection, tracking, and in the execution of every step required for

each processed frame. Considering that each bar corresponds to 10ms, the tracking takes between

50ms and 60ms in almost 20% of the samples. Similarly, almost 15% of the detections take around

330ms to be processed. Furthermore, comparing the tracking and detection duration with the total

time allows us to conclude that the detection takes up the majority of the processing time of a

frame.

Figure 5.12: OnePlus 6’s processed frames

In Section 5.2, we made a similar analysis where we verified a comparable result. Probably,

the verified differences between this plot and the plot presented in Figure 5.6 of the previous

section are related to the required time for receiving the captured image from the device’s camera

58 Results and Analysis

and the required time to open an image file from a specific directory in the smartphone and collect

all these bytes to obtain the RGB pixels, which takes more time.

Next, we present a comparison between the five devices mentioned in Section 3.3. Figure

5.13 (a) represents the detection duration on each device; Figure 5.13 (b) represents the tracking

duration, with the scale adjusted for better visibility, since processing time is considerably shorter

than the detection time; and Figure 5.13 (c) represents the total duration of each frame when the

app is running. As we can see, both Samsung devices are faster than OnePlus devices in object

detection. In tracking, all of them, except the Huawei smartphone, achieve similar processing time

results. The Huawei Mate 20 Lite is the slowest one, both in detection and tracking, demonstrating

a performance considerably inferior to the others.

Figure 5.13: Devices’ (a) detection, (b) tracking, and (c) total duration

We also made an analysis comparing each device with the same three metrics used before:

average, median, and 95th percentile, as shown in Figure 5.14 (a), (b), and (c), respectively. Here,

we also accounted for the duration of other processing required for the application’s functionality.

It includes the time spent in memory allocations, in the preprocessing (YUV to RGB conversion

and resizing), in the placement of virtual objects and the tracking initialization. Again, we con-

cluded that the Huawei Mate 20 Lite is the device with the worst performance. Also, the OnePlus

7 Pro and both Samsung devices perform better than the OnePlus 6 as well.

5.3 Processing Time 59

Figure 5.14: Devices’ (a) median, (b) 95th percentile, and (c) average processing time

Considering the devices’ compatibility with the Hardware Acceleration framework, we ex-

pected that both Samsung and Huawei devices could perform the detection on their GPU. Unfor-

tunately, we did not manage to do so, and through Profiler application, we verified that the GPU

component was not used in the network’s execution. Thus, the detection duration values were

lower than expected, especially in these three devices.

In Figure 5.15 (a), we present a circular chart with the distribution of the processing times

corresponding to the OnePlus 6 smartphone. The remaining devices showed a similar distribution

due to the values shown in the graphs in Figure 5.14. On average, detection occupies 75% of the

processing time, tracking 18% and other operations the remaining 7%.

Figure 5.15: OnePlus 6’s (a) processing time and (b) detection duration

Figure 5.15 (b) shows the distribution of the time spent inside the neural network and the

parsing of its output. That is, 91% of the OnePlus 6’s detection time effectively corresponds to the

60 Results and Analysis

analysis performed by the CNN model while the output parsing corresponds to the remaining.

As we explained in Section 4.2, during the detection applied to a captured frame, other frames

are being processed, for instance, for tracking. In Figure 5.16, we present the same three metrics

for the number of frames processed during detection. Considering the variation that can occur in

the calculation of the average, as we can see in OnePlus 6 and Samsung Galaxy S10e devices,

we focus the frame rate estimate on the median value. For instance, the OnePlus 6 processes a

median of 5 frames per 372ms, which corresponds to 13.44 fps. Considering that it processes

1 frame every 336ms of detection, there are 2.98 fps detected. We verified the statement made

by the authors Rachel Huang et al. mentioned in Section 3.3. They said that Tiny-YOLOv2

speed is around 244 fps when it runs on a GPU but decreases to about 2.4 fps when there is no

GPU compatible. With similar reasoning, the tracking frame-rate is 14.7 fps. However, there is a

median of 5 fps tracked per each detection.

Figure 5.16: Processed frames during detection

The time spent in the collaboration is insignificant compared to the time spent in these two

stages of our application’s execution. The anchor’s placement only occurs once and, in the One-

Plus 6, we noted that it takes approximately 7s. Since this happens in parallel with the other

processing steps, it does not affect the global execution time.

In Table 5.2, we present the median value of the frame rate obtained in the five devices con-

cerning the total duration of the processing and the duration of the detection.

Table 5.2: Total and detection frame rate

Devices

OnePlus 6 OnePlus 7 Pro
Samsung

Galaxy S9 Plus
Samsung

Galaxy S10e
Huawei

Mate 20 Lite

Total 13.44 fps 20.20 fps 18.05 fps 16.06 fps 9.50 fps

Detection 2.98 fps 3.60 fps 4.03 fps 4.49 fps 2.04 fps

5.4 Collaboration Demo 61

5.4 Collaboration Demo

To analyze the collaboration, we made a demo2 with two users. They used OnePlus 6 and OnePlus

7 Pro to try the application. The user that enters the room first becomes the host, and the other

one becomes the client. The client only renders the virtual content generated by the detections

performed on the host. As demonstrated on the demo, the users started to analyze the ground to

detect surfaces. Then, the host placed the anchor to create the reference point between the two

devices. From that moment on, objects on the scene could be detected (red bounding box) and

tracked (green bounding box). The host started to recognize the tv monitor, and a matching virtual

object was automatically placed at the nearest position on an identified surface. This virtual object

was immediately available to the client in the same location, as shown in Figure 5.17. Taking the

potted plant’s recognition as an example, we could see that even though the smartphone correctly

detected and tracked the object, the placement of the corresponding virtual object was delayed by

a few seconds. That happened because, due to the object’s height, there was no identified surface

near it. After a surface was found, the host correctly placed the virtual object on the scene.

