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Abstract

In this work a distributed dynamic road pricing solution is presented to solve the route choice
problem. In this problem agents try to discover which route minimizes their travel costs. This
leads to agents picking the most attractive routes and therefore congestion is very likely to emerge
when demand it high. This self-interested behavior leads to a degradation of the network perfor-
mance and the establishment of a user-equilibrium (UE).
To solve this we present a distributed toll-based mechanism. Tolling agents learn the best price for
the links they manage using Q-learning. The drivers themselves are Q-learning agents that try to
minimize their travel costs (time and credits) and they will alter their routes according to the toll
price signals.
Two scenarios were developed using different levels of decentralization of the tolling agents, one
where road managers control only a single link and another where managers control a larger num-
ber of links. Five different homogeneous populations were tested in these scenarios, from time-
sensible drivers only to cost-sensible ones. These scenarios obtained best results in the populations
that were equally sensible to both time and cost (50%-50%), with lower average travel times and
reduced emissions. The less decentralized scenario was less effective in generating revenue.

Keywords: Road traffic assignment; road pricing; network optimum; reinforcement learning;
Q-learning; greenhouse gases emissions; traffic simulation; dynamic road pricing.
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Resumo

Neste trabalho foi desenvolvido um sistema distribuído de portagens dinâmicas para solucionar o
problema de escolha de rotas. Neste problema, condutores tentam descobrir a rota que minimiza
os seus custos de viagem. Isto leva a que os condutores escolham as rotas mais atractivas e ao
aparecimento de congestionamento. Este comportamento egoísta leva a uma degradação da per-
formance da rede e ao aparecimento de um user-equilibrium (UE).
Para resolver o problema de congestionamento é apresentado um mecanismo distribuído de porta-
gens. Os agentes portageiros aprendem a colocar o preço mais eficaz nas estradas que eles gerem
usando Q-learning. Por sua vez os condutores também aprendem a minimizar os seus custos de
tempo e créditos.
Foram desenvolvidos 2 cenários de teste com diferentes níveis de descentralização dos agentes
portageiros. Num dos cenários os agentes portageiros apenas controlam uma única estrada en-
quanto que no outro cenário controlam um conjunto de estradas adjacentes, comparável a um
quarteirão. Foram realizadas experiências com 5 diferentes populações com preferências de tempo
e dinheiro homogéneas dentro da mesma população. Os melhores resultados foram obtidos nas
populações que eram igualmente sensíveis ao custo e tempo e levaram a uma redução de tempo
de viagem e emissões poluentes. O cenário mais centralizados foi menos eficaz a gerar receitas de
créditos.
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“Do not let these questions restrain or trouble you
Just point yourself in the direction of your dreams

Find your strength in the sound
And make your transition”

Cornelius Harris
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Chapter 1

Introduction

Shifting the focus of the transportation paradigm from the polluting private vehicle onto a more

sustainable and efficient mobility system is a necessary step to make our cities greener and more

humanized [DMA18]. The excess of cars leads to congestion and a huge negative externality and

therefore into degradation of city’s quality of life because of polluting gases they emit [AL11].

1.1 Context & Motivation

This work was developed in a partnership with CEiiA, an R&D center in Matosinhos, Portugal.

Its research is focused on the automotive, aerospace and mobility industries. This thesis was

developed in the context of the mobility and smart cities department, where CEiiA is developing

an ecosystem that tries to influence people’s mobility behaviours towards more environmentally

responsible choices. This ecosystem, coined AYR, rewards users with tradable credits according to

the CO2 emissions they avoid while using low-carbon transport equipment. These credits can then

be exchanged with more mobility services such as micro-mobility providers, electric car charging

stations and collective transports. To support this project, a simulation environment is needed to

test with the influence of both toll pricing and incentive attribution on road networks, and to assess

the population acceptability of these schemes.

1.2 Problem & Goals

As previously stated, this work is intended as a stepping stone in a larger project that seeks to en-

courage people to make choices towards more sustainable living styles and cities. This requires a

"playground" to test the outcome of the several pricing and reward mechanisms as well as the pos-

sibility of testing these mechanisms in different networks and populations. The underlying prob-

lem in this work therefore sits on how to implement an appropriate cognitive mechanism in agents

forming up a population of travellers so as to reason about the effects of their decision-making
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Introduction

process onto the more global perspective of the performance of the system. Such a capability in

social simulation platforms is crucial and paramount so as to allow for a proper analysis of the

attributes of incentive that can effectively play a positive role towards making a certain population

becoming rather socially sustainable and aware.

