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Abstract

Airline companies struggle every day trying to schedule crew, flights and aircraft. Tail Assign-
ment is the problem of allocating individual aircraft to a set of flights, while ensuring multiple
constraints and aiming to minimise an objective function, such as operational costs. Given the
enormous amount of possibilities and constraints involved, this problem has been a study case
for the last decade. Many solutions have emerged using classical computing, but with limitations
regarding performance. Quantum Annealing (QA) is a heuristic technique for finding global mini-
mum energy levels over an energy landscape using quantum mechanics. Due to its characteristics,
it has been proved to have a clear advantage in solving some complex optimisation problems,
being a promising technique to apply in multiple fields.

In this study, Tail Assignment Problem was set as a Quadratic Unconstrained Binary Optimi-
sation (QUBO) model, using two different techniques, and was solved using a classical and two
hybrid solvers. Tests were run based on extractions from real-world data, analysing the perfor-
mance of the implementation in terms of time, scalability and quality (i.e., the lowest operational
costs) of the obtained solutions.

We concluded that using a library for modelling the problem as well as considering individual
flights rather than pre-aggregating them in strings can be a bottleneck when it comes to its scala-
bility. Furthermore, we found out that there was a higher probability of obtaining better solutions
for this problem using one of the hybrid solvers when compared with the classical heuristic al-
gorithms such as Simulated Annealing (SA). These findings can serve as foundations for further
studies.
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Resumo

As companhias aéreas lidam, diariamente, com dificuldades operacionais no planeamento de trip-
ulação, voos e aviões. A alocação de aeronaves a voos é um problema complexo uma vez que
é necessário garantir múltiplas restrições tentando minimizar uma certa função de custo, como,
por exemplo, custos operacionais. Dada a volumosa quantidade de possibilidades e restrições en-
volvidas, este problema tem sido um caso de estudo durante a última década. Várias propostas de
solução têm surgido utilizando computação clássica, mas com limitações sistemáticas no que diz
respeito à performance. Arrefecimento Quântico é uma técnica heurística que permite encontrar
um nível mínimo de energia de entre um dado grupo de níveis de energia, utilizando física quân-
tica. Considerando as suas características, esta técnica tem-se revelado vantajosa na resolução de
alguns problemas complexos de otimização, sendo a sua aplicação promissora em várias áreas.

Nesta dissertação, o Problema de Alocação de Aeronaves foi definido como um modelo Quadra-
tic Unconstrained Binary Optimisation (QUBO), utilizando duas técnicas diferentes, e foi re-
solvido com recurso a um solver clássico e dois solvers híbridos. Foram realizados testes uti-
lizando extrações de dados de uma companhia aérea, de modo a analisar a performance da im-
plementação proposta no que concerne a tempo, escalabilidade e qualidade (i.e., custo mínimo
operacional) das soluções obtidas.

Concluímos que utilizar uma biblioteca para modelação, bem como considerar os voos de
forma individual e não agrupados em strings, pode limitar a escalabilidade do problema. Con-
statámos ainda que a utilização de um dos solvers híbridos permitiu obter com maior probabili-
dade soluções menos dispendiosas quando comparada com a utilização de um algoritmo clássico,
como Arrefecimento Simulado. Estas conclusões poderão servir de base para futuros estudos.

Keywords: Arrefecimento Quântico, Alocação de Aeronaves, Computação Quântica
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Chapter 1

Introduction

This chapter starts by giving a brief introduction and explaining the context of this study, in sec-

tion 1.1. Following, section 1.2 presents the motivation behind this dissertation as well as a suc-

cinct definition of the main objective. By the end of the chapter, in section 1.3, the main contribu-

tions of this dissertation are presented and, in section 1.4, a pithy description of the structure of

the document is given.

1.1 Context

Airlines’ sector is currently one of the most competitive industries. With the appearance of new

low-cost airlines, new marketing strategies have also appeared offering tickets with reduced prices

and new routes, with almost 22.000 regular city-pair flights by the end of 2018. The fierce com-

petition in this sector has been ensuring that airfares remain affordable to travelers. This factor

forces airlines to reduce profit margins to keep the clients, having a generated profit per passenger

of $6.85 [2].

Although over the last 20 years total costs have dropped more than 50%, this value is still a

key factor in the daily operations of the airlines. The operational costs have a big impact on the

overall value, with jet fuel representing around 24%. Due to the high fuel costs and environmental

concerns, a lot of effort has been done to avoid the usage of unnecessary fuel [1].

Airline scheduling is a complex process composed by various sequential steps, starting from

defining which airports and routes the airline company will operate, until the moment an individual

aircraft and crew members are assigned to each specific flight. The Tail Assignment Problem is

part of this process and aims to efficiently allocate individual aircraft to flights minimising a certain

objective function, such as operational costs, while ensuring some constraints [31].

Based on the concept firstly presented by Ray et al. [47], Quantum Annealing (QA) is a tech-

nique used for finding a global minimum of an objective function defined over an energy landscape

1
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using quantum mechanics [39]. Such technique has been used to solve complex optimisation prob-

lems with a very large set of possibilities aiming to find global minimum solutions [37] [44]. This

dissertation focuses on these two subjects, studying and implementing a QA approach to the Tail

Assignment Problem.

1.2 Motivation and Objectives

Forced to reduce profit margins, lowering operational costs becomes one of the main goals of

airline companies. Due to a large number of routes, aircraft and crew, scheduling and operational

management are the most complex and challenging tasks that airlines need to face every day.

Assigning aircraft to pre-defined flights is one of the most critical tasks regarding airline

scheduling, since a good allocation of resources can allow important savings. As aircraft are

not homogeneous, taking into account the specifics of each aircraft during the scheduling process

is crucial for an effective and efficient assignment of resources [31]. The Tail Assignment Problem

has been analysed over the last decade, being most of the times solved using traditional Operations

Research (OR) algorithms.

Regarding QA, recent studies have shown promising results on applying such technique to

various real-world optimisation problems, such as scheduling problems [37] [57] or flow prob-

lems [44].

Given the definition and complexity of finding a proper solution for the Tail Assignment Prob-

lem, as well as the good results when applying QA to optimisation problems, the main objective

of this dissertation is to study the feasibility of solving the Tail Assignment Problem, considering

the operational restrictions and the operational costs, using QA in order to evaluate the usefulness

of this kind of technique in such complex domain.

1.3 Main Contributions

By the end of this dissertation we were expected to have some contributions mainly by:

• Detailing a model for a complex scheduling problem, the Tail Assignment Problem

• Analysing and comparing the scalability of using two different techniques to model the same

problem, using either a library of creating a model from scratch

• Presenting a comparison between different ways of obtaining solutions for the problem us-

ing both classical and hybrid approaches
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1.4 Document Structure

This dissertation is divided into six chapters. In the current chapter, Introduction, we describe the

environment of the airline industry and define the scope of this study. Furthermore, we analyse

the how promising QA can be and why it may be useful on solving the Tail Assignment Prob-

lem. Chapter 2 provides some background knowledge to allow a better understanding of the key

concepts used in this dissertation. Additionally, in the same chapter, an analysis of the existing

related work is done, focusing on previous implementations of the Tail Assignment Problem as

well as the use of quantum computing for solving real-world problems. Chapter 3 presents the

main limitations found on the current state-of-the-art and the research questions we aim to an-

swer. Furthermore, it gives a detailed description of the problem addressed in this study, with a

brief analysis of the dataset considered for testing. Chapter 4 details the implementation of two

techniques for modelling the previously proposed definition of the Tail Assignment Problem to be

solved on a quantum annealer. Chapter 5 contains the tests performed to validate the proposed

implementation regarding time, scalability and quality of the obtained solutions. In Chapter 6 an

overview of the main conclusions of this dissertation is given, detailing, the main contributions and

enumerating some guidance for further investigation on this topic. Finally, Appendix A provides

the obtained results that were used for the analysis and conclusions of this study.
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Chapter 2

Literature Review

In this chapter, we start by presenting some background in section 2.1, followed by an analysis

on previous studies on both quantum computing and the Tail Assignment Problem in section 2.2.

Finally, in section 2.3 a brief summary is given.

2.1 Background

This section presents some background on various steps that compose the airline scheduling pro-

cess and how the Tail Assignment Problem is part of it as well as some concepts of quantum

computing.

2.1.1 Airline Scheduling Process

The Airline Scheduling Process aims to efficiently create an optimised master schedule combining

aircraft, crew flights and operational constraints. Although it may vary in some phases, this process

is usually divided into several sequential steps, happening progressively as shown in Figure 2.1.

In fact, it is possible to find studies in the literature where a same phase of the process is named

differently [31][11]. The scheduling process starts several months before the flight takes place

and is usually composed by three main consecutive steps, namely, Timetable Creation or Flight

Schedule Generation, Fleet Scheduling and Crew Scheduling [27]. When the airline scheduling

process is complete, some non-contemplated situations, like flight delays or adverse meteorologi-

cal conditions, can still happen and must be handled by the operational control centre in a process

called Disruption Management [16].

5
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Figure 2.1: Airline Scheduling Process and Disruption Management

2.1.1.1 Key Concepts

Before describing the various steps that compose the airline scheduling process, some concepts

must be defined for a better understanding of the context in which they appear.

Activity

An activity is a task that must be performed by an individual aircraft. It may be either a flight or a

maintenance task. In the context of this problem, maintenance tasks are considered as pre-assigned

activities as they must be performed by a specific aircraft.

Maintenance station

As maintenance tasks may require considerable manpower and heavy machinery, they cannot be

performed in every airport. Therefore, a maintenance station is an airport where maintenance tasks

must take place.

Routes and Flight strings

A route is a set of flights that are feasible to be executed in sequence by a given aircraft [31].

During the scheduling process, there is, frequently, an advantage in creating partial routes that

can be part of bigger routes. These partial routes correspond to aggregated flights. As shown

in Figure 2.2, when grouping flights, these are replaced by a new one that starts at the departure

airport and scheduled departure time of the first flight and ends at the arrival airport and scheduled

arrival time of the last flight. A flight string corresponds to an aggregated flight that starts and ends

in a maintenance station [9].
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Figure 2.2: Example of aggregating two flights into one. The layout on the top represents the
individual flights and the layout on the bottom represents the aggregated flight

Turnaround Time

The turnaround time, sometimes called as turn time, is defined as the minimum time needed for

an aircraft to be parked in a gate between two consecutive activities. This period of time is usually

necessary for tasks like unloading, loading and cleaning among others [30].

Aircraft Fleet

When considering the different types of existent aircraft it is possible to categorize them in two

different fleets, namely narrow-body (NB) aircraft and wide-body (WB) aircraft. These fleets

differ in the fuselage diameter and therefore in the number of existent aisles. On the one hand, a

WB aircraft is characterized by a fuselage wide enough to accommodate two aisles with seven or

more seats per row. On the other hand, on NB aircraft, the fuselage width has only space for one

aisle with up to six seats per row [28]. When it comes to flying time, the two fleets are used in

different types of flights. NB are usually used in short-haul (30 minutes to 3 hours) and medium-

haul (between 3 hours and 6 hours) flights, while WB are mostly used in long-haul (more than 6

hours) flights.

Aircraft model

Besides being divided into fleets, aircraft may also be characterized according to their model.

In fact, two aircraft from a same fleet can have some differences regarding number of seats and

associated operational costs among others. Therefore, when planning, it becomes important to

take into account the various models of the aircraft that compose the airline fleet.

Operational Costs

Operational costs are the costs related to the operation of a business. In the case of airline com-

panies, these costs can be divided in two general groups: Direct Operational Costs (DOC) and

Indirect Operational Costs (IOC). On the one hand, DOC are the costs directly related to aircraft

flying operations, such as fuel, navigation and maintenance. On the other hand, IOC are related

to the indirect operating expenses such as ticketing, sales and passenger satisfaction, among oth-

ers [43]. As a matter of fact, DOC can be further divided into two: flight operating expenses
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(costs directly related to flying activities such as fuel and navigation costs) and ground operating

expenses (the costs that are directly related to the ground activities such as maintenance tasks) [3].

Furthermore direct operating costs are the most significant costs and therefore can highly affect

the profitability of an airline company [15].

2.1.1.2 Phases of the Airline Scheduling Process

Timetable Creation

Timetable Creation is the first step and aims to construct a timetable that meets the demand for

flights between places at different times. It takes into account the commercial aspects such as

which markets are better for the airlines to operate as well as timetable synchronization among

different airlines from the same alliance 1 [22].

Fleet Scheduling

After defining a timetable, an aircraft is chosen for each flight [27]. This process is called Fleet

Scheduling and is composed by two main stages: Fleet Assignment and Aircraft Routing.

Fleet Assignment is responsible for assigning a specific aircraft type (fleet) for the scheduled

flights, taking into account a set of considerations such as forecasted demand and operational

costs and maximising the revenue [35]. On the other hand, Aircraft Routing is responsible for

determining feasible maintenance routes for each fleet or sub-fleet, according to maintenance rules

defined by the aviation authorities [31] [43]. Besides maintenance tasks, routes also take into

account the turnaround time.

Aircraft Routing only takes into account general constraints such as fuel capacity or noise

level, disregarding specific constraints for individual aircraft such as heavy maintenance tasks. To

fill this gap, the Tail Assignment Problem appears as an extension of aircraft routing. In fact,

the Tail Assignment Problem is the problem of assigning individual aircraft, also called tail, to

flights while satisfying all operational constraints and optimising some objective function [26].

Therefore, solving this problem allows a better allocation and distribution of resources (tails) by

the different needs (flights), minimising the operational costs. There are some motivations to

perform this assignment earlier such as the possibility of properly consider long-term individual

maintenance tasks [31].

Crew Scheduling

Finally the Airline Scheduling Process ends with the Crew Scheduling, which is responsible for

assigning crew members to the different existent flights. It is usually performed in two steps,

namely crew pairing and crew rostering. In crew pairing, groups of anonymous crew member

types are allocated to the pre-calculated flights, considering obligatory labor rules. In the second

step, individual crew members are assigned to specific pre-calculated pairings [32].

1An airline alliance is an arrangement between different airline companies to coordinate activities regarding the air
transportation services for mutual benefits.
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2.1.2 Quantum Mechanics

Quantum mechanics is a theory of the physical world that is not deterministic, but probabilistic,

with inherent uncertainty [34].

2.1.2.1 Key Concepts

For a better understanding of quantum mechanics and how it can be used for computation, it is

important to define some fundamental concepts.

Measurement

A quantum object does not exist in a unique and knowable state. Albeit when observed it only

seems to be in a specific state, when not observed it behaves like a wave. The process of observing

a quantum object is called "measurement" and consists of collapsing the quantum object from

its wave shape to a knowable state, losing information. Because of the loss of information, this

process is irreversible and, therefore, a measured quantum object will always have the same value

when measured.

Superposition

While representing a wave, a quantum object is said as being in superposition since it can represent

two or more states at the same time. This superposition is represented by a linear combination of

the contributing states, each one associated with a complex coefficient number that represents their

contribution to the final state. The contributing states are said "coherent".

Decoherence

Due to the impossibility of the existence of total isolated systems, the interactions of a system

with the environment result in some small measurements, partly collapsing the wave function. This

process is called decoherence and it makes the complex coefficient of each state more probabilistic.

While using a quantum system, it is important to consider the existence of decoherence as it may

affect the reliability of the obtained results.

Entanglement

Under some circumstances, two or more quantum particles can be linked in such a way that the

state of one directly affects the state of the others. Linked quantum particles are said to be en-

tangled and due to this characteristic, whenever one of the entangled particles is measured it will

collapse the state of the other particles.

2.1.2.2 Quantum Information Science

Quantum mechanics has been having multiple breakthroughs in many fields which, although hav-

ing different approaches and goals, can not be seen as totally independent. One of these fields is
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quantum computing which aims to get answers, with high probability, for problems of interest,

based on the manipulation of quantum particles [34].

Quantum computing

Through unusual properties of the quantum world, quantum computing uses a different approach

when compared with the classical approach.

Quantum computing is based on quantum particles called qubits. Similarly to a bit in classical

computing, a qubit is the basic unit of quantum information. Unlikely a classical bit, a qubit is

a two-state quantum-mechanical particle, and therefore it can be found in either one of the basic

states or a coherent superposition of both states. While on a classical bit when measured it does

not change its state, when it comes to qubits measuring it disturbs its superposition state.

The power of quantum computing comes when the system is composed by n qubits. In fact,

a n qubit system requires 2n coefficients and has 2n possible states. As mentioned in subsec-

tion 2.1.2.1, whenever a qubit in superposition is measured, it collapses to one of the basic states

and therefore, as a result, a group of n basic states is obtained.

2.1.3 Quantum Computers

Quantum computers are devices created for accomplishing practical quantum computation [34].