We verified that the detection accuracy and speed were satisfactory. The virtual object’s place-

ment and the communication between users were also acceptable, ensuring the real-time require-

ment. We only used tracking as an interpolation between objects’ detections, and we missed the

initial goal of updating the virtual objects’ position based on it. Thus, even when the person or the

bottle moved, the corresponding virtual objects remained in the original location.

Figure 5.17: TV monitor’s detection and virtual rendering

2 demo available at https://youtu.be/LnjAvKzgf24 [accessed 6 March 2020]

https://youtu.be/LnjAvKzgf24

Chapter 6

Conclusion and Future Work

The possibility of collaborating remotely in both a professional and ludic context is an interest that

has been growing over the last few years. In this work, we studied and developed a collaborative

application where several users can view the same virtual content placed in the exact location

where real objects were previously detected in real-time.

The proposed implementation integrates five distinct components. The biggest challenge was

the real-time requirement, which made us study different Hardware Acceleration SDKs (1). We

opted for the ArmNN product, with many advantages, namely the compatibility with all Arm-

based smartphones (2), allowing us to test our application in different devices, but with constraints.

For instance, the incompatibility with some AI frameworks (3) and CNN models (4). We decided

to use Android OS, which made us choose ARCore as our AR framework (5). The integration

of the selected components was considered the best approach for the development of this system

despite conditioning each other, as shown in this work’s results.

We analyzed the processing time of a frame on different devices with distinct specifications.

We obtained a frame rate of 18.05 fps on the Samsung Galaxy S9 Plus, which was not in line with

our expectations, mostly due to the low frame rate of 4.03 fps obtained in the object detection

processing. We concluded that these values were affected by the unavailability of the GPU accel-

eration during processing, which we did not expect in Samsung devices, given the compatibility

reported by ArmNN.

For object detection and classification, we obtained a mAP of 13.6%, which is lower than the

23.7% presented by the model’s author, probably due to the small sample of images collected for

testing, given the exhaustive task of making the corresponding annotations for ground-truth. The

Tiny-YOLOv2 model was pre-trained with COCO trainval dataset, and we improved it with the

Pascal VOC 2012 dataset, looking for a better mAP. We verified that ArmNN does not support all

operations performed by Tensorflow, the chosen AI framework, resulting in the impossibility of

using a better version of YOLO.

After the tracking analysis, we opted by using the KCF tracker over the other available options

in the OpenCV library. We verified that it has a frame rate of 10.20 fps, similar to the result

presented by Lehtola et al. in their paper analyzed in Section 2.2. On the other hand, the mAP of

63

64 Conclusion and Future Work

all trackers was lower than expected. This tracker achieved a mAP of 4.7%, which means that it

could not follow an object with high precision.

Regarding the collaboration between users, we verified that through the use of the Google

ARCore Cloud Anchor API, we achieved a satisfactory experience. The initial user opens a new

session and starts identifying a plane to place the anchor and establish a connection with the

server. After that, every user who joins the same session, could detect and track objects in the real

environment and view their virtual representation in all devices.

6.1 Future Work

As mentioned before, we verified that the object detection of our application runs entirely on

the CPU, even in smartphones with ArmNN compatible GPUs. Unfortunately, we were unable

to identify the problem that prevents the network from running on the device’s GPU since we

implemented everything according to the Arm instructions. We are already using one of the fastest

CNN models, so improving the frame rate involves discovering how to overcome this obstacle.

Another task consists in enhancing the training of the network. As explained in Appendix E, we

tried different training approaches. Besides the pre-training of the model with the COCO dataset,

we also trained it with the Pascal VOC 2012 dataset. Bearing in mind that the model knew all

the images of these two datasets, we were left with no alternatives to test it apart from the small

sample we collected. It would be interesting to test it with another complete dataset. Moreover, if,

in the future, the ArmNN SDK implements the remaining operations used by Tensorflow, it would

be possible to use other YOLO versions.

In Section 3.3, we explained the complexity of the cross-compiling required for the usage of

AI frameworks in smartphones. The implementation in Caffe, for instance, could be explored,

instead of Tensorflow. Other referenced models with high frame rates and accuracy values can

also be tested. As we are using the tiny version of the YOLOv2 model, we are only able to detect

20 classes. The number of detectable classes could be increased. All these aspects are fundamental

to the remaining steps’ development that has yet to be completed.

Tracking performance was below expectations concerning their mAP. Understanding their be-

havior to improve them and trying other trackers, such as GOTURN, could be appropriate since

it has impressive accuracy results as it is CNN based. We only used tracking as an interpolation

between objects’ detections, and we missed the initial goal of updating the virtual objects’ position

based on it. We did not implement multitracking due to trackers’ weak precision, the consider-

able amount of time spent in object detection, and the model’s mAP, even though we can detect

multiple objects simultaneously. Multitracking would be a significant improvement in our appli-

cation since it would be possible to know all the detectable objects in a particular environment and

ensuring the placement of only one virtual object in the same location where the real object had

previously been detected.

