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Resumo

A medula espinal é uma estrutura central do sistema nervoso que tem um papel chave na
perceção sensorial. Patologias associadas a esta estrutura, como dor crónica e lesões vertebro-
medulares, são particularmente devastadoras. Para o desenvolvimento de estratégias de tratamento
adequadas é necessário um conhecimento detalhado dos mecanismos de transmissão e integração
de informação sensorial na medula espinal. A coluna dorsal está encarregue de processar a infor-
mação sensorial e transmiti-la para regiões supra-espinais. Contudo, a maior parte dos detalhes
sobre os mecanismos por detrás destas funções são ainda desconhecidos. As recentes melhorias
nas tecnologias de microeléctrodos (MEA), aliadas aos novos conhecimentos sobre como estim-
ular, registar e descodificar atividade neuronal, têm possibilitado avanços importantes em neuro-
ciência e no estudo dos mecanismos acima mencionados. Desta forma, o principal objetivo desta
dissertação consistiu no desenvolvimento de métodos computacionais para i) a análise dos mecan-
ismos que alicerçam a codificação de informação sensorial nas vias ascendentes e ii) a análise dos
circuitos espinhais. De modo a estudar as diferentes hipóteses de codificação, foi desenvolvido um
modelo realista dos mecanismos de integração de informação nas vias ascendentes suportado por
resultados experimentais. Este modelo foi capaz de simular a codificação de temperatura abso-
luta e a localização do estímulo na pele e apresenta flexibilidade para integrar outros mecanismos
de codificação e modalidades de estímulo. O estudo dos circuitos neuronais foi possível graças
à implementação e validação de uma metodologia de inferência de conectividade. As ligações
funcionais foram detetadas usando um algoritmo implementado em Python - histograma de cor-
relação cruzada filtrada e normalizada (FNCCH) - e filtradas para obter conexões biologicamente
realistas. Foram desenvolvidas e validadas três visualizações distintas para evidenciar a estru-
tura da rede e possíveis ligações escondidas. A metodologia desenvolvida foi bem-sucedida na
identificação de ligações funcionais concordantes com a estrutura imposta em experiências com
microfluídica. Protocolos experimentais automatizados foram codificados e implementados no
hardware de aquisição de dados com MEAs para lidar com a complexidade e volume de dados as-
sociados a experiências de análise de circuitos espinhais. Os programas personalizados permitiram
a amostragem automática em fatias da medula espinal, usando ciclos controlados de estimulação e
aquisição de dados. A medula espinal possui atividade espontânea reduzida pelo que a estimulação
é absolutamente necessária para ativar os circuitos espinais.

Em suma, as ferramentas desenvolvidas - modelo computacional de integração de informação
sensorial, algoritmo e visualização de inferência de conectividade e protocolos experimentais
automáticos – melhoraram consideravelmente a aquisição/análise de dados em experiências de
eletrofisiologia com MEAs, potenciando a compreensão da integração de informações sensorial
na medula espinal.
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Abstract

The spinal cord is an important structure of the central nervous system that plays a key role
in sensory perception. Pathologies associated with the spinal cord, such as chronic pain and
vertebral-medullary lesions, are particularly devastating. For the design of adequate therapeu-
tic strategies, the thorough knowledge of the mechanisms behind spinal cord sensory information
integration and transmission is of utmost importance. The dorsal horn has a central role in pro-
cessing sensory information and transmitting it to supraspinal regions. Nevertheless, most of the
details regarding the coding and integration mechanisms occurring in this structure are still un-
known. Recent improvements in microelectrode arrays (MEAs) and new knowledge on how to
stimulate, record and decode neuronal activity, have made possible important advances in neuro-
science and in the study of these mechanisms. Hence, the main goal of this dissertation was to
devise computational methods that allow i) for the analysis of the mechanisms behind sensory in-
formation coding in the ascending tracts, and ii) the analysis of spinal circuitry. A realistic model
of sensory information integration and transmission was devised to study the different coding hy-
potheses based on experimental findings. The model successfully simulated the coding of absolute
temperature and stimulus location and presents flexibility to integrate other coding mechanisms
and stimulus modalities. The study of neuronal circuitry was achieved by implementing and vali-
dating a functional connectivity inference pipeline. Functional connections were detected through
a Python implementation of the Filtered Normalized Cross-Correlation Histogram (FNCCH) algo-
rithm. Three different visualizations were developed and validated to highlight hidden connections
and more easily visualize the structure of the network. The developed pipeline successfully identi-
fied functional connections consistent with the structure imposed in experiments with microfluidic
compartmentalization. Automated experimental protocols were coded and implemented in the
electrophysiology MEA hardware to deal with the complexity and sheer volume of data associ-
ated with the circuit analysis experiments. The custom-made programming scripts allowed auto-
mated sampling in spinal cord slices, using controlled cycles of stimulation and recording from
the MEAs. Spinal cord slices have very limited spontaneous activity, so stimulation is necessary
to activate the spinal circuits.

Altogether, these developed tools - computational model of sensory integration, connectivity
inference algorithms and visualization, and automated experimental protocols - greatly improve
data acquisition/analysis of MEA electrophysiology experiments, potentially fostering our under-
standing of sensory information integration in the spinal cord.
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Chapter 1

Introduction

The human nervous system possesses one of the most complex architectures ever known. In

recent years, efforts to understand its mechanism have incited technological progress. In fact,

artificial neural networks, a revolutionary computing system, were inspired in biological neural

networks, drawing knowledge from the basis of neural communication.

The spinal cord is the main pathway of communication between the brain and the rest of the

body, allowing for the collection signals from the outer world and the interaction with it. Spinal

cord injury (SCI) interrupts this communication, compromising several fundamental body func-

tions. Therefore, it is easy to understand why SCI is such a debilitating condition. Normally, it

is caused by trauma, resulting from an accident, which means it strikes unexpectedly, transform-

ing completely the lives of the ones who suffer it. According to the World Health Organization,

between 250k and 500k people suffer a SCI, every year. Besides having their quality of life dras-

tically reduced, patients with SCI are 2 to 5 times more likely to die prematurely [107]. Restoring

spinal cord function is, thus, an appealing goal, yet very demanding. Beyond restoration of mo-

tor control, it is of fundamental importance to regain sensory function, this requires a thorough

knowledge of the mechanisms behind information integration and transmission at the spinal cord

level. Both pharmacological therapies and neuroengineering solutions, such as direct electrical

stimulation of the spinal cord, demand the investigation about modulation and controlling meth-

ods of the electrical activity of neurons, the working units of the nervous system. The patterns of

electrical activity of neurons encrypt information about the stimulus that triggered it. The search

for a neural code, a language that describes the translation between stimulus and response, is the

motivation behind neuroscience and requires the alliance of traditional (neuro)biology techniques

with other areas of study to grasp the complexity of it.

The recent improvements in micro-electrode arrays (MEAs) technologies propelled the re-

search in the neuroscience field. MEAs are devices that enable the simultaneous recording and

stimulation of large populations of neurons in a non-invasive way for long periods of time, giving

relevant information about population dynamics and the neural code [91].

The keyword to understand the nervous system is information. Thus, the future of neuro-

science involves inevitably approaches in computational theory, signal processing, biophysics,

1
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computational modeling, and simulation. For this reason, in this dissertation, neurons are viewed

as biological units for information processing and transmission, going beyond the conventional

neurobiological approach.

1.1 Motivation

The neurons from the dorsal horn play an essential role in the perception of changes both inside

and outside the body, being responsible for the integration and processing of sensory information

before its transmission to the brain. Despite its high importance, there is still no detailed descrip-

tion of how the sensory information is processed in the spinal neural circuits. The discovery of

these mechanisms can give way to better therapeutic strategies to both restore spinal functioning

in the context of SCI and tackle fundamental problems, such as chronic pain. Knowing the prin-

ciples behind these processes, it is possible, for example, to design correct electrical stimulation

protocols that mimic normal function, reestablishing the lost communication. This dissertation

takes important steps towards the clarification of the coding and transmission mechanisms in the

spinal cord, by developing specific computational tools to deal with the complexity in MEA data

acquisition/analysis. These computational tools are created with the purpose of facilitating the

process of identifying the governing principles of sensory information encoding in the ascending

pathways.

1.2 Objectives

This work is framed in the recently funded FCT research project MindTheGap and its main goal

is to devise computational methods to analyze the mechanisms behind sensory information coding

in the spinal cord, with the purpose of answering the following research questions:

• How is peripheral sensory stimulation mapped in the spinal cord?

• What are the local circuits supporting sensory integration in this structure?

• How is sensory information encoded in the ascending tracts?

To fulfill these objectives, this work will encompass the development of a library for simulation of

spinal sensory information integration and transmission using the NEURON simulation environ-

ment, the implementation of algorithms for automatic identification of functional connections in

experimental data acquired with MEAs, and the design of a custom-made automated protocols for

the stimulation and recording of spinal cord slices.

1.3 Challenges

The current electrophysiological methods to record neuronal activity still present challenges.

MEAs excel in temporal resolution, however, the spatial precision is limited, so electrodes record
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the activity of several neurons at the same time, which difficults data analysis. Moreover, neural

activity is inherently noisy, making it hard to isolate the relevant information encrypted in the

electrical signal. Furthermore, the existing coding hypotheses, especially for the processes occur-

ring in the spinal cord, are incomplete. Models contemplate only a few stimulus modalities and

significantly reduce the complexity of the nervous system. Also, coding schemes are not usually

tested and simulated in a virtual environment, to assess its reliability. The present work tries to fill

these gaps.

1.4 Document structure

This document is structured in 7 chapters. Background information and review of the literature

is provided in Chapter 2. This Chapter first presents a description of the anatomical aspects of the

spinal cord and, in more detail, of the dorsal horn and gives an overview of the pathologies that

affect the spinal cord and the therapeutic potential of neuroprosthesis and spinal cord stimulation.

Then describes the basic principles behind the generation of electrical signals and the methodolo-

gies used to record these, highlighting the importance of MEAs. Finally, approaches the different

coding strategies in the nervous system and the current hypothesis for the coding in the spinal

cord. Chapter 3 presents the fundamentals of the developed model, its structure and the function-

alities implemented, and presents and discusses the results of the developed framework. Chapter

4 describes the connectivity analysis pipeline and discusses the results obtained for the testing of

the algorithm in the different datasets. Chapter 5 details the experimental setup implemented to

both stimulate and record activity in the spinal cord and examines the outcome of the experiment

performed and the main obstacles. Finally, Chapter 6 draws the main conclusions about the work

developed. Prospective future directions are presented at the end of the document.
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Chapter 2

Literature Review

This Chapter explores the anatomical and physiological aspects of the spinal cord and, in more

depth, of the dorsal horn and the ascending tracts. Additionally, it describes the methods and

principles behind neural activity recordings, highlighting the importance of MEAs for the problem

in hands. Furthermore, it reviews the state-of-the-art of coding strategies in the nervous system,

mentioning the ones that prevail in the spinal cord.

2.1 The Spinal Cord

The spinal cord is the information highway of the nervous system, transmitting signals to and

from the brain to the rest of the body. It is responsible for the perception of the outer world, its state

and threats. Injuries in this structure break this connection, and consequently, the most basic func-

tions of the body are compromised. Understanding the spinal cord in physiological conditions is

fundamental to devise appropriate and effective therapeutic strategies for pathological conditions.

In this chapter, it will be addressed the underlying mechanisms and anatomical principles that

make this communication possible. As this thesis is focused on sensory information integration

and transmission (and not on motor information), this chapter gives more attention to the spinal

cord structure associated with the somatosensory system: the dorsal horn. As to better under-

stand the anatomy (circuit architecture) and electrophysiology (dynamics) of the dorsal horn, this

chapter starts with a general overview of neurobiology and the organization of the nervous system.

2.1.1 Principles of neurobiology

The building blocks of the nervous system are electrically excitable nerve cells, named neurons.

These cells are responsible for the transmission and processing of information. The neuron is

constituted by the cell body or soma, where the nucleus is located, dendrites, whose function

concerns the transmission of the electrical impulses (action potentials) to the cell, and an axon, a

long, slender projection that specializes in the conduction of electrical impulses, outward and away

from the cell body towards the axon terminus. The length of an axon may vary: it can traverse

large fractions of the brain or, in the peripheral nervous system, the entire body. Additionally, it
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may be myelinated or unmyelinated, whether it possesses an electrically insulating layer, called

myelin sheath, or not. Myelinated axons drive electrical impulses faster, since the propagation

occurs from one node of Ranvier (gap between myelin sheats) to the next. In Fig.2.1 can be

observed a real neuron with the detailed morphology pointed out.

Figure 2.1: (a) General morphological features of the axon of local circuit neuron (LCN) from
lamina I lumbar spinal cord. Main axon (asterisk), with origin in the soma (arrow). (b) Photomi-
crograph of the soma, dendrites, and axon branches of a typical flattened LCN in a sagittal spinal
cord section. Adapted from [95].

As above stated, the fundamental goal of the nervous system is information processing. This

is possible through the organized communication of neurons, which is mainly carried out by

synapses. This process typically occurs between the axon of one neuron and the dendrites of

the next. Synapses can be one of two kinds: electrical or chemical. Electrical synapses are less

frequent than chemical ones. In electrical synapses, the membranes of the two communicating

neurons are linked together by an intercellular specialization, called gap junction, allowing ionic

currents to flow passively through the gap junction pores from one neuron to another [78]. On

the other hand, chemical synapses occur through the diffusion of signaling molecules, known as

neurotransmitters, to pass rapidly from one cell to the other. The complex branching structure

of the dendritic tree enables the reception and compartmentalization of inputs from several other

neurons.

In fact, based on the information they convey, neurons can be categorized in different special-

izations. Sensory neurons respond to one particular type of stimulus, such as temperature or touch,

and converts it to an electrical signal. Motor neurons receive signals from the brain and spinal cord

to control muscle contraction or glandular output. Finally, interneurons make the connection be-

tween two neurons, within the brain or spinal cord.
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2.1.2 Organization of the nervous system

The nervous system can be divided into two major parts, the central nervous system (CNS), that

consists in the brain and the spinal cord, and the peripheral nervous system (PNS), which connects

the central nervous system to the rest of the body.

At a structural level, the central nervous system is organized in gray matter and white mat-

ter. Gray matter is made of neurons, embedded in neuroglia, a tissue specialized in nutrition and

support of the central nervous system, while white matter refers to the areas that are mainly con-

stituted by myelinated axons. In Fig. 2.2 can be observed a diagram portraying the organization

of the nervous system.

Figure 2.2: Diagram portraying the major divisions of the nervous system and its main functions
and general structure.

The autonomic nervous system is responsible for involuntary control of the body, accounting

for the innervation of involuntary structures, namely the heart, smooth muscle, and glands. There

are two divisions of the autonomic nervous system – the sympathetic and the parasympathetic[15].

The sensory or afferent division carries sensory signals through afferent nerve fibers coming from

receptors in the peripheral nervous system. It is constituted by the somatic and visceral divisions.

The somatic sensory division carries signals from receptors in the skin, muscles, bones, and joints,

while the visceral sensory division carries signals mainly from the viscera of the thoracic and

abdominal cavities [63]. On the other hand, the motor (efferent) division carries motor signals

by way of efferent nerve fibers from the CNS to effectors (mainly glands and muscles). It can

be subdivided into somatic and visceral divisions. The somatic motor division carries signals to
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the skeletal muscles. The visceral motor division, also known as the autonomic nervous system,

carries signals to glands, cardiac muscle, and smooth muscle. It can be further organized into the

sympathetic and parasympathetic divisions, which are responsible for the arouse and calming of

the body, respectively [63].

2.1.3 Neuroanatomy of the spinal cord

The spinal cord is located inside the vertebral canal of the vertebral column. It is surrounded

by three meninges, namely the dura mater, the arachnoid mater, and the pia mater, observed in

Fig. 2.3. The cerebrospinal fluid gives extra protection and it is located in the subarachnoid space,

surrounding the spinal cord. The spinal cord begins at the foramen magnum in the skull and

terminates in the lumbar region [63].

Figure 2.3: Spinal cord cross-section. The spinal cord is protected by a set of membranes: the
pia mater, the arachnoid mater and the dura mater. The dorsal and ventral roots, emerge from the
posterior and anterior columns of the spinal cord, respectively. Adapted from [15].

Along with its length, the spinal cord varies in size and shape, depending on whether the

emerging motor nerves innervate the limbs or trunk. The spinal cord is organized in an inner core

of gray matter surrounded by an outer layer of white matter.

From the spinal cord emerge 31 pairs of spinal nerves that link the spinal cord to muscles and

sensory receptors in the skin. An area of the skin that is supplied by the same sensory nerve is

called dermatome. The body can be divided into several dermatomes depending on the sensory

nerve that supplies it, as seen in Fig.2.4. Each nerve has a sensory division that begins in the

dorsal root and a motor division that rises from the ventral root. The dorsal roots carry sensory

information into the spinal cord from muscles and skin. Different classes of axons coursing in the

dorsal roots mediate sensations of pain, temperature, and touch. The cord also receives sensory

information from internal organs. The ventral roots are bundles of the outgoing axons of motor

neurons that innervate muscles. The motor neurons of the spinal cord comprise the final common

pathway since all higher brain levels controlling motor activity must ultimately act through these
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neurons in the ventral horn and their connections to muscles. Ventral roots from certain levels of

the spinal cord also include sympathetic and parasympathetic axons [48].

Figure 2.4: The area of skin supplied by a single spinal nerve is called a dermatome. In the trunk
the dermatomes are roughly horizontal. In the limbs, dermatomes have been stretched out by the
advancing limb bud during development. Adapted from [14].