Regarding the existent noise on this type of device, it is possible to detect two different kinds:

fundamental noise which may appear from a spontaneous change of energy of an object and sys-

tematic noise which results from uncorrected signal interactions. The latter can occur for multiple

reasons such as manufacturing variations or abstraction on the design of the hardware.

Due to the novelty of this topic, a lot of different definitions and considerations can be con-

sidered. When it comes to the classification of the different types of existing quantum devices,

there is no consensus on the research community regarding which devices are not quantum or how

many different classes of quantum computers exist. As presented in Figure 2.3, quantum com-

puters can be divided in two different types, namely Quantum Annealers and Universal Quantum

Computers [24]. The main difference between these two types of computers is related to how con-

trollable the system is. While quantum annealers do not allow one to decide what happens during

the annealing process, universal quantum computers are based on the idea that each qubit may be

changed as desired.

4XDQWXP�&RPSXWHUV
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Figure 2.3: Quantum Computers Overview
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2.1.3.1 Quantum Annealer

Quantum annealers are computers designed to solve some specific fields of complex problems

based on the energetic evolution of a quantum system. To solve a problem in a quantum annealer,

it must be firstly defined into its energy levels which together define what is called an energy

landscape. These devices make use of a quantum technique called Quantum Annealing (QA)

which aims to solve optimisation problems using quantum mechanics [23]. Similarly to Simulated

Annealing (SA), QA also aims to find a global minimum of a certain function/energetic landscape,

but instead of doing such search based on the ideal of thermal jumps, QA makes use of quantum

tunnelling (a property of quantum mechanics based on the fact that each quantum particle is a

wave rather that a static particle), to find global minimum solutions rather than just local minimum

solutions [39]. Figure 2.4 highlights the main evolution difference between SA and QA.

Figure 2.4: Comparison between SA and QA. Adapted from [50]

Defining a problem in terms of its energy levels, can be done through what is called an Hamil-

tonian. It is a mathematical operator that maps a physical system in terms of its energies. The

Hamiltonian is important as it can map different states of the system (eigenstates) to energy levels

easily allowing a separation between the lowest energy states and the excited states. The group of

different eigenstates that compose a system is called eigenspectrum and represent all the energy

levels of the system. The system Hamiltonian can be mapped as shown in equation 2.1,

Hising =−
A(s)

2

(
∑

i
σ
(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+
B(s)

2

(
∑

i
hiσ

(i)
z +∑

i> j
Ji, jσ

(i)
z σ

( j)
z

)
︸ ︷︷ ︸

Final Hamiltonian

(2.1)

where the initial Hamiltonian represents the initial state of the system in which all qubits are

set in superposition and the final Hamiltonian, also called problem Hamiltonian, represents the

problem aimed to be solved defined on its different energy levels [7].
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Regarding the problem Hamiltonian, h and J represent the biases and coupling strengths which

are the biases and coupling strengths of the qubits. Biases and coupling strengths can be consid-

ered as controllable external factors that can influence the system in such a way that some qubits

will be more favourable to fall to a certain state upon measurement. While biases only affect the

probability of a certain qubit as an individual, the coupling strengths are related with the probabil-

ity of two linked qubits to be measured with the same result. Coupling strengths are in some term

related to the entanglement phenomena.

Starting from the lowest energy level of the initial Hamiltonian throughout the annealing pro-

cess the problem Hamiltonian is introduced and therefore other energy levels are also integrated

in the system. While annealing, some energy levels may get closer to the ground state, and there

is a point where the lowest energy state apart from the ground state gets closer and then diverges

again. As presented in Figure 2.5, this minimum distance between the ground state and the first

excited state is called minimum gap. The lower the minimum gap, the higher the probability of

the system to end up in an excited state. In fact, current quantum annealers not being perfectly

isolated some external factors, may cause the system to jump to a state of higher energy. Even

though, for the majority of the situations the energy states obtained are still useful.

Figure 2.5: Eigenspectrum of a system. Adapted from [7]

The most well-known existent quantum annealers were developed by a Canadian company

called D-Wave Systems, which has already developed devices with 2048 qubits. Although this

represents a significant accomplishment, these machines still have considerable trade-offs in qubit

fidelity, with the presence of some analog errors [40]. Such devices are composed by a processing

unit called Quantum Processing Unit (QPU) which is organized in the form of a chimera graph of

256 unit cells. A chimera graph is a structure composed by sets of unit cells. As represented in

Figure 2.6, each unit cell is composed by eight qubits each one of them connected to other four

qubits.
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Figure 2.6: Structure of the D-Wave’s QPU chimera graph. Adapted from [5]

2.1.3.2 Universal Quantum Computers

Universal Quantum Computers follow a different approach when compared with quantum anneal-

ers. Through a well defined and controlled sequence of changes (applying quantum gates) on some

qubits of the Hamiltonian of the system, it aims to achieve the desired transformations in such a

way that the final state is representative of the problem to solve. This approach is highly similar

to the implementation of classical computers.

Since the changes are performed on the scale of the qubit, precision is one of the main issues

that need to be addressed. It is possible to distinguish two main kinds of universal quantum com-

puters, namely Noisy Intermediate-Scale Quantum Computer (NISQ) and Fully Error-Corrected

Quantum Computer. Thus far, only NISQ (sometimes also referred to as near-term devices) are

already implemented as they are designed to tolerate some noise. The best NISQ developed so far

has a maximum of 53 qubits [8].

2.1.4 Quantum Algorithms

The power of quantum algorithms comes from the possibility of taking advantage of the entangle-

ment of n qubits. When entangled, n qubits are described by 2n complex coefficients. Therefore,

when updating one of the qubits all the qubits are updated which means that all the 2n complex

numbers that describe the total state of the system are also updated. Thus, it seems that multiple

computations are performed with just one step. To take advantage of the computational power of

quantum computers, many algorithms have appeared since the end of the last century. Although

a lot of time has passed since the first algorithm was proposed by Deutsch and Jozsa [20], only a

few algorithms have appeared in this area with the majority of them being proposed to solve well-

known and defined mathematical problems. In fact, due to its novelty, the existence of quantum

algorithms for real-world case scenarios is still limited.
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As some quantum computers may suffer some errors, it is possible to find algorithms that

were created to be run on specific devices that guarantee (or not) certain characteristics such as

error-correction [34].

Following the same division as the one previously presented for computers, a possible way of

categorising the existent quantum algorithms is dividing them by the type of computer they were

designed for.

Quantum Annealing Algorithms

These algorithms work by representing the problem using an Hamiltonian. Starting from a low-

energy state defined by the initial Hamiltonian (or tunnelling Hamiltonian) where all qubits are in

superposition the system evolves in the direction of the problem Hamiltonian where the lowest-

energy level represents the solution for the defined problem. Whenever the anneal ends each qubit

of the system will no longer be an object in superposition but a well defined classical object.

In order to formulate a realistic problem for being solved in a quantum annealer, it must be

possible to be transformed into a Binary Quadratic Model (BQM). A BQM can be formulated

using two different approaches, namely Ising Model and Quadratic Unconstrained Binary Opti-

misation (QUBO) form, with a trivial conversion between them [41]. These approaches aim to

model the energy of the system in order to make favourable (less energetic) the best states, so that,

whenever the system evolves, the minimum energy is found as well as a solution for the problem.

To control the evolution and result of the system, it is possible to control the values of both biases

and coupling strengths between qubits. As the system aims to find the lowest energy-state, for

each qubit, the higher the value of the bias the lower the probability of such qubit to be part of

the solution (take the final value of 1). Similarly, for coupling strengths, the higher the value of

the coupling strength between two qubits the lower the probability of both qubits to be part of the

solution.

An Ising model is traditionally used in statistical mechanics and each variable can have two

different basic states represented by +1 and -1. Equation 2.2 is the representation of Ising model,

Eising(s) =
N

∑
i=1

hisi +
N

∑
i=1

N

∑
j=i+1

Ji, jsis j (2.2)

where si and s j corresponds to qubits, hi represents the linear coefficients of the qubits and

Ji, j are quadratic coefficients representing the strength between each pair of connected (coupled)

qubits.

Following the same idea in the QUBO model, each variable can also assume two different

states represented by 1 and 0. Equation 2.3 represents a QUBO model,

Equbo(ai,bi, j;qi) = ∑
i=1

aiqi +∑
i< j

bi, jqiq j (2.3)
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where qi and q j correspond to qubits, ai represents the linear coefficients of the qubits and

bi, j are quadratic coefficients representing the strength between each pair of connected (coupled)

qubits.

Although presented here in a scalar notation, the biggest difference between both notations

is that QUBO model can also be redefined using an upper-diagonal matrix whereas Ising model

cannot.

In fact, a QUBO model can be expressed by a minimisation problem presented in equation 2.4

where x is a vector of binary variables and Q is an upper-triangular matrix of constants that repre-

sent the biases and coupling strengths of the considered binary variable.

minimise y = xtQx (2.4)

As many complex problems aim to minimise or maximise a certain objective function, while

ensuring multiple constraints, some changes must be considered in order to transform those con-

straints into the desired unconstrained format. It can be done by introducing quadratic penalties.

These penalties are chosen to increase the value of the objective function in a way that while being

solved, the resulting QUBO model will search for a solution avoiding incurring in those penal-

ties. Therefore, if no constraint is violated, the resulting QUBO model will still correspond to the

minimisation of the objective function [29].

Certain types of constraints have well defined penalty functions. In Table 2.1 are represented

the penalty functions associated to some boolean gates. For some of the boolean expressions, as

is the case of the ⊕ gate, an auxiliar variable may be necessary to ensure the desired penalty.

Table 2.1: Boolean penalty functions

Classical Constraint Equivalent Penalty

x3⇔ x1∧ x2 P(x1x2−2(x1 + x2)x3 +3x3)

x3⇔ x1∨ x2 P(x1x2 +(x1 + x2)(1−2x3)+ x3)

x3⇔ x1⊕ x2 P(2x1x2−2(x1 + x2)x3−4(x1 + x2)a+4ax3 + x1 + x2 + x3 +4a)

As an example, let us consider the given problem:

minimise y = f (x)

subject to constraint

x3 = x1x2

where x1, x2 and x3 are binary variables. The resulting unconstrained problem could be defined

as in equation 2.5.

minimise y = f (x)+P(x1x2−2(x1 + x2)x3 +3x3) (2.5)
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Therefore, if f (x) is linear or quadratic, this unconstrained problem is defined in the format of

a QUBO model, and cases where x3 = x1 ∗ x2 will represent lower energy levels than the ones that

violate the constraint.

Albeit being a simpler and still good approach, some studies have shown that for some non-

deterministic Polynomial time (NP)-complete 2 problems and particularly for 3-satisfiability (3-

SAT) 3 problems, the performance of this kind of algorithms decreases exponentially with the size

of the problem [56], so there is still a lot of unknowns on how well this type of computing can

perform in different situations.

More recently, some algorithms that try to put together QA with machine learning have ap-

peared. These algorithms aim to reduce the time needed to train a Boltzmann machine4 when

compared with classical algorithms [36].

Universal Quantum Algorithms

The algorithms that can run on universal quantum computers are the ones that, due to their granu-

larity and detail, allow one to know with high accuracy all the transformations that happen while

computing the solution. Besides the algorithm proposed by Deutsch and Jozsa [20], other im-

portant algorithms were proposed by Shor [52] for integer factorization in polynomial time and

by Grover [33] to find a unique input for an unknown function that produces a particular output.

Furthermore, and due to the current limitations of universal quantum computers, some other

algorithms have been developed to run on a hybrid approach taking care of the possible existent

errors in the quantum devices. The quantum approximation algorithms are the ones that aim to

solve the problem by using an approximate or heuristic approach. These algorithms are mainly de-

signed considering a hybrid quantum-classical approach, providing useful approximation results

for the problem using low resources. Variational quantum algorithms are the group of algorithms

that run interactively starting from a guess as input and trying to improve the input on the next

iterations until reaching a good result. These algorithms normally run on both quantum and clas-

sical devices, using the quantum computer to perform the optimisation step, while the classical

computer verifies whether or not a new iteration should be executed [34]. Examples of variational

algorithms are the Variational Quantum Eigensolver (VQE), which divides a big problem in the

sum of small problems and treat them independently [46], or the Quantum Approximate Optimi-

sation Algorithm (QAOA), that tries to solve an optimisation problem through a variational guess

of the wave function that satisfies the problem [21].

2NP-complete is the set of NP problems that are reducible between each other in polynomial time. A NP problem
is a decision problem for which it is not possible to find a solution in polynomial time, but an existent solution can be
verified in polynomial time.

3A 3-SAT problem is a satisfiability problem that was proven by Miller et al. [42] to be NP-complete.
4A Boltzmann machine is a stochastic neural network that can be defined based on a Hamiltonian
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2.2 Related Work

In this section, an analysis of the related work is performed in order to understand what is the state-

of-the-art on both Tail Assignment Problem and quantum computing fields. Firstly and due to the

numerous existent studies, a succinct review is performed on the different approaches already used

to solve the Tail Assignment Problem. Furthermore, a brief analysis is done on the research studies

that apply quantum computing to real-world problems. Due to the shortage of studies on this field,

a wider approach is considered, taking into account related research topics such as scheduling

problems.

2.2.1 The Tail Assignment Problem

Contrarily to the other steps of the airline scheduling process, the Tail Assignment Problem has

been studied more intensively only over the last decade.

Grönkvist [31] studied an hybrid approach, using constraint programming and a branch-and-

price algorithm, a well-kwown algorithm used in OR for solving Linear Programming (LP) prob-

lems which obtains a solution using branch-and-bound together with a price problem [10]. By

defining the Tail Assignment Problem as a set partitioning problem based on pre-calculated routes,

it starts by modelling the problem as a Constraint Satisfaction Problem (CSP). Such modelling is

important for generating an initial feasible solution that is later optimised using a branch-and-price

algorithm solving the problem for a fixed period of time and taking into account some specific ac-

tivities and irregular schedules. The combination of both algorithms allows improving initial solu-

tions that respect operational constraints such as maintenance, turnaround times and pre-assigned

activities. Testing the effectiveness of such approach, the authors applied the model in a real-world

scenario helping an airline company to reduce costs minimising the need for aircraft leasing. Fur-

thermore, it also revealed that the Tail Assignment Problem is a NP-hard problem.

In Borndörfer et al. [13] the author presents an approach for solving the Tail Assignment

Problem in such a way that the resulting schedule is robust to flight delays. Making use of a branch-

and-price algorithm that take advantage of historical data for short-haul flights, the resulting model

is thought to be used together with a column generation algorithm.

Following also a branch-and-price algorithm, Ruther et al. [49] presents a solution for the Tail

Assignment Problem together with the crew pairing. This approach is thought to be executed only

few days before the operation, creating scheduled routes for specific aircraft instead of generic

ones. Considering specific aircraft details such as location, maintenance plan and flying history,

aircraft routes can be designed using updated information. This approach was tested using real

world data, proving to be a valid solution.

In Froyland et al. [25] the authors solved a recoverable version Tail Assignment Problem

for being used during the Disruption Management phase, by creating a model for recover from

flight delays while ensuring minimum recovery costs. Such model was solved using Benders

decomposition, a technique for solving linear programming, by breaking down the problem into

two stages solving two smaller sub-problems [12].
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In Montoito [43] the author presents a solution for the Tail Assignment Problem using SA

with an adaptive neighbourhood local search approach. Starting by obtaining an initial feasible

solution using a First-In-First-Out (FIFO) approach, it made use of a SA algorithm to minimise

the operational costs. As result, this study pointed out that, when applying it to a real case scenario

of a Portuguese airline company, it can save thousands of euros when compared with a solution

where all aircraft are considered to be homogeneous.

In Yadav [59] the authors considered a multi-objective optimisation using a genetic algorithm

in order to minimise the operational cost while maximising the flight distance. When compared

with a lagrangian relaxation, this approach performs better returning optimal paths which are

essential for facing operational issues. Despite the good results presented, this study took into

account a small dataset.

Albeit the Tail Assignment Problem takes into account individual aircraft characteristics, some

studies have focused on creating schedules by only solving Fleet Scheduling without taking into

consideration Tail Assignment, and therefore, different aircraft from a same model end up being

considered homogeneous. Here, we detail two of those studies. In Barnhart et al. [9] the authors

presented a solution for solving the aircraft routing problem together with the fleet assignment

through the generation of flight strings. The problem was then solved making use of a branch-

and-price algorithm. In Zhao et al. [60] the authors reveal a solution for the fleet assignment

problem considering different aircraft models and their characteristics as well as the scheduled

flights. This approach aims to maximise the final revenue while finding out a suitable solution in

a timely manner.