6.1 Future Work 65

For the collaboration task, it is essential to update the location and the orientation of the virtual

objects in real-time, according to the movements that the real objects may have. The collabora-

tion’s improvement between users within distinct rooms would enhance the user experience and

would allow the use of this application in critical contexts. Finally, the creation of a virtual en-

vironment to interact with this augmented scene directly could make this application even more

complete and suitable for different purposes.

Appendix A

YOLO Models

A.1 YOLOv1.0

The Tensorflow tool could not parse the .pb file because it is bigger than the supported size: 1GB.

We still present its model appearance. For the remaining models, we also marked the ArmNN’s

respective not supported operation, both in the model specifications and in its representation.

Figure A.1: YOLOv1.0 model

A.2 Tiny-YOLOv1.0

Figure A.2: Tiny-YOLOv1.0 model’s specifications

Figure A.3: Tiny-YOLOv1.0 model

67

68 YOLO Models

A.3 YOLOv1.1

Figure A.4: YOLOv1.1 model’s specifications

Figure A.5: YOLOv1.1 model

A.4 Tiny-YOLOv1.1

Figure A.6: Tiny-YOLOv1.1 model’s specifications

Figure A.7: Tiny-YOLOv1.1 model

A.5 YOLOv2 [VOC] 69

A.5 YOLOv2 [VOC]

Figure A.8: YOLOv2 [VOC] model’s specifications

Figure A.9: YOLOv2 [VOC] model

A.6 Tiny-YOLOv2 [VOC]

Figure A.10: Tiny-YOLOv2 [VOC] model’s specifications

Figure A.11: Tiny-YOLOv2 [VOC] model

70 YOLO Models

A.7 YOLOv2 [COCO]

Figure A.12: YOLOv2 [COCO] model’s specifications

Figure A.13: YOLOv2 [COCO] model

A.8 Tiny-YOLOv2 [VOC]

Figure A.14: Tiny-YOLOv2 [COCO] model’s specifications

Figure A.15: Tiny-YOLOv2 [COCO] model

A.9 YOLOv3 71

A.9 YOLOv3

Figure A.16: YOLOv3 model’s specifications

Figure A.17: YOLOv3 model

72 YOLO Models

A.10 Tiny-YOLOv3

Figure A.18: Tiny-YOLOv3 model’s specifications

Figure A.19: Tiny-YOLOv3 model

Appendix B

YUV-420-888 Format

YUV-420-888 or YUV420p is a planar format, which means that Y, U, and V are grouped instead

of interspersed to make the image more compressible than in other formats, such as RGB. In an

array of an image in this format, Y values come first, followed by all the U values and followed

finally by all the V values. The number of Y values is the same as image pixels since each pixel

has a specific Y value. Each U and V values are assigned to 4 pixels. As shown in Figure B.1, Y,

U, and V components are encoded separately in sequential blocks.

Figure B.1: Frame YUV420p

The Y block could be found at position 0 of the array, the U block at position x ∗ y, where x

corresponds to the number of columns and y to the number of lines, and the V block at position

x ∗ y+ (x∗y)
4 . Thus, the image YUV buffer would have #Y ∗ 3

2 bytes, and the RGB buffer would

have double size.

We tried to convert the YUV buffer on the RGB buffer required by the neural network follow-

ing the instructions available, but the constants required for conversion were quite variable, and

we were never able to get the correct image in RGB format. We finally found that the OpenCV

library could make this conversion directly. We used the COLOR_YUV2RGB_NV12 flag to obtain

the expected image.

73

74 YUV-420-888 Format

However, according to the provided information, NV12 format is like YUV420p, but it has

the order of U and V values switched, i.e., the Y values are followed by the V values, with the U

values last. Moreover, NV21 is the standard picture format on the Android camera preview and is

the inverse of NV12. Nonetheless, it made the image more bluish, which we did not understand.1

1 more information about these formats at https://en.wikipedia.org/wiki/YUV [accessed 18 September
2019]

https://en.wikipedia.org/wiki/YUV

Appendix C

Protobuf

Google developed Protocol Buffers (Protobuf) to serialize structured data. It can be used for

programs’ development to communicate with each other over a wire or for storing data instead of

XML or JSON. Protobuf was designed to be smaller and faster than these two approaches. The

method involves an interface description language that describes the structure of some data and

a program that generates source code from that description for generating or parsing a stream of

bytes that represents the structured data.1

Since Google also developed TensorFlow, Protobuf is used to store the graph definition and

the model’s weights. Thus, the .pb file is all we need to be able to run a given trained model. The

model’s information can be saved on a Protobuf binary file, a Protobuf text file, or a Protobuf text

in a string. We always used the first one to load the network on our application.

