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ABSTRACT 

Fully automated vehicles (AVs) are not yet a reality but already cast speculation on the future of 
urban regions. Several impacts are expected at different levels, mostly at traffic and mobility 
levels – which can disrupt the current transportation paradigm. Since the deployment of AVs will 
not happen from one moment to the next, a transition period must be considered to adjust the 
upcoming changes best ahead.  

This study focuses on transport planning and traffic operation of AVs deployed in urban regions, 
as most of the existent research focuses on the technical features of driverless vehicles and their 
deployment in interurban environments. Specific urban transport policy shall be devised to 
leverage benefits from AVs and mitigate any adverse impacts. This thesis aims to contribute to 
this research gap.  

The first part of the thesis aims to help city planners with a transport planning strategy. The main 
objective is to optimize the road network design of urban regions. In this complex transport 
planning problem, it is analyzed whether the segregation of mixed and automated traffic is 
valuable for the system and, if so, which roads within the urban network should be dedicated for 
connected AVs. 

The second part of the thesis aims to help traffic engineers dealing with congestion. The main 
objective is to prove that a novel traffic control system centered on the network topology variation 
is viable. This strategy takes advantage of AVs connectivity to improve the traffic level of service.  

The methodological objectives of this thesis are: 1) to develop an optimization model founded on 
mathematical programming that selects dedicated roads for AVs in urban networks; 2) to develop 
an optimization model to design the optimal lane layout of AVs dedicated roads; 3) develop a 
simulation-optimization model for solving road network design problems in large urban areas to 
maximize road capacity by making use of reversible lanes. 

Two case studies are applied: a small-size city of Delft, the Netherlands, and a medium-size city 
of Porto, Portugal. 

In summary, the general objectives of this thesis are: 

1. to study whether the segregation of mixed and automated traffic through dedicated roads is 
valuable for the system; 

2. to estimate the AVs’ impact on traffic and congestion levels during the transition period; 

3. to evaluate the benefits of having a dynamic reversible lane approach applied in AV dedicated 
roads; 

4. to analyze the utility of centralized (system-optimal) AV paths on mitigating congestion. 

 

KEYWORDS: automated vehicles, dedicated roads, reversible lanes, road network design, 
optimization, simulation. 
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RESUMO 

Apesar dos veículos totalmente automatizados ou autónomos (AVs) não ainda serem uma 
realidade nas regiões urbanas e metropolitanas, existe  uma imensa especulação sobre como será 
o futuro destas perante esta tecnologia. De acordo com a literatura, vários impactos em diversos 
níveis, principalmente ao nível do tráfego e da mobilidade, são expectáveis de ocorrer, podendo 
corromper com o atual paradigma de transportes. Uma vez que, nos centros urbanos, a circulação 
de AVs não aparecerá de um momento para o outro, um período de transição deverá ser 
considerado para adaptar o meio urbano da melhor maneira possível. 

Esta tese incide no planeamento de transportes e controlo de tráfego para a circulação de AVs em 
regiões urbanas. A maioria da literatura existente concentra-se nas características técnicas de 
veículos e a sua circulação em ambientes interurbanos (autoestradas). Deste modo, esta tese 
prentende contribuir para o desenvolvimento de estratégias específicas a aplicar em meio urbano, 
de forma a tomar partido dos benefícios tecnológicos (conectividade) dos AVs e mitigar quaisquer 
impactos adversos, como o congestionamento. 

A primeira parte da tese pretende dar suporte ao planeamento da cidade com uma estratégia de 
planeamento da rede de estradas. O principal objetivo é otimizar a circulação dos veículos na rede 
viária em meio urbano. O problema incide na segregação do tráfego de AVs dentro da rede viária 
de forma a ser globalmente benéfica para o sistema, reflectindo-se em estradas com tráfego misto 
e outras com tráfego automatizado, ou seja, dedicadas ao tráfego de AVs. 

A segunda parte da tese pretende ajudar os engenheiros de tráfego a lidar com o 
congestionamento. O principal objetivo é testar um novo sistema de controlo de tráfego focado 
na variação topológica da vias ao nível da rede viária. Essa estratégia toma partido da 
conectividade dos AVs para implementar vias reversíveis e melhorar o nível de serviço das 
estradas. 

Os objetivos metodológicos desta tese são: 1) desenvolver um modelo de otimização em 
programação matemática que decide quais serão as estradas dedicadas para AVs em meio urbano; 
2) desenvolver um modelo de otimização para planear as vias reversíveis em estradas que já são 
dedicadas aos AVs; 3) desenvolver um modelo de simulação e otimização para resolver 
problemas de maior complexidade que maximize a capacidade das estradas usando vias 
reversíveis. 

Dois estudos de caso são aplicados: uma cidade de pequena dimensão de Delft, na Holanda, e 
uma cidade de média dimensão do Porto, Portugal. 

Em resumo, os objetivos gerais desta tese são: 

1. estudar se a segregação do tráfego misto e automatizado é benéfica para a rede; 

2. estimar o impacto dos AVs ao nivel do tráfego e congestionamento durante o período de 
transição; 

3. avaliar os benefícios de implementar uma estratégia de vias reversíveis em estradas dedicadas 
aos AVs; 

4. analisar a utilidade de centralizar (otimização do sistema) a decisão das rotas dos AV para 
mitigar o congestionamento. 

 

PALAVRAS-CHAVE: veículos automatizados, estradas dedicadas, vias reversíveis, planeamento da 
rede viária, optimização, simulação.  
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INTRODUCTION 

 

 

CONTEXT 

Over the last century, transportation systems have evolved primarily due to social and economic 
pressure, always alongside technology. As the core element of urbanization, its performance impacts 
several levels that describe both accessibility and mobility of cities, influencing citizens’ lives. Back in 
the past, the main drive that increased road capacity was mostly done by improving and expanding 
infrastructure; for instance, through roadways expansion. Mobility has been improving gradually 
alongside with accessibility and technology that has had a particular role on advancing the modes of 
transport. Mobility is typically fostered by transport planning strategies, for instance, through public 
transport and transportation companies like carsharing and ride-hail systems – highly advanced by 
technology in the last century. 

The idea of automated highways was firstly introduced in 1939 at the New York World’s Fair, yet seen 
as futurist and science fiction. Over the past two decades, technological development has also been 
growing on the side of vehicle automation, focusing on automated driving systems. In 2004, the US 
Defence Advanced Projects Agency (DARPA, 2004) heavily promoted automated driving systems, 
after Eureka PROMETHEUS (Scholl, 1995), VaMP, ARGO (Broggi, 2001) research projects disclosed 
their first research results (Albanesius, 2010). Recently, research has shown that automated vehicles 
(AVs) will bring significant changes in transportation systems. However, while aiming to enhance 
mobility, AVs can disrupt the current transportation paradigm in urban areas in such a way that is still 
difficult to foresee nowadays (Correia et al., 2015). 

Urban areas are gradually growing in population worldwide. In 1950, only thirty percent of the world’s 
population lived in cities. In 2014 the rate was above fifty-four percent, and the forecast for 2050 is 
more than two-thirds of the world’s population living in cities (Ilboudo et al., 2016). More population 
density promotes geographical expansion with land-use adjustments, new mobility patterns, and 
increased transportation demand, either public or private. Growth in private transport is forecasted, 
despite any competitiveness and quality improvement of public transport (Correia et al., 2015). In this 
sense, AVs are believed to naturally appear also in the form of private owned transport, given the 
benefits at the micro and macro level, e.g., the citizen quality-of-life from commuting door to door 
whenever they like, and the leverage of global economy. 
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However, more vehicles, mainly privately owned, overpressure cities that are already grappling with 
road traffic issues nowadays. For instance, in the last three decades (1987-2017), the annual cost of 
traffic delays per commuter has nearly doubled in the US (Schrank et al., 2019). According to INRIX 
Global Traffic Scorecard, in 2018, the average commuter spent in congestion in Paris was 237 hours, 
7% more than the previous year. Similarly for the greater Boston area (US), in average, each driver lost 
164 hours, almost a week (6.8 days), to congestion, costing each driver $2,291 on average a year – the 
entire area costs over $4 billion per year (Reed and Kidd, 2019). Besides, road accidents grasp more 
than 1.25 million fatalities every year (Toroyan et al., 2013). Transport infrastructure costs 20 to 30 
percent of the land, on roadways, and parking lots (Litman, 1995). The Australian Bureau of 
Infrastructure, Transport and Regional Economics reported that the cost of congestion is growing in 
large cities alongside with population growth, leading to an infrastructure investment of US$600 billion 
over the next fifteen years (Bureau of Infrastructure, 2019). All these trends concern societies, and a 
new form of transportation without human intervention, i.e., AVs, must be well planned to alleviate or 
surpass these problems; otherwise it might worsen transportation systems in general. 

THESIS RESEARCH 

RESEARCH PROBLEM 

Currently in the academy, AVs are a hot topic of research. Most of the existent research around 
driverless vehicles focuses on the technical features (e.g., adaptive cruise control systems) and traffic 
impacts in interurban traffic environments (e.g., road capacity). In urban areas, research is still scarce, 
though urban environments are the most prospected to have significant impacts from AVs deployment 
(Correia et al., 2015). The research gap in urban regions is mainly due to the complexity of modeling 
metropolitan areas with some kind of realism, given the number of variables (e.g., flow of pedestrians, 
bicycles, bus, among others) and the computational cost on modelling diverse types of roadways (e.g., 
highway hierarchy) and infrastructure (e.g., strict geometric features, intersections, roundabouts, 
parking lots). 

Urban areas are confined spatially, yielding land-use constraints and a high level of population density. 
As a consequence, congestion surges in peak hours from commuting patterns, hindering urban mobility. 
Over the last few decades, the current urban congestion problem was hardly handled by infrastructure 
expansion and current traffic management strategies. The inevitable coexistence between AVs and 
conventional vehicles (CVs) is expected to happen either in urban or interurban areas (Nieuwenhuijsen, 
2015). GHSA (2016) foresees “a mix of autonomous and driver-operated vehicles on the road for at 
least 30 years”. According to recent research, the automated driving features will barely improve 
capacity of existent roads.  

In this sense, the thesis problem is how to tackle urban congestion during this transition period by taking 
advantage of automated traffic and the existent road space. The aim is to optimize urban networks by 
strategically designing AV subnetworks with smart and optimized traffic management, as long as it 
does not substantially disturb the human-driven traffic (CVs), and the overall traffic system is improved. 
The thesis research focuses on optimum road network design for strategic transport planning in a 
transition period where both AVs and CVs coexist together, and smart traffic management optimized 
and applied to AV subnetworks. 

GOALS AND CLAIMS 

The goal of this thesis is to aid the transport planning of urban metropolitan regions to engage in AVs 
technology and tackle urban congestion by improving the overall traffic system. In other words, to 
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propose a feasible transport planning for AVs traffic management of a smart city in the short and long-
term of AVs’ deployment. The research goal acts on two levels. At the upper level: supporting urban 
planners with a road network design for planning ahead the integration of automated traffic within urban 
areas. At the lower level: supporting traffic engineers with a lane traffic control to take advantage of 
the automated driving task and increase the level of service.  

The claims of this thesis are the following: 

1. The deployment of AVs in urban areas implies a transition period where AVs will coexist 
with CVs in urban areas. 

2. The autonomy of AVs will play an important role in urban areas once AVs technology 
reaches level 4 that allows AVs to circulate autonomously. 

3. Smart cities will be interested in controlling automated traffic to improve the overall traffic 
system, but also to articulate with other modes of transport. 

4. Vehicle-to-infrastructure (V2I) communication will be the answer for controlling AVs and 
is an investment decision that municipalities will face at some point. 

5. Automated traffic systems are more efficient than mixed traffic. The mixed traffic hinders 
the potential of boosting road traffic efficiency from AVs technology.  

The reason that supports this claim (theoretical support) is the current infrastructure is shaped for CVs, 
and, at the beginning of the automated traffic operation, traffic efficiency may be compromised within 
mixed traffic from the technological side. There are prospects that congestion will get worse in urban 
areas as AVs get deployed and traffic flow increases. Therefore, in dedicated roads for automated 
traffic, the mitigation of congestion and travel time savings will be much more significant and easier to 
tackle (V2I technology). 

RESEARCH QUESTIONS AND HYPOTHESES 

This thesis aims to answer three main research questions by testing the corresponding hypothesis: 

 

RQ 1. Which approach can be used by policymakers to deal with the deployment of AVs in urban areas 
during the transition period? 

H 1. Segregated traffic (mixed and automated) in urban centers optimizes the overall traffic 
system, reducing congestion. The overall road traffic will only be enhanced if AVs have 
dedicated roads to circulate automatically inside them. 

 

RQ 2. In which way automated traffic can improve the existent capacity of urban roads? 

H 2. Practical capacity can be improved through automated traffic through a dynamic lane 
management approach, i.e., reversible lanes. 

 

RQ 3. Does control of AVs’ paths towards a system optimal equilibrium solve the congestion problem 
inside AVs subnetworks?  

H 3. Mitigating urban congestion is possible without a centralized system controlling AVs paths. 
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OBJECTIVES 

The first part of the thesis aims to help city planners with a transport planning decision model of which 
roads within the urban network should be dedicated for connected AVs. The second part of the thesis 
aims to help traffic engineers dealing with congestion with a novel traffic control system centered on 
reversible lanes for automated traffic only. 

The general objectives of this thesis are the following: 

1. to study whether the segregation of mixed and automated traffic through dedicated roads is 
valuable for the system; 

2. to estimate the AVs’ impact on traffic and congestion levels during the transition period; 

3. to evaluate the benefits of having a dynamic reversible lane approach applied in AV dedicated 
roads; 

4. to analyze the utility of centralized (system-optimal) AV paths on mitigating congestion. 

RESEARCH APPROACH AND METHODOLOGICAL OBJECTIVES 

The philosophical stance of the following research is objectivism. This research is ontologically based 
on the objective side of reality – traffic and congestion can be measured and quantified in reality. 
Epistemologically, it is used scientific methods on observable and measurable facts (travel demand) to 
build a new strategy that will contribute to reducing congestion. In terms of methodology, a quantitative 
research strategy is adopted under available quantitative datasets in both case-studies. The specific term 
for the philosophical stance of this research is positivism.  

The methodological objectives of this thesis are: 

1. to develop an optimization model founded on mathematical programming that selects dedicated 
roads for AVs in urban networks; 

2. to develop an optimization model to design the optimal lane layout of AVs dedicated roads; 

3. to develop a simulation-optimization model for solving road network design problems in large urban 
areas to maximize road capacity by making use of reversible lanes. 

THESIS OUTLINE 

This thesis is structured in six chapters. 

Chapter 1 herein provides background information for understanding the relevance of this topic in the 
global context and its contextual research perspective. Objectives, claims, and research approach are 
addressed, as well as the outline of the thesis. 

Chapter 2 describes the state of the art, both at the industry and academy level. The AV concept and 
definition are debated, as well as its technological development overtime accompanied by forecasts. 

Chapter 3 discusses the transport planning problem of designing AV subnetworks during a transition 
period where AVs coexist with human-driven vehicles (CVs) – AV penetration rate evolving from 0% 
to 100%. A road network design problem applied to the problem of selecting dedicated roads for AVs 
inside an urban network is presented. The road investment effect is discussed. The model is applied to 
a case study of the city of Delft, in the Netherlands. The design for the peak hour and the whole day is 
debated. 
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Chapter 4 discusses the traffic operation of AVs working in dedicated infrastructure that carries V2I 
connectivity – only possible in smart cities. An optimization problem of reversible lanes applied at the 
network level is presented. In addition, it is debated whether a centralized traffic control system should 
(not) control over AVs paths. The model is applied to a case study of the city of Delft, in the 
Netherlands, for a penetration rate of 100% of AVs. 

Chapter 5 presents an approach that joins both simulation and optimization in a single framework to 
solve road network design problems in large-scale urban areas. The simulation-optimization framework 
solved the problem of desigining reversible lanes in a the case study of the city of Porto in Portugal. 

Finally, Chapter 6 provides the conclusions, significant contributions, scientific publications from this 
thesis, and suggestions for future work. 
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STATE OF THE ART 

 

 

INTRODUCTION 

Technology has been evolving significantly since the industrial revolution. In the nineteenth century, a 
clear shift happened from vehicles pulled by animals to public rail transport pulled by electricity, in the 
form of omnibuses and electric trams. At the turn of the century, gas-powered vehicles rapidly emerged 
as fossil fuel became the primary source of energy. Nowadays, new forms of energy sources have been 
implemented like electric and hydrogen vehicles. During this technological advancement, people have 
always been responsible for the driving task and deciding the path. Driverless vehicles, departing from 
this human-centric perspective, will be the next shift in vehicular transportation. 

Around the world, literature mentions different designations regarding AV that may overlap or be 
combined. Over time, several designations have appeared, leaving many questions unanswered 
regarding the implications of different contemplated deployment scenarios. Section 2.2 clarifies the 
concept of AV, explaining the established levels of automation in parallel with the current state of 
manufacturing (and technological development). 

The assessment of the impacts of the deployment of AVs in urban networks is still unknown and 
difficult to determine. Section 2.3 discloses the literature review around the impacts of AVs that, 
according to Milakis, van Arem, and van Wee (2017) are divided into three levels that have a ripple 
effect amongst them: first, the traffic level that will have an effect on the mobility level, and 
consequentially on the societal level. 

Section 2.4 is focused on the deployment of AVs in urban areas, explaining why it is mandatory to 
consider a theoretical transition period; then, why the need for transport policy, to regulate and control 
AV tests in real environments and to plan ahead the real deployment of AVs in urban areas; and at last, 
the state of research focused on network design for transport planning and traffic operation.  

Finally, section 2.5 reports the main summary and conclusions of this chapter. 
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THE AUTOMATED VEHICLE 

DEFINITIONS AND CONCEPTS OF AUTONOMOUS AND CONNECTED VEHICLES 

“Smart” vehicles are often mentioned with different names that may even overlap or be combined, such 
as autonomous, automated, automatic, autopilot vehicle, cybercar, robotic, self-driving, or driverless 
cars. In order to choose a consensual designation, it is essential to clarify and distinguish features from 
its inherent attributes and specificities. 

In all designations, the common feature is that driving is performed robotically and automatically, 
without human control. To do so, the external environments are imperative. Therefore, two distinct 
views emerge: the first reflects the autonomy and the second the cooperation. 

Shladover (2009) schematized the relationship between automation, autonomy, and cooperation. 
Cooperation and autonomy are antonyms, and they are orthogonal to the level of automation. The 
highest level in both dimensions is attained with the so-called full advanced automated highway 
systems, which should be the ultimate stage of development and deployment. 

The autonomy view entails an autonomous driving that is supposed to sense the external environments, 
and the vehicle is expected to drive with whatever the road and infrastructure conditions. In other terms, 
the vehicle has the ability to self-drive itself, e.g., driven autonomously, and senses the external 
environments whatever the road type and its conditions, without any internal (human) or external 
control/support. The decisions taken while driving are not influenced by external authorities – 
corresponding to the term of autonomous vehicle. 

The term autonomous vehicle is still the most widespread and more familiar to the public (Chang et al., 
2012). This concept was initially envisioned in the robotics and telecommunications fields, and 
thereafter traffic operators suggested that these vehicles should act linked to achieve traffic efficiency. 
Whereas autonomy implies no control or influence from outside, cooperation considers communication 
that relies on direct or indirect control of the driving task. 

Connection is an analogous term to cooperation that denotes a vehicle that is able to establish 
communication with the infrastructure (V2I) or/and other surrounding vehicles (V2V) to perform 
decisions, like routing tasks. In this view, each vehicle might not be self-centered, and vehicles can act 
cooperatively to improve the traffic operation at the system level. This last reflects the term of connected 
vehicle, which assumes an exchange of information with other vehicles (V2V) and/or infrastructure 
(V2I). 

Therefore, the aforementioned concepts, autonomous vehicle and connected vehicle form a distinct 
meaning or goal, and none of them forms a singular definition (Conceicao et al., 2016).  

Whatever the degree of autonomy/cooperation, the driving task is expected to be performed robotically 
and automatically. The concepts of robotic or automatic vehicle gather intrinsic features of the vehicle 
no matter which controls it regards. First, automatization is not the same as automation. Automatization 
of the tasks improves the automation of the vehicles. Moreover, automation does not imply autonomy, 
as connected vehicles can be more automated than autonomous vehicles, gathering more sensors, 
communication and assistance controls. Similarly, when such automobile is called autopilot vehicle, 
the driving task is attributed to be performed automatically and robotically, somehow gathering 
independence while performing their mission. 

Self-driving or driverless vehicle have similar definitions but are not equivalent. Self-driving vehicle 
implies that the driving task is done automatically, but does not guarantee that, in some parts of the 
route, there may exist a driver to control the operation. Driverless vehicle implies that there is no driver 
at all, e.g. no human control and therefore always acting alone, autonomously. 
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The term cybercar prompts the involvement of computers and information technology with 
automobiles. A cybercar can be seen as a new form of urban transport and a specific type of automated 
vehicle that is designed for short trips at low speed in small controlled urban environments (Parent and 
Fortelle, 2006). An example of cyber-car is the last mile taxis that are controlled by a central taxi 
management system. Moreover, a cybercar is a specific type of connected vehicle. 

The often term car might lead to misinterpretation since this technology is expected to be applied to 
different types of vehicles (cars, heavy trucks, buses, vans and fire trucks). Therefore, the term car or 
even automobile is erroneous and, thus, vehicle appears to be the most appropriated designation because 
it encompasses several modes of transport. 

Nevertheless, the term automated vehicle is not linked to autonomy nor cooperation. In fact, automated 
connotes control and operation by a machine. While automatic, robotic, autopilot, self-driving and 
driverless portray the driving task feature of these vehicles, autonomous and connected vehicles detail 
how the driving task is performed in general. The expression automated vehicle seems to be the most 
accurate definition for all of these expressions, and it aggregates both autonomous and connected 
vehicles (Conceicao et al., 2016).  

Figure 2.1 summarizes the reasoning made afore. The rounded concepts represent common attributes 
with the concepts inside the rounded rectangle. The terms autonomous vehicle and connected vehicle 
culminate with automated vehicle concept. Moreover, the term cybercar is linked to the term connected 
vehicle. Henceforward, the designation of automated vehicle (AV) is the most advisable to use 
nowadays. 

 
Figure 2.1 – Relationship of the concepts assumed for AVs 

LEVELS OF AUTOMATION AND THE CURRENT STATE OF MANUFACTURING 

Automobile original equipment manufacturer (OEM) companies are rapidly improving the 
technological side, with examples ranging from adaptive cruise control (ACC) to lane centering to 
parking helper systems. The NHTSA (2013) and the International Transport Forum / OECD (2015) 
were the first government directives that classified AV according to their automation level, United 
States of America and Europe respectively. These directives initially required a human operator to be 
present and capable of supervising the test drive and classified at the time three levels of automation 
(Level 0 – Level 3). 

Nowadays, on a scale of six levels (0 to 5) of driving automation systems defined by the Society of 
Automotive Engineers International (SAE, 2018), vehicles with Level 3 have just started to be 
commercialized, and the so-called “autonomous vehicles” will only be seen once Level 5 of automation 
is reached. Meanwhile, Level 4 implies that the vehicle is capable of self-driving while performing all 
driving functions under certain conditions – a driver is needed inside the vehicle. Level 5 considers full 
autonomy – the vehicle might not have a steering wheel and does not need a driver/human inside. 
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Based on the SAE classification (SAE, 2018), Figure 2.2 shows the distinction between the six levels 
of AVs and details how automation progresses over time. The so-called semi-AVs are reflected in Level 
3, whereas level 4 is considered an automated vehicle and level 5 reflects the fully automated vehicle 
or even autonomous vehicle. Only the last level can drive under all environmental and roadway 
conditions. It is important to denote that the connected vehicles only appear from Level 3 of automation 
onward. The so well-known term autonomous vehicles would only become possible in the latest level 
5, although it might not be possible to have a fully autonomous vehicle capable of driving itself without 
connectivity (V2I and V2V) to assist its tasks. In fact, the balance between cooperation and autonomy 
is still not clearly defined in regulatory frameworks for AVs deployment, nor the level of 
connectivity/cooperation between V2I and V2V technologies. For example, the Google car is designed 
to comprise a high degree of autonomy, although governments intent that automated highway systems 
hold connectivity amongst vehicles and the surroundings (Gasser and Westhoff, 2012). This disparity 
reveals some detachment between governments and carmakers. 

 
Figure 2.2 – SAE classification of AVs. 

Automobile manufacturing has evolved much in the last ten years. Nowadays, carmakers are putting 
forward the idea of bringing automated highway systems to reality by developing and validating new 
automotive features. 

Current vehicles available in the market are between levels 1 and 3 of automation. The Tesla Model S 
(level 2) has an autopilot function which, through “a combination of cameras, radar, ultrasonic sensors 
and data, automatically steers the vehicle down the highway”, still under driver supervision, and enables 
to “change lanes, and adjust speed in response to traffic” (Tesla Motors, 2016).  

Vehicles with level 3 have just emerged in 2019 with Audi A8 (level 3) – the most advanced AV that 
is available to the public with a traffic jam pilot mode. The driver’s attention is required, and the driver 
can take the hands off the steering wheel and the feet away from the pedals, while the AV is on autopilot 
mode. However, the Audi A8 traffic jam pilot mode is still not activated in the US (and therefore, acts 
like an AV level 2) because of the lack of consensus in regulatory frameworks defining the 
responsibility on whether it is the human driver or the machine. Some OEMs say they’re going to skip 
Level 3 and do Level 4. (Automotive News, 2019). 

A self-driving car (or a driverless car) – level 4 of automation – will be attained when the driver can 
perform other tasks, such as reading or playing with a mobile phone. Waymo one is currently the most 
advanced AV level 4, still requiring human driver inside to take over in case of a problem. Waymo 
began as the “Google Self-Driving Car Project” in 2009. Since 2017, Waymo started trials in some 
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USA states as a ride-hailing service (Engaget, 2018). Before making a trial in a new location, the 
corporation builds its own detailed three-dimensional maps that highlight information – road profiles, 
curbs and sidewalks, lane markers, crosswalks, traffic lights, stop signs, and other road features. 
Afterwards, during the trials, Waymo sensors and software scan constantly up to three football fields 
away in every direction for objects around the vehicle – pedestrians, cyclists, vehicles, road work, 
obstructions – and continuously read traffic controls, from traffic light color and railroad crossing gates 
to temporary stop signs (Waymo, 2019). 

At this point, the beginning of a transportation disruption is foreseen, with the impacts of the first AVs 
incrementally appearing by citizens’ behavior change. Level 5 unveils the reality of autonomous 
vehicles, i.e., when a driver (or a human) is not required inside the vehicle and possibly embedding 
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) connectivity. This level represents 
significant changes in transportation, with impacts that are still difficult to foresee. 

Jenn (2016) presents a roadmap with the evolution of automotive features. The evolution of the 
manufacturing sector in this topic occurred mainly since 2004. Zlocki (2014) presents an automated 
driving roadmap with projections towards the maximum level of automation, exhibiting three paths: the 
automated passenger vehicle, the commercial vehicle, and the urban environment systems. Urban 
environment systems comprise cybercars, high-tech buses, personal rapid transit, advanced city cars, 
and dual-mode vehicles. Zlocki roadmap estimates that cybercars will only become “real” automated 
taxis by 2028.  

There are projections that “fully AVs that operate on public roads among other traffic are unlikely to 
be on the market before the 2030s” (European Transport Safety Council, 2016) and some forecast the 
2040s (Toroyan et al., 2013). According to the ERTRAC (2019) driving roadmap, AVs level 4 will 
likely be on the market by 2022 and AVs level 5 by 2028. AVs level 4 will have an “urban and sub-
urban pilot,” as well a “highway autopilot including a highway convoy”, while only AVs level 5 will 
be considered “fully automated passenger cars”.  

Nieuwenhuijsen et al. (2018) studied the diffusion of AVs using systems dynamics under a functional 
approach, by looking into the six levels of automation with different fleet sizes, technology maturity, 
and average purchase price and utility. The model was applied to the Netherlands both for a base and 
an optimistic scenario (strong political support and technology development). They found that market 
penetration of 10% of AVs level 4 will likely happen by 2027. AVs level 5 will be 90% of the market 
penetration somewhere between 2060 and 2080. Full deployment (100% of AVs level 5) will only occur 
after 2100. 

In this section, the concept of AV was explained and described the evolution of the AVs levels of 
automation, concluding that AVs over level 4 will play an essential role in urban areas as self-driven 
cars, defying the current transportation paradigm (human-driven vehicles) – supporting the first and 
second thesis claim: “The deployment of AVs in urban areas implies a transition period where AVs will 
coexist with CVs in urban areas.” and “The autonomy of AVs will play an important role in urban areas 
once AVs technology reaches level 4 that allows AVs to circulate autonomously.“  

IMPACTS OF AVS 

Current literature describes the impacts of AVs as a ripple effect defined by Milakis, van Arem, and 
van Wee (2017), in three levels that can be liked to short, medium and long-term impacts. 

The first level englobes travel costs (e.g., the value of travel time), travel choices (e.g., transport modes) 
and traffic implications (e.g., congestion and capacity). The second covers location choice and land-use 
implications (e.g., residential and employment), vehicle implications (e.g., ownership and sharing 
issues) and infrastructure (e.g., parking). The third encompasses societal implications (e.g., air 
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pollution, safety, social equity, energy consumption, public health and economy issues). In the ripple 
effect model, each level influences the following level. 

Research related to the first level is mostly focused on traffic in interurban environments (Calvert et al., 
2011; Gora and Rub, 2016; Kesting et al., 2010; Talebpour and Mahmassani, 2016; van Arem et al., 
1996; Zhang and Nie, 2018). The lack of studies in urban environments comes from the difficulty in 
representing a reality that involves other road users and modes of transport (e.g., pedestrians, bikes and 
buses). 

Considering the value of travel costs, G. H. de A. Correia et al. (2019) looked at the expected changes 
on the value of travel time, through a stated choice experiment and found that the value of travel time 
of an AV with an office interior will be lower than the current value of travel time in a conventional 
time. Contrarily, an AV with leisure interior will not decrease, which corroborates with the theoretical 
insights from the microeconomics theory. 

Considering travel choice implications, Yap et al. (2016) studied the user acceptance of AVs as last-
mile public transport trips. Harper et al. (2016) analyzed the travel choices of non-driving, elderly and 
people with travel-restrictive medical conditions and the potential increase in their annual travel 
distances. Correia and van Arem (2016) proposed a mathematical model that details the impacts on 
traffic delays and parking demand if the family-owned CVs were to be replaced by AVs, including 
competition with public transport. 

In the second level, i.e. in the medium-term of AVs deployment, research is still limited but gradually 
appearing. Concerning vehicle implications, the topic of vehicle sharing frequently relates to AVs in 
futuristic urban mobility scenarios, and in these studies, simulation plays an essential role in estimating 
the impacts (ITF, 2015; Zhang and Pavone, 2016). Concerning location choice and land-use 
implications, literature has just started to appear (Milakis et al., 2018).  

In the third level (policy and societal implications), research embrace topics such as safety (IIHS, 2016), 
social equity, economy (Clements and Kockelman, 2017) and environmental issues linked to energy 
consumption savings and air pollution (Bose and Ioannou, 2003b; Mersky and Samaras, 2016; Wadud 
et al., 2016). These topics involve multiple interactions of complex estimation because there are many 
synergistic effects amongst automation levels, shared/private ownership, infrastructure communication, 
penetration rates, etc.; research is still being developed (Milakis et al., 2017). 

IMPACTS ON TRAFFIC  

As aforementioned, traffic impacts occur in the first level of the ripple effect model. Traffic research is 
mostly focused on interurban traffic environments. As AV are not yet a reality, mathematical and 
simulation tools are the only way to conceptualize the new paradigm and estimate the impacts of AVs 
on urban areas. The statements, variables’ assumptions and simulation methods have a crucial role in 
the accuracy of the studies’ conclusions. Additionally, simulation is a methodology that is continuously 
under computational and artificial intelligence areas of research.  

Few studies have really distinguished the driving behavior of AV and CV. It is challenging to model 
the exact characteristics of automated traffic flows because it is not a reality yet and the few experiments 
in real-life are scant, or data is private. Most of the research is focused on the effect that driver assistance 
systems have on traffic flows which regard the intermediate level of automatization, SAE level 3 of 
automation.  

Gora and Rub (2016) developed a microscopic traffic simulation software for self-driving connected 
vehicles, with a robust protocol for exchanging information. Their tool visualizes traffic flow in 
roadmaps from which the transport infrastructure includes multiple junctions, traffic lights, travel lanes. 
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The AV decisions, such as acceleration or turning maneuvers, are headed by communication tools to 
collect data and perform negotiations. 

One of the main traffic research topics is the effect of AVs on road capacity. The majority of the studies 
use ACC and/or cooperative adaptive cruise control (CACC) models to test its influence on traffic 
capacity and stabilization. The ACC was the first step towards the automatization of vehicles. The delay 
due to driver reaction is eliminated, and a control system automatically adjusts the vehicle speed and 
keeps a desired headway with the following vehicle. The CACC is the subsequent level and improves 
the traffic roadway system since vehicles act collaboratively with a certain degree of connectivity (V2V 
or V2I). 

The first authors to study the impact of ACC on traffic flow were van Arem et al. (1996). Their 
simulation model called MIXIC defined lane-changing, longitudinal car following, and interaction with 
the ACC (on/off). Their study varied the ACC penetration rate (20 and 40 percent), the ACC target 
headway setting (time gaps of 1.0 and 1.5 seconds), the traffic flow levels, and traffic compositions. In 
three of the four scenarios, there was a deterioration of the average travel times, between 1 to 4 percent, 
denoting a slight decrease of free-flow capacity. However, the conclusions state that vehicles’ ACC 
systems stabilize traffic flow without sacrificing much capacity. 

In 2010, Kesting et al. conducted a similar simulation study concerning the effect of ACC vehicles on 
traffic-flow efficiency by including a higher level of detail on vehicle dynamics through a car-following 
behavior model. Parameters such as desired speed, acceleration, comfortable deceleration and desired 
minimum headway time, were considered. Their results stated that an increase of 1% of ACC vehicles 
leads to an increase of 0.3 % of the capacity of the link. 

Tientrakool et al. (2011) suggest that, for a 100% of AVs with V2V and sensors for collision avoidance, 
in highways, a capacity gain of 43% for AVs but that gain can become 270% if V2I is present (i.e., AVs 
with ACC systems). 

In 2009, Yuan et al. studied a hybrid modeling approach to assess the effect of ACC vehicles on traffic 
flow efficiency. The behavior of the driver for CV was defined by a cellular automaton model with 
three traffic states (free flow, synchronized flow, and jam) and a probabilistic phase transition among 
them. For ACC vehicles, the behavior of the driver was defined by a car-following model, comprising 
a fixed time headway and no artificial speed fluctuations from the randomization in the cellular 
automaton model. The authors evaluated how the penetration rate and headway variations reflected on 
capacity. The authors concluded that the introduction of ACC improves traffic stability of synchronized 
flow and it can be further enhanced by an increase of the headway. The authors found that given a 
specific headway, a critical value of penetration rate exists to avoid jam (congestion). Likewise, given 
a penetration rate, free flow stability is enhanced with a decrease of the headway. Therefore, the primary 
inference found respects to the stability of traffic that can be either enhanced or weakened, depending 
on the penetration rate and the fixed headway. 