As such the main contributions expected from this work and constituting the specific goals

herein presented are as follows:

• Explore the state of the art regarding pricing and incentive mechanisms in traffic networks;

• Explore the state of the art in the area of road traffic simulators;

• Explore the state of the art in the area of synthetic population design;

• Creation of a module that enables us to simulate the effect of different road pricing strategies

in a road traffic simulator;

• Expand the previous module to measure the impact of road pricing on different populations;

• Assessment of the developed modules in different scenarios.

1.3 Dissertation Structure

In addition to this Introduction, this document has four more chapters, as follows. Chapter 2

encompasses the related work that has been done in this field and helped shape our approach.

Chapter 3 presents the problem and the implemented solution, which is described in terms of its

architecture and used technologies.

The scenarios used to demonstrate our solution are described in chapter 4, as well as are discussed

the obtained results.

Finally, chapter 5 draws conclusions and discusses the main contributions from this work, as well

as future developments to be considered in further research.

More data from the experiments are presented in the appendix A.

2



Chapter 2

Body of Knowledge

In this chapter a review of the current state of the knowledge and related works used for developing

this thesis are presented. The main focus of this research is on traffic assignment and pricing but

also in Artificial Intelligence, namely reinforcement learning and its use in congestion pricing.

2.1 Traffic Assignment Problem

Road networks have a finite amount of vehicles that they can handle efficiently. As road space

demand increases and hits the limit of road throughput, traffic begins to build up which leads to a

penalty to all parties involved. So an efficient assignment of the users trips becomes paramount to

obtain the best possible performance from the network. The tools for this planning have evolved

over time as technology and mobility needs change [Pat94].

A problem that affects this assignment is the selfishness of drivers, as they pick the path that

benefits them the most (e.g. faster or cheaper) for the trip from their origin to their intended

destination [PPK02], which leads to an inefficient use of road resources and the under-performance

of the system as a whole. This is known as an user-equilibrium (UE), in which no user can improve

upon its selected route by picking another. As such there needs to be a mechanism that adjusts

drivers’ preferences to be closer to the system’s optimal assignment (SO). This means that the

average travel time of all drivers is the lowest compared to UE, even thought some drivers may

have longer travel times. One way to do this is by pricing road use.

2.2 Road Pricing

Charging for the use of road infrastructure has long been proposed as a way to reduce congestion

in roads [Piq20, Kni24] , forcing the road users to pay for the negative externally they create

to society but also to improve air quality and raise funding for other transport systems [AL11].

Congestion and environmental pollution produced by traffic has led several cities, such as London,

3
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Singapore and Stockholm, to successfully introduce congestion pricing schemes to tackle these

problems and change travellers’ habits regarding their commuting [GHN18, Met18].

These schemes entail a payment for traversing the city cordon, with the value being determined

by time of day, day of the week and vehicle class. The price brackets are determined by the

authority that manages the pricing scheme and are valid usually for a year.

Other pricing schemes have been proposed, such as dynamic pricing schemes that change the

prices according to road free space or expected road usage [MSS+07].

δ -tolling is an example of a dynamic pricing scheme, which only requires observation of travel

times to price road use [SHR+17]. The price for each link is proportional to the difference between

the actual travel time and the free-flow travel time(travel time at maximum possible speed in the

link). The authors demonstrate that under their assumptions, the proposed solution is equivalent

to marginal-cost tolling, which is known to lead to an optimum performance.

2.2.1 Road pricing acceptability

Even thought road pricing has been shown to improve traffic congestion and an improvement in

the quality of life of the cities, it still faces lack of acceptance and resistance to implementation

from citizens. This happens due to a feeling of limitation of personal liberties, social injustice

since lower income households are more affected by it and that pricing road use is "just another

tax"[BR17, JFG00]. All of these stem from the fact that drivers fail to recognise the externali-

ties of their commuting habits on others and the system. This low acceptability of charges is a

challenge to the implementation of road pricing, since political decision makers are afraid of the

consequences of public opinion. In a survey regarding the acceptability of road pricing done in

the UK, found that support for road pricing was only 30% if there was no information about the

use of the gained revenue but it increased to 57% if it is mandatory the reinvestment of the gains

in the transportation area [JWM05].

The main behavioral factors that affect the public perception and acceptance of tolling are[DBXE18]:

• Perception of the problems and impact of road congestion

• Infraction personal liberties

• Expected outcome and efficiency

• Expected personal gain

• Fairness

Due to the low support for road pricing, a possible solution to increase public support is by

rewarding drivers for changing their behaviour, such as not driving during the rush-hour[BEE11].

Literature in the psychology of voluntary behaviours has found the effectiveness of the use of

rewards and incentives to reinforce the adoption of desired behaviours [KT79]. Applying these

ideas in the road pricing area, commuters receive a reward for their avoidance of car use during
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rush hour or by shifting to other means of transportation. Regarding the value and type of re-

ward, several works have observed that the increase in the value of the reward does not lead to

an proportional increase in the rewarded behaviour [TBEEvD13, BvA10]. These works verified

the a greater acceptability and participation was achieved during the duration of the experiments,

although participants habits after the end of the incentive program was not studied to validate if

the rewarded behavior continued afterwards.