1 more information about Protobuf at https://developers.google.com/protocol-buffers/docs/
proto [accessed 20 September 2019]

75

https://developers.google.com/protocol-buffers/docs/proto
https://developers.google.com/protocol-buffers/docs/proto

Appendix D

Interconnection Between CV and AI

After the input preparation, we send the image to the network to obtain the output for further

analysis. We mentioned in Section 4.2 that we had to create a new thread in the Controller module

for the processing image part. Here we also prepared the image data to transform it into a network

input. Since the programming language used in the acquisition is C# and in detection is C++,

according to the diagram in Figure 4.2 from Section 4.2, we have to access some values in their

corresponding memory positions in the C++ code, so we should pass by reference a specific type

of variable, to make possible the communication between both sides.

To do this, we convert our buffer into an IntPtr object through the System.Runtime.InteropServices

class. This class contains a method, Marshal.AllocHGlobal that allows us to allocate the same

number of bytes as the unmanaged variable occupies and returns an IntPtr object that points to

the beginning of the unmanaged block of memory. This class also has the Marshal.Copy method,

that copies data from a managed array to an unmanaged memory pointer, or from an unmanaged

memory pointer to a managed array. With this approach, it was also possible to do the opposite

case, i.e., modify some values in their correspondent memory positions in the C++ code and access

them in the C# code later.

77

Appendix E

Tiny-YOLOv2 Training

To improve the Tiny-YOLOv2 model accuracy, we tried different training approaches. There are

two models available on the official YOLO website. One was pre-trained with the COCO trainval

dataset1 and the other one with Pascal VOC 2007+20122. Their mAP results are quite different,

probably due to the different test’s dataset size, as mentioned in Section 2.1. Firstly, we took the

version pre-trained with COCO and performed three training trials with the following datasets:

1. Pascal VOC trainval2012 + trainvaltest2007, during more than 150k steps;

2. Pascal VOC trainval2012: during more than 16k steps;

3. Pascal VOC trainval2012: during more than 60k steps

The three of them were tested with the Pascal VOC trainvaltest2007 and have shown a similar

loss chart to the presented in Figure E.1.

Figure E.1: Loss chart

1 more information about Tiny-YOLOv2 pre-trained with COCO dataset at https://pjreddie.com/
darknet/yolo/ [accessed 18 February 2020]

2 more information about Tiny-YOLOv2 pre-trained with Pascal VOC dataset at https://pjreddie.com/
darknet/yolov2/ [accessed 18 February 2020]

79

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/

80 Tiny-YOLOv2 Training

However, the model (2) showed the worst mAP result with 0.4% compared with (1) 24.9%

and (3) 5.9%. All results are presented in Figures E.2 and E.3. The mAP difference between (1)

and (3) is probably because the training of (1) included the dataset used for testing.

Figure E.2: Detection results and mAP of each model for the 1st trial

Figure E.3: Detection-results of each model

Tiny-YOLOv2 Training 81

We ran a new test on (1) and (3) with just the Pascal VOC test2012 dataset and saw that the

only detections were of the Person class, as shown in Figure E.4. After further inspection, as

presented in Figures E.5 and E.6, we concluded that this was due to a high number of annotations

being missing in the dataset, especially from the other classes. We also tried the Tiny-YOLOv2

model pre-trained with the Pascal VOC dataset. However, we did not notice any difference in the

running time of our application when compared to (3), which we ended up using.

Figure E.4: Detection results and mAP of each model for the 2nd trial

Figure E.5: Number of images and annotations in each dataset

82 Tiny-YOLOv2 Training

Figure E.6: Ground-truth of each dataset

References

[1] Tomislav Pejsa, Julian Kantor, Hrvoje Benko, Eyal Ofek, and Andrew D Wilson.
Room2Room: Enabling Life-Size Telepresence in a Projected Augmented Reality Environ-
ment. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing - CSCW ’16, pages 1714–1723, New York, New York, USA, 2016.
ACM Press. URL: http://dl.acm.org/citation.cfm?doid=2818048.2819965,
doi:10.1145/2818048.2819965.

[2] Thammathip Piumsomboon, Gun A. Lee, Jonathon D. Hart, Barrett Ens, Robert W. Linde-
man, Bruce H. Thomas, and Mark Billinghurst. Mini-Me. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems - CHI ’18, pages 1–13, New York, New
York, USA, 2018. ACM Press. URL: http://dl.acm.org/citation.cfm?doid=
3173574.3173620, doi:10.1145/3173574.3173620.

[3] Martin Rünz, Maud Buffier, and Lourdes Agapito. MaskFusion: Real-Time Recogni-
tion, Tracking and Reconstruction of Multiple Moving Objects. In 2018 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), apr 2018. URL: http:
//arxiv.org/abs/1804.09194, arXiv:1804.09194.

[4] David R. Walton and Anthony Steed. Accurate real-time occlusion for mixed reality.
In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technol-
ogy - VRST ’17, pages 1–10, New York, New York, USA, 2017. ACM Press. URL:
http://dl.acm.org/citation.cfm?doid=3139131.3139153, doi:10.1145/
3139131.3139153.

[5] Yeonjoon Kim, Hangil Park, Seungbae Bang, and Sung-Hee Lee. Retargeting Human-Object
Interaction to Virtual Avatars. IEEE Transactions on Visualization and Computer Graph-
ics, 22(11):2405–2412, nov 2016. URL: http://ieeexplore.ieee.org/document/
7523447/, doi:10.1109/TVCG.2016.2593780.