Looking at the cross section of the spinal cord, Fig. 2.3, it is possible to observe a butterfly-

shaped gray matter core. It is typically divided into dorsal and ventral horns. The dorsal horn

contains an orderly arrangement of sensory neurons that receive input from the periphery, while

the ventral horn contains motor nuclei that innervate specific muscles. The white matter is consti-

tuted by longitudinal tracts of myelinated axons that form the ascending pathways through which

sensory information reaches the brain and the descending pathways that carry motor commands,

and modulatory influences from the brain[48].

2.1.3.1 Dorsal horn architecture

The dorsal or posterior horn is further subdivided into 6 layers or laminae, in an organization

that can be observed in Fig. 2.5. Their denomination is not only based on their topographic

organization, with the lower numbers being towards the back of the spinal cord, but also on the

types, and functions, of the neurons in each laminae.
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Figure 2.5: Laminar organization of the dorsal horn and primary afferent inputs. Primary afferents
terminate in the dorsal horn in an organized way. Myelinated A tactile and A hair afferents end
mainly in lamina III–V, with some ramifications to lamina IIi. A hair afferents branch in lamina
II and lamina III, whereas A nociceptors terminate mainly in lamina I. C/A peptidergic afferents
arborize mainly in lamina I and lamina IIo, while non-peptidergic C afferents terminate in the
lamina II [66]. Figure adapted from [99].

Lamina I, also called the posterior marginal nucleus, locates at the outermost tip of the dorsal

horn. Cells in this layer answer to primary afferent axons carrying information about pain and

temperature sensations. Most of the neurons located here give rise to axons of the spinothalamic

tract (further explained on subsection 2.1.3.2).

Lamina II, also called substantia gelatinosa, receives afferent fibers from Lissauer’s fasciculus,

conveying impulses important in transmission of pain, temperature and touch. It is primarily

composed of Golgi II interneurons, which broadly project to secondary neurons in laminae I and

V [38].

Lamina III and IV, also named nucleus proprius, include interneurons that receive touch and

pressure stimuli. The dendrites of some of these neurons project into lamina II, while axons of

certain neurons contribute to the spinothalamic tract.

Lamina V is situated at the neck of the dorsal horn. Neurons here receive input from afferent

axons transmitting both harmfull and innocuos stimuli. Similar to what happens in laminae III and

IV, axons of interneurons cross to the contralateral side and colaborate in the spinothalamic tract.

Lamina VI is located at the base of the dorsal horn in the cervical and lumbar enlargements

and only conveys afferent input from central processes of primary sensory neurons [26].

Besides neurons from local circuitry and interneurons, the dorsal horn possesses also projec-

tion neurons that give rise to the different ascending tracts.
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2.1.3.2 The ascending tracts

The ascending tracts refer to the neural pathways by which sensory information from the pe-

ripheral nerves is conveyed to the cerebral cortex. It is linked to the conscious perception of touch,

pressure, pain, temperature, position, movement and vibration, coming from muscles, joints, skin,

and fascia. It obeys three major functions: exteroceptive and interoceptive, which control response

to external and internal stimuli, respectively, and proprioceptive, for the perception and control of

body movement and balance [6].

Sensations detected in the periphery are forwarded through pathways via the spinal cord, brain-

stem, and thalamic relay nuclei to the sensory cortex in the parietal lobe over a 3-neuron system

[3], as seen in Fig. 2.6. First, occurs the activation of primary sensory neurons whose cell bodies

lie within the dorsal root ganglia (DRG) and cranial sensory ganglia. DRG neurons convert the

physical and chemical state of the external and internal environment into neuronal activity [104].

DRG neurons are pseudounipolar, with one axonal branch that reaches peripheral targets, such

as receptors located in the skin or muscles, and another axon that enters the spinal cord directly,

without synapsing [6]. The total length of the processes of the primary neurons can reach over 2

meters (from receptors in the big toe to the medulla) [26]. At this point, the axon forms branches

that either communicate with second-order neurons in the spinal cord gray matter or ascend to

nuclei located at the junction of the spinal cord with the medulla [48].

Figure 2.6: The spinothalamic tracts, which carry the sensory information of crude touch, pressure,
pain and temperature. Adapted from [4].

The exteroceptive somatosensory system is specialized in the detection of harmful sensations.

The perception of innocuous and harmful touch depends on special mechanosensitive sensory

neurons that can be classified into two classes: low-threshold mechanoreceptors (LTMRs) and
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high-threshold mechanoreceptors (HTMRs), that respond to innocuous and harmful mechanical

stimulation, respectively [6].

The ascending branches are conveyed to lower brain regions (location of third-order neurons)

where they are processed. In case of fast responses, the processed information may be dispatched

directly to a motor system. But, when a thorough analysis is necessary, the information is transmit-

ted to higher brain regions for additional processing. The sensory input reaches then the forebrain

where the perception of complex patterns occurs. Fibers coming from the lower part of the body

project to the superior aspect of the cortex, while fibers from the thoracic and cervical regions end

in the more inferior aspect of the cortex. This fiber arrangement leads to an inverted representation

of the body in the cortex identified as homunculus [26].

Differently tuned sensory pathways are uniquely activated by distinct stimuli modalities and

the corresponding sensation depends on which pathway is activated, according the labeled line

theory [104].

The ascending tracts can be organized into different tracts, which denomination is based on

the trajectory of the nerve fibers, from the site they start (spinal cord) to the site they terminate,

thalamus and cerebellum, respectively. Although this thesis will focus on the spinothalamic tract,

for completeness a detailed list of the ascending tracts is provided.

The Anterolateral System

The anterolateral system consists of two separate tracts: the lateral and anterior spinothalamic

tracts.

The lateral spinothalamic tract conveys sensations of pain and temperature from receptors

throughout the body (except the face) to the brain. Free nerve endings, projected from processes

of primary neurons, are sensitive to molecules indicative of cell damage and are, therefore, the

principal receptors. The central processes of the primary neurons enter the Lisauer’s fasciculus

and ascend at least one segment before entering the dorsal horn to synapse with the secondary

neurons (interneurons) [48]. Secondary neurons of the spinothalamic tract are mostly found in

laminae I, IV, V and VII. Interneurons from laminae I and V ascend in the lateral spinothalamic

tract, through the brainstem, reaching the thalamus. The third order neurons in the thalamus will,

then, project to various regions of the somatosensory cortex [48].

On the other hand, the anterior spinothalamic tract conducts impulses related to sensations of

light, poorly localized touch.Axons of the primary neurons drive impulses of soft touch from re-

ceptors in the hairless areas of the skin to the cell bodies located in the DRG. The central processes

of these primary neurons reach into the dorsal horn, through laminae IV to VII. Here, they synapse

with secondary neurons, whose axons cross in the anterior white commissure and turn rostrally

to form the anterior spinothalamic tract in the anterolateral part of the spinal white matter. In the

medulla, this tract merges with the lateral spinothalamic tract. Finally,they reach the posterior re-

gion of the thalamus [74]. This tract is phylogentetically newer in mammals, contributing to more

precise sensations of pain and temperature [26].
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The Spinocerebellar Tracts

Within the spinocerebellar tracts, there are four individual pathways: the anterior and rostral

spinocerebellar, the posterior spinocebellar and cuneocerebellar tracts.

The anterior and rostral spinocerebellar tracts convey impulses related to movement and posi-

tion sense from tendon organs and muscle spindels to the cerebellum. The information conducted

in this pathway may contain information regarding an entire limb. Peripheral processes of the

primary neurons of the anterior spinocerebellar system approach their cell bodies in the DRG of

lumbar and sacral spinal nerves. The central processes of these neurons enter the cord at these

levels and synapse with interneurons in the bases of the posterior and anterior horns.The axons of

these secondary neurons then cross to the contralateral side and turn rostrally to form the anterior

spinocerebellar tract. Finally, the tract ascends the brain stem to enter the cerebellum.

On the other hand, the rostral spinocerebellar tract is the equivalent of the anterior tact for

the upper limbs. The central processes of the primary neurons enter the cervical cord, synaps-

ing with secondary neurons. The axons of these neurons remain uncrossed and join the rostral

spinocereberllar tract, entering the superior cerebellar peduncle [48].

The posterior spinocerebellar tract conveys muscle spindle or tendon organ related impulses

from the lower half of the body, while the cuneocerebellar tract transmits such impulses from

the lower part of the body. The axons conducting impulses from the lower half of the body are

large Ia, Ib, and II fibers, the cell bodies of which are in the spinal ganglia of spinal nerves below

C8. Primary neurons below L3 deliver their processes into the laminae of the dorsal horn. These

processes, then, bend and ascend in the laminae to the L3 level. From L3 up to C8, incoming

central processes and those in the dorsal columns project to the medial part of lamina VII. At

this point, the central processes of primary neurons synapse with secondary neurons, the axons

of which are, then, rerouted to the leateral funiculi as the posterior cerebellar tracts. Finally, they

ascend and communicate with the cerebellum. Fibers of this tract are among the most rapidly

conducting elements of the central nervous system.

Similarly to the posterior spinocerebellar tract, the cuneocerebellar tracts conduct impulses

from muscle spindels, tendon organs and skin but of the upper part of the body. The primary

axons enter the spinal cord above C8 and the secondary axons run rostrally as the cuneocerebellar

tract [48].

2.1.4 Spinal cord pathologies

The spinal cord carries in a small cross-sectional area nearly the whole sensory input and motor

output of the trunk and limbs. Thus, diseases in this part of the nervous system cause more

damage than in any other [31]. The diversity of pathologies associated with the spinal cord’s

sensory components are vast. This chapter focuses on spinal cord injury and chronic pain.

When the spinal cord is lacerated, it starts neurological damage in the spinal cord that is usually

named primary injury. The mechanical injury produces a cascade of biological events, described

as secondary injury, which results in additional neurological damage. Finally, there is the chronic
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phase, which can occur days to years after the injury, leading to neurological impairments, in-

cluding in brain regions. The chronic phase involves events such as white matter demyelination,

exemplified in Fig. 2.7, gray matter dissolution, connective tissue deposition and reactive gliosis

that lead to glial scar formation [88].

Figure 2.7: On the left, photomicrograph of cross section of the spinal cord just above the level
of the lesion. The spinal cord section was stained for myelin, and the arrow shows a region
of demyelination that demarcates the extent of the lesion, which interrupts the fasciculi gracilis
bilaterally for a short distance on either side of the midline. On the right, ba drawing representing
the extent of the demyelination. Adapted from [106].

The disability associated with irreversible spinal cord damage is determined primarily by the

level of the lesion and by whether the disturbance in function is complete or incomplete [31]. A

complete spinal cord injury (SCI) produces a total loss of motor and sensory function below the

level of the injury, producing paraplegia or quadriplegia[31]. On the other hand, an incomplete

injury causes damage in a limited section of the spinal cord, which leads to different disabilities

depending on the areas affected. For example, anterior cord syndrome is associated with deficits

referable to bilateral anterior and lateral spinal cord columns, which translates in loss of touch

sensation, pain, temperature, and motor function below the level of the lesion. The posterior

column functions of proprioception and vibratory sensation remain intact, though [9].

Other spinal cord syndromes include Brown-Sequard syndrome, which is caused by the dam-

age to one half of the spinal cord, and central cord syndrome, the most common form of cervical

SCI, causing loss of motion and sensation in the arms and hands.

Long-term complications after SCI may include respiratory, cardiovascular, urinary and bowel

complications, spasticity, pressure ulcers, osteoporosis and bone fractures [84].

Despite the loss of sensory function, many patients with spinal cord injury experience chronic

pain. The hyper-excitability of the sensory neurons of the dorsal horn is presented as the major

causing factor [88].

2.1.5 Neuroprosthesis and the therapeutic potential of spinal cord stimulation

Neuroprosthesis have the potential to improve the quality of life of patients that have seen their

mobility compromised either by a trauma or a disease in the spinal cord. By applying controlled

electrical stimulation to paralyzed nerves and muscles, neuroprosthesis may restore part of their
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function [7, 101, 10]. This is particularity important in patients where the conventional pharma-

cological approaches do not produce the intended results.

Contrary to what happens in the CNS, peripheral nerves when transected, exhibit regenerative

abilities to a certain extent. Nevertheless, this process is slow and the target area may atrophy. By

recording the electrical activity from the proximal nerve stumps, peripheral interfaces can produce

motor commands for a neuroprosthesis, replacing central motor control. Furthermore, information

can be translated into electrical impulses to excite the nerve, simulating tactile and proprioceptive

sensation, thus, mimicking ascending pathways [7].

Clinical applications range from the control of micturition to activation of lower extremity

motion and reduction of pain [68, 22]. Regarding the latter, investigation has increased rapidly,

since the first paper on pain inhibition by electrical stimulation, almost 50 years ago [86].

Currently available spinal cord simulation systems for the treatment of chronic pain aim to

replace the pain sensation with paresthesia, a comfortable tingling sensation. These techniques

usually deliver electrical impulses with a fixed frequency to the dorsal columns. Nevertheless, this

method is compromised by shunting of energy by the cerebrospinal fluid (CSF) or lead migration.

As a result, in recent years a new type of stimulation has risen, which consists in the direct stimu-

lation of the dorsal root ganglia associated with the pain generating area. This method was linked

with a greater quality of life [108].

The aforementioned methods deliver an electrical input to the neural target without sensing or

automatically adjusting to the nerve fibers’ response to stimulation (open-loop stimulation) [82].

For this reason, the efficacy diminishes over time [49], since 29 % of patients develop tolerance

[57], due to the plasticity of the nervous system. In response to tolerance development, the am-

plitude of the stimulus is increased to achieve the same analgesic effect. Additionally, patients’

discomfort may increase with change in body positioning and current stimulation therapies do not

adjust their settings accordingly [93].

As a result, there has been a development of techniques that aim to adapt the stimulus to the

electrophysiological response of targeted neurons (closed-loop stimulation) [82].

A closed-loop system uses measured ECAPs (electrically evoked compound action potentials)

as a feedback control mechanism to automatically maintain the desired recruitment levels. The

ECAP amplitude is compared to a set point determined by the patient, in a feedback algorithm,

and calculates a new stimulus amplitude by changing the input current. This process is repeated

for every stimulus, resulting in a continuously adjusted current that maintains constant ECAP am-

plitude [82]. Thus, a more consistent and improved pain relief is provided, allowing for stimulus

adaptation to both prevent tolerance development and discomfort in position change [93].

Furthermore, present stimulation methods use extremely basic protocols, with very poorly

defined spatial targets, and elementary temporal profiles (based sinusoidal signals limited to am-

plitude and frequency definition). If we compare neurons in the dorsal horn to musicians in an

performing orchestra, we are trying to restore proper dynamics using a maestro that attempts to

coordinate the intricate spatiotemporal activity by blowing a horn. It is paramount to uncover the

sensory integration circuits of the dorsal horn and the coding strategies in the ascending tracts in
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order to devise effective and long-term therapeutic strategies (based or not in electrical stimulation)

for spinal cord pathologies.
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2.2 Electrophysiology

Electrophysiology concerns the study of the electrical activity of living cells and tissues. It is

considered the main tool in neuroscience investigation, since it can capture a wide spectrum of

neural events, from the electrical activity of a single neuron to the behavior of small populations,

allowing for the decoding of intracellular and intercellular messages [20].

The recording of neuronal activity is only possible due to the electrical properties of the neuron

and the dynamic behavior of its membrane, which enable the propagation and transmission of

electrical impulses. These signals can be detected using electrodes, even at a distant source [69].

Electrophysiological approaches to record neuronal activity can be broadly separated into ex-

tracellular and intracellular recording techniques [105]. Intracellular methods, such as the patch

clamp, expose in detail the cell’s membrane dynamics and electrical properties. However, com-

promise the cell’s structure and, for that reason, prevent long duration recordings. Conversely,

extracellular techniques monitor the neuronal activity from outside the cell, measuring patterns of

action potentials from neuronal populations, allowing for the examination of population behav-

ior and the study of pathologies. Extracellular methods include electroencephalography and, at

a smaller scale, multi-electrode arrays. This dissertation concerns the development of computa-

tional tools for study of spinal local circuitry, thus only small-scale recording methods, such as the

patch clamp and MEAs, will be addressed. But, first, as to fully comprehend the principles behind

electrophysiology recording methods, this chapter begins with an overview of neuronal membrane

dynamics.

2.2.1 Neuronal membrane dynamics

Neurons are highly specialized cells, both in morphology, as described in section 2.1.1, and in

physiology. In fact, the neuron’s membrane possesses a wide variety of ion channels. Structures

that allow ions, predominantly sodium (Na+), potassium (K+), calcium (Ca2+) and chloride (Cl−),

to move through the cell’s membrane, giving it a semipermeable character. Ion channels control

the flow of ions across the cell’s membrane by opening and closing in response to voltage changes

and both internal and external signals [24].

The flow of ions across the membrane causes a difference in the distribution of charges in the

exterior and interior of the cell, generating an electrical field across the membrane. Any structure

that keeps electric charges separated by a fixed potential, can be modeled as a capacitor. So,

the cell’s membrane can also be viewed as one. This uneven distribution of charges leads to a

difference in electrical potential across the membrane, that is, under resting conditions, -70 mV,

since the interior of the cell is negative.

Ionic flow across the membrane can be attributed both to voltage changes and concentration

gradients. When positive ions move to the exterior of the cell, the membrane’s potential decreases.

This phenomenon is called hyperpolarization. On the other hand, when the current is negative, the

membrane potential increases, in a process named depolarization [26].
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Action potentials or spikes occur when the membrane potential at a specific location suddenly

rises and, then, falls, characteristic pattern. This is, a depolarization followed by a hyperpolariza-

tion, which translates in an electrical potential fluctuation of roughly 100 mV, that lasts about 1ms

[35]. They occur following a stimulus, when there is a sudden change in the permeability of the

membrane, that causes the ions to flow across it [26].