2.2.2 Tradable driving credits schemes

In this type of schemes, drivers have a monthly free allowance of credits that they spend as they

use their private vehicle. To save their credits, driver can change to other means of transportation

or reduce the number of trips. Tradable credits schemes have been successfully used in other areas

such as the carbon dioxide emissions trading system[Com13] or in the fishing industries[Sov11,

BAC07], but never implemented in road traffic due to political and societies’ resistance in paying

for car use. [KK05] explores the idea of using credits in the road pricing domain to alleviate traffic

during rush-hour. These schemes are revenue-neutral and do not imply a payment by the average

driver. Credits are attributed monthly and if a user does not spend all of his allowance he can sell

them to other drivers that have exceeded their quota. These schemes also lead to an accumulated

reduction in the traveled miles if the number of issued credits is gradually reduced over time. This

way tradable credits schemes can be a solution to the road pricing problem and an incentive to

reduce automobile dependency, since they are understood as a fairer approach, with the possibility

for users to make money and that places the additional costs on the higher consuming drivers

[DBXE18].

2.2.2.1 Behavioral effects of tradable credits scheme users

[DED17] provides a literature review of several credit schemes and the main behaviors observed

in participants, compiled in table 2.1. [AUR15] studied and identified population characteristics

and how they affect behaviour changes in a tradable carbon credit scheme.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique in which an agent learns the best

way to solve a task through repetition and experimentation, where feedback of the effectiveness

of the action is given by a reward signal. This results in a policy that maps actions to states that

maximize the earned rewards [Mon99]. To learn this policy, agents use a Markov decision process

(MDP) for which they do not need to know the exact mathematical model, making it a model-free

learning process. A MDP is defined as:

• a set of states S,

• a set of actions A,
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Table 2.1: Summary of the behavioral effects observed in tradable credits participants

Behavioral effect Key refer-
ences

Explanation Effect in credits schemes

Loss aversion [KT79] Losses weigh more than
equivalent gains

Higher propensity to reduce
credit usage in a situation of
credit shortage than of sur-
plus

Endowment
effect

[BDOE09,
Tha80]

People attribute higher value
to objects or resources when
they are in their possessions

Higher reluctance to trade
credits

Framing [TK81,
LSG98]

Presenting an equivalent sit-
uation or outcome in a differ-
ent format leads to a different
outcome

Credit-spending patterns de-
pend on the policy framing
by participants and regula-
tors

Mental Account-
ing

[HS02,
Tha99]

Money and resources are
psychologically categorised
based on different labels

Credits are not equal to the
money they represent; the
suggested budget limit may
encourage credit conserva-
tion

Endowment
effect under
uncertainty

[KT79,
VDVK96]

Endowment effects tend to
be stronger in trades with in-
volving uncertainties

Uncertainty over the future
credit value might encourage
credit conservation

Complexity aver-
sion

[TK74] People tend to act less ratio-
nally and rely more in de-
cision heuristics in complex
decision contexts

The harder is is to estimate
credit value, the more people
will make decision that sat-
isfy rather than optimise

Regret aversion [Bel82,
LS82]

People anticipate the regret
felt if an alternative option
would result in a better out-
come and avoid choice op-
tions with larger anticipated
regret

In tradable credits decision
making contexts with in-
creasing levels of uncer-
tainty, regret aversion might
play a decisive role

Immediacy effect [KR95,
GM04]

Immediate rewards have
greater value than equivalent
future rewards

User might overspend their
credits at the start of the
credits period

Learning effect [EB05] People learn from their past
experiences with feedback

Credit spending may change
over time based on how peo-
ple are satisfied with previ-
ous results
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Figure 2.1: Environment-agent interaction in RL [AMF+18].

• a transition function T(s, a, s’), that maps state-action pairs to the probabilistic distribution

of successor states

• a reward function R(s, a, s’), which contains the average reward obtained when the agent in

state s transitions to s’ using action a

This learning approach, pictured in Figure 2.1, is similar to the process humans use to learn

how to solve problems, which makes it a great tool to simulate their behavior and enables us to

mimic the interactions between complex groups of people and how they learn how to interact with

each other.

2.3.1 Q-learning Algorithm

Q-learning is an example of a model-free reinforcement learning algorithm. It allows agents to

learn and interact with an environment without the need for previous knowledge [GK09]. The

agent tries to learn the optimal policy by selecting the best action a ∈ A in the current state s ∈ S

so that the future reward is maximised. The Q-value of action a, Q(a), represents the estimated

value of selecting that action. The update function of this algorithm, called the Bellman equation

is presented in equation 2.1.