Regarding the topic of introducing vehicles that incorporate ACC systems in highway systems, there is 
not a solid conclusion for a positive or negative influence on free-flow capacity and traffic efficiency. 
In fact, it is concluded that low penetrations rates of ACC vehicles do not have any effect on traffic 
flow, even in the most favorable conditions, the impact is minor (VanderWerf et al., 2002). 

Calvert, Schakel, and Lint (2017) suggested through an empirical study and validated by simulation, 
that a low penetration rate of AVs with ACC in the vehicle fleet will have a negative effect on traffic 
flow and road capacities due to higher gap times in early stages of deployment, and any improvement 
in traffic flow will only be seen at penetration rates above 70%. 

Other studies suggest an improvement of traffic-flow efficiency in vehicles that function in the 
cooperative following, the so-called CACC systems. These CACC vehicles might function in platoons 
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for which share information cooperatively with external vehicles and/or infrastructure (Ioannou, 1997). 
Several studies suggest traffic solutions that seem to highly improve traffic performance. Regarding the 
methodological approach, the major part of the literature considers traffic simulation models with the 
agent-based approach. 

In 2006, Van Arem et al. adapted the MIXIC simulation model to incorporate the CACC system 
features. The scenarios engaged a highway merging from four to three lanes and considered a closer 
distance between vehicles due to wireless communication restrictions. The results reinforced the traffic-
flow stability conclusion and revealed a slight increase in traffic-flow efficiency when the CACC-
penetration rate was above 40%, compared with the previous study (van Arem et al., 1996). 

One of the first authors that studied the effect of CACC on traffic flows through an agent-based 
approach were Hallé and Chaib-draa (2005) through a hierarchical driving agent architecture based on 
three layers: guidance, management, and traffic control layer in centralized and decentralized platoons 
(STEAM multiagent architecture). The comparison of these two approaches enhanced safety, time 
efficiency, and communication efficiency aspects. 

In 2008, Van Middlesworth et al. proposed a system that simulated autonomous vehicles through an 
agent-based approach in thousands of unmanaged intersections. The results revealed that, for low-traffic 
intersections, the vehicles with a CACC system significantly outperformed traditional stop signs. 

Arnaout and Bowling (2011) conducted a flexible agent-based simulator of traffic (FAST) to model a 
roadway with 4 lanes, with and without an entry slip road. Their results revealed that CACC influences 
positively capacity when there is a high CACC-penetration rate. When the CACC-penetration rate is 
100 percent, capacity increases by up to 60 percent. These results followed a parametrization of the 
headway about 0.5 seconds if they followed a CACC AV and between 0.8 and 1.0 seconds if they 
followed any conventional vehicle. 

In the meantime, Calvert et al. (2011) simulated the effect of different CACC-penetration rates on 
shockwaves in an Amsterdam freeway. For a penetration rate of 10 percent, the increase in the total 
number of arrivals (indicator for flow) was about 3 percent. For 50 percent, the increased throughput 
was 22 percent, and at 75 percent of penetration rate, the increase was 39 percent. When the CACC-
penetration rate is 100 percent, traffic throughput can increase up to 68 percent, not much different than 
in the Arnaout and Bowling (2011) study. Regarding the occurrence of congestion shockwaves, above 
a penetration rate of 50 percent, the shockwaves were significantly reduced, then when it was 100 
percent, there were no shockwaves at all. 

Fernandes and Nunes (2010) and Brownell (2013) studied platooning through CACC systems and 
suggest a capacity gain of up 270% for highways and 80% for urban roads if AVs work within 
cooperative systems (Meyer et al., 2017). 

Friedrich (2015) suggests road capacity gains of up to 80% on highways and up to 40% on urban roads 
compared to today if all vehicles turned into AVs, acknowledging the same time gap to the next car 
(0.5s) as nowadays for CVs.  

Regarding mixed traffic studies, Kala and Warwick (2013a) simulated autonomous vehicles in mixed 
traffic through specific micro-simulation software, which was specially created in Matlab. The scenario 
embraced an infinite straight road without speed lanes defined. The driver behavior considered a 
restriction vision of every vehicle, as well obstacle avoidance, overtaking, giving way for vehicles to 
overtake from behind, vehicle following, adjusting the lateral lane position, among others. The proposed 
planning algorithm within mixed traffic revealed that driver aggression plays a vital role in overall 
traffic dynamics. However, the influence on traffic performance was not tested. In 2014, the authors 
proposed a heuristic approach (a real-time genetic algorithm with Bezier curves) for the coordination 
of autonomous vehicles in the absence of speed lanes (Kala and Warwick, 2014). Later, they proposed 
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an intelligent transportation system framework for vehicles with diverse levels of automation (Kala and 
Warwick, 2015). 

Bailey et al. (2015) published a work in which they used a microscopic traffic simulator to model AV 
and CV with distinct behavioral models for car-following. For the CV, they used a variant of the Gipps 
car-following model while for AV, the enhanced intelligent driver model. They simulated in two 
scenarios with mixed traffic the effect of a traffic signal and a lane merge. Their conclusions were 
similar to the previous studies: with a high penetration rate of AV, it is expected that lane capacity 
increases, and the average travel time in traffic signals decreases. 

Talebpour and Mahmassani (2016) analyzed the individual influence of connected and autonomous 
vehicles on traffic flow stability and throughput. The simulation model analyzed scenarios 
contemplating CV and a penetration rate of either connected or autonomous vehicles in platoons placed 
in a one-lane highway of infinite length. The triple interaction of these vehicles (conventional, 
connected, and autonomous) was not contemplated. Their framework distinguishes the driver behavior 
models that entail different communication capabilities and, therefore distinct deployment scenarios. 
Results confirmed that both connected and autonomous vehicles improve traffic stability, regardless the 
penetration rates. Another interesting finding from this study revealed that autonomous vehicles are 
found to be more effective in preventing shockwave formation and propagation under their model’s 
assumptions when compared with connected or conventional vehicles. In addition to stability, the 
effects of these vehicles suggest a potential throughput increase under higher penetration scenarios. 

Yang et al. (2016) proposed a signal control strategy, considering three categories of vehicles: 
conventional vehicles, connected vehicles, and autonomous vehicles. Simulations were conducted for 
different flows, demand ratios, and penetration rates. The results revealed a decrease in the number of 
stops and delay when using the connected vehicle algorithm with an information level of about 50 
percent. 

Olia et al. (2018) did an analytical framework for quantifying and evaluating the road capacity impacts 
from mixed traffic (AVs and CVs). They found that, for an AV penetration rate of 100%, road capacity 
can increase up to 109% if AVs are fully autonomous (i.e., without cooperative systems), and 315% if 
AVs are connected and driven in a cooperative automated manner. 

Regarding driving simulators, they can be particularly useful to assess the effect on traffic by studying 
the CV drivers’ reactions towards AVs. One of the first driving simulators was developed by StSoftware 
(van Wolffelaar and van Winsum, 1992), which consisted of three screens placed at an angle of 120 
degrees, a driver’s seat mock-up and software interfacing it to a central computer system.  

In 1997, Chang and Lai had also proposed an automatic vehicle control system, called ADVANCE-F, 
to be equipped with conventional vehicles which the authors considered an alternative to the earliest 
ACC systems. Their findings were similar: the stabilization of the traffic flow; and a significant 
increment when the penetration rate was above 50. For a penetration rate of 100 percent, the capacity 
benefits would reach up to 33%. 

In 2014, Gouy et al. investigated the influence of vehicle platoons with short time headways on non-
platoons drivers within mixed traffic. They state a reduction in time headway for CV that was then 
examined through driving simulation. Three scenarios were tested: one where AV platoons respected a 
short time headway of 0.3 seconds; another with large following distance with a headway of 1.4 
seconds; and the last scenario without platoons. Their results point out some possibly negative 
behavioral effects of mixed traffic due to the reduction of time headway in CV, below the safety 
threshold of 1 second. However, they suggest that this effect is not lasting in time because there was no 
carryover effect from one platoon condition to the other. 
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Regarding the real-life experiments, considering cooperative and connected vehicles, one of the first 
cooperative driving experiments was conducted in 2003. Bose and Ioannou simulated mixed traffic 
flow with an early definition of vehicle dynamics (Pipes, 1953) and then validated the theoretical and 
simulation results through experiments with instrumented vehicles. This validation allowed to evaluate 
the effects on traffic-flow characteristics and environment within a mixed traffic scenario. Their traffic 
findings infer that these semi-AVs do not contribute to the slinky effect phenomenon when the lead 
manual vehicle performs acceleration/deceleration maneuvers. However, semi-AVs helped to stabilize 
traffic flow because they absorbed the response of rapidly accelerating lead vehicles.  

In 2011, Alonso et al. conducted experiments to test an autonomous intersection control system. A real 
scenario was created, comprising a connected vehicle, equipped with sensors and actuators, and two 
CVs. Two decision algorithms were tested for priority conflict resolution at intersections to help the 
AV decide whether to cross. The system demanded the position, speed and turning intentions of the 
vehicles involved in the crossroad. It was not contemplated V2I communication, and therefore no 
infrastructure costs. Whereas the first algorithm considers priority tables, the second assigns priority 
levels to vehicles dynamically which was considered the most reliable algorithm. The results of both 
methods were similar, and the authors state that the selection of one or the other should be based on the 
need to modify intersection priorities. 

Rastelli and Peñas (2015) proposed a framework to model the behavior of autonomous vehicles in 
roundabouts. The entrance and the exit can be handled as an extension of the intersection, whereas 
inside the roundabout this study designed and simulated a fuzzy logic system for the steering control of 
autonomous vehicles. Their experiments have been conducted in different speed profiles (up to 24 km/s) 
and lane change maneuvers inside the roundabout which revealed satisfactory results. 

In this section, the leading research focused on AVs’ traffic implications. Overall, it is consensual that 
in a scenario with AVs, road capacity can only be improved if cooperative systems (like V2I and V2V) 
are present in the system. This review supports the fifth and fourth thesis claims that “Automated traffic 
systems are more efficient than mixed traffic. The mixed traffic hinders the potential of boosting road 
traffic efficiency from AVs technology.” and that “Vehicle-to-infrastructure (V2I) communication will 
be the answer for controlling AVs and is an investment decision that municipalities will face at some 
point.”. The following Table 2.1 summarizes the literature around the traffic impacts, ordered by text 
reference. 

Table 2.1 – Literature summary regarding the traffic impacts. 

Reference Topic Effect 1st author Affiliation 

Gora and Rub (2016) 
Connected self-driving 

traffic model 
 

University of Warsaw 
Warsaw, Poland 

Bart van Arem, 
Hogema, and 

Smulders (1996) 
ACC systems 

Headway 
Capacity 

Traffic flow stability 

TU Delft  
Delft, The Netherlands 

B. van Arem and 
Jacob Tsao (1997) 

AV guidance systems  
TU Delft  

Delft, The Netherlands 

VanderWerf et al. 
(2002) 

ACC systems 
Capacity 

Environmental Benefits 
University of California  

Berkeley, USA 

Yuan et al. (2009) ACC systems 
Headway 
Capacity 

Traffic flow stability 

University of Science and Technology 
of China 

Anhui, China 

Kesting (2010) ACC systems Capacity 
TU Dresden 

Dresden, The Netherlands 

Tientrakool et al. 
(2011) 

ACC systems 
V2V 

Capacity 
Columbia University 

New York, USA 
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Reference Topic Effect 1st author Affiliation 

Calvert, Schakel, and 
Lint (2017) 

ACC systems Capacity 
TU Delft  

Delft, The Netherlands 

Ioannou (1997) Full-platooning concept  
University of Southern California Los 

Angeles, USA 

Van Arem (2006) CACC systems 
Headway 
Capacity 

Traffic flow stability 

TU Delft  
Delft, The Netherlands 

Hallé (2005) CACC systems 
Highway safety 

Traffic flow stability 
Universite Laval 

Sainte-Foy, Canada 

Van Middlesworth 
(2008) 

CACC systems  
Harvard University 
Cambridge, USA 

Arnaout (2011) CACC systems 
Capacity 

 
Old Dominion University 

Norfolk, USA 

Calvert (2011) 
CACC systems 

Mixed traffic 
Capacity 

Traffic flow stability 

Netherlands Organisation for Applied 
Scientific Research TNO Delft, The 

Netherlands 

Fernandes and Nunes 
(2010) 

CACC systems  
AVs platooning 

Capacity 
University of Coimbra 

Coimbra, Portugal 

Brownell (2013) 
CACC systems  

Shared AV taxis network 
Capacity 

Princeton University 
New jersey,USA 

Friedrich (2015) CACC systems  Capacity 
Institut für Verkehr und 

Stadtbauwesen 
Germany 

Kala and Warwick 
(2013) 

CACC systems  
Mixed traffic 

 
University of Reading  

Reading, UK 

Kala and Warwick 
(2014) 

CACC systems  
Mixed traffic 

 
University of Reading 

Reading, UK 

Kala and Warwick 
(2015) 

CACC systems  
Mixed traffic 

 
Indian Institute of Information 

Technology 
Allahabad, India 

Bailey et al. (2015) 
car-following, 
Mixed traffic 

lane capacity 
average travel time 

Massachusetts Institute of 
Technology 

Cambridge, USA 

Talebpour (2016) 
ACC and CACC effect 

Mixed traffic 
Capacity 

Traffic flow stability 
Texas A&M University 

Texas, USA 

Yang (2016) 
ACC, CACC, 
Mixed traffic 

Capacity 
Traffic flow stability 

ETH Zurich  
Zurich, Switzerland 

Olia et al. (2018) 
ACC, CACC, 
Mixed traffic 

Capacity 
 

McMaster University 
Ontario, Canada 

van Wolffelaar (1992) Driving simulators StSoftware 
Traffic Research Centre 
Haren, The Netherlands 

Correia (2015) Literature review  
TU Delft  

Delft, The Netherlands 

Chang (1997) Driving simulators 
Capacity 

Traffic flow stability 
Tamkang University 

Taipei, Taiwan 

Gouy et al. (2014) Driving simulators Headway 
TRL (Transport Research Laboratory) 

Berkshire, UK 

Baber (2005) Real Experiments  
Griffith University  

Queensland, Australia 

Bose (2003) Real Experiments 
Traffic flow stability 

slinky effect phenomenon 
Real-Time Innovations, Inc. 

Sunnyvale, USA 

Pipes (1953) Vehicle dynamics theory  
University of California 

Los Angeles, USA 
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Reference Topic Effect 1st author Affiliation 

Alonso et al. (2011) Real Experiments 
Capacity 

Traffic flow stability 
Universidad Politécnica de Madrid 

Madrid, Spain 

Rastelli and Peñas 
(2015) 

Real Experiments 
Capacity 

Traffic flow stability 
INRIA 

Le Chesnay, France 

IMPACTS ON MOBILITY 

Traffic performance is determinant to the users’ opinion as they will have a significant influence on the 
mobility system itself. The mobility impacts can be organized in three main subjects: travel cost 
implications (cost of vehicle, travel time, value of travel time) which influence the travel choices 
implications (vehicle use, public transport, walking, and cycle use); and vehicle implications (vehicle 
ownership and sharing). These topics are part of the first and second levels of the ripple effect model 
introduced before. The literature is growing but still highly limited. 

Regarding the topic of the value of travel cost implications, Steck et al. (2018) studied the impacts of 
AVs on the value of travel time and on mode choices for commuting trips, either in privately owned or 
shared AVs, through a stated choice experiment. The results show that travel time and costs play a 
crucial role in mode choices. They found that AVs reduce value of travel time for commuting trips. In 
a privately-owned vehicle the reduction goes up to 31% compared with CVs; in shared AVs the 
reduction goes up to 10%.  

Correia et al. (2019) looked at the expected changes in the value of travel time from a stated choice 
experiment (de Looff et al., 2018) and confirmed their results with the theoretical insights from the 
microeconomics theory. They found that the value of travel time of an AV with an office interior 
(between 4.99€/h to 6.26€/h) will be lower than the current value of travel time in a CV (between 
7.91€/h to 8.37€/h). Contrarily, an AV with leisure interior will not decrease (between 9.94€/h to 10.82 
€/h). This study revealed that AVs have the potential of reducing 25% if AVs are an office and increase 
up to 29% if AVs are used as a leisure place. 

Regarding the topic of travel choices implications, Yap et al. (2016) explored the preferences of 
travelers for using AV as last-mile public transport of multimodal train trips. Their stated preference 
study analyzed the user perception towards the utility of using AV as an egress mode of train trips. The 
estimated discrete choice model considers two classes of travelers (the ones that traveled by train in 1st 
class and the others) and, for each class, four-mode alternatives of transport after the train trip 
(bus/tram/metro, bicycle, shared cybercar, AV, cybercar). Additionally, in alternative to the public 
transport choice, a private car alternative was incorporated which resulted in 9 transport mode 
alternatives. The preference results, on average, revealed AVs as egress mode rather than bicycle or 
bus/tram/metro regarding the 1st class train travelers. The preference results indicate that 2nd class train 
travelers, on average, prefer the use of bicycle or bus/tram/metro as egress mode. The authors concluded 
that there is a potential use of AV as last-mile transport mode from train stations to the final destination. 
They suggested that the VTT might not go lower as expected thus that some travelers may not see a 
great interest in, for example, performing other tasks while traveling which can be explained because 
travelers did not have any real experience of traveling in a (semi-) AV thus blurring somehow their 
perception. The authors also found that the two critical factors contributing to a successful deployment 
of AV are through strengthening the travelers' trust regarding safety perception; and also, the possibility 
of the AV increasing mobility sustainability. 

Also, in 2016, Harper et al. analyzed the travel choices of non-driving, elderly and people with travel-
restrictive medical conditions and the potential increases in travel with autonomous vehicles. They 
assumed that: non-drivers travel as much as the drivers within each age group and gender; the driving 
elderly (over 65) without medical conditions travel as much as a younger population within each gender; 
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working-age adult drivers (19–64) with medical conditions travel as much as working-age adults 
without medical conditions within each gender; the driving elderly with medical any travel-restrictive 
conditions will travel as much as a younger demographic within each gender in a fully AV environment. 
Their results concluded the increase of annual vehicle miles traveled about 14 percent. However, they 
admit that this was an initial study to give a perspective on possible future challenges. 

Regarding the topic of vehicle implications, i.e., private and shared vehicles evaluation, Fagnant and 
Kockelman (2014) used an agent-based model to analyze the implications of having shared AV (3.5 
percent of the trips) in the mobility system of a mid-sized city such the city of Austin, Texas. Although 
the results pointed to a travel distance increase of 11 percent, it was concluded that a shared AV could 
replace eleven CV currently on the network. 

Similarly, the International Transport Forum (ITF, 2015) designed a model to analyze the introduction 
of automated taxis to satisfy the transport demand besides the metro transport system, in a mid-sized 
European city (Lisbon, Portugal). Results showed that, in a scenario that includes metro, each AV could 
replace ten CV, given a maximum five-minute waiting period. In a scenario without metro, e.g. only 
shared AV satisfy the mobility demand, each AV can replace six CVs of the current network traffic 
flow. 

Spieser et al. (2014) did an analogous study when they considered the substitution of all CVs for AV 
for the city of Singapore. The authors used an analytical mathematical formulation to find the minimum 
fleet size of vehicles, given minimum waiting time and vehicle availability. The results showed that 
each AV replaces 3 CVs to satisfy the total personal mobility needs.  

Recently, Zhang and Pavone (2016) studied the replacement of the taxi demand in Manhattan for a fleet 
of AV through the queuing theory approach. The results concluded that, if automated, 60 percent of the 
existing fleet would satisfy the current mobility demand. 

Correia and van Arem (2016) studied the impacts on traffic delays and parking demand if private-owned 
CVs were replaced by AVs. Their method dynamically assigns the family trips in AV, and the vehicles 
might travel empty to satisfy multiple household trips or park themselves in any of the network nodes. 
The problem considers two modes of transport: AV and public transport, for which the model considers 
a ticket cost and a penalty for choosing public transport. It was first formulated by minimizing the total 
transport costs of all families in the city (system-optimal approach) and afterward by minimizing each 
individual household transport costs, which best adapts to reality. This non-linear problem, due to the 
traffic congestion equations, was applied to a very small network and a quasi-real case of study in the 
city of Delft, the Netherlands. Nine scenarios were created by changing parking policies and value of 
travel time (VTT). The results revealed that traffic congestion increases up to 5.04% when the existence 
of empty vehicles is significant. The percentage of empty kilometers along the scenarios ranged between 
10.3% and 87.4% of which the last regards a scenario where there is paid parking everywhere. In 
scenarios with lower VTT, e.g. with higher comfort while traveling, the car mode share increased, and 
congestion actually was reduced. Overall, vehicle automation reduced generalized transport costs and 
satisfied more trips demand. 

In this section, the existent and scarce research focused on the impacts of AVs in mobility. Overall, it 
is consensual that AVs will likely reduce the value of travel time, but then again, according to 
microeconomy theory, that value will depend on the occupants’ comfort and use inside AVs. According 
to literature, AVs will likely become a reality regardless the ownership mode (private or shared). This 
review supports the second and third thesis claims, that “The autonomy of AVs will play an important 
role in urban areas once AVs technology reaches level 4 that allows AVs to circulate autonomously.” 
and that “Smart cities will be interested in controlling automated traffic to improve the overall traffic 
system, but also to articulate with other modes of transport.”. The following Table 2.2 summarizes the 
literature around the mobility impacts, ordered by text reference. 
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Table 2.2 – Literature summary regarding the mobility system effects. 

Reference Topic Effect 1st author Affiliation 

Steck et al. (2018) 
Travel Cost Implications:  

VTT in privately owned and 
shared AVs 

Value of Travel Time 
Mode Choice 

German Aerospace Center, Institute 
of Transport Research  

Berlin, 
Germany 

Correia et al. (2019) 
Travel Cost Implications:  

VTT inside AVs and theoretical 
microeconomy 

Value of Travel Time 
TU Delft  

Delft, The Netherlands 

de Looff et al. (2018) 
Travel Cost Implications:  

VTT inside AVs as work or leisure 
place 

Value of Travel Time 
TU Delft  

Delft, The Netherlands 

Correia and van 
Arem (2016) 

Travel Choices Implications:  
VTT and parking policy analysis 

Congestion 
Average total travel 

time 
Generalized 

Transport Costs 

TU Delft  
Delft, The Netherlands 

Yap et al. (2016) 
Travel Choices Implications: 
User acceptance and opinion 

Preference for AV 
as last-mile trips 

TU Delft  
Delft, The Netherlands 

Harper et al. (2016) 
Travel Choices Implications: 

Non-driving people challenges 
Annual travel 

distance 
Carnegie Mellon University 

Pittsburgh, USA 

Fagnant and 
Kockelman (2014) 

Vehicle Implications: 
Shared AV in Austin 

Demand 
Travel distance 

The University of Texas at Austin 
Austin, United States 

ITF (2015) 
Vehicle Implications: 
Shared AV in Lisbon 

Demand 
 

International Transportation Forum  
Europe 

Spieser et al. (2014) 
Vehicle Implications: 

Shared AV in Singapore 
Demand 

Massachusetts Institute of 
Technology, Cambridge, USA 

R. Zhang and 
Pavone (2016) 

Vehicle Implications: 
Shared AV in Manhattan 

Demand Stanford University California, USA 

IMPACTS ON URBAN ENVIRONMENTS 

These aforementioned topics influence the whole urban environment itself – the second and third levels 
in the ripple effect model. The deployment of AV in urban and regional networks will first influence 
traffic, then mobility, and at that point urban environments at the macro and the micro-scale. At the 
macro scale, accessibility changes can accrue from ex-urbanization waves with a low value of time and 
a reasonable high market penetration rate of AV. At the local level, changes are expected in land use 
and streetscape if parking space is eliminated, and traffic solutions such as automated intersection 
management are a reality. These waves of accessibility changes are a result of mobility effects that 
accrue from the AV adoption. Topics such as location choice, land use, and infrastructure are still 
relatively unexplored. The societal impacts, e.g., safety and environmental issues, are still in the early 
stages of research. As Yap et al. (2016) concluded in their stated preference study, the safety perception 
and the sustainability matter of AVs are the two major factors that might have a significant contribution 
to a successful deployment of AV. 

Meyer et al. (2017) were one of the first studying accessibility impacts from the presence of AVs in 
urban environments. They state that AVs favor urban sprawl as accessibility in rural areas increases. 
Therefore, public transportation will be rendered to only some urban agglomerations, except in dense 
urban areas. 

Following, Papa and Ferreira (2018) discuss the critical decision process that will emerge shortly after 
AVs deployment concerning accessibility. They argue that AVs have great potential to aggravate and 
alleviate accessibility problems, in which stakeholders and governments should consider avoiding a 
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dystopian mobility future. Transport network design (which is the topic of the thesis) is mentioned as 
one of the critical decision themes. 

Milakis et al. (2018) developed a conceptual framework to estimate the accessibility impacts based on 
expert opinion. Three viewpoints were extracted: accessibility benefits stemming from AVs will be 
highly uncertain, mainly because of induced travel demand that will likely cancel out travel time and 
cost savings of AVs in the long term; then, accessibility changes because of AVs will have two opposing 
implications for urban form: densification of city center and further urban sprawl; finally, those who 
can afford an AV will mainly enjoy AVs benefits; thus AVs will have more negative than positive 
implications for social equity. 

On the safety topic, IIHS (2010) estimates a reduction to one-third of the crashes and fatalities if all 
vehicles on the road were AVs level 1 – equipped with safety functions such as forward collision and 
lane departure warning systems, side view assistance and adaptive headlights. Farmer (2010) analyzed 
the effectiveness of electronic stability control (ESC) in reducing the risk of fatalities. According to 
data collected during 10 years in the United States, it was conclusive that the ESC reduced the crash 
risk by 33 percent on average. Afterward, Cicchino (2016) studied the effect of forward collision 
warning (FCW) and a low-speed autonomous emergency breaking (AEB) system. Poisson regression 
was used to compare the rates of police-reported crash reports in twenty-two U.S. states during 2010-
2014. The results reflected a reduced rear-end striking crash involvement rates of about 23% and 39% 
for the FCW and AEB, respectively. 

Anderson et al. (2014) infer that AVs classified as NHTSA’s level 3 or 4 might improve traffic safety 
because they will substantially reduce human error, distraction, and alcohol-related crashes and 
fatalities. AVs are believed to reduce crashes and fatalities, but not 100 percent. Like airbags systems, 
these technologies are not perfect. It can prevent thousands of fatalities but sometimes happens failures. 
Nevertheless, airbags systems are still regulated, and their functioning is scrutinized (Atiyeh and 
Blackwell, 2017). 

With respect to environmental issues, the studies about the AV deployment are still scarce and 
inconclusive, allied with a lack of methods. Nonetheless, the vision of connected and shared AV is that 
it will be beneficial for the environment since their technology will work automatically towards the 
road traffic improvement that, consequently, will reduce fuel consumption and emissions. Electric and 
connected shared AVs surely will bring many more benefits in terms of emissions, fuel consumption, 
and environment (cleaner sources).  

In 2003, Bose and Ioannou simulated mixed traffic flows with an early definition of vehicle dynamics 
(Pipes, 1953) and then validated the theoretical and simulation results, through experiments with 
instrumented vehicles, to evaluate the effects on traffic-flow characteristics and the environment within 
a mixed traffic scenario. Their environmental findings suggest that the speed tracking and t\he smooth 
response of these vehicles reduce fuel consumption and levels of pollutants of following vehicles. Their 
results indicate that with an AV penetration rate of 10%, fuel consumption and monoxide pollution 
levels are reduced up to 3.6% and 19.2%, respectively. CO2 emissions are reduced up to 3.4%. 

BhAVar et al. (2014) studied hybrid electric connected vehicles in three strategies: one with signal 
timing information, other with headway information, and a last with both signal timing and headway 
information. Their results suggest energy savings ranging between 60 and 76 percent for a full 
penetration rate. For a 30-penetration rate, the emissions ranged from 31 to 35 percent of energy savings. 

G. Wu et al. (2014) analyzed the benefits of semi-AVs with connectivity deployment at signalized 
intersections. They compared speed profiles with the CV ones. Their results reflected on average: a fuel 
economy and CO2 reduction about 5 to 7 percent; a CO emissions reduction ranging from 15 to 22 
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percent; HC emissions reduction up to 7 percent; and between 9 to 13 percent of travel time savings, 
for AV when compared with CV. 

In 2016, Mersky and Samaras tested the fuel economy of AVs (2010 Honda Accord) through a method 
that simulated automated following cycles. In order to estimate fuel consumption, they used the Virginia 
Tech Comprehensive Fuel Consumption Model (Rakha et al., 2011). Their findings suggest that the 
impact of AV on fuel economy can return losses of up to 3% to gains of up to 10%, depending on the 
efficiency-focused control strategies towards fuel economy. 

The expectable benefits from the deployment of such novelty are attractive to governments and citizens. 
At a macro level, the societal implications include the efficiency of traffic systems, safety by collisions 
and fatalities avoidance and performance of dangerous tasks in inaccessible locations, leverage of local 
economy, amelioration of environment by air pollution reduction and a decrease of energy 
consumption. At a micro level, vehicle automation can also transcend former restrictions as to provide 
mobility to non-driver citizens, improve the quality of life by easing congestion time and making the 
time spent while driving productive, increase road safety through driver assistance systems, amongst 
other potential unproven benefits (Stevens and Newman, 2013). 

The following Table 2.3 summarizes the literature around the urban environment impacts, ordered by 
text reference. This review evidences the impacts that AVs may have in urban areas: urban sprawl, 
higher road safety, lower emissions, for instance – which supports the third claim that “Smart cities will 
be interested in controlling automated traffic to improve the overall traffic system, but also to articulate 
with other modes of transport.” 

Table 2.3 – Literature summary regarding the urban environment impacts. 

Reference Topic Effect 1st author Affiliation 

Meyer et al. (2017) Transport modeling Accessibility 
ETH Zurich  

Zurich, Switzerland 

Papa and Ferreira 
(2018) 

Exploratory study Accessibility 
University of Westminster 

London, UK 

Milakis et al. (2018) Expert opinion Accessibility 
TU Delft 

Delft, The Netherlands 

IIHS (2010) Report Road Safety 
Insurance Institute for Highway Safety 

Virginia, USA 

Farmer (2010)  Road Safety 
Insurance Institute for Highway Safety 

Virginia, USA 

Cicchino (2016)  Road Safety 
Insurance Institute for Highway Safety 

Virginia, USA 

Anderson et al. 
(2014) 

 Road Safety 
RAND Corporation 

California, USA 

Bose and Ioannou, 
(2003a) 

Mixed traffic flow simulation 
Fuel consumption 

Emissions 
Real-Time Innovations, Inc. 

California, USA 

BhAVar et al. (2014) 
Hybrid electric connected 

vehicles 
Energy savings 

Emissions 
Clemson University 

South Carolina, USA 

G. Wu et al. (2014) 
AVs with connectivity at 
signalized intersections 

Fuel consumption 
Emissions 

University of California at Riverside 
California, USA 

Mersky and Samaras 
(2016) 

Simulation of automated 
following cycles 

Fuel consumption 
Carnegie Mellon University 

Pennsylvania, USA 
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THE DEPLOYMENT OF AVS IN URBAN AREAS 

A TRANSITION PERIOD 

The deployment of this technology in urban areas is uncertain upon the interaction with pedestrians, 
cyclists, and other automobiles. Nevertheless, the deployment of AVs will occur in urban areas in a 
transition period where AVs (over level 4) will coexist with CVs driven by humans that have different 
range of levels of automation. Theoretically, the deployment was primarily defined in interurban 
environments (Shladover, 2000; van Arem and Jacob Tsao, 1997), but a similar analogy can be made 
in urban environments.  

In 1997, van Arem and Tsao identified the factors that could affect the development of AV guidance 
systems in interurban environments and defined two approaches. The geographical approach states that 
full automation will be implemented in one step and expand geographically. The functional approach 
states that the deployment cannot be realized suddenly as difficulties may be encountered and, therefore, 
intermediates steps must be identified in a “transition period” and optimized to best adjust the 
technology in reality. Currently, these intermediate steps can correspond, for instance, to the distinct 
levels of automation; or be characterized by the diffusion of AVs in the networks (penetration rate) 
(Correia et al., 2015). 

Shladover (2000) stated different paths for functional deployment in interurban environments, noticing 
that this deployment can occur differently over regions. This analysis was focused on achieving fully 
automated highway systems. The author defends that in some regions, the deployment can be introduced 
with V2V communication and ACC that perform CACC systems without dedicated lanes. In other 
regions, the deployment can be led through the introduction of dedicated lanes before V2V 
communication entirely exists, which is suitable for trucks’ operation. The author states that the 
combination of these two instances (CACC + dedicated lanes) corresponds to partially automated 
highway systems. It is stated that to accomplish fully automated highway systems, network control (V2I 
communication), cooperation amongst vehicles (V2V communication), and lane-changing control (to 
perform dedicated lanes) are required. 

According to the European Transport Safety Council (2016), this transition period can be divided into 
two stages: the first focused on automated and non-automated vehicles, and the second focused on 
automated vehicles and vulnerable road users. Therefore, in the first stage of this transition period, a 
functional deployment will occur in urban regions as AVs over level 4 will be deployed in reality 
amongst other vehicles. At the operation level, the technology installed (V2I) and protocol cooperation 
(V2I) will rule out if such deployment will occur successfully in urban areas. Some parts of the network 
might have V2I connectivity, others might not. This confirms the first claim of the thesis: “The 
deployment of AVs in urban areas implies a transition period where AVs will coexist with CVs in urban 
areas.”. 

THE NEED FOR TRANSPORT POLICY 

Self-driving cars (level 4 onwards) are primarily envisioned to gradually appear in the next decade in 
urban areas through a period of transition within mixed traffic. According to the previous review, studies 
indicate that this level will bring both positive and negative impacts. From citizens-perspective, the fact 
that the driving task is no longer an obligation is seen as bringing more traveling comfort, increased 
road safety, efficient energy consumption, etc. From government-perspective, AVs are envisioned to 
bring less congestion, less pollution, less mortality rate, improve economic leverage from small ride-
hailing and car-sharing businesses, among others. However, AVs technology may influence citizens' 
behavior on increasing the willingness and predisposition for traveling, which might go against 
government expectations, for example, on less congestion and less pollution. 
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When AVs technology reaches level 5, AVs might eventually drive empty throughout the network, 
which ultimately will increase traffic flow. For instance, after dropping off the passenger and then drive 
towards a parking spot or ultimately home. Also, citizens that were not able to drive previously, e.g., 
the elderlies, will increase travel demand. These individualistic behaviors mean additional trips, i.e., 
more traffic flow and increased overall congestion, energy demand, and consumption. Air pollution 
might eventually become a problem if such vehicles are not electric.  

More travel demand and empty trips are two of the biggest challenges once AVs reach levels 4 and 5, 
respectively. Besides these, the unchecked growth in ride-hailing services will possibly threaten road 
traffic congestion. On the one hand, the ride-hailing services ease congestion by taking drivers off the 
road, but, on the other hand, these shared systems complement mass transit and induce a change of 
behavior in detriment to public transportation. Nowadays, even without AVs, a recent study in Boston 
area revealed that 42 percent of passengers would have used public transit for their trip if ride-hailing 
services were not available, meaning travelers are dropping public transportation (Boston Globe, 2018). 
This means that irrespective if they are privately-owned or shared vehicles, AVs deployment has the 
capability of deteriorating congestion – and transport policy is an important key to mitigate its issues. 