After that, there is a refractory period, in which Na+ channels are inactive. Therefore, any

stimulus given to the cell will not trigger another action potential, no matter how strong it is.

2.2.1.1 Hodgkin-Huxley model

The Hodgkin-Huxley model describes the generation and propagation of action potentials. It

was first proposed in 1952 [45], and is still used nowadays as the basis for computational neuro-

science modelling. This model assumes that the cell membrane can be represented as an electrical

circuit, as described in Fig. 2.8. The explanation, hereafter presented is based on [92]. The mem-

Figure 2.8: The Hodgkin–Huxley equivalent electrical circuit, representing the cell’s membrane.
Adapted from [92].

brane is, therefore, characterized by a capacitor, Cm, and three ionic currents: a sodium current,

INa, a potassium current, IK , and a leakage current, which represents the sum of some factors that

contribute to the total membrane current that can be assumed to be relatively constant [24]. Each

ionic channel is described as a battery in series with a resistance. The current can be calculated

using equation 2.1, where the sodium, potassium and leak conductances are represented by gNa,

gK and gL ,respectively, and ENa, EK and EL are the corresponding equilibrium potentials. gL is

constant, whereas gNa and gK change with voltage.

Ix = gx(V −Ex) (2.1)
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The equation that corresponds to the circuit drawn is given by 2.2. Where Ii corresponds to

the sum of the ionic currents and Ic represents the capacitive current.

I = Ic + Ii = Ii +Cm
dV
dt

(2.2)

For the description of the ion currents, it is assumed that the membrane contains a number of

gates, which can be either closed to the passage of all ions or open to the passage of potassium

ions. Each gate is controlled by a number of gating particles, that can be either in a closed or open

conformation. The transition between one state and the other is dictated by the membrane poten-

tial. Considering that the particles are independent of each other, the probability of the entire gate

being open is nx, where n is the probability of a single potassium gating particle being in the open

state and x is the number gating particles in the gate. Therefore, the membrane conductance for

potassium can be calculated by 2.3, considering the probability of it being open and the maximum

membrane conductance gk. Experimentally, the number of gating particles was found to be equal

to 4.

gk = ḡknx (2.3)

However, the same behaviour is not observed for the sodium ion. The sodium conductance de-

cays, after it reaches a maximum, even when applying voltage to the membrane. This phenomenon

is called inactivation. To discriminate the inactivation level of the gate particles, the variable h was

introduced. Variable m identifies the sodium activation, similarly to the variable n for the potas-

sium activation. Experience shown that the number of gating particles can be approximated to 3.

This way, the conductance for the sodium ion can be observed in equation 2.4.

gNa = ḡNam3h (2.4)

Thus, combining equation 2.3, 2.4, 2.2 and 2.1, one can deduce the Hodgkin and Huxley equa-

tion to describe the membrane potential, equation 2.5, where ILC corresponds to the contribution

of the axial current from the vicinity regions of the axon.

Cm
dV
dt

=−ḡL(V −EL)+ ḡnam3h(V −ENa)+ ḡkn4(V −EK)+ ILC (2.5)

The Hodgkin-Huxley model can also describe the propagation of an action potential along an

axon, however, to do so a multi-compartment model, which can describe spatial variations in the

membrane potential, must be developed [24].

2.2.2 Instrumentation

The available tools to record neural activity depend on the scale one intends to observe it. In spite

of patch clamping enabling the accurate recording of electrical activity, it only does it for a few

neurons. In contrast, methods such as functional magnetic ressonance imaging detect activity in
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large brain regions, but cannot assign it to a single neuron. In recent years, progresses in imaging

and electrophysiology led to the possibility of analyzing neural circuitry at the cellular level [12].

Although electrical recording is the standard, other techniques, namely optical methods, can

be used to study neural activity at a cellular resolution, such as calcium imaging [69].

The main disadvantage of calcium imaging in comparison to electrophysiology resides in the

temporal domain; currently available calcium indicators possess rise and decay rates of tens to

hundreds of milliseconds. Additionally, the extraction of specific action potentials from calcium

signals is dependent on image quality and on the neuronal firing patterns. In fact, at high firing

rates, the calcium indicators behave in a nonlinear way, difficulting the said extraction [36].

The possibility of tracking neural activity in real-time is the main advantage of electrophys-

iology, when comparing with imaging techniques. Even though calcium imaging is capable of

following action potentials, electrodes identify the actual underlying activity. In fact, the calibra-

tion of optical signals relies on electrophysiological recordings. Intracellular electrodes used for

calibration can only monitor small sets of neurons, thus, researchers have focused on extracellular

electrodes, which can profile hundred of neurons at the same time [12].

2.2.2.1 Patch-clamp

The patch-clamp recording technique was originally developed in the 1970s and it is still the

most broadly used to study the electrophysiological properties of biological membranes. This

method allows for the low noise measurement of currents passing through the low conductance

ion channels, by isolating a small portion of the membrane, which sometimes can contain a single

channel [110]. It has been commonly applied to the study of current and potential changes in

isolated cells, cultured cells and brain slice preparations. However, in recent years, there has been

a growing interest in using this technique for in vivo recordings, with the objective of studying

intact brain regions in living animals [96].

The membrane potential is measured by attaching a hollow glass electrode filled with a con-

ducting electrolyte to a neuron and comparing the recorded potential with a reference electrode

located in the extracellular medium. Patch electrodes have a wide tip, which is sealed tightly to

the surface of the membrane, by applying suction. After the patch electrode seals, the membrane

under its tip is either broken or perforated, leading to the electrical contact with the interior of the

cell [24]. This way, all ions fluxing the membrane patch flow into the pipette and are recorded by

an electrode connected to a highly sensitive electronic amplifier. Then, current injections through

the electrode repeatedly excite the neuron, which permits to extract fundamental biophysical pa-

rameters, such as input resistance, membrane capacitance, and reverse potential. The described

functioning can be observed in Fig. 2.9.

However, recording and stimulation sessions have limited time to be performed, since per-

fusion of the cytoplasm modifies the intracellular composition of the cell. Moreover, the use of

patch electrodes for parallel recording presents technical limitations, as the micromanipulation

of the electrode tips to target cells entails the use of rather bulky micromanipulators. For these
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Figure 2.9: General principle of patch-clamp recordings. A glass pipette containing electrolyte
solution is tightly sealed onto the cell membrane and thus isolates a membrane patch electrically.
Currents fluxing through the channels in this patch hence flow into the pipette and can be recorded
by an electrode that is connected to a highly sensitive differential amplifier. In the voltage-clamp
configuration, a current is injected into the cell via a negative feedback loop to compensate changes
in membrane potential. Recording this current allows conclusions about the membrane conduc-
tance. Adapted from [103].

reasons, it is impossible to record and stimulate large sets of neurons simultaneously using this

method [40].

Conversely, the use of noninvasive extracellular microelectrode arrays allows investigators to

record and stimulate large populations of excitable cells for days and months without compromis-

ing the cell’s membrane [40].

2.2.2.2 MEAs

The understanding of synaptic transmission and modulation processes at the network level in

both physiological and pathophysiological states is of uttermost importance for the unraveling

of the mechanisms behind spinal cord function [58]. This is the underlying motivation for the

development of microelectrode arrays (MEAs) for multisite recordings.

Currently, MEAs are the cutting edge instrumentation for the investigation of neuronal network

dynamics [62]. These devices contain multiple microelectrodes, through which stimulation is

delivered or neural signals recorded, in a non-invasive manner. The electrodes are connected with

a contact pad by thin contactors to carry the captured signals to an amplifier [50]. The available

products in the market vary in the number of electrodes they possess, ranging from 60 to 5000 [2].

Fig. 2.10 shows the design of a planar MEA with 60 electrodes.

Unlike the patch-clamp, microelectrode arrays detect signals from all possible sources around

each sensor, so, they can only detect field potentials generated by action potentials or, in rare cases,

synchronized synaptic potentials in highly ordered neuronal networks [40]. Thus, it is difficult to

track the source of the electrical signals recorded.
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Figure 2.10: Planar MEA. On the left, overview of the MEA60 chamber; on the right, design of
MEA60, where it is possible to see the 60 microelectrodes connected to strip conductors that the
recording field is composed of 60 microelectrodes connected to strip conductors. Adapted from
[58].

Multielectrode arrays excel in time resolution, yet, they have low signal-to-noise ratio and their

spatial resolution is limited by the areal density of electrodes. The maximal distance between a

neuron and an electrode, that permits action potentials to be picked up, must be smaller than 50–70

µm although this depends on the recording setup and the respective preparation. However, for

traditional, commercially available MEAs, the inter-electrode distance is usually larger (60–200

µm), making it impossible to detect the activity of the same single neuron on multiple electrodes

[34]. Bearing this, high-density MEAs, with thousands of electrodes, have been developed [46].

These devices have cellular and subcelular spatial resolution, giving way to 1 : 1 coupling, when

one neuron is plated over the surface of each electrode, and to the possibility of recording the

activity of individual neurons by multiple electrodes[47] [46]. From the signal processing point of

view, this technological development is beneficial, since this recording setup greatly increases the

performance of neural decoding algorithms [34].

To overcome the limitations of the method, researchers have been combining it with different

techniques. For example, the combination of electrophysiology with two photon calcium imaging,

provides access to structure and genetic labels, while maintaining the high time resolution[12].
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2.3 Neural Coding

The neural code concerns the study of the representation of information in the nervous system.

Neurons represent and transmit information about the sensory input by firing sequences of spikes

in various temporal and spatial patterns. To understand how the information is coded in these

firing patterns, it is necessary to uncover the link between stimulus and neuronal activity. Neural

encoding refers to the map from stimulus to neuronal activity, while, neural decoding concerns the

reverse map, from the neuronal activity to the stimulus, and the reconstruction of the stimulus.

The most simple neural code, proposed in the early 20th century, is the rate code and is still

a prevailing theory. According to it, the intensity of a stimulus is correlated with the firing rate

(the number of spikes a neuron fires per unit of time) of the sensory neuron activated by it. The

hypothesis of a universal code for information processing in the nervous system is appealing since

it has the potential to explain the integration of different inputs and the conversion from sensory

input to motor output, by admitting that all neurons use the same language to communicate. This

hypothesis may not be correct however, and different regions of the nervous systems (with dif-

ferent functional constraints, or originated at different evolutionary stages) may have very distinct

strategies to encode, transmit and process information.

The present work will contemplate the information encoding in the spinal cord, namely how

somatic sensations (nociception, touch, temperature) are encoded and conveyed to the brain. The

first step involves the translation of the different kinds of inputs into sequences of spikes. After

that, the information is conveyed to the spinal cord. But, how does the integration of information

at the spinal level occur? How does the nervous system deal with great quantities of informa-

tion? How are different stimuli written in the neural language? To answer these questions, in this

chapter, the current neural coding hypothesis will be presented.

2.3.1 Stimulus-response relation

The characterization of the relation between stimulus and patterns of neuronal activity is a dif-

ficult process, since neuronal responses are complex and variable. First, the stimulus needs to be

translated into electrical signals, this process is called transduction and is carried out by special-

ized receptor cells, such as mechanoreceptors which sense mechanical stimuli and photoreceptors

that sense light. Then, the neuronal response is translated into a complex spike sequence, that

reflects the temporal features of the stimulus and the dynamics of the neuron itself. Thus, hypo-

thetically, the relationship between stimulus and neuronal response can be uncovered if all possible

input patterns could be presented and the resulting responses recorded [64]. However, the number

of possible inputs is too large to be experimentally feasible. Additionally, neural responses vary

from trial to trial even if the same stimulus is presented and the isolation of its features is chal-

lenging due to the time scale (the same order as the interval between spikes) at which the changes

occur. The inherent variability of neural responses can be attributed to randomness associated

with biophysical processes that potentiate neural firing and the effect of other processes occurring

concurrently with the trial[24].
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As a result and given our current understanding of the nervous system, the deterministic pre-

diction spike sequences is unfeasible. Instead, the triggering of a spike sequence by a certain

stimulus is modeled as a probability. One approach to address this probabilistic nature is to use

functional models. Functional models address directly the computation that the neuron performs

on its inputs, without regard for the biological processes that generated the response [89].

The sequence of spikes a neuron fires, named spike train, contains information about the stim-

ulus that triggered it. Despite the fact that action potentials differ in their amplitude and duration,

in neural encoding studies, these variables are deprecated and action potentials managed as iden-

tical stereotyped events [24]. Thus, the information is encoded, for instance, based on the number

of spikes the sequence includes or on the precise timing they occurred. In mechanoreceptores, fea-

tures such as the intensity of the stimulus, are encoded by the rate at which the neuron fires. This

relationship can be observed in Fig.2.11, where the encoding of mechanical force is attributed to

three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for

pressure, and N cells for strong, noxious skin stimulation [55]. This relationship is almost linear,

with the number of spikes fired being proportional to the amplitude of the mechanical forces.

Figure 2.11: Spike count for T cells (blue), P cells (red) and N cells (green) responding to tactile
stimuli with intensities of 5–200 mN applied at 0. Stronger pressure intensities (> 100 mN) were
tested with fewer cells (see legend). Adapted from [103].

Neuronal responses depend on many attributes of the stimulus, namely its amplitude, location,

duration and modality. This last feature concerns the type of energy the receptor is specialized

in, for example, thermal receptors are activated by changes in temperature, whereas mechanore-

ceptors are triggered by sheer physical activity [106]. The most basic mechanism to identify the

modality of the sensory input is via labeled lines principle, that is, input from a specific nerve is

always interpreted by the brain as a given input. For example, optic nerve is always interpreted as

a visual input [48]. On the other hand, the intensity of sensation is determined by the amplitude

of the stimulus. The lowest stimulus strength a subject can detect is termed the sensory threshold.

Thresholds are normally determined statistically by presenting a subject with a series of stimuli of

random amplitude. The sensory threshold for a modality is limited by the sensitivity of receptors.
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The threshold energy is related to the minimum stimulus amplitude that generates action poten-

tials in a sensory nerve [48]. The duration of a stimulus is estimated from the onset of the neural

response and its duration. Typically there are neurons in sensory systems that only respond to

the onset of a stimulus- these are generally referred to as phasic responders and they are good for

estimating the time of occurrence of a signal. There are other neurons that respond throughout the

stimulus presentation- tonic responders- these signal stimulus duration [48].

Moreover, the same stimulus can trigger many neurons, thus it is necessary to study the be-

haviour of the population of neurons to thoroughly understand the stimulus features. For this

reason, one needs to scrutinize, in addition to the firing pattern of each neuron, the relation of the

individual firing patterns with each other [24].

2.3.2 Receptive fields and tuning curves

The spatial dimension of the neural code can be described by estimating a neuron’s receptive

field, that is, the peripheral area that influences its response; for instance, the receptive field of a

primary touch afferent neuron is the area of the skin where stimulation causes its activation. On the

other hand, the receptive fields of dorsal horn neurons are the combination of the receptive fields

of the primary afferent neurons with which they communicate, as seen in Fig.2.12. Receptive

fields on cells of lamina V are larger than in other laminae, since lamina IV excites its neurons,

according to Wall (1967) [106]. More, the size of receptive fields of lamina I neurons range from

1 mm2 on the fingertips to 1000 mm2 on the back and hip [13, 106], meaning that perception in the

fingertips is more precise. Finally, the receptive fields of tactile- sensory related cortical neurons

are even larger and can be influenced by injury in sensory nerves or experience. In spite of its large

size, cortical neurons are able to discriminate fine detail due to patterns of excitation and inhibition

relative to the field that leads to spatial resolution. Dorsal horn neurons have both excitatory and

inhibitory receptive fields. Normally, the inhibitory receptive field surrounds the excitatory one

(strong stimuli applied to this area can produce inhibition of postsynapitc potentials), whereas

stimulation in the excitatory area produces excitation. Thus, one can conclude that the size and

pattern are fundamental properties of receptive fields, since they characterize both the convergence

of primary afferent nerves and the features of the stimuli applied. This leads to the idea that

neurons can be feature detectors, signaling the presence of specific pattern elements, coded by the

distribution of activity across a neuronal population [90].

Furthermore, sensory neurons are tuned to different aspects of the stimulus. The contribution

of individual neurons to sensory function is evaluated by measuring its responses to an appropriate

set of stimuli. This description is accomplished by plotting the average firing rate of the neuron,

across several trials, as a function of relevant stimulus parameters - the neuronal tuning curve

[18]. These plots allow for the determination of the stimulus attributes to which a given receptor

produces the greatest response and, hence, to which it is optimally tuned, its selectivity. The

optimal stimulus is, commonly, identified by determining the peak of the tuning curve, that is,

the stimulus that produces the highest firing rate. This approach is effective, because high firing

rates are easily distinguishable from background noise. However, nearby stimuli are most easily
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Figure 2.12: Diagram of mechanisms of integration of nociceptive inputs in lamina I neurons. Left
panel indicates the receptive fields of three mechanical nociceptors with overlapping receptive
fields. The three primary afferents terminate on the same lamina I neuron in the middle panel. The
right panel indicates the resulting receptive field. The receptive field is somewhat larger, and more
responsive points are found within the responsive area. Thus, unlike primary afferent receptors,
spinal nociceptive neurons have nearly continuous receptive fields with less unresponsive regions
between responsive spots. Adapted from [13].

distinguished in high-slope regions of the tuning curve, because, in these areas, small variations

in the stimulus translate in the greatest changes in firing rate [24, 83]. From this point of view,

the peak of the tuning curve is an insensitive region of the neuron’s response because the slope at

the peak is zero. Both these interpretations can be correct depending on the experimental context

and level of neuronal variability [18]. Tuning curves can assume different shapes. Figure 2.13

represents a common tuning curve of a neuron, that can be approximated to a Gaussian function of

a specific stimulus parameter, characterized by a mean firing rate and a standard deviation. Other

shapes include half wave rectified cosine functions or sigmoidal tuning curve. Mechanoreceptors

response to pressure can be modelled as the latter mentioned curve.