Qt+1(st ,at) = Qt(st ,at)+α(rt+1 + γ max
a

Qt(st+1,a)−Qt(st ,at)) (2.1)

α is the learning rate and this parameter controls how much the previously gathered knowledge

is valued. γ represents the discount value that determines the importance of future rewards and

rt +1 the reward for the action a.

The strategy to select an action a includes both exploration (discovery of new knowledge)

and exploitation (application of gained knowledge). One available strategy is ε-greedy in which

a random action is chosen with probability ε (exploration) or the best action with probability

1− ε (exploitation) is selected. This solution converges towards the optimal policy, under certain

conditions.

7
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2.3.2 Reinforcement learning in congestion tolling

As reinforcement learning works as a proxy for human learning behaviour, it can be used to study

how humans react to changes in their daily commute, be it new road rules, changes in the road

infrastructure or even the interaction between commuters. All the following works in this section

use Multi-Agent Reinforcement Learning (MARL), in which a variety of autonomous agents share

the same environment and learn about it in a decentralized way. These agents have no direct

communication with each other but each agent is affected by the others’ actions through the road

network [RVN17].

[MSB+18a] uses RL agents in a micro-tolling scheme that learn how to optimize link toll

prices with ∆-tolling to reduce system travel time. ∆-tolling can manage a reduction in system

travel time of up to 30% compared to a no-toll scenario.

[TP13, TWA08] presents an approach on how to model reward functions on Multi Agent

Systems (MAS) so as to guide these agents to a better system utility. Using a reward function that

instead of maximizing their personal utility maximizes a function that has into account the system

utility. This approach not only reaches near optimal performance (93-96% of optimum) but also

makes the overall network system more stable. [Baz19] combines RL and metaheuristics such as

to optimize non-cooperative systems, such as traffic assignment. A central system manager agent

is used, who tries to optimize route choices, since it has an overview of the whole system. The

driver agent themselves share their preferred route with the manager agent and receive a proposal

for a route that is computed as a optimization of the drivers’ preferences. Afterwards the drivers

can follow their own preferred route or the one proposed by the manager. As both parts interact

with each other and experiment with the proposed routes, the system approaches the SO and a

greater social welfare.

[RSRB18] proposes a distributed δ -tolling system, where each driver calculates its own marginal

cost, which is charged afterwards. The results in the proposed networks were 99% of the SO, sim-

ilar to the results obtained with the regular ∆-tolling, but with a fairer tolling scheme since drivers

pay their exact marginal cost and not an approximation.

[MMJ+19] proposes a framework for non-cooperative multi-agent systems that designs incen-

tives to modify the reward function of agents and reduce their selfishness to reach the SO.

2.4 Traffic Simulation

Traffic systems are complex dynamics that encompass the interaction between the road infrastruc-

ture, public transports, road legislation, urban planning and drivers and their vehicles. As such,

any minute change in any of these actors can have a huge impact in the system as a whole. Traf-

fic simulators are a great tool to plan and study how a traffic system reacts to changes, be it the

increase in vehicles, new bus lines, a change in the number of lanes of a street or a new tolling

mechanism for a city. Traffic simulators can be classified according to their granularity [CA08]:

8
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Macroscopic models — These type of simulators model traffic as a liquid flow in roads. While

highly effective for large volumes of data, their high level of abstraction makes them a difficult

tool to study the interactions between vehicles or the evolution of traffic over time.

Mesoscopic models — These models represent an intermediate level in traffic simulation,

combining the high computational efficient of macroscopic simulators with some of the more

detailed information that is possible to obtain from microscopic models,i.e. link flow, vehicle

density and speed [dSVA19].

Microscopic models — These are the most detailed simulators and include information about

the exact state of each individual vehicle (speed, position, lane, direction, gas emissions) and

system component (traffic lights, bus stops). The detail of the simulated world makes them less

computationally efficient. This is the type of simulator used in this work, namely SUMO (Simu-

lation of Urban MObility) [LBBW+18].

2.5 Conclusion

In this chapter the current state of the art and the main definitions for the traffic assignment prob-

lem and road pricing were presented, along with the main approaches to solve these problems. The

use of tolls is an easy to implement solution to fix road congestion, but its outcome and impact in

individual roads in large complex systems as metropolitan cities is difficult to assess. Through the

use of traffic simulators and multi-agent reinforcement learning techniques, city planners can bet-

ter understand the outcome of these policies in a simulated environment in which the participants

behave similarly to humans.
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Chapter 3

Methodological Approach

In this chapter, the road congestion problem, our approach to solve it and the design choices of the

developed solution are presented. We describe the main actors as well as the interactions between

them. Our two approaches to solve this problem are detailed and discussed.