[6] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van
Gool. AI Benchmark: Running Deep Neural Networks on Android Smartphones. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11133 LNCS:288–314, oct 2018. URL: http://arxiv.
org/abs/1810.01109, arXiv:1810.01109.

[7] Ville Lehtola, Heikki Huttunen, Francois Christophe, and Tommi Mikkonen. Evalua-
tion of visual tracking algorithms for embedded devices. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10269 LNCS, pages 88–97. Springer Verlag, 2017.
URL: http://link.springer.com/10.1007/978-3-319-59126-1{_}8, doi:
10.1007/978-3-319-59126-1_8.

83

http://dl.acm.org/citation.cfm?doid=2818048.2819965
http://dx.doi.org/10.1145/2818048.2819965
http://dl.acm.org/citation.cfm?doid=3173574.3173620
http://dl.acm.org/citation.cfm?doid=3173574.3173620
http://dx.doi.org/10.1145/3173574.3173620
http://arxiv.org/abs/1804.09194
http://arxiv.org/abs/1804.09194
http://arxiv.org/abs/1804.09194
http://dl.acm.org/citation.cfm?doid=3139131.3139153
http://dx.doi.org/10.1145/3139131.3139153
http://dx.doi.org/10.1145/3139131.3139153
http://ieeexplore.ieee.org/document/7523447/
http://ieeexplore.ieee.org/document/7523447/
http://dx.doi.org/10.1109/TVCG.2016.2593780
http://arxiv.org/abs/1810.01109
http://arxiv.org/abs/1810.01109
http://arxiv.org/abs/1810.01109
http://link.springer.com/10.1007/978-3-319-59126-1{_}8
http://dx.doi.org/10.1007/978-3-319-59126-1_8
http://dx.doi.org/10.1007/978-3-319-59126-1_8

84 REFERENCES

[8] Lei Gao, Huidong Bai, Weiping He, Mark Billinghurst, and Robert W. Lindeman. Real-time
visual representations for mobile mixed reality remote collaboration. In SIGGRAPH Asia
2018 Virtual & Augmented Reality on - SA ’18, pages 1–2, New York, New York, USA, 2018.
ACM Press. URL: http://dl.acm.org/citation.cfm?doid=3275495.3275515,
doi:10.1145/3275495.3275515.

[9] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part I. IEEE
Robotics & Automation Magazine, 13(2):99–110, jun 2006. URL: http://ieeexplore.
ieee.org/document/1638022/, doi:10.1109/MRA.2006.1638022.

[10] T. Bailey and H. Durrant-Whyte. SLAM: part II. IEEE Robotics & Automation Maga-
zine, 13(3):108–117, sep 2006. URL: http://ieeexplore.ieee.org/document/
1678144/, doi:10.1109/MRA.2006.1678144.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. mar 2017.
URL: http://arxiv.org/abs/1703.06870, arXiv:1703.06870.

[12] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004. URL: https://doi.org/10.1023/B:VISI.
0000029664.99615.94, doi:10.1023/B:VISI.0000029664.99615.94.

[13] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features
(surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008. URL: http://dx.doi.
org/10.1016/j.cviu.2007.09.014, doi:10.1016/j.cviu.2007.09.014.

[14] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient al-
ternative to sift or surf. In Proceedings of the 2011 International Conference on Com-
puter Vision, ICCV ’11, pages 2564–2571, Washington, DC, USA, 2011. IEEE Com-
puter Society. URL: http://dx.doi.org/10.1109/ICCV.2011.6126544, doi:
10.1109/ICCV.2011.6126544.

[15] Arijit Mallick, Angel P. del Pobil, and Enric Cervera. Deep Learning based Object Recog-
nition for Robot picking task. In Proceedings of the 12th International Conference on
Ubiquitous Information Management and Communication - IMCOM ’18, pages 1–9, New
York, New York, USA, 2018. ACM Press. URL: http://dl.acm.org/citation.
cfm?doid=3164541.3164628, doi:10.1145/3164541.3164628.

[16] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013. URL:
http://arxiv.org/abs/1311.2524, arXiv:1311.2524.

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision, 115(3):211–252, dec 2015. URL: http://link.springer.com/10.
1007/s11263-015-0816-y, doi:10.1007/s11263-015-0816-y.

[18] Ross Girshick. Fast R-CNN. apr 2015. URL: http://arxiv.org/abs/1504.08083,
arXiv:1504.08083.

[19] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-
time object detection with region proposal networks. CoRR, abs/1506.01497, 2015. URL:
http://arxiv.org/abs/1506.01497, arXiv:1506.01497.

http://dl.acm.org/citation.cfm?doid=3275495.3275515
http://dx.doi.org/10.1145/3275495.3275515
http://ieeexplore.ieee.org/document/1638022/
http://ieeexplore.ieee.org/document/1638022/
http://dx.doi.org/10.1109/MRA.2006.1638022
http://ieeexplore.ieee.org/document/1678144/
http://ieeexplore.ieee.org/document/1678144/
http://dx.doi.org/10.1109/MRA.2006.1678144
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dl.acm.org/citation.cfm?doid=3164541.3164628
http://dl.acm.org/citation.cfm?doid=3164541.3164628
http://dx.doi.org/10.1145/3164541.3164628
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://link.springer.com/10.1007/s11263-015-0816-y
http://link.springer.com/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497

REFERENCES 85

[20] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: object detection via region-based fully
convolutional networks. CoRR, abs/1605.06409, 2016. URL: http://arxiv.org/abs/
1605.06409, arXiv:1605.06409.