2.2.2 Quantum Computing

Considering the different algorithms mentioned in subsection 2.1.4, QA algorithms are the ones

with more applications in real-world problems, with some few implementations of QAOA ap-

pearing in the latest years. Due to the few research developments in this area, no studies were

found applying QA to the Tail Assignment Problem. Therefore, a wider analysis was performed

searching for another kind of problems that could have an implementation using this approach.

Tran et al. [54] present an hybrid quantum-classical approach. Through the division of com-

plex problems in smaller sub-problems, the authors used a quantum annealer to obtain strong

candidate solutions for each of the considered sub-problem. On the other hand, the classical pro-

cessor keeps a global search tree while ensuring that the global problem keeps all the necessary

constraints that are relaxed on the considered sub-problems. Some empirical experiments were

done mapping three different scheduling real problems into a QUBO formulation, concluding

that, for most of the cases, a quantum annealer can be useful for pruning and guidance on the

search process in a global search tree approach.

In Venturelli et al. [57] the authors propose a solution for the Job Shop scheduling problem

using a QA approach. By modelling the problem as a BQM they concluded that, although the used

quantum annealer was limited for solving the problem, the usage of hybrid approaches and meta-

heuristics were fruitful and should exist further investigation on such area. Furthermore, they also
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concluded that pruning unnecessary variables is an important step as it may highly reduce the size

of the problem.

Moreover, Stollenwerk et al. [53] tried to implement flight gate assignment minimising the

total time for transit passengers. Converting this NP-hard problem to a QUBO model, they tested

how a quantum annealer, in this case a D-Wave 2000Q, could perform solving this problem. Due

to hardware limitations, only a small portion of the real data from a mid-sized German airport was

considered, concluding that extracting problem instances from data can lead to a QUBO model

with distributed coefficients, reducing the success probability.

Another study was also performed in D-Wave 2000Q quantum annealer, but this time for

solving the Nurse Scheduling Problem with hard constraints Ikeda et al. [37]. In this study, the

authors started by using a QUBO model and then translating it to an Ising model. It concluded

that satisfiable solutions could be achieved using QA but only for small samples due to hardware

constraints. They also shown that, for some cases, applying reverse annealing, i.e., a technique to

refine good known local solutions, on the results from the QA implementation improved the final

solution. Finally, a test was performed trying to decompose the big problem in smaller problems

using an existent library called qbsolv that iterates over the smaller problems using a Tabu search

technique. This approach also helped to get satisfiable solutions for the problem.

Analyzing now the application of QA on another type of real-world problems not involving

scheduling, only few results were found. On their study Neukart et al. [44] implemented a sim-

plified version of the traffic flow problem for the German company Volkswagen testing it in a

D-Wave 2000Q device. Using the library qbsolv this study shows that QA is suitable for this kind

of problems.

Some other QUBO models were also defined for well-known problems such as the graph

partitioning problem [55], the maximum clique problem [17], the traveling salesman problem [45]

or the minimum multi-cut problem [18]. Furthermore, in Lucas [41] the author proposes an Ising

formulation for multiple well-known NP-hard and NP-complete problems, that can be run on a

quantum annealer.

When it comes to other quantum approaches, Vikstål et al. [58] present a partial implemen-

tation of the Tail Assignment Problem using QAOA. In this study the goal was to find a feasible

solution considering some constraints. Due to the limited capabilities of the used quantum com-

puter, a limited number of pre-calculated routes (using branch-and-price) was considered, ensuring

that one of these routes was a solution with all the flights assigned. It also considered that all the

aircraft would be used. As a goal, the implementation was converted to an Exact Cover/Set Parti-

tioning Problem, where each route was selected by exactly one tail and no flights were included in

two of the selected routes. Furthermore, it was able to find a solution satisfying all the constraints

disregarding the costs.
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2.2.3 Key findings

For the Tail Assignment Problem, as presented in Table 2.2 it is possible to understand that heuris-

tic algorithms were used for all the studies with branch-and-price being the most common. Thus,

such heuristic algorithm returned satisfactory results for the majority of the cases. It is also notice-

able that the minimisation of costs is one of the main objectives in most of the studies. Multiple

other studies have been developed regarding aircraft routing and fleet assignment, with most of

them using the same OR algorithms for solving the proposed problems.

Table 2.2: Summary of the Tail Assignment related work

Reference Algorithm Optimisations Use Real Data Remarks

Grönkvist, 2005 [31]
Constraint Programming

+

Branch-and-price

Minimise medium-haul

connections
Yes

1. Fast initial solution

2. Allow reducing aircraft leasing

3. Can get highly quality solutions

Borndörfer et al., 2010 [13]
Stochastic programming

+

Branch-and-price

Minimise the probability of

delay propagation
Yes

Generalization for other

problems (e.g. crew scheduling)

Ruther et al., 2017 [49] Branch-and-price
Minimise routing

+

Minimise pairing cost

Yes

Combined:

aircraft routing

+

crew pairing

+

tail assignment

Froyland et al., 2013 [25] Benders decomposition Minimise recovery costs Yes
Possibility of reducing

recovery costs upon

disruption

Montoito, 2016 [43] SA Minimise operational costs Yes

1. Fast initial solution

2. Allows savings when compared to

the current implementation for the

considered airline company

Yadav, 2017 [59] Genetic
Minimise operational costs

+

Maximise flight distance

Unknown Small dataset

Regarding the applications of quantum computing, one of the main issues to point out is the

existent hardware limitations that restrict implementations to be simplified and tested with only

a few amount of data. As presented in Table 2.3, most of the existent studies solving complex

real-world problems used a QA approach. The majority of them used hybrid techniques with a

quantum computer running the most difficult calculus while a classical algorithm was managing

the direction of the evolution of the solution. Some good results were obtained, suggesting that

further research should be considered.
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Table 2.3: Summary of the Quantum Computing related work

Reference Device Addressed Problem Algorithm

Tran et al., 2016 [54] Quantum Annealer
Mars Lander Task Scheduling

Hybrid
Airport Runway Scheduling

Venturelli et al., 2016 [57] Quantum Annealer Job-Shop Scheduling Hybrid

Neukart et al., 2017 [44] Quantum Annealer Traffic Flow Hybrid

Stollenwerk et al., 2019 [53] Quantum Annealer Flight Gate Assignment QA

Ikeda et al., 2019 [37] Quantum Annealer Nurse Scheduling QA + Hybrid

Vikstål et al., 2019 [58] Universal Quantum Computer Tail Assignment QAOA

Summing up, it is possible to conclude that the Tail Assignment Problem is a problem that

has been studied over the last decade most of the times in a perspective of minimising operational

costs and making use of heuristic algorithms commonly associated to OR. Furthermore, it is also

understandable that although having some scalability issues, QA has successfully been applied to

multiple complex optimisation problems of considerable sizes, being a hot research topic in the

last years. Furthermore, the unique application of a quantum approach to the Tail Assignment

Problem was developed for a universal quantum computer and revealed the need of a lot of pre-

processing being only able to find feasible solutions rather than cost optimised solutions. Since

QA has been proven to be extremely useful solving multiple NP-hard problems and, to the best of

our knowledge, has never been applied to the Tail Assignment Problem, this study aims to fulfil

such gap.

2.3 Summary

The Tail Assignment Problem is the problem of assigning individual aircraft to flights considering

specific maintenance needs and regulatory constraints while minimising operational costs. Such a

problem has been solved using multiple OR algorithms.

Quantum computing is a sub-field of quantum information science, that aims to solve comput-

ing problems using quantum mechanics. Due to its inherent properties, it follows the fundamental

principles of quantum mechanics such as measurement, superposition, entanglement, among oth-

ers. QA is a technique that aims to solve optimisation problems on real quantum devices consider-

ing the inherent existent noise. Multiple algorithms have been developed for the different quantum

computers being the NISQ and quantum annealers the ones with algorithms already tested in phys-

ical devices. Regarding the application of QA to the Tail Assignment Problem, no studies were

found so the present study aims to fulfil such a gap.
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Chapter 3

Problem Statement

Section 3.1 summarises the identified main limitations in the studies found in the literature. A

detailed description of the problem is given in section 3.2. In section 3.3, the three main research

questions we aim to answer in this dissertation are presented. Finally, in section 3.4, we analyse

the dataset used posteriorly to test the quality of the implemented solutions.

3.1 Current Limitations

As presented in Chapter 2, the existent solutions offer great alternatives for the Tail Assignment

Problem, but some of them require the calculus of an initial feasible solution and sometimes also

pre-calculated routes are required. In fact, since solving the whole problem at once is highly

complex. Usually, an iterative approach is used to improve an existent solution through heuristic

algorithms, which may end up not searching in the proper direction, finding sub-optimal solutions.

As the majority of these algorithms are somehow probabilistic and due to the lack of knowledge

of which is the best solution, it becomes difficult to conclude when the algorithm should put a stop

to the incessant search for an even better solution.

3.2 Proposal

The purpose of this dissertation is to model the Tail Assignment Problem for being solved in a

quantum annealer. Instead of focusing on an implementation that would cover all the possible

constraints and scenarios, in this study, we focus on a simplified version of the problem. Our

goal is to obtain a scalable modelling for a QA approach that can be useful for understanding the

viability of further investigation on solving the full version of the problem using such technique.

As described in subsection 2.1.1, the Tail Assignment Problem aims to solve the problem

of assigning timetable/scheduled flights or pre-defined routes to a tail, so that all flights have an

assignment and all constraints are met.

23
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We define the Tail Assignment Problem as the problem of assigning a set of scheduled flights

to a set of tails, ensuring that multiple operational constraints are satisfied while minimising the

associated objective function.

This section describes the constraints and optimisation criteria and the assumptions used to

narrow the scope of the problem.

3.2.1 Constraints

As previously proposed by Grönkvist [31], the considered proposal of current work for the Tail

Assignment Problem takes into account some specific constraints defined by four different groups:

Assignment Constraints, Connection Constraints, Maintenance Constraints, and Flights Restric-

tion Constraints. The main goal of using such constraints is to guarantee that the obtained solutions

are feasible for a simplified real-world application.

3.2.1.1 Assignment Constraints

Assignment constraints are responsible for ensuring that no activities are left unassigned and that

each activity is attributed only to one tail. Following this constraint, it is possible to guarantee that

each and every flight is allocated exclusively to one aircraft.

3.2.1.2 Connection Constraints

Connection constraints are the most basic ones and can be as simple as ensuring that two activities

may connect one another, i.e., can be operated in sequence. To operationally define these con-

straints, network modelling techniques are often used. These techniques can be classified as cyclic

if they repeat for a finite period of time, or non-cyclic if initial and final activities are defined.

Regarding the network modelling, there are two different techniques to be considered: connection

network and time-line network [51] [9].

The connection network is a modelling technique that represents each activity as a node of a

direct graph and each legal pair of nodes is connected by an arc. A pair of activities is considered

legal and an arc may be established between them, if, not only the outbound (or departure) airport

of the second activity is the same as the inbound (or arrival) airport of the first activity, but, also, the

departure time of the second activity is later than the arrival time of the first activity, considering

the turnaround time. If a connection does not satisfy the defined constraints then it is considered

illegal and, therefore, not represented in the graph [31]. Figure 3.1 is an example of a connection

network involving four airports, seven flights and three tails.
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Figure 3.1: Connection network example

On the other hand, as firstly presented by Hane et al. [35], the time-line network represents

each airport as a time-line in which each node represents the departure or arrival of a flight to or

from that airport. In Figure 3.2, there is a representation of a time-line network of the previous

example.

Figure 3.2: Time-line network example

Aiming to solve a problem involving scheduled activities, in this dissertation we considered

a non-cyclic connection network in which nodes represent activities and edges represent possible

connections between them. In other words, two connected nodes represent a pair of activities that

can be performed by the same tail and each group of connected nodes represent a valid sequence

of flights that can be assigned to the same tail. The latter is, in the context of this dissertation,

called as valid path. As activities must happen at a specific date and time, no backward edges are

valid.

3.2.1.3 Maintenance Constraints

Maintenance constraints are one of the most important operational constraints. Despite being

generally set by national and international agencies, each airline is responsible for, following pre-

determined guidelines, define types (also known as checks) of maintenance and time intervals in

which they should take place. Maintenance tasks are usually divided into two categories: pre-

assigned tasks and minor maintenance tasks. On the one hand, minor maintenance tasks can be
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performed in short intervals of time and are not pre-defined, but rather depend on tail usage. On

the other hand, the pre-assigned maintenance tasks are defined by a long term maintenance plan

and are usually more time consuming as they require the aircraft to be on the ground for long

periods. An example of different maintenance checks may be found in Table 3.1.

Table 3.1: Example of maintenance checks and intervals. Adapted from [43]

Maintenance Checks Interval Category

T Before each flight

MinorT1 36 hours

T2 8 days

A 4 months

Pre-assignedB 8 months

C 24 months

In this study, we only considered pre-assigned maintenance tasks, in which a maintenance

plan, including the location and time of each task, is provided beforehand. Such constraints ensure

that each tail is available and on time at the proper airport to perform the scheduled maintenance

task.

3.2.1.4 Flight Restriction Constraints

Another type of constraints that should be taken into account while creating a valid schedule is

Flight Restriction Constraints. These constraints ensure, among other things, what is known as

curfews. Curfews limit the possibility of certain flights to be operated by certain tails as these

tails are not allowed to land on the destination airport due to noise or aircraft size restrictions.

Furthermore, Flight Restriction Constraints exclude the assignment of flights to tails that do not

have enough fuel tanks or seats, or that do not meet the required fleet to operate it.

In this study, we considered that each flight has a minimum required fleet as well as a minimum

number of seats corresponding to the demands which must be met. Therefore, tails belonging to a

smaller fleet or not having the required number of seats were considered as being unfit to perform

the flight.

3.2.2 Optimisation criteria

As mentioned in subsection 2.2.1, several studies consider the optimisation criteria as the min-

imisation of a certain objective function. Although there are multiple approaches to this problem,

many studies use this function to lower the operational costs associated with a given solution [43].

Other studies have used this objective function to minimise the number of medium length connec-

tions [31].
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In this dissertation, we set an objective function to minimise some of the operational costs, as

presented in subsection 3.2.2.1. Although not being part of the objective function, other costs are

included as part of the total cost of any obtained solution as described in subsection 3.2.2.2.

3.2.2.1 Objective Function

As presented in Chapter 2, operational costs may be divided into two main groups: IOC and

DOC. In this study, we only included the DOC related to the execution of flights by tails. In

fact, as scheduled maintenance tasks associated with each tail are inherent and immutable, no

Maintenance Tasks’ Costs were considered in our objective function. Furthermore, costs related

to the time a tail remains on the ground not performing any activity, here called Standby Parking

Costs, are also not included in the objective function.

Figure 3.3 is a representation of the various costs taken into account in our study. Although

these costs are all related to the execution of a flight by a given tail, for a matter of simplicity, we

divided them into three parts: Ground costs, Takeoff/Landing costs, and Flying costs.

Ground costs are fixed for different airports and depend on the chosen aircraft model. They

are branched in two parts: Airport Handling fee and Turnaround Parking cost. Airport Handling

fee is a fixed value corresponding to the cost of loading and unloading the aircraft. Turnaround

Parking cost depends on the amount of time an aircraft takes to complete loading and unloading

procedures.

Takeoff/Landing costs correspond to the Takeoff and Landing fees that an airline company

must pay for the usage of the airport runway. As different airports may have different Takeoff

and Landing fees, we consider these costs as airport-dependent. Thus, Takeoff and Landing fees

depend on the departure and arrival airports, respectively.

Finally, the Flying costs are associated with the air-time and are split into two parts as well:

Jet Fuel costs and Air Traffic Control (ATC) costs. Jet Fuel cost is the monetary value of the fuel

needed for a certain aircraft to perform the desired flight. ATC cost is the value charged for the

monitoring done by the air traffic controllers as well as taxes that each country charges for flying

over the country air space during the flight. ATC cost is considered as being time-dependent and

Jet fuel cost as distance-dependent. The flight duration is given by the scheduled block time (i.e.,

the difference between the scheduled departure time and the scheduled arrival time). The flight

distance is the length between the two airports it connects.

Therefore the objective function is defined as in equation 3.1, where F represents the set of all

flights that must be performed.

Ob jectiveFunction =
F

∑
f
(Airport Handling Costs f +Turnaround Parking Costs f+

+Takeo f f Fees f +Fuel and ATC costs f +Landing Fees f )

(3.1)
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Figure 3.3: Distribution of the considered operational costs on the different moments of a flight

3.2.2.2 Solution Total Cost

Although some of the costs are not considered by the objective function, they still need to be

included in the total cost of any solution. As presented in equation 3.2, the total cost of the

solution is obtained by adding Maintenance Tasks’ Costs and Standby Parking Costs to the costs

associated with the execution of the flights, as previously defined in the objective function.