3.1 Problem description

Road networks have a finite amount of vehicles that they can handle efficiently. As travel demand

increases and hits the limit of road capacity and network throughput, traffic begins to build up

which leads to a penalty to all parties involved. So an efficient assignment of the vehicles to routes

becomes paramount to obtain the best possible performance from the network. Drivers are self-

interested and pick the route that they evaluate to have the most advantageous outcome for them,

without any regard to the congestion they cause upon roads and other users. Due to this selfish

behaviour, road space is not used in the most efficient manner. As shown in chapter 2, pricing road

use can be used as a signal for drivers to alter the perception of what they think is the best path,

guiding the system to a better performance. But setting the correct price to divert drivers interest’s

and optimize the road network is a complex problem that depends not only on the specificities of

the network but also of the drivers population. We plan to develop a framework to test the effect

of decentralized congestion tolling, its performance according to the level of toll decentralization

and the susceptibility of the driver population to spend money as a way to improve drivers’ own

perception of utility.

3.2 Distributed Road Pricing

Our proposed methodology models a road network as a multi-agent system, where there are two

types of agents, namely the drivers and the road managers. Drivers are agents that represent

the demand of the traffic system, whereas road managers are agents that represent the road and
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tolling infrastructure. Drivers try to commute from their origin to destination with the lowest

cost possible, which requires balancing credits spent and travel time. The road managers are

responsible for setting the amount of credits a driver has to pay to traverse a link, with the purpose

of maximizing the flow. It is assumed that every driver has an electronic device in its car that

communicates with the road infrastructure for purposes of toll collection/payment, such as the one

presented in [AR07] and which is common on most motorways.

3.2.1 Road Manager Agent

Road managers, M, are the agents responsible for analysing the use of the links they manage (LM)

and price them accordingly. Their goal is to maximize the flow of vehicles in the links they manage

and information is not shared between the different managers. There is also a max price, Pmax, to

which the manager can set the price to. Road managers use RL to update the price of their links

after a learning episode. This episode corresponds to a fixed short time of the day, for instance the

afternoon rush hour. The flow during this period is observed, the reward computed and the price

for the next episode picked. Road managers use a MDP model, where the action space (A) is a set

of fractions of the Pmax that the manager can set.

Decaying ε-greedy is used as the exploration method for road managers. With this method,

the agent selects either the best action with probability 1− ε or a random action with probability

ε . Initially ε has a high value which leads to a higher exploration by the agent. As episodes go

by, ε is decreased by a factor λ , according to equation 3.1, where κ is the number of episodes

for the exploration phase, and ε0 and ε f are the starting and final values for ε . This exponential

decrease leads to less exploration and more exploitation of the learned knowledge as time goes by,

as presented in Figure 3.1.

λ = κ

√
ε f

ε0
(3.1)

Figure 3.1: Evolution of ε over learning episodes

The manager reward function, Rm , is linked to the number of vehicles that travel through the

links it manages, so a higher count leads to a higher reward. So the manager will learn the best

12
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price to maximize the vehicles that travel through its links. But if this price is too attractive to

drivers, the use may increase and congestion is likely occur if the link capacity is exceeded, which

in turn prevents more drivers from using it and the reward is lower. Road managers use a stateless

MDP model and their update behavior is described in algorithm 1.

Algorithm 1 Road Manager algorithm
% Inputs %

1: ε0← 1

2: ε f ← 0.01

3: λ ← κ

√
ε f
ε0

. Eq 3.1

4: A←{0,0.1,0.2,0.3, ...,1} . Action space

5: procedure UPDATEPRICES(i)

6: for all m ∈M do
7: for all l ∈ LMm do
8: Rm← Rm + vl . Count the number of vehicles in the links managed by the agent

9: end for
10: Qm(p)← (1−α) Qm(p)+α ∗Rm

11: if random() < ε then
12: pa← selectRandom(A)

13: else
14: pa← arg maxa∈A Qm(a)

15: end if
16: end for
17: if i < κ then
18: ε ← ε ∗λ

19: end if
20: end procedure

3.2.2 Driver Agent

Let D be the set of drivers in the simulation. Each driver is modeled as a Q-learning agent whose

objective is to leave its origin link, lo
d , and travel to its destination, ld

d , on the network, while

minimizing its cost. The cost is the sum of all the costs (time and toll) incurred for traversing

each link l (Equation 3.2) in its route, Rd . The cost the driver agent perceives for crossing a link

is represented in Equation 3.3, where td,l represents the travel time for link l and pd,l the price the

driver has to pay for the toll. The coefficient σd ∈ [0,1] represents the driver’s sensibility to travel

time, so a driver with a higher σ value will prefer a faster route and a driver with a lower σ will