The need for transport policy usually occurs due to loss of efficiency, equity, regional development, 
and employment. Policies must be outlined together with both manufacturing and research development 
in a proactive way, anticipating and trying to manage a technological disruption that can be both a crisis 
and an opportunity. AVs will be a reality sooner or later and planning ahead design or planning 
strategies is a way of studying transport policy that can come from a scientific, professional and political 
view, either reactively or proactively. Reactive policy focus on solving negative implications, whereas 
the pro-active politics defines objectives and plans focused on prevention and problem-solving. In 
transportation, congestion usually foments transport policy which normally is devised in a reactive 
manner. 

The timeline of policy actions is very critical in the case of AVs. The issues are notorious with 
implications for transport planning (Yasin et al., 2015). Policymakers must be aware of strategies that 
attain the expectable impacts of AVs (Karlsson and Pettersson, 2015).  

As abovementioned, the first directives are mostly focused on the levels of automation (SAE, 2018), 
and they are constantly updated along with the technological evolution. Regulatory frameworks for 
testing and deploying self-driving cars are currently being settled. In 2011, Nevada was the first state 
of the USA with legislation for that purpose, allowing the operation of limited and full self-driving 
autonomous vehicles on public roadways for research and testing purposes. Since then, other US states 
such as California, Florida, Michigan, Columbia endorsed similar legislation for that purpose. 

In 2016, the NHTSA enacted the first policy guidance for testing and deployment of AV. Alongside the 
European Union (2016) enacted the necessary first steps for the development and deployment of AV 
technology in Europe. This regulatory framework was signed by EU member states and the transport 
industry pledge and deliberated the first regulations to allow AV to travel on public roads. Germany is 
the front-runner regarding the regulatory frameworks allowing the transfer of driving tasks to the 
vehicle – AVs level 3 of automation (Gauck et al., 2016).  

Governments around the world are trying to understand what infrastructure changes are needed to 
support AVs' operation in rural and urban areas (Austroads, 2019). Currently, the existent regulatory 
enacted (European Committee for Standardization (CEN), 2018; International Organization for 
Standardization, 2017) is focused on establishing performance requirements so that AVs are able to 
read the roads, e.g. line marking recognition, lane support systems, and traffic sign recognition 
(EuroNCAP, 2020a, 2020b, 2019, 2018).  
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However, according to the American Association of Motor Vehicle Administrators (2018), most of the 
US stakeholders can only speculate on what are the road requirements to best adapt roads to AVs, as 
their technology has been developed in the absence of collaboration between the infrastructure owners 
and technology developers. Moreover, it has been stated that some states are not as willing to modify 
their lane striping widths because it is seen as significant investments (Austroads, 2019). Contrariwise, 
it has been stated that V2I should be the next priority of investment in addition to traditional 
infrastructure (markings, signage, etc.) (American Association of Motor Vehicle Administrators, 2018). 

Meanwhile, a first report focused on dedicated lanes was developed under the National Cooperative 
Highway Research Program (National Academies of Sciences and TRB, 2018). They describe the 
benefits of dedicated lanes in terms of safety, mobility, and environmental and societal considerations, 
the conditions amenable to dedicating lanes for priority and exclusive use by connected AVs, and a 
review of laws and regulations regarding dedicating lanes. Still, the existent regulatory framework is 
focused on AVs level 3. 

In this thesis, it is aimed to support transport policy from a scientific and proactive vision. Planning 
strategies are lacking on how the automated traffic should be conducted in cities, mixed together with 
CV or jointly. This subsection assessment supports the third claim of the thesis: ”Smart cities will be 
interested in controlling automated traffic to improve the overall traffic system, but also to articulate 
with other modes of transport.”. 

NETWORK DESIGN IN AN URBAN CONTEXT TO PLAN THE TRAFFIC OPERATION OF AVS 

The network design problem in the context of urban transportation systems has been continuously 
studied in the last five decades and involves complexity and multidisciplinary topics. In transportation 
planning, the network design problem covers decision-making situations in three hierarchical levels at 
a long, medium and short term respectively (Magnanti and Wong, 1984): 

1. Strategic Level when problems regard the design of new streets, bus routes, existing routes 
expansion, etc. 

2. Tactical Level when problems cover the determination of the orientation of one-way streets, the 
allocation of lanes in two-way streets and exclusive bus lanes, etc. 

3. Operational Level when problems are related to the scheduling of traffic lights, transit, and repairs 
on urban roads. 

Two classical problems stem from urban transportation networks: the Road Network Design Problem 
and the Transit Network Design and Scheduling Problem (Farahani et al., 2013). The first is usually 
related to the strategic and tactical levels, e.g., for decisions of upgrading or expanding the capacity of 
roads. The second usually comprises the operational level that deals with new transit network 
configurations, i.e., the mobility improvement of the network, such as the optimal transit routes, 
frequencies, or timetables. Table 2.4 details the most significant reviews on this topic. 

Table 2.4 – Literature reviews in the context of urban transportation network design problems. 

Problem Reviews 

Road Network Design 
Problem 

Boyce (1984) 
Magnanti and 
Wong (1984) 

Friesz (1985) 
Migdalas 
(1995) 

H. Yang and 
H. Bell (1998) 

Transit Network Design 
Problem 

Desaulniers and 
Hickman (2007) 

Guihaire and Hao 
(2008) 

Kepaptsoglou 
and Karlaftis 

(2009) 
  

Both Problems Farahani et al. (2013)     
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However, the network design typically involves two perspectives: the decision-maker (e.g., the 
municipally) regarding the planning of roadways; and the users (e.g., the travelers) whose behavior 
(paths) depends on the network design and influences the performance of the transportation system. On 
one level, authorities aim to devise a policy to optimize the traffic system with cost-efficiency, and on 
the other level, each user holds an individual travel pattern, which depends on their travel choice and 
the road network solution tested. 

Accordingly, network design problems are typically formulated as a bi-level to embrace both 
perspectives. Each level regards a general mathematical formulation that can be more or less difficult 
to solve linearly. Even if each level can be solved by exact solution methods, e.g., linearly, the problem 
is NP-hard and very difficult to solve because the convexity of the bi-level problem might not be 
guaranteed (Ben-Ayed et al., 1988; Luo et al., 1996). In order to deal with this issue, heuristics or 
metaheuristics are usually proposed to deal with this optimization problem, yet the optimum is not 
guaranteed, and a local optimum may be found instead. 

Regarding the upper-level problem, based on the nature of the decisions considered (discrete, 
continuous or mixed), the literature defines several typical problems for each one in the context of urban 
transportation (Farahani et al., 2013): 

 for the Road Network Design Problem (RNDP) 

i. Discrete Network Design Problem, such as the decision to build new roads or determining 
the direction of one-way streets (Wu et al., 2009). 

ii. Continuous Network Design Problem, such as the maximization of the capacity of streets 
and scheduling traffic lights. 

iii. Mixed Network Design Problem, which is a combination of discrete and continuous decision 
variables, such as (Cantarella et al., 2006) (Yang and H. Bell, 1998). 

 for the Transit Network Design and Scheduling Problem 

iv. Transit Network Design Problem designs the routes of the transit lines, including the links, 
nodes and sequence of the links visited. 

v. Transit Network Design and Frequency Setting Problem determines the service frequency 
besides the route design. 

vi. Transit Network Frequencies Setting Problem determines the frequency setting, given the 
route structure. 

vii. Transit Network Timetabling Problem deals with the timetable issues, given the service 
frequency and routes. 

viii. Transit Network Scheduling Problem considers decisions about the frequency and timetable, 
given the route structure. 

Regarding the lower-level problem, there is a major distinction between the Road Network Design 
Problem and the Transit Network Design and Scheduling Problem. While in the first, vehicles count as 
flow units, in the second, units reflect on passengers. In both, the lower-level problem comprises the 
assignment of trips into the network links. In the first, the traffic assignment, and in the second, the 
transit assignment. 

Theoretically, there are two approaches for the traffic assignment (Sheffi, 1985): 

 the user-equilibrium, which is more realistic regarding current traffic (CV) as the equilibrium is 
reached when traffic arranges itself in congested networks that no individual trip maker can reduce its 
path costs by switching routes – a selfish behavior and aims at decreasing his own travel time to a 
point that there are no better alternatives (Wardrop, 1952) ; 
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 and the so-called social equilibrium, which represents a system-optimal approach as the equilibrium 
is reached when, in congested networks, the total travel cost is minimized (Newell, 1980). 

The most popular method to do the traffic assignment of car flows to a road network is the Wardrop 
(1952) principle, which considers capacity constraints and may also consider stochastic effects. For a 
time-dependent dynamic traffic assignment, Ziliaskopoulos (2001) presents an excellent literature 
review. 

The transit assignment approaches are similar to the traffic assignment, with methods that deal with 
capacity constraints and stochastic effects. Different criteria and passenger behaviors are assumed, 
which leads to different approaches to allocating passenger demands to transit paths.  

The RNDP is typically focused on a single transit mode; however multiple modes of transport coexist 
together in the network (bus, vehicle, and railway networks). Multi-Modality comprises at least two 
modes of transport and the interactions of the different flows can be captured in three cases (Farahani 
et al., 2013):  

 the flows of the different modes do not interact, such as the case of railway and highway networks. 
Regarding AVs deployment, this case happens when they circulate exclusively in dedicated 
infrastructure only (lanes/roads); 

 the flows of different modes interact, such as the case where buses and vehicles share the road, or in 
when AVs and CVs share the roadway (mixed traffic roads); 

 the flow and decision interrelations, i.e., when decisions affect the flow interactions and vice-versa, 
such is the case where the decision of converting a two-way street into a one-way street affects itself 
the distribution of the AV flow. 

Similarly, in the transit assignment, the passenger can travel in more than one mode of transport. The 
so-called combined-mode trips problem usually involves mode choice models, which substantially 
increase the complexity of the formulation (Farahani et al., 2013). 

In addition, the multi-class trip assignment considers different demands and travel costs (multinomial) 
functions for each user class (e.g., AVs, CVs, bus, trucks). When such problem considers various travel 
choices other than route choices, there are three main types of assignments (Farahani et al., 2013): 

 the trip distribution-assignment problem when both destination and route choices are considered; 

 the modal split-traffic assignment when mode choice and route choice are considered; 

 and the combined travel choice problem when destination, mode, and route choices are considered 
together with the alternative to travel or not. 

In network design problems, there are problems that consider network changes over the planning 
horizon that reflect time-dependent extensions of the problems above. In mathematical programming, 
this extension of the network design problem, where the decisions at each stage will influence/limit the 
following stages, is called dynamic programming (Bradley, Stephen P.; Hax, Arnoldo C.; Magnanti, 
1977). 

The higher the complexity of the problem, the higher the probability that the problem is not linear and 
becomes difficult to solve mathematically. Therefore, the solution methods can be classified in three 
major categories: the mathematical and exact methods, such as branch-and-bound; heuristics that are 
usually developed methods from the insights of the problem; and metaheuristics, such as Simulated 
Annealing, Genetic Algorithm, Tabu Search, Scatter Search, Ant Colony, among others. In both last 
two categories of the solution search process, the convergence and convexity of the method are not 
guaranteed, and therefore, the optimal solution is not assured, but a near-optimal solution is found. 

The nature of this thesis fits into a network design problem for a decision-support process on planning 
the deployment of AVs in terms of traffic improvement at the network level. Network design problems 
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are a useful policy-making tool as it allows the decision-maker to evaluate and simultaneously forecast 
the network user-behavior in response to the formulated design policies – and it may be considered 
itself as a sort of a proactive transport policy approach. 

In a scenario with AVs and human-driven vehicles, this is a way of testing transport strategies while 
estimating the impacts of AVs circulation and diffusion during the transition period. As automatisms 
are in constant advancement, the deployment of AVs level 4 onwards might imply traffic segregation 
(automated or mixed traffic roads) by implementing dedicated roads/zones for AVs (first thesis 
problem); and then such environment would allow the implementation of a dynamic reversible lanes 
management (second thesis problem). 

Concerning the upper-level of the network design problems, the first thesis problem can be summarized 
in terms of the decision of which road links of the network should be dedicated for AVs traffic-only, 
while the rest of the road links engage mixed traffic. The second thesis problem can be summarized in 
terms of the decision to choose how many lanes should be assigned to each road link, where each link 
has a single direction associated. 

In both problems, the lower-level problem is to assign the traffic flow to each road link, given the upper-
level decisions that influence the link availability and the road capacity for each class. The traffic 
assignment, however,  

A typical RNDP is composed of three main elements: 

 The discretization of the road network in a graph composed by links and nodes; 

 Each link is a road type, defined by speed, length, capacity, for instance; 

 Each node is associated with a trip demand, i.e., each node is an origin and/or destination; 

An objective function of the problem: to maximize the performance of the network given the impacts 
(costs) of road improvement, or to minimize the costs of the road network improvement for a given trip 
distribution. 

In transport planning, the performance of the network is a complex and significant concept, since it can 
be addressed to maximize efficiency, equity, robustness, safety, environmental quality, among others. 
These performance aspects have been intensely studied in the last decade.  

Jenelius et al. (2006) quantitatively assess the reliability and vulnerability of critical infrastructures. 
They calculated the indices derived from the increase in generalized travel cost when links are closed. 
Moreover, they analyzed the ‘‘equal opportunities perspective’’ and the ‘‘social efficiency 
perspective’’. 

Santos et al. (2008) reviewed the equity concerns in transportation planning. They studied three equity 
measures and incorporated them into an accessibility-maximization road network design model. They 
concluded that there are different perspectives on equity that must be carefully analyzed according to 
the main planning objectives for each problem. Subsequently, Santos et al. (2009) also evaluated the 
robustness aspect in a multi-objective approach to long-term interurban road network planning. In 2010, 
three network robustness measures were studied together with accessibility concerns to evaluate 
different robustness concerns: network spare capacity, city evacuation capacity, and network 
vulnerability. They proved that the results obtained with or without robustness objectives vary 
considerably, regardless of the size of the network (ten centers). It was also concluded that the 
differences mainly depend on the measure used to assess robustness (Santos et al., 2010). 

In this thesis, the RNDPs are founded on the claims of this thesis in Chapter 1.2.2. The RNDP in smart 
cities is conceptualized in a perspective of minimizing costs, including travel time and investment costs 
at a macro/social perspective. Micro/user perspective would evaluate, for example, how much each trip 
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costs and that would depend, for instance, on the energy source. Accordingly, in this thesis, travel time 
costs evaluate how much time vehicles spend on traveling in the road network – either if they behave 
in a user-equilibrium (minimizing individual trips time, i.e., selfish behavior) or not. Investment costs 
evaluate how much society/municipalities will spend on turning roads suitable for AVs traffic with V2I 
communication. These are the two network “performance” aspects addressed in the RNDPs presented 
this thesis. 

SUMMARY 

The analysis of the state of the art has revealed a vast potential of research around AVs. This chapter 
can be summarized in five main inferences: 

 The first denotes the opportunity of research related to the deployment of AVs and their upcoming 
impacts. Over the last decades, automated driving technology has developed at a fast track, and several 
levels of automation distinguish AVs. The conclusions have been somewhat consensual on AVs over 
level 3, positively impacting the traffic system from their platooning and efficiency skills. However, 
the mobility impacts revealed that once AVs reach levels 4 and 5, increased travel demand is likely to 
happen that would eventually worsen congestion. The urban environmental impacts are highly 
vulnerable to these previous effects (traffic and mobility), although recent studies show that AVs 
might help road safety and reduce carbon emissions in urban areas. 

 The second inference denotes that it must be assumed a transition period to outline the best deployment 
until the full dissemination of AVs (levels 4 and 5). The level 4 of automation reflects the most likely 
automation level in this “transition period” and that means that this would be the turning point when 
AVs might drive automatically yet requiring a human driver inside the vehicle. The place of non-AVs 
(human-driven vehicles) cannot be forgotten.  

 The third inference relates to the need to study this topic of research in urban areas at the network 
level to improve mobility and tackle the congestion problem accrued by higher travel demand and 
high population density.  

 The fourth inference relates to the lack of regulations that promote the deployment of AVs in urban 
areas, especially at a transport planning with a smart traffic operation perspective. As AVs level 4 and 
5 are not yet a reality, academia represents the opportunity to study and evaluate future transport 
policy alternatives to help the governments state proactive directives for policy actions in the future. 

 The fifth and last inference denotes that network design is a feasible methodology to study transport 
policy in the context of AVs. Two levels are embedded in this methodology, the municipality decision 
(policy action/strategy) and the consequential network performance that accrues from the citizens' 
behavior (traffic assignment). 

Optimizing urban road networks integrated with intelligent transportation systems will be an effective 
alternative to deal with the congestion from the use of AVs. Nonetheless, it is only possible to optimize 
traffic and manage congestion. Intelligent transportation systems are the most promising solution for 
dealing with the deployment of AVs in urban areas, both at transport planning and traffic operation 
level, with automatic real-time traffic control. Nevertheless, such a policy strategy in the transition 
period must also contemplate the existence of human-driven vehicles that have connectivity 
incompatibilities and might not be “easily controlled.” V2I and V2V will play an essential role in the 
traffic control of AVs. Still, a technological investment is demanded throughout the network, and V2I 
might only work within automated traffic (AVs). Therefore, at the beginning of the transition period, a 
segregation of the road infrastructure and must be well designed considering CVs in the system. 
Dedicated roads to deploy the first AVs level 4 in the urban environment are explored in Chapter 3, for 
future implementation of reversible lanes that are explored in Chapter 4, that for large-scale urban areas 
must be implemented in a methodology explored in Chapter 5. Given the fact that each chapter talks 
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about a specific research topic and methodological approach, a comprehensive literature background is 
firstly introduced in each chapter. 
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INTRODUCTION 

Transportation systems, particularly road networks, are fundamental for modern societies because 
their performance has a significant impact on social and economic development. As AVs enter 
the scene, understanding their role in the future is a challenge to be faced all over the world. A 
functional deployment is first envisioned of AVs gradually emerging over time, with 
incompatibilities solved throughout this process (van Arem and Jacob Tsao, 1997). Shladover 
(2000) stated that this functional deployment would happen with some regions having Vehicle-
to-Infrastructure (V2I) communication and other separate dedicated lanes. ERTRAC (2015) 
projects the segregation of lanes for AVs by 2020 and mixed traffic by 2028. 

However, dedicated lanes encompass numerous practical problems, and its implementation might 
not be that simple. Nowadays, for example, bus and taxis dedicated lanes experience unauthorized 
circulation and illicit parking from human-driven vehicles – the so-called conventional vehicles 
(CVs). In a futuristic scenario, such situations would create unpredicted traffic conflict points and 
compromise the automated driving feature. Besides, the physical segregation of lanes would also 
reduce free-flow speed for both lanes (automated and mixed traffic) and decrease road capacity 
(Melo et al., 2012). 

D. Chen et al. (2017) developed a theoretical framework to study how the macroscopic capacity 
in equilibrium traffic changes in the function of the AV penetration rate. They found that strict 
lane segregation of AVs and CVs can lead to lower capacity, while a mixed-use lane and an 
exclusive lane either for AVs or CVs would lead to a higher capacity. 

A scenario with regular (mixed traffic) and dedicated roads (automated traffic) might be a stronger 
solution than dedicated lanes in terms of traffic efficiency. Yet, problems of equity, human-driven 
traffic detour must be contemplated. The implementation of dedicated roads would not reduce 
congestion just by themselves, but rather segregate congestion that would indirectly foster/hinder 
AVs circulation and diffusion. 

At some point, the deployment of AVs will happen in dedicated infrastructure, with dedicated 
traffic zones to deploy the first driverless vehicles, i.e., AVs level 4 – a specific level of 
automation in which a vehicle drives automatically under certain conditions (SAE, 2018). 
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Henceforward, in this thesis, CVs are considered all the human-driven vehicles, i.e., vehicles 
under level 3 of automation inclusive.  

Restricted driving zones are not a new practice; for instance, many urban centers ban old vehicle 
circulation (except residents) from reducing air pollution. Legal aspects are involved, and traffic 
control in city centers might still be needed for pedestrians and bikes. In fact, from city authorities 
and other stakeholders’ perspectives, AV traffic zones will allow better traffic control, managing 
safety aspects and improving efficiency on network elements such as traffic intersections. From 
AV private owners’ perspective, AV subnetworks could be appreciated for convenience and 
comfort, which could potentially motivate buying such vehicles. Although, from the CV owners’ 
perspective, AV subnetworks could be unwelcomed if they represent fewer route choices, 
destinations hindrance and extra travel times. 

The challenge of this chapter is translated through the following research questions: Is the creation 
of AV traffic zones a viable strategy in urbanized regions? How should AV subnetworks be 
designed without excessively affecting CVs? Which is the best planning approach throughout this 
transition period? 

Section 3.2 presents a background focused on the analogous studies that studied this subject and 
the methodological. 

Section 3.4 introduces a new road network design problem for AVs deployment (RNDP-AVs) 
through non-linear programming (NLP) mathematical model. The challenges faced while 
conceptualizing this problem into a mathematical formulation are debated. The RNDP-AVs 
model assigns road links to fully AVs circulation in the function of the percentage of AVs on the 
fleet (market penetration rate). During the transition period, as more AVs enter the vehicle fleet, 
AV subnetworks will progressively expand and three planning approaches are introduced: 
incremental, long-term and hybrid planning.  

Section 0 sets up the dataset and the conditions in which the case study is based – the city of Delft, 
in the Netherlands. Two main scenarios are tested, with and without road investment, under 
several planning strategies to evaluate the AV subnetwork creation throughout the transition 
period.  

Section 3.6 presents the application to the Delft case study, showing the results that mitigate 
congestion of the peak hour. The experiment envisioned the long-term for a ratio between AVs 
and CVs of 90%, therefore still considering a 10% presence of CVs in the network, which 
according to current literature, that may happen between 2060 and 2080 (Nieuwenhuijsen et al., 
2018). Finally, the consequences in the remaining part of the day from the peak hour design are 
debated. 

Subsequently, in section 3.7, the RNDP-AVs model is applied for the whole day in the same 
scenarios and strategies as the previous section. Here, the long term was envisioned for a 
penetration rate of 100%, which will likely happen in the year 2100 (Nieuwenhuijsen et al., 2018). 

Finally, Section 3.8 reports the main summary and conclusions of this chapter. 

BACKGROUND 

Hitherto investigation has looked to potential scenarios that involve the progress from mixed 
traffic through separate lanes that in the future, will evolve to dedicated roads throughout the 
network. Current literature is focused on dedicated lanes to first deploy AVs in urban 
environments (National Academies of Sciences and TRB, 2018). 
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Chen et al. (2016) published a mathematical approach that defines when, where, and how many 
AV lanes should be deployed. The objective function minimizes the social cost, given an AV 
penetration rate. Dedicated AV lanes in the network produce a net benefit (e.g., reduced travel 
cost). Their study merges a multi-class user-equilibrium model (Wu et al., 2006) and a diffusion 
model describing the evolution of AV market penetration in a time-dependent deployment model, 
which is solved by a heuristic algorithm (Zhang et al., 2009) as a bi-level model. They applied to 
the south Florida case study, and the results showed that AV lanes should be deployed 
progressively when the AV market penetration rate reaches above 20 percent. 

On the topic of AV subnetworks/zones (AV dedicated roads), Z. Chen et al. (2017) proposed a 
bi-level framework for the optimal design of AV zones in a general transportation network, solved 
through a simulated annealing algorithm. However, their equilibrium analysis ignores CV trips 
that start or end in AV zones for simplification purposes, in a deterministic mixed routing problem 
that considers system optimal inside AV zones and user equilibrium outside. They did a numerical 
example with 55% of AVs and found that AV zones can reduce social cost by up to 21.4%, 
assuming that road capacity triples in AV roads. 

Recently, Madadi et al. (2019) proposed a framework for AV subnetworks through a modified 
static multiuser class stochastic user equilibrium traffic assignment with a path-size logit model 
with Monte-Carlo labeling for a priori route-set generation. Their solution algorithm consists of 
a linear approximation type algorithm, which uses a step size based on the method of successive 
averages. They did an experiment in a hierarchical network (freeways, regional, and urban roads) 
in the city of Delft, in the Netherlands. They used a single Passenger Car Unit (PCU) for 
penetration rates above 50% of 0.90, which means an 11% of capacity gain, and they found that 
AVs can reduce travel time cost between 7.16% and 11.02%, and travel times could be reduced 
between 0.45% to 1.5%, depending on whether dedicating the main variant or everywhere. The 
total distance of all users increases already when AVs reach a penetration rate of 50%. They also 
calculated the total travel costs savings if the value of travel time decreased (AVs and CVs) 30% 
for an AV penetration rate of 90% and the travel costs would be reduced by 11.72% while total 
travel time would reduce 0.43% for a 0.08% of distance increase. 

The RNDP-AVs model that will be introduced in this chapter is instead formulated on a single-
level formulation of a RNDP to evaluate all the possible combinations of the problem, with a 
multi-class traffic equilibrium assignment that does not have any route and mode choice 
algorithms or path flow constraints, while evaluating simultaneously the increasing comfort and 
traffic efficiency from AVs. The proposed formulation guarantees that all travelers reach their 
destination while covering all links characteristics, i.e., individual link performance (travel time) 
functions. Besides, in this study upgrading costs are considered to transform a regular road (mixed 
traffic) into a dedicated road for AVs, e.g., for V2I connectivity, are also introduced in this 
chapter. Furthermore, this chapter also initiates the debate around progressive AV subnetworks 
on whether designing incrementally or limiting the planning to the solution that will be optimal 
in the long-term. 

METHODOLOGY 

As aforementioned, a RNDP involves two perspectives, i.e., two levels of decision: 

 The stakeholder (in this case municipalities) decide which roads should be assigned for AVs 
traffic-only while allowing mixed traffic in the remaining part of the network – meaning that 
this decision problem is binary. 

 The passengers at the lower level, involving the traffic distribution of each class of vehicle (AVs 
and CVs) throughout the network – this problem is integer or continuous. 
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The traffic assignment problem is a highly combinatorial problem, involving two dimensions: a 
demand (trips) and supply background (network). Thus, the complexity of the problem is 
proportional to the size of the graph, e.g., the number of road links, and the number of O-D pairs 
to be satisfied. The trips reflect the travel pattern of the travelers and they must be assigned across 
the network that involves numerous links. 

Forcing the traffic distribution on reaching an equilibrium turns the problem even more complex 
and quite hard to express it on mathematical programming (non-linearity). In theory, there are 
two types of traffic assignment in equilibrium: the user-equilibrium and the so-called social 
equilibrium (Sheffi, 1985).  

The user equilibrium, also known to be ruled by the Wardrop principle (Wardrop, 1952), assumes 
that traffic arranges itself within congested networks so that no individual trip maker can reduce 
its path costs by switching routes. Two main assumptions persist in equilibrium: first, all users 
have identical behavior; second, users have full information (i.e., travel time on every possible 
route), meaning that they consistently make the correct decisions regarding route choice. The user 
equilibrium is quite hard to express linearly as a traffic assignment problem. 

The so-called social-equilibrium represents a system-optimal solution whose equilibrium reaches 
when, in congested networks, the total travel cost of all travelers is minimum. The social-
equilibrium distinguishes itself from the user-equilibrium because, in this case, vehicles are 
assumed to choose their paths in order to benefit the whole social system (Newell, 1980). Here, 
the main advantage is the linear formulation of this traffic assignment. 

Additionally, each link has individual road properties, e.g., capacity limit, that defines its 
performance (travel time) function. The most accurate travel time functions are polynomial, 
exponential, and even time-dependent (Akcelik, 1991). The classical function is the BPR (Bureau 
of Public Roads) parabola. For mathematical programming, this is an issue because of the intrinsic 
non-linearity (Ortuzar and Willumsen, 2011). 

Therefore, the equilibrium in the traffic assignment and the travel time functions used as link 
performance are the two aspects that turn this model challenging to simplify. The typical non-
linearity is the major drawback of setting the RNDP-AVs model a useful tool to plan networks 
properly.  

On a first approach, a mixed integer programming (MIP) model was formulated (see Appendix 
A-A.1). A system-perspective allows the necessary simplifications to obtain a static linear model 
in MIP. Here, the minimization of the average travel time in every road link of the network is 
computed instead of the minimization of all passengers’ travel times, which is necessary for traffic 
equilibrium (i.e., no traffic assignment equilibrium). A linear travel time function is used in this 
initial study. The MIP formulation is not aware of the length of the trips but instead focused on 
the link flows. Also, the traffic efficiency coefficient, i.e., the capacity benefit gave by AVs, is 
constant (25%) regardless of the penetration rate in both regular and dedicated roads. It should 
vary alongside with AV penetration rate and be higher in dedicated roads (Conceição et al., 2017). 

In the experiments, the minimization of the link travel times (see Figure 3.1) revealed that at the 
beginning of the transition period, the sum of link travel times would drastically be reduced, 
meaning that a wide traffic flow distribution would happen, mostly caused by AVs that would 
minimize the link travel times. That tendency rapidly changes, after 10% of AV penetration rate. 
For an AV penetration rate, 39% of the network would be already dedicated for AVs (19 dedicated 
roads). When road cost was introduced, AV subnetworks were limited to 28% (14 dedicated 
roads) throughout the entire period (Conceição et al., 2017). 
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Figure 3.1 – MIQ experiments. 

Despite the limitations of the MIP model, it is noticeable that even for a given 25 % of the capacity 
benefit, dedicated roads can help to reduce the travel times all over the network. Nevertheless, the 
traffic assignment was not replicated in equilibrium conditions, so it is difficult to measure how 
much that benefit would be. 

Subsequent, a second model was formulated to solve the RNDP-AVs by performing a traffic 
assignment equilibrium in mixed-integer quadratic programming (MIQP) (see Appendix A-A.2). 
In this case, the social equilibrium was tested, as its mathematical formulation is more 
straightforward than the user-equilibrium (that implies an integral). The MIQP model minimizes 
the travel times of all vehicles – which can only be realistic if AVs are connected and their routes 
are given by a centralized infrastructure system. The MIQP formulation is now aware of the length 
of the trips, with variables that are in function of the link and O-D pair. Once again, a linear 
driving travel time degradation function is used, which is a straight simplification of reality. The 
traffic efficiency coefficient, i.e., the capacity benefit given by AVs, is a parabolic function upon 
the AV penetration rate, and differentiated in dedicated roads (AVs circulate with more efficiently 
in dedicated roads than in regular roads that have with mixed traffic). 

In the MIQP model, there was given an alternative to the model for the CV drivers that needed to 
reach the destination, when such destination was inside AV subnetworks. In such cases, CV users 
would park and walk towards destination when walking is more cost-efficient than detouring. 
Mathematically, the flow of CVs is kept for equilibrium purposes and the walking flows represent 
a change of mode, which is associated with extra costs in the objective function. 

Experiments were performed in a numerical network for an AV penetration rate of 50% (see 
Appendix A-A.2). Three scenarios were evaluated, AV subnetworks with and without road 
investment and a base scenario that didn’t include AV subnetworks. According to these 
experiments, AVs subnetworks could reduce congestion by up to 60% (from 4.6% to 1.8%). The 
road investment highly constrained the creation of AV subnetworks. Walking trips occurred in 
both scenarios that considered AV subnetworks and represented a significant portion of the total 
costs. 

Nevertheless, such a conceptual MIQP model was only possible to be formulated by introducing 
some simplifications and assumptions, and further complexity needed to be added to approximate 
to reality. The final formulation was possible in non-linear programming (NLP), by including the 
BPR function as travel time performance and is presented in the next subsection. 

Given the current paradigm of transportation, the user-equilibrium is considered the most accurate 
traffic assignment because it considers the selfish behavior of the drivers and the driver/AV 
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passenger “free will” on the route decision. A centralized system might be possible in shared 
systems, or even inside AV subnetworks commanding AVs reach level 5 – which seems utopian. 

When considering AVs and CVs in the same model, a multiclass traffic assignment can quickly 
turn into an asymmetric assignment if each class is distinguished (Dafermos, 1980; Florian and 
Hearn, 1995; Sheffi, 1985). Problems concerning multi-class traffic assignments are summarized 
in two types of incoherence: behavioral or mathematical (Toint and Wynter, 2001). The 
behavioral incoherence happens if each class holds an individual travel time function or if links 
amongst the network have travel time functions that depend differently on each class. In order to 
reduce the complexity of the multiclass problem, a new variable is defined combining both 
classes, so that AVs and CVs share a joint link travel time function all over the network. This 
variable (total flow) embeds an automated traffic efficiency (e.g., PCU) that distinguishes AVs 
traffic benefits from CVs. However, in some situations, a mathematical incoherence might appear 
because of the dependencies in the singular Jacobian matrix that implies a linear relationship 
between each class cost function and the weights used in the single variable grouping the classes 
(Toint and Wynter, 2001). In other words, mathematical incoherence happens when each class is 
distinguished by different costs (e.g., toll pricing) or has a unique value of travel time. In this 
thesis problem, the effects of such linearity were tested and such a linear relationship depicts 
recent findings on AVs reduced value of travel time (Correia et al., 2019). 

Still, designing dedicated infrastructure for one of the classes recognizes a natural asymmetric 
user equilibrium amongst classes that only happens when part of the network becomes restricted 
to one class (network segregation), i.e., when dedicated roads are added. This means that, in OD 
pairs whose AVs encountered dedicated roads, their efficiency will allow them a reduction of 
value of travel time (and cost), which will naturally be dissimilar to the value of travel time 
experienced by CVs. Therefore, in such cases, each class is under a user-equilibrium traffic 
assignment. Contrariwise, in OD pairs in which AVs circulate amongst CVs in regular roads, a 
simple user-equilibrium traffic assignment occurs.  

The following study addresses a transport planning strategy (AVs subnetworks) that is aimed to 
be static throughout the day, also because each dedicated road for AVs holds an investment cost. 
The method acknowledges an hourly static traffic equilibrium throughout the day. 

Table 3.1 summarizes the mathematical models formulated to conceptualize the RNDP-AVs. 

Table 3.1 – Mathematical Models formulated for the RNDP-AVs 

 Traffic Assignment Link Travel Time Function Objective Function Type 

MIP No equilibrium Linear (A.1) – page 168 Static 

MIQP System Optimal Equilibrium Quadratic (A.19) – page 173 Static 

NLP User-Optimum Equilibrium BPR function (3.1) – page 38 Static 

THE ROAD NETWORK DESIGN PROBLEM FOR THE DEPLOYMENT OF AUTOMATED 

VEHICLES (RNDP-AVS) 

The problem addressed is how to design, on top of an existing road network, AV subnetworks to 
start the deployment of the first driverless vehicles (level 4 of automation). During this transition 
period, the network will be composed of regular roads (mixed traffic) and dedicated roads 
(automated traffic). Dedicated roads will have V2I connectivity installed, while regular roads 
won’t. This single-level optimization problem combines discrete and continuous decision 
variables, where both the dedicated roads decision and the traffic flow assignment problems are 
formulated in a binary non-linear programming model. 
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All travelers reach their destination, according to a user-optimum equilibrium, meaning that every 
passenger of each class (CV or AV) minimizes their own travel time. I believe that, during this 
transition period, user equilibrium will still be the most realistic because the system-optimum 
routing would be even more challenging to implement, and its assumptions are somehow 
inadequate for nowadays reality. The objective function minimizes the generalized costs that 
include travel time costs and road investment. The decision making occurs at every AV design 
stage, based on the AVs’ market penetration rate. Such a progressive process is solved by 
mathematical optimization (also called dynamic mathematical programming). The global 
evaluation is not trivial, because dedicated roads infer a travel time reduction for AV passengers 
but imply an increase of CVs’ travel times (detour). The model evaluates the CV detour problem, 
as the formulation includes a penalty variable to restrict CVs driving inside dedicated roads. The 
model respects all road links characteristics, ensuring link performance (travel time) functions.  