Figure 2.13: Typical tuning curve of a neuron, with mean firing rate (thick line) and standard
deviation (thin lines) shown as a function of the stimulus parameter h. Adapted from [18].
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2.3.3 Coding strategies in the nervous system

Locally signals can be conducted by analog and electrical mechanisms, however, across large

distances, information ought to be transmitted by the spatiotemporal patterns of spike trains gen-

erated by a set of neurons. How this information is encoded, either by the precise timing of

individual spikes or the time-scale of the neural code, and the role of noise and trial-to-trial vari-

ability are still questions of debate [109]. In fact, there is not an universal code for the coding of

information in the nervous system, there are multiple hypothesis, as observed in Fig.2.14. It is

assumed that individual neurons code simple features whereas the encoding of complex features

requires the coordination of thousands or hundreds of thousands of neurons [54].

2.3.3.1 Rate coding

The most common notion of a neural code follows the paradigm described in section 2.3.2, when

explaining the concept of tuning curves, which is that information is encoded by the frequency at

which spikes are fired. For that reason, the only variable of interest is the total number of action

potentials emitted by a neuron in a relatively long time period of several hundred milliseconds or

even seconds [54]. In a rate code the precise timing of the occurrence of spikes is not relevant, two

spike trains with the same spike frequency contain the same information.

2.3.3.2 Spike-count rate

The spike count rate is calculated by simply dividing the total number of action potentials fired

during a trial divided by the duration (T) of the trial. It can be calculated from a single trial. The

duration of the trial depends on the neuron recorded and the type of stimulus, but, typically T

ranges from 100 ms to 500 ms. This process is called temporal averaging. It can fully describe

cases where the stimulus is constant or slowly varying, such as to convey information about the

strength of a touch stimulus [48] or the force exerted during voluntary contraction of muscles [30].

However, neurons respond strongly to rapid changes in the stimulus, in fact a fly can react to a

stimulus and change its course of flight in just 40ms [80].

2.3.3.3 Spike-triggered average

Sensory systems make numerous adaptations to adjust to the average level of stimulus intensity.

To study these adaptations a new concept is introduced, the spike-triggered average, the average

value of the stimulus a time t before a spike is fired. It can be calculated using equation 2.6 In other

words, it provides a tool to study the response of a neuron using the spikes emitted in response to

a time- varying stimulus [24].

C(τ) =

〈
1
n

i=1

∑
n

s(ti− τ))

〉
(2.6)
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Figure 2.14: Schematic illustration of different coding schemes and their corresponding temporal
resolutions. (a) In a rate coding scheme, the number of spikes in windows of several hundred ms
correlates with some stimulus feature. The two spike trains shown on the top part are considered
to be equivalent for a rate code since they carry the same number of action potentials in spite of
the different temporal patterns. Although a linear trend is illustrated here, the relationship between
stimulus and the spike count may be non-linear. (b) In a sparse representation, the neuron shows a
very low spontaneous activity. The neuron reliably fires a single burst of spikes at a particular time
from stimulus onset during multiple repetitions of the same stimulus. (c) A neuron shows very
precise spike timing, with a trial-to-trial variation which can be less than 1 ms. (d) A time varying
signal (solid trace) is represented by a neuron that can follow the rapid changes in the stimulus (top,
action potentials). The stimulus can be reconstructed (dashed trace) from the instantaneous firing
rate of the neuron. (e) In this example, the synchronized activity of multiple neurons (symbolized
by the spikes marked in red) constitutes the code to represent information. Adapted from [18].

A code based solely on the time-dependent firing rate can be considered an independent-spike

code. This means, that the generation of each spike is independent of all the other spikes in the

train.
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2.3.3.4 Correlation coding

Correlation codes refer to spike trains where individual spikes do not encode independently

of each other. The correlation between spike times may contain additionally information. An

example of a correlation code is when stimulus information is carried by interspike intervals.

Since studies found that the information conveyed by the correlation between two or more spikes

is rarely larger than 10 % of the information carried by spikes considered independent, most works

on neural coding assume spike independence [24].

2.3.3.5 Temporal coding

When precise spike timing or high-frequency firing-rate fluctuations are found to carry infor-

mation, the neural code is often identified as a temporal code [24]. A number of studies have

observed that the temporal resolution of the neural code is on a millisecond time scale, thus, the

precise spike timing is a major player in neural coding. Through the perspective of rate cod-

ing models, high-frequency fluctuations of firing-rates are noise, while temporal coding models

propose that they encode information.

Latency coding

The latency of firing of a neuron, the latency time between stimulus onset and first action po-

tential, can vary greatly depending on input parameters [102]. This idea is in the foundation of

Time to first spike coding. In the most purist view of this coding scheme, each neuron only needs

to fire one spike to convey information. After it fires, it is inhibited until the onset of the next

stimulus. Thus, latency may be identified as one way for signal encoding in the nervous systems.

The main advantage over rate coding, is the speed with which it allows information transmission

and processing. To assure the efficiency of latency coding, the precise timing of spike generation

is imperative. Therefore, the performance of latency coding may be corrupted by noise-induced

fluctuations in discharge times. The quantification of the contribution of this effect is essential to

discuss the efficacy of latency coding and its possible advantages over other neural codes [37].

Touch sensors in the finger tip use latency coding to encode the strength and direction of the touch

[6].

2.3.3.6 Phase coding

One can apply the concept of time to first spike also to the situation where the reference signal

is not a single event, but a periodic signal, an oscillation. In the hippocampus, information such

as the body’s spatial position is conveyed using phase coding. Action potentials do not lock to

the timing of external inputs (onset and offset), instead are referenced internally to the oscillatory

rhythm of the neuronal population at theta frequencies [67, 21].
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2.3.3.7 Population coding

The methods discussed focus on the information coded by single neurons, however, information

in many brain regions is represented in a distributed way by the activity of populations of neurons.

It is generally accepted that this distributed representation allows the nervous system to surmount

the challenges of trial-to-trial variability in single neuron responses, giving strength to the rep-

resentation. Due to the noisy nature of neurons, population coding is necessarily probabilistic

[85, 11]. When studying population coding, it is important to analyze whether individual neurons

act independently or if the correlation between different neurons provides further information. The

easiest interpretation and the most commonly used is independent-neuron coding when neurons

are considered statistically independent [24]. Several experimental parameters, such as the stim-

ulus itself and the state of the animal, may influence the level of independence. Moreover, the

correlation in the firing of two neurons may depend on the distance between them, due to the fact

that putting two electrodes very near each other may present some difficulties, and the connectiv-

ity may be such that it may be very challenging to find two neurons that are connected or have

common input [54].

The neural response features contributing to a population code [71] are:

1. Diversity of single-neuron firing rates: Neurons with different stimulus preferences can each

add complementary stimulus information as they each vary in terms of stimulus preference

or tuning width.

2. Relative timing: In a neuronal population, informative response patterns may comprise the

relative timing between neurons.

3. Network state modulation: Neural responses depend not only on sensory inputs but also

on large-scale brain states that change on time scales slower than the transient responses to

individual stimuli.

4. Periods of silence: Neural populations also encode information by the absence of firing of

some neurons.

Correlation-based coding

The spike patterns of a neuronal population can be viewed as an additional source of information

[53]. Its degree of synchrony or the rate at which the patterns are generated can be stimulus

modulated, and consequently, the degree of correlations in the spike trains is stimulus modulated

[28]. Yet, the study of correlation presents several challenges, since its computation requires a

large amount of data recorded simultaneously from multiple neurons and the interpretation of raw

correlation values can be complex. Nevertheless, the emergence of new recording techniques, such

as multielectrode arrays and two-photon imaging, has facilitate the obtaining of such recordings.
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Correlation is a normalized measure of covariation, normally, of two different events. It can

be calculated in several ways, as pointed out in table 2.1. It may be used to assess tuning similar-

ity, measured as the correlation in the mean responses of two neurons to an ensemble of stimuli

(named signal correlation) or the co-fluctuations in the responses of a pair of neurons over different

timescales, from the precise temporal alignment of spikes (that is, synchrony) to slower changes

in excitability. The timescale over which correlated activity modulates the responses of neurons

is unknown, but membrane time constants suggest that it occurs over tens of milliseconds or less

[33].

Table 2.1: Types of correlation between spike patterns. Adapted from [23].

Types of correlation
Signal correlation measures the correlation coefficient between mean responses to different stimuli. It is
frequently employed to quantify the extent to which a pair of neurons has similar tuning or other functional
properties. Decreases in this type of correlation, such as through adaptation or contextual modulation, can
produce sparsening of population responses.

Spike count correlation (also called noise correlation) is the Pearson’s correlation coefficient of spike count
responses to repeated presentations of similar stimuli, under the same behavioral conditions. Spike counts are
typically measured over the timescale of a stimulus presentation or a behavioral trial, which range from a few
hundred milliseconds to several seconds. Spike count correlations are proportional to the integral under the
spike train cross-correlogram.

Synchrony measures the degree to which the timing of spikes is precisely aligned, typically on the timescale
of one or a few milliseconds. It is typically quantified using the sharp peak of in the cross-correlogram. De-
pendencies in the timing of individual spikes can also be measured in the frequency domain, using spike-spike
coherence.

Long-timescale correlation measures the extent to which a neuron’s response to one trial is correlated with a
second neuron’s response to trials in the future or past. It is used to quantify the influence of slow fluctuations
in responsiveness on spike count correlation. When measured, the long-timescale correlation has been found to
be close to 0.

In the simplest approaches to neural coding, the noise in the output of a neuron is assumed to be

independent of that in other neurons, since noise makes the output less precise, and consequently,

difficult the coding process. However, some neural systems display correlation in the variability

of the output of a population of neurons in response to a given stimulus, this is, noise correlation

or spike count correlation [33]. Noise correlation tends to be higher between pairs of neurons that

are near each other and have similar tuning and functional properties.

The source of correlation is often associated with shared or common inputs. But, this relation-

ship is not trivial, since shared inputs do not necessarily produce high correlations. For example,

in randomly connected networks of excitatory and inhibitory neurons (balanced networks), fluc-

tuations in the excitatory drive are followed rapidly by fluctuations in the activity of inhibitory

neurons. When two neurons receive correlated excitatory drive, correlated inhibitory signals (i.e.,

inhibitory inputs that are correlated with each other and with the excitatory pool) largely cancel

their impact on postsynaptic responses [53].
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Correlations can also provide important information about the functional architecture of neu-

ronal networks [23]. In fact, correlations can be used to infer functional connectivity from mea-

surements of the spiking activity [100]. Indeed, the correlation of spike timing activity has been

used to infer the anatomical connection of pairs of neurons, namely between neurons of the thala-

mus and the cortex [23].

Rank order coding

Rank order coding is a simple, computationally inexpensive, coding scheme that is based on the

relative timing of spikes across a population of cells. The principle behind it rejects the precise

timing information, and focus on the specific order in which the spikes arrive, and, therefore, were

generated. This way, the first spike of the population corresponds to the most activated neuron, the

second spike to the next most activated neuron, etc. Since there are factorial N possible orderings,

a rank order code can transmit up to log2N! bits of information under conditions where each

input neuron can only emit one spike. Besides its capacity of conveying information, a further

advantage of rank order coding is its invariance to changes in both input intensity and contrast.

This is, when these changes occur, there are no changes in the rank ordering of the units. This

automatic normalization of inputs is an additional advantage of rank order coding that is difficult

to achieve using other coding schemes [102, 98].

Sparse coding

Sparse coding relies on the principle that information is represented by a relatively small number

of simultaneously active neurons out of a large population. For each stimulus, this is a different

subset of all available neurons. Sparseness may be focused on the temporal domain [51] or on

the sparseness in an activated population of neurons. In fact, it constitutes a general principle of

sensory coding in the nervous system [70]. This was first observed in the visual cortex, where pop-

ulation responses to natural stimuli may be the result of a sparse approximation of images. These

populations are typically very overcomplete, allowing for great flexibility in the representation of

a stimulus. Using this flexibility to achieve sparse codes may offer many advantages to sensory

neural systems, including enhancing the performance of subsequent processing stages, increasing

the storage capacity in associative memories, and increasing the energy efficiency of the system

[81].

Combinatorial coding

Combinatorial coding relies on the principle that different features of sensation are processed

separately in specialized assembles of neurons and then combined to form a unified perceptual

experience. A given feature of the object is coded by units that are considered to be either active or

passive; combining N units there is a total of c=2>N possible combinations. Thus, combinatorial
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coding is based on the activation of specific combinations. The number of active units depends on

the stimulus. This coding scheme differs from sparse coding, where the number of active units is

small compared to their total number [32].

2.3.4 Coding strategies in the spinal cord

The predominant theories for the encoding of somatic sensations rely on two competitive views:

the labeled line theory (or specificity theory) and the pattern theory. As above mentioned, the la-

beled lines theory proposes that each sensory modality is processed along a fixed, direct line com-

munication system from the skin to the brain. This means that, for instance, nociceptors are only

activated by noxious stimulation and this activation encodes pain; other primary afferent neuron

types respond to other stimuli and their activation is the basis for the perception of other modali-

ties [76]. This is supported by the existence of specific spots in the human skin whose activation

correlates with a specific sensation: cool, warm, touch, pain, or itch [59], and the existence of

primary sensory neurons and spinal relay neurons that respond to that same stimulus. On the other

hand, pattern theories suggest that sensations are generated by a summation of inputs from various

primary sensory afferents. However, the most plausible hypothesis is, in fact, a combination of the

two referred theories, since the coding of somatic sensations involves both specificity and complex

activation patterns. This synergistic approach is a form of population coding, more specifically,

combinatorial coding [60, 77].

Gate control theory, a pattern-based theory, states that low and high-threshold afferents con-

verge on unspecialized central neurons and that strong enough activation of those central neurons

encodes pain. This theory originally denied the existence of specific labeled lines, but subsequent,

research showed that the encoding of pain may coactivate several primary afferents from different

labeled lines in distinct patterns, suggesting, instead a population coding scheme.A modification

of this theory, a Leaky gate model, was the proposed [94]. This model emerged from the discovery

that a subset of second-order neurons participates both in the coding of itch and pain sensations

(suggesting that different labeled lines crosstalk in the spinal cord). Another feature of the popu-

lation is the intensity-dependent coding of pain, due to the fact that upon strong gastrin-releasing

peptides indirectly inhibit pain via the recruitment of the endogenous opioid system.

Table 2.2 presents the most recent studies related to the coding of different modalities in the

spinal cord. From the analysis of the gathered data, it is possible to assert that polymodality,

the presence of neurons that encode different sensations, is a prevalent phenomenon in afferent

neurons. While polymodality is considered a flaw according to the specificity theory, it supports

the combinatorial coding hypothesis. In fact, it was suggested that dorsal root ganglion (DRG)

neurons encode cold sensation using a combinatorial strategy [104]. On the other hand, heat is

encoded in a graded fashion both at population and single-neuron levels, that is, as the temperature

increases more heating-sensitive neurons are activated and most individual neurons respond more

strongly. Different coding schemes in the dorsal horn were also observed [79]: in the heating

range, spinal dorsal neurons encode absolute temperature, whereas, in the cooling range, neurons

encode temperature change. However, how the ‘modality-specific’ coding at the periphery is
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Table 2.2: State-of–the-art coding hypothesis in the spinal cord.

Source Year Animal Model Modality Population of Neurons Coding Hypothesis

[39] 2019 Rat Temperature,
nociception

Dorsal horn neurons Differential encoding of innocuous and nox-
ious thermal and mechanical stimuli

[104] 2018 Mouse Temperature DRG neurons Polymodality; graded heat coding; combina-
torial coding for cool/cold temperatures

[42] 2018 Mouse Nociception,
temperature

Dorsal horn neurons Polymodality: heat and cold are coded
through the recruitment of both shared and
unique spinal cord neuron types.

[94] 2017 Mouse Nociception,
itch

Spinal second-order
Grp labeled neurons

Leaky gate model; polymodel interneurons
respond both to itch and pain; intensity-
dependent coding of pain

[79] 2016 Mouse Temperature Spinal cord OGB-
labeled neurons

Populations that respond both to cold and heat
stimulus, different coding schemes for heat
and cold

[29] 2016 Mouse Nocipetion dorsal root ganglion 85 % of the dorsal root ganglion are modality
specific

[75] 2016 Leech Touch Primary afferent neu-
rons

Multiplexed population coding

[55] 2016 Leech Touch Primary afferent neu-
rons and spinal in-
terneurons

Multiplexed encoding of touch location and
force intensity

[17] 2015 Mouse Itch Spinal cord interneu-
rons

Spinal cord inhibitory pathway that gates the
transmission of mechanical itch

[27] 2014 Mouse Nociception Populations of spinal
excitatory and ini-
hibitory neurons

Population coding: hybrid theory between
specificity and pattern theory

[52] 2013 Mouse Temperature TRPM8 neurons of
DRG

Labeled line for cold coding

[87] 2013 Rat Nociception Deep dorsal horn neu-
rons

Intensity coding and spatial summation

transformed into the continuously distributed activation temperature thresholds in the spinal cord

remains an outstanding question. Spinal neurons receive convergent innervation from direct or

indirect DRG inputs. The relative strengths of different DRG inputs or local inhibition onto the

spinal neurons may play important roles [79]. Despite polymodality being a reality, 85% of the

dorsal root ganglion is modality specific [29].