13
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instead prefer a cheaper one (even if it has to take a slower route to reach his destination).

cd = ∑
l∈Rd

cd,l (3.2)

cd,l = σ td,l +(1−σ) pd,l (3.3)

Every agent knows the road network, represented by a graph G = (N,L), where N is the set

of nodes or intersections of the road network and L is the set of links that connect these nodes

representing the roads. As such, drivers have the knowledge of every road in the network. This

assumption is easily replicated in the real world due to the ease of access to navigational devices,

such as GPS. Even thought drivers know the network layout they only have knowledge about

the link prices and traffic conditions of links they have traveled trough, meaning that they must

explore to obtain this knowledge. Since initially drivers do not have this knowledge, they estimate

costs using the free flow of the links they wish to travel through. As drivers explore and travel

through links they update their knowledge of the cost, overwriting previous knowledge if they had

it. Drivers are also RL agents implementing Q-learning, like the road managers. The action space

is the set of routes they can use to reach their destination and the Q-value represents the cost that

the driver perceives for that route. To reduce the available possibilities for actions, the routes are

pre-computed with the KSP algorithm, proposed by [Yen71], for each OD-pair to remove looped

paths and very long routes. This assumption can be justified as an approximation to the way

that humans plan their journeys, picking a route from a small set of possibilities instead of all

the possible choices that a complex urban network provides. The algorithm for initialization and

Q-table update is described in Algorithm 2.
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Algorithm 2 Driver algorithm

1: procedure INITIALIZEDRIVERS

2: for all d ∈ D do
3: Rd ← kShortestPaths(k, lo

d , l
d
d ) . Compute k shortest paths

4: for all r ∈ Rd do
5: Qd(r)← calculateRouteInitialCost(r)

6: end for
7: end for
8: end procedure

9: procedure PICKNEXTROUTE(i)

10: for all d ∈ D do
11: Qd(r)← (1−α) Qd(r)+α ∗ cd

12: if random() < ε then
13: r← selectRandom(Rd)

14: else
15: r← arg minr∈Rd Qd(r)

16: end if
17: end for
18: if i < κ then
19: ε ← ε ∗λ

20: end if
21: return r

22: end procedure

3.2.3 Interaction Protocol

Agents presented in the previous section interact in a simulated world provided by SUMO, a

microscopic traffic simulator. The code developed controls and interacts with SUMO through

TraCI [WPR+08], which provides a real-time interface for communicating with the TraCI server

implemented by SUMO. Through this interface, the cognitive engine of agents can reflect their

decisions upon the environment in which drivers embodied in vehicles leave and interact.

The trips the drivers perform represent a commute, so each trip happens once a day, which is

also our iteration step for the simulation. This way drivers travel everyday from their origin to their

destination, sometimes taking new routes, and learn more about the environment and traffic status.

Within each iteration, drivers are able to perceive the cost experimented after traversing each

link, and therefore the travel time and respective travel cost after performing the entire itinerary.

Decisions made on each day therefore represents the within-day dynamics of microscopic traffic

simulation.
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After each iteration, the results of the simulation are collected and both the drivers and road

managers update their knowledge as described before. Managers update the prices for the links

they manage and a new route for each driver is selected accordingly. This iteration strategies

implements the so-called day-to-day dynamics of microscopic traffic simulation.

The work developed proposes 2 levels of decentralization for the Road manager agents. These

agents can either control a single link and price the cost of traversing it with the purpose of maxi-

mizing traffic flow, or control a group of links and setting the price according the aggregate traffic

flow of all the subordinate links. It is reasoned that with this mid-level decentralized approach,

focusing on urban groupings larger than roads such as city zones or a group of adjacent zones, we

are able to obtain comparable network optimization results without the inherent complexity and

cost of a fully distributed solution.
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Chapter 4

Experiments and Results

In this chapter, the setup and results of the experiments conducted in the context of this work are

presented. The tested scenarios are comprised of a scenario where each road manager only man-

ages a single link (Link Manager Scenario) and a scenario where each road manager is responsible

for a set of links (Area Manager Scenario). The goal of our experiments is to compare the per-

formance of the Link Manager scenario against the Area Manager scenario with populations with

different time sensibilities.

4.1 Setup & Metrics

These results were obtained in the system described in chapter 3. The experiments were divided

in two big groups according to the scenario: Link Manager Scenario and Area Manager Scenario.

The Link Manager Scenario represents a very largely distributed road manager system where each

manager is only responsible for observing the traffic and setting the price on a single road. The

second scenario, Area Manager Scenario, represents one where the road managers have a bigger

area of influence. This area would be akin to a city block or a group of them. These two scenarios

are combined with a driver population with homogeneous time preference, σ (see section. 3.2.2).