THE RNDP-AVS FORMULATION IN BINARY NLP 

The assumptions of the problem are: 

 AVs are assumed to be Level 4 (SAE, 2018), meaning they can be driven manually outside 
dedicated roads but will assume autopilot mode inside AV zones; 

 AVs circulate everywhere, whereas CVs circulation is prohibited in AV traffic zones; 

 A constant trip matrix exists for AV drivers and another one for CV drivers; 

 Each trip is assigned to an AV or a CV; 

 Public authorities invest in each dedicated road to make it fit for AVs; 

 A dedicated road comprises both directions dedicated to automated traffic; 

To formulate the problem, the following notation is introduced: 

Sets: 

𝑰 = (1, . . . , 𝑖, . . . , 𝐼): 
set of notes in the network, where 𝐼 is the number of 
nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀𝑖, 𝑗 ∈ 𝐼 ∩ 𝑖𝑗: set of arcs of the road network where vehicles move.

𝑷 = {. . . , (𝑜, 𝑑), . . . } ∀𝑜 ∈ 𝑂 ∩ 𝑑 ∈ 𝐷 ∩ 𝑜𝑑: 
set of origin-destination pairs that represent the trips 
demand in the network. 

𝑽 = {𝐴𝑉, 𝐶𝑉} : type of vehicles (mode) in the network: AV and CV

𝑯 = {1, … , ℎ, … , 24} : hours of the day 

Parameters: 
𝜌: the penetration rate of AVs on the vehicle fleet, between 0 and 1. 

𝛼௠௜௫௘ௗ : the coefficient that reflects the efficiency of automated traffic that benefits road 
capacity, in mixed traffic roads, i.e., the number of CVs to which an AV 
corresponds to. Defined between 0 (an AV has no effect on traffic) and 1 (an 
AV is as efficient as a CV). 

𝛼௔௨௧௢௠௔௧௘ௗ: the coefficient that reflects the maximum efficiency of automated traffic in 
dedicated roads, also between 0 and 1. 

𝑉𝑂𝑇ௗ௥௜௩௜௡௚: value of travel time while driving in monetary units per hour. 
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𝑉𝑂𝐼: value of investment for road upgrade in each dedicated road link, in monetary 
units per kilometer. 

𝐷
௢ௗ

 ௩  ௛೔௛೑: trips from an origin node 𝑜, towards a destination node 𝑑, from period ℎ௜ to 
period ℎ௙, ∀ 𝑜, 𝑑 ∈ 𝑫 ∩  ℎ௜, ℎ௙ ∈ 𝑯. 

𝑡௜௝
௠௜௡: minimum driving travel time in free-flow speed at each link (𝑖, 𝑗) ∈ 𝑹, 

expressed in hours. 

𝐿௜௝ : length of each link (𝑖, 𝑗) ∈ 𝑹, expressed in kilometers. 

𝐶௜௝: road capacity of each link (𝑖, 𝑗) ∈ 𝑹, in vehicles for the period of analysis. 

𝑀: big number. 

Decision variables: 
𝑥௜௝  : binary variable equal to 1 if link (𝑖, 𝑗) ∈ 𝑹 is assigned for AV only driving. 

𝑓
௜௝௢ௗ

௩  ௛೔௛೑ : continuous variable that corresponds to the flow of vehicles 𝑣 ∈ 𝑽 in each link (𝑖, 𝑗) ∈

𝑹 and each pair (𝑜, 𝑑) ∈ 𝑷 ∩ 𝐷௢ௗ

௩  ௛೔௛೑ > 0, from period ℎ௜ ∈ 𝑯 to period ℎ௙ ∈ 𝑯. 

𝑝
௜௝௢ௗ

 ௛೔௛೑  : continuous variable that acts as penalty factor to avoid CV flow in dedicated roads, 
defined per link (𝑖, 𝑗) ∈ 𝑹 and pair (𝑜, 𝑑) ∈ 𝑷, from period ℎ௜ ∈ 𝑯 to period ℎ௙ ∈ 𝑯. 

𝑧
௜௝௢ௗ

 ௛೔௛೑  : continuous variable that represents the flow of AVs when a link (𝑖, 𝑗) ∈ 𝑹 is dedicated 
for AVs only (𝑥௜௝ = 1), regarding each O-D pair (𝑜, 𝑑) ∈ 𝑷, from period ℎ௜ ∈ 𝑯 to 
period ℎ௙ ∈ 𝑯. This variable distinguishes AVs benefits in mixed or automated traffic.

The main decision variables are 𝑥௜௝ and 𝑓௜௝௢ௗ
௠ .The remaining variables depend on the first ones 

through constraints. 

Objective Function: 

Min(Cost) = 𝑉𝑂𝑇ௗ௥௜௩௜௡௚ ෍ න 𝑡
௜௝

௛೔௛೑𝑑𝑓
௙

೔ೕ

೓೔೓೑

଴(௜,௝)∈𝑹

+ M ෍ ෍ 𝑝
௜௝௢ௗ

 ௛೔௛೑

(௢,ௗ)∈𝑷(௜,௝)∈𝑹

+ 𝑉𝑂𝐼 ෍ 𝑥௜௝

(௜,௝)∈𝑹

𝐿௜௝  (3.1) 

The objective function (3.1) minimizes the generalized costs of all travel times costs, penalty costs 
if CVs circulate in dedicated roads, and a road investment cost (for example, for V2I 
infrastructure), expressed in monetary units. The first component of the objective function 
computes the driving travel time costs under a user equilibrium traffic assignment formula (Sheffi, 
1985) that works for each class of vehicles and according to the BPR function (3.2) to compute 
each link travel time function. The second component of the objective function works as a penalty 
term to induce the detour evaluation nature of the model. The third component of the objective 
function computes the total cost of road investment through the number and length of the 
dedicated road links. 

𝑡
௜௝

௛೔௛೑  =  𝑡௜௝
௠௜௡ ൦1 + α ቌ

𝑓
௜௝

௛೔௛೑

𝐶௜௝

ቍ

ఉ

൪ (3.2) 

Constraints 
The objective function is subject to the following constraints (3.3)-(3.17). 

෍ 𝑓
௢௝௢ௗ

௩ ௛೔௛೑

௝∈𝑰

= 𝐷
௢ௗ

௩ ௛೔௛೑ , ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, 𝐷
௢ௗ

௩  ௛೔௛೑ > 0 
(3.3) 
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෍  

௝∈𝑰

𝑓
௝ௗ௢ௗ

௩ ௛೔௛೑ = 𝐷
௢ௗ

௩ ௛೔௛೑ , ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, 𝐷
௢ௗ

௩  ௛೔௛೑ > 0 
(3.4) 

෍  

௝∈𝑰

𝑓
௜௝௢ௗ

௩ ௛೔௛೑ = ෍  

௝∈𝑰

𝑓
௝௜௢ௗ

௩ ௛೔௛೑  , ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑖 ∈ 𝑰, 𝑣 ∈ 𝑽, 𝐷
௢ௗ

௩  ௛೔௛೑ > 0, i ≠ 𝑜, 𝑑 
(3.5) 

𝑓
௜௝

௛೔௛೑ = ෍  

(௢,ௗ)∈𝑷

ቂቀ𝛼௔௨௧௢௠௔௧௘ௗ ∗ 𝑧
௜௝௢ௗ

 ௛೔௛೑ + 𝛼௠௜௫௘ௗ ∗ (𝑓
௜௝௢ௗ

஺௏  ௛೔௛೑  − 𝑧
௜௝௢ௗ

 ௛೔௛೑)ቁ  +  ቀ𝑓
௜௝௢ௗ

஼௏  ௛೔௛೑ቁ ቃ ∀ 𝑖, 𝑗 ∈ 𝑰 
(3.6) 

𝑝
௜௝௢ௗ

 ௛೔௛೑ ≥ 𝑓
௜௝௢ௗ

஼௏ ௛೔௛೑ − 𝑀 ∗ ൫1 − 𝑥௜௝൯, ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஼௏  ௛೔௛೑ > 0 (3.7) 

𝑝
௜௝௢ௗ

 ௛೔௛೑ ≤ 𝑓
௜௝௢ௗ

஼௏ ௛೔௛೑  , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஼௏  ௛೔௛೑ > 0 (3.8) 

𝑝
௜௝௢ௗ

 ௛೔௛೑ ≤ 𝐶௜௝ ∗ 𝑥௜௝ , ∀ 𝑖, 𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஼௏  ௛೔௛೑ > 0, 𝑖 ≠ 𝑜, 𝑑 (3.9) 

𝑧
௜௝௢ௗ

 ௛೔௛೑ ≥ 𝑓
௜௝௢ௗ

஺௏ ௛೔௛೑ − M ∗ (1 − 𝑥௜௝), ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஺௏  ௛೔௛೑ > 0 (3.10) 

𝑧
௜௝௢ௗ

 ௛೔௛೑ ≤ 𝑓
௜௝௢ௗ

஺௏ ௛೔௛೑  , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஺௏  ௛೔௛೑ > 0 (3.11) 

𝑧
௜௝௢ௗ

 ௛೔௛೑ ≤ 𝐶௜௝ ∗ 𝑥௝௜  , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷 , 𝐷
௢ௗ

஺௏  ௛೔௛೑ > 0 (3.12) 

𝑥௜௝ = 𝑥௝௜  , ∀ 𝑖, 𝑗 ∈ 𝑰 (3.13) 

𝑥௜௝ ≤ 𝑓
௜௝

௛೔௛೑ + 𝑓
௜௝

௛೔௛೑  , ∀ (𝑖, 𝑗) ∈ 𝑹  (3.14) 

𝑥௜௝ ≥ ෍
𝑓

௜௝௢ௗ

஺௏ ௛೔௛೑

𝑀
൘  

(௢,ௗ)∈𝑷

, ∀ (𝑖, 𝑗) ∈ 𝑹 ∩ 𝜌 = 1 (3.15) 

𝑥௜௝  ∈  {1,0} , ∀ (𝑖, 𝑗) ∈ 𝑹 (3.16) 

𝑓
௜௝

௛೔௛೑ , 𝑓
௜௝௢ௗ

௩ ௛೔௛೑ , 𝑝
௜௝௢ௗ

 ௛೔௛೑ , 𝑧
௜௝௢ௗ

 ௛೔௛೑ ∈  ℕ , ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷, 𝐷
௢ௗ

஺௏  ௛೔௛೑ > 0 (3.17) 

 

Constraints (3.3)-(3.5) assure that, for each O-D pair, both AVs and CVs flows (𝑣 ∈ 𝑽) are 
generated in the origin node 𝑜 ∈ 𝑶 (3.3), absorbed in the destination node 𝑑 ∈ 𝑫 (3.4), and there 
is a flow equilibrium in the intermediate nodes(3.5). 

Constraints (3.6) compute the total flow in each link (𝑖, 𝑗) ∈ 𝑹. The AVs flow involves an 

efficiency benefit that is computed through the auxiliary variable 𝑧
௜௝௢ௗ

 ௛೔௛೑. Note that the benefit 

varies if it is mixed or automated road traffic. The flow of CVs is kept for equilibrium purposes, 
and the penalty flow means a considerable cost in the objective function (3.1). Constraints (3.6) 
compute the driving flow of CVs by discounting the pedestrians flow through auxiliary variable 
𝑤௜௝௢ௗ. 

Constraints (3.7) to (3.9) define the penalty variables when CVs are inside AVs dedicated roads, 
forcing the CV detouring around these zones. Constraints (3.7) and (3.8) assure that for a 
dedicated link (𝑥௜௝ = 1) the penalty flow is identical to the CV flow. In the remaining roads, i.e., 
𝑥௜௝ = 0, the range is bounded to be in the interval ൣ0; 𝑓௜௝௢ௗ

஼௏ ൧∀(𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝑷. Yet the lower 

limit of that interval is naturally chosen since this is a minimization problem. Constraints (3.9) 
assure that the penalty flow of link (𝑖, 𝑗) ∈ 𝑹 is limited to the road link capacity if such road is 
dedicated (𝑗, 𝑖) ∈ 𝑹, otherwise the p,enalty is null in regular roads. 

Constraints (3.10)-(3.12) compute the auxiliary variables 𝑧௜௝௢ௗ  to differentiate efficiency on 
dedicated and regular roads, automated and mixed traffic, respectively. In dedicated roads, the 
variable assumes AV flow through constraints (3.10) and (3.11), whereas in regular roads, this 
variable is null by constraints (3.12). 



Chapter 3 – Subnetworks for Automated Vehicles 

40 

Constraints (3.13) assure that a dedicated road for AVs comprises both directions of the road. 
Constraints (3.14) give a valid inequality so that the variable is only plausible to be considered 
when there is flow passing by. Constraints (3.15) assure that all road network is dedicated when 
all the fleet is composed by AVs (100%). 

Constraints (3.16) and (3.17) set the domain of the decision variables. 

PROGRESSIVE AV SUBNETWORKS: EVOLUTION OF THE RNDP-AVS MODEL: 

The decision process of the RNDP-AVs during this transition process can be designed as the AV 
penetration rate evolves, creating progressive subnetworks. Three urban transport planning 
approaches are tested: 

 Incremental planning: dedicated roads are added incrementally as the penetration rate evolves. 
It starts with the computation of the first design stage, and henceforth, the solution from the 
precedent period is maintained with new constraints to the model. Prior investment is removed 
from the objective function. This means that the model evaluates at each design stage if the 
existing subnetwork should be expanded so that the travel time cost savings make up for the 
road investment needed for that expansion. The road investment required must be available at 
each design stage. 

 Long-term planning: the optimal solution at a long-term horizon and the investment needed for 
the following period are constraints to create progressive AV subnetworks. It starts by solving 
the RNDP-AVs for the last design stage (maximum penetration rate) and reversely reduces that 
subnetwork by limiting the creation of the decision variables at each stage. The investment 
needed for the following stage is included in the objective function so that the travel time cost-
saving balance out the road investment of the subsequent design stage. 

 Hybrid planning: a mix planning strategy is combining both the incremental and long-term 
planning approaches. The model first computes the optimal long-term solution, e.g., 90% AVs. 
Henceforth, the network works incrementally towards the optimal final configuration, always 
limiting the creation of decision variables. 

The pseudo-code used to run the incremental, long-term and hybrid planning approaches are 
detailed in the following algorithms 1, 2 and 3, respectively. The following parameters are 
required for performing dynamic mathematical programming: 

𝑺 = (1, . . . , 𝑠, . . . , 𝑆): design stages, where 𝑆 is the latest with the maximum AV penetration 

considered. 

𝜌𝑠
 : AV penetration rate of stage 𝑠. Note that 𝜌𝑠 > 𝜌𝑠−1

 . 

𝑆𝑖𝑗
𝑠

 : optimal solution (𝑥𝑖𝑗 vector) of each design stage 𝑠. 

𝑅𝐼𝑠
 : road investment of design stage 𝑠 
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Algorithm 1 Incremental planning 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

𝑠 = 1  
while 𝒔 ≤ 𝑺 do 
       get 𝜌௦ 
       create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
       if 𝑠 > 1 then 
              if 𝑆௜௝

௦ିଵ = 1 then 
                     𝑥௜௝ = 1 
              end-if 
              𝑅𝐼௦ିଵ = 𝑉𝑂𝐼 ∑ 𝑆௜௝

௦ିଵ 𝐿௜௝(௜,௝)∈𝑹  
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡– 𝑅𝐼௦ିଵ) 
              end-function 
       else 
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡) 
              end-function 
       end-if 
       𝑆௜௝

௦ ← 𝑥௜௝ 
       𝑠 = 𝑠 + 1 
       Clear all decision variables 
end 

 Starts calculating from the first 
design stage with the minimum 
penetration rate 𝜌ଵ 

 
 
 New constraints from prior design 

stage: dedicated roads from stage 
𝑠 − 1 remain in stage 𝑠. 
 

 Adjustment of the objective function 
“𝐶𝑜𝑠𝑡” (3.1) by removing the 
investment done in prior design 
stages, 𝑠 − 1. 
 
 
 
 
 

 Save solution from design stage 𝑠. 
 

 

 
Algorithm 2 Long-term planning 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

𝑠 = 𝑆  
while 𝑠 > 0  do 
       get 𝜌௦ 
       if 𝑠 = 𝑆 then 
              create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
             𝑅𝐼௦ = 𝑉𝑂𝐼 ∑ 𝑥௜௝ 𝐿௜௝(௜,௝)∈𝑹  
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡 − 𝑅𝐼௦) 
              end-function 
       else 
              create 𝑥௜௝  ∀ (𝑖, 𝑗) ∈ 𝑅 ∩  𝑆௜௝

௦ାଵ = 1  
              create remaining decision variables, ∀ (𝑖, 𝑗) ∈

𝑹, (𝑜, 𝑑) ∈ 𝐏 
              𝑅𝐼௦ = 𝑉𝑂𝐼 ∑ 𝑥௜  𝐿௜௝(௜,௝)∈𝑹  
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡 + (𝑅𝐼௦ାଵ − 𝑅𝐼௦)) 
              end-function 
       end-if 
       𝑆௜௝

௦ ← 𝑥௜௝ 
       Clear all decision variables 
       𝑠 = 𝑠 − 1 
end 

 Starts calculating the last design 
stage starts with the maximum 
penetration rate 𝜌ௌ (e.g., 90% of 
AVs). 
 
 

 Adjustment of the objective function 
“𝐶𝑜𝑠𝑡” (3.1): no investment 
considered in the last stage 

 Calculation of the solutions in 
reverse 
 
Limits the solution space by 
evaluating only the dedicated roads 
that belong to the following design 
stage. 

 Adjustment the objective function 
“𝐶𝑜𝑠𝑡” (3.1), only including the 
investment required to upgrade for 
the following design stage, i.e., the 
differential from stage 𝑠 to 𝑠 + 1.. 
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SETTING UP THE CASE STUDY OF THE CITY OF DELFT, THE NETHERLANDS 

The application of the RNDP-AVs model is exemplified in a quasi-real case study: the city of 
Delft, in the Netherlands, located in the province of South Holland. Figure 3.3 shows all nodes 
(46) and links (61) in the simplified network of Delft in a map of the region. The city center is 
represented by node 3 and has the highest demand. TU Delft campus is node 31, and major 
residential areas are located in node 6 and 45. Two types of roads exist, one or two lanes per road 
direction, with a lane-capacity of 1441 vehicles per hour, and the free flow speed is 50 and 70 
km/h, respectively. These data comes from a simplified traffic model of the city (Correia and van 
Arem, 2016). The application is for demonstration purposes and it intends to exemplify what type 
of results could be obtained for planning such networks. 

The original travel database (MON 2007/2008) was provided by the Dutch government and is 
available for transport research. The application is called a quasi-real case-study because the data 
is not completely real. Only the trips of families who travel inside the city during the course of a 
whole working day in the year 2008 were obtained, ignoring external trips. The filtered dataset 
contains a collection of 152 trips from 29 households sampled. Sampling expansion factors for 
each family were given for a typical working day, usually varying from 200 to 1300. With this 
correction factor, the original dataset with 152 trips corresponds to 68640 trips by 14,640 
households, yielding an average sample rate of 0.2% -see Figure 3.2. Therefore, 60300 trips were 
considered through 58 O-D pairs distributed between 12 centroids (see grey circles in Figure 3.3, 
proportional to their demand) (Correia and van Arem, 2016).  

Algorithm 3 Hybrid planning 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

𝑠 = 𝑆  
create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
function OBJECTIVE FUNCTION 
       min൫𝐶𝑜𝑠𝑡 − 𝑉𝑂𝐼 ∑ 𝑥௜௝ 𝐿௜௝(௜,௝)∈𝑹 ൯ 
end-function 

𝑆௜௝
ௌ ← 𝑥௜௝  

Clear all decision variables 
𝑠 = 1 

while 𝒔 < 𝑺 do 
       get 𝜌௦ 
       create all decision variables ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑜, 𝑑) ∈ 𝐏 
       if 𝑠 > 1 then 
              if 𝑆௜௝

௦ିଵ = 1 then 
                     𝑥௜௝ = 1 
              end-if 
              𝑅𝐼௦ିଵ = 𝑉𝑂𝐼 ∑ 𝑆௜௝

௦ିଵ 𝐿௜௝(௜,௝)∈𝑹  
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡– 𝑅𝐼௦ିଵ) 
              end-function 
       else 
              function OBJECTIVE FUNCTION 
                     min(𝐶𝑜𝑠𝑡) 
              end-function 
       end-if 
       𝑆௜௝

௦ ← 𝑥௜௝ 
       𝑠 = 𝑠 + 1 
       Clear all decision variables 
end 

 Starts calculating the last design stage 
starts with the maximum penetration 
rate 𝜌ௌ (e.g., 90% of AVs). 
 
 
 

 Starts calculating from the first design 
stage with the minimum penetration rate 
𝜌ଵ. 
 

 Limits the solution space by evaluating 
only the dedicated roads that belong to 
the last design stage. 

 New constraints from prior design stage: 
dedicated roads from  stage 𝑠 − 1 
remain in the  stage 𝑠. 

 Adjustment of the objective function 
“Cost” (3.1) by removing the 
investment done in prior design stages, 
𝑠 − 1. 
 
 
 
 

 Save solution from design stage 𝑠. 
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Figure 3.2 – Travel data of the case study. 

The long-term is envisioned for 90% of AVs, which will likely happen somewhere between 2060 
and 2080 (Nieuwenhuijsen et al., 2018). This means that this experiment focuses on a transition 
period for the next 40-60 years when still 10% of CVs will be present in the network. According 
to Nieuwenhuijsen et al. (2018), the full deployment will only occur after 2100. Some may argue 
that there will never be a 100% fleet of AVs since there will still be CVs circulating such as 
historical cars. 

 
Figure 3.3 – Map of the case study with network and centroids representation (extracted and adapted from 

OpenLayers maps). 

Traffic simulations that tested AVs with cooperative adaptive cruise control systems found road 
capacity gains in mixed traffic conditions (Calvert et al., 2011). A second-degree parabolic curve 
(𝐴𝑑𝑢𝑗𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 + 0.1636 𝜌 + 0.5087 𝜌ଶ; 𝑅ଶ = 0.9981) was adapted from their primary results: 
for a 10% penetration rate of AVs, there’s a benefit of 3%; when 50% of the vehicle fleet is 
automated, road capacity increases 22%; for 75% of AVs, a 39% increase is considered; and with 
100%, a maximum benefit of 68% is used – see Figure 3.4. This 68% increased capacity goes 
along with the main findings already introduced in the previous chapter 2.3.1, stating that the 
capacity benefit in urban roads can range between 40% to 80% depending on whether V2I is 
present. 

↑N 
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The AVs flow is discounted through a coefficient (PCU) that has an inverse relationship with the 
adjusted capacity: in mixed traffic (regular roads), 𝛼௠௜௫௘ௗ =

ଵ

஺ௗ௝௨௦௧௘ௗ ஼௔௣௔௖௜௧௬
; whereas in dedicated 

roads, each AV corresponds to 0.60 CV, 𝛼௔௨௧௢௠௔௧௘ௗ = 1
1.68ൗ ≈ 0.60.  

The link performance function is a BPR function, as defined before (3.2), with the reference 
values (α = 0.15, β = 4). The minimum travel time (𝑡௜௝

௠௜௡) is computed from the free-flow speed 
of each link (𝑖, 𝑗) ∈ 𝑹.  

 
Figure 3.4 – Capacity gains in mixed traffic conditions, adapted from Calvert et al. (2011). 

The reference value of travel time spent inside CVs (𝑉𝑂𝑇௖௔௥) in the Netherlands is considered to 
be 10 € per hour (Yap et al., 2016). Since the total flow is a single variable and the cost function 
depends on the weights given to the variables, the AVs value of travel time proportionally is 
reduced in mixed and dedicated roads. Having in mind the inevitable mathematical incoherence 
mentioned in Section 2, we make use of this incoherence as the AV value of travel time decreases 
in an inversely proportional way to the road capacity gain that is given by the AVs. The AVs 
estimated values of travel time in the existent literature could drop as far as 5.50€ in the 
Netherlands for commuter trips(Correia et al., 2019; Yap et al., 2016). In our experiment, CV 
passengers always have a higher value of travel time (10€/h), whereas AV passengers have a 
reduced travel time cost. In dedicated roads, all traffic is automated, so the value of AVs travel 
time is 5.95€ per hour (𝑉𝑂𝑇௖௔௥ ∗ 𝛼௔௨௧௢௠௔௧௘ௗ). In regular roads, traffic is mixed and the value of 
AVs travel time (𝑉𝑂𝑇௖௔௥ ∗ 𝛼௠௜௫௘ௗ) varies accordingly to Figure 3.5. 

 
Figure 3.5 – Reduction of the value of travel time as the AV penetration rate evolves 

The reference value of road investment (𝑉𝑂𝐼) is 10 euros per kilometer. V2I connectivity was 
considered as a road upgrade investment. Each dedicated short-range communication site usually 
costs, on average $51,650 over a 5-kilometer range (Wise, 2015). In this experiment, the interval 
between design stages must be at least three years (260 weekdays each) so that the road investment 
is paid for itself. 
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The RNDP-AVs model is applied for the Delft case study in three scenarios: 

 Scenario O is created without AVs’ dedicated road links to further compare with the 
following scenarios. 

 Scenario I comprises only the travelers’ perspective by minimizing the overall generalized 
travel costs – balancing AVs travel costs savings and CVs extra travel time costs. 

 Scenario II holds both travelers and municipality perspectives because it includes road 
investment for every dedicated road link – balancing the road investment and road traffic 
benefits. 

The experiments are executed throughout the planning design period in four analyses. The 
optimality analysis indicates the optimal solutions at each individual design stage (penetration 
rate) without considering dedicated roads that were found optimal in previous stages. As 
mentioned before, the incremental planning, the long-term planning, and the hybrid planning are 
forecasted for an AV penetration rate of 90%, when 10% of CVs still remain in the network. 

The RNDP-AVs model has been implemented in the Mosel language and solved by Xpress 8.1 
(FICO, 2017) in a computer with a processor of 4.2 GHz Intel Core i7-7700K and 16GB RAM. 
The NLP problem is solved by the FICO Xpress-NLP SLP solver designed for large scale 
nonconvex problems that use a mixed-integer successive linear programming approach, 
combining branch and bound (BB) and successive linear programming (SLP). The reader may 
consult more information about the Xpress Solver (Fair Isaac Corporation, 2019) and existent 
solvers (Kronqvist et al., 2019). Since the RNDP-AVs problem is convex, global optimality is 
guaranteed.  

In the next two subsections, the experiments from the application of the RNDP-AVs NLP model 
to this case-study, the city of Delft in the Netherlands, will be introduced. The first subsection 
will analyze the RNDP-AVs designed for the peak-hour in order to forecast the upmost benefits 
as well to depict the “best” design and find out which the strategy planning mitigates most 
congestion. The following subsection will apply the RNDP-AVs for the whole day that embeds 
hourly assignments in the formulation, which will be very useful to extract the conclusions on 
which is the best design strategy for the whole day. 

THE RNDP-AVS DESIGNED FOR THE MOST CONGESTED PEAK-HOUR 

According to the Delft dataset, the most congested hour is between 9 to 10 am (ℎ௜ = 9 ∩ ℎ௙ = 10), 
holding 15% of the daily trips. The following analysis considered the peak- hour since AV 
subnetworks are a permanent strategy intended to solve congestion, which usually happens in this 
period. The initial dataset included the time window where passengers would perform their trips. 
The travel data considered for the peak-hour study included the maximum number of trips 
possible to occur in that hour, i.e., in the time window [ℎ௜ℎ௙]. 

In this analysis, only the transition period will be analyzed and composed by the design stages 
considered several AV penetration rates: 1%, 10%, 25%, 50%, 75%, 90%, and 99%. The long-
term is envisioned for 90% of AVs which will likely happen somewhere between 2060 and 2080 
(Nieuwenhuijsen et al., 2018). This means that this experiment focuses on a transition period for 
the next 40-60 years when still 10% of CVs will be present in the network. According to 
Nieuwenhuijsen et al. (2018), full deployment (100% of AVs) will only occur after 2100. 
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NO AV SUBNETWORKS 

In scenario O, vehicles (CVs and AVs) circulate everywhere in mixed traffic conditions, reflecting 
the impact of AVs deployment in the Delft network without any road traffic segregation. 
Constraints (3.18) are added to the prior RNDP-AVs formulation to replicate scenario O. 

𝑥௜௝ = 0 ∀ (𝑖, 𝑗) ∈ 𝑹 (3.18) 

Table 3.2 details the results of the experiments for scenario O. Each design stage is calculated in 
three seconds. Throughout this transition process, costs will reduce proportionally as the value of 
travel time spent inside AVs decreases (Figure 3.5). Total travel time is somewhat reduced from 
1163 to 1057 hours vehicles, 9% difference. Such AVs cooperative adaptive cruise control system 
will help reduce the average congestion from 47.3% to 29.0%, dramatically reducing total delay 
from 123 to 16 hours. Roadways above practical capacity are the ones with a degree of saturation 
above 75%, meaning that flow is close to capacity, drop from 15.15 to 2.75 kilometers. Congested 
roadways (saturation above 100%) start to be mitigated when AVs reach 50% of the vehicle fleet. 
The total distance is quite steady throughout the process. 

AV SUBNETWORKS 

This section presents the results obtained from Scenario I, showing how the optimal road network 
design varies throughout the process in every planning approach. As aforementioned, scenario I 
does not includes road infrastructure investment and, therefore, only minimizes the travel time 
costs of both AVs and CVs. The results for Scenario I are detailed in Table 3.3. Network solutions 
are depicted in Figure 3.6, Figure 3.7 and Figure 3.8. The optimal solutions were obtained within 
adequate computation time. The incremental planning analysis took about half an hour to execute 
the whole process, composed of seven design stages (penetration rates). The long-term planning 
took less than fourteen minutes. The hybrid planning took about ten minutes. 

In incremental planning, dedicated roads are found optimal since the early stages of AVs 
deployment (1%). Figure 3.6 shows that AV dedicated roads start in four zones and evolve 
progressively from 13.43 to 29.67 kilometers (more details in Table 3.3). Dedicated roads start 
appearing in the Delft South region, where most of the households are located, and progressively 
connecting to the historical center (node 44). Notice that the external demand to the city was not 
part of the dataset used in this experiment.  

Figure 3.7 illustrates the evolution of dedicated roads in long-term planning. AV dedicated roads 
evolve from 0.00 to 22.23 kilometers. In this approach, AV subnetworks should only start when 
AVs are 10%, expanding around the city center towards the optimal solution of the design stage 
concerning 90% of AVs. 

The hybrid planning revealed a network configuration, as illustrated in Figure 3.8. AV dedicated 
roads evolve from 1.87 to 22.23 kilometres. Dedicated roads for AVs start when 1% of AVs are 
present in the network, though such evolution is more conservative than the incremental planning 
strategy and starts earlier than the long-term. The optimal long-term network design is obtained 
when 75% of vehicles are AVs 
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Table 3.2 – Peak-hour experiments results of current scenario O without AV subnetworks 

Scenario O 
(Currently) 

 
RNDP-AVs without 

AV subnetworks 

Generalized Costs Network Travel Times Congestion 1 Delay 2 Travel Distances Computational time 
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0% 10,655.20 € 100.0% - - - - - 1163 - 1163 47.3% 15.15 4.82 0 123 123 0.0% 100.0% 68605 00:00:03 

00
:0

0:
23

 

1% 10,655.00 € 100.0% - - - - 12 1152 - 1164 47.3% 15.15 4.82 1 122 123 1.0% 99.0% 68591 00:00:03 
10% 10,630.70 € 100.0% - - - - 116 1047 - 1163 47.2% 13.98 4.82 12 110 123 10.0% 90.0% 68545 00:00:03 
25% 10,458.50 € 100.0% - - - - 289 868 - 1157 47.7% 15.15 4.82 29 87 116 25.0% 75.0% 68564 00:00:03 
50% 9,665.43 € 100.0% - - - - 564 564 - 1127 44.4% 11.19 2.75 43 43 87 50.0% 50.0% 68589 00:00:03 
75% 8,214.52 € 100.0% - - - - 815 272 - 1087 38.0% 6.06 2.75 35 12 47 75.0% 25.0% 68543 00:00:02 
90% 7,082.65 € 100.0% - - - - 960 107 - 1067 32.9% 2.75 2.75 24 3 26 90.0% 10.0% 68552 00:00:02 
99% 6,329.35 € 100.0% - - - - 1047 11 - 1057 29.4% 2.75 0.00 17 0 17 99.0% 1.0% 68554 00:00:03 

100% 6,241.97 € 100.0% - - - - 1057 - - 1057 29.0% 2.75 0.00 16 0 16 100.0% 0.0% 68555 00:00:01 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger 
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Table 3.3 – Peak-hour experiments results of scenario I with AV subnetworks. 

Scenario I 
(with AV 

subnetworks) 
 

RNDP-AVs without 
road investment 

Generalized Costs Solution Travel Times Congestion 1 Delay 2 Travel Distances Computational time 
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1% 10,650.10 € 100.0% 0.0% - 10 13.63 13 1153 0 1165 41% 15.15 4.82 1 123 124 1.1% 98.9% 68711 00:03:06 

13
:3

8:
52

 10% 10,580.60 € 100.0% 0.0% - 11 15.26 121 1042 0 1164 41% 13.98 4.82 10 106 116 10.9% 89.1% 69027 00:22:06 
25% 10,329.40 € 100.0% 0.0% - 13 16.15 299 868 0 1167 40% 13.94 6.58 24 88 112 25.5% 74.5% 71462 00:17:11 
50% 9,440.45 € 100.0% 0.0% - 12 12.90 582 576 0 1157 39% 11.19 6.06 49 55 104 48.9% 51.1% 69446 00:47:50 
75% 7,979.94 € 100.0% 0.0% - 22 23.03 829 298 0 1127 32% 11.89 4.82 49 23 72 70.8% 29.2% 71445 00:25:13 
90% 6,955.31 € 100.0% 0.0% - 21 22.23 963 114 0 1077 29% 6.06 2.75 27 4 31 87.9% 12.1% 69017 00:08:44 
99% 6,318.18 € 100.0% 0.0% - 20 23.28 1048 11 0 1059 29% 2.75 0.00 18 0 18 98.8% 1.2% 68471 11:32:13 
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1% 10,650.10 € 100.0% 0.0% - 10 13.63 13 1153 0 1165 41% 15.15 4.82 1 123 124 1.1% 98.9% 68711 00:02:29 

00
:3

1:
17

 10% 10,580.60 € 100.0% 0.0% - 11 15.26 121 1042 0 1164 41% 13.98 4.82 10 106 116 10.9% 89.1% 69028 00:07:12 
25% 10,361.30 € 100.0% 0.0% - 11 15.26 294 859 0 1153 40% 12.92 4.82 24 79 102 26.4% 73.6% 69650 00:10:22 
50% 9,655.36 € 100.0% 0.0% - 15 22.31 570 599 0 1169 40% 14.45 6.13 40 44 84 51.0% 49.0% 69764 00:04:52 
75% 8,492.16 € 100.0% 0.0% - 23 29.67 826 341 0 1167 35% 14.16 2.75 45 22 67 68.6% 31.4% 73619 00:05:02 
90% 7,162.51 € 100.0% 0.0% - 23 29.67 963 131 0 1094 31% 4.00 2.75 26 4 30 86.9% 13.1% 70554 00:00:22 
99% 6,337.53 € 100.0% 0.0% - 23 29.67 1047 13 0 1060 25% 2.75 0.00 17 0 17 98.6% 1.4% 67847 00:00:38 
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1% 10,655.00 € 100.0% 0.0% - 0 0.00 12 1151 0 1163 47% 13.98 4.82 1 120 121 1.1% 98.9% 68692 00:00:20 

00
:1

3:
28

 10% 10,755.50 € 100.0% 0.0% - 3 3.92 120 1112 0 1232 47% 17.49 7.83 16 173 189 9.6% 90.4% 71439 00:00:16 
25% 10,393.00 € 100.0% 0.0% - 8 8.20 297 912 0 1208 45% 15.58 7.83 37 131 167 23.8% 76.2% 70919 00:00:20 
50% 9,469.99 € 100.0% 0.0% - 8 8.20 571 578 0 1149 43% 11.19 7.83 51 57 108 48.4% 51.6% 69666 00:02:26 
75% 7,988.05 € 100.0% 0.0% - 21 22.23 829 298 0 1127 32% 11.89 4.82 49 23 72 70.8% 29.2% 71445 00:00:39 
90% 6,955.31 € 100.0% 0.0% - 21 22.23 964 114 0 1078 29% 6.06 2.75 27 4 31 87.9% 12.1% 69017 00:09:27 
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1% 10,654.20 € 100.0% 0.0% - 2 1.87 12 1151 0 1163 46% 13.98 4.82 1 120 121 1.0% 99.0% 68683 00:00:55 

00
:1

0:
10

 10% 10,607.00 € 100.0% 0.0% - 4 4.24 116 1046 0 1162 40% 13.98 4.82 12 109 120 10.1% 89.9% 68377 00:00:20 
25% 10,405.30 € 100.0% 0.0% - 4 4.24 289 868 0 1157 39% 13.98 4.82 29 87 116 25.0% 75.0% 68245 00:00:24 
50% 9,495.20 € 100.0% 0.0% - 10 10.51 571 585 0 1155 39% 11.19 7.83 51 58 108 47.7% 52.3% 70615 00:00:07 
75% 7,988.05 € 100.0% 0.0% - 21 22.23 829 298 0 1127 32% 11.89 4.82 49 23 72 70.8% 29.2% 71445 00:00:02 
90% 6,955.31 € 100.0% 0.0% - 21 22.23 964 114 0 1078 29% 6.06 2.75 27 4 31 87.9% 12.1% 69017 00:08:22 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger. 
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(a) 1%. 