Solution Total Cost = Ob jective Function+
F

∑
f

Maintenance Tasks′ Costs f+

+
T

∑
t

Standby Parking Costst

(3.2)

3.2.3 Assumptions

Due to the specific scope of this dissertation, multiple aspects of a real-world application were

not granted. Besides the simplifications previously presented, we took into consideration some

assumptions to easily deal with the problem.

i) While calculating a solution for the problem, we assumed that it was always possible to

obtain a valid solution assigning all the flights;

ii) A pre-defined turnaround time value was chosen, disregarding tail or flight characteristics;

iii) Tails did not have an initial pre-defined location.

The first assumption is taken as it is not desirable that all flight are part of the schedule. In

fact, leaving flight without any tail assigned can bring negative effects to the airline company, as it

would require to compensate the clients that would not be able to fly to their desired destination.
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The second assumption was taken into account the assumptions also considered by Mon-

toito [43] where the turnaround time was considered as a fixed value corresponding to the average

of this time in different situations. Furthermore, Grönkvist [31] also indentifies that such time does

not vary too much so it can be considered as an average in some cases for a matter of simplicity.

Finally, the third assumption was considered since there was no knowledge on the initial loca-

tion of each one of the tails.

3.3 Research Questions

Considering the previously identified issues and taking into account the encouraging results of

solving combinatorial problems using QA [48], some research questions arise. In this study, we

formulated three main questions to guide us throughout the modelling of the Tail Assignment

Problem for such a technique.

Those questions were:

RQ1. Can the Tail Assignment Problem be modelled to run on a quantum annealer?

RQ2. Is this approach scalable?

RQ3. Are the results obtained from such modelling favourable?

To answer the first question we start by detailing our definition of the problem in section 3.2,

followed by presenting a possible modelling of it in Chapter 4. Aiming to answer questions two

and three, in Chapter 5, we run some experiments and analysed the obtained results.

3.4 Dataset Analysis

For a proper validation of the proposed solution, a dataset was provided by the Portuguese airline

company TAP Air Portugal1. It is composed of 1965 short and medium-haul flights that together

connect 25 different airports resulting in a total of 55 unique city pairs (i.e., pairs of locations

that are connected by at least one flight). Each airport is identified by its IATA (International Air

Transport Association) code. Moreover, the considered airline fleet is composed of 42 different

aircraft and 30 maintenance tasks of types A and C. This dataset is representative of part of the

flights performed by this company during September 2009.

3.4.1 Flights Analysis

With 1965 short and medium-haul flights, the dataset corresponds to 30 days’ data summing up a

total of 4003 block hours. Block hours are defined by the time interval between the moment an

aircraft closes the door at the departure airport to perform a flight until the moment it is opened

again upon arriving at the destination.

1http://www.flytap.com/

http://www.flytap.com/
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Among other information, each flight is characterized by both scheduled time of departure and

arrival, as well as an expected number of seats demand (i.e., the minimum number of seats that

the tail performing the flight must have).

Almost 39% of the flights are Portuguese domestic flights, i.e., flights with Portuguese depar-

ture and arrival airports. When considering international activities, almost 60% of the flights are in

European soil, mainly between Portugal and another country. The most common foreign airports

on our dataset are Spain, France and Belgium, as shown in Figure 3.4.

Figure 3.4: Top 20 most frequent connections in percentage from total number of observations

Regarding the distribution of flights by location, as shown in Figure 3.5, the influx is roughly

the same when comparing the departure and arrival airports. Almost 80% of the flights leave or

arrive in Lisbon. This is understandable as the airline company is well known for operating in a

hub-and-spoke network, i.e., the majority of the flights depart or arrive in a hub [43]. A hub is a

term that defines one of the main airports in which an airline company operates. In fact, a hub may

also be a maintenance station as maintenance tasks can be held there. A spoke is a term used for

referring to all the airports where the airline company operates and that are not hubs.

Figure 3.5: Percentage of departures and arrivals by airport
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As presented in Figure 3.6 and considering the flying time as the difference between the sched-

uled departure and arrival times, it is relevant to highlight that the average block time is of two

hours. 90% of them are short-haul flights taking between 30 minutes and three hours of flying

time.

90%

10%

Short-Haul Medium-Haul

Figure 3.6: Percentage of flights of short-haul and medium-haul

Analysing the daily distribution of flights, as presented in Figure 3.7, it is possible to under-

stand that days 24 and 25 may be considered as outliers since the number of flights on those two

days is significantly smaller when compared with the other days of the month. Disregarding those

two days, there is an average of 69 flights per day. Taking into account the considered airline fleet

of 42 aircraft, each aircraft should perform almost two daily flights on average.

Figure 3.7: Distribution of the flights by scheduled day of departure
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Moreover, as presented in Figure 3.8, the majority of the flights happen between 6 a.m (6h)

and 10 p.m (22h), so aircraft are expected to have a more intensive use during these hours.

Figure 3.8: Distribution of flights by scheduled hour of departure

3.4.2 Aircraft and Maintenance Analysis

To perform this set of flights, the dataset is composed by 42 NB aircraft, divided into 3 different

models 319, 320 and 321, with passenger seats’ capacity of 138, 136 and 210, respectively. Fig-

ure 3.9 (a) represents the percentage of tails by aircraft model, considering the total fleet of the

dataset, while Figure 3.9 (b) represents the cumulative percentage of flights that can be performed

by tails from each aircraft model regarding flights’ demand and seats capacity of the different

models. Analysing Figure 3.9, it is possible to conclude that tails of the 321 model are expected to

have a higher number of flights assigned per aircraft when comparing with tails of other models.

Figure 3.9: (a) Percentage of tails by aircraft model; (b) Percentage of flights that can be per-
formed by aircraft model

Regarding pre-assigned long term maintenance tasks (i.e., maintenance tasks of type A, B or

C), which are the only maintenance tasks our implementation focuses on, the dataset includes 30

maintenance tasks to be performed by 27 different aircraft. In fact, the dataset only has type A and
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C maintenance tasks, with an average duration of one day and one hour for type A maintenance

tasks and of approximately 15 days for type C maintenance tasks.

According to the literature, type A maintenance tasks are more frequent than type C mainte-

nance tasks [43]. Such tendency was also found in our dataset, which is composed of 28 type A

maintenance tasks and two type C maintenance tasks.

Analysing the distribution of the type A maintenance tasks, it is possible to conclude that

there is approximately one aircraft daily performing such activity. Looking into the start and

end times of the maintenance tasks, it is possible to understand that the majority of them start at

the beginning of a day, ending at the end of that same day as represented in Figure 3.10. This

schedule organization allows the airline company to take the opportunity of having the biggest

possible number of tails available when the number of flights is higher.
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Figure 3.10: Distribution of type A maintenance tasks by scheduled starting hour

Although the existing dataset only includes one maintenance station, in order to enlarge the

scope of our implementation, in this study we considered the possibility of the existence of multi-

ple maintenance stations.

3.4.3 Data Aggregation

Taking into account that the airline company operates in a hub-and-spoke model, to reduce the

number of flights it may be important to aggregate some flights. Therefore, and following the

idea presented by Montoito [43], we decided to put together flights that have a high probability of

being operated by the same tail. Bearing this in mind, we proceeded to partially aggregate data,

grouping flights with only one possible previous connection. Regarding costs, the cost of carrying

out the aggregated activity corresponds to the sum of the costs of the consecutive flights included

in the aggregation. The only exception of this algorithm are flights starting at one of the hubs.
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Such flights are not considered to be aggregated with any previous one as it could unnecessarily

interfere with the existent pre-assigned maintenance tasks.

For our dataset, by doing such aggregation, it was possible to reduce the number of flights by

15% for a total of 1677 flights, with 288 of them corresponding to aggregations. Analysing the

results presented in Figure 3.11, it is worth mentioning the relevance of some of the aggregated

flights. In fact, almost 94% of the aggregated flights correspond to flight strings, i.e individual

flights that are aggregated in such a way that the aggregated activity starts and ends in a mainte-

nance station (LIS).

Figure 3.11: Top 20 most frequent connections considering aggreagted flights. Connections
where the departure and arrival airport are the same represent aggreagted flights, whereas the
others represent individual flights

Despite the good results with such aggregation, the number of non-aggregated flights has still

a big importance in the overall set. Thus, other heuristics aiming to ensure more groups were

also tested. Using additional aggregation heuristics, it would be possible to increase the number

of groups and therefore, reduce the number of individual flights. However, when verifying such

aggregations, it would require a high number of flights not to be carried out (, position flights)

to guarantee a possible valid schedule. Since one of the main goals of this study is to calculate

a feasible solution for the existent flights, we decided to keep the original grouping rules that

guarantee a valid schedule for the flights of the dataset. Since the used dataset does not include

all the flights performed by the airline company during the considered period, it may be the case

where the missing flights would allow further aggregation.

3.5 Summary

In this chapter, we defined the scope of the dissertation, presenting the research questions that

guided the study. Furthermore, we detailed the proposal of the problem to be implemented, spec-

ifying the constraints and operational criteria. Some assumptions were further defined to reduce

the complexity of the considered problem. Finally, we characterized the dataset analysing the

distribution regarding flights, aircraft and maintenance tasks.



Chapter 4

A Quantum Annealing Approach

QA is a technique commonly used to solve a variety of hard optimisation problems, finding low-

energy states through quantum mechanics. In this chapter, we detail the whole pipeline needed for

solving the presented version of the Tail Assignment Problem on a quantum annealer. Section 4.1

gives an overview of the various phases that should be considered. Section 4.2 presents two

different ways of modelling the problem into the desired format. Section 4.3 gets an overview of

the necessary transformations for a problem to be solved on a real quantum annealer. Section 4.4

shows multiple ways to solve the problem. Finally, section 4.5 presents a summary of the chapter.

4.1 Pipeline Overview

To solve a problem in a quantum annealer, it is necessary to rethink and adapt it to better fit

the required strict specifications of these devices. When mapping a problem to be solved using

a QA technique, three main phases must be considered: Modelling, Embedding and Solving by

Sampling.

Modelling is the first phase and one of the hardest parts of the entire pipeline. We must start

by setting the whole problem into a Binary Quadratic Model (BQM), ensuring that the desired

possible solutions correspond to the lowest energy levels.

Having a proper BQM, it is then necessary to transform it into a format that will properly fit

within the requirements of the quantum annealer. Such a process is called minor embedding or

simply Embedding.

Finally, it is necessary to solve the problem obtaining the desired solution. Since the existent

quantum annealers are not fully adiabatic, i.e., do not guarantee that the lowest energy level is

always found, solving a problem implies running it multiple times, obtaining different solutions/

samples. Solving by Sampling allows a good finding of a proper solution, since it may discover

different energy levels in different samples.

35
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As Modelling is one of the hardest and most distinct parts among the different studies in

this field, we gave deeper attention to it, developing two different ways of modelling the Tail

Assignment Problem. On the other hand, and given the scope and duration of this dissertation,

Embedding and Solving by Sampling were analysed in a softer way.

Figure 4.1 presents an overview of the three phases considered for employing QA to the Tail

Assignment Problem. The first phase, Modelling, comprehends three steps for transforming the

problem into a BQM. The third step comprises two different techniques, where the first is detailed

in section 4.2.1 and the second is detailed in section 4.2.2.
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Figure 4.1: Overview of the three phases that compose the QA approach

4.2 Modelling

Answering to research question RQ1., for a problem to run in a quantum annealer, a BQM must

be formulated. A proper BQM entails the sequential execution of three main steps: Formulate the

Objective and Constraints, Redefine the Problem to a Binary Concept and finally Transform the

Problem into a BQM.

Formulate the Objective and Constraints

Starting by Formulate the Objective and Constraints, we specify and systematize the optimisa-

tion criteria and groups of constraints. Taking into account the optimisation criteria previously

presented, we state the following definition:

Objective: To minimise the considered operational costs of the schedule, i.e., to get a solution

such that each flight is performed by the tail with the lowest execution cost.

To ensure that all the scenarios are analysed, we dive deeper on the specification of each group

of constraints:

• Assignment Constraints: each flight must only be performed by one tail;
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• Connection and Maintenance Constraints: a tail must have a valid schedule regarding

arrival and departure locations and times of activities. This group of constraints can be

divided into three subgroups as follows:

– Impossible Pairing Activities: activities that have no valid path between them and

therefore cannot be performed by the same tail, i.e., a given tail cannot perform both

activities while ensuring a proper solution;

– Impossible Flights due to Maintenance: as maintenance is obligatory, tails cannot

perform flights that have no valid path for all their maintenance tasks;

– Activity Path Consistency: all consecutive activities performed by a tail must follow

a valid path;

• Flights Requirement Constraints: since each flight has a pre-defined minimum fleet and a

minimum number of seats required, a tail that meets such requirements is needed to perform

the flight.

Redefine the Problem to a Binary Concept

After formulating and detailing the problem to be solved, to Redefine the Problem to a Binary

Concept it is necessary to convert it from an optimisation problem into a decision problem.

Through the analysis of the available literature on this particular matter, it is possible to identify

solutions in which binary scenarios were defined based on whether or not some route had to be

assigned to a certain tail [58]. However, this approach required a lot of pre-processing to consider

all the possible routes and had scalability issues associated. Therefore and as an effort to minimise

the pre-processing burden of the previously presented approach, in this study our option was to

consider individual flights and tails instead of routes.

Redefining the problem into binary scenarios, we state it as follows: "Should flight X be

performed by tail Y?". Each variable of the problem is then represented as the possible assignment

of a certain flight to a specific tail.

Considering a set of F flights labeled as f = 1, ...,F and a set of T tails labeled as t = 1, ...,T ,

we define the binary variables q f ,t as the variables of the problem’s domain.

In addition to the definition of the problem’s possibilities in terms of binary variables, it is still

necessary to transform the objective and constraints to use these binary variables.

Transform the Problem into a BQM

To Transform the Problem into a BQM it is necessary to start by defining which type of model to

use. In this study, our option is to do an implementation based on a QUBO model and, therefore,

the previously defined binary variables are redefined as q f ,t ∈ {0,1}, where q f ,t = 1 represents the

assignment of flight f to tail t.

Regarding the implementation of constraints, we start by setting a connection network graph.

As we only consider pre-assigned maintenance tasks, it is necessary to define not one, but multiple
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connection network graphs, one for each tail. Each one of these graphs includes all activities

(flights and maintenance tasks) that can or have to be performed by a specific tail. In these graphs,

a maintenance task is considered as equivalent to a flight, since both of them have departure and

arrival airports, as well as a certain duration in which they occur. Nonetheless, a maintenance

activity has some particularities. The departure and arrival airports are the same and correspond

to the location where the maintenance task takes place, whereas the departure and arrival times

correspond to the initial and end time of the maintenance task.

So, while implementing a QUBO model we only deal with variables that represent the assign-

ment of flights to tails that may be able to perform them. As each graph only includes flights

compatible with the obligatory maintenance tasks of the tail, Impossible Flights due to Main-
tenance are guaranteed and, therefore, do not need to be implemented. Furthermore, for Flight
Requirement Constraints, as each tail’s graph only includes flights that can be performed by

such tail, this group of constraints is also assured and do not require further specification.

Figure 4.2 represents an example of three tails and eight flights. For a clear distinction between

the representation of flights and tails, in this example we consider tails as letters and flights as

numbers. Flights not represented on the graphs are not part of the problem. For example, as tail A

cannot perform flights 7 and 8, the corresponding variables are not part of the modelling: q7,A ;

q8,A . Throughout this chapter, we use this example as the illustrative example.
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Figure 4.2: Illustrative example of connection network graphs for three tails and eight flights. (a)
tail A can perform flights 1 to 6 and must perform two obligatory maintenance tasks, M1 in OPO
and M2 in LIS; (b) tails B and C can perform flights 1 to 8 and have no maintenance associated.
Flights 8 and 6 are not connected as they overlap in time

Regarding maintenance and since some scalability issues have appeared in the literature for

problems with a large number of variables [54], in this implementation we do not set maintenance
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tasks as part of the QUBO model. However, as they are obligatory, variables representing the

assignment of flights to tails are restricted to ensure that the final solution has, for each tail, a

schedule that guarantees the viability of its maintenance tasks.

To map the objective and constraints into a valid QUBO model, two techniques were con-

sidered, depending on whether they made use of an existent library for Constraint Satisfaction

Problems, as described in section 4.2.1, or directly set the problem in the form of a QUBO model,

as described in section 4.2.2. A detailed description of each technique is presented in the following

subsections.

4.2.1 Constraint Satisfaction Problem Modelling

As previously presented, the Tail Assignment Problem has multiple constraints that must be met

aiming to get a valid solution. Therefore, the implementation of the problem as a CSP was the first

approach to be considered in this study.