Both experiments use the same OD matrix for the drivers and the same amount of commuters

(| D | = 6000) that are inserted in the network over a period of one hour. The car type used by

all the drivers is the same and corresponds to a gasoline driven light duty vehicle with an Euro 4

emissions standard characteristics. Each scenario is combined with a different population and the

results are collected and analysed. All the available combinations of the experiment variables and

the labels used for this work are shown in table 4.1.

4.1.1 Network Description

The same network is used in both scenarios, the Sioux Falls network (SF) presented in figure 4.1.

This network is widely used in the literature as a benchmark[MSB+18b, Baz19, RSRB18] and
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Link Manager Area Manager
Drivers’ preference (σ )

1 L1 A1
0.75 L2 A2
0.50 L3 A3
0.25 L4 A4

0 L5 A5
Table 4.1: Driver settings and labels for the experiments

was chosen for this reason. It is constituted by 24 vertices (intersections) and 76 links (roads) and

is defined here1. Intersections connected by an edge are represented by 2 one-way links, one for

each direction of traffic.

Figure 4.1: Sioux Falls Network

4.1.2 Evaluation Metrics

To compare the performance of all the scenarios, a group of metrics are observed and collected

every iteration. They are shown in table 4.2. Average Travel Time refers to the average time that

drivers take to reach their destination in that iteration and is measured in seconds. Total Toll Revenue

refers to the absolute value of credits paid by the drivers and collected by all the road managers in

a iteration. Average Toll revenue is the average amount of credits collected by the road manager

1https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
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per link. Average CO2 refers to the CO2 emitted across the whole network, normalized by time

and road length. Minimum CO2 refers to the minimum value of CO2 emitted in a edge, normalized

by time and edge length. Maximum CO2 refers to the maximum value of CO2, normalized by time

and length. Average PM refers to the PM emitted across the whole network, normalized by time

and road length. Minimum PM refers to the minimum value of PM emitted in a edge, normalized

by time and edge length. MaximumPM refers to the maximum value of PM, normalized by time

and length. Average NOx refers to the NOx emitted across the whole network, normalized by time

and road length. MinimumNOx refers to the minimum value of NOx emitted in a edge, normalized

by time and edge length. Maximum NOx refers to the maximum value of NOx, normalized by time

and length.

Variable Unit
Average Travel Time seconds
Total Toll Revenue credits

Average Toll Revenue credits
Average CO2 g/km/h

Minimum CO2 g/km/h
Maximum CO2 g/km/h

Average PM g/km/h
Minimum PM g/km/h
Maximum PM g/km/h
Average NOx g/km/h

Minimum NOx g/km/h
Maximum NOx g/km/h

Table 4.2: List of evaluation metrics and their units

4.2 Results

In this section, the results of all the described experiments are shown. These experiments were run

for 400 iterations (κ = 400), with ε0 = 1, ε f = 0.01, Pmax = 100 and the action space for the driver

agents consists of the 6 fastest routes.

4.2.1 Link Manager Scenario

In this Scenario every road manager has only a single link in the list of managed roads. As such,

this scenario contains 76 road manager agents.

As we can observe in figure 4.2, the overall travel time in the network decreases as the learning

episodes go by. Experiment L5, where the drivers are only sensible to credits spent has the worse

travel time performance. In this experiment drivers take the slower routes with less traffic and as a

result cheaper. Regarding travel time in the other experiments, the performance is similar between

them.
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For the amount of credits collected, L3 is the experiment where the drivers have to spend

less for satisfactory results, improving their average trip time. Driver populations that only take

into account the credits spent into their trip planning end up paying much more than other more

balanced populations.

Regarding the car exhaust emissions, all the 3 observed gases are, as expected, heavily cor-

related and as such the reasoning’s obtained from CO2 emissions can be extended to the other

gases. The results for PM and NOx can be consulted in Appendix A. Regarding the emissions on

a single link, we can gather from figure 4.4b and 4.4c that because of the greater congestion and

driver clustering in the same roads the road infrastructure is used very inefficiently. This leads to

high emissions in the most congested roads and very low emissions in the under-used ones, even

though the global network emissions are comparable among the scenarios.

Figure 4.2: Evolution of the travel time in the Link Manager scenario

4.2.2 Area Manager Scenario

In the Area manager Scenario, managers control a larger number of links. In this scenario there

are 6 road manager agents, where each controls a different number of adjacent links. The number

of links controlled by a single agent ranges from 6 to 18 links.

As with Link manager scenario, this scenario saw an improvement in the average travel speed.

Regarding the revenue collected in this scenario, the users with the highest sensibility to time (A1)

spent many more credits for a comparable mean travel time. In the experiments where the drivers
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Figure 4.3: Total revenue of Link agents over time

combined both price and travel time to pick the route (A2,A3,A4) both the trip time and the cost

become lower over time. Regarding CO2 emissions, as congestion is reduced and drivers are able

to move faster and with less traffic the global emissions diminish.