 
(b) 10%, 25%. 

 
(c) 50%. 

 

 
(d) 75%, 90%, 99%. 

 

Figure 3.6 – RNDP-AVs peak-hour design: AV subnetworks of Scenario I under Incremental Planning (a), 

(b), (c), and (d) (% of AV penetration rate). 

 
(a) 10%. 

 
(b) 25%, 50%. 

 
(c) 75%, 90%. 

Figure 3.7 – RNDP-AVs peak-hour design: AV subnetworks of Scenario I under Long-Term Planning (a), 

(b) and (c) (% of AV penetration rate). 
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(a) 1%. (b) 10%,25%. (c) 50%. 

 

(d) 75%, 90%. 

 

Figure 3.8 – RNDP-AVs peak-hour design: AV subnetworks of Scenario I under Hybrid planning (a), (b), 

(c), and (d) (% of AV penetration rate). 

Figure 3.9 shows the evolution of the network dedicated for AVs in every planning approach. In 
the incremental planning approach, dedicated roads are already evident since early stages (1%) – 
closer to optimal solutions of each individual design stage (optimality analysis) at the beginning 
of AVs deployment (low penetration rates, until 25% of AVs), and distances itself from optimality 
throughout the process as more AVs are present. Furthermore, the long-term planning strategy 
only gets closer to individual-stage optimality at the end of the process, with a AVs penetration 
rate of 75% or more. 

 
Figure 3.9 – RNDP-AVs peak-hour design: subnetwork evolution in Scenario I. 
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Generalized costs decrease as the ratio of AVs to CVs increases – see Figure 3.10. During this 
process, traffic equilibrium is changed as more AVs enter the vehicle fleet, balancing between the 
possibility of having extra travel time costs of CV detours and the lower AV speed from reduced 
AV costs. In each planning strategy, the progression of the AV subnetworks constrains the 
objective function, guaranteeing the formerly dedicated roads. Such dedicated road evolution 
constraint might not be beneficial in the following deployment stages as CVs detouring increase 
travel costs. Figure 3.11 illustrates the differential of the total cost of every planning strategy 
applied to scenario I with scenario O (that does not have dedicated roads). 

In incremental planning, dedicated road links are only beneficial in the early stages, with cost 
savings up to 1%, only happening when CVs are still the majority. However, when AVs 
penetration is over 75%, the generalized costs surpass up to 3.5% the ones obtained in a scenario 
O. When CVs are the leading share of vehicles, the model is focused on reducing the CV extra 
travel times associated to detouring until a point, where AVs are over 50% of the fleet, in which 
the model tries to obtain more AV travel time cost savings while maintaining the same dedicated 
roads previously selected. This explains why the former solutions in incremental planning are not 
optimal for penetrations rates over 50%, and when AVs reach 75%, the model tries to reduce costs 
by increasing the subnetwork but still got higher costs than scenario O.  

The long-term planning seems so far, the best strategy in terms of costs. Dedicated roads are 
crucial to drop travel costs during most of the transition process. Although the generalized costs 
might slightly exceed (1%) the ones obtained in scenario O in the early stages, once AV 
penetration rate reaches 25% dedicated roads proportionate cost savings (up to 3%). 

The hybrid planning seems so far the best strategy in terms of costs, dropping those in the first-
half of AV’s deployment and showing similarity with the long-term planning at the end of the 
deployment – see Figure 3.11.  AV subnetworks start to be valuable since the beginning of the 
transition process and eventually culminating (up to 3%) when AV penetration rate is 75%. 

Figure 3.10 – RNDP-AVs peak-hour design: 

Generalized costs in Scenario I. 

Figure 3.11 – RNDP-AVs peak-hour design: 

Differential on the generalized costs in Scenario 

I. 

Figure 3.12 gives a broader overview of the congestion effect, showing that congestion is indeed 
reduced in every analysis and below scenario O – meaning that dedicated roads reduce the overall 
congestion. The congestion in the incremental planning is always close to optimality and even 
drops in the end. In long-term planning, the average congestion is progressively approaching the 
congestion in the individual optimal solutions (optimality). In the first-half of this transition 
process, the hybrid planning strategy shows similar results to the long-term planning strategy, 
whilst in the second-half is the best planning strategy for being close to the individual-stage 
optimality. 
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From Figure 3.13 to Figure 3.15, congestion is analyzed in detail, focusing on the degree of 
saturation. Roadways above practical capacity are the ones with a degree of saturation over 75%, 
meaning that the traffic flow is close to capacity. Congested roadways hold a degree of saturation 
of 100%, i.e., traffic flow is overcapacity. In the incremental planning (Figure 3.13), both 
indicators are improved until AVs are 25% of the fleet. However, congestion is intensified 
henceforth. Congested roadways intensify when the penetration rate is 50% but promptly decrease 
afterward. In the long-term planning (Figure 3.14), roadways above practical capacity increase 
analogously, but congested roadways intensify. In hybrid planning (Figure 3.15), the main 
problem also relies on congested roadways, though only happening in the second-half of this 
transition process. The main conclusion here is that, although AVs efficiency might indeed reduce 
the overall congestion indicator, congested roadways might be intensified in some stages. 

Figure 3.12 – RNDP-AVs peak-hour design: 

Average degree of saturation in Scenario I. 

Figure 3.13 – RNDP-AVs peak-hour design: 

Congestion at incremental planning in Scenario I. 

Figure 3.14 – RNDP-AVs peak-hour design: 

Congestion at long-term planning in Scenario I. 

Figure 3.15 – RNDP-AVs peak-hour design: 

Congestion at hybrid planning in Scenario I. 

In order to understand this congestion paradox: the reduction of the overall congestion and the 
increase of roadways that are above practical capacity, the analysis of the traveled distances in 
each vehicle is paramount – from Figure 3.16 to Figure 3.18. Longer paths can occur either 
because of CV detouring by the presence of AV subnetworks or because of the reduced value of 
travel time spent inside AVs. In dedicated roads, AVs circulate in autopilot mode, and the value 
of travel time experienced by the passengers is lower than on regular roads. 

In the incremental planning (Figure 3.16), the total distance increases mostly in the late stages of 
the deployment process, i.e., for a penetration rate of 75%. Here, the increase is caused by CV 
detouring around the AV subnetworks. In the long-term planning (Figure 3.17), the total distance 
experienced by CV users increases homogeneously along the process. The baseline for AVs is 
slightly above which indicates that AVs are reducing their travel distances at higher penetration 
rates due to the presence of dedicated roads. In hybrid planning (Figure 3.18), CV detour is highly 
intensified throughout every stage in the AVs deployment process. 
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Total travel time is summarized in Figure 3.19, and the conclusions are similar because travel 
times are related to traveled distances. The hybrid planning is the strategy with a lower increase 
in travel time. 

 
Figure 3.16 – RNDP-AVs peak-hour design: Total 

distance at incremental planning in Scenario I. 

 
Figure 3.17 – RNDP-AVs peak-hour design: Total 

distance at long-term planning in Scenario I. 

Figure 3.18 – RNDP-AVs peak-hour design: Total 

distance at hybrid planning in Scenario I. 

Figure 3.19 – RNDP-AVs peak-hour design: Total 

travel time in Scenario I. 

Figure 3.20 and Figure 3.21 look at the total delay, which is calculated through the difference 
between the driven and the minimum travel time, having analogous inferences. With regards to 
CVs, it is perceived that both long-term and hybrid planning imply higher delays than the 
incremental planning – which only brings delay for CVs when the majority of the vehicles are 
automated. Regarding AVs, long-term planning brings more delay than any other strategy. In fact, 
both incremental and hybrid planning approaches reduce total delay until AVs reach the majority 
share of the vehicle fleet. 

Figure 3.20 – RNDP-AVs peak-hour design: CV 

total delay variation in Scenario I. 

Figure 3.21 – RNDP-AVs peak-hour design: AV 

total delay variation in Scenario I. 

In order to fully understand whether CVs are detouring from the presence of AV subnetworks or 
AVs are traveling more because of their reduced value of travel time, Figure 3.22 and Figure 3.23 
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illustrate the total distance variation among CVs and AVs, respectively. In the incremental 
planning strategy, the main inference relies on CV detour that only starts after AVs reach 50% of 
the vehicle fleet, with 35% of increased distances. Yet, AVs travel longer towards dedicated links 
while reducing their total delay and their costs until late stages of deployment (75%). On the 
contrary, long-term planning produces a network configuration that reduces AVs total distance 
but concentrates most of AVs traffic flow in dedicated zones, taking advantage of their reduced 
travel time costs. CV detour occurs up to 5% until AVs reach the majority, and in late stages of 
deployment, detour increases to 20%. The hybrid planning strategy is the least favorable for both 
CVs and AVs since early stages, where detour causes more than 15% of increased distances and 
the reduced AV travel time cost causes up to 7% of increased distances. 

Figure 3.22 – RNDP-AVs peak-hour design: CV 

total distance variation in Scenario I. 

Figure 3.23 – RNDP-AVs peak-hour design: AV 

total distance variation in Scenario I. 

From a transport planning perspective, it is plausible to infer that dedicated roads are 
advantageous from the early stages of AVs deployment in urban networks. They provide lower 
travel time costs, with more convenience and comfort, and decrease overall congestion, obtained 
from AVs efficiency. However, their planning strategy must be carefully selected to avoid longer 
trips for CVs and congested roadways (fully saturated) in the surroundings of AV subnetworks. 
In general, AVs’ operational efficiency did not reveal much travel time savings, and the decrease 
of the AVs’ value of travel time caused longer trips for AV users in the early stages. 

AV SUBNETWORKS THAT REQUIRE ROAD INVESTMENT FOR V2I 

In Scenario II, an investment cost is added to the objective function. Table 3.4 details the Delft 
experiments where the RNDP-AVs model was applied to scenario II. Network solutions are 
depicted between Figure 3.24 and Figure 3.26. The decision problem now is more combinatorial; 
thus, the computational time increased accordingly. The incremental planning took nearly nine 
hours to execute and calculate all optimal solutions, whereas the long-term planning took 
seventeen minutes. This difference is explained because, in the long-term planning, the 
subnetwork is calculated reversely, reducing the solution space in each period over time. The 
hybrid planning took over five hours. 

In incremental planning (Figure 3.24), the investment cost at each dedicated road implies fewer 
road links chosen at each stage. Accordingly, merely one dedicated road exists for a penetration 
rate of 10%. Only when automated traffic is over 50%, subnetworks start to grow, and the final 
configuration is reached when AVs are over 75%. Dedicated roads are mostly located in 
residential areas.  

When applied the long-term planning, the optimal network design is calculated for 90% of AVs, 
and then the network design is reversely calculated – see Figure 3.25. Since investment is 
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guaranteed in the preceding stage , the creation of AV subnetworks starts earlier than the ones 
obtained in scenario I (Figure 3.7) in order to distribute the total investment since the early stages.  

 
(a) 10%. 

 
(b) 25%. 

 
(c) 50%. 

 

 
(d) 75%, 90%, 99%. 

 

Figure 3.24 – RNDP-AVs peak-hour design: AV subnetworks of Scenario II under Incremental Planning 

(a), (b), (c), and (d) (% of AV penetration rate). 

 

↑N 

↑N ↑N ↑N 
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Table 3.4 – Peak-hour experiments results of scenario II with AV subnetworks that require road investment. 

Scenario II 
(with AV 

subnetworks) 
 

RNDP-AVs with 
road investment 
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1% 10,655.00 € 100.0% 0.0% 0.0% 0 0.00 12 1151 0 1163 47% 15.15 4.82 1 120 122 1.0% 99.0% 68666 00:01:03 

61
:2

5:
08

 10% 10,623.40 € 99.9% 0.0% 0.1% 1 0.80 116 1048 0 1164 47% 15.15 4.82 12 111 123 9.9% 90.1% 68529 02:46:04 
25% 10,414.40 € 99.8% 0.0% 0.2% 3 2.47 289 868 0 1157 46% 13.98 4.82 29 87 116 24.9% 75.1% 68370 14:02:51 
50% 9,549.98 € 99.3% 0.0% 0.7% 7 6.89 571 578 0 1149 43% 11.19 7.83 51 57 108 48.4% 51.6% 69666 03:19:36 
75% 8,136.33 € 99.4% 0.0% 0.6% 6 4.81 819 274 0 1093 37% 7.83 2.75 38 14 52 73.8% 26.2% 68531 36:03:34 
90% 7,070.82 € 99.8% 0.0% 0.2% 3 2.42 962 107 0 1068 34% 2.75 2.75 25 3 28 89.5% 10.5% 67753 05:11:27 
99% 6,329.35 € 100.0% 0.0% 0.0% 0 0.00 1047 11 0 1057 29% 2.75 0.00 17 0 17 99.0% 1.0% 68554 00:00:33 
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1% 10,655.00 € 100.0% 0.0% 0.0% 0 0.00 12 1151 0 1163 47% 13.98 4.82 1 120 121 1.1% 98.9% 68699 00:01:52 

08
:5

2:
13

 10% 10,623.40 € 99.9% 0.0% 0.1% 1 0.80 116 1048 0 1164 47% 15.15 4.82 12 111 123 9.9% 90.1% 68529 00:22:13 
25% 10,406.30 € 99.8% 0.0% 0.2% 3 2.47 289 868 0 1157 46% 13.98 4.82 29 87 116 24.9% 75.1% 68388 02:55:53 
50% 9,693.28 € 99.7% 0.0% 0.3% 6 5.70 559 590 0 1149 44% 12.99 7.39 39 45 84 47.9% 52.1% 71229 02:54:31 
75% 8,181.26 € 99.3% 0.0% 0.7% 11 11.41 814 292 0 1106 33% 9.58 2.86 34 9 43 71.8% 28.2% 71275 02:30:54 
90% 7,037.58 € 100.0% 0.0% 0.0% 11 11.41 962 115 0 1077 29% 6.06 1.61 25 2 27 88.8% 11.2% 68460 00:06:43 
99% 6,327.74 € 100.0% 0.0% 0.0% 11 11.41 1048 12 0 1059 28% 2.75 0.00 18 0 18 98.9% 1.1% 68204 00:00:07 
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0% 10,705.50 € 99.5% 0.0% 0.5% 0 0.00 - 1164 0 1164 47% 15.15 4.82 0 123 123 0.0% 100.0% 68609 00:00:06 

00
:1

6:
57

 1% 10,706.70 € 100.0% 0.0% 0.0% 6 5.03 12 1181 0 1193 47% 18.08 6.58 1 151 152 0.9% 99.1% 71895 00:00:10 
10% 10,694.70 € 99.3% 0.0% 0.7% 6 5.03 117 1067 0 1184 47% 17.01 6.58 13 130 143 9.5% 90.5% 71564 00:00:13 
25% 10,608.20 € 99.1% 0.0% 0.9% 10 12.11 298 928 0 1225 45% 16.27 7.83 37 133 170 24.1% 75.9% 70182 00:02:26 
50% 9,518.18 € 100.0% 0.0% 0.0% 21 22.23 589 625 0 1214 39% 18.08 9.58 38 75 114 46.1% 53.9% 77586 00:00:50 
75% 7,988.05 € 100.0% 0.0% 0.0% 21 22.23 829 298 0 1127 32% 11.89 4.82 49 23 72 70.8% 29.2% 71445 00:00:06 
90% 6,955.31 € 100.0% 0.0% 0.0% 21 22.23 964 114 0 1078 27% 6.06 2.75 27 4 31 87.9% 12.1% 69017 00:13:06 
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1% 10,655.00 € 100.0% 0.0% 0.0% 0 0.00 12 1152 0 1164 47% 15.15 4.82 1 122 123 1.0% 99.0% 68591 00:00:05 

05
:1

1:
49

 10% 10,630.70 € 100.0% 0.0% 0.0% 0 0.00 116 1047 0 1163 47% 13.98 4.82 12 110 123 10.0% 90.0% 68545 00:00:05 
25% 10,428.30 € 99.8% 0.0% 0.2% 3 2.42 291 879 0 1170 47% 16.17 6.58 31 99 130 75.9% 24.1% 70761 00:00:08 
50% 9,562.86 € 100.0% 0.0% 0.0% 3 2.42 565 567 0 1132 43% 11.19 4.52 45 47 92 51.3% 48.7% 69873 00:00:02 
75% 8,134.37 € 100.0% 0.0% 0.0% 3 2.42 816 272 0 1088 37% 7.83 2.75 36 12 48 26.0% 74.0% 69082 00:00:02 
90% 7,070.82 € 100.0% 0.0% 0.0% 3 2.42 962 107 0 1068 34% 2.75 2.75 25 3 28 10.5% 89.5% 67753 05:11:27 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger 

 



Chapter 3 – Subnetworks for Automated Vehicles 

57 

 
(a) 1%, 10%. 

 
(b) 25%. 

 
(c) 50%, 75%, 90%. 

Figure 3.25 – RNDP-AVs peak-hour design: AV subnetworks of Scenario II under Long-Term Planning (a), 

(b), and (c) (% of AV penetration rate). 

The hybrid planning (Figure 3.26) produces a single configuration since the AV penetration rate 
is 25%. This occurs because the model only gets to choose incrementally the links that are part of 
the optimal network design in the long-term. After 25% of AVs, it is too costly to invest in more 
road links, and while the model minimizes the costs at each stage, the travel time savings do not 
surpass the road investment. 

 
(a) 25%, 50%, 75%, 90%. 

Figure 3.26 – RNDP-AVs peak-hour design: AV subnetworks of Scenario II under Hybrid planning (a) (% 

of AV penetration rate). 

Figure 3.27 shows the evolution of AV subnetworks obtained from the experiments done at each 
strategy in Scenario II. In this case, the optimality shows that dedicated links decrease for 
penetration rates over 50% because the amount of investment needed shall surpass the travel cost 
savings obtained by this strategy. Therefore, after 50% of AVs, in incremental planning, the AV 
network design continues evolving because the amount of investment needed to upgrade at each 
stage is also lower. For long-term planning, the progressive subnetwork seems to be far from the 
optimality that considers road investment. The hybrid planning limits the creation of dedicated 
roads with a small network since 25% of AVs. Nevertheless, it is essential to note that these three 
planning approaches have completely different algorithms. The investment is different being 

↑N 

↑N ↑N ↑N 
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proportional to the AVs subnetwork dimension: higher in the long-term planning, then slender in 
the incremental planning and minor in the hybrid planning strategy. In Figure 3.28, both 
incremental and hybrid planning seem suitable planning approaches because the generalized 
differential costs do not exceed as much as the ones obtained in the long-term planning. However, 
the long-term planning strategy holds a higher differential, increasing the costs up to 1.5% for a 
penetration rate of 25% and then reducing up to 3% when 75% of the vehicles are automated. 

 
Figure 3.27 – RNDP-AVs peak-hour design: 

subnetwork evolution in Scenario II. 

 
Figure 3.28 – RNDP-AVs peak-hour design: 

Differential on the generalized costs in Scenario 

II. 

Figure 3.29 illustrates the average congestion throughout the AVs deployment, being the long-
term planning the one that most reduces congestion. Similar conclusions were found in the 
analysis of roadways above practical capacity and congested roadways: the presence of dedicated 
roads during the deployment process will cause extra congestion from CV detour. The 
incremental planning revealed less congested roadways than the long-term planning, whereas the 
hybrid has such a small network that almost does not cause detour. Figure 3.30 illustrates the total 
travel time amongst the planning approaches. The long-term strategy holds extra travel times, 
despite reducing the overall congestion. Figure 3.31 and Figure 3.32 depict the total distance 
traveled and compare it to scenario O, showing that dedicated roads might force CVs to detour 
up to 25% while reducing AVs distances for most of the process. 

 
Figure 3.29 – RNDP-AVs peak-hour design: 

Average degree of saturation in Scenario II. 

Figure 3.30 – RNDP-AVs peak-hour design: AV 

Total travel time in Scenario II. 
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Figure 3.31 – RNDP-AVs peak-hour design: CV 

total distance variation in Scenario II. 

Figure 3.32 – RNDP-AVs peak-hour design: AV 

total distance variation in Scenario II. 

PLANNING STRATEGIES OVERVIEW 

The previous analyses were crucial to estimate the impacts of AV subnetworks throughout the 
whole transition process. Despite the benefits - lower travel time costs and lower congestion - one 
thing is sure; CV detour will happen at some point of the process. AVs might also travel longer 
distances, mostly in the early stages of their deployment to take advantage of their reduced value 
of travel time and higher efficiency.  

The strategy considered for the selection of dedicated roads in each scenario is debatable and 
dependent on the desired results. Two patterns are noticeable: When most of the vehicles are 
conventional the model aims to reduce CV detour costs by selecting dedicated roads with lower 
capacity, and therefore lower speed, putting AV traffic away from regular roads. As more AVs 
are present in the system, the model aims to increase their cost savings by increasing the 
subnetworks dimension. Amongst the planning strategies, the model balances the CV detour extra 
costs and AV cost savings, given a penetration rate. This is why the incremental planning strategy 
starts avoiding CV detour and forces an increase of distances travelled for the AVs in the early 
stages. On the other hand, the long-term planning starts from the optimal long-term network 
design, where 90% of the vehicles are automated, and 10% are conventional. In this case, the 
model creates the network reversely by maximizing the travel time cost savings, which is naturally 
far from optimality at the early stages, because detour is unavoidable – the reverse design gives 
preference to AVs savings and worsens CV detour. At last, the hybrid planning revealed 
surprising results because it proved that, limiting the incremental planning to the optimal solution 
obtained in the long term, strongly diminish the negative effects of both incremental and long-
term planning strategies throughout the transition process. Moreover, in the first half of the 
transition period, the hybrid planning diminishes the extra travel costs from implementing the 
long-term planning strategy; whilst, in the second half of the transition process, the hybrid 
planning diminishes CV detour from implementing the incremental planning. 

This subsection aims to help decide the strategy that is best for implementing dedicated roads, 
either if road investment is part of the problem or not (scenarios I or II). The evolution of the 
subnetwork in each strategy applied to both scenarios is depicted in Figure 3.33. The generalized 
differential costs are shown in Figure 3.34. Scenario I (without road investment) is represented at 
continuous lines, while Scenario II (with road investment) is pictured with dashed lines. At pink 
shadow is represented the optimal area. The optimal zone is between both optimality analyses, 
with and without road investment, whereas in the differential costs are optimal when the 
differential is negative. To summarize the analysis, the planning approaches that fit in this optimal 
zone are thickened and therefore correspond the best planning strategies: scenario I with hybrid 
planning; and scenario II with incremental planning. 
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Figure 3.33 – RNDP-AVs peak-hour design: Progressive subnetworks in every planning strategy. 

 

Figure 3.34 – RNDP-AVs peak-hour design: Differential generalized costs in every planning strategy. 

As expected, the long-term planning creates a suitable network design at higher penetration rates 
(second-half of the transition process), whereas the incremental planning is more desirable in the 
short-term rates (first-half of the transition process). When road investment is ignored (scenario 
I), the hybrid planning is very satisfactory. The long-term planning is also beneficial in terms of 
the total cost, except in the early stages (penetration rate of 10%). Therefore, to avoid those early 
extra costs from CV detour, the long-term planning strategy should be implemented when at least 
25% of the vehicles are automated. The incremental planning strategy is inadequate in the second-
half of the transition process. In the same way, if road investment is part of the decision problem, 
the incremental and hybrid planning strategies will demand a significant investment at every 
design stage. The long-term planning distributes the investment needed for the next upgrade 
beforehand Furthermore, in this case (scenario II), the best strategy is the incremental planning. 
The implementation of the long-term planning strategy would increase costs when AVs are 10%, 
so it should only be implemented afterwards. Hence, the decision to choose amongst the planning 
strategies might not be trivial. 

In this sense, the CV detour problem might be used as tie-breaking criteria. CV detour problem 
reflects in increased travelled distances, total travel time and consequently congestion. The best 
strategy to mitigate this problem would be the incremental without investment and the hybrid 
planning with investment. The long-term planning revealed higher CV travelled distances, i.e., 
more CV detour. 

However, the decision upon the strategy also depends on the evolution of the penetration rate over 
time, i.e., how the transition process will take place. The time lag from 1% to 50% of AVs might 
take much longer than the time lag from 50% to 90% of AVs. In this case, the CV detour would 
be very present, which turns out to be a priority to address. Time plays here an important role, yet 
forecasts on the diffusion of AVs are still very vulnerable and dependent on policy and technology 
evolution. 
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DAILY IMPLICATIONS OF THE RNDP-AVS DESIGNED FOR THE PEAK-HOUR 

Designing for the most congested hour can be quite delicate when considering the remaining part 
of the day that involves different mobility patterns and different trips demand, with likely different 
O-D pairs. When such O-D pairs are inside these AV subnetworks, CV owners cannot drive, and 
therefore a new mode of transport is necessary. The RNDP-AVs formulation model evaluates 
only the detour problem through a penalty variable. In order to estimate the impacts of the AV 
subnetworks throughout the day, a different formulation must guarantee that CV trips starting 
inside AV subnetworks throughout the day aren’t ignored – this means giving a new alternative 
mode of transport, for example, walking. 

The main difference from the previous (and general) formulation involves the penalty variables 
that in this subsection will be called “walking variables.” This framework evaluates whether 
walking is cost-efficient as an alternative to driving when a detour is expensive or even when a 
detour is not possible (CV owners start their trips inside the AV subnetwork). 

An assumption is added: “every road link has sidewalks for pedestrians,” but that is natural to 
occur in urban areas. Two parameters are added to the formulation: 

𝜏: walking speed, expressed in kilometers per hour. 

𝑉𝑂𝑇௪௔௟௞: value of travel time while walking in monetary units per hour. 

The second component in the objective function previously presented (3.1) was modified to 
include the cost of the walking (travel time) trips – the square area in (3.19). 

Min(Cost) = 𝑉𝑂𝑇௖௔௥ ෍ න 𝑡
௜௝

௛೔௛೑𝑑𝑓
௙

೔ೕ

೓೔೓೑

଴(௜,௝)∈𝑹

+𝑉𝑂𝑇௪௔௟௞ ෍ ෍ 𝑝
௜௝௢ௗ

 ௛೔௛೑ 𝐿௜௝

𝜏
(௢,ௗ)∈𝑷(௜,௝)∈𝑹

+ 𝑉𝑂𝐼 ෍ 𝑥௜௝

(௜,௝)∈𝑹

𝐿௜௝  (3.19) 

Constraints (3.7),(3.8), (3.20)-(3.23) define the walking flows. CV travelers can park and walk 
until destination when their driving path is blocked by a dedicated road, and if walking is more 
cost-efficient than detouring. From the previous formulation, constraints (3.7) and (3.8) are 
maintained (see page 39), while (3.9) is adapted to (3.20). Constraints (3.20) assure that the 
walking flow of every link (𝑖, 𝑗) ∈ 𝑹 is limited to the preceding flow of link (𝑗, 𝑖) ∈ 𝑹 and extra 
walking flow might be added if that link is dedicated. Constraints (3.21) guarantee the continuity 
of the walking flow through the network: walking flow departing node 𝑖 ∈ 𝑰 shall be higher than 
the walking flow arriving to that node, except in the origin and destination of every O-D pair. 
Constraints (3.22) assure that travelers shall start their trips with CVs if such trip origin is not 
entirely surrounded by AV subnetworks, yet they must start their trips on walking if the origin is 
inside an AV subnetwork. Constraints (3.23) absorb the walking flows from the preceding links 
in the links surrounding the destination node of every trip. 

𝑝
௜௝௢ௗ

 ௛೔௛೑ ≤ 𝑝
௜௝௢ௗ

 ௛೔௛೑ + 𝐶௜௝ ∗ 𝑥௜௝ , ∀ 𝑖, 𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, 𝑖 ≠ 𝑜, 𝑑, 𝐷
௢ௗ

஼௏  ௛೔௛೑ > 0 (3.20) 
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(3.21) 
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஼௏ ∗ 𝑥௢௝ , ∀ 𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷𝑜 ≠ 𝑑 , 𝐷

௢ௗ

஼௏  ௛೔௛೑ > 0 (3.22) 

𝑝
௜ௗ௢ௗ

 ௛೔௛೑ ≤ ෍  

௝∈𝑰

𝑝
௝௜௢ௗ

 ௛೔௛೑ + 𝐶௜ௗ ∗ 𝑥௜ௗ , ∀ 𝑖 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, 𝑖 ≠ 𝑑, 𝐷
௢ௗ

஼௏  ௛೔௛೑ > 0 
(3.23) 

The reference value of time while walking (𝑉𝑂𝑇௪௔௟௞) is considered 20% higher than while 
driving: 12 € per hour. The walking cost is higher than the driving cost, which is believed to 
represent the best reality nowadays. The walking travel time was computed from the average 
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pedestrian’s speed on an empty sidewalk, of 5.0 ft/s equivalent to 5.48 km/h, i.e., a default walking 
free-flow speed (HCM, 2010). 

This section evaluates the scenarios found most appropriate in previous section 3.6.4 amongst the 
incremental and long-term planning strategies: scenario O, without AV subnetworks (for 
comparison purposes only); scenario I under the long-term planning strategy, and scenario II 
under the incremental planning strategy. Each hourly traffic assignment was computed in a few 
seconds. Here the trips were simulated to start ]ℎ௜ℎ௙]. Figure 3.36 reminds the progression of AV 
subnetworks in each scenario. Results are presented from Table 3.5 to Table 3.7 (pages 66 to74). 

 
Figure 3.35 – RNDP-AVs peak-hour design: AV subnetworks progression in Scenarios I-LTP and II-IP. 

Figure 3.36 summarizes the daily costs obtained for each scenario experimented. Both scenarios 
with AV subnetworks revealed particularly alarming results, with increased 26.0% and 43.8% 
travel costs for an AV penetration rate of 75% when compared to scenario O. It seems that 
walking, as the alternative mode of transport, would only occur for the AV subnetworks designed 
for those stages. 

 
Figure 3.36 – RNDP-AVs peak-hour design with walking as an alternative: Daily costs. 
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Figure 3.37 confirm that walking occurs when AVs reach a penetration rate of 75%, onwards. 
The worst-case (higher costs) is scenario I, as it implies more extensive AV subnetworks because 
no road investment is associated. Walking occurs throughout the day in scenario I, almost every 
hour. This happens because of the shifting trips demand (O-D matrix) that varies throughout the 
day. In scenario II – where road investment is assumed in the creation of AV subnetworks – as 
the AV subnetworks are substantially smaller (see Figure 3.38), less walking occurs throughout 
the day. 

 
(a) Scenario I under long-term planning strategy. 

 
(b) Scenario II under incremental strategy. 

Figure 3.37 – RNDP-AVs peak-hour design with walking as an alternative: Hourly extra travel costs (a) and 

(b). 

Figure 3.38 shows the length (in kilometers) of congested roads throughout the day, i.e., when 
traffic flow is near practical capacity, above a degree of saturation of 75%. Congested roads are 
not obvious to predict, given the shifting trips demand throughout the day. The peak depicted in 
scenario I under long-term planning for a penetration rate of 10% may suggest that AV 
subnetworks should only start when AVs reach 25% of the vehicle fleet (in case that AVs level 4 
do not need any investment to be able to read the roads).  Overall, it is conclusive AV subnetworks 
mitigate the length of congested roads after that penetration rate (25% of AVs). 

Figure 3.39 illustrates the average degree of saturation experienced during the day. Scenario I 
under long-term planning is able to reduce the degree of saturation by 8.8% when AVs are 10% 
of the fleet, and when AVs reach 90%, the degree of saturation reduces 13.1%. Scenario II – when 
an investment is necessary – it only reduces 4.0% when AVs are 10% of the fleet and 9.7% at the 
end of the transition period. In scenario II, the most significant contribution of AV subnetworks 
is during the transition period from 25% to 90% of AVs, achieving 7.0-13.1% of reduction. 
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Figure 3.38 – RNDP-AVs peak-hour design with walking as an alternative: Daily congested roads. 

 
Figure 3.39 – RNDP-AVs peak-hour design with walking as an alternative: Daily average degree of 

saturation. 

Figure 3.40 compares the daily delay among AVs and CVs to scenario O where AV subnetworks 
do not exist. The results suggest that in scenario I under long-term strategy, CV delay increases 
in the beginning of the transition period and decreases in the latest stages, starting at 50%. In 
scenario II under an incremental strategy, CV delay is essentially reduced after 75%. Note for a 
penetration rate of 75 and 90%, the reduction of the delay is due to the existence of walking trips 
in this deployment stage. Looking at the AV outcomes, delay is always reduced, no matter which 
stage of the transition period, except for a penetration rate of 1% where AV delay increases about 
2% in both scenarios. 

Figure 3.41 illustrate the daily distance results of AVs and CVs in both scenarios It seems that the 
use of AV subnetworks imply that CVs may have to travel longer in the latest stages of the 
transition period but note that there are fewer CVs in these stages. In scenario I, AVs also travel 
longer except when there is 1% of AVs. In terms of distance, scenario II is the one that presents 
best results. CV distance increase about 5% and up to 7% in the end of the period, while AV 
distance is close to null throughout the transition period. 
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Figure 3.40 – RNDP-AVs peak-hour design with walking as an alternative: Daily delay. 