Due to the complexity of finding a good mapping between a CSP and a QUBO model, some

libraries provide a manner of doing such transformation programmatically. Dwave’s dwavebina-

rycsp1 library allows one to create a valid QUBO model, mapping individual constraints. Con-

straints are defined as a set of variables and valid configurations in the form of tuples. Each tuple

is given by a group of binary values (one for each variable of the constraint) representing the cases

that are valid for such constraint.

Let’s consider for instance a pair of variables γ and β . If these two variables must be mutually

exclusive (i.e., they cannot be assigned as 1 at the same time), then the valid configurations would

be { (1,0), (0,1) }.

To transform a given constraint into a QUBO model, D-Wave’s library makes use of a penalty

model function to set biases and coupling strengths between variables, creating a BQM that rep-

resents the desired constraint. The final QUBO model is a result of multiple small models. In the

end, the modelling of the CSP is reached and the feasible solutions have lower energy levels than

the unfeasible ones.

Being our main goal to get a valid solution with a minimum cost rather than just a feasible

solution, after converting the CSP into the desired format, we add the defined objective to the

QUBO model.

In the following sections a detailed explanation on the implemented constraints and objective

function is presented.

4.2.1.1 Assignment Constraints

Each flight can only be assigned to one tail which is the one responsible for performing it. There-

fore, variables representing the assignment of a same flight for different tails must be mutually

exclusive. Considering the illustrative example presented in Figure 4.2, ensuring that flight 7 is

assigned to either tail B or C, is implemented as follows:

1https://docs.ocean.dwavesys.com/projects/binarycsp/

https://docs.ocean.dwavesys.com/projects/binarycsp/


40 A Quantum Annealing Approach

• Constraint:

– Variables: { q7,B ; q7,C}

– Tuples: { ( 1,0 ), ( 0,1 ) }

Where ( 1,0 ) represents setting q7,B = 1 and q7,C = 0 and ( 0,1 ) represents setting q7,B = 0 and

q7,C = 1

Following the same idea, other constraints were added for the rest of the flights that can be

performed by more than one tail.

4.2.1.2 Connection and Maintenance Constraints

Connection constraints aim to ensure that two consecutive activities assigned to the same tail are

part of a valid solution. In this way, considering two activities, the arrival airport of the first

activity must be the same as the departure airport of the second activity and the first flight has to

end before the scheduled departure time of the second activity, taking into account the obligatory

minimum turnaround time between activities. In other words, recalling the concept of connection

network, two non-connected nodes represent two activities that cannot be assigned together to the

same tail and each valid path represents a sequence of activities that can be part of a same schedule

of one tail. As activities can be compared to nodes in the network connection graph, saying that

two activities are connected is similar to saying that the nodes that represent such activities are

connected. Regarding the specific case of maintenance, if two maintenance tasks for the same

tail do not take place on the same location, then a valid sequence of flights that connect both

maintenance tasks must be assigned to such tail.

Analysing the connections in each tail’s graph, we can extract: which pairs of flights are impos-

sible to be assigned simultaneously; which paths are valid; and which flights must be assigned to

ensure that all maintenance tasks can be performed. As this group of constraints is tail-dependent,

it must be analysed and implemented tail by tail.

To guarantee a proper solution, two subgroups of constraints can be defined: one to remove

the possibility of non-pairable flights and the second to obligate two indirectly connected flights

or maintenance tasks to follow a valid path, when assigned to the same tail.

4.2.1.2.1 Impossible Pairing Activities

Some activities may not be possible to be assigned together to the same tail, since there is no way

for it to perform both activities. This group of constraints can be modelled as pairs of variables

that cannot be simultaneously part of a same solution. In this case, each pair is composed by two

variables that represent the assignment of non-connected activities for the same tail. Considering

the illustrative example presented in Figure 4.2, tail A cannot perform together flights 2 and 4, so

the following constraint was added:
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• Constraint:

– Variables: { q2,A ; q4,A }

– Tuples: { ( 0,0 ), ( 0,1 ), ( 1,0 ) }

Other equivalent constraints also were considered for the variables represented in the remain-

ing pairs of non-connected nodes of each graph.

4.2.1.2.2 Activity Path Consistency

This subgroup of constraints aim to ensure the chosen schedule is valid regarding that consistency.

Three different subgroup of constraints can be defined: Path consistency between non-consecutive

flights, Path consistency between maintenance tasks and Path consistency between flight and main-

tenance task

Path consistency between non-consecutive flights

This subgroup of constraints aim to ensure that if two non-consecutive flights are assigned to the

same tail t, then all the flights of one of the existent valid paths between these two flights, are also

assigned to tail t. Doing it iteratively, for each indirectly connected pair of flights (saying flights

α and θ ), it is only necessary to guarantee that at least one of the flights that is directly connected

to θ and has a valid path from α , is also assigned to tail t.

Considering the illustrative example presented in Figure 4.2, for tail A, ensuring a valid path

between flight 1 and 6, would obligate one of the valid paths between these two flights to be

assigned to that same tail, namely flights 2 – 3 or flights 4 – 5. Implementing such constraint can

be done by setting three iterative sub-constraints (see equations 4.1, 4.2, 4.3). As represented in

equations 4.1 and 4.2, a valid path between flights 1 and 3 would require flight 2 to be assigned to

tail A and a valid path between flight 1 and 5 would require flight 4 to be performed by that same

tail. Besides, as shown in equation 4.3, a valid path between flight 1 and flight 6 would require

flights 3 or 5 to be assigned to tail A.

q1,A∧q3,A =⇒ q2,A (4.1)

q1,A∧q5,A =⇒ q4,A (4.2)

q1,A∧q6,A =⇒ q3,A∨q5,A (4.3)

Using dwavebinarycsp library, this subgroup of constraints can be modelled taking advantage

of pre-defined factories such as the implementation of the boolean gates and or or. Each of these

gates take three variables as argument (two input and one output) where the output variable takes

the value of the desired relationship between the two inputs.
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The implementation of each one of the sub-constraints defined above is divided into three

steps, named as initial f inaland , intermediateor and combinedtuple.

In the illustrative example, to implement the relationship presented in equation 4.3 these steps

go as follows:

1. initial f inaland : set an and gate between the initial ( q1,A ) and the final ( q6,A ) variables,

generating an auxiliary variable as output ( aux1 ): and(q1,A;q6,A;aux1)

2. intermediateor: set an or gate between the variables representing intermediate flights that

are part of a valid path between the initial and the final flight and directly connected to the

final flight ( q3,A ; q5,A ), also generating an auxiliary variable ( aux2 ): or(q3,A;q5,A;aux2)

3. combinedtuple: set a tuple with a configuration obligating that if the initial and final flights

are assigned to the same tail (which means aux1 = 1) then, at least one of the variables

defined in the second step is also assigned as 1 (which means aux2 = 1):

Variables: { aux1, aux2 }

Tuples: { ( 0,0 ), ( 0,1 ), ( 1,1 ) }

Since it must be done iteratively to ensure the connectivity of all possible valid paths, it re-

quired similar sub-constraints for the other indirectly connected pairs of flights.

Path consistency between maintenance tasks

If two maintenance tasks of the same tail are not to be performed on the same location, then a

sequence of flights that allow such tail to be on time in each one of the desired airports must be

assigned to it.

Considering the illustrative example presented in figure 4.2, tail A must perform an initial

maintenance task in airport of Porto (OPO) and later another maintenance task in airport of Lisbon

(LIS). Therefore, it is necessary to ensure that flight 1 and flights 1 or 6 are assigned to tail A. The

resulting boolean expression is presented in equation 4.4.

q1,A∧ (q1,A∨q6,A) (4.4)

As flight 1 must be assigned to tail A, the representative variable is removed from the problem

and variables representing the assignment of the same flight to tails B and C are not needed for the

modelling.

Path consistency between flight and maintenance task

Regarding valid paths from a specific flight to obligatory maintenance tasks, it is necessary to

guarantee that any flight that is not directly connected to an existent maintenance task, is only
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assigned to the tail that must perform that maintenance task if the valid path between both activities

(flight and maintenance task) is part of the same assignment. For example, in the illustrative

example presented in figure 4.2, for tail A to perform flight 3, it is necessary that it also performs

flights 2 and 6 to be able to connect to both maintenance tasks M1 and M2, as represented in the

boolean condition of equation 4.5. Implementing such constraints can be done using the same

steps like the ones presented for implementing equation 4.3.

q3,A =⇒ q2,A∧q6,A (4.5)

When implementing all the previously defined groups of constraints, the CSP is then trans-

formed into a QUBO model with proper values for biases and coupling strengths ensuring that

feasible solutions correspond to the lowest energy levels. As some constraints might be redundant

D-Wave’s library establishes which ones are really necessary in order to minimise the number of

variables in the final QUBO model. For the illustrative example, the resulting QUBO model in-

cludes 43 variables, 24 of them being auxiliary variables.

4.2.1.3 Objective Function

As defined in subsection 3.2.2, the objective function aims to minimise the execution cost of the

selected schedule. In fact, the problem defined with the previous constraints only ensures that

a valid solution is selected disregarding the associated costs. As a result, the presented QUBO

model has to be adapted to minimise an objective function given in equation 3.1. To implement it,

each variable get its bias reduced in such a way that variables representing cheaper assignments

have a lower bias value.

4.2.2 Direct QUBO modelling

Although using external libraries may be easier to get a formulation of the problem, when scaling

it, the generation of a proper QUBO model can become an important bottleneck. Therefore, a

direct modelling may help. In this context, a QUBO model is designed representing the Tail

Assignment Problem, keeping the same rules and constraints as defined in 4.2.1.

The QUBO model is set as a sum of six different terms that represent both the constraints and

the objective function, presented in equation 4.6.

H = γHA +ηHB1 +λHB2 + τHB3 +φHB4 +ψHC (4.6)



44 A Quantum Annealing Approach

From this equation γ , η , λ , τ , φ and ψ represent positive real-valued numbers used to tune the

relative importance of each term in the global QUBO model. HA is related to the assignment con-

straints. On its turn, terms HB1 , HB2 , HB3 and HB4 assure connection and maintenance constraints.

Finally, HC is the term responsible for setting a lower energy value to solutions with minimum

value of the objective function. To assign values to the different tuning parameters, it is important

to take into account that some of them may incorrectly affect the others. For example, the value

of ψ must be chosen sufficiently small not to violate any of the constraints of the problem. We

considered the following notation:

T : set of all tails

F : set of all flights

M : set of all maintenance tasks

Tf ⊂ T : subset of T that can perform a given flight f

Ft ⊂ F : subset of F that can be performed by a given tail t

I f ⊂ Ft : subset of Ft that cannot be assigned together with a given flight f

IC f ⊂ Ft : subset of Ft that is indirectly connected to a given f on the corresponding tail’s

connection network graph

Mt ⊂M : subset of M that must be performed by a given tail t

4.2.2.1 Assignment Constraints

Since it is desirable that all flights are assigned to exactly one tail, a quadratic penalty is intro-

duced for schedules not meeting such condition. The implementation of this constraint follows

equation 4.7.

HA =
F

∑
f

(
Tf

∑
t

q f ,t −1

)2

(4.7)

Such constraint is set by defining a negative bias to each one of the individual variables q f ,t and

a positive coupling strength, for each pair of variables { q f ,t ; q f ,t ′ }, where the latter corresponds

to the assignment of a same flight to different tails.

4.2.2.2 Connection and Maintenance Constraints

As previously described, connection and maintenance constraints aim to guarantee that the ob-

tained solution is valid regarding sequences of flights while ensuring all pre-defined maintenance

tasks can be performed by the correspondent tail.
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4.2.2.2.1 Impossible Pairing Activities

This subgroup of constraints is set to penalise the cases where two flights ( f , f ′ ) that have no valid

path between them are assigned simultaneously to the same tail ( t ). As defined in equation 4.8,

it penalises variables that represent non-pairable flights.

HB1 =
T

∑
t

Ft

∑
f

I f

∑
f ′

q f ,tq f ′,t (4.8)

4.2.2.2.2 Activity Path Consistency

To ensure that the chosen schedule is valid regarding path consistency, an extra penalty is added

on paths that are not valid. Three different subgroup of constraints can be defined: Path con-

sistency between non-consecutive flights, Path consistency between maintenance tasks and Path

consistency between flight and maintenance task

Path consistency between non-consecutive flights

To ensure path consistency between two non-consecutive flights, equation 4.9 penalises all pairs

of indirectly connected flights ( f , f ′ ) assigned to a tail ( t ) that do not have a valid path assigned

to that same tail. It is done by penalizing cases where p( f , f ′, t), which corresponds to the penalty

function of the boolean expression pb( f , f ′, t) in equation 4.10, has a value different than 1.

HB2 =
T

∑
t

Ft

∑
f

IC f

∑
f ′
(p( f , f ′, t)−1)2 (4.9)

pb( f , f ′, t) = ((q f ,t ∧q f ′,t)⊕1)∨w (4.10)

In equation 4.10, w = q f1,t ∨q f2,t ∨ ...∨q fn,t and [ f1, ..., fn] ∈ PF where PF represents the set

of flights that can be reached from flight f and are directly connected to flight f ′, when both flights

are assigned to tail t.

Translating the desired boolean expression defined in 4.10 to a penalty function and taking

into account the translations presented in Chapter 2, we use the conversions defined in Table 4.1,

where x3 represents the output auxiliary variables that take the value of the relationship between

the two inputs ( x1 and x2 ). As previously presented, the first two penalty functions can be found

in the literature, whereas the third penalty function was constructed for this study based on the

penalty functions of the trivial boolean relationships.
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Table 4.1: Boolean penalty functions needed for the QA approach

Classical Constraint Equivalent Penalty

x3⇔ x1∧ x2 P(x1x2−2(x1 + x2)x3 +3x3)

x3⇔ x1∨ x2 P(x1x2 +(x1 + x2)(1−2x3)+ x3)

x3⇔ (x1⊕1)∨ x2 P(−x1x2− x3 +2x1x3−2x2x3− x1 +2x2 +1)

Path consistency between maintenance tasks

To guarantee a valid path between obligatory maintenance tasks, a new penalty is added for the

cases where none of the flights that guarantee such path is assigned to the considered tail, as

represented in equation 4.11.

HB3 =
T

∑
t

Mt

∑
m,m′

(g(m,m′, t)−1)2 (4.11)

In this equation g(m,m′, t) corresponds to the penalty function of the boolean expression

gb(m,m′, t) presented in equation 4.12

gb(m,m′, t) = (q f1,t ∨q f2,t ∨ ...∨q fn,t)∧ (q f ′1,t
∨q f ′2,t

∨ ...∨ ...q f ′n,t) (4.12)

where [ f1, . . . , fn] ∈ MPF and [ f ′1, ..., f ′n] ∈ MNF . On one hand, MPF represents the set of

flights that are part of a valid path between the two maintenance tasks ( m and m′ ) and are directly

connected to m on the tail’s connection network graph. On the other hand, MNF represents the set

of flights that are part of a valid path between two maintenance tasks ( m and m′ ) and are directly

connected to m′ on the corresponding tail’s connection network graph. Setting boolean expression

defined in equation 4.12 can be done using the penalty functions from Table 4.1.

Path consistency between flight and maintenance task

Finally, regarding valid paths from a specific flight to obligatory maintenance task, it is necessary

to guarantee that any flight that is not directly connected to an existent maintenance task, is only

assigned to the tail that must execute such maintenance task if the valid path between both activities

is part of the same assignment. Equation 4.13 sets a penalty for solutions that do not follow such

constraint,

HB4 =
T

∑
t

Ft

∑
f

Mt

∑
m
(r( f ,m, t)−1)2 (4.13)
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where r( f ,m, t) corresponds to the penalty function of the boolean expression rb( f ,m, t) pre-

sented in equation 4.14,

rb( f ,m, t) = (q f ,t ⊕1)∨ (q f ′1,t
∨q f ′2,t

∨ ...∨q f ′n,t) (4.14)

where [ f ′1, . . . , f ′n]∈MCF , with MCF representing the set of flights that are directly connected

to maintenance task m and have a valid path to flight f on the corresponding tail’s connection

network graph.

Analysing all constraints as a whole, some redundancies may appear. Therefore, to minimise

the number of variables of the problem, while implementing each constraint, it is necessary to

verify whether or not that constraint is already assured.

Figure 4.3 shows a QUBO model of the illustrative problem for some of the constraints, in

the form of an upper-triangular matrix. Furthermore, every coefficient is multiplied by the tuning

parameter associated to the constraint it represents.