4.3 Discussion

As stated before, all these results were obtained in the SF network with 6000 cars traveling in the

network over 1 hour. All the experiments except A5 and L5 led to similar mean travel times, which

highly suggests that the system was able to reach an equilibrium. Both scenarios’ evolution of

travel time suggest that the population sensibility to time and cost has a low impact on the learning

and optimization evolution of the road managers. Both road manager and driver agents learning

process converge quickly, at around 100 iterations. The experiments A5 and L1 can be used as

baseline, since the preferences of these populations prevent them from efficiently interacting with

the road managers and receive their feedback signals (toll price). In the Link manager scenario,

the mean travel time performance was slightly better that the equivalent Area Manager scenario

(see figure 4.8).

The Area manager scenario was able to perform comparably to the Link manager scenario

in all the evaluation indicators of the different experiments while collecting a lower amount of

credits from the drivers (fig 4.9). This can either be a positive or negative outcome depending on
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(a) Total CO2 emissions of the network (g/km/h)

(b) Maximum CO2 emission on a link

(c) Minimum CO2 emission on a link

Figure 4.4: Normalized CO2 emission in the Link Scenario22
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Figure 4.5: Evolution of the travel time in the Area Manager scenario

the purpose of the city officials when implementing this solution. An area based solution would

cost less to the drivers while having a positive impact in the city compared to a link based, where

higher credits collection would mean a bigger profit for the tolling entity.

Regarding the driver population, although with a very small efficiency gain compared to others,

the congestion tolling is more effective in the population that values time and credits equally

(σ = 0.5). This population achieves the best results in the combined metrics of travel time, credits

spent on tolling and low emissions.
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(a) Total revenue of Area agents over time

(b) Average revenue per link over time

Figure 4.6: Credit collection results of the area managers
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(a) Total CO2 emissions of the network (g/km/h)

(b) Maximum CO2 emission on a link in the Area scenario

(c) Minimum CO2 emission on a link in the area scenario

Figure 4.7: Normalized CO2 emission in the Area Scenario
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Figure 4.8: Comparison of average travel time in the last iteration

Figure 4.9: Total amount of credits collected in the last iteration
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Chapter 5

Conclusions

In this work we proposed a distributed congestion tolling mechanism to solve the traffic assignment

problem, enabling us to improve the mean travel time and reduce the polluting emissions from a

city. The proposed work was tested using 2 different levels of decentralization in the Sioux Falls

network with several homogeneous driver populations. Drivers are also Q-learning agents whose

goal function is to minimize travel time and credits spent with different preference levels. This

preference reflects the drivers sensibility to trip time and credits spent.

The 1st scenario reflects a network where each link is independently tolled by a Q-learning

agent, whose goal is to maximize the flow of vehicles. The second scenario represents a network

which manages and tolls a group of links equiparable to a city zone. Each scenario was simulated

with SUMO, using 5 different populations which have time sensitivity ranging from 0 to 100%.

Elements of the same population share the same preferences. The evaluation metrics are the mean

travel time across the network, the overall amount of credits collected by road managers and the

polluting emissions.

Both scenarios were effective in reducing the mean travel time and overall emissions in the

populations that were sensitive to time (σ < 1). The experiment resulting in the best performance

was the link managers scenario combined with the driver population with time preference σ = 0.5.

This combination achieved the lowest mean travel time while collecting less credits (cost to the

population was lower) and maintaining low CO2 emissions.

With these experiments we were able to obtain comparable results with the current research

and demonstrate the possibility of using agents that manage several links to perform congestion

pricing. These managers were capable of reducing congestion and travel time, although at the loss

of revenue as compared to link managers.

Due to the proliferation of smartphones and connected vehicles, this system can be adapted

for use in our cities. Road managers would be able to receive the expected number of vehicles and

notify the drivers with the toll price for their planned trips.

27



Conclusions

5.1 Future Work

Although we were able to obtain promising results we feel that this approach needs further study,

specially with more complex and congested networks. Our model also needs to consider het-

erogeneous driver populations to better reflect real-world conditions. We hypothesise that this

would give us more diverse and interesting results and a better comprehension of the advantages

of each approach. We would also like to compare the performance of credit-based incentives vs.

toll payments.
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Appendix A

Appendix A

A.1 Link Manager Scenario emissions

Figure A.1: Total NO emissions in the link scenario

A.2 Area Manager Scenario emissions
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Appendix A

Figure A.2: Total PM emissions in the link scenario

Figure A.3: Total NO emissions in the area scenario
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Appendix A

Figure A.4: Total PM emissions in the area scenario
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