 
Figure 3.41 – RNDP-AVs peak-hour design with walking as an alternative: daily distance. 
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Table 3.5 – Hourly traffic assignment of scenario O – no AV subnetworks. 

Scenario O 
No AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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6h-7h 

1% 525.52 € 100.0% 0.0% 0 0.00 19.6% 0.00 0.00 1 52 0 53 0 0 0 1.1% 98.9% 2988 
10% 524.42 € 100.0% 0.0% 0 0.00 19.6% 0.00 0.00 5 47 0 53 0 0 0 10.0% 90.0% 2988 
25% 516.62 € 100.0% 0.0% 0 0.00 19.3% 0.00 0.00 13 39 0 53 0 0 0 25.0% 75.0% 2988 
50% 480.10 € 100.0% 0.0% 0 0.00 17.9% 0.00 0.00 26 26 0 53 0 0 0 50.0% 50.0% 2988 
75% 411.13 € 100.0% 0.0% 0 0.00 15.4% 0.00 0.00 39 13 0 53 0 0 0 75.0% 25.0% 2988 
90% 355.86 € 100.0% 0.0% 0 0.00 13.3% 0.00 0.00 47 5 0 53 0 0 0 90.0% 10.0% 2988 
99% 318.78 € 100.0% 0.0% 0 0.00 11.9% 0.00 0.00 52 1 0 53 0 0 0 98.9% 1.1% 2988 

7h-8h 

1% 3,387.05 € 100.0% 0.0% 0 0.00 36.8% 0.87 0.87 4 342 0 346 0 9 9 1.0% 99.0% 20347 
10% 3,379.85 € 100.0% 0.0% 0 0.00 36.7% 0.87 0.87 35 311 0 346 1 8 9 10.0% 90.0% 20347 
25% 3,328.61 € 100.0% 0.0% 0 0.00 36.2% 0.87 0.87 86 259 0 345 2 6 8 25.0% 75.0% 20347 
50% 3,089.60 € 100.0% 0.0% 0 0.00 33.6% 0.87 0.29 171 171 0 343 3 3 6 50.0% 50.0% 20347 
75% 2,641.49 € 100.0% 0.0% 0 0.00 28.8% 0.87 0.00 255 85 0 340 2 1 3 75.0% 25.0% 20347 
90% 2,284.50 € 100.0% 0.0% 0 0.00 24.9% 0.29 0.00 305 34 0 339 2 0 2 90.0% 10.0% 20347 
99% 2,044.55 € 100.0% 0.0% 0 0.00 22.3% 0.29 0.00 335 3 0 338 1 0 1 99.0% 1.0% 20347 

8h-9h 

1% 5,823.06 € 100.0% 0.0% 0 0.00 47.1% 9.12 0.00 6 603 0 609 0 33 33 1.0% 99.0% 32913 
10% 5,810.38 € 100.0% 0.0% 0 0.00 47.0% 9.12 0.00 61 548 0 609 3 30 33 10.0% 90.0% 32913 
25% 5,720.19 € 100.0% 0.0% 0 0.00 46.3% 9.12 0.00 152 455 0 607 8 23 31 25.0% 75.0% 32913 
50% 5,301.44 € 100.0% 0.0% 0 0.00 43.0% 8.77 0.00 299 299 0 599 12 12 23 50.0% 50.0% 32913 
75% 4,523.19 € 100.0% 0.0% 0 0.00 36.8% 0.00 0.00 441 147 0 588 9 3 12 75.0% 25.0% 32913 
90% 3,907.77 € 100.0% 0.0% 0 0.00 31.9% 0.00 0.00 524 58 0 583 6 1 7 90.0% 10.0% 32913 
99% 3,494.07 € 100.0% 0.0% 0 0.00 28.5% 0.00 0.00 575 6 0 580 4 0 4 99.0% 1.0% 32913 

9h-10h 

1% 9,792.96 € 100.0% 0.0% 0 0.00 58.3% 12.55 2.75 11 1049 0 1059 1 99 100 1.0% 99.0% 50000 
10% 9,770.90 € 100.0% 0.0% 0 0.00 58.1% 12.55 2.75 106 953 0 1059 10 90 99 10.0% 90.0% 49957 
25% 9,614.21 € 100.0% 0.0% 0 0.00 57.2% 12.55 2.75 263 790 0 1053 23 70 94 25.0% 75.0% 49956 
50% 8,891.15 € 100.0% 0.0% 0 0.00 53.2% 12.55 2.75 515 515 0 1029 35 35 70 50.0% 50.0% 49956 
75% 7,563.52 € 100.0% 0.0% 0 0.00 45.4% 2.75 1.61 748 249 0 997 28 9 38 75.0% 25.0% 49899 
90% 6,524.35 € 100.0% 0.0% 0 0.00 39.2% 2.75 1.61 883 98 0 981 19 2 21 90.0% 10.0% 49850 
99% 5,831.57 € 100.0% 0.0% 0 0.00 34.9% 2.75 0.00 963 10 0 973 14 0 14 99.0% 1.0% 49746 
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Scenario O 
No AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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10h-11h 

1% 8,117.75 € 100.0% 0.0% 0 0.00 44.2% 4.93 0.48 8 820 0 828 0 20 20 1.0% 99.0% 42913 
10% 8,100.59 € 100.0% 0.0% 0 0.00 42.3% 4.93 0.48 83 745 0 828 2 18 20 10.0% 90.0% 42885 
25% 7,977.78 € 100.0% 0.0% 0 0.00 43.4% 4.93 0.00 207 620 0 827 5 14 19 25.0% 75.0% 42885 
50% 7,405.05 € 100.0% 0.0% 0 0.00 40.2% 1.73 0.00 411 411 0 822 7 7 14 50.0% 50.0% 42868 
75% 6,331.04 € 100.0% 0.0% 0 0.00 34.3% 1.73 0.00 612 204 0 816 6 2 8 75.0% 25.0% 42814 
90% 5,475.26 € 100.0% 0.0% 0 0.00 29.5% 0.00 0.00 731 81 0 812 4 0 5 90.0% 10.0% 42714 
99% 4,899.16 € 100.0% 0.0% 0 0.00 26.2% 0.00 0.00 803 8 0 811 3 0 3 99.0% 1.0% 42606 

11h-12h 

1% 10,076.38 € 100.0% 0.0% 0 0.00 46.0% 8.96 2.76 11 1026 0 1036 0 36 36 1.0% 99.0% 53295 
10% 10,054.79 € 100.0% 0.0% 0 0.00 45.9% 8.96 2.76 104 933 0 1036 4 32 36 10.0% 90.0% 53295 
25% 9,901.17 € 100.0% 0.0% 0 0.00 45.2% 8.96 2.76 259 776 0 1034 8 25 34 25.0% 75.0% 53295 
50% 9,185.72 € 100.0% 0.0% 0 0.00 42.1% 6.62 0.48 513 513 0 1026 13 13 25 50.0% 50.0% 53295 
75% 7,848.19 € 100.0% 0.0% 0 0.00 36.0% 2.76 0.48 760 253 0 1014 10 3 13 75.0% 25.0% 53295 
90% 6,785.22 € 100.0% 0.0% 0 0.00 31.2% 0.48 0.00 907 101 0 1008 7 1 8 90.0% 10.0% 53295 
99% 6,071.48 € 100.0% 0.0% 0 0.00 27.9% 0.48 0.00 995 10 0 1005 5 0 5 99.0% 1.0% 53295 

12h-13h 

1% 8,581.41 € 100.0% 0.0% 0 0.00 45.9% 5.60 0.60 9 865 0 874 0 19 20 1.0% 99.0% 49093 
10% 8,563.21 € 100.0% 0.0% 0 0.00 45.8% 5.60 0.60 87 786 0 874 2 17 19 10.0% 90.0% 49093 
25% 8,433.62 € 100.0% 0.0% 0 0.00 45.1% 5.60 0.44 218 654 0 873 5 14 18 25.0% 75.0% 49093 
50% 7,829.02 € 100.0% 0.0% 0 0.00 41.9% 5.60 0.00 434 434 0 868 7 7 14 50.0% 50.0% 49093 
75% 6,694.62 € 100.0% 0.0% 0 0.00 35.9% 0.60 0.00 646 215 0 862 6 2 7 75.0% 25.0% 49093 
90% 5,790.36 € 100.0% 0.0% 0 0.00 31.1% 0.00 0.00 773 86 0 858 4 0 4 90.0% 10.0% 49093 
99% 5,181.95 € 100.0% 0.0% 0 0.00 27.8% 0.00 0.00 848 9 0 857 3 0 3 99.0% 1.0% 49093 

13h-14h 

1% 1,719.74 € 100.0% 0.0% 0 0.00 28.6% 0.63 0.00 2 171 0 173 0 1 1 1.0% 99.0% 9888 
10% 1,716.13 € 100.0% 0.0% 0 0.00 28.6% 0.63 0.00 17 156 0 173 0 1 1 10.0% 90.0% 9888 
25% 1,690.44 € 100.0% 0.0% 0 0.00 28.2% 0.63 0.00 43 130 0 173 0 1 1 25.0% 75.0% 9888 
50% 1,570.31 € 100.0% 0.0% 0 0.00 26.2% 0.48 0.00 86 86 0 173 1 1 1 50.0% 50.0% 9888 
75% 1,344.00 € 100.0% 0.0% 0 0.00 22.4% 0.00 0.00 129 43 0 172 0 0 1 75.0% 25.0% 9888 
90% 1,163.01 € 100.0% 0.0% 0 0.00 19.4% 0.00 0.00 155 17 0 172 0 0 0 90.0% 10.0% 9888 
99% 1,040.78 € 100.0% 0.0% 0 0.00 17.4% 0.00 0.00 170 2 0 172 0 0 0 99.0% 1.0% 9888 

14h-15h 

1% 5,895.88 € 100.0% 0.0% 0 0.00 50.8% 10.97 3.69 7 703 0 711 1 150 151 1.1% 98.9% 29657 
10% 5,881.02 € 100.0% 0.0% 0 0.00 50.5% 10.97 3.69 71 640 0 711 15 137 152 10.0% 90.0% 29608 
25% 5,776.17 € 100.0% 0.0% 0 0.00 49.8% 10.97 3.69 176 527 0 703 36 108 144 25.0% 75.0% 29599 
50% 5,300.55 € 100.0% 0.0% 0 0.00 46.0% 10.97 3.69 334 334 0 669 55 55 111 50.0% 50.0% 29512 
75% 4,456.62 € 100.0% 0.0% 0 0.00 42.8% 3.69 1.94 465 155 0 620 47 16 63 75.0% 25.0% 29405 
90% 3,820.29 € 100.0% 0.0% 0 0.00 37.0% 3.69 1.46 533 59 0 592 32 4 35 90.0% 10.0% 29405 
99% 3,405.06 € 100.0% 0.0% 0 0.00 33.1% 1.94 1.46 574 6 0 580 22 0 23 99.0% 1.0% 29405 
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Scenario O 
No AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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15h-16h 

1% 4,182.07 € 100.0% 0.0% 0 0.00 28.2% 0.00 0.00 4 415 0 419 0 1 1 1.1% 98.9% 22379 
10% 4,173.35 € 100.0% 0.0% 0 0.00 28.2% 0.00 0.00 42 377 0 419 0 1 1 10.0% 90.0% 22379 
25% 4,111.16 € 100.0% 0.0% 0 0.00 27.7% 0.00 0.00 105 314 0 419 0 1 1 25.0% 75.0% 22379 
50% 3,820.11 € 100.0% 0.0% 0 0.00 25.8% 0.00 0.00 209 209 0 419 0 0 1 50.0% 50.0% 22379 
75% 3,270.88 € 100.0% 0.0% 0 0.00 22.1% 0.00 0.00 314 105 0 418 0 0 0 75.0% 25.0% 22379 
90% 2,830.96 € 100.0% 0.0% 0 0.00 19.1% 0.00 0.00 376 42 0 418 0 0 0 90.0% 10.0% 22379 
99% 2,534.89 € 100.0% 0.0% 0 0.00 17.1% 0.00 0.00 414 4 0 418 0 0 0 98.9% 1.1% 22379 

16h-17h 

1% 9,127.91 € 100.0% 0.0% 0 0.00 54.8% 21.83 2.24 10 962 0 971 1 72 73 1.0% 99.0% 50241 
10% 9,107.69 € 100.0% 0.0% 0 0.00 54.7% 21.83 2.24 97 874 0 971 7 65 72 10.0% 90.0% 50241 
25% 8,963.94 € 100.0% 0.0% 0 0.00 53.9% 21.83 2.24 242 725 0 966 17 51 68 25.0% 75.0% 50241 
50% 8,298.68 € 100.0% 0.0% 0 0.00 50.1% 21.83 2.24 475 475 0 949 25 25 51 50.0% 50.0% 50241 
75% 7,069.89 € 100.0% 0.0% 0 0.00 42.9% 2.81 0.29 694 231 0 926 21 7 27 75.0% 25.0% 50241 
90% 6,103.29 € 100.0% 0.0% 0 0.00 37.1% 2.24 0.00 822 91 0 914 14 2 15 90.0% 10.0% 50241 
99% 5,456.86 € 100.0% 0.0% 0 0.00 33.2% 0.29 0.00 899 9 0 908 10 0 10 99.0% 1.0% 50241 

17h-18h 

1% 1,847.42 € 100.0% 0.0% 0 0.00 31.8% 0.00 0.00 2 183 0 185 0 1 1 1.0% 99.0% 9694 
10% 1,843.57 € 100.0% 0.0% 0 0.00 31.7% 0.00 0.00 19 167 0 185 0 1 1 10.0% 90.0% 9694 
25% 1,816.07 € 100.0% 0.0% 0 0.00 31.3% 0.00 0.00 46 139 0 185 0 0 1 25.0% 75.0% 9694 
50% 1,687.41 € 100.0% 0.0% 0 0.00 29.0% 0.00 0.00 93 93 0 185 0 0 0 50.0% 50.0% 9694 
75% 1,444.70 € 100.0% 0.0% 0 0.00 24.9% 0.00 0.00 139 46 0 185 0 0 0 75.0% 25.0% 9694 
90% 1,250.35 € 100.0% 0.0% 0 0.00 21.5% 0.00 0.00 166 18 0 185 0 0 0 90.0% 10.0% 9694 
99% 1,119.18 € 100.0% 0.0% 0 0.00 19.3% 0.00 0.00 183 2 0 185 0 0 0 99.0% 1.0% 9694 

18h-19h 

1% 5,376.20 € 100.0% 0.0% 0 0.00 37.1% 0.57 0.57 5 538 0 544 0 7 7 1.0% 99.0% 31562 
10% 5,364.88 € 100.0% 0.0% 0 0.00 37.0% 0.57 0.57 54 489 0 544 1 7 7 10.0% 90.0% 31562 
25% 5,284.24 € 100.0% 0.0% 0 0.00 36.5% 0.57 0.57 136 407 0 543 2 5 7 25.0% 75.0% 31562 
50% 4,907.52 € 100.0% 0.0% 0 0.00 33.9% 0.57 0.57 271 271 0 541 3 3 5 50.0% 50.0% 31562 
75% 4,198.88 € 100.0% 0.0% 0 0.00 29.0% 0.57 0.00 404 135 0 539 2 1 3 75.0% 25.0% 31562 
90% 3,632.80 € 100.0% 0.0% 0 0.00 25.1% 0.57 0.00 484 54 0 538 1 0 2 90.0% 10.0% 31562 
99% 3,251.40 € 100.0% 0.0% 0 0.00 22.5% 0.00 0.00 532 5 0 537 1 0 1 99.0% 1.0% 31562 

19h-20h 

1% 1,234.02 € 100.0% 0.0% 0 0.00 21.4% 0.00 0.00 1 122 0 123 0 0 0 0.9% 99.1% 6750 
10% 1,231.45 € 100.0% 0.0% 0 0.00 21.3% 0.00 0.00 12 111 0 123 0 0 0 10.0% 90.0% 6750 
25% 1,213.12 € 100.0% 0.0% 0 0.00 21.0% 0.00 0.00 31 93 0 123 0 0 0 25.0% 75.0% 6750 
50% 1,127.33 € 100.0% 0.0% 0 0.00 19.5% 0.00 0.00 62 62 0 123 0 0 0 50.0% 50.0% 6750 
75% 965.35 € 100.0% 0.0% 0 0.00 16.7% 0.00 0.00 93 31 0 123 0 0 0 75.0% 25.0% 6750 
90% 835.56 € 100.0% 0.0% 0 0.00 14.5% 0.00 0.00 111 12 0 123 0 0 0 90.0% 10.0% 6750 
99% 747.67 € 100.0% 0.0% 0 0.00 12.9% 0.00 0.00 122 1 0 123 0 0 0 99.1% 0.9% 6750 



Chapter 3 – Subnetworks for Automated Vehicles 

69 

Scenario O 
No AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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20h-21h 

1% 166.97 € 100.0% 0.0% 0 0.00 18.0% 0.00 0.00 0 17 0 17 0 0 0 1.2% 98.8% 835 
10% 166.63 € 100.0% 0.0% 0 0.00 18.0% 0.00 0.00 2 15 0 17 0 0 0 10.0% 90.0% 835 
25% 164.15 € 100.0% 0.0% 0 0.00 17.7% 0.00 0.00 4 13 0 17 0 0 0 25.0% 75.0% 835 
50% 152.54 € 100.0% 0.0% 0 0.00 16.5% 0.00 0.00 8 8 0 17 0 0 0 50.0% 50.0% 835 
75% 130.63 € 100.0% 0.0% 0 0.00 14.1% 0.00 0.00 13 4 0 17 0 0 0 75.0% 25.0% 835 
90% 113.07 € 100.0% 0.0% 0 0.00 12.2% 0.00 0.00 15 2 0 17 0 0 0 90.0% 10.0% 835 
99% 101.32 € 100.0% 0.0% 0 0.00 10.9% 0.00 0.00 17 0 0 17 0 0 0 98.8% 1.2% 835 

21h-22h 

1% 3,036.16 € 100.0% 0.0% 0 0.00 36.4% 4.02 0.00 3 308 0 311 0 9 9 1.0% 99.0% 18483 
10% 3,029.69 € 100.0% 0.0% 0 0.00 36.3% 4.02 0.00 31 280 0 311 1 8 9 10.0% 90.0% 18483 
25% 2,983.60 € 100.0% 0.0% 0 0.00 35.8% 4.02 0.00 78 233 0 310 2 6 8 25.0% 75.0% 18483 
50% 2,768.84 € 100.0% 0.0% 0 0.00 33.3% 4.02 0.00 154 154 0 308 3 3 6 50.0% 50.0% 18483 
75% 2,366.62 € 100.0% 0.0% 0 0.00 28.5% 0.00 0.00 229 76 0 305 3 1 3 75.0% 25.0% 18483 
90% 2,046.51 € 100.0% 0.0% 0 0.00 24.7% 0.00 0.00 273 30 0 304 2 0 2 90.0% 10.0% 18483 
99% 1,831.03 € 100.0% 0.0% 0 0.00 22.1% 0.00 0.00 300 3 0 303 1 0 1 99.0% 1.0% 18483 

22h-23h 

1% 2,665.08 € 100.0% 0.0% 0 0.00 48.7% 3.31 0.00 3 272 0 275 0 10 11 1.0% 99.0% 15411 
10% 2,659.35 € 100.0% 0.0% 0 0.00 48.6% 3.31 0.00 27 247 0 275 1 9 11 10.0% 90.0% 15411 
25% 2,618.59 € 100.0% 0.0% 0 0.00 47.9% 3.31 0.00 69 206 0 274 2 7 10 25.0% 75.0% 15411 
50% 2,428.91 € 100.0% 0.0% 0 0.00 44.5% 3.31 0.00 136 136 0 272 4 4 7 50.0% 50.0% 15411 
75% 2,074.70 € 100.0% 0.0% 0 0.00 38.1% 0.00 0.00 201 67 0 268 3 1 4 75.0% 25.0% 15411 
90% 1,793.46 € 100.0% 0.0% 0 0.00 33.0% 0.00 0.00 240 27 0 267 2 0 2 90.0% 10.0% 15411 
99% 1,604.08 € 100.0% 0.0% 0 0.00 29.5% 0.00 0.00 263 3 0 266 1 0 1 99.0% 1.0% 15411 

23h-24h 

1% 2,006.59 € 100.0% 0.0% 0 0.00 26.9% 0.00 0.00 2 199 0 201 0 0 0 1.1% 98.9% 11760 
10% 2,002.41 € 100.0% 0.0% 0 0.00 26.8% 0.00 0.00 20 181 0 201 0 0 0 10.0% 90.0% 11760 
25% 1,972.57 € 100.0% 0.0% 0 0.00 26.4% 0.00 0.00 50 151 0 201 0 0 0 25.0% 75.0% 11760 
50% 1,832.93 € 100.0% 0.0% 0 0.00 24.6% 0.00 0.00 100 100 0 201 0 0 0 50.0% 50.0% 11760 
75% 1,569.40 € 100.0% 0.0% 0 0.00 21.0% 0.00 0.00 151 50 0 201 0 0 0 75.0% 25.0% 11760 
90% 1,358.33 € 100.0% 0.0% 0 0.00 18.2% 0.00 0.00 181 20 0 201 0 0 0 90.0% 10.0% 11760 
99% 1,216.30 € 100.0% 0.0% 0 0.00 16.3% 0.00 0.00 199 2 0 201 0 0 0 98.9% 1.1% 11760 

24h-1h 

1% 1,713.70 € 100.0% 0.0% 0 0.00 69.7% 3.31 0.00 2 178 0 180 0 10 11 1.0% 99.0% 10074 
10% 1,709.95 € 100.0% 0.0% 0 0.00 69.6% 3.31 0.00 18 162 0 180 1 9 10 10.0% 90.0% 10074 
25% 1,683.33 € 100.0% 0.0% 0 0.00 68.6% 3.31 0.00 45 134 0 179 2 7 10 25.0% 75.0% 10074 
50% 1,559.78 € 100.0% 0.0% 0 0.00 63.7% 3.31 0.00 88 88 0 177 4 4 7 50.0% 50.0% 10074 
75% 1,330.44 € 100.0% 0.0% 0 0.00 54.6% 0.00 0.00 130 43 0 173 3 1 4 75.0% 25.0% 10074 
90% 1,149.26 € 100.0% 0.0% 0 0.00 47.2% 0.00 0.00 154 17 0 171 2 0 2 90.0% 10.0% 10074 
99% 1,027.61 € 100.0% 0.0% 0 0.00 42.3% 0.00 0.00 169 2 0 171 1 0 1 99.0% 1.0% 10074 
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Table 3.6 – RNDP-AVs peak-hour design with walking as the alternative mode of transport: daily impacts results from scenario I under an long-term planning. 

Scenario I + Long-Term 
planning 

Generalized Costs AV Subnetwork Congestion Travel Times Travel Delays Travel Distances 
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Penetration 

rate (%) [€
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6h-7h 

1% 525.52 € 100.0% 0.0% 0 0.00 19.6% 0.00 0.00 1 52 0 52.6 0 0 0.0 1.1% 98.9% 2988 
10% 579.86 € 100.0% 0.0% 3 3.92 10.6% 0.00 0.00 5 47 0 52.7 0 0 0.0 10.2% 89.8% 2994 
25% 632.62 € 100.0% 0.0% 8 8.20 5.6% 0.00 0.00 13 39 0 52.8 0 0 0.0 25.3% 74.7% 3000 
50% 596.11 € 100.0% 0.0% 8 8.20 5.2% 0.00 0.00 26 26 0 52.8 0 0 0.0 50.2% 49.8% 3000 
75% 726.28 € 100.0% 0.0% 21 22.23 2.7% 0.00 0.00 40 13 0 53.2 0 0 0.0 75.3% 24.7% 3022 
90% 671.03 € 100.0% 0.0% 21 22.23 2.2% 0.00 0.00 48 5 0 53.2 0 0 0.0 90.1% 9.9% 3022 

7h-8h 

1% 3,387.05 € 100.0% 0.0% 0 0.00 36.8% 0.87 0.87 4 342 0 345.6 0 9 8.6 1.0% 99.0% 20347 
10% 3,686.02 € 100.0% 0.0% 3 3.92 28.3% 0.87 0.87 35 339 0 374.2 1 8 8.6 10.2% 89.8% 20258 
25% 3,613.16 € 100.0% 0.0% 8 8.20 26.3% 0.87 0.87 89 285 0 373.9 2 6 8.2 25.0% 75.0% 20759 
50% 3,260.64 € 100.0% 0.0% 8 8.20 24.8% 2.63 0.29 177 189 0 366.3 4 3 7.3 49.9% 50.1% 20746 
75% 3,141.15 € 100.0% 0.0% 21 22.23 15.3% 0.87 0.00 263 113 0 375.9 4 1 5.0 71.8% 28.2% 21607 
90% 2,668.59 € 100.0% 0.0% 21 22.23 13.2% 0.29 0.00 305 45 0 350.3 2 0 1.9 88.3% 11.7% 20760 

8h-9h 

1% 5,823.06 € 100.0% 0.0% 0 0.00 47.1% 9.12 0.00 6 603 0 608.9 0 33 33.3 1.0% 99.0% 32913 
10% 6,174.07 € 100.0% 0.0% 3 3.92 30.4% 10.54 1.76 60 602 0 662.3 3 49 51.7 9.7% 90.3% 34095 
25% 5,932.65 € 100.0% 0.0% 8 8.20 27.8% 10.54 1.76 150 493 0 642.9 6 29 35.2 24.0% 76.0% 34276 
50% 5,350.28 € 100.0% 0.0% 8 8.20 26.4% 8.77 0.00 297 320 0 617.2 9 11 20.2 48.7% 51.3% 33822 
75% 14,605.77 € 23.9% 76.1% 21 22.23 14.6% 0.00 0.00 438 149 51314 51901.3 2 1 3.2 74.4% 25.6% 33035 
90% 7,937.12 € 44.0% 56.0% 21 22.23 14.5% 0.00 0.00 522 60 23363 23944.2 3 0 3.6 89.7% 10.3% 33011 

9h-10h 

1% 9,792.92 € 100.0% 0.0% 0 0.00 58.3% 12.55 2.75 11 1049 0 1059.4 1 99 100.2 1.0% 99.0% 49989 
10% 11,086.12 € 100.0% 0.0% 3 3.92 52.0% 18.39 5.16 107 1103 0 1210.2 11 114 124.5 9.5% 90.5% 53974 
25% 10,656.16 € 100.0% 0.0% 8 8.20 48.8% 11.27 5.84 267 912 0 1178.8 25 83 108.2 23.6% 76.4% 53821 
50% 9,480.88 € 100.0% 0.0% 8 8.20 46.1% 11.96 2.30 522 592 0 1113.9 38 41 79.2 48.4% 51.6% 52278 
75% 8,397.53 € 100.0% 0.0% 21 22.23 33.3% 5.77 1.61 767 339 0 1106.1 40 9 48.5 69.8% 30.2% 56009 
90% 7,043.96 € 100.0% 0.0% 21 22.23 29.6% 2.10 1.61 885 134 0 1019.3 21 2 23.1 87.1% 12.9% 52546 

10h-11h 

1% 8,117.76 € 100.0% 0.0% 0 0.00 44.2% 4.93 0.48 8 820 0 828.1 0 20 20.3 1.0% 99.0% 42908 
10% 9,125.62 € 100.0% 0.0% 3 3.92 40.3% 12.49 0.00 84 868 0 951.3 3 39 41.7 9.5% 90.5% 45566 
25% 8,702.68 € 100.0% 0.0% 8 8.20 36.7% 10.08 0.00 208 716 0 924.2 6 25 31.5 24.0% 76.0% 45128 
50% 7,773.53 € 100.0% 0.0% 8 8.20 32.8% 5.54 0.00 412 470 0 882.1 8 10 17.7 48.6% 51.4% 44384 
75% 9,153.60 € 69.6% 30.4% 21 22.23 22.8% 3.48 0.00 622 266 3422 4309.1 11 2 13.3 73.0% 27.0% 46000 
90% 6,600.58 € 83.2% 16.8% 21 22.23 21.0% 2.23 0.00 736 106 1642 2483.0 7 0 7.8 88.9% 11.1% 44917 
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Scenario I + Long-Term 
planning 

Generalized Costs AV Subnetwork Congestion Travel Times Travel Delays Travel Distances 
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11h-12h 

1% 10,076.38 € 100.0% 0.0% 0 0.00 46.0% 8.96 2.76 11 1026 0 1036.4 0 36 36.0 1.0% 99.0% 53295 
10% 10,522.90 € 100.0% 0.0% 3 3.92 39.1% 11.27 2.27 104 984 0 1087.6 3 33 36.2 10.1% 89.9% 53405 
25% 10,224.54 € 100.0% 0.0% 8 8.20 36.2% 9.50 2.27 260 815 0 1075.5 7 23 29.4 25.6% 74.4% 53743 
50% 9,350.82 € 100.0% 0.0% 8 8.20 34.0% 6.62 0.00 518 538 0 1056.3 10 10 20.3 50.8% 49.2% 54163 
75% 9,203.36 € 85.4% 14.6% 21 22.23 23.7% 2.27 0.00 764 289 1047 2100.6 7 2 9.7 74.4% 25.6% 55000 
90% 7,333.29 € 92.7% 7.3% 21 22.23 21.3% 0.48 0.00 908 115 503 1526.3 7 1 7.5 89.6% 10.4% 53984 

12h-13h 

1% 8,581.41 € 100.0% 0.0% 0 0.00 45.9% 5.60 0.60 9 865 0 873.8 0 19 19.6 1.0% 99.0% 49093 
10% 9,071.23 € 100.0% 0.0% 3 3.92 36.8% 2.87 0.60 89 837 0 925.7 1 14 15.7 9.8% 90.2% 49876 
25% 8,756.74 € 100.0% 0.0% 8 8.20 36.1% 2.87 0.44 223 699 0 921.7 3 11 14.2 24.8% 75.2% 50211 
50% 7,968.43 € 100.0% 0.0% 8 8.20 34.0% 2.87 0.00 445 464 0 908.5 6 5 10.7 49.8% 50.2% 50106 
75% 7,062.55 € 100.0% 0.0% 21 22.23 26.7% 2.36 0.00 662 270 0 932.0 7 2 8.9 72.1% 27.9% 51401 
90% 5,933.11 € 100.0% 0.0% 21 22.23 23.5% 0.00 0.00 773 108 0 880.3 3 0 3.7 88.6% 11.4% 50312 

13h-14h 

1% 1,719.74 € 100.0% 0.0% 0 0.00 28.6% 0.63 0.00 2 171 0 173.2 0 1 1.5 1.0% 99.0% 9888 
10% 1,961.77 € 100.0% 0.0% 3 3.92 23.9% 0.63 0.00 17 181 0 198.7 0 2 1.8 9.3% 90.7% 10652 
25% 1,862.70 € 100.0% 0.0% 8 8.20 19.9% 0.63 0.00 43 151 0 194.1 0 1 1.4 23.5% 76.5% 10526 
50% 1,658.59 € 100.0% 0.0% 8 8.20 17.9% 0.48 0.00 86 100 0 186.6 0 0 0.9 48.0% 52.0% 10315 
75% 1,648.49 € 100.0% 0.0% 21 22.23 10.3% 0.00 0.00 133 82 0 214.9 0 0 0.1 63.3% 36.7% 11544 
90% 1,285.03 € 100.0% 0.0% 21 22.23 10.0% 0.00 0.00 155 33 0 187.7 0 0 0.1 84.0% 16.0% 10603 

14h-15h 

1% 5,895.79 € 100.0% 0.0% 0 0.00 50.7% 10.97 3.69 7 704 0 711.2 2 150 152.0 1.0% 99.0% 29642 
10% 6,272.21 € 100.0% 0.0% 3 3.92 46.2% 14.44 3.69 71 689 0 759.4 14 145 158.9 10.0% 90.0% 30721 
25% 6,005.77 € 100.0% 0.0% 8 8.20 41.1% 8.84 1.94 175 559 0 734.0 33 106 138.5 25.1% 74.9% 30745 
50% 5,390.75 € 100.0% 0.0% 8 8.20 37.8% 7.09 1.94 337 352 0 688.5 52 50 101.5 50.1% 49.9% 30781 
75% 5,667.83 € 83.8% 16.2% 21 22.23 22.8% 1.46 1.46 464 214 842 1519.9 37 12 48.2 70.6% 29.4% 32793 
90% 4,324.48 € 91.5% 8.5% 21 22.23 19.1% 1.94 1.46 531 84 403 1018.6 27 3 29.8 87.4% 12.6% 30661 

15h-16h 

1% 4,182.07 € 100.0% 0.0% 0 0.00 28.2% 0.00 0.00 4 415 0 419.1 0 1 1.1 1.1% 98.9% 22379 
10% 4,330.22 € 100.0% 0.0% 3 3.92 22.4% 0.80 0.00 43 395 0 437.7 0 2 1.8 10.2% 89.8% 22894 
25% 4,245.26 € 100.0% 0.0% 8 8.20 20.3% 0.00 0.00 107 335 0 441.4 0 0 0.6 24.6% 75.4% 23780 
50% 3,868.29 € 100.0% 0.0% 8 8.20 18.9% 0.00 0.00 214 223 0 436.6 0 0 0.4 49.5% 50.5% 23653 
75% 4,354.79 € 74.1% 25.9% 21 22.23 12.9% 0.00 0.00 321 122 599 1042.2 0 0 0.2 73.1% 26.9% 24018 
90% 3,277.03 € 86.2% 13.8% 21 22.23 11.9% 0.00 0.00 377 49 288 713.3 0 0 0.2 88.6% 11.4% 22736 
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Scenario I + Long-Term 
planning 

Generalized Costs AV Subnetwork Congestion Travel Times Travel Delays Travel Distances 
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16h-17h 

1% 9,127.91 € 100.0% 0.0% 0 0.00 54.8% 21.83 2.24 10 962 0 971.2 1 72 73.0 1.0% 99.0% 50241 
10% 9,561.15 € 100.0% 0.0% 3 3.92 47.5% 18.44 2.24 97 923 0 1020.3 6 65 70.1 10.0% 90.0% 51813 
25% 9,225.19 € 100.0% 0.0% 8 8.20 42.2% 14.03 2.24 242 766 0 1008.4 14 45 59.0 24.7% 75.3% 52488 
50% 8,350.75 € 100.0% 0.0% 8 8.20 39.5% 14.03 2.24 480 502 0 981.3 22 21 43.6 49.6% 50.4% 52292 
75% 8,154.88 € 90.5% 9.5% 21 22.23 28.3% 4.09 0.29 704 297 5611 6612.1 18 5 23.6 71.4% 28.6% 54552 
90% 6,547.10 € 95.3% 4.7% 21 22.23 26.0% 1.75 0.00 820 118 2693 3631.7 12 1 13.1 87.9% 12.1% 51472 

17h-18h 

1% 1,847.42 € 100.0% 0.0% 0 0.00 31.8% 0.00 0.00 2 183 0 185.3 0 1 0.7 1.0% 99.0% 9694 
10% 2,090.67 € 100.0% 0.0% 3 3.92 24.6% 0.00 0.00 19 193 0 211.5 0 1 0.8 10.0% 90.0% 9721 
25% 2,024.83 € 100.0% 0.0% 8 8.20 16.9% 0.00 0.00 46 164 0 210.3 0 0 0.5 23.9% 76.1% 10146 
50% 1,796.74 € 100.0% 0.0% 8 8.20 15.8% 0.00 0.00 92 109 0 201.7 0 0 0.3 48.5% 51.5% 9998 
75% 1,472.79 € 100.0% 0.0% 21 22.23 10.0% 0.00 0.00 139 55 0 193.5 0 0 0.1 73.9% 26.1% 9866 
90% 1,259.36 € 100.0% 0.0% 21 22.23 8.8% 0.00 0.00 167 22 0 188.5 0 0 0.1 89.5% 10.5% 9779 