Concerning nociception, intensity coding and spatial summation have been proposed as the

coding mechanisms for noxious stimuli in the deep dorsal horn neurons [87]. It was observed that

greater stimulation areas activate peripheral zones of neighboring receptive fields of spinal neu-

rons. The recruitment of additional nociceptors and the increase in stimulus intensities produced

greater firing of spinal neurons.

On the other hand, multiplexed population coding was suggested as the general mechanism

of touch encoding [56]. Multiplexing relates to the simultaneous encoding of different stimu-

lus properties by distinct neuronal response features, each mechanoreceptor neuron of the leech

varies spike count and response latency to both touch intensity and location. While a rigorous

experimental verification of the multiplexing hypothesis is difficult to accomplish in a complex

vertebrate system, it is feasible for a small population of individually characterized leech neurons,

with similar results to primates.
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SensorySimLib

Sensory information detected in the periphery is forwarded through the ascending pathways

via the spinal cord, brain-stem, and thalamic relay nuclei to the sensory cortex over a 3-neuron

system. As the information about the stimulus travels the spinal cord, it is integrated and the

level of abstraction over the stimulus features increases. This way, the information that reaches

the sensory cortex is only a general representation of the main stimulus features: its modality,

location and intensity. How these attributes are individually coded and integrated to produce a

representation of the stimulus is still a question of debate, which requires knowledge about the

local circuits of the spinal cord and the coding strategies used to integrate the neuronal informa-

tion at the different levels of the 3-neuron system. Given the complexity of this system, progress

in the understanding of its mechanisms can be achieved through the construction and analysis of

mathematical/computational models. This approach was taken in this thesis, with the development

of a model (and simulation tools) which objective was to create a realistic representation of the

ascending tracts that can be manipulated and extended to test different coding hypotheses in the

spinal cord. Experimentally, understanding how the entire spinal circuitry orchestrates and repre-

sents information requires recording from a large number of neurons and delivering stimuli in a

precisely controlled manner. The creation of the computational model tries to ease this process by

offering a method for studying hypotheses that may arise from experimental findings, refining the

experiments that need to be performed.

This chapter first overviews the foundations that underpin the model and then explores the

library structure and the mathematical formulations behind the model created.

3.1 Model fundamentals

The model focuses on the coding of thermal stimuli. DRG neurons are the first afferent neurons

in the somatosensory system, as they convert a physical/chemical state into electrical activity -

the state that they encode is determined by their biophysical properties, namely their ion channels

dynamics. For example, TRPV1+ dorsal root ganglions are associated with the coding of intense

cooling [79]. DRGs can be viewed as feature detectors, as they encode a specific attribute of

35
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the stimulus within their receptive field. This specific preference can be translated into a tuning

curve, that describes the activity of a sensory neuron as a function of a certain stimulus attribute.

The model developed represents this selectivity through its tuning curve instead of focusing on

its biophysical properties, as it offers a higher level of abstraction and is in concordance with the

characterization made by Wang et al. [104]. For these same reasons, the geometry of neurons is

not relevant, since it doesn’t constrain the electrical response of the neuron. With this in mind,

cells were modeled using a simple ball-and-stick model. How the neural ensembles communicate

with the interneurons to represent the whole stimuli continues to be subject of debate, being the

specificity theory and combinatorial coding the prevailing theories [59]. With the objective of sim-

ulating the different theories, DRGs were divided into subsets according to the stimulus features

they encode. This offers flexibility to test different hypotheses on how the DRGs communicate

with the interneurons. From a structural point of view, the skin does not have boundaries and

so the receptive fields of the DRGs do not. This constraint had to be taken into account when

designing the model.

3.2 NEURON simulation environment

The NEURON simulation environment is one of the most widely used tools in computational

neuroscience. It can be used to test hypotheses, estimate experimentally inaccessible parameters

and illustrate brain mechanisms. NEURON enables the creation of biologically realistic quantita-

tive models of the nervous system’s mechanisms, in which the investigator has power over which

details to include or omit, not being restricted by the simulation program [44]. The user can deal

directly with familiar neuroscience concepts - biophysical properties, network architecture, and

synaptic communication - without the need for reformulating the model to fit the requirements of

the simulator.

The program focuses on the simulation of the equations that describe nerve cells, being capa-

ble of handling problems in which membrane properties are spatially inhomogeneous and where

membrane currents are complex. NEURON simulates these equations efficiently because its com-

putation relies on the implementation of implicit integration methods optimized for complex struc-

tures. This way, the program is capable of simulating large networks (with up to 10k neurons) with

fast run times. NEURON has been widely used in literature - as of September 2017, more than

1900 scientific articles and books have reported work that was done with NEURON - making it a

reliable and validated tool for the simulation of neuronal activity [5].

Most of the programming behind NEURON has been done with hoc, an object-oriented lan-

guage with C-like syntax that has been extended to include functions specific to the domain of

modeling neurons and implementing a graphical interface. Python can be used as an alternative

interpreter. All hoc variables, procedures, and functions can be accessed from Python, and vice-

versa. This increases the flexibility of the simulator for setting up the anatomical and biophysical

properties of models, defining the appearance of the graphical interface, controlling simulations,

and plotting results.
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3.3 Library structure

SensorySimLib extends the functionalities of the NEURON simulation environment for the

context of models of sensory integration in the spinal cord, by using Python as an interpreter.

The library focuses on the construction of a high-level anatomically correct network model of the

ascending tracks and provides a variety of custom-made visualizations of the neuronal activity in

different stages of information integration. The library is built to facilitate the construction of these

models. The base class - Cell - implements NEURON’s methods to define biophysical parameters

and cell structure, based on the ball-and-stick model. DorsalRootGanglia and Lamina classes

inherit methods from the base class to construct neural networks with distinct methods to simulate

the mechanisms of integration of information specific to these populations. On the other hand, the

class ConnectLayers implements the information transmission mechanisms between the different

populations of neurons. Finally, the Stimulation class emulates the different stimuli which may

be applied to the skin, permitting to apply single cell stimuli and to simulate time varying and

spatially uneven stimulation patterns applied to the whole skin surface.

3.4 Individual neuron modelling

Neurons are the fundamental unit of the nervous system and, thereby the building blocks of the

model. In NEURON, the construction of the biophysical cell model is made by parts because it

makes debugging, extending, and translating to parallel implementations simpler [19].

The parts of the cell model are:

• Sections - the cell sections (e.g. soma and axon)

• Topology - The connectivity of the sections

• Geometry - The 3D location of the sections

• Biophysics - The ionic channels and membrane properties of the sections

• Synapses - Optional list of synapses onto the cell

Taking into account that the purpose of the model is to study the transmission of information and

not the biophysical properties of individual cells, individual cells were modeled with the ball-and-

stick model. In this representation, neurons are formed by only two sections: a soma connected

to a single dendrite. The diameter of the soma was considered to be 12.6 microns, whereas the

diameter of the dendrite was set to 1 micron. Each section has its own discretization parameter

nseg, which dictates the number of internal points at which the discretized form of the cable

equation is integrated. For the dendrites, this parameter was set to 5, whereas soma has only one

segment. The cell is further characterized by its 3D location, which is determined according to the

characteristics of the population to which the cell belongs.

The cell’s membrane biophysical aspects were defined according to the Hodgkin and Hux-

ley equations, described in Chapter 2.2. The axial resistance was set to 100 Ohm · cm and the
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membrane capacitance was valued to 1 µF/cm2. More, the sodium conductance was set to 0.08

S/cm2 and the potassium conductance to 0.02 S/cm2 and the threshold adjustment parameter was

VTraub = 55mV , in concordance with [8]. All compartments contained a leakage (passive) conduc-

tance with a reversal potential of 65 mV and a maximum value of 0.042 mS/cm2. All cells have a

synaptic profile modeled as conductance changes following an exponential waveform defined by a

decay time constant, τ = 5ms. The synapse is later connected to a target, according to the structure

described by the model. SensorySimLib extends the cell model by implementing the concept of

receptive field.

3.4.1 Receptive field

The receptive field is the area in the sensory periphery where stimuli can influence the electrical

activity of the cell. The receptive field of a primary afferent neuron is the area of the skin where

stimulation affects its activation. On the other hand, the receptive field of dorsal interneurons is the

combination of the receptive fields of the primary afferent neurons with which they communicate.

The neuron’s activation is influenced by the position of the stimulus within its receptive field:

stimuli closer to the receptive field’s center cause greater activation than stimuli applied to the

periphery. Thus, one can model the influence that a stimulus applied to the position x has over

the neuron i as a Gaussian function of the distance to the neuron’s receptive field’s center, µi, as

described in equation 3.1, where σ is the standard deviation, and n is the scalling factor. This way,

for each neuron, every location of the layer to which it is connected has a weight that represents

the contribution that a stimulus applied to that point can have over the total activation of the neuron

- which represents its receptive field. The sum of all receptive field’s weights is 1.

RFi(x) = e−
1

2σ2 (x−µi)/n (3.1)

3.5 Population modeling

In SensorySimLib, a population of neurons is defined by its dimension, dim, and the 3D position

of the center of the distribution of the cells that make the population. Cells are created and posi-

tioned in cylindrical geometry: somas are placed on the surface of the cylinder with a predefined

spacing and dendrites are oriented radially, pointing to the center of the cylinder. The cylindrical

organization is a more anatomically correct representation and complies with the infinity bound-

aries constraint. This way, the location of the somas can be defined in cylindrical coordinates,

following equation 3.2, where δ is the spacing between neighbor cells and i, j belong to [0,dim].

This mathematical simplification makes the projection of the cell’s receptive field on the surface

of the skin easier, however, three discontinuities emerge: two on the edges of the cylinder and one

when θ = π/2. The discontinuities in the edges of the cylinder are solved by considering that the

upper edge communicates with the inferior one and vice-versa. On the other hand, the disconti-

nuity at θ = π/2 is solved by translating the receptive field to fill the unrealistic values. The total
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number of cells in a population is dim×dim.
z = i ·δ
r = δ ·dim

2π

θ = j · 2π

dim

(3.2)

3.6 Model for spinal sensory information transmission – a 2-neuron
layered system

The information transmission in the ascending tracts was envisioned as a 2-layer neuron system,

where the first layer represents the dorsal root ganglia, whereas the second layer the interneurons

(Fig.3.1). The DRG layer can be further subdivided into two layers: the nerve endings located

in the skin and the thermoreceptors themselves. As the information flows through the layers,

the level of abstraction over the stimulus features increases. The library allows for the test of

different connection hypotheses between layers to justify the different coding strategies for heat

and cold observed in the literature. The design of this model involved the articulation of several

neuroscience concepts.

3.6.1 Dorsal root ganglia

In SensorySimLib, dorsal root ganglia are defined by the modality of the stimulus they encode.

In the experiments performed, only thermal stimuli were considered, however, the code presents

flexibility to implement other modalities. The individual DRG populations are further defined by

their tuning curves - the stimulus attribute to which they respond optimally. The DRG model is

constituted by a skin model and the associated thermoreceptor.

3.6.1.1 Skin model

The skin is represented by the nerve endings (NE) dedicated to temperature sensing, which are

distributed uniformly over a cylindrical surface, similar to the population model, equation 3.2,

using a receptor density of 250/mm2. Considering this density, the spacing between the nerve

endings, δ , was set to 0.063mm. The NE’s were organized in a regular grid with a location

jitter of 5 % over the whole surface of the cylinder, within an area of 81.8mm2. This quasi-

uniform distribution is consistent with the actual distribution of mechanoreceptors nerve endings,

as reported in [72]. Thus, each receptor is fully described by its cartesian coordinates, rx, where

iε {1, ...,20449}. When a stimulus is applied at a given location w of the skin patch, the mechanic

and conductive properties of the skin extends the effect of the stimulus to nearby locations, such

that the responses of any receptor is given by:

sx(w) = e−
1
2 ‖w−rx‖ (3.3)
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Figure 3.1: Model architecture. The stimulus information is transmitted through a series of layers.
The first layer represents the DRG nerve endings located on the skin - doted plane, each dot repre-
sents a nerve ending. There are differently tunned DRG populations that sense stimuli applied to
the skin. Each DRG receives information from a specific area - its receptive field - represented by
the blue circle on the first layer. Interneurons are activated by the DRGs within its receptive field.
As the information flows through the layers, the level of abstraction over the stimulus features
increases.

For thermal stimuli the equation can be altered as follows:

sx(w) = T0− (T0−Tx)e−
τ

2 ‖w−rx‖ (3.4)

Where T0 is the room temperature, Tx is the temperature at location x and τ is a scaling factor

determined empirically.

Considering that the size of one DRG receptive field on the fingertip is about 1 mm2 and that

the stimulus intensity within the receptive field follows a Gaussian profile, the standard deviation,

σ , of DRG neurons’ receptive field was considered to be 0.25mm. Bearing this in mind, the

considered skin patch is sensed by a population of 81 DRG neurons.

3.6.1.2 Neural tunning

Wang et al. [104] described that distinctly shaped tuning curves support different coding strate-

gies for heat and cold so, to explore the cellular basis behind these strategies, thermoreceptors

were subdivided into two categories (non-monotonic and monotonic) according to the shape of
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their tunning curves. Normally, tuning curves are obtained by plotting the average firing rate of

the neuron as a function of relevant stimulus attributes. However, given that the relation between

firing frequency and the current injected in rat somatosensory cortex neurons is approximately

linear [97], one can approximate the relationship between the stimulus attributes and the injected

current using the mathematical association found with the tuning curve. A non-monotonic tun-

ing curve is characterized by an increase and eventual decrease as temperature moves away from

neutral. Non-monotonic tuning can be modeled as a Gaussian function of temperature, as follows:

Inon−monotonic(Ti) = Amaxe
−0.5·(

Ti−Toptimal
σtunning

)2

(3.5)

Where Ti is the temperature sensed by neuron i, Amax is the maximum activation that can be

produced, Toptimal is the optimal tuning temperature - the temperature at which the response of the

neuron is maximum - and, σtunning is the standard deviation, which controls the rate at which the

activation decreases as the temperature changes.

A monotonic tuning curve is described by an increase and no subsequent decrease in response

to temperature change and its shape can be approximated to a sigmoidal function, through equation

3.6, where λ controls the slope of the curve.

Imonotonic(Ti) = Amax
1

1+ eλ (Ti−Toptimal)
(3.6)

Amax was found empirically, Amax = 0.0003, so that the maximum current injected produces

a firing frequency compatible with biologically observed firing rates for leech mechanoreceptors

[56].

3.6.1.3 DRG total activation

Bearing all the concepts introduced and combining equations 3.1, 3.4 and equation 3.6 or 3.5 if

the tuning curve is monotonic or non-monotonic, respectively, one can calculate the activation of

DRG neuron i, as follows:

c
Ai = I(Ti)

where

Ti = ∑
x=N
x=1 RFi(rx) ·Sw(rx)

(3.7)

Where Sw(rx) corresponds to the response of receptor x (x varies from 1 to N, t which is the number

of individual nerve endings) to a stimulus positioned at w, or in the case of thermal stimuli, to the

temperature that is sensed by receptor x if a thermal stimulus is located at w; RFi(rx) is the influence

that the response of receptor x has over neuron i. Thus, ∑
x=2044
x=1 RFi(rx) ·Sw(rx) can be interpreted

as the sum of the individual nerve endings responses within the receptive field of DRG neuron i,

more specifically, it gives a measure of the temperature sensed by the cell - Ti. This temperature

is then converted to current, through the tuning curve that characterizes the neuron. The current is

then used to stimulate the NEURON simulated DRG to produce a biologically realistic response.
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3.6.2 Interneuron Population

Projection neurons receive the input of different DRGs and produce a response that corresponds

to the integration of the information conveyed by the DRG population to which they are con-

nected, their receptive field. Similarly to what happens in the first layer of the model, the different

neurons connected to the interneuron have distinct weights over its activation. These weights are

determined by the position of the DRG within the receptive field, according to equation 3.1, and

determine the synaptic weight, and consequently the quantity of information that is transmitted in

the connection between the DRG and the interneuron.

DRG neurons encode specific modalities and stimulus features, however, how the information

coming from all the DRGs connected to a single interneuron is integrated and translated into a

neuronal response remains a challenging question. Different connection hypotheses were tested

to answer this problem and to assess which coding strategies are used to code temperature.

Three hypotheses were tested:

1. Each population of singly tuned DRGs is connected to a distinct interneuron;

2. Each interneuron is connected to all types of singly tunned DRGs;

3. Each interneuron is connected to a different combination of singly tunned DRGs.

In this way, the interneuron response is modulated by the activation of the different populations

of DRG to which they are connected.
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3.7 Results

A model for the simulation of cold coding in the ascending pathways was built, making use

of SensorySimLib. The construction of the model’s DRG layer was based on the recent work

published by Wang et al. [104], which contemplates a thorough description of mice’s heat and cold

responding DRG populations. The response of the DRGs was measured using Calcium imaging

since it yields sufficient sensitivity to resolve all sensory modalities in DRGs. From the analysis

of the data acquired, Wang et al. concluded that heating- and cooling-sensitive neurons have

distinct tuning curves. In the cool range, monotonic and non-monotonic DRGs were activated in

equal proportions. Three different tuning temperatures were identified: 15◦C, 17.5◦C, and 20◦C.

Considering this characterization, it was established that the model’s DRG layer is constituted

by 6 DRGs populations with the same number of neurons: 3 sub-layers of non-monotonically

tunned DRGs with different optimal temperatures (15◦C, 17.5◦C, and 20◦C) and 3 sub-layers

of monotonically tunned DRGs with the same optimal temperatures. The standard deviation of

the non-monotonic tuning curves was set to 2.25◦C, whereas the slope of the monotonic tuning

curves, λ , was set to 1.8. The DRGs receptive fields were considered to have the same size and

were distributed evenly across the surface of the skin model.