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-
Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. CoRR,
abs/1512.02325, 2015. URL: http://arxiv.org/abs/1512.02325, arXiv:1512.
02325.

[22] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J.
Belongie. Feature pyramid networks for object detection. CoRR, abs/1612.03144, 2016.
URL: http://arxiv.org/abs/1612.03144, arXiv:1612.03144.

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once:
Unified, Real-Time Object Detection. jun 2015. URL: http://arxiv.org/abs/1506.
02640, arXiv:1506.02640.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–9. IEEE, jun 2015. URL: http://ieeexplore.ieee.org/document/7298594/,
doi:10.1109/CVPR.2015.7298594.

[25] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. dec 2016. URL:
http://arxiv.org/abs/1612.08242, arXiv:1612.08242.

[26] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. apr 2018. URL:
http://arxiv.org/abs/1804.02767, arXiv:1804.02767.

[27] Shivam Duggal, Shrey Manik, and Mohan Ghai. Amalgamation of Video Description and
Multiple Object Localization using single Deep Learning Model. In Proceedings of the
9th International Conference on Signal Processing Systems - ICSPS 2017, pages 109–115,
New York, New York, USA, 2017. ACM Press. URL: http://dl.acm.org/citation.
cfm?doid=3163080.3163108, doi:10.1145/3163080.3163108.

[28] Jiahuan Zhou, Lihang Feng, Ryad Chellali, and Haonan Zhu. Detecting and tracking ob-
jects in HRI: YOLO networks for the NAO “I See You” function *. In 2018 27th IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN),
pages 479–482. IEEE, aug 2018. URL: https://ieeexplore.ieee.org/document/
8525582/, doi:10.1109/ROMAN.2018.8525582.

[29] Volodymyr Kharchenko and Iurii Chyrka. Detection of Airplanes on the Ground
Using YOLO Neural Network. In 2018 IEEE 17th International Conference on
Mathematical Methods in Electromagnetic Theory (MMET), pages 294–297. IEEE, jul
2018. URL: https://ieeexplore.ieee.org/document/8460392/, doi:10.
1109/MMET.2018.8460392.

[30] Hong-wei Zhang, Ling-jie Zhang, Peng-fei Li, and De Gu. Yarn-dyed Fabric Defect
Detection with YOLOV2 Based on Deep Convolution Neural Networks. In 2018 IEEE
7th Data Driven Control and Learning Systems Conference (DDCLS), pages 170–174.
IEEE, may 2018. URL: https://ieeexplore.ieee.org/document/8516094/,
doi:10.1109/DDCLS.2018.8516094.

http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1605.06409
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://ieeexplore.ieee.org/document/7298594/
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://dl.acm.org/citation.cfm?doid=3163080.3163108
http://dl.acm.org/citation.cfm?doid=3163080.3163108
http://dx.doi.org/10.1145/3163080.3163108
https://ieeexplore.ieee.org/document/8525582/
https://ieeexplore.ieee.org/document/8525582/
http://dx.doi.org/10.1109/ROMAN.2018.8525582
https://ieeexplore.ieee.org/document/8460392/
http://dx.doi.org/10.1109/MMET.2018.8460392
http://dx.doi.org/10.1109/MMET.2018.8460392
https://ieeexplore.ieee.org/document/8516094/
http://dx.doi.org/10.1109/DDCLS.2018.8516094

86 REFERENCES

[31] Alexander Wong, Mohammad Javad Shafiee, Francis Li, and Brendan Chwyl. Tiny SSD:
A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded
Object Detection. feb 2018. URL: http://arxiv.org/abs/1802.06488, arXiv:
1802.06488.

[32] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size. feb 2016. URL: http://arxiv.org/abs/1602.07360, arXiv:
1602.07360.

[33] Xiaoyu Feng, Wei Mei, and Dashuai Hu. A review of visual tracking with deep learning. 01
2016. doi:10.2991/aiie-16.2016.54.

[34] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual tracking with
fully convolutional networks. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3119–3127. Institute of Electrical and Electronics Engineers
Inc., 2015. URL: https://ieeexplore.ieee.org/document/7410714, doi:10.
1109/ICCV.2015.357.

[35] Hyeonseob Nam and Bohyung Han. Learning Multi-Domain Convolutional Neural Net-
works for Visual Tracking. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016-December:4293–4302, oct 2015. URL:
http://arxiv.org/abs/1510.07945, arXiv:1510.07945.

[36] Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian, and Jie Zhou. Collaborative Deep
Reinforcement Learning for Multi-object Tracking. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11207 LNCS, pages 605–621. Springer Verlag, sep 2018. doi:
10.1007/978-3-030-01219-9_36.

[37] Kiana Ehsani, Hessam Bagherinezhad, Joseph Redmon, Roozbeh Mottaghi, and Ali Farhadi.
Who Let The Dogs Out? Modeling Dog Behavior From Visual Data. Technical re-
port. URL: https://pjreddie.com/media/files/papers/1803.10827.pdf,
arXiv:1803.10827v1.