2,A 3,A 4,A 5,A 6,A 2,B 3,B 4,B 5,B 6,B 7,B 8,B 2,C 3,C 4,C 5,C 6,C 7,C 8,C

2,A -1 1 1 2 2
3,A -1 1 1 2 2
4,A -1 2 2
5,A -1 2 2
6,A -1 2 2

2,B -1 1 1 1 1 2
3,B -1 1 1 1 1 2
4,B -1 1 1 2
5,B -1 1 1 2
6,B -1 2
7,B -1 2
8,B -1 2

2,C -1 1 1 1 1
3,C -1 1 1 1 1
4,C -1 1 1
5,C -1 1 1
6,C -1
7,C -1
8,C -1

Figure 4.3: Partial QUBO model matrix for the illustrative example: 2,A corresponds to the
variable represented by the assignment of flight 2 to tail A. The colored entries correspond to the
coefficients from Equations (4.7) and (4.8) and empty entries correspond to coefficient 0.

4.2.2.3 Objective Function

Each variable q f ,t gets its bias increased depending on how smaller is the operational cost of the

assignment it represents when compared with the maximum cost possible for performing flight f .

Equation 4.15 represents the associated penalty function,

HC =
F

∑
f

Tf

∑
t

execcost f ,t

maxcost f
q f ,t (4.15)
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where execcost f ,t represents the cost of performing flight f on tail t, and maxcost f represents

the maximum cost of performing flight f in any of the possible tails.

Therefore for each flight, HC will take the value of 1 for the most expensive assignment.

4.3 Embedding the Problem

A QUBO model corresponds to the representation of a problem using logical variables. Thus, to

solve the problem using a quantum annealer, it is necessary to transform it to meet the hardware

requirements of the device. Furthermore, it is relevant to note that a QUBO model can be seen

as a graph where the variables correspond to the graph nodes and the possible links between

them represent the constraints between variables. Through a process called minor-embedding,

logical variables are transformed into Ising variables and the associated coefficients are mapped

considering the limits defined by the quantum processor [18].

Considering the scope of this work, we used the lower-noise quantum annealer D-Wave 2000Q,

specially designed for problem-solving based on QUBO models [38]. This device is composed by

2048 qubits connected in groups of 8, in the form of a chimera graph. Given the low number of

connections present in a chimera graph, two or more qubits can be forced to represent the same

variable to ensure the integrity of all the desired interactions. Thus, the number of variables that

would initially be necessary to represent a problem could correspond to a greater number of qubits

required and, therefore, raise scalability issues.

In order to embed our modelling of the Tail Assignment Problem, we resorted to a random-

ized embedding algorithm first developed by Cai et al. [14] and implemented as part of D-Wave’s

toolchain. Starting from the graph that represents the QUBO model, this algorithm defines heuris-

tics, trying to find the best way to adapt it to the desired shape. Because it is a method with some

randomness to obtain reliable results, it becomes important to run the algorithm several times,

ensuring that different embeddings are found.

Considering the illustrative example presented in Figure 4.2, embedding it using this algorithm

would require 156 qubits as presented in Figure 4.4. This figure was obtained using D-Wave’s

problem inspector 2.

A recently published study obtained better results regarding the number of qubits and time

needed to find a proper embedding of a problem using the same device. However, no implemen-

tation of the algorithm developed is yet available [19].

2https://docs.ocean.dwavesys.com/projects/inspector/en/latest/

https://docs.ocean.dwavesys.com/projects/inspector/en/latest/
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Figure 4.4: Embedding of the illustrative example. (a) representation of the QUBO’s model corre-
sponding graph; (b) representation of the nodes required for embedding the problem’s illustrative
example.

4.4 Solving by Sampling

In this dissertation, we solved the problem by sampling low energy states from the defined QUBO

model. As it is not possible to guarantee that the best solution is found by solving the problem at

the first try, multiple runs must be performed to obtain multiple samples. By the end of this process,

it is expected that, among the obtained samples, the state with the lowest energy is present.

Three different types of solvers can be defined: Classical solvers, Quantum Solvers and Hybrid

Solvers.

4.4.1 Classical solvers

Classical solvers are based on the traditional heuristic searching algorithms, such as SA or Tabu

Search or on brute-force approaches such as the Exact method [4] [6].

These solvers are important as they can be used for validating the BQM and as a comparison

for other methods, such as the quantum solvers. Comparing multiple solvers may give a better

understanding on the possibility of reaching quantum advantage for solving the proposed problem.

Running on Central Processing Units (CPUs) or Graphics Processing Units (GPUs), these solvers

do not require the problem to be embedded.

In this study we make use of an implementation of SA called SimulatedAnnealingSampler 3

here named as SASampler. This implementation is based on the idea that starting from a randomly

generated solution, changes in the value of binary variables depend on how much each variable

can alter the energy of the obtained solution.

3https://docs.ocean.dwavesys.com/projects/neal

https://docs.ocean.dwavesys.com/projects/neal
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4.4.2 Quantum solvers

Quantum solvers are solvers that run on quantum devices, solving problems that were previously

defined and embedded to fit in it. As quantum computers are expensive and rare the current existent

solutions work as remote devices, accessible through an application programming interface (API).

Using the API it is possible to submit a problem in the form of either a QUBO or Ising model,

which must perfectly fit on the quantum annealer. When the computer receives the problem, biases

and coupling strengths are associated with the qubits and couplers, respectively, and the quantum

annealing process starts. In this study we do not make directly use of these solvers.

4.4.3 Hybrid solvers

Current existent quantum devices are limited in the number of qubits they provide as well as the

number of connections between those qubits. An hybrid approach is one of the ways to decompose

the problem into multiple sub-problems and still take advantage of the quantum computer to solve

complex sub-problems.

In this dissertation, we took advantage of two different solvers proposed on D-Wave’s toolchain:

D-Wave Hybrid Solver Service (HSS) and Kerberos.

HSS 4 is a cloud-based solver developed by D-Wave for solving a problem modelled as a

BQM with up to 10000 variables, using state-of-the-art classical algorithms together with a QA,

being the latter used to solve parts of the problem. Classical algorithms run on remote classical

computers whereas the quantum annealing part makes use of the D-Wave 2000Q QPU. As HSS

is a paid product, no details are available regarding either the algorithms uses or how they are

combined.

On its turn, Kerberos 5 is a sampler that runs two classical algorithms together with a QPU sub-

problem sampler (which samples from variables that have a higher-energy impact) all in parallel,

returning the best solution of the three approaches. For the classical algorithms it makes use of

the local machine where the algorithm is being executed, whereas for the quantum annealing part

it makes use of the D-Wave 2000Q QPU.

4.5 Summary

In this chapter, we presented how the proposed definition of the Tail Assignment Problem, as de-

scribed in Chapter 3, can be redefined and modelled to be solved in a quantum annealer. Regarding

modelling, and answering to research question RQ1., two different techniques were described: one

using a built-in library for modelling CSP and another for directly constructing a QUBO model.

Moreover, we presented the embedding process that was considered for mapping the QUBO model

into the quantum annealer chimera structure, and the three categories of solvers that we took into

account to solve the problem.

4https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
5https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/intro/using.html

https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/intro/using.html


Chapter 5

Tests and Results

In this chapter we perform some tests for analysing the implemented modelling techniques and

the performance of the considered solvers using different metrics. Section 5.1 presents the tuning

parameters used in the Direct QUBO modelling when running the desired sets of tests. Section 5.2

states the algorithms used for choosing the data used in the different tests. The following sec-

tions present the three groups of tests performed. Firstly, in section 5.3 a set of tests was run for

analysing the performance of each modelling technique. Secondly, in section 5.4 we verified how

a dataset composed by flight strings instead of individual flights could affect the scalability of the

problem. Finally, in section 5.5 a third set of tests was run in order to evaluate the quality of the

obtained solutions. By the end of the chapter, section 5.6 presents an overview of the main results

and conclusions obtained with the performed tests, while section 5.7 summarises the chapter.

Moreover, for all the tests that ran on a local machine, we made use of a computer with an

Intel(R) Core(TM) i7 CPU @ 2.2 GHz and 16GB of RAM.

5.1 Tuning Parameters

The quality of the obtained QUBO model highly depends on how well it can relate to the definition

of the problem by penalising invalid solutions. In Table 5.1 we present the values of the tuning

parameters used during the performed tests. Since no rules were possible to set on the values

of these parameters, they were found empirically. Nonetheless, some relationship was possible

verified. Terms that relate fewer variables must have higher tuning values than the ones involving

a larger number of variables. Furthermore, the parameter of the objective function term must be

sufficiently small not to violate any constraint.

Table 5.1: Tuning parameters’ values for QUBO model

γ η λ τ φ ψ

5 8.5 3 4 4 0.3
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5.2 Data Selection

To run the desired sets of tests, we started by using the initial dataset as described in Chapter 3.

However, due to the amount of data and a large number of possible solutions, it was not viable

to obtain any results in useful time. Therefore, an algorithm was establish for selecting smaller

datasets while keeping the proportions of the initial dataset.

As the problem includes two different types of data (activities and tails), two algorithms were

used with similarities between them, as described in the following sections.

5.2.1 Tail Selection

Starting by analysing the dataset regarding aircraft and since all of them belong to the same fleet

(NB), to keep the existent proportions, the algorithm was defined to focus on the aircraft models.

As previously identified, the initial dataset has three different aircraft models with a bigger

number of tails from models 319 and 320.

To keep such proportion in the partial datasets, Algorithm 1 selects a given number of tails,

where each model has a probability of being chosen according to the percentage of aircraft of that

same model present in the initial dataset. After choosing the aircraft, no preference is given to any

tail and, therefore, tails from the same model have an equal probability of being chosen to be part

of the partial dataset.

Algorithm 1 Tails selection based on aircraft models’ proportions

Input: allTails (list of all tails), numDesiredTails (number of tails to select)

Output: selectedTails (list of tails selected)

1: percentages, tailsByModel,models←PERCENTAGESAIRCRAFTMODELS(allTails)

2: selectedTails = []

3: while length(selectedTails)< numDesiredTails do
4: rModel← random(0,1)

5: sumProbabilities = 0

6: for model in models do
7: sumProbabilities = sumProbabilities+ percentages[model]

8: if percentages[model]<= sumProbabilities then
9: rTail← random(1, len(tailsByModel[model]))

10: selectedTails.append(allTails[rTail])

11: end if
12: Break

13: end for
14: end while
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5.2.2 Flight Selection

To choose activities that should be considered on the partial dataset, it is just necessary to select

flights, since maintenance tasks are automatically selected when choosing tails through the pre-

vious algorithm. To selecting flights, as it is expected that they fit on a valid schedule for the

pre-selected tails, we must take into account the number of seats available on the chosen tails as

well as the pre-assigned maintenances they have to perform.

To keep proportion on the selected flights when compared to the initial dataset, they are chosen

based on the number of flights of each unique city-pair. Therefore, the bigger the number of flights

of a unique city-pair, the higher the probability of a flight of such unique city-pair to be part of

the partial dataset. To ensure that it is possible to obtain a valid schedule for the chosen flights

and tails, we thought of this process as a generation of a feasible schedule for the pre-selected

tails. An initial flight was assigned to each tail so that all tails are used. After such assignment,

and to ensure path consistency between activities, the remaining flights were obtained always

based on the flights previously selected. Algorithm 2 was used to choose a valid set of flights

to be performed by the pre-selected tails. Such algorithm works by iteratively selecting a tail

and making use of the auxiliary Algorithm 3 to choose an individual flight. The latter selects the

individual flights based on the unique city-pairs’ proportions in a way that it can be part of a valid

schedule for the tail previously selected.

Algorithm 2 Flights selection based on unique city-pairs’ proportions

Input: tails (list of tails)

Output: selectedFlights (matrix where for each row (tail) there is a list with the flight chosen

for that tail)

1: schedule = [[]]

2: for i← 1 to length(tails) do
3: schedule← SELECTFLIGHT(i,schedule)

4: end for
5: for i← 1 to numberDesiredFlights− length(tails) do
6: rTail← random(1, length(tails))

7: schedule← SELECTFLIGHT(rTail,schedule)

8: end for
9: selectedFlights← MERGEFLIGHTS(schedule)

10: return selectedFlights
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Algorithm 3 Flight selection based on unique city-pairs’ proportions

Input: tail (tail to consider for adding new flight), schedule (existent schedule)

Output: schedule (matrix where for each row (tail) there is a list with the flight chosen for that

tail)

1: function SELECTFLIGHT(tail, schedule[[ ]])

2: percentages, f lightsByCityPair,cityPairs←PERCENTAGESCITYPAIRSBYTAIL(tail,schedule[tail])

3: assigned = False

4: while not assigned do
5: rCityPair← random(0,1)

6: sumProbabilities = 0

7: for cityPair in cityPairs do
8: sumProbabilities = sumProbabilities+ percentages[cityPair]

9: if percentages[cityPair]<= sumProbabilities then
10: rFlight← random(1, length( f lightsByCityPair[cityPair]))

11: schedule[tail].append( f lightsByCityPair[cityPair][rFlight])

12: if VALIDASSIGNMENTWITHMAINTENANCES(schedule) then
13: assigned = True

14: Break

15: else
16: schedule[tail].removeLast()

17: end if
18: end if
19: end for
20: end while
21: return schedule

22: end function

5.3 Modelling Performance

Since a major focus of this study is the modelling process, we started by setting some tests on each

of the two modelling techniques developed (using a CSP library or Direct QUBO modelling). To

verify the scalability of each technique, multiple datasets were extracted from the initial dataset

considered. As presented in Table 5.2, we ran modelling tests for 12 different datasets, that are

characterized in this table by the number of tails, number of maintenance tasks, number of days

and number of flights. In fact, to analyse how each one of the modelling techniques would perform

when considering a different number of both tails and activities, we defined two sets of tails (8 and

10) and for each of them, six different sets of flights. Each set of tails was obtained making use of

the Algorithm 1. After selecting the set of tails, the sets of flights were calculated making use of

Algorithm 3 and based on the assumption that each tail would perform an average of two flights
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per day. As the modelling time could vary when executing the same test, we ran three shots for

each dataset using as a result the average of the three different runs. Furthermore, all the tests were

executed making use of the local machine as previously described.

Table 5.2: Modelling scalability test datasets

#Tails #Maintenance Tasks #Days #Flights

8

0 1 16

0 2 32

0 3 48

2 5 80

3 8 128

5 13 208

10

0 1 20

0 2 40

1 3 60

2 5 100

4 8 160

7 13 260

In Figure 5.1a, it is represented the time needed for both techniques to model the different

datasets of eight tails. Since the modelling time for the Direct QUBO modelling is significantly

smaller than the modelling time using the CSP library, Figure 5.1b represents the same modelling

time but only for the Direct QUBO modelling. Although for both models an increasing number

of activities (represented by the number of days) requires a significant increase in the time needed

for modelling, when comparing the modelling time of both techniques for the same number of

activities (number of days), CSP library takes much more time than the Direct QUBO modelling

technique, with the latter needing a maximum of 28 seconds to obtain a QUBO model for the

largest dataset. This difference may indicate that using the CSP library for modelling can represent

a scalability bottleneck.
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Figure 5.1: Time for both modelling techniques considering the 8 tails datasets

In Figure 5.2a is plotted the modelling time needed for both techniques regarding the datasets

of 10 tails. Similarly to the previous analysis, Figure 5.2b shows the modelling time only for

Direct QUBO modelling as it is significantly smaller when compared to the cases using the CSP

library. Analysing the growth rate, it is possible to understand that the modelling time increases

significantly with the number of activities for both techniques. When comparing it for the same

number of activities (same number of days), it is possible to conclude, once again, that Direct

QUBO modelling is the fastest technique.
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Figure 5.2: Modelling time for both modelling techniques considering the 10 tails datasets

Summing up, regarding time modelling, Direct QUBO modelling was the technique that per-

formed the best, for all the datasets. As we intend to solve a problem that, in a real-world scenario,

can quickly grow in size and complexity, for the following tests we used Direct QUBO modelling

in order to avoid having a bottleneck on this step.
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5.4 Flight Aggregations’ Impact

As proposed in subsection 3.4.3, and since the considered dataset belongs to an airline company

that is well-known for operating in a hub-and-spoke network, aggregating flights may have a big

impact on the number of variables needed for modelling the problem.

As maintenances are obligatory, and therefore, must be part of the solution, to verify the impact

of aggregating flights, we decided to focus on flight strings, i.e., aggregations that start and end

in the maintenance station (LIS). As identified in subsection 3.4.3, aggregating flights that were

likely to be performed by the same tail, departing and arriving to a maintenance station, resulted

in a total of 270 flight strings, each one of them composed by two flights (one departing from LIS

and one arriving to LIS).

To analyse the impact that this aggregation may have in the scalability of the problem, we

considered two datasets of flight strings.