The 3D arrangement of the nerve endings and their influence on the different DRG receptive

fields is depicted in Fig.3.2(a). Fig.3.2(b) illustrates the cylinder’s surface, where it is evident the

Gaussian profile of the different receptive fields, which were organized in a hexagonal geometry

so that the whole surface of the skin is covered.

Figure 3.2: Representation of the organization of the nerve endings and influence on DRGs re-
ceptive field. (a) Cylindrical arrangement of the nerve endings and their influence on the different
DRG receptive fields. (b) Cylinder’s surface projection, where the hexagonal geometry of the
DRGs receptive field is evident.

The temperature distribution across the skin caused by the application of a thermal stimulus

with 10◦C at the nerve ending 10000 can be observed in Fig.3.3. Applying this same stimulus for

2 seconds, the population of DRGs non-monotonically tunned for 20◦C produces the activation

pattern shown in Fig.3.4, where each square represents the maximum firing rate registered by the

DRG during the total course of the experience. The instantaneous firing rate was calculated by
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convolving each spike train with a Gaussian window with 100 ms. The distribution of the DRGs

in the representation of Fig.3.4 resembles the distribution of the respective receptive field in the

skin.

Figure 3.3: Temperature sensed on the skin, resulting from the application of a stimulus with
10◦C at nerve ending 10000. The temperature rises exponentially as the distance to the stimulus
application point increases. The maximum temperature is 22 degrees - the room temperature.

Figure 3.4: Activation pattern of DRG non-monotonically tunned for 20◦C population, resulting
from the application of a stimulus with 10◦C at nerve ending 10000 during 2 seconds. Each
square represents a DRG. The activation of the individual neurons is measured as the maximum
firing frequency registered during the total course of the experience.

The response of the different DRG populations to a linear, spatially uniform temperature in-

crease (from 12◦C to 23◦C) can be observed in Fig.3.5(a) and (b). Fig.3.5(a) features the responses

of monotonic neurons, whereas in Fig.3.5(b) the responses of non-monotonic neurons are evident.
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Figure 3.5: Differently tunned DRGs responses to a linear, spatially uniform temperature increase
(from 12◦C to 23◦C). (a) Monotonic tunning curves of the DRGs tunned for different tempera-
tures (15◦C, 17.5◦C, 20◦C). (a)Non-monotonic tunning curves of the DRGs tunned for different
temperatures (15◦C, 17.5◦C, 20◦C).

For the testing of the different connection hypothesis between DRGs and internuerons pro-

posed in section 3.6.2, a spatially even stimulus with a temperature profile similar to the one tested

in Ran et al. [79], seen in Fig.3.6, was employed during 16 s, in order to test whether the pro-

posed architecture can explain the experimental results observed in the literature. An overlay of

the resulting interneurons responses with the temperature trace of the cooling stimulus (blue line)

is depicted in Fig.3.7.

Figure 3.6: An overlay of the temperature trace of a cooling stimuli (white, from 32◦C to 16◦C)
with neuronal responses during this stimulus - heatmap. Adapted from [79].

Furthermore, employing a spatially uneven stimulus, illustrated in Fig.3.8 (a),the response of

the interneurons connected to non-monotonically tunned for 15◦C and monotonically tunned for

20◦C DRG populations is observed in Fig.3.8 (b). Image (b) represents the response of the 9

interneurons whose receptive fields cover the whole surface of the skin. The organization of the

squares mimics the organization of the receptive fields. The firing rate differs across the population

of interneurons, meaning that the model is capable of coding stimulus location with small spatial

resolution at the interneuron level. This decrease in resolution results from the integration of
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Figure 3.7: Overlay of heatmap of the activity of the different interneurons populations and the
temperature trace. The different interneurons populations are distinguished by the DRGs to which
they are connected. In the graph NM stands for connections with non-monotonically tunned
DRGs, whereas M stands for connections with monotonic neurons. The blue line represents the
temperature trace during the course of the experience. The maximum temperature is 32◦C, while
the starting temperature is 16◦C.

neuronal information within the receptive field of the interneurons.

Each interneuron communicates with a subset of DRGs and the strength of the connection is

determined by the relative position of the DRG to the interneuron receptive field center on the

DRG layer, as seen in Fig.3.9.

Figure 3.8: Interneurons responses to a spatially uneven thermal stimulus applied to the skin.
(a) Temperature distribution across the skin’s surface. (b) Population of interneurons connected
to non-monotonically tunned for 17.5 degrees and monotonically tunned for 20 degrees DRG
populations responses. Each square represents the response of an interneuron.
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In Fig.3.9, it is shown the structural organization of the different layers of the model, which

are disposed in a concentric geometry. Black spheres represent individual DRGs monotonically

tunned for 15 degrees, while the different colored spheres represent distinct interneurons.

Figure 3.9: Representation of the connections between DRGs monotonically tunned for 15 degrees
and two different interneurons. Black markers represent the different DRGs, whereas the different
colored markers portray the different interneurons. The connections between the two layers are
represented by lines, whose color identifies with which interneuron the connection is made.

The library further provides an interface to target individual cells for stimulation. Fig.3.10

shows how the user interacts with the interface: first, it sets the number of active cells and then,

identifies which cells are going to be stimulated and at which moment, finally, a visualization of

the active cells is produced. More, it is possible to define the individual spike times for each cell.

Figure 3.10: Targeted stimuli interface. First, the user sets the number of active cells and then,
identifies which cells are going to be stimulated and at which moment, finally, a visualization of
the stimulated neurons is produced.
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3.8 Discussion

SensorySimLib provides a three dimensional model of the skin’s surface and the DRG tem-

perature sensing. The DRGs receptive fields are organized in a hexagonal geometry to cover the

entire skin surface. This organization is a simplification of the human skin because, in reality, the

different DRG receptive fields overlap and have different sizes. The skin model complies with

the no boundaries constraint since the receptive fields located on the bottom of the cylinder have

continuity to the top border and the indetermination for θ = π/2 is not present.

The proposed architecture is capable of coding stimulus location at the DRG layer since dif-

ferent DRG responses are produced according to its tuning and the temperature sensed within its

receptive field. This way, the pattern of activity of a population of DRGs tunned for the same

feature can code a spatially uneven stimulus. The resolution with which this encoding is made

is determined by the size of the receptive fields because individual DRG responses are deter-

mined by the weighted sum of the temperature sensed by each nerve ending of the DRG: large

receptive fields encompass a greater number of nerve endings which sense a greater area. The

maximum firing rate was 40 Hz which is a value compatible with the observed in the literature for

mechanoreceptors.

The coding strategy used to code absolute temperature in the DRG layer is determined by the

proportion of monotonic and non-monotonic DRGs. In the framework built, these proportions

are equal and the monotonic curves are steep. This way, individual DRGs are activated at dif-

ferent temperature thresholds and the absolute temperature is coded with a combinatorial strategy,

compatible with the experimental findings for cold coding in Wang et al. [104]. Increasing the pro-

portion of monotonic graded DRGs, the model would be capable of simulating graded strategies

for heat coding.

In the interneuron layer, it is evident this same kind of response: different interneurons are

activated at distinct temperature thresholds, according to the DRGs to which they are connected.

In fact, neuronal responses only appear after the temperature decreases below 22 degrees. The

activation of the different interneurons changes and one interneuron does not suffice to represent

the cooling stimuli, hinting for the existence of a combinatorial code in this layer. This way, it is

possible to conclude that the model is successful at simulating the results obtained for the coding

of absolute cold temperature in the literature and it proved that the strategies proposed by Wang et

al. for the coding of temperature in the dorsal root ganglia are compatible with the experimental

findings of Ran et al. [79] for the cold coding of temperature in the dorsal horn.

However, experimentally it is observed that cold responding dorsal neurons further respond

to temperature change in other temperature ranges, which the model is not capable of simulating.

This is, it was found that the responses of cold-responding neurons peak during the cooling stage

and rapidly adapt to steady cold stimuli. The modeling of this kind of neuronal response requires

the integration of special membrane channels that respond directly to continuous stimulation.

All in all, SensorySimLib provides a framework to test different model architectures and sen-

sory information integration mechanisms, based on experimental findings. The model developed
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focused on the coding of thermal stimuli in the cooling range, however, the library presents flexi-

bility to implement other stimulus modalities. Even though the spatial resolution decreases as the

layers stack, it was proven that the model is effective in coding stimulus location at the different

levels of information integration. On the other hand, stimulus’ intensity is coded by the combina-

tion of the neural responses of differently tuned neurons. The model can, therefore, code absolute

temperature, but does not have the capacity of coding temperature change in other temperature

ranges. SensorySimLib can easily be extended to add specific coding mechanisms, without the

need for redesigning the whole model structure. More, the library can convert the temperature

applied in the skin model into a neuronal response, but can also be put to the test with real spiking

data, allowing for the testing and refining of specific experience parameters.
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Chapter 4

Functional Connectivity Inference

For the understanding of the structure and function of neuronal networks, its dynamics, and

operational principles, it is of critical importance to study the interaction between neurons. The

discovery of the wiring diagram behind neuronal circuits can help predict network behavior in

novel situations, which has both technological and medical applications [25]. The characteriza-

tion of neuronal interaction can be studied through functional and effective connectivity. Effective

connectivity refers explicitly to the influence that a neuron exerts on another one, either at a synap-

tic or a populational level. It can be inferred by perturbing the activity of a neuron and measuring

the changes on another one. On the other hand, functional connectivity is defined as statistical

dependence among measurements of neuronal activity. The present work will focus on the latter.

Functional connectivity can be assessed using correlation-based (model-free) methods or model-

based methods. Model-free methods are based on descriptive statistics without any assumption

about the process that generated the data, while model-based approaches rely on the premise that

a certain mathematical model generated the data and try to infer the parameters and structure of

the model. Correlation-based methods are the most used due to its intuitiveness - the output of

these algorithms is a weight that can be interpreted as the strength of the connection between the

pair of studied neurons. Other model-free techniques to infer functional connectivity are based

on Granger causality and Information Theory tools. After the connectivity matrix is obtained it is

often filtered to remove weak and non-significant connections.

This work will focus on correlation-based methods to assess the functional connectivity of

neuronal networks, namely on the filtered normalized cross-correlation histogram (FNCCH), a

novel algorithm proposed recently by Pastore et al. [73]. This algorithm is capable of efficiently

infer both functional excitatory and inhibitory links with a low computational cost. The resulting

connectivity matrix(CM) can then be filtered to obtain realistic biological connections. Several

new visualization techniques were produced to assure that the representation of the functional

connections is intuitive and informative.

51
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4.1 Filtered normalized cross correlation histogram

The FNCCH algorithm [73] builds on the standard definition of the cross-correlation 4.1. In

theory, cross-correlation is capable of detecting the increase and decrease of synchrony between

spike trains of interconnected neurons. However, in real experimental data, the cross-correlogram

exhibits an irregular behavior, difficulting the detection of small peaks and troughs and limiting

the detection of inhibitory links. Therefore, to better the performance of the algorithm in the said

situations, the cross-correlation is normalized and, then, filtered - a process that can be viewed as

simple post-processing to the cross-correlation histogram (named Filtered and Normalized Cross-

Correlation Histogram, FNCCH).

Cxy(τ) =
1√

NxNy

Nx

∑
s=1

x(ts)y(ts− τ)) (4.1)

Equation 4.2 presents the mathematical formulation of the absolute peak of the FNCCH calcu-

lated between a reference spike train x and a target train y, where W is the time window in which

the FNCCH is calculated.

FNCCxy =Cxy(τ)|τ = argmax


∣∣∣∣∣∣Cxy(t)−

1
W

v=W
2

∑
v=−W

2

Cxy(v)

∣∣∣∣∣∣
 (4.2)

The filtering procedure comprises the subtraction of the mean value of the cross-correlogram

(in the time window W) from the values of the normalized cross-correlogram Cxy(v), v∈ [−W/2,W/2].

The peaks are detected by considering the absolute values, allowing for the detection of the high-

est peak (positive or negative). This peak reflects the strength of the estimated functional link

between the two electrodes in evaluation. The distinction between peaks and troughs is possible

by considering the original signal - excitatory links have a positive value, while a negative value

refers to an inhibitory one.

The output of the algorithm is a full n×n connectivity matrix (CM) where each element (i,j)

represents an estimation of the strength of the functional link between the electrode i and electrode

j.

For the sake of reduction of computational time, electrodes with no significant electrical ac-

tivity during the total duration of the experiment were discarded and not considered for the com-

putation of the CM. Also, the FNCCH may produce unreliable results in these situations, since

strong connections between electrodes with no significant activity may be identified. This way,

electrodes with a basal activity inferior to 0.1 Hz were discarded.

4.2 Connectivity matrix spatio-temporal filtering

The functional CM was further filtered to remove biologically unrealistic connections. The

implemented method to do so was based on [61]. It consists of filtering the CM with a distance-

dependent latency threshold. The threshold for each element of the CM, t(i, j), is determined by
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assuming a maximum propagation velocity of 400mm/s [16] and by calculating the distance be-

tween the electrode pair (i,j) using the Euclidean distance 4.3. This way, if a functional connection

has a temporal delay lower than the latency threshold is dismissed. The CM was further filtered

with a minimum delay of 1ms, compatible with fast excitatory AMPA synaptic transmission [73].

In experiments that deal with intracellular action potential propagation, the maximum velocity

threshold was set to 3m/s and minimum delay threshold was set to 0.001 ms.

t(i, j) = vmax ∗
√

(xi− x j)2 +(yi− y j)2 (4.3)

The CM was then redefined by removing all the connections that do not respect these thresholds.

4.3 Hard thresholding

The FNNCH gives an estimation of the strength for every pair of electrodes in the CM. Thus, a

thresholding procedure is necessary to remove the values that refer to noise and do not represent

real functional connections [73]. The simplest thresholding technique is to use a hard thresh-

old, defined by equation 4.4, where µ and σ are the mean and standard deviation, respectively,

computed across all elements of the CM.

ε = µ +n ·σ (4.4)

There are other more sophisticated procedures based on shuffling methods, however, the added

complexity makes them computationally expensive. Thus, a simple threshold equal to µ +2σ was

applied for the identification of excitatory connections and for inhibitory ones the threshold was

set to µ +σ .

4.4 Connectivity map visualization

The visualization of the results of functional connectivity detection algorithms can often be

confusing and misleading. In order to make this step more informative and its interpretation

easier, three different visualizations were developed, each one providing a distinct perspective on

the results.

All the visualizations have a common background - the electrode matrix displayed in the same

configuration as the hardware. Electrodes that were previously regarded as non-significant (with

no significant electrical activity) were shaded gray, whereas active electrodes were colored yellow,

as observed in Fig.4.1. The functional links are represented by a line drawn between the pair of

interacting electrodes. The color of the line encodes the strength of the connection: stronger links

are colored red, whereas weaker ones are colored blue, following a jet colormap.

In the standard visualization, the connections between the electrodes are represented by straight

lines. However, lines may overlap and hide links, for example, when there are several connections

between pairs of electrodes of the same column. To avoid this, it was developed a visualization
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Figure 4.1: Background of visualization. Electrically non-significant electrodes are shaded gray,
while active electrodes are highlighted in yellow.

in which the bonds are represented by curved lines. The curves were computed using Bezier’s

interpolation method with 3 control points: the coordinates of the pair of electrodes and a third

point located on the line perpendicular to the straight line connecting the two electrodes.

Finally, a 3D visualization was devised, in which the third dimension corresponds to the cluster

coefficient. This metric is a measure of the degree to which an electrode is interconnected with its

neighbors and it is defined by equation 4.5, where e represents a generic electrode (or node) ; ve is

the total number of nodes adjacent to e (including e) - its neighbors; u is the total number of edges

(connections between the neighbors of e).

Ce =
2u

ve(ve−1)
(4.5)

The different visualizations of the CM can be observed in Section 4.6.

4.5 Synthetically generated data for algorithm validation

Spike trains can be simulated by using a Poisson point process, a stochastic process that gen-

erates a sequence of events statistically independent. The Poisson distribution, equation 4.6, de-

scribes the probability of k events occurring within the observed interval λ .

f (k;λ ) =
λ ke−λ

k!
(4.6)

The connectivity analysis was performed in two different configurations: between totally inde-

pendent spike trains and between totally dependent spike trains. The totally independent spike
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trains were generated with independent Poisson processes with different λ , whereas the totally

dependent spike trains were created by delaying the first spike train by a specific delay.

4.6 Results

The connectivity inference pipeline was tested in four different sets: in synthetically generated

data, in data from hippocampal cultures grown on top of the MEA, in recordings from microflu-

idic compartmentalized hippocampal cultures and, finally, in data recorded from the stimulation

of spinal cord slices. The first test is a validation step, which is necessary to assure the correct

functioning of the pipeline. It is achieved by putting the algorithm to the test in controlled situa-

tions and evaluate if it performs as expected: the algorithm predicts functional connections when

effectively they exist.

4.6.1 Algorithm validation - results in synthetically generated data

Four spike trains were synthetically generated and assessed with the FNCCH algorithm to

search for functional links between them. Two spike trains, spike train 1 and 2, were gener-

ated with independent Poisson processes, with λ equal to 100 ms and 50 ms, respectively. Spike

train 3 was obtained by delaying spike train 1 by 1 ms, to simulate a functional connection with

maximum strength. Finally, Gaussian noise was added to the third spike train to produce spike

train 4, to mimic the inherent noise of biological signals.

The results of the functional connectivity analysis on the synthetically generated data are

shown in Table 4.1.