[38] Samuel Scheidegger, Joachim Benjaminsson, Emil Rosenberg, Amrit Krishnan, and Karl
Granström. Mono-camera 3d multi-object tracking using deep learning detections and
PMBM filtering. CoRR, abs/1802.09975, 2018. URL: http://arxiv.org/abs/1802.
09975, arXiv:1802.09975.

[39] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual Worlds as Proxy for
Multi-Object Tracking Analysis. In Conference on Computer Vision and Pattern Recogni-
tion, 2016. URL: https://arxiv.org/pdf/1605.06457.

[40] David Held, Sebastian Thrun, and Silvio Savarese. Learning to Track at 100 FPS with Deep
Regression Networks. pages 749–765. 2016. URL: http://link.springer.com/10.
1007/978-3-319-46448-0{_}45, doi:10.1007/978-3-319-46448-0_45.

[41] Chaoyang Wang, Hamed Kiani Galoogahi, Chen-Hsuan Lin, and Simon Lucey. Deep-LK
for Efficient Adaptive Object Tracking. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 627–634. IEEE, may 2018. URL: https://ieeexplore.
ieee.org/document/8460815/, doi:10.1109/ICRA.2018.8460815.

http://arxiv.org/abs/1802.06488
http://arxiv.org/abs/1802.06488
http://arxiv.org/abs/1802.06488
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://dx.doi.org/10.2991/aiie-16.2016.54
https://ieeexplore.ieee.org/document/7410714
http://dx.doi.org/10.1109/ICCV.2015.357
http://dx.doi.org/10.1109/ICCV.2015.357
http://arxiv.org/abs/1510.07945
http://arxiv.org/abs/1510.07945
http://dx.doi.org/10.1007/978-3-030-01219-9_36
http://dx.doi.org/10.1007/978-3-030-01219-9_36
https://pjreddie.com/media/files/papers/1803.10827.pdf
http://arxiv.org/abs/1803.10827v1
http://arxiv.org/abs/1802.09975
http://arxiv.org/abs/1802.09975
http://arxiv.org/abs/1802.09975
https://arxiv.org/pdf/1605.06457
http://link.springer.com/10.1007/978-3-319-46448-0{_}45
http://link.springer.com/10.1007/978-3-319-46448-0{_}45
http://dx.doi.org/10.1007/978-3-319-46448-0_45
https://ieeexplore.ieee.org/document/8460815/
https://ieeexplore.ieee.org/document/8460815/
http://dx.doi.org/10.1109/ICRA.2018.8460815

REFERENCES 87

[42] Rui Nóbrega and Nuno Correia. Interactive 3D content insertion in images for
multimedia applications. Multimedia Tools and Applications, 76(1):163–197, jan
2017. URL: http://link.springer.com/10.1007/s11042-015-3031-5, doi:
10.1007/s11042-015-3031-5.

[43] Adrien Arnaud, Julien Christophe, Michèle Gouiffes, and Mehdi Ammi. 3D reconstruction
of indoor building environments with new generation of tablets. In Proceedings of the 22nd
ACM Conference on Virtual Reality Software and Technology - VRST ’16, pages 187–190,
New York, New York, USA, 2016. ACM Press. URL: http://dl.acm.org/citation.
cfm?doid=2993369.2993403, doi:10.1145/2993369.2993403.

[44] Shahram Izadi, Andrew Davison, Andrew Fitzgibbon, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Dustin
Freeman. KinectFusion. In Proceedings of the 24th annual ACM symposium on User in-
terface software and technology - UIST ’11, page 559, New York, New York, USA, 2011.
ACM Press. URL: http://dl.acm.org/citation.cfm?doid=2047196.2047270,
doi:10.1145/2047196.2047270.

[45] Misha Sra, Sergio Garrido-Jurado, Chris Schmandt, and Pattie Maes. Procedurally gen-
erated virtual reality from 3D reconstructed physical space. In Proceedings of the 22nd
ACM Conference on Virtual Reality Software and Technology - VRST ’16, pages 191–200,
New York, New York, USA, 2016. ACM Press. URL: http://dl.acm.org/citation.
cfm?doid=2993369.2993372, doi:10.1145/2993369.2993372.

[46] Chao Du, Yen-Lin Chen, Mao Ye, and Liu Ren. Edge Snapping-Based Depth En-
hancement for Dynamic Occlusion Handling in Augmented Reality. In 2016 IEEE In-
ternational Symposium on Mixed and Augmented Reality (ISMAR), pages 54–62. IEEE,
sep 2016. URL: http://ieeexplore.ieee.org/document/7781766/, doi:10.
1109/ISMAR.2016.17.

[47] Johan Kasperi, Malin Picha Edwardsson, and Mario Romero. Occlusion in outdoor aug-
mented reality using geospatial building data. In Proceedings of the 23rd ACM Sympo-
sium on Virtual Reality Software and Technology - VRST ’17, pages 1–10, New York, New
York, USA, 2017. ACM Press. URL: http://dl.acm.org/citation.cfm?doid=
3139131.3139159, doi:10.1145/3139131.3139159.

[48] Michael Bonfert, Inga Lehne, Ralf Morawe, Melina Cahnbley, Gabriel Zachmann, and Jo-
hannes Schöning. Augmented invaders. In Proceedings of the 23rd ACM Symposium on
Virtual Reality Software and Technology - VRST ’17, pages 1–2, New York, New York, USA,
2017. ACM Press. URL: http://dl.acm.org/citation.cfm?doid=3139131.
3141208, doi:10.1145/3139131.3141208.