18h-19h 

1% 5,376.20 € 100.0% 0.0% 0 0.00 37.1% 0.57 0.57 5 538 0 543.6 0 7 7.4 1.0% 99.0% 31562 
10% 5,688.63 € 100.0% 0.0% 3 3.92 31.4% 6.31 1.35 55 534 0 588.9 1 19 19.6 10.1% 89.9% 31304 
25% 5,468.02 € 100.0% 0.0% 8 8.20 29.5% 2.37 0.57 136 441 0 577.4 2 11 13.8 25.2% 74.8% 31351 
50% 4,950.53 € 100.0% 0.0% 8 8.20 26.5% 1.35 0.57 271 290 0 561.3 3 4 6.8 50.2% 49.8% 31421 
75% 5,633.90 € 79.3% 20.7% 21 22.23 17.6% 0.57 0.00 404 189 2724 3318.1 2 1 2.8 69.6% 30.4% 34040 
90% 4,195.89 € 88.9% 11.1% 21 22.23 15.3% 0.57 0.00 484 76 1308 1867.2 1 0 1.5 87.2% 12.8% 32587 

19h-20h 

1% 1,234.02 € 100.0% 0.0% 0 0.00 21.4% 0.00 0.00 1 122 0 123.5 0 0 0.1 0.9% 99.1% 6750 
10% 1,457.43 € 100.0% 0.0% 3 3.92 11.3% 0.00 0.00 12 134 0 146.6 0 0 0.1 8.4% 91.6% 8099 
25% 1,383.27 € 100.0% 0.0% 8 8.20 8.8% 0.00 0.00 31 112 0 142.8 0 0 0.1 21.5% 78.5% 7878 
50% 1,225.10 € 100.0% 0.0% 8 8.20 8.1% 0.00 0.00 62 75 0 136.4 0 0 0.1 45.1% 54.9% 7504 
75% 1,008.26 € 100.0% 0.0% 21 22.23 3.8% 0.00 0.00 93 37 0 130.4 0 0 0.0 71.2% 28.8% 7151 
90% 853.10 € 100.0% 0.0% 21 22.23 3.4% 0.00 0.00 112 15 0 126.5 0 0 0.0 88.1% 11.9% 6926 

20h-21h 

1% 166.97 € 100.0% 0.0% 0 0.00 18.0% 0.00 0.00 0 17 0 16.7 0 0 0.0 1.2% 98.8% 835 
10% 167.25 € 100.0% 0.0% 3 3.92 4.5% 0.00 0.00 2 15 0 16.8 0 0 0.0 10.7% 89.3% 841 
25% 165.49 € 100.0% 0.0% 8 8.20 2.0% 0.00 0.00 4 13 0 16.9 0 0 0.0 26.2% 73.8% 849 
50% 153.88 € 100.0% 0.0% 8 8.20 1.9% 0.00 0.00 9 8 0 16.9 0 0 0.0 50.8% 49.2% 849 
75% 134.76 € 100.0% 0.0% 21 22.23 0.8% 0.00 0.00 13 4 0 17.4 0 0 0.0 76.1% 23.9% 872 
90% 117.20 € 100.0% 0.0% 21 22.23 0.7% 0.00 0.00 16 2 0 17.4 0 0 0.0 90.4% 9.6% 872 
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Scenario I + Long-Term 
planning 

Generalized Costs AV Subnetwork Congestion Travel Times Travel Delays Travel Distances 
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21h-22h 

1% 3,036.16 € 100.0% 0.0% 0 0.00 36.4% 4.02 0.00 3 308 0 310.8 0 9 9.0 1.0% 99.0% 18483 
10% 3,293.43 € 100.0% 0.0% 3 3.92 31.2% 8.06 0.00 30 313 0 343.8 0 14 14.5 10.0% 90.0% 18447 
25% 3,140.00 € 100.0% 0.0% 8 8.20 25.2% 2.32 0.00 76 256 0 331.9 1 7 7.1 25.0% 75.0% 18453 
50% 2,817.56 € 100.0% 0.0% 8 8.20 22.2% 0.57 0.00 152 168 0 319.3 1 1 2.1 50.1% 49.9% 18463 
75% 2,601.58 € 100.0% 0.0% 21 22.23 10.9% 0.00 0.00 229 107 0 336.2 2 1 3.1 69.7% 30.3% 19904 
90% 2,136.50 € 100.0% 0.0% 21 22.23 8.6% 0.00 0.00 274 43 0 316.3 2 0 1.8 87.3% 12.7% 19057 

22h-23h 

1% 2,665.08 € 100.0% 0.0% 0 0.00 48.7% 3.31 0.00 3 272 0 275.0 0 10 10.6 1.0% 99.0% 15411 
10% 3,304.76 € 100.0% 0.0% 3 3.92 36.5% 6.78 0.00 27 318 0 345.0 1 15 15.5 8.6% 91.4% 18029 
25% 3,076.73 € 100.0% 0.0% 8 8.20 29.8% 2.22 0.00 68 261 0 328.9 2 8 10.1 21.9% 78.1% 17596 
50% 2,670.43 € 100.0% 0.0% 8 8.20 26.5% 2.22 0.00 135 171 0 306.1 3 3 5.5 45.7% 54.3% 16869 
75% 6,976.67 € 22.7% 77.3% 21 22.23 11.7% 0.00 0.00 199 73 44825 45096.5 0 0 0.6 73.3% 26.7% 15803 
90% 3,746.76 € 42.4% 57.6% 21 22.23 12.5% 0.00 0.00 239 29 21521 21789.4 1 0 1.0 89.1% 10.9% 15579 

23h-24h 

1% 2,006.59 € 100.0% 0.0% 0 0.00 26.9% 0.00 0.00 2 199 0 201.1 0 0 0.5 1.1% 98.9% 11760 
10% 2,157.01 € 100.0% 0.0% 3 3.92 20.3% 0.00 0.00 20 198 0 217.7 0 1 0.6 10.0% 90.0% 11768 
25% 2,072.39 € 100.0% 0.0% 8 8.20 17.0% 0.00 0.00 50 164 0 214.7 0 0 0.3 25.0% 75.0% 11767 
50% 1,872.56 € 100.0% 0.0% 8 8.20 15.0% 0.00 0.00 100 110 0 210.0 0 0 0.1 50.0% 50.0% 11765 
75% 3,014.42 € 50.7% 49.3% 21 22.23 8.1% 0.00 0.00 151 66 1089 1306.0 0 0 0.1 70.3% 29.7% 12560 
90% 1,932.60 € 69.2% 30.8% 21 22.23 7.1% 0.00 0.00 181 27 523 730.0 0 0 0.1 87.6% 12.4% 12084 

24h-1h 

1% 1,713.70 € 100.0% 0.0% 0 0.00 69.7% 3.31 0.00 2 178 0 179.8 0 10 10.5 1.0% 99.0% 10074 
10% 2,129.05 € 100.0% 0.0% 3 3.92 45.4% 6.78 0.00 18 209 0 226.4 1 14 15.0 8.9% 91.1% 11350 
25% 1,971.62 € 100.0% 0.0% 8 8.20 35.0% 2.22 0.00 44 170 0 214.2 2 8 9.7 22.7% 77.3% 11141 
50% 1,704.22 € 100.0% 0.0% 8 8.20 30.9% 2.22 0.00 87 111 0 198.0 2 3 5.3 46.8% 53.2% 10788 
75% 2,317.06 € 66.5% 33.5% 21 22.23 12.3% 0.00 0.00 128 82 5611 5821.3 0 0 0.4 64.6% 35.4% 11725 
90% 1,538.19 € 79.8% 20.2% 21 22.23 11.9% 0.00 0.00 154 33 2693 2879.9 1 0 0.8 84.6% 15.4% 10748 
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Table 3.7 – RNDP-AVs peak-hour design with walking as the alternative mode of transport: daily impacts results from scenario II under an incremental planning  

Scenario II + Incremental 
planning  

AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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6h-7h 

1% 525.52 € 100.0% 0.0% 0 0.00 19.6% 0.00 0.00 1 52 0 52.6 0 0 0.0 1.1% 98.9% 2988 
10% 524.59 € 100.0% 0.0% 1 0.80 15.2% 0.00 0.00 5 47 0 52.6 0 0 0.0 10.0% 90.0% 2989 
25% 517.12 € 100.0% 0.0% 3 2.47 10.4% 0.00 0.00 13 39 0 52.7 0 0 0.0 25.1% 74.9% 2992 
50% 481.45 € 100.0% 0.0% 6 5.70 6.6% 0.00 0.00 27 26 0 52.8 0 0 0.0 50.2% 49.8% 2997 
75% 413.60 € 100.0% 0.0% 11 11.41 3.9% 0.00 0.00 40 13 0 53.0 0 0 0.0 75.1% 24.9% 3005 
90% 358.33 € 100.0% 0.0% 11 11.41 3.4% 0.00 0.00 48 5 0 53.0 0 0 0.0 90.1% 9.9% 3005 
99% 321.25 € 100.0% 0.0% 11 11.41 3.0% 0.00 0.00 52 1 0 53.0 0 0 0.0 98.9% 1.1% 3005 

7h-8h 

1% 3,387.05 € 100.0% 0.0% 0 0.00 36.8% 0.87 0.87 4 342 0 345.6 0 9 8.6 1.0% 99.0% 20347 
10% 3,418.82 € 100.0% 0.0% 1 0.80 34.7% 0.87 0.87 35 315 0 350.1 1 8 9.1 9.8% 90.2% 20857 
25% 3,354.68 € 100.0% 0.0% 3 2.47 33.0% 0.87 0.87 86 262 0 348.8 2 6 8.4 24.5% 75.5% 20772 
50% 3,101.47 € 100.0% 0.0% 6 5.70 26.0% 0.87 0.29 172 175 0 346.4 3 3 6.1 49.5% 50.5% 20546 
75% 2,643.77 € 100.0% 0.0% 11 11.41 18.8% 0.87 0.00 255 87 0 342.1 2 1 3.3 74.6% 25.4% 20453 
90% 2,285.34 € 100.0% 0.0% 11 11.41 16.5% 0.29 0.00 305 35 0 339.7 2 0 1.8 89.8% 10.2% 20393 
99% 2,046.01 € 100.0% 0.0% 11 11.41 14.9% 0.29 0.00 335 4 0 338.5 1 0 1.2 99.0% 1.0% 20358 

8h-9h 

1% 5,823.06 € 100.0% 0.0% 0 0.00 47.1% 9.12 0.00 6 603 0 608.9 0 33 33.3 1.0% 99.0% 32913 
10% 5,843.38 € 100.0% 0.0% 1 0.80 41.4% 8.77 0.00 61 551 0 611.9 3 29 32.7 9.9% 90.1% 33366 
25% 5,741.54 € 100.0% 0.0% 3 2.47 36.3% 8.77 0.00 153 457 0 610.6 7 23 29.9 24.5% 75.5% 33186 
50% 5,462.15 € 100.0% 0.0% 6 5.70 24.2% 8.77 0.00 297 320 0 617.3 9 11 20.2 48.7% 51.3% 33821 
75% 14,696.27 € 24.4% 75.6% 11 11.41 17.3% 0.00 0.00 438 149 25184 25771.5 3 1 3.4 74.4% 25.6% 33030 
90% 7,978.92 € 44.3% 55.7% 11 11.41 16.9% 0.00 0.00 522 60 10810 11391.5 3 0 3.7 89.7% 10.3% 33006 
99% 3,889.29 € 88.9% 11.1% 11 11.41 16.7% 0.00 0.00 574 6 1153 1733.6 4 0 4.2 99.0% 1.0% 32923 

9h-10h 

1% 9,792.95 € 100.0% 0.0% 0 0.00 58.2% 12.55 2.75 11 1049 0 1059.5 1 99 100.3 1.0% 99.0% 49961 
10% 9,831.30 € 100.0% 0.0% 1 0.80 56.2% 12.55 2.75 106 959 0 1064.8 10 89 99.1 9.8% 90.2% 50787 
25% 9,654.43 € 100.0% 0.0% 3 2.47 53.2% 12.55 2.75 263 795 0 1058.0 23 70 93.3 24.7% 75.3% 50652 
50% 9,216.61 € 100.0% 0.0% 6 5.70 47.1% 12.12 6.94 517 575 0 1092.2 37 49 86.9 47.1% 52.9% 52568 
75% 7,604.71 € 100.0% 0.0% 11 11.41 37.0% 5.87 1.61 748 276 0 1023.9 27 12 38.7 72.4% 27.6% 51218 
90% 6,525.53 € 100.0% 0.0% 11 11.41 31.4% 2.75 1.61 881 108 0 989.2 18 2 20.2 88.8% 11.2% 50217 
99% 5,831.89 € 100.0% 0.0% 11 11.41 27.7% 2.75 0.00 964 11 0 975.0 15 0 15.0 98.8% 1.2% 49593 
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Scenario II + Incremental 
planning  

AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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10h-11h 

1% 8,117.76 € 100.0% 0.0% 0 0.00 44.2% 4.93 0.48 8 820 0 828.1 0 20 20.3 1.0% 99.0% 42908 
10% 8,100.59 € 100.0% 0.0% 1 0.80 42.4% 4.93 0.48 83 745 0 828.0 2 18 20.2 10.0% 90.0% 42897 
25% 7,974.91 € 100.0% 0.0% 3 2.47 38.8% 4.93 0.48 207 620 0 827.3 5 14 18.9 25.0% 75.0% 42911 
50% 7,534.45 € 100.0% 0.0% 6 5.70 33.4% 3.98 0.48 409 449 0 857.8 4 11 14.3 46.8% 53.2% 44582 
75% 6,256.63 € 100.0% 0.0% 11 11.41 25.6% 0.00 0.00 614 220 0 833.9 5 1 5.5 72.5% 27.5% 43055 
90% 5,437.80 € 100.0% 0.0% 11 11.41 20.9% 0.00 0.00 734 88 0 822.1 8 0 8.2 88.8% 11.2% 42315 
99% 4,896.63 € 100.0% 0.0% 11 11.41 19.0% 0.00 0.00 804 9 0 812.5 4 0 4.5 98.9% 1.1% 42404 

11h-12h 

1% 10,076.38 € 100.0% 0.0% 0 0.00 46.0% 8.96 2.76 11 1026 0 1036.4 0 36 36.0 1.0% 99.0% 53295 
10% 10,054.85 € 100.0% 0.0% 1 0.80 44.1% 8.96 2.76 104 933 0 1036.2 4 32 35.7 10.0% 90.0% 53294 
25% 9,898.65 € 100.0% 0.0% 3 2.47 41.9% 8.96 2.76 259 776 0 1034.8 8 25 33.6 25.0% 75.0% 53289 
50% 9,173.40 € 100.0% 0.0% 6 5.70 38.1% 6.62 0.48 516 516 0 1032.7 15 16 30.7 49.8% 50.2% 53501 
75% 7,818.26 € 100.0% 0.0% 11 11.41 28.4% 2.76 0.48 761 256 0 1017.4 11 4 14.8 74.6% 25.4% 53623 
90% 6,769.94 € 100.0% 0.0% 11 11.41 24.4% 0.48 0.00 908 102 0 1009.2 7 1 7.8 89.8% 10.2% 53431 
99% 6,070.69 € 100.0% 0.0% 11 11.41 21.7% 0.48 0.00 995 10 0 1005.6 5 0 4.9 99.0% 1.0% 53316 

12h-13h 

1% 8,581.41 € 100.0% 0.0% 0 0.00 45.9% 5.60 0.60 9 865 0 873.8 0 19 19.6 1.0% 99.0% 49093 
10% 8,587.66 € 100.0% 0.0% 1 0.80 45.5% 5.60 0.60 87 789 0 876.8 2 18 20.1 9.9% 90.1% 49405 
25% 8,450.19 € 100.0% 0.0% 3 2.47 43.1% 5.60 0.44 218 657 0 875.1 5 14 18.8 24.9% 75.1% 49355 
50% 7,899.84 € 100.0% 0.0% 6 5.70 37.9% 4.52 0.00 434 446 0 879.7 7 7 13.8 49.2% 50.8% 49939 
75% 6,709.96 € 100.0% 0.0% 11 11.41 29.5% 0.60 0.00 647 221 0 868.6 5 2 7.2 74.3% 25.7% 49479 
90% 5,795.67 € 100.0% 0.0% 11 11.41 25.5% 0.00 0.00 773 88 0 860.7 4 0 4.0 89.7% 10.3% 49265 
99% 5,182.79 € 100.0% 0.0% 11 11.41 22.8% 0.00 0.00 848 9 0 857.2 3 0 2.6 99.0% 1.0% 49113 

13h-14h 

1% 1,719.74 € 100.0% 0.0% 0 0.00 28.6% 0.63 0.00 2 171 0 173.2 0 1 1.5 1.0% 99.0% 9888 
10% 1,716.29 € 100.0% 0.0% 1 0.80 26.5% 0.63 0.00 17 156 0 173.2 0 1 1.5 10.0% 90.0% 9890 
25% 1,690.82 € 100.0% 0.0% 3 2.47 23.5% 0.63 0.00 43 130 0 173.1 0 1 1.4 25.0% 75.0% 9892 
50% 1,656.70 € 100.0% 0.0% 6 5.70 18.4% 0.48 0.00 86 96 0 182.8 0 0 0.9 47.8% 52.2% 10351 
75% 1,373.86 € 100.0% 0.0% 11 11.41 12.5% 0.00 0.00 133 48 0 181.2 0 0 0.5 73.0% 27.0% 10009 
90% 1,179.27 € 100.0% 0.0% 11 11.41 11.8% 0.00 0.00 155 19 0 174.2 0 0 0.3 89.2% 10.8% 9988 
99% 1,043.63 € 100.0% 0.0% 11 11.41 10.6% 0.00 0.00 170 2 0 172.3 0 0 0.2 98.9% 1.1% 9906 

14h-15h 

1% 5,895.79 € 100.0% 0.0% 0 0.00 50.7% 10.97 3.69 7 704 0 711.2 2 150 152.0 1.0% 99.0% 29642 
10% 5,881.00 € 100.0% 0.0% 1 0.80 47.9% 10.97 3.69 71 639 0 710.3 15 136 151.2 10.0% 90.0% 29630 
25% 5,773.44 € 100.0% 0.0% 3 2.47 44.9% 10.97 3.69 176 527 0 702.8 36 107 143.2 25.0% 75.0% 29608 
50% 5,432.22 € 100.0% 0.0% 6 5.70 38.0% 9.88 3.69 335 350 0 684.6 54 55 109.0 48.8% 51.2% 30227 
75% 4,487.63 € 100.0% 0.0% 11 11.41 28.7% 1.94 1.94 459 164 0 622.4 41 13 54.0 73.2% 26.8% 30135 
90% 3,830.02 € 100.0% 0.0% 11 11.41 23.6% 1.94 1.46 531 63 0 593.7 29 3 31.9 89.1% 10.9% 29703 
99% 3,407.42 € 100.0% 0.0% 11 11.41 21.9% 1.94 1.46 574 6 0 580.1 22 0 22.3 98.9% 1.1% 29445 
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Scenario II + Incremental 
planning  

AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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15h-16h 

1% 4,182.07 € 100.0% 0.0% 0 0.00 28.2% 0.00 0.00 4 415 0 419.1 0 1 1.1 1.1% 98.9% 22379 
10% 4,244.50 € 100.0% 0.0% 1 0.80 25.6% 0.00 0.00 42 385 0 426.4 0 1 0.9 9.6% 90.4% 23342 
25% 4,155.49 € 100.0% 0.0% 3 2.47 24.3% 0.00 0.00 105 320 0 425.8 0 1 0.8 24.1% 75.9% 23175 
50% 3,889.33 € 100.0% 0.0% 6 5.70 20.1% 0.00 0.00 211 219 0 430.1 0 0 0.5 48.3% 51.7% 23167 
75% 3,685.38 € 88.2% 11.8% 11 11.41 14.3% 0.00 0.00 314 112 320 745.7 0 0 0.2 72.9% 27.1% 23040 
90% 2,993.52 € 94.2% 5.8% 11 11.41 12.5% 0.00 0.00 377 45 154 574.9 0 0 0.2 89.0% 11.0% 22648 
99% 2,551.26 € 99.4% 0.6% 11 11.41 11.3% 0.00 0.00 414 5 16 434.5 0 0 0.1 98.8% 1.2% 22414 

16h-17h 

1% 9,127.91 € 100.0% 0.0% 0 0.00 54.8% 21.83 2.24 10 962 0 971.2 1 72 73.0 1.0% 99.0% 50241 
10% 9,167.09 € 100.0% 0.0% 1 0.80 49.3% 21.83 2.24 97 880 0 977.1 7 65 72.7 9.8% 90.2% 51034 
25% 9,003.54 € 100.0% 0.0% 3 2.47 47.5% 21.83 2.24 242 730 0 971.8 17 51 68.4 24.7% 75.3% 50901 
50% 8,497.29 € 100.0% 0.0% 6 5.70 38.9% 19.23 2.24 472 499 0 971.0 22 23 45.1 48.8% 51.2% 51500 
75% 7,817.74 € 90.1% 9.9% 11 11.41 29.7% 2.81 0.29 689 246 5611 6546.8 16 5 20.6 73.6% 26.4% 51195 
90% 6,396.51 € 95.1% 4.9% 11 11.41 26.4% 2.24 0.00 820 98 2693 3611.3 12 1 12.8 89.3% 10.7% 50627 
99% 5,486.24 € 99.5% 0.5% 11 11.41 24.2% 0.29 0.00 899 10 288 1196.2 10 0 9.6 98.9% 1.1% 50286 

17h-18h 

1% 1,847.42 € 100.0% 0.0% 0 0.00 31.8% 0.00 0.00 2 183 0 185.3 0 1 0.7 1.0% 99.0% 9694 
10% 1,881.43 € 100.0% 0.0% 1 0.80 25.7% 0.00 0.00 19 171 0 189.3 0 1 0.7 9.5% 90.5% 10204 
25% 1,841.47 € 100.0% 0.0% 3 2.47 23.5% 0.00 0.00 46 142 0 188.6 0 0 0.6 24.0% 76.0% 10121 
50% 1,699.09 € 100.0% 0.0% 6 5.70 17.4% 0.00 0.00 93 95 0 187.4 0 0 0.5 48.6% 51.4% 9981 
75% 1,449.21 € 100.0% 0.0% 11 11.41 12.2% 0.00 0.00 139 47 0 186.3 0 0 0.2 74.0% 26.0% 9847 
90% 1,252.65 € 100.0% 0.0% 11 11.41 10.7% 0.00 0.00 167 19 0 185.5 0 0 0.1 89.5% 10.5% 9762 
99% 1,120.98 € 100.0% 0.0% 11 11.41 9.6% 0.00 0.00 183 2 0 185.0 0 0 0.1 98.9% 1.1% 9712 

18h-19h 

1% 5,376.20 € 100.0% 0.0% 0 0.00 37.1% 0.57 0.57 5 538 0 543.6 0 7 7.4 1.0% 99.0% 31562 
10% 5,364.94 € 100.0% 0.0% 1 0.80 35.3% 0.57 0.57 54 489 0 543.5 1 7 7.4 10.0% 90.0% 31562 
25% 5,281.70 € 100.0% 0.0% 3 2.47 33.3% 0.57 0.57 136 407 0 543.8 2 5 6.9 25.0% 75.0% 31557 
50% 5,038.02 € 100.0% 0.0% 6 5.70 26.9% 1.35 0.57 272 289 0 561.4 3 4 6.9 50.2% 49.8% 31422 
75% 4,207.33 € 100.0% 0.0% 11 11.41 20.0% 0.57 0.00 404 143 0 547.7 2 1 2.9 75.2% 24.8% 31504 
90% 3,631.76 € 100.0% 0.0% 11 11.41 17.2% 0.57 0.00 484 57 0 541.3 1 0 1.5 90.1% 9.9% 31543 
99% 3,252.23 € 100.0% 0.0% 11 11.41 15.4% 0.00 0.00 532 6 0 537.7 1 0 1.0 99.0% 1.0% 31566 

19h-20h 

1% 1,234.02 € 100.0% 0.0% 0 0.00 21.4% 0.00 0.00 1 122 0 123.5 0 0 0.1 0.9% 99.1% 6750 
10% 1,231.61 € 100.0% 0.0% 1 0.80 17.4% 0.00 0.00 12 111 0 123.5 0 0 0.1 10.0% 90.0% 6751 
25% 1,213.50 € 100.0% 0.0% 3 2.47 13.5% 0.00 0.00 31 93 0 123.6 0 0 0.1 25.0% 75.0% 6753 
50% 1,248.38 € 100.0% 0.0% 6 5.70 8.6% 0.00 0.00 62 75 0 136.4 0 0 0.1 45.1% 54.9% 7504 
75% 1,025.71 € 100.0% 0.0% 11 11.41 5.0% 0.00 0.00 93 37 0 130.2 0 0 0.0 71.1% 28.9% 7140 
90% 860.67 € 100.0% 0.0% 11 11.41 4.3% 0.00 0.00 111 15 0 126.3 0 0 0.0 88.1% 11.9% 6916 
99% 752.06 € 100.0% 0.0% 11 11.41 3.9% 0.00 0.00 123 1 0 124.0 0 0 0.0 98.9% 1.1% 6780 
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Scenario II + Incremental 
planning  

AV subnetworks 

 Generalized Costs   AV Subnetwork   Congestion   Travel Times   Travel Delays   Travel Distances  
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20h-21h 

1% 166.97 € 100.0% 0.0% 0 0.00 18.0% 0.00 0.00 0 17 0 16.7 0 0 0.0 1.2% 98.8% 835 
10% 166.79 € 100.0% 0.0% 1 0.80 9.0% 0.00 0.00 2 15 0 16.7 0 0 0.0 10.1% 89.9% 836 
25% 164.64 € 100.0% 0.0% 3 2.47 4.5% 0.00 0.00 4 13 0 16.8 0 0 0.0 25.4% 74.6% 839 
50% 153.89 € 100.0% 0.0% 6 5.70 2.4% 0.00 0.00 9 8 0 16.9 0 0 0.0 50.6% 49.4% 844 
75% 133.39 € 100.0% 0.0% 11 11.41 1.1% 0.00 0.00 13 4 0 17.2 0 0 0.0 75.6% 24.4% 856 
90% 115.81 € 100.0% 0.0% 11 11.41 1.0% 0.00 0.00 15 2 0 17.2 0 0 0.0 90.2% 9.8% 856 
99% 104.04 € 100.0% 0.0% 11 11.41 0.9% 0.00 0.00 17 0 0 17.2 0 0 0.0 98.9% 1.1% 856 

21h-22h 

1% 3,036.16 € 100.0% 0.0% 0 0.00 36.4% 4.02 0.00 3 308 0 310.8 0 9 9.0 1.0% 99.0% 18483 
10% 3,029.85 € 100.0% 0.0% 1 0.80 33.2% 4.02 0.00 31 280 0 310.7 1 8 8.9 10.0% 90.0% 18484 
25% 2,983.89 € 100.0% 0.0% 3 2.47 27.9% 4.02 0.00 78 233 0 310.3 2 6 8.4 25.0% 75.0% 18484 
50% 2,885.81 € 100.0% 0.0% 6 5.70 20.2% 0.57 0.00 152 168 0 319.4 1 1 2.1 50.1% 49.9% 18464 
75% 2,373.53 € 100.0% 0.0% 11 11.41 14.0% 0.00 0.00 227 83 0 310.7 1 0 0.9 75.1% 24.9% 18480 
90% 2,045.97 € 100.0% 0.0% 11 11.41 11.9% 0.00 0.00 273 33 0 306.1 1 0 1.0 90.0% 10.0% 18486 
99% 1,831.97 € 100.0% 0.0% 11 11.41 10.6% 0.00 0.00 300 3 0 303.5 1 0 1.1 99.0% 1.0% 18489 

22h-23h 

1% 2,665.08 € 100.0% 0.0% 0 0.00 48.7% 3.31 0.00 3 272 0 275.0 0 10 10.6 1.0% 99.0% 15411 
10% 2,659.51 € 100.0% 0.0% 1 0.80 43.5% 3.31 0.00 28 247 0 274.9 1 9 10.5 10.0% 90.0% 15412 
25% 2,618.97 € 100.0% 0.0% 3 2.47 37.0% 3.31 0.00 69 206 0 274.4 2 7 9.9 25.0% 75.0% 15414 
50% 2,689.88 € 100.0% 0.0% 6 5.70 25.6% 2.22 0.00 135 165 0 299.7 3 3 5.5 45.6% 54.4% 16930 
75% 7,071.50 € 23.7% 76.3% 11 11.41 13.7% 0.00 0.00 199 73 16834 17105.8 1 0 0.9 73.2% 26.8% 15800 
90% 3,790.90 € 43.1% 56.9% 11 11.41 14.1% 0.00 0.00 239 29 8080 8348.7 1 0 1.2 89.1% 10.9% 15575 
99% 1,799.50 € 88.4% 11.6% 11 11.41 14.2% 0.00 0.00 264 3 863 1128.9 1 0 1.3 98.9% 1.1% 15440 

23h-24h 

1% 2,006.59 € 100.0% 0.0% 0 0.00 26.9% 0.00 0.00 2 199 0 201.1 0 0 0.5 1.1% 98.9% 11760 
10% 2,002.46 € 100.0% 0.0% 1 0.80 24.3% 0.00 0.00 20 181 0 201.1 0 0 0.5 10.0% 90.0% 11760 
25% 1,970.04 € 100.0% 0.0% 3 2.47 21.9% 0.00 0.00 51 151 0 201.7 0 0 0.5 25.0% 75.0% 11755 
50% 1,897.71 € 100.0% 0.0% 6 5.70 16.0% 0.00 0.00 102 108 0 210.0 0 0 0.1 49.9% 50.1% 11764 
75% 1,576.05 € 100.0% 0.0% 11 11.41 10.8% 0.00 0.00 151 54 0 204.8 0 0 0.1 75.0% 25.0% 11774 
90% 1,359.58 € 100.0% 0.0% 11 11.41 9.2% 0.00 0.00 181 22 0 202.4 0 0 0.1 90.0% 10.0% 11770 
99% 1,217.57 € 100.0% 0.0% 11 11.41 8.2% 0.00 0.00 199 2 0 201.0 0 0 0.1 98.9% 1.1% 11767 

24h-1h 

1% 1,713.70 € 100.0% 0.0% 0 0.00 69.7% 3.31 0.00 2 178 0 179.8 0 10 10.5 1.0% 99.0% 10074 
10% 1,710.11 € 100.0% 0.0% 1 0.80 58.0% 3.31 0.00 18 162 0 179.7 1 9 10.4 10.0% 90.0% 10075 
25% 1,683.71 € 100.0% 0.0% 3 2.47 45.7% 3.31 0.00 45 134 0 179.2 2 7 9.8 25.0% 75.0% 10077 
50% 1,700.88 € 100.0% 0.0% 6 5.70 29.5% 2.22 0.00 87 104 0 191.6 3 3 5.2 46.5% 53.5% 10849 
75% 2,080.13 € 62.7% 37.3% 11 11.41 17.7% 0.00 0.00 129 51 5611 5791.1 1 0 1.8 72.3% 27.7% 10473 
90% 1,448.14 € 78.6% 21.4% 11 11.41 16.1% 0.00 0.00 154 20 2693 2867.8 1 0 1.4 88.7% 11.3% 10244 
99% 1,058.38 € 97.2% 2.8% 11 11.41 15.0% 0.00 0.00 169 2 288 458.8 1 0 1.3 98.9% 1.1% 10106 
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THE RNDP-AVS DESIGNED FOR THE WHOLE DAY  

This subsection applies the RNDP-AVs model for the whole day, according to the general 
formulation presented in section 3.4. The detour problem is evaluated (and avoided) every hour 
of the day – CVs and AVs always complete their trips. The experiments were performed in the 
same case study of the city of Delft in the Netherlands. 

In this analysis, the transition period will be analyzed and composed by the design stages 
considered several AV penetration rates: 10%, 25%, 50%, 75%, and 90%. The AV penetration 
rate of 0% and 100% are included for comparison purposes. In this analysis, the long-term is 
envisioned for 100% of AVs which will probably happen somewhere in 2100 (Nieuwenhuijsen 
et al., 2018).  

NO AV SUBNETWORKS 

In scenario O, vehicles circulate everywhere in mixed traffic conditions. The previously 
introduced constraints (3.18) (page 46) are added to replicate scenario O. Table 3.8 details the 
results of the daily experiments for scenario O. Each design stage is calculated in 1 minute 
(previously, in the peak-hour, it had been 3 seconds). Throughout this transition process, costs 
reduce proportionally as the value of travel time spent inside AVs decreases (check again Figure 
3.5). Total travel time is reduced from 8915 to 8494 hours vehicles, 4.7% of reduction. The 
network congestion decreases from 11% to 7%, while the average degree of saturation reduces 
from 43% to 26%. The total delay is dramatically reduced from 484 to 66 hours. Roadways above 
practical capacity (degree of saturation above 75%) drop from 86.67 to 5.47 kilometers. Similarly 
to what happened in the peak-hour design, congested roadways (saturation above 100%) only 
start to be mitigated when AVs are 50% of the fleet. The total distance is stable throughout the 
process (0.18% of reduction). 

AV SUBNETWORKS 

This section evaluates the planning strategies applied to create progressive AV subnetworks (no 
road investment is included in this analysis). The results of this experiment are presented in Table 
3.9. The optimal solutions were obtained within tolerable computation time, less than 24 hours.  

Figure 3.42 illustrates the progression of AV subnetworks in each planning strategy: incremental 
planning (IP), long-term planning (LTP), and hybrid planning. 