Table 4.1: Results of functional connectivity assessment on different pairs of synthetically gener-
ated spike trains. The FNCCH output can be interpreted as the strength of the connection between
the spike trains. When FNCCH is valued at 1, the spike trains are fully correlated and a link with
maximum strength is identified. On the other hand, when FNCCH equals 0, no connection is
identified. The delay corresponds to the value within the time window (25 ms) where the FNCCH
was evaluated where the maximum correlation is registered.

Pair of spike trains FNCCH Delay(s)
1&1 1.000 0.000
1&2 0.019 -0.012
1&3 1.000 -0.001
1&4 0.209 -0.001

The FNCCH algorithm was evaluated in a time window of 25 ms for all spike trains combi-

nations. For fully synchronized spike trains (1&1), it was predicted a functional connection with

strength 1 and delay equal to zero. On the other hand, for spike trains created with independent

Poisson processes (1&2) a weaker connection (FNCCH < 0.1) was detected. Between spike train

1 and 3 a functional connection with maximum strength, 1, and delay of 1 ms was identified. The

connection between spike train 1 and 4 had also a delay of 1 ms but lower strength, 0.2.
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4.6.2 Unconstrained cell cultures connectivity inference results

A hippocampal neuronal culture was grown on top of an MEA and its electrical activity mea-

sured after 12 days in vitro (DIV). For the connectivity analysis of the data acquired, the maximum

velocity threshold was set to 400 mm/s and the minimum delay threshold to 1 ms. The standard

visualization of the resulting excitatory CM is depicted in Fig.4.2.

Figure 4.2: Standard visualization of the excitatory connectivity map of hippocampal culture at
12 DIV. Connections are colored according to its strength. The maximum strength among the
detected connections is 0.050.

The probability histogram of the connections’ strength is depicted in Fig.4.3(a). The average

strength of the biologically realistic connections detected is 0.026 and 97.2% of them have strength

below 0.035. The distribution of the length and delay of the links are illustrated in Fig.4.3 (b) and

(c), respectively. The average length of the links is 0.71 mm, whereas the average delay is 6.2 ms.

On the other hand, Fig.4.4 shows the 3D view of the links. Electrode N10 presents the maximum

clustering coefficient and the average clustering coefficient of the network is 0.13. No inhibitory

connections were detected.

Figure 4.3: Characterization of the functional connections detected in hippocampal culture at DIV
12. (a) Probability histogram of the connections’ strength, where 97.2% of the links have strength
below 0.035. (b) Histogram of connections’ length. The average length is 0.71 mm. (c) Histogram
of connections’ delay. The average delay is 6.2 ms.
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Figure 4.4: 3D visualization of excitatory links detected with the FNCCH algorithm for hippocam-
pal culture at DIV 12. The third dimension of the graph represents the electrode’s clustering co-
efficient, which is valued between 0 an 1. The clustering coefficient is a measure of the degree to
which elements in a network tend to cluster together.

The algorithm was further tested in a different hippocampal culture also at DIV 12. The

average length of the detected links is 0.71 mm, whereas the average delay is 5.8 ms, and the

average strength was 0.025. The histograms of the connections strength, length, and delay are

depicted in Fig.4.5(a), (b) and (c), respectively. The connections length is distributed over a wide

range, between 0.1 and 1.75 mm. The maximum length possible is 0.21. On the other hand, the

strength of the links is concentrated in the 0.020 to 0.030 spectrum. The standard visualization

of the excitatory connectivity map is illustrated in Fig.4.6. The 3D view of the functional links is

shown on Fig.4.7. Electrodes N1, A10 and D6 present maximum clustering coefficients and the

average clustering coefficient of the network is 0.20. No inhibitory connections were detected.

Figure 4.5: Characterization of the functional connections detected in the second hippocampal
culture at DIV 12. (a) Probability histogram of connections’ strength. The strength of the links
is concentrated in the 0.020 to 0.030 spectrum. (b) Probability histogram of connections’ length.
The average length of the links is 0.71 mm. (c) Probability histogram of connections’ delay. The
maximum delay is 12 ms.
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Figure 4.6: Standard visualization of the connections detected in the second hippocampal culture
at DIV 12.

Figure 4.7: 3D visualization of the excitatory links resulting from the connectivity analysis of the
second hippocampal culture at DIV 12. Electrodes N1, A10 and D6 present maximum clustering
coefficients.
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4.6.3 Connectivity inference in compartmentalized cell cultures in microfluidics

By interfacing microElectrode arrays with microFluidics (EF devices), it is possible to com-

partmentalize neuronal cultures with a specified alignment of axons and microelectrodes [43].

This setup allows the extracellular recording of spike propagation with a high signal-to-noise ra-

tio over the course of several weeks. Recordings obtained with this method were analyzed with

the developed pipeline. As the experiments deal with intracellular action potential propagation,

the maximum velocity threshold was set to 3m/s, while the minimum delay threshold was set to

0.001 ms - values compatible with the maximum axonal spike propagation velocity observed in

the literature.

The excitatory connectivity map obtained from the analysis of microfluidic compartmental-

ized hippocampal cultures at DIV 11 is pictured in Fig.4.8(a) and (b). Fig.4.8(a) depicts the stan-

dard view of the CM, while Fig.4.8(a) illustrates the curved lines visualization. The connectivity

inference analysis was performed without prior knowledge about the structure imposed by the

microfluidic compartmentalization, which Fig.4.9, obtained with confocal microscopy, reveals.

The vertical grooves of the microfluidic structure, seen in the figure, are aligned with the MEA’s

electrode columns from index 10 to 16. Additionally, the electrode marked red - electrode C9 -

is close to an agglomerate of neurons. In the standard view of the CM, one can observe that a

great deal of connections leave this electrode. In the curved lines visualization, Fig.4.8(b), the

interconnections between electrodes of the same column - links that are hidden in the standard

visualization - are exposed. The network’s structure can be further studied in the 3D visualization,

Fig.4.10. Electrodes that participate in the connections inside the microgrooves present maximum

clustering coefficient. The average clustering coefficient is 0.55.

Figure 4.8: Visualizations of the excitatory connectivity map detected in microfluidic compart-
mentalized hippocampal cultures at DIV 11. (a) Standard visualization of excitatory connectivity
map. The majority of the connections detected is parallel to the MEA’s electrode columns. (b)
Curved Lines visualization. This view of the CM allows fof the identification of hidden connec-
tions between electrodes of the same column.
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Figure 4.9: Confocal microscopy image (10x magnification) of microfluidic compartmentalized
hippocampal culture at DIV 11, where the microfluidic structure is evident. The vertical grooves
of the structure are aligned with the MEA’s electrode columns from index 10 to 16. The electrode
marked red - electrode C9 - is positioned near an agglomerate of neurons, which may explain the
high number of connections coming from this electrode detected with the connectivity inference
pipeline.

Figure 4.10: 3D visualization of the excitatory links identified in microfluidic compartmentalized
hippocampal culture at DIV 11. The majority of the electrodes that participate in the links between
electrodes of the same column present maximum clustering coefficient.

In Fig.4.11(a), one can observe the probability histogram of the connections’ strength. The

most frequent strength is 0.1 and the average link strength is 0.13. On the other hand, in Fig.4.11(b),
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it is visible that most of the links have a delay below 0.5 ms, which is consistent with intracellular

spike propagation. Finally, the majority of the links have a connection length between 0.1 and

0.2 mm, as observed in Fig.4.11(c), which indicates that most of the links are between neighbor

electrodes. The mean link length is 0.25 mm, whereas the average connection delay is 0.46 ms.

Figure 4.11: Characterization of the functional excitatory links detected in microfluidic compart-
mentalized hippocampal culture at DIV 11. (a) Probability histogram of connections’ strength.
The most frequent strength is 0.1. (b) Probability histogram of connections’ length. The average
link length is 0.25 mm. (c) Probability histogram of connections’ delay. The average connection
delay is 0.46 ms.

The number of inhibitory connections detected was significantly lower - inhibitory links rep-

resent only 3.5% of all connections discovered. The inhibitory connectivity map is exhibited in

Fig.4.12. All inhibitory connections have the same delay (12.5 ms) and present low strength,

inferior to 0.0001.

Figure 4.12: Standard visualization of the inhibitory connections detected in microfluidic com-
partmentalized hippocampal culture at DIV 11. All connections have strength inferior to 0.0001.
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Axotomy is the process of cutting or otherwise severing an axon. It is often performed to study

nerve regeneration [41]. The previously analyzed culture was subjected to this process - the axons

growing inside the microgrooves were cut - and its electrophysiological activity recorded 12 hours

after axotomy. The excitatory and inhibitory connectivity maps resulting from the connectivity

inference analysis are depicted in Fig.4.13(a) and (b), respectively. The structure identified in the

excitatory CM is different from the one identified before axotomy: the number of parallel connec-

tions to the electrode columns reduced substantially. In the 3D visualization of the excitatory CM,

Fig.4.14, it is evident that the electrodes that participate in the parallel connections still present

high clustering coefficients, however the average clustering coefficient of the network decreased

to 0.23. The probability histogram of the connections delay, seen in Fig.4.15(b), presents a similar

distribuition to the one obtained before axotomy, with the majority of the links having a delay

below 0.5 ms. The average delay is 4.3 ms. Most of the links are short-range - connection length

under 0.2 mm, as illustrated in Fig.4.15 (c). The histogram of the linking strength, Fig.4.15 (a),

is distributed over a larger range of values, with a significant amount of links stronger than 0.25.

The average link strength is 0.20.

Figure 4.13: Visualizations of the excitatory connectivity and inhibitory connectivity maps de-
tected in microfluidic compartmentalized hippocampal cultures at DIV 12 after axotomy.(a) Stan-
dard visualization of the excitatory connectivity map. The number of connections parallel to the
electrode columns reduced significantly after axotomy. (b) Standard visualization of the inhibitory
functional connections detected. Most of the links are long - range.
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Figure 4.14: 3D visualization of the excitatory links identified in microfluidic compartmentalized
hippocampal culture at DIV 12 after axotomy. The number of electrodes with maximum clustering
coefficient significantly reduced, in fact, the overall clustering coefficient decreased to 0.23.

Figure 4.15: Characterization of the functional excitatory links detected in microfluidic compart-
mentalized hippocampal culture at DIV 12, 12 hours after axotomy. (a) Probability histogram of
connections’ strength. The average connection strength is 0.2. (b) Probability histogram of con-
nections’ length. Most of the links are short-range - the most frequent length is 0.2. (c) Probability
histogram of connections’ delay. The average delay is 4.3 ms.
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The inhibitory connections are, on average, longer than the excitatory ones, as seen in the

histogram comparison of the connections’ length, in Fig.4.16. All inhibitory connections present

the same delay - 12.5 ms.

Figure 4.16: Histogram comparison of the excitatory and inhibitory connections’ length. In-
hibitory connections are on average longer.

4.7 Discussion

The results obtained for the connectivity inference in synthetically generated data are in agree-

ment with what was expected since maximum strength connections were identified between spike

trains fully synchronized and low strength connections were detected between spike trains inde-

pendently generated. Also, the delay of the detected links was concordant with the data generation

process. The algorithm is, therefore, capable of detecting and correctly characterizing functional

links. The results obtained in synthetic data can be used as a solid baseline for the interpreta-

tion and comparison of the real data connectivity inference analysis results. In fact, comparing

the strength of the excitatory links detected in the unconstrained cell cultures with the baseline,

it is possible to classify them as weak since their average strength is significantly smaller than

the strength of synthetic biological connections and approximates to the linking strength of spike

trains independently generated. The weakness of the links may be explained by the fact that the

neuronal cultures grew unconstrained so, the likelihood of having a neuron placed directly above

a microelectrode is low. The signal picked up has, therefore, a low signal-to-noise ratio since it

is a sum of local field potentials generated by transient imbalances in ion concentrations in the

space outside the cells. The unconstrained cultures grew freely with no imposed structure. The

CMs obtained for the analysis of the electrical activity of these cultures reflect the randomness of

the networks connections since no apparent organization is perceptible. In the same way, the flat

appearance of the connections’ delay and length histograms shows the diversity of connections

identified.

In contrast, the connections detected in the microfluidic compartmentalized cultures are strong:

the average strength of the excitatory links has the same order of magnitude as the strength of

the biologically simulated links. The detection of strong connections is related to microfluidic
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structural imposition. The axons are aligned with the electrode columns, which allows for the

acquisition of high signal-to-noise ratio extracellular recordings. The majority of the connections

are short-range, between neighbor electrodes, for the same reason. The excitatory CM of the

culture before axotomy reveals the structural architecture imposed since the presence of parallel

connections and the absence of transversal links to the electrode columns is evident. These con-

nections are located in the same location where the microfluidic was placed, revealing the success

of the microfluidic compartmentalization process. After axotomy, the presence of parallel connec-

tions is reduced, which may be explained by cell death. In fact, the global clustering coefficient

also decreases, indicating that the aggregation of the network was reduced. Before axotomy, the

electrodes that participated in the connections inside the grooves presented maximum clustering

coefficient, meaning that they were tightly interconnected. After axotomy, only a few of those

electrodes present maximum clustering coefficient, suggesting that the spike propagation inside

the grooves was impaired.

The results obtained for the detection of inhibitory connections were inconclusive since the

linking strength of the identified connections was close to zero. More, all the connections detected

had the same delay, which is not biologically realistic and is most probably a result of hardware

noise.

The different CM’s visualizations allow for the thorough inspection of the structure of the

discovered network. The curved lines view of the CM may uncover hidden connections. On the

other hand, the three-dimensional visualization is interactive and can be rotated to observe the

structure from different perspectives. As a result, the user increases its knowledge about the net-

work’s architecture. The development of the different visualizations, therefore, filled a gap in the

literature, by producing more informative visualizations of the CM and making the interpretation

of the results easier.

All in all, it was proven that the algorithm can reliably detect excitatory functional connections

in electrophysiological data with high signal-to-noise ratio, such as in microfluidic compartmen-

talized cultures. The pipeline developed is also capable of revealing the underlying structure of the

discovered network, by producing informative views of the excitatory CM and bridging the faults

of traditional visualizations. Finally, the clustering coefficient proved to be an important metric to

characterize network aggregation.
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Chapter 5

Experimental Setup

The spinal cord is the information highway of the nervous system, moderating the communi-

cation between the outside world and the brain. Unlike the brain, the spinal cord has reduced

spontaneous activity: neurons are mostly driven by external stimuli. Bearing this, the study of the

electrophysiological activity in ex vivo spinal cord slices involves necessarily the stimulation of

the sample. In theory, the stimulation will trigger neuronal responses, allowing for the uncover

of local spinal circuits. MEAs are capable of performing simultaneous recording and stimulation,

making it the ideal acquisition tool to study spinal cord connectivity. Experiments in the labora-

tory were carried out with hardware from MultiChannel Systems (MCS, Germany). MCS offers a

wide range of tools to control data acquisition and stimulation. In fact, it provides an Application

Programming Interface (API) that allows you to programmatically control the MCS devices using

external software. This library was used to automate the stimulation of all electrodes of the MEA

and the recording in between stimuli, with the objective of reducing the experience’s duration and,

therefore, increase the viability of the spinal slices.

This chapter overviews the experimental setup, explaining how the data acquisition/stimulation

protocol was implemented and how the spinal slices can be prepared for use with the protocol. The

chapter ends with the validation of the developed routine.

5.1 Experimental setup overview

The total experimental setup can be observed in Fig. 5.1. The acquisition and stimulation system

is constituted by the computer with the MCS software connected to the MEA-2100 system. The

MEA containing the spinal cord slice kept in artificial cerebrospinal fluid (ACSF) is inserted into

the system, as shown in Fig.5.1. The slice should be put in the center of the ring to guarantee that

the electrodes are right below the sample. Once the sample is put on the MEA and the oxygenation

ceases, its deterioration starts, so it is of utmost importance that the experiment is performed as

fast as possible, if perfusion is not available. With this in mind, the protocol was designed to

fulfill this requirement, by eliminating the need for interaction with the system in the course of the

experiment.
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Figure 5.1: Experimental setup. The acquisition is carried out by the computer and the MEA-2100
system. The MEA containing the spinal cord slice is placed inside the headstage.

5.2 Spinal cord slice preparation

Laboratory Wistar rats (P14) were terminally anaesthetised (by intraperitoneal injection of Na+-

pentobarbital) and decapitated, in accordance with national guidelines(Direcção Geral de Veter-

inária, Ministério da Agricultura) and the institutional Ethics Committee. The vertebral column

was quickly cut out and immersed in ice-cold oxygenated artificial cerebrospinal fluid (ACSF).

Slices from the lumbar enlargement were dissected and used as preparation. Given the unavailabil-

ity of an appropriate tissue slicer, 1mm thick slices had to be cut manually with a blade (scalpel).

Individual slices were kept in oxygenated ACSF, at room temperature, until used in the micro-

electrode array. All measurements were done at 22–24 ◦C. During the experiment the slices are

kept in ACSF.

5.3 Data acquisition and stimulation routine

Given the objectives of the project, it was necessary to implement a custom-made data acquisi-

tion and stimulation protocol, using MCS available software tools. In this section, it is made an

overview of the hardware and software used and a description of the routine. Finally, the imple-

mentation of the protocol was validated.

5.3.1 Electrophysiological system overview

The electrophysiological recordings performed in the present dissertation were carried out mak-

ing use of MEA2100- System, a commercially available in vitro system for extracellular record-

ings using MEAs, provided by Multichannel Systems (MCS) [1]. The MEA2100 - System consists

of several components: MEAs, headstage, interface board and PC with software, as depicted in

Fig.5.2.
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Figure 5.2: MEA-2100 system overview. The MEA100-System consists of several components:
MEAs, headstage, interface board, PC with software. Adapted from [1].