[49] Julien Casarin, Dominique Bechmann, and Marilyn Keller. A unified model for interac-
tion in 3D environment. In Proceedings of the 23rd ACM Symposium on Virtual Real-
ity Software and Technology - VRST ’17, pages 1–7, New York, New York, USA, 2017.
ACM Press. URL: http://dl.acm.org/citation.cfm?doid=3139131.3139140,
doi:10.1145/3139131.3139140.

[50] Jonathan Pedoeem and Rachel Huang. YOLO-LITE: A Real-Time Object Detection Al-
gorithm Optimized for Non-GPU Computers. Proceedings - 2018 IEEE International
Conference on Big Data, Big Data 2018, pages 2503–2510, nov 2018. URL: http:
//arxiv.org/abs/1811.05588, arXiv:1811.05588.

http://link.springer.com/10.1007/s11042-015-3031-5
http://dx.doi.org/10.1007/s11042-015-3031-5
http://dx.doi.org/10.1007/s11042-015-3031-5
http://dl.acm.org/citation.cfm?doid=2993369.2993403
http://dl.acm.org/citation.cfm?doid=2993369.2993403
http://dx.doi.org/10.1145/2993369.2993403
http://dl.acm.org/citation.cfm?doid=2047196.2047270
http://dx.doi.org/10.1145/2047196.2047270
http://dl.acm.org/citation.cfm?doid=2993369.2993372
http://dl.acm.org/citation.cfm?doid=2993369.2993372
http://dx.doi.org/10.1145/2993369.2993372
http://ieeexplore.ieee.org/document/7781766/
http://dx.doi.org/10.1109/ISMAR.2016.17
http://dx.doi.org/10.1109/ISMAR.2016.17
http://dl.acm.org/citation.cfm?doid=3139131.3139159
http://dl.acm.org/citation.cfm?doid=3139131.3139159
http://dx.doi.org/10.1145/3139131.3139159
http://dl.acm.org/citation.cfm?doid=3139131.3141208
http://dl.acm.org/citation.cfm?doid=3139131.3141208
http://dx.doi.org/10.1145/3139131.3141208
http://dl.acm.org/citation.cfm?doid=3139131.3139140
http://dx.doi.org/10.1145/3139131.3139140
http://arxiv.org/abs/1811.05588
http://arxiv.org/abs/1811.05588
http://arxiv.org/abs/1811.05588

88 REFERENCES

[51] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-Speed Track-
ing with Kernelized Correlation Filters. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 37(3):583–596, apr 2014. URL: http://arxiv.org/abs/1404.
7584http://dx.doi.org/10.1109/TPAMI.2014.2345390, arXiv:1404.7584,
doi:10.1109/TPAMI.2014.2345390.

http://arxiv.org/abs/1404.7584 http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://arxiv.org/abs/1404.7584 http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://arxiv.org/abs/1404.7584
http://dx.doi.org/10.1109/TPAMI.2014.2345390

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Document Structure

	2 Background and Related Work
	2.1 Real-Time Object Detection and Classification
	2.1.1 Methods' Description
	2.1.2 Methods' Analysis
	2.1.3 Related Works

	2.2 Real-Time Object Tracking
	2.2.1 How Does A Tracking Algorithm Work?
	2.2.2 What Are The Different Approaches Used By Trackers?
	2.2.3 Tracker Comparison
	2.2.4 Related Works

	2.3 Virtual Environment Development
	2.4 User Interaction and Collaboration

	3 Proposed System Architecture
	3.1 Problem Characterization
	3.2 Proposed Solution
	3.3 Architecture
	3.3.1 ARCore (AR Frameworks)
	3.3.2 OpenCV
	3.3.3 ArmNN (Hardware Acceleration SDKs)
	3.3.4 Tiny-YOLOv2
	3.3.5 TensorFlow (or AI/DL Frameworks)

	4 Implementation
	4.1 Unity Scene Development
	4.2 CNN Input Preparation
	4.2.1 Image Processing
	4.2.2 CNN Construction

	4.3 CNN Output Analysis
	4.3.1 CNN Output Processing
	4.3.2 Bounding Boxes Representation

	4.4 Tracking and Collaboration Between Users
	4.4.1 Tracking
	4.4.2 Collaboration

	5 Results and Analysis
	5.1 Object Detection and Classification
	5.2 Tracking Analysis
	5.3 Processing Time
	5.4 Collaboration Demo

	6 Conclusion and Future Work
	6.1 Future Work

	A YOLO Models
	A.1 YOLOv1.0
	A.2 Tiny-YOLOv1.0
	A.3 YOLOv1.1
	A.4 Tiny-YOLOv1.1
	A.5 YOLOv2 [VOC]
	A.6 Tiny-YOLOv2 [VOC]
	A.7 YOLOv2 [COCO]
	A.8 Tiny-YOLOv2 [VOC]
	A.9 YOLOv3
	A.10 Tiny-YOLOv3

	B YUV-420-888 Format
	C Protobuf
	D Interconnection Between CV and AI
	E Tiny-YOLOv2 Training
	References