Starting by choosing the tails for each one of the datasets, we made use of Algorithm 1, se-

lecting a group of five tails and another group of 10 tails. For the first group, just one maintenance

task was pre-assigned, whereas, for the second group, nine maintenance tasks were considered.

Regarding flights, we randomly selected, from the previously identified flight strings, a set of 144

individual flights (72 flight strings) distributed over 15 days to be performed by the first group

of tails and a set of 532 individual flights (266 flight strings) distributed over 30 days to be per-

formed by the second group. The dataset including five tails was named Dataset A, while the one

including 10 tails was named Dataset B.

In order to test the possible advantage of using flight strings over considering individual flights,

we ran tests for both datasets (A and B), comparing the modelling time and needed number of

variables when obtaining a QUBO model.

Table 5.3 represents the modelling time for each one of the datasets regarding both flight

strings and individual flights. It is notorious that the time needed for modelling the problem is

bigger for cases where individual flights were considered. The obtained results shown that using

a flight string approach largely surpasses the alternative approach.

Table 5.3: Comparison the of modelling time, in seconds, of two datasets regarding flight strings
and individual flights

Modelling time (s)
Dataset Flight strings Individual flights

A 0.182154542 12.97299304

B 8.417376267 662.8983683

Focusing now on the number of variables used to represent the problem as a QUBO model,

as presented in Table 5.4, individual flights require a bigger number of variables when compared

with the number of variables needed by the flight strings’ cases. As the current quantum annealers
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are limited in the number of qubits, minimising the number of variables to solve a problem is an

important achievement for making it scalable.

Table 5.4: Comparison of the number of variables of the QUBO model of two dataset regarding
flight strings and individual flights

Number of variables
Dataset Flight strings Individual flights

A 346 49818

B 49818 1086416

It is then possible to conclude that focusing on flight strings may be the best way to solve the

proposed problem. In fact, Montoito [43] also concluded that aggregating flights before solving

the problem would highly reduce the complexity of the problem.

5.5 Solvers’ Performance

After analysing the best modelling technique and the best way of considering the flights (aggre-

gated or not), in this final set of tests we aim to understand whether there is a real advantage of

using a quantum annealer on solving such complex problem. As we were not able to test the initial

dataset as it is, in order to have a bigger test scenario, we created some extra flight strings. This

new aggregation was based on the idea that the tail that flies from a certain hub to a spoke is the

one that performs the flight back (from the spoke to the initial hub). Thus, a new dataset was

considered composed by 442 flight strings corresponding to 844 individual flights and 10 type A

maintenance tasks, to be performed by 15 tails over 30 days. This dataset was named Dataset C.

Considering the solvers presented in section 4.4, for this analysis we used three different

solvers, being one of them a classical solver and the other two hybrid solvers. The chosen clas-

sical solver was the SimulatedAnnealingSampler whereas the hybrid solvers were HSS and Ker-

berosSampler. As previously referred, all solvers must be executed multiple times for each dataset

as they work by sampling solutions of low energy levels. Therefore, we ran 10 shots per dataset

for each one of the different solvers. Furthermore, for two of the solvers we were able to define

some running properties, setting SimulatedAnnealingSampler to run 500 annealing times per shot,

and KerberosSampler to a maximum of 500 iterations per shot. Having no previous knowledge

on which values should be set on these properties and since the access to the quantum computer

was limited, these values were decided based on the previous study developed by Ikeda et al. [37].

Appendix A, details the results obtained for the 10 shots ran for each one of the datasets regarding

the different solvers.

To verify the performance of each solver, we analysed the results considering two characteris-

tics: solving time and quality.
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5.5.1 Solving Time

As important as finding a good solution for the problem, it is to understand the amount of time

needed to reach it. Therefore, we started by analysing how much time each solver needs to find

a solution for the different datasets. This analysis is important to understand which solvers can

obtain a timely solution to the problem.

In Table 5.5, it is represented the time, in seconds, each solver takes for solving the QUBO

model associated with each one of the datasets. When comparing the three solvers, for each one of

the datasets, we can conclude that Kerberos is the solver that takes more time for all the datasets.

This finding is reasonable since this solver is a hybrid solver that runs, in parallel, multiple itera-

tions of classical algortihms in the local machine while communicating with the remote quantum

computer for also trying to solve the same problem. In fact, the communication with the remote

device has some overhead. Another explanation may be that, as the quantum annealer is a shared

device, when submitting the problems to be solved, they go into a queue where they need to wait

for their turn. Furthermore, for all solvers, the solving time increases with the size of the problem.

Comparing SASampler with HSS, the latter outperforms for all the datasets, being the difference

more significant as the size of the problem increases. In fact, for the largest dataset, HSS required

only 20% of the time required by SASampler to retrieve a solution.

Table 5.5: Comparison of solving time for the three solvers and three datasets

Solving time (s)
Dataset SASampler Kerberos HSS

A 3.5475 38.8842 3.2872

B 23.4909 98.7532 4.0734

C 101.0860 643.8522 20.5036

5.5.2 Solutions’ Quality

Once we aim to obtain a valid solution with a minimum operational cost, we set the quality of

a solution based on this goal. In fact, to verify the quality of the solutions we ran multiple tests

analysing the solutions obtained by the different solvers regarding feasibility and cost. Further-

more, we also analysed the accuracy of obtaining a solution of minimum total cost by minimising

the objective function as defined in subsection 3.2.2.

Finding a feasible solution

Regarding the quality of the obtained solution, we started by analysing the probability of each

solver to find a feasible solution for the different scenarios. Taking into account the definition of

the problem, finding a solution means finding a schedule where all flights are assigned to any tail

while ensuring that all constraints are met. As presented in Table 5.6, for dataset A, all solvers

sistematically found a valid solution for the problem. For dataset B, HSS was the one performing
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the worst, only being able to find a valid solution for 80% of the shots, while the other two solvers

found a feasible solution for all the shots. Regarding dataset C, SASampler and Kerberos found a

solution less than 50% of the times while HSS was able to find it for all the 10 shots. Analysing the

results, it indicates that SASampler and Kerberos may have some issues solving bigger problems.

Thus, HSS presents better results, being able to find feasible solutions for the majority of the tests,

but having some issues regarding dataset B.

Table 5.6: Probability of finding valid solutions for the three solvers and three datasets

Prob. valid solutions
Dataset SASampler Kerberos HSS

A 1 1 1

B 1 1 0.8

C 0.2 0.3 1

Finding an optimal solution

More than being able to find a solution, in the Tail Assignment Problem we aim to find the best or

at least a good solution. Starting by obtaining the best solution, none of the problems represented

in the three datasets was possible to be solved using an Exact Solver, i.e., a solver that finds the

optimal solution using a brute-force approach. Then, we considered as the best/optimal solution,

the one with minimum energy found by any of the three solvers for the 10 shots.

In Table 5.7 is presented the probability of the different solvers to find a solution with the

minimum value of the objective function for each one of the datasets. Here we name the cost

associated with the objective function as OF cost. Although none of the solvers was always able

to find a solution of minimum OF cost, some of them had a better performance than the others. In

fact, as the size of the dataset grows, the probability of the different solvers to find this solution

becomes smaller. Kerberos is the solver with the worst results, as it was only able to find a solution

of minimum OF cost for the smallest dataset. SASampler was able to find such solution 20% of

the times for the two smallest datasets. However, for dataset C, it only found the solution in one

of the 10 shots. Finally, HSS had the best performance, being able to find a solution of minimum

OF cost in at least two shots for each dataset.

Table 5.7: Probability of finding a minimum OF cost solution for the three solvers and three
datasets

Prob. minimum OF cost solutions
Dataset SASampler Kerberos HSS

A 0.2 0.2 0.3

B 0.2 0 0.2

C 0.1 0 0.2
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Since the objective function as defined in subsection 3.2.2 minimises the cost of each individ-

ual flight, no considerations were taken regarding maintenance tasks’ costs and Standby Parking

Costs. Therefore, two minimum OF cost solutions can, in fact, have different total costs. Thus,

we now analyse the probability of each solver to find the solution with minimum total cost. As

presented in Table 5.8, Kerberos was not able to find any of the solutions that have a minimum

total cost and SASampler was only able to do it for the smallest dataset. Finally, HSS was able to

find that solution for all the three datasets, but only in 10% of the shots. Once more, HSS was the

one with the best results.

Table 5.8: Probability of finding the solution of minimum total cost for the three solvers and three
datasets

Prob. minimum total cost solutions
Dataset SASampler Kerberos HSS

A 0.1 0 0.1

B 0 0 0.1

C 0 0 0.1

Verifying the accuracy of the objective function

As seen in some cases, the minimisation of the OF cost do not correspond to a minimisation of the

solution’s total cost. Therefore, we analysed if any relationship existed between the OF cost and

the total cost of the same solution. Figure 5.3 presents the comparison between the OF cost and

the total cost for the valid solutions obtained from all the three solvers. Figures 5.3a, 5.3b and 5.3c

correspond to the solutions obtained for dataset A, B and C, respectively. As previously presented

in Table 5.6, not all solvers were able to find valid solutions for all the 10 shots and therefore some

datasets have a bigger number of solutions to be considered than the others.

A global analysis shows that, for the different datasets, an increment on the OF cost also

corresponds to an increment on the total cost roughly on the same dimension, which may indicate

that in general, a minimisation of the OF cost corresponds to a minimisation of the total cost.

However, as previously identified, some exceptions can be found. For example, a deeper analysis

of Figure 5.3c showed that the three solutions with lowest OF cost have the same value of OF

cost but one of them has a total cost smaller than the other two. The existence of such difference

becomes more evident when analysing Figure 5.3b, where solution 13 has the same OF cost of

solution 12 but a smaller total cost. As only a few of these situations were found for all the three

datasets, it is possible to conclude that, in general, the minimisation of the OF cost can be a good

representation of the minimisation of the total cost, even though not with total accuracy.
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Figure 5.3: Comparison of OF costs and total costs of the found solutions (a) Comparison of the
costs for solutions regarding dataset A, (b) Comparison of the costs for solutions regarding dataset
B, (c) Comparison of the costs for solutions regarding dataset C

Finding non-optimal solutions

Finally, as the probability of finding the best solution was quite small, we evaluated how good

each one of the non-optimal solutions was. Starting by analysing dataset A, in Figure 5.4 (a) it

is represented the box plot of the OF costs of the obtained solutions for each one of the three

solvers. As expected, since all solvers were able to find the solution of minimum energy, the

minimum OF cost of 819971.5437 units of cost (UC) is the same for all solvers. However, some

distinctions can be found between them when considering the other solutions. For SASampler, the

majority of the solutions found had their OF costs close to the most expensive solution found by

this solver. In fact, 75% of the obtained solutions had an OF cost of more than 823733.4813 UC

with the most expensive solution having an OF cost of 825470.6937 UC. For Kerberos, 75% of

the obtained solutions have a OF cost of more than 823756 UC. Finally, for HSS, the maximum

OF cost obtained was equal to the maximum cost obtained for SASampler as well as the cost of

the median solution. However, the 50% cheapest solutions (i.e., with lower OF cost) were more

dispersed when compared to the other solvers and, therefore, the probability of finding a cheaper

non-optimal solution was bigger.
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Figure 5.4: Box plot of the OF costs regarding the obtained solutions from the three solvers for
dataset A

Regarding dataset B, Figure 5.5 represents the box plot of the OF costs of the solutions ob-

tained for the three different solvers. For SASampler and Kerberos some outliers were identified.

In fact, the majority of the valid solutions obtained had similar OF costs and therefore, the solution

with minimum OF cost obtained for SASampler and the solution with maximum OF cost obtained

for Kerberos were considered outliers. For HSS, the solutions found showed a higher variability

with 25% of the solutions having an OF cost of less than 29.334.216 UC. In fact, when outliers

were not considered, the solution with the smallest OF cost found by any of the other solvers had

the same cost. However, it is also relevant to note that, for HSS, the most expensive solutions

found have an associated OF cost considerably higher when compared with the most expensive

solution obtained by any of the other two solvers. Summing up, HSS has a bigger variability on

finding solutions and also a bigger probability of finding cheaper solutions when compared with

the other solvers used. Nonetheless, this solver also has some drawbacks as it found a big number

of expensive solutions.
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Figure 5.5: Box plot of the OF costs regarding the obtained solutions from the three solvers for
dataset B

Finally, regarding dataset C, we tried to verify if the same previous conclusions were also

true for bigger datasets. In Figure 5.6 is represented the box plot of the OF costs of the solutions
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obtained by the three solvers. For SASampler and Kerberos, the obtained solutions are highly

concentrated in terms of OF costs indicating that their OF costs are similar. This may have hap-

pened because both of these solvers were only able to find a few valid solutions. Furthermore,

for SASampler, the solutions found had lower OF costs when compared with the solutions found

by Kerberos. Regarding HSS, it was able to find valid solutions for all the 10 shots. Following

the same trend verified for the other datasets, HSS found solutions with a big range of OF costs.

Although the most expensive solution found for dataset C was obtained by this solver, 50% of

the solutions found had a lower OF cost when compared with any of the solutions obtained by

Kerberos. Comparing HSS with SASampler, both of them were able to find the minimum cost

solution. However, as previously analysed, SASampler was able to find a valid solution only 20%

of the times. Thus, it may indicate that using SASampler for big datasets can lead to multiple

unfeasible solutions.
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Figure 5.6: Box plot of the OF costs regarding the obtained solutions from the three solvers for
dataset C

To sum up, when comparing the quality of the solutions obtained by the three solvers, it is

possible to understand that none of the solvers revealed being perfect for finding the best solutions,

despite diverging on the performance when solving the problem considering the different datasets.

In fact, although all the solvers were able to find feasible solutions for all the datasets, none of them

was able to find the solution with minimum total cost in the majority of the shots. Kerberos was the

one that performed the worst, as it was not able to find any optimal solution for the biggest datasets

and the non-optimal results obtained were also non-satisfactory. SASampler revealed better results,

being able to find the minimum energy solution at least once for the different datasets. However,

for bigger datasets, this solver revealed not to be so useful as the majority of the solutions found

were either unfeasible or considerably more expensive than the minimum energy solution. Finally,

HSS was the solver that performed the best overall, even just being able to find a feasible solution

in 80% of the times for the second dataset. The most relevant advantages of this solver were

that it was able to find solutions considerably faster than any other of the two solvers, obtaining

a big number of different solutions. Such characteristics reveal that this solver may have great

possibilities to obtain good non-optimal solutions.
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5.6 Results Overview

Modelling is a crucial and complex step in the process of solving a problem in a quantum an-

nealer. A bad choice in the modelling technique can represent a bottleneck on the applicability of

a quantum annealing approach to a problem. Therefore, it is possible to conclude that, although

it requires some mathematical knowledge, a direct formulation of the QUBO model is essential

for having a proper BQM in useful time. That may be the reason why, in the last years, multi-

ple studies have been focusing on finding the best way to model different problems into a BQM

format.

Regarding flights data, we concluded that aggregating flights in strings would be a valuable

saver of time and number of needed variables, which is accordingly to the conclusions of Mon-

toito [43]. In fact, when considering only flight strings and just one maintenance station, no

constraints regarding path consistency are needed to be considered as all activities start and end in

the same airport. Therefore, the problem ends up being similar to solving a set partitioning prob-

lem (with some extra constraints) which have been proved to be NP-hard [41]. Such simplification

represents a trade-off since, when aggregating flights, some decisions are taken beforehand which

may affect in some way the quality of the obtained solution.

Finally, comparing the performance of the three solvers considered, it is possible to conclude

that Kerberos was the one performing the worst, which may indicate it may not be the best choice

for this type of problems. Using the HSS solver allowed to obtain the best results with a high

probability of finding good non-optimal solutions. In fact, although Kerberos and HSS are both

considered as hybrid solvers, as identified in section 4.4, Kerberos runs classical algorithms in

parallel with a pure quantum approach while HSS uses them together for obtaining the results.

Such characteristic may be the reason for these solvers to performance so differently. Comparing

SASampler with HSS, the latter was able to find a bigger number and variety of solutions, which

despite not being optimal are also not much more expensive than the best solution found. A

reason for that may lay on the fact that, due to the complexity of the energy landscape, SASampler

ended up finding a solution that represents a local minimum energy rather than a global minimum

energy. On the other hand, HSS, using state-of-the-art classical algorithms together with a quantum

annealer and its properties such as quantum tunnelling, was able to a find a bigger variety of

solutions which may have been the reason why it was able to find the minimum energy solution

obtained for any of the three datasets. Furthermore, this solver also revealed being faster than any

other solver obtaining solutions. Such characteristic is a good indicator regarding the performance

of the solver on scalability. Analysing the accuracy of minimising the OF cost rather than the total

cost, it was possible to conclude that, although for some solutions a smaller OF cost did not reflect

a smaller total cost, for the majority of the possible solutions that was true. So, using the OF cost

for finding a solution may represent a good approximation.