The headstage is the core element of the system. It is where the MEA is placed and is respon-

sible for data acquisition, signal amplification, and digitalization. Several MEAs are compatible

with the headstage, however, in this work, it was only used a 256-electrode MEA. The headstage

also provides an integrated stimulus generator, which can produce current or voltage stimulation

signals on two independent channels for the MEA2100-256-Systems. The data acquisition is per-

formed by an A/D converter integrated into the headstage, it is done on all channels simultaneously

to ensure data quality. The acquisition parameters, such as the sampling rate, can be defined using

the MCS software. More, the amplification system is designed in such a way that the recorded

signals are amplified close to the signal source, which minimizes noise. The system has a fixed

hardware gain of 10 and a resolution of 24 bits. Any MEAs’ combination of electrodes can be

selected for stimulation. The stimulus features such as the amplitude, duration, and frequency are

implemented and controlled using the MCS software.

The interface board is the connecting element between the headstage and the computer. It

receives the signal from the headstage and allows for real-time signal detection and feedback

through a digital signal processor (DSP). This interface connects to the computer and has other

digital and analog outputs for synchronization with other instruments. More detailed information

can be found in the MEA2100-System brochure [65].

5.3.2 MCS software

MCS offers a software solution for the acquisition and analysis of electrophysiological data: the

Multi Channel Suite. This package consists of three tools: the Multi Channel Experimenter - an

interface that allows for online analysis and graphing of the signals acquired and control of data

acquisition settings; the Multi-Channel Analyzer - an offline analysis tool and; the Multi Channel

DataManager, which facilitates the data export for analysis with third-party programs.

The Multi Channel Experimenter enables the selection of the stimulation electrodes and the

construction of the stimulation pattern through an interface that can be observed in Fig.5.3. After

its design, the stimulus pattern is downloaded onto the DSP and can be triggered at any moment by

clicking the start stimulator button. The data acquisition is also activated and stopped in the inter-

face, by pressing the Start/Stop DAQ switch. Every time the stimulation electrode or the waveform

changes, the stimulus needs to be downloaded and the user needs to activate the stimulator again,
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Figure 5.3: Multi Channel Experimenter: stimulus design interface. Easy-to-use drag and drop
interface, you simply create your virtual experiment with e.g. data source, filters, spike detection,
and recorder. The software indicates the battery level and signal quality and displays the data in
real-time.

requiring a continuous interaction with the interface during the course of the experience, which

may be time-consuming and unpractical. Despite Multi Channel Experimenter being a useful

tool for the design and performance of simple experiments, it does not take full advantage of the

hardware. So, MCS has made available an API through a dynamic link library (DLL) - a .NET

interface to all MCS devices - which allows for the development of custom-made software with

fine control over hardware settings.

The DLL is a collection of small programs that can be loaded and used by a larger program,

letting it communicate with an MCS device, such as the stimulus generator, STG200x, or the data

acquisition system, DAQ. The library is divided in classes dedicated to the control of different

MCS devices. Thus, one can emulate the actions performed in the Multichannel Experimenter in

a third party program, such as Matlab, and automate a stimulation/recording routine.

5.3.3 Stimuli/recording protocol

The purpose of the protocol is to automate the sequential stimulation of a set of electrodes and

the data acquisition in between stimuli. The automation of the routine has the potential to reduce

the experience’s duration and, thereby increase the viability of live excised spinal cord samples

since it eliminates the need for interaction with the software. The protocol was implemented in

Matlab since it is a high-level programming language, which is widely used in the laboratory,

allowing for future iterations in the code to be made by other members of the group. Fig.5.4

illustrates the flow chart that characterizes the sequence of actions encompassed by the routine.
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Figure 5.4: Flowchart explaining the sequence of actions that make the data acquisition and stim-
ulation routine.

First, the user ought to define the stimulus waveform - its duration and amplitude - the number

of repetitions of the stimulus and, the interval in between pulses. It is important to ensure that the

stimulus does not damage the electrodes as positive pulses can lead to the formation of titanium

oxide on the MEA surface. Only negative voltage pulses or biphasic current pulses applying the

negative phase first should be applied. After that, the user specifies the order in which the elec-

trodes will be stimulated and the sampling rate. Before the electrode scanning, all the electrodes

need to be disabled for stimulation, to guarantee that no electrodes other than the required one

are stimulated. At each stimulation iteration, the stimulation target electrode is enabled and the

previously activated electrode disabled, the stimulus is, then, downloaded onto the DSP and the

blanking activated. The blanking circuit disconnects the electrodes from the amplifiers, each time

the stimulation is triggered, avoiding stimulus artifacts on the recording electrodes and the satura-

tion of the amplifiers. The blanking period is approximately 600 µ before and after the stimulus.
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Finally, the stimulation is triggered and the data acquisition is performed during T seconds.

In the experiments performed, the stimulation pulse was a square wave, with the first phase

negative, a 2000 mV peak to peak amplitude and a period of 400 ms. Two repetitions with an

interval of 500 ms were performed per electrode, the sampling rate was set to 5 kHz and the

acquisition’s duration was 2 seconds.

5.3.4 Validation

The validation of the routine developed was divided into two parts. First, the data acquisition

was tested and its performance compared with the Multi Channel Experimenter then the stimula-

tion procedure was verified by assessing if the stimulus is picked up by other electrodes submerged

in a conductive fluid - phosphate-buffered saline (PBS). The validation step is essential to verify

that the communication between the PC and the headstage is being performed correctly, assuring

that the protocol fulfills its purpose.

5.3.4.1 Data acquisition

MSC provides an objective tool for testing data acquisition settings and MEA related software,

without using biological samples - the 256MEA Signal Generator (MEA-SG). It can be used for

training, controlling and troubleshooting purposes, reducing the number of animal experiments

and saving laboratory equipment. The device, depicted in Fig.5.5, produces sine waves or real sig-

nals in a digitized form. These signals are read as analog signals by the MEA-System, enabling for

the use and test of the complete MEA-System. The MEA-SG generates different signals depend-

ing on the dual in-line package (DIP) switches positions and the number of control button presses.

For the validation of the data acquisition script, the MEA-SG was programmed to generate a sine

wave with 1.25 Hz frequency and 3 mV peak-to-peak voltage.

Figure 5.5: 256MEA Stimulus Generator. The position of the control button and the DIP switches
determines which stimulus is generated.

Fig.5.7 depicts the signal recorded during 3 seconds. All electrodes recorded activity with a

high signal-to-noise ratio (SNR), pointing to the hardware’s good condition. Comparing the signal

registered with the custom-made script by electrode H12, Fig.5.7 (a), with the recording made by
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Figure 5.6: Signal read in each electrode with the MATLAB custom-made data acquisition proto-
col. The signal is acquired with a high signal-to-noise ratio.

Multi Channel Experimenter, Fig.5.7 (b), it is possible to confirm that the signal acquired by both

methods has the same amplitude and frequency, hence validating the data acquisition protocol.

Figure 5.7: (a) H12 electrode signal read with the custom-made script.(b) H12 electrode signal
read with Multichannel Experimenter.

5.3.4.2 Electrode scanning

The electrode scanning was tested in an MEA filled with PBS, a conductive solution. In the

validation experiment, two electrodes (A2 and P16) were stimulated sequentially. The resulting

recordings are shown in Fig.5.8 and Fig.5.9. One can observe that the signal is picked up by

other electrodes other than the stimulation target electrode and that when one electrode is targeted

for stimulation the previously activated electrode is disabled, corroborating the success of the
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implementation of the protocol. In the recording of the stimulation electrode, Fig.5.8, the stimulus

waveform is perceptible and zooming in it is possible to identify the blanking period.

Figure 5.8: Signal read in each electrode after stimulation of A2 electrode. It is possible to see
that the signal is picked up by nearby electrodes.

Figure 5.9: Signal read in each electrode after stimulation of P16 electrode.A stimulation artifact
is recorded in nearby electrodes.
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5.4 Results

The electrophysiological activity of the spinal cord slice was acquired with the protocol above

described. For each channel, spikes were detected as being local maxima (or minima) with am-

plitude higher than the median of the signal plus 5 times the standard deviation, and a minimum

separation in between peaks of 1 ms. The stimulation of each electrode produced a 40 mV artifact,

as seen in Fig.5.10, which corrupts the signal and hinders spike detection. So, the stimulation pe-

riod has been removed from each channel. Taking a closer look at two spikes identified in channel

A2, Fig.5.11, it is possible to observe that they are detected immediately after the blanking pe-

riod and to identify them as stimulation artifacts. The signal was filtered to remove these artifacts

and optimize spike detection. First, a high-pass Butterworth filter with 200Hz cutting frequency

and order 6 was applied to remove slow oscillations and correct the baseline, then, the signal was

filtered with a low-pass Butterworth filter with 2000Hz cutting frequency and order 6 to elimi-

nate rapid oscillations that characterize stimulation artifacts. Spikes were detected again using a

threshold of 8 times the standard deviation plus the median of the signal. The resulting raster plot

is depicted in Fig.5.12. Inspecting the voltage trace of the identified spikes, a specific shape, seen

in Fig.5.13, is noticeable. The peak rises considerably above the threshold, reaching 600µV .

Figure 5.10: Voltage trace of the period of stimulation in channel A2. The stimulation produces a
40 mV artifact.

The excitatory connectivity map obtained from the functional connectivity analysis is shown in

Fig.5.14. Since the objective was to detect functional connections between neurons, the maximum

velocity threshold was set to 400 mm/s, whereas the minimum delay threshold was set to 1 ms. A

total of seven excitatory links were identified. The average delay of the detected links is 10.00 ms,

the average strength is 0.13 and the mean connection length is 0.80 mm. The average clustering

coefficient is zero. No inhibitory connections were discovered.
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Figure 5.11: On top, voltage trace of a segment of the signal acquired on the channel A2 with the
identified spikes marked. On the bottom, it is shown a zoomed view on the highlighted spike. It
occurs immediately after the blanking period, suggesting that it is a stimulation artifact.

Figure 5.12: Raster plot of the spikes detected using the thresholding method. Spikes were de-
tected as being local maxima (or minima) with amplitude higher than the median of the signal plus
8 times the standard deviation, and a minimum separation in between peaks of 1 ms.
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Figure 5.13: Filtered voltage trace of A2 channel with detected spikes(red markers). The spikes
are identified near a peak of 600 µV , a value not compatible with that of action potentials.

Figure 5.14: Excitatory links identified on the spinal cord slice recording. The average strength of
the links is 0.13.
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5.5 Discussion

The stimulation protocol was successfully implemented as it was capable of controlling the

acquisition settings: all electrodes were randomly stimulated as the data was being recorded. Since

no human intervention was necessary, it was possible to perform the experiment in 8.5 minutes,

while the sample was still viable.

The signal acquired was corrupted by stimulation artifacts. Even though the filtering procedure

was able to eliminate most of them, there was still some detected as spikes, as exemplified in

Fig.5.13. The peak voltage, approximately 600 , and the waveform of the detected spikes in

Fig.5.13 are not compatible with those of action potentials. Moreover, analyzing the raster plot,

a pattern is noticeable: spikes occurring at stimulus delivery concentrate on groups of channels

with successive hardware IDs, which may be a result of the wiring of the MEA hardware. This

reinforces the idea that most of the spikes detected are stimulation artifacts. Their presence can

be explained by the high conductance of the ACSF and potential contaminations on the MEA

surface resulting from improper cleaning. This way, when an electrode is stimulated the signal

is propagated to neighbor electrodes and the stimulation artifacts are observed. For this reason,

the results from the connectivity inference analysis are inconclusive since the obtaining of a clean

signal was not possible and the identified links are most probably a result of correlations between

noise.

The absence of biological signals can be explained by the improper cutting of the sample. The

spinal cord is surrounded by a set of membranes that has greater resistance than the spinal cord

itself, which makes obtaining a clean cut with a scalpel a challenging task. This way, most cells

die during slice preparation because the cut damages them. On the other hand, this cutting method

makes it difficult to obtain a sample with a smooth surface, thereby, when the slice is put on top of

the MEA some parts of the sample do not contact with the electrodes.

The quality of the signal acquired could be improved by using 3D MEAs, which are constituted

by a set of needle electrodes that penetrate the tissue and acquire the signal locally with a high

signal-to-noise ratio, thereby, assuring that the electrode is in contact with the slice. Moreover, the

likelihood of triggering a neuronal response could be increased by stimulating directly the afferent

pathways. This method would involve the usage of a microscope to localize the individual nerves

targeted for stimulation.

Even though the acquisition of spinal activity was not possible, the custom-made protocol

proved to be suitable for the precise control of the acquisition settings. The automatization of the

routine permitted to reduce significantly the experience’s duration and, as a consequence, increase

the sample’s yield. This way, it was possible to perform a complex stimulation protocol without

compromising the viability of the sample. This work has paved the way for the development of

custom-made protocols, by providing a framework to control the acquisition hardware.
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Conclusion

The spinal cord is an important structure in the central nervous system that conveys information

from the outside world to the brain, allowing for the reaction to threats and the perception of

changes in the environment. Patients with lesions in this structure are highly incapacitated, so,

there has been a great deal of research mobilized to the development of therapies that aim to restore

the function of the spinal cord, such as neuroprosthetics. The development of the said therapies

requires a detailed description of the spinal circuitry and the underlying mechanisms of integration

and transmission of information. This work focuses on the ascending tracts, the neural pathways

by which sensory information from the peripheral nerves is transmitted to the cerebral cortex,

whose coding mechanisms are still poorly described. In light of this, it was developed a library

- SensorySimLib - which extends the functionalities of the NEURON simulation environment to

construct a high-level, realistic representation of the ascending tracts. The model built can be used

to test different architectures and coding strategies that may arise from experimental findings. In

fact, it was demonstrated that the model can effectively code absolute temperature in the cooling

range, by using a combinatorial code and stimulus location at the different levels of information

integration. The model still presents limitations - it cannot code temperature change, for instance -

but can be extended to encompass other coding mechanisms and stimulus modalities. Furthermore,

the library provides methods for the testing of the model with real spiking data, allowing for the

refinement of specific experimental parameters.

Electrophysiology has the potential to uncover spinal circuitry since the correlation between

the electrical activity of neurons may indicate the existence of functional connections between

them. With this in mind, it was implemented a pipeline to detect functional connections in data

recorded with microelectrode arrays. The connections are detected using the FNCCH algorithm

and the resulting connectivity matrix is filtered to obtain biologically plausible links. Three differ-

ent views of the connectivity map were developed to highlight hidden connections and more easily

visualize the structure of the network. The algorithm was successful in identifying the excitatory

connections and structure imposed by microfluidic compartmentalization. However, the results

obtained for the identification of inhibitory links were inconclusive.
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Spinal cord slices have very limited spontaneous activity, thereby, the study of the electrophys-

iological activity in ex vivo spinal cord slices involves necessarily the stimulation of the sample.

MEAs are capable of performing simultaneous recording and stimulation, making it the ideal ac-

quisition tool to study the spinal cord connectivity. An acquisition and stimulation routine was

designed to automate the stimulation of all electrodes of the MEA and the recording in between

stimuli. Using the custom-made protocol, it was possible to record the activity of the slice. How-

ever, the signal acquired was corrupted with stimulation artifacts that resulted from the improper

slicing of the sample. Only a few biologically realistic functional connections were identified,

which were insufficient to reveal spinal circuits. Nevertheless, the custom-made protocol proved

to be suitable for the precise control of acquisition settings, while reducing the experience’s dura-

tion and, as a consequence, increasing the sample’s yield.

Even though the work developed does not directly answer the research questions presented in

the Introduction, it provides a set of tools that can be further explored to solve them. SensorySim-

Lib provides a framework to test different mapping and coding hypotheses in the ascending tracts.

The custom-made protocol allows for the development of complex automated routines compatible

with spinal cord stimulation. The connectivity inference pipeline can reveal functional connections

in high signal-to-noise ratio electrophysiological data and, hence, uncover the spinal circuitry.

All in all, the developed tools - the computational model of sensory integration, connectivity

inference algorithms and visualization, and automated experimental protocols - paved the way for

a better understanding of the mechanisms of information integration in the spinal cord, through

the improvement of data acquisition and analysis methodologies of MEA electrophysiology ex-

periments.
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Future Work

Even though this work allowed the development of pioneer tools for the study and analysis

of sensory information integration mechanisms and spinal circuitry, there are some aspects that

could be further improved. Concerning the model developed, its complexity was not sufficient

to replicate all the results gathered from the literature. Therefore, additional mechanisms for

neuronal information coding should be implemented. More, SensorySimLib could be extended

to encompass other stimulus modalities. On the other hand, extra layers should be added to the

model to represent the full extent of the ascending pathways, from the skin to the sensory cortex.

In theory, the connectivity inference framework should be able to detect both inhibitory and

excitatory connections, however, it is more robust for the detection of excitatory links. As so,

a new method for the detection of inhibitory links should be developed. Furthermore, the filter-

ing procedure could be enhanced by implementing methods of greater complexity than the ones

used, and other graph theory related metrics could be extracted to further characterize the network

detected.

Another limiting aspect of this work was the irregular surface of the spinal cord slices, due

to the use of an improper cutting tool. This could be improved by using an adequate slicer or

by acquiring the data with 3D microelectrode-arrays since their needle electrodes penetrate the

sample and ensure maximum surface contact. On the other hand, the stimulation of the ascending

pathways during data acquisition could increase the probability of triggering activity in the spinal

circuits and, as a consequence, increase the likelihood of detecting them with the connectivity

inference framework. Finally, the removal of the stimulation artifacts either by reprogramming the

acquisition settings or by doing post-processing of the signal could increase the quality of the data

acquired and, consequently, improve spike detection. Through all the processes above mentioned

the data acquired would have better quality and therefore could be used to test SensorySimLib

with real data.
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