 
Figure 3.42 – RNDP-AVs daily design: subnetwork evolution in Scenario I. 
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Table 3.8 – Daily experiments results of current scenario O without AV subnetworks. 
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RNDP without AV 
subnetworks 
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0% 85277.35 100.0% - - - 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468258 00:00:44 

00
:0

6:
43

 10% 85090.08 100.0% - - - 11% 43% 86.67 13.95 25% 58% 891 8021 8912 48 433 481 10.0% 90.0% 468248 00:01:13 
25% 83769.55 100.0% - - - 11% 42% 86.67 13.32 25% 57% 2221 6663 8884 113 340 453 25.0% 75.0% 468192 00:01:25 
50% 77637.04 100.0% - - - 10% 39% 80.63 10.03 23% 53% 4386 4386 8772 171 171 342 50.0% 50.0% 468112 00:00:48 
75% 66235.24 100.0% - - - 9% 33% 15.77 4.33 20% 45% 6462 2154 8616 141 47 188 75.0% 25.0% 467848 00:01:03 
90% 57220.23 100.0% - - - 7% 29% 10.03 3.07 17% 39% 7681 853 8534 95 11 106 90.0% 10.0% 467735 00:00:53 
100% 50568.89 100.0% 0.0% 0 0.00 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:37 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger 
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Table 3.9 – Daily experiments results of scenario I with AV subnetworks. 
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0% 85277.28 100.0% - 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468271 00:00:59 

23
:3

1:
52

 10% 84974.76 100.0% - 9 30.54 11% 38% 87.80 13.95 25% 55% 903 8017 8920 47 430 477 10.0% 90.0% 468166 00:25:45 
25% 83484.38 100.0% - 10 34.68 11% 38% 83.82 21.46 25% 56% 2281 6748 9029 116 423 539 24.7% 75.3% 470325 04:06:50 
50% 77056.81 100.0% - 17 56.09 10% 33% 74.95 11.80 23% 50% 4427 4580 9007 170 230 400 48.7% 51.3% 475806 16:07:06 
75% 65484.03 100.0% - 15 51.89 9% 28% 19.35 4.33 19% 42% 6479 2223 8702 130 48 178 74.0% 26.0% 470098 09:17:31 
90% 56860.36 100.0% - 9 31.71 7% 26% 8.28 3.07 17% 38% 7679 880 8559 94 10 104 89.6% 10.4% 468554 17:32:50 
100% 50568.89 100.0% - 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:51 
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0% 85277.25 100.0% - 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 485 485 0.0% 100.0% 468227 00:00:59 
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45

 
 

10% 84974.78 100.0% - 9 30.54 11% 38% 86.05 13.95 25% 55% 903 8016 8919 47 429 475 10.0% 90.0% 468136 03:27:06 
25% 83484.38 100.0% - 10 34.68 11% 38% 83.82 21.46 25% 56% 2281 6748 9029 116 423 539 24.7% 75.3% 470325 02:23:13 
50% 77088.29 100.0% - 11 42.52 10% 36% 84.81 12.26 23% 51% 4409 4431 8840 172 191 363 49.4% 50.6% 469374 01:40:39 
75% 65765.61 100.0% - 14 54.08 9% 29% 19.35 4.33 20% 44% 6492 2232 8724 132 48 180 74.4% 25.6% 468746 00:17:51 
90% 57023.08 100.0% - 17 61.15 7% 25% 8.28 3.07 17% 39% 7680 895 8576 95 10 105 89.6% 10.4% 468411 00:06:05 
100% 50569.17 100.0% - 57 160.40 7% 24% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465945 00:00:52 
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0% 85277.52 100.0% - 0 0.00 11% 43% 86.67 14.44 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468283 00:00:47 
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:2

6:
30

 
 

10% 85090.08 100.0% - 0 0.00 11% 43% 86.67 13.95 25% 58% 891 8021 8912 48 433 481 10.0% 90.0% 468248 00:00:59 
25% 83769.48 100.0% - 0 0.00 11% 42% 86.67 13.32 25% 57% 2221 6663 8885 114 341 454 25.0% 75.0% 468178 00:07:42 
50% 77303.68 100.0% - 9 31.71 10% 36% 76.03 11.80 23% 53% 4418 4578 8996 169 228 397 48.9% 51.1% 477399 00:04:00 
75% 65561.16 100.0% - 9 31.71 9% 30% 20.52 4.33 19% 45% 6452 2223 8676 132 48 180 74.1% 25.9% 471808 00:01:36 
90% 56860.36 100.0% - 9 31.71 7% 26% 8.28 3.07 17% 38% 7679 880 8559 94 10 104 89.6% 10.4% 468554 03:10:35 
100% 50568.89 100.0% - 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:51 
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0% 85277.28 100.0% - 0 0.00 11% 43% 86.67 13.95 25% 58% 0 8915 8915 0 484 484 0.0% 100.0% 468271 00:00:59 
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10% 85069.34 100.0% - 2 5.25 11% 41% 88.42 13.95 25% 58% 892 8020 8912 48 432 480 10.0% 90.0% 468115 02:12:51 
25% 83726.86 100.0% - 2 5.25 11% 41% 86.33 13.80 25% 57% 2223 6661 8884 112 338 450 25.0% 75.0% 467993 02:11:05 
50% 77498.24 100.0% - 7 25.93 10% 36% 82.11 10.03 23% 52% 4396 4442 8838 171 177 349 49.5% 50.5% 471494 06:11:52 
75% 65780.86 100.0% - 10 32.82 9% 29% 19.35 4.33 19% 45% 6459 2223 8682 132 48 180 74.1% 25.9% 471241 01:32:54 
90% 56900.20 100.0% - 17 48.34 7% 23% 8.28 3.07 17% 35% 7679 909 8588 94 10 104 89.1% 10.9% 470949 00:18:29 
100% 50568.89 100.0% - 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:52 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger 
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In the incremental planning, AV subnetworks align with the optimality of each design stage in the first 
half of the transition period (see Figure 3.42). The IP analysis took about 8 hours to execute the whole 
process, composed of seven design stages (penetration rates). Figure 3.43 shows the network 
representation of AV subnetworks creation under incremental planning throughout the transition period. 
For 10% of AVs, subnetworks are already 17.1% of the total network (30.54 km). For 90% of AVs, 
subnetworks are 34.3%. For a penetration rate of 100%, all the roads with traffic flow circulation cover 
89.9% of the network (160.40 km out of 178.51 km). External demand to the city was not part of the 
dataset used in this experiment.  

 
(a) 10%. 

 
(b) 25%. 

 
(c) 50%. 

 
(d) 75%. 

 
(e) 90%. 

 
(f) 100%. 

Figure 3.43 – RNDP-AVs daily design: AV subnetworks of Scenario I under Incremental Planning (a), (b), (c), (d), 

(e) and (f) (% of AV penetration rate). 

In the long-term planning, AV subnetworks are only necessary when AVs are 50% of the vehicle fleet 
and are only close to optimality in the latest design stage of the transition period (90% onwards). The 
LTP analysis took about 3 and a half hours to compute all solutions composed of seven design stages 
(penetration rates). This dramatic reduction of the computational time is since the model computes the 
transition period in a reverse way, so it is less combinatorial. 

↑N ↑N ↑N 

↑N ↑N ↑N 
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Figure 3.44 shows the network representation of AV subnetworks creation under an LTP throughout 
the transition period. The network representation of AV subnetworks prevails from 50% until the end 
of the transition process (100% of AVs), in three single zones representing 17.8% of the network 
(31.71 km out of 178.51 km). Also, for 100% of AVs, the whole network needed for traffic is 74.6% of 
the original (133.11 km out of 178.51 km). 

 
(a) 50%, 75%, 90%. 

 
(b) 100%. 

Figure 3.44 – RNDP-AVs daily design: AV subnetworks of Scenario I under Long-Term Planning (a) and (b) (% of 

AV penetration rate). 

In the hybrid planning, AV subnetworks are added incrementally by the combinatorial problem and are 
limited to the optimal solution at the end of the transition process (100%). This means that, if in the end 
of the transition process (100% of AVs), only 74.6% (133.11 km out of 178.51 km) is needed, the 
creation of AVs subnetworks shall only evaluate the roads that will actually be needed in the “end”. 
Figure 3.45 shows the network representation of the AV subnetworks progression. In the first half of 
the transition period, only two roads are dedicated for AVs – 2.9% of the network (5.25 km out of 
178.51 km). AV subnetworks only get relevance in the second half of the transition period, increasing 
from 14.5% (25.93 km out of 178.51 km) to 74.6%. 

The hybrid analysis took about half a day to compute all solutions – seven design stages (penetration 
rates). This computational time is explained because the at the middle of the transition period (50% of 
AVs), the model explores more combinations than in the IP analysis, and at this point it is trying to 
balance the detour problem and the AV travel time savings in a fair way. 

↑N ↑N 
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(a) 10%, 25%. 

 
(b) 50%. 

 
(c) 75%. 

 
(d) 90%. 

 
(e) 100%. 

Figure 3.45 – RNDP-AVs daily design: AV subnetworks of Scenario I under Hybrid planning (a), (b), (c), (d) and 

(e) (% of AV penetration rate). 

The following Figure 3.46 shows the differential of the (generalized) costs of every planning strategy 
applied to scenario I – which saves up to 1.2% in comparison with scenario O. The IP is closer to the 
optimality analysis in the first half of the transition period, even until AVs are 50% of the fleet. 
Similarly, the LTP planning analysis is closer to optimality in the latest stages of the transition period 
– when AVs are 90% onwards. The hybrid planning performs worse than the others but still brings cost 
savings up to 0.8%. 

Figure 3.47 depicts the total travel time in every planning strategy. Note that the optimal solutions with 
AV subnetworks implies higher total travel times, which can be explained by analyzing total distance 
and total delay in the subsequent figures.  

↑N ↑N 

↑N ↑N ↑N 
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As aforementioned, the model always minimizes generalized costs that in scenario I are only founded 
on the total travel time that considers an AVs value of travel time reduction. It may occur the following 
situations:  

 An increase of CVs total travel time (Figure 3.48) can occur if:  

- CVs experience congestion especially in the surroundings of AV subnetworks AND is 
depicted by an increase in total CVs delay (see Figure 3.52). For instance, at the penetration 
rate of 90%. 

- or CVs experience detour away from AV subnetworks to reach destination ND is depicted 
by an increase in CVs distance (see Figure 3.50). For instance, at the penetration rate of 
75%. 

 An increase of AVs total travel time (Figure 3.49) can occur if:  

- AVs longer trips when AVs value of travel time decreases and is depicted by an increase of 
distance (see Figure 3.51). 

- AV face congestion that is depicted by an increase in AVs delay (see Figure 3.53). For 
instance, at the penetration rate of 25%. 

- AVs change their routes to lower speed routes, i.e., when both AV delay and AV distance 
decrease. For instance, at the penetration rate of 10% at the IP and hybrid planning, and at 
the penetration rate of 50% in the LTP. 

 
Figure 3.46 – RNDP-AVs daily design: Differential on 

the generalized costs in Scenario I. 

 
Figure 3.47 – RNDP-AVs daily design: Total travel 

time in Scenario I. 

Figure 3.48 shows that total travel time will increase up to 6.5% for CVs and 3% for AVs. CVs will 
likely experience longer trips (higher travel times) in the end of the transition process caused by detour 
(AV penetration rates equal and higher than 50%).  

According to Figure 3.49, AVs will only experience shorter trips (lower travel times) for the LTP and 
hybrid planning when AV penetration rate is higher than 75%. The presence of AV subnetworks does 
not decrease total travel time for AV passengers as they perceive time differently (lower value of travel 
time). From this perspective, it seems that AV subnetworks should only start when AVs are the majority 
of the vehicle fleet. Otherwise, in the beginning of the transition period, AVs may experience longer 
trips (higher travel times).  

Due to the fact that AVs value of travel time, AV trips will be likely conducted in shorter routes (lower 
distances) – which means that AV subnetworks will surely start to appear in roads that have lower 
capacity/speeds (check the optimality analysis in Figure 3.51).  
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Figure 3.48 – RNDP-AVs daily design: CV Total 

travel time in Scenario I. 

 
Figure 3.49 – RNDP-AVs daily design: AV Total travel 

time in Scenario I. 

CV detour will likely start when AVs are 50%, or even sooner if the IP is chosen. Figure 3.50 shows 
that detour is unavoidable in the latest stages of the period, although CV routes will be up to 10% longer. 
For the detour problem, the “best” strategy would be the incremental if that strategy is designed at least 
for a design stage that contains 25% of AVs. Otherwise, if the incremental strategy starts for 50% of 
AVs, the outcome would be different and would coincide with the optimality analysis in the beginning 
of the decision process. Also, in Figure 3.51, the IP strategy would be the one that mostly searches for 
shorter routes that allied with an increase of travel times which means that the IP looks forward to select 
lower capacity roads. Similar reasonings can be drawn for the other strategies.  

Figure 3.50 – RNDP-AVs daily design: CV total 

distance variation in Scenario I. 

Figure 3.51 – RNDP-AVs daily design: AV total 

distance variation in Scenario I. 

According to Figure 3.52, the IP strategy creates a subnetwork that may cause an increase of 25% of 
delay to CVs in the first quarter of the transition process. The LTP rises that increasing to 35%. The 
hybrid planning is the strategy that creates less delay and found optimal in this traffic indicator. Similar 
conclusions can de drawn from Figure 3.53 for AVs: the hybrid and the LTP strategies reduce delay up 
to 8%. Meaning that AV subnetworks are important for AVs. 

Figure 3.54 to Figure 3.57 analyze congestion during the transition period. Figure 3.54 illustrates the 
average degree of saturation which indicates that speed is increasing in the majority of the road links of 
the network. The incremental planning is the one that has lower degree of saturation but, in Figure 3.55, 
for a penetration rate of 25%, the length of congested roads (DS≥1) is higher than scenario O – meaning 
that having AV subnetworks is not suitable for this design stage. Both LTP (Figure 3.56) and hybrid 
planning (Figure 3.57) have similar performance. Overall, it seems that implementing AV subnetworks 
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does not improve/mitigate significantly. In fact, it is the higher efficiency of AVs that will have a 
significant role in congestion (congestion in scenario O is likewise reduced). 

 
Figure 3.52 – RNDP-AVs daily design: CV total delay 

in Scenario I. 

 
Figure 3.53 – RNDP-AVs daily design: AV total delay 

in Scenario I. 

Figure 3.54 – RNDP-AVs daily design: Average 

degree of saturation in Scenario I. 

Figure 3.55 – RNDP-AVs daily design: 

Congestion at incremental planning in Scenario I. 

Figure 3.56 – RNDP-AVs daily design: Congestion 

at long-term planning in Scenario I. 

 
Figure 3.57 – RNDP-AVs daily design: 

Congestion at hybrid planning in Scenario I. 

From a practical perspective, AV subnetworks do have an important role on segregating AVs from 
mixed traffic and the design of AV subnetworks will induce them shorter routes (lower distances) that 
will experience lower speed (higher travel times) which might be significant for road safety in urban 
areas. The role of the need for road investment will be analyzed in the following section.  
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Nevertheless, when road investment is not a constraint for designing AV subnetworks, the analysis of 
the three planning strategies revealed that: 

 The incremental planning should be used only in cases where the initial design stages are until AV 
penetration rates of 25%. The IP starts AV subnetworks in lower capacity roads (lower speeds) and 
leads to a higher network in the end of the transition period. This dispersion of dedicated roads for 
AVs throughout the network produces less CV detour. 

 The long-term planning is the “best” strategy in the second half of the transition period, i.e., when the 
initial design stages occur when AVs are already a majority. For an equal share between AVs and 
CVs (50%), CVs will experience high detour and delay, but that effect will be highly mitigated until 
the end of the period. 

 The hybrid planning revealed satisfactory results throughout the entire transition period, and it can be 
used to help design AV subnetworks since the beginning. The only disadvantage of this strategy is the 
CV detour (longer trips, longer distances) when AVs are over 90% of the vehicle fleet. 

AV SUBNETWORKS THAT REQUIRE ROAD INVESTMENT FOR V2I 

This section evaluates the planning strategies applied to create progressive AV subnetworks when road 
investment is needed, and the aim is to balance somehow with the social travel costs reduction as more 
AVs penetrate the vehicle fleet. The results from this experiment are presented in Table 3.10. The 
optimal solutions were obtained within tolerable computation time, less than 20 hours.  

Figure 3.58 illustrates the progression of AV subnetworks in each planning strategy: incremental 
planning (IP), long-term planning (LTP) and hybrid planning. In this example, the LTP creates wider 
AV subnetworks when AVs are over 50% of the vehicle fleet. In this scenario, the evolution of the 
subnetwork seems to follow the pattern of the optimality at every design stage except the last one. Note 
that when AVs are 90%, the “need” from improving traffic efficiency and reducing costs is less 
prominent. 

 
Figure 3.58 – RNDP-AVs daily design: subnetwork evolution in Scenario II. 
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Table 3.10 – Daily experiments results of scenario II with AV subnetworks that require road investment. 

Scenario II 
 

RNDP with AV 
subnetworks that 

require road investment 

Objective Function Network Congestion 1 Travel Times Delay 2 Travel Distances 
Computational 
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0% 85277.25 100.0% 0.0% 0 0.00 11% 43% 88.42 13.95 25% 58% 0 8916 8916 0 485 485 0.0% 100.0% 468257 00:01:00 

07
:2

0:
36

 
 

10% 85083.08 99.9% 0.1% 3 6.41 11% 41% 86.67 13.95 25% 58% 895 8018 8913 47 430 477 10.0% 90.0% 468110 10:24:48 
25% 83662.58 99.9% 0.1% 6 15.76 11% 39% 85.92 22.35 25% 56% 2268 6750 9019 118 425 543 24.6% 75.4% 470157 19:09:27 
50% 77290.54 99.9% 0.1% 6 15.76 10% 36% 83.04 13.15 23% 51% 4402 4402 8805 171 185 357 49.6% 50.4% 468704 15:52:33 
75% 65770.49 99.6% 0.4% 12 38.11 9% 29% 19.35 4.33 19% 45% 6462 2223 8685 130 48 178 74.1% 25.9% 471106 04:12:26 
90% 57051.55 99.9% 0.1% 4 11.03 7% 27% 8.28 3.07 17% 39% 7679 871 8550 94 10 104 89.7% 10.3% 467828 05:38:33 
100% 51500.67 98.2% 1.8% 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:01:49 
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0% 85277.25 100.0% 0.0% 0 0.00 11% 43% 88.42 13.95 25% 58% 0 8916 8916 0 485 485 0.0% 100.0% 468257 00:00:59 
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10% 85083.12 99.9% 0.1% 3 6.41 11% 41% 88.42 13.95 25% 58% 895 8018 8913 47 431 478 10.0% 90.0% 468147 10:06:32 
25% 84097.09 99.8% 0.2% 6 21.00 11% 38% 87.00 24.99 25% 58% 2280 6832 9112 117 444 561 24.4% 75.6% 476101 01:23:51 
50% 77215.37 99.8% 0.2% 8 23.73 10% 36% 84.47 12.26 23% 53% 4403 4451 8854 173 192 365 49.2% 50.8% 472241 04:23:45 
75% 65604.38 99.6% 0.4% 12 38.11 9% 29% 19.35 4.33 19% 45% 6462 2223 8685 130 48 178 74.1% 25.9% 471106 02:42:56 
90% 56860.37 99.5% 0.5% 12 38.11 7% 26% 8.28 3.07 17% 38% 7679 880 8559 94 10 104 89.6% 10.4% 468553 01:17:04 
100% 51255.97 98.1% 1.9% 51 136.27 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:01:09 
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0% 85314.00 100.0% 0.0% 0 0.00 11% 43% 88.42 13.95 25% 58% 0 8916 8916 0 485 485 0.0% 100.0% 468262 00:00:45 
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6:
31

 
 

10% 85098.43 100.0% 0.0% 2 5.25 11% 41% 86.67 14.44 25% 58% 892 8019 8911 48 431 479 10.0% 90.0% 468149 00:01:11 
25% 83892.84 99.9% 0.1% 3 9.38 11% 41% 87.89 21.46 25% 60% 2228 6752 8980 118 426 544 24.7% 75.3% 470644 00:06:20 
50% 77238.25 99.7% 0.3% 11 36.95 10% 35% 74.95 11.80 23% 53% 4407 4580 8987 170 230 400 48.8% 51.2% 476419 00:04:11 
75% 65666.52 99.6% 0.4% 12 39.00 9% 29% 19.35 4.33 19% 45% 6457 2232 8689 130 48 178 74.0% 26.0% 471736 00:13:13 
90% 57471.93 99.3% 0.7% 19 54.72 7% 23% 8.28 3.07 17% 35% 7679 917 8596 94 10 104 89.0% 11.0% 471405 16:10:22 
100% 50568.89 98.2% 1.8% 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:29 
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0% 85277.25 100.0% 0.0% 0 0.00 11% 43% 88.42 13.95 25% 58% 0 8916 8916 0 485 485 0.0% 100.0% 468257 00:00:59 
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10% 85090.13 100.0% 0.0% 0 0.00 11% 43% 88.42 13.95 25% 58% 891 8020 8911 48 432 480 10.0% 90.0% 468269 01:53:30 
25% 83751.74 99.9% 0.1% 2 7.39 11% 42% 88.23 21.46 25% 60% 2228 6752 8980 118 427 545 24.7% 75.3% 470732 17:05:07 
50% 77312.14 99.9% 0.1% 2 7.39 10% 38% 83.04 12.26 23% 54% 4389 4402 8791 171 186 357 49.7% 50.3% 469013 11:50:27 
75% 65742.52 99.7% 0.3% 7 29.62 9% 31% 19.35 4.33 19% 46% 6457 2213 8671 130 48 178 74.3% 25.7% 470030 02:48:06 
90% 56886.57 99.6% 0.4% 7 29.62 7% 26% 8.28 3.07 17% 39% 7679 876 8555 94 10 104 89.7% 10.3% 468069 04:50:25 
100% 51293.36 98.2% 1.8% 49 133.11 7% 25% 4.99 1.46 15% 34% 8511 0 8511 68 0 68 100.0% 0.0% 465944 00:00:31 

1 Congestion is calculated as the ratio of flow to capacity on each road link, i.e., the degree of saturation.  
2 Delay is calculated as the difference between the driven travel time and the minimum travel time on each roadway in free-flow speed conditions, where it is assumed that each vehicle only carries one passenger 
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Figure 3.59 illustrates the network representation of the AV subnetworks evolution under incremental 
planning throughout the transition period. The calculation time for this strategy was about 20 hours. For 
10% of AVs, subnetworks are already 3.6% of the total network (6.41 km out of 178.51 km). Then, for 
25% of AVs, AV subnetworks are 11.8% (21.00 km out of 178.51 km). For 90% of AVs, subnetworks 
are 21.3% (38.11 km out of 178.51 km). When AVs are 100%, traffic flow circulates in 76.3% of the 
network (136.27 km out of 178.51 km). 

 
(a) 10%. 

 
(b) 25%. 

 
(c) 50%. 

 
(d) 75%,90%. 

 
(e) 100%. 

Figure 3.59 – RNDP-AVs daily design: AV subnetworks of Scenario II under Incremental Planning (a), (b), (c), 

(d), and (e) (% of AV penetration rate). 

In the long-term planning, AV subnetworks are created in a reverse way and since there is a road 
investment, the model tries to balance the investment with the AV travel savings possible at each design 
stage. Therefore, this progression is more spread out the transition period than the previous scenario I 
– see Figure 3.60. For 10% of AVs, only two roads are dedicated for AVs, which corresponds to 2.9% 
of the network (5.25 km out of 178.51 km). Following, that number increases to 5.2% (9.38 km out of 
178.51 km) when 25% of the vehicle fleet is AVs. When the vehicle fleet is balanced (50%), 20.7% of 
the network is AV subnetworks, which means that only in the second half AV subnetworks are 
relevant/needed to reduce costs. For an AV penetration rate of 90%, 30.6% of the network is dedicated 

↑N ↑N 

↑N ↑N ↑N 
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(54.72 km out of 178.51 km). For 100% of AVs, the optimal network needed for traffic circulation is 
74.6% of the original one (133.11 km out of 178.51 km). The LTP analysis took about 16 and a half 
hours to compute all solutions - seven design stages (penetration rates).  

 

(a) 10%. 

 

(b) 25%. 

 

(c) 50%. 

 

(d) 75%. 

 

(e) 90% 

 

(f) 100%. 

Figure 3.60 – RNDP-AVs daily design: AV subnetworks of Scenario II under Long-Term Planning (a), (b), (c), (d), 

(e), and (f) (% of AV penetration rate). 

Figure 3.61 illustrates the AV subnetwork representation for scenario II under hybrid planning. AV 
subnetworks are only appropriate when AV penetration rate is over 25%. Moreover, they only get 
relevance when AVs are over 75% of the fleet. This means that if road investment is present and 
balanced with the travel time savings given by AVs, that only happens in the latest stages of the 
transition period. Between AV penetration rates of 25% and 75% of AVs, AV subnetworks are 4.1% 
(7.39 km out of 178.51 km). Between AV penetration rates of 75% and 100%, it should be 16.6% 
(29.62 km out of 178.51 km). At the end of the transition period (100% of AVs), the network needed 
for traffic circulation is 74.6% of the original one (133.11 km out of 178.51 km).  

↑N ↑N ↑N 

↑N ↑N ↑N 
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(a) 25%, 50%. 

 
(b) 75%, 90%. 

 
(c) 100%. 

Figure 3.61 – RNDP-AVs daily design: AV subnetworks of Scenario II under Hybrid planning (a), (b), and (c) (% 

of AV penetration rate). 

Figure 3.62 illustrates the differential costs of every planning strategy applied to scenario II – which 
ranges between -0.9% and +1.8% in comparison with scenario O. In the first half of the transition 
process, the hybrid planning seems to be the most conservative. However, in both hybrid and IP, 
significant investment will occur at the last stage (100% of AVs), which is null and spread out in the 
earlier design stages in the LTP strategy. 

Figure 3.63 depicts the total travel time in every planning strategy. Here, the incremental strategy 
induces higher travel times in the first half of the transition period. The hybrid strategy seems to be the 
one that least increases travel times. 

 
Figure 3.62 – RNDP-AVs daily design: Differential on 

the generalized costs in Scenario II. 

 
Figure 3.63 – RNDP-AVs daily design: Total travel 

time in Scenario II. 

Once again, according to Figure 3.66, CV detour is unavoidable and the LTP is the strategy that most 
increases CV detour, although that only happens when AV penetration rate is over 90%. Figure 3.68 
shows that CVs will likely experience congestion somewhere between the design stages of AV 
penetration rates in the second quarter of the transition process, between 25% and 50%.Figure 3.67 
shows that AV routes are shortened, which allied with a delay reduction (in Figure 3.69), confirms that 
AVs are traveling on roads that have lower road capacity and speed. Similarly, to the analysis of 
scenario I results, Figure 3.69 indicates AVs might experience congestion when they represent 25% of 
the vehicle fleet. 

↑N ↑N ↑N 
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Figure 3.64 – RNDP-AVs daily design: CV Total 

travel time in Scenario II. 

 
Figure 3.65 – RNDP-AVs daily design: AV Total travel 

time in Scenario II. 

 
Figure 3.66 – RNDP-AVs daily design: CV total 

distance variation in Scenario II. 

 
Figure 3.67 – RNDP-AVs daily design: AV total 

distance variation in Scenario II. 

 
Figure 3.68 – RNDP-AVs daily design: CV total delay 

in Scenario II. 

 
Figure 3.69 – RNDP-AVs daily design: AV total delay 

in Scenario II. 

Between Figure 3.70 and Figure 3.73, the effect of AV subnetworks on congested is evaluated. Figure 
3.70 confirms that every planning strategy decreases the average degree of saturation, which indicates 
that vehicles circulate, on average, at higher speeds. In other words, traffic is more spread out all over 
the network. Still, the length of roadways above practical capacity (DS≥75%) and the congested roads 
(DS≥75%) are impacted negatively in every single strategy (Figure 3.71 to Figure 3.73). This might 
happen, for example, in city centers or zones that absorb a significant share of travel demand, and as 
AV subnetworks start in roads that have lower capacity/speed and road investment restraints the 



Chapter 3 – Subnetworks for Automated Vehicles 

93 

creation of AV subnetworks, these roads get flow which means more congestion. Therefore, AV 
subnetworks should only start when AVs are more than 50% of the fleet. 

 
Figure 3.70 – RNDP-AVs daily design: Average 

degree of saturation in Scenario II. 

 
Figure 3.71 – RNDP-AVs daily design: Congestion at 

incremental planning in Scenario II. 

 
Figure 3.72 – RNDP-AVs daily design: Congestion at 

long-term planning in Scenario II. 

 
Figure 3.73 – RNDP-AVs daily design: Congestion at 

hybrid planning in Scenario II. 

Nevertheless, when road investment is a constraint for designing AV subnetworks, the analysis of the 
three planning strategies revealed that: 

 The design of AV subnetworks should only be done once AVs level 4 reach 50% of the vehicle fleet, 
regardless of the strategy. 

 The long-term planning should be used in the second half of the transition period, i.e., when the initial 
design stages occur when AVs are over 50% of the vehicle fleet. It is also the strategy that mostly 
disperses road investment, and that does not require vast amounts at the end of the period (100% of 
AVs). Nevertheless, the LTP is the strategy that induces CV congestion in the middle of the period 
(50% of AVs) and CV detour at the end of the period (AVs over 90%). 

 The hybrid planning revealed satisfactory throughout the entire transition period in every indicator, 
except the amount of road investment needed for the last design stage (100% of AVs). It is the strategy 
that most mitigates the CV detour problem (in comparison with the other strategies evaluated). 

PLANNING STRATEGIES OVERVIEW 

The previous analyses were helpful to infer wisely on the AV subnetwork creation. It is somehow 
consensual that, in order to avoid CV detour, AV subnetworks will likely circulate in shorter routes 
(lower AV distances) that involve roads with lower capacity/speed since AV passengers experience a 
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lower value of travel time. This evidence has great significance in the remaining results. In the first half 
of the transition period, CV detour (extra distances) is avoided but congestion will likely happen in the 
second quarter of the period (between 25% and 50% of AVs) both for CVs and AVs. In the second half, 
CV detour will likely occur for penetration rates higher than 50%. 

Figure 3.74 summarizes the progression of AV subnetworks in both scenarios under every planning 
strategy. Figure 3.75 depicts the differential generalized costs in comparison with scenario O that did 
not involve AV subnetworks. At pink shadow is represented the optimal area. The optimal zone is 
between both optimality analyses, with and without road investment, whereas in the differential costs 
are optimal when the differential is negative. In both scenarios I and II, without and with road 
investment, the two best design strategies were the hybrid and the LTP – in fact, lines are quite close to 
each other in both cases.  

When no road investment is associated, the hybrid planning is satisfactory except in the latest stages 
(90% of AVs) because it worsens CV detour. The LTP planning strategy is beneficial except when CVs 
have an equal share in the vehicle fleet with AVs (50%) – in this case, CVs will likely experience 
congestion (higher delays) in the surroundings of AV subnetworks. 

When road investment is needed and part of the decision process, the IP and hybrid will demand a 
significant investment action when all vehicles are AVs. The LTP distributes the investment. However, 
while the IP and hybrid might start whenever stage (penetration rate), the LTP implies that distribution 
and should only be applied if the initial design stages are in the first half of the period. 

 
Figure 3.74 – RNDP-AVs daily design: progressive subnetworks in every planning strategy. 

 
Figure 3.75 – RNDP-AVs daily design: differential generalized costs in every planning strategy. 
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SUMMARY 

In this chapter, the Road Network Design Problem for the deployment of Automated Vehicles (RNDP-
AVs) is proposed to design AV subnetworks in urban areas. The mathematical model is formulated as 
a binary NLP problem in a single-level formulation, which evaluates most combinations of the initial 
problem. The main contribution of this research problem is focused on the progressive decision of which 
planning strategy should be used to design AV subnetworks. The traffic equilibrium varies according 
to AVs’ operational efficiency and the decrease of the occupant's value of travel time. Three progressive 
planning approaches are proposed and evaluated: the incremental planning, where dedicated roads are 
added gradually as the AV penetration rate evolves; the long-term planning, where the subnetwork is 
reversely created from the long-term optimal solution; and the hybrid planning, where the subnetwork 
is limited from early stages in order to reach the optimal final configuration. The consideration of road 
investment as part of the decision process and the evaluation of its impact is another contribution. Two 
types of design are evaluated: first, the most common design in practice is the peak-hour, as it is believed 
that, by designing that stage, the congestion problem is highly mitigated; the second analyses a travel 
demand of a typical day that shifts its trips and O-Ds every hour. 

The RNDP-AVs model is applied to the urban network of the city of Delft. Three scenarios were 
performed: one without AV subnetworks, and two scenarios with AV subnetworks, including or not 
road investment. All scenarios are implemented in several AV market penetration rates. The RNDP-
AVs model proved to be an easy tool to guide the creation of AV subnetworks as a function of the 
penetration rate, either designing for the peak-hour or the whole day. The model is run within acceptable 
computation time – each transition period under a planning strategy can be obtained in less than a day. 

In the peak-hour analysis, AVs subnetwork first appears in zones that are highly demanded (residential 
areas) and in which there is a compromise between the AV benefits, in terms of travel time cost savings, 
and CV detours. Through the experiments done at each penetration rate, it was found that for the 
considered peak-hour, AV subnetworks are a useful strategy to reduce the overall congestion and 
generalized costs, while degrading congestion in the surroundings of the AV subnetworks.  

The following conclusions can be drawn from the experiments on the planning approaches designed for 
the peak-hour: When road investment for infrastructure improvement is part of the problem, the 
incremental planning strategy seems to be the best strategy and should be implemented until AVs are 
25% of the vehicle fleet. However, the long-term planning strategy is preferred if the road investment 
should be made beforehand  – possibly starting from the early stages of deployment (10%); When the 
road investment is irrelevant, the hybrid planning strategy is preferred and should be implemented in 
the first half of the transition period. The long-term planning strategy is equally favourable but should 
only be initiated when AVs are at least 25% of the vehicle fleet to avoid the extra cost and CV detour 
in the early stages of AVs deployment. CV detour might be considered the tie-breaking criteria 
regarding the decision of the best planning strategy - incremental planning is the strategy that mitigates 
the most this problem. 

The implications of the peak-hour design in the remaining hours of the day were tested. Since the travel 
demand of the peak-hour does not coincide with the remaining demand throughout the day, the design 
for the peak hour implied that CV owners with other trips routines and would be constrained to get 
inside or leave AV subnetworks, so an alternative mode of transport is required - walking was evaluated 
in this sense. Nevertheless, this situation only happened for significant shares of AVs (75% onwards) 
from the large AV subnetworks at this stage. 

Subsequently, designing for the whole day revealed a substantial decrease on the total travel costs for 
the whole day, as it optimizes the road network configuration for the daily demand. From the 
experiments on the planning approaches designed for the whole day of the Delft case-study, the 
following conclusions can be drawn:  
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 When road investment for infrastructure improvement is part of the problem, the hybrid planning is 
very satisfactory as it is the strategy that most mitigates the CV detour problem. It should be applied 
mainly if AV subnetworks only appear after AVs have already a significant share of the vehicle fleet 
(over AV penetration rates of 25%). Nevertheless, the long-term planning strategy is preferred because 
it distributes the road investment throughout the period since the early stages of deployment (10%).  

 When road investment is not evaluated, the LTP is indicated when AVs subnetworks first start to be 
designed in the second half of the transition period (50% of AVs onwards). At that stage, i.e., when 
AVs and CVs are equally balanced (50%), CVs experience more congestion (30% increased delay). 
The hybrid here revealed a good performance and can be used since the first half of the transition 
period, but then CV detour occurs when AVs are 90% of the fleet. 

Figure 3.76 summarizes the dynamics around the creation of AV subnetworks allied with AVs road 
capacity increase and AVs value of travel time reduction. The previous experiments showed that the 
minimization of travel time costs mostly takes advantages of the reduction of the AVs value of travel 
time to decide whether AV subnetworks should exist. This was depicted by an increase of the total 
travel time that can be explained either from AVs or CVs perspective. CVs travel time can increase 
either if CVs detour or if CVs experience congestion in the surroundings of AV subnetworks. Both can 
be depicted by distance and delay indicators. Similarly, AVs experience higher travel times, also 
because their value of travel time (cost) is reduced in AV subnetworks. Therefore, travel times can 
increase either if AVs experience congestion or if AVs detour. AVs detour is explained in one of the 
following situations: if the total AV distance increases, it means that AVs take longer routes to detour 
regular roads where CVs circular; or if the total AV distance decreases, it means that AV take shorter 
routes, but such increase of total travel time can occur regardless the AV delay. If an AV delay increase 
occurs, it’s congestion that is increasing total travel time. If a AV delay reduction occurs, it means that 
AVs shorter routes are being performed at lower speed roads that turned into AV dedicated roads. 
Nevertheless, Figure 3