Regarding the comparison with other studies, some have proposed solving the Tail Assign-

ment Problem modelling as a set partitioning problem, presenting good results for both classical

approach and quantum computing approach. For classical approaches no comparison can be made
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since the datasets’ size, the number of constraints and the minimisation objective function have

different scopes. Considering the study developed by Vikstål et al. [58], which also presented

satisfactory results, it is also not possible to have an accurate comparison as it is based on a total

different quantum approach. In fact, this study aimed to find a feasible solution, based on the

decision version of the set partitioning problem from a small set of options, rather than an optimal

solution.

Regarding the proposed research question RQ2., we concluded that scalability is possible but it

comes with some trade-offs. Furthermore, not being possible to know whether or not a solution is a

real optimal solution, when comparing the results, it was possible to conclude that HSS performed

the best. In fact, HSS was able to find a high variety of solutions with many of them not being

much more expensive when compared with the best solution found.

For research question RQ3., we concluded that using a quantum annealing approach or a

classical algorithm separately may not lead to good results as Kerberos and SASampler did not

provide positive results. However, setting together classical algorithms with quantum annealing

can have some advantages as it may be able to find lower energy solutions for complex problems.

5.7 Summary

To test the proposed approach, we performed multiple tests to understand how good each one

of the modelling techniques presented in the previous chapter could be and whether or not such

approaches could be scaled. Not being able to perform tests for the entire dataset, we defined

algorithms for selecting both tails and flights while keeping the proportions of the initial dataset.

Analysing the modelling time for both techniques, we concluded that Direct QUBO modelling

performs the best. Furthermore, evaluating the impact of using flight strings rather than individual

flights, we concluded that flight strings can be a valuable simplification for solving a scalable ver-

sion of the problem, even though it introduces a trade-off. Finally, we evaluated the performance

of three different solvers (SASampler, Kerberos and HSS), when solving the proposed definition

of the Tail Assignment Problem, as described in Chapter 3. We concluded that HSS performed the

best and that it can be a useful solver to find good non-optimal solutions.



Chapter 6

Conclusions and Future Work

This chapter presents an overview of all the work done, gathering what was learnt with it. Sec-

tion 6.1 compiles the main difficulties felt while developing this study. Following, section 6.2

collects what are the main contributions of this study. By the end of the chapter, section 6.3 sum-

marises the conclusions of this dissertation and section 6.4 presents the possible future work that

could increase its scientific contributions and applicability on the real-world.

6.1 Main Difficulties

During the development of this study, we had to deal with multiple difficulties. The Tail As-

signment Problem is a complex problem that requires background on the domain and context it

happens. On the other hand, quantum computing and more specific quantum annealing, is a quite

novel approach when it comes to its usage on real-world problems. As it relies upon quantum

mechanics properties, which are quite far from the classical physics, it requires some study on the

field to understand the concepts that are crucial for successfully model a problem to be solved on

a quantum annealer. Furthermore, as existent quantum annealers are only accessible remotely and

the provider sets limits on the usage of it, test cases were limited.

6.2 Main Contributions

The implementation of a solution for the problems identified in Chapter 3 brought some contribu-

tions to the current state-of-the-art of the application of quantum annealing to real-world problems.

The following contributions were identified:

Modelling of a complex problem: as identified in Chapter 2 only a few real-world problems

were modelled and implemented for being solved on quantum annealers. Therefore, the

modelling techniques as proposed in Chapter 4 bring some new considerations on how to

model complex constraints. Furthermore, as both modelling techniques were highly detailed

67
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it also contributes as an implementation tutorial of some complex restrictions on a BQM

format;

Comparison between solvers: although multiple studies have already compared SA al-

gorithms with quantum algorithms, from the best of our knowledge, it is the first study

comparing the performance of HSS with other solvers regarding solution quality;

Scalability analysis: this study also provides some knowledge of scalability regarding the

time needed for both modelling and solving as well as the number of variables that compose

the model when increasing the size of the problem;

Different approach to solve a complex problem: although a study already applied a quan-

tum approach to find a feasible solution to Tail Assignment Problem, from the best of our

knowledge, this is the first implementation of this problem using a QA approach.

6.3 Conclusions

Currently airline companies are facing real threats on their sustainability. New and improved

operational changes are critical for minimising costs and increasing profit margins. A correct

planning and scheduling is fundamental for a proper usage of the resources.

In this dissertation, we have studied one of the steps of the Airline Scheduling Process, called

Tail Assignment. The Tail Assignment Problem aims to find a proper assignment of individual

aircraft to flights minimising a certain objective function, such as operational costs. As presented

in Chapter 3 the study of such problem is quite recent with some research focusing on finding fea-

sible solutions rather than good solutions. Furthermore, multiple studies have been implementing

classical algorithms for solving the problem although it may hinder the possibility of finding real

good solutions.

Given the promises of quantum computing to solve complex problems faster than classical

computers, we made use of quantum annealing, a quantum technique focused on solving optimi-

sation and sampling problems based on the energy minimisation of a certain quantum system. To

narrow the scope of the proposed problem we defined three research questions to guide this study.

Analysing each one of these questions we were able to obtain some answers.

RQ1. Can the Tail Assignment Problem be modelled to run on a quantum annealer?
To answer this question, we understood that it could be done modelling the Tail Assignment

Problem. In fact, we used two different techniques, as presented in Chapter 4. Such modelling

set the problem as a minimisation problem, aiming to find the solution with minimum operational

cost while respecting the demand and requirements of each flight.

RQ2. Is this approach scalable?
This question was addressed in Chapter 5. We started by running some tests to verify the

scalability of the chosen approach. We concluded that despite being time-consuming and requiring

some non-trivial mathematical knowledge, formulating the problem by directly constructing a
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QUBO model is crucial for scalability. Moreover, some pre-calculus such as flight aggregation is

an important step to reduce the size and complexity of the addressed problem.

RQ3. Are the results obtained from such modelling favourable?
Finally, also in Chapter 5, we ran tests to verify the quality of the solutions obtained by three

different solvers. We concluded that solving the problem based on hybrid solvers that use both

classical algorithms and a quantum annealer may have some advantages over pure classical or

quantum solvers. However, it is still not completely clear if such hybrid solvers can always out-

perform classical solvers. The hybrid solver HSS was able to obtain solutions faster than any other

solver, finding various low energy solutions. Such performance represents a relevant achievement

when considering complex problems that must be solved in useful time.

6.4 Future Work

Throughout this study, we opted to implement multiple simplifications to narrow the scope of the

problem in analysis. Thus, it is possible to point out some considerations to be taken for further

investigation on this topic.

As mentioned in Chapter 2, some of the premises assumed do not portray all the real scenar-

ios. A non-consideration of minor maintenance tasks is not realistic as they have to occur in a

real scenario. Furthermore, a robust approach may be a pivotal achievement as flight delays are

frequent and tight schedules can be significantly affected by that. Since the implemented solution

required some flight aggregations to be scalable, it could be interesting to analyse how some of

the constraints could be adapted to require fewer variables.

Additionally, to understand the effectiveness in a deeper level of the proposed modelling tech-

niques, when applied to multiple solvers using different scenarios, it would be important to run

more tests using different datasets.

Finally, as HSS revealed to perform better for solving this problem than using only a classical

algorithm such as a SA algorithm, further studies on hybrid solvers could be relevant for a better

understanding on the real advantage of using such technique to solve complex problems.
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Appendix A

List of Results

In this chapter, we present the list of results obtained by the different solvers when solving the

Direct QUBO model for each one of the datasets A, B and C using three different solvers, namely

SASampler, Kerberos and HSS.

As identified in Chapter 5, we run 10 shots for every dataset and every solver. Although on the

following tables data is ordered by energy levels, they may not have been obtained by this order.

A.1 Results for Dataset A

Dataset A was composed by 76 flight strings and 5 tails, resulting in a total of 346 variables to be

considered on the QUBO model. Table A.1 shows the obtained results for the different tests that

were performed for this dataset considering the three different solvers.

Table A.1: Results obtained for dataset A considering the three solvers

Solver Iteration Energy
Model

Time(s)
Solving
Time (s)

OF
Cost (UC)

Total
Cost (UC)

# Not
Assigned
Flights

SASAMPLER

1 277.20800 0.182379248 3.418465715 819971.5437 839704.0831 0
2 277.20800 0.183967898 3.791254646 819971.5437 839804.0831 0
3 277.22476 0.185946707 3.519480983 823733.4813 843702.714 0
4 277.22476 0.184651006 3.465722741 823733.4813 843690.0963 0
5 277.23178 0.202914295 3.706763998 823826.1241 843781.8299 0
6 277.23178 0.212139207 3.696696741 823826.1241 843781.8299 0
7 277.24358 0.18055937 3.460139989 825470.6937 843774.5078 0
8 277.24358 0.184979075 3.516830012 825470.6937 845497.5939 0
9 277.24358 0.183510812 3.479651053 825470.6937 845497.5939 0

10 277.24358 0.182628264 3.420000051 825470.6937 845497.5939 0

KERBEROS

1 277.20800 0.173452469 57.584294475 819971.5437 839804.0831 0
2 277.20800 0.169569042 38.163124937 819971.5437 839804.0831 0
3 277.22476 0.187474081 62.002601734 823733.4813 843702.714 0
4 277.23178 0.183153713 35.795245440 823826.1241 843781.8299 0
5 277.23178 0.179027627 38.232482310 823826.1241 843781.8299 0
6 277.24358 0.181130402 37.692339423 825470.6937 845497.5939 0
7 277.26004 0.179498475 26.742519705 827849.4297 847905.5197 0
8 277.26004 0.18636867 37.856658652 827849.4297 847905.5197 0
9 277.27108 0.180948455 31.269128661 829454.8177 849330.0738 0
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Solver Iteration Energy
Model

Time(s)
Solving
Time (s)

OF
Cost (UC)

Total
Cost (UC)

# Not
Assigned
Flights

KERBEROS 10 277.28947 0.18447192 23.503666601 829790.4717 849507.3201 0

HSS

1 277.20800 0.181881708 3.748502878 819971.5437 839804.0831 0
2 277.20800 0.181847183 2.994759000 819971.5437 839704.0831 0
3 277.20800 0.167866505 3.489082735 819971.5437 839804.0831 0
4 277.22476 0.176534859 3.562318308 823733.4813 843702.714 0
5 277.23178 0.171819635 3.632817820 823826.1241 843781.8299 0
6 277.23178 0.17750968 2.990932000 823826.1241 843781.8299 0
7 277.23178 0.182717825 3.000000000 823826.1241 843774.5078 0
8 277.24358 0.179352934 2.994826000 825470.6937 845497.5939 0
9 277.24358 0.177528564 3.460187231 825470.6937 845497.5939 0
10 277.24358 0.178806633 2.998657000 825470.6937 845497.5939 0

A.2 Results for Dataset B

Dataset B was composed by 266 flight strings and 10 tails, resulting in a total of 2281 variables

to be considered on the QUBO model. Table A.2 shows the obtained results for the different tests

that were performed for this dataset considering the three different solvers.

Table A.2: Results obtained for dataset B considering the three solvers

Solver Iteration Energy
Model

Time(s)
Solving
Time (s)

OF
Cost (UC)

Total
Cost (UC)

# Not
Assigned
Flights

SASAMPLER

1 2039.71047 8.417376267 22.972970963 2926194.49 3006255.595 0
2 2039.71047 8.417376267 22.493104370 2926194.49 3006255.595 0
3 2039.72371 8.417366264 24.512780496 2935830.679 3015022.714 0
4 2039.72371 8.417376267 22.422219177 2935830.679 3015562.184 0
5 2039.73218 8.417376267 25.128687121 2937235.948 3017581.831 0
6 2039.73218 8.417376267 22.509806887 2937235.948 3017581.831 0
7 2039.73218 8.417356262 23.260578529 2937235.948 3014485.13 0
8 2039.73218 8.417376267 24.693772434 2937235.948 3017581.831 0
9 2039.73218 8.417376267 23.678797619 2937235.948 3017581.831 0

10 2039.73218 8.417396267 23.236093505 2937235.948 3017581.831 0

KERBEROS

1 2039.73218 8.417376267 86.218200000 2937235.95 3017581.83 0
2 2039.75175 8.417376267 81.849700000 2941127.48 3019931.65 0
3 2039.76362 8.417386267 184.564000000 2942916.07 3022144.49 0
4 2039.77127 8.41737627 69.364400000 2943432.76 3022220.44 0
5 2039.77127 8.417356267 104.436100000 2943432.76 3023309.04 0
6 2039.77127 8.417376267 121.022500000 2943432.76 3023309.04 0
7 2039.78376 8.417376273 68.767600000 2943978.65 3024039.04 0
8 2039.79185 8.417396267 87.879400000 2945364.22 3023789.13 0
9 2039.80235 8.417376367 116.098200000 2949452.13 3028880.6 0

10 2039.85496 8.417376267 67.332300000 2953769.43 3032743.4 0

HSS

1 2039.71047 8.417376267 2.264967892 2926194.49 3006255.595 0
2 2039.71047 8.417376267 2.329698372 2926194.49 3006155.595 0
3 2039.72371 8.417376162 2.307319753 2935830.679 3015022.714 0
4 2039.73218 8.417376267 2.283741608 2937235.948 3017581.831 0
5 2039.73218 8.417376267 2.282452149 2937235.948 3017581.831 0
6 2039.80235 8.417376267 5.849336000 2949452.125 3028511.296 0
7 2039.82422 8.417356267 5.843157000 2953167.46 3032536.911 0
8 2039.86442 8.417376267 5.860483000 2956149.825 3036300.28 0
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Solver Iteration Energy
Model

Time(s)
Solving
Time (s)

OF
Cost (UC)

Total
Cost (UC)

# Not
Assigned
Flights

HSS
9 2040.66512 8.417396261 5.858956000 2924642.954 3004719.01 1
10 2040.71922 8.417376267 5.853812000 2941976.437 3021706.773 1

A.3 Results for Dataset C

Dataset C was composed by 442 flight strings and 15 tails, resulting in a total of 6185 variables

to be considered on the QUBO model. Table A.3 shows the obtained results for the different tests

that were performed for this dataset considering the three different solvers. As the modelling part

took some time, for this dataset we just obtained the QUBO model once. After having the model,

we used the tools described in section ??, for loading it to be used in the desired tests.

Table A.3: Results obtained for dataset C considering the three solvers

Solver Iteration Energy
Solving
Time (s)

OF
Cost (UC)

Total
Cost (UC)

# Not
Assigned
Flights

SASAMPLER

1 5784.19864 100.154251365 4677048.483 4838237.242 0
2 5784.22466 96.953693783 4679382.511 4840318.173 0
3 5788.90319 97.660469203 4642268.115 4804183.413 5
4 5788.914 98.477399727 4642511.93 4804641.808 5
5 5788.93134 103.870623174 4643242.454 4805385.218 5
6 5788.94236 107.815065962 4646350.925 4808385.474 5
7 5788.9511 106.474855474 4649438.461 4811399.324 5
8 5788.97157 106.333038408 4652544.13 4814894.782 5
9 5789.75886 91.850000524 4627741.741 4790077.442 6

10 5789.77964 101.270924260 4628998.034 4791183.444 6

KERBEROS

1 5784.24124 744.938298277 4682608.642 4842829.156 0
2 5784.25794 564.658136782 4684362.438 4844689.744 0
3 5784.25794 724.398569635 4684362.438 4843689.744 0
4 5787.92842 860.718904894 4639651.196 4801264.914 4
5 5787.99219 835.921923767 4642622.392 4804439.086 4
6 5788.00456 513.751813763 4652731.983 4814801.417 4
7 5788.00456 506.135730028 4652731.983 4814801.417 4
8 5788.0487 509.829274747 4662796.9 4824635.309 4
9 5788.88417 751.960776046 4635350.899 4797470.881 5

10 5788.89005 426.208075702 4639193.868 4800939.368 5

HSS

1 5784.19864 20.589524000 4677048.48 4838237.24 0
2 5784.19864 20.446742000 4677048.48 4837237.24 0
3 5784.21274 20.444211000 4678752.46 4839571.37 0
4 5784.22466 20.507462000 4679382.51 4843318.17 0
5 5784.23177 20.530345000 4682069.1 4842631.34 0
6 5784.24124 20.522170000 4682608.64 4842829.16 0
7 5784.25794 20.478465000 4684362.44 4844689.74 0
8 5784.25794 20.474923000 4684362.44 4844509.74 0
9 5784.25794 20.518151000 4684362.44 4844689.74 0

10 5784.28347 20.523844000 4690094.7 4850433.4 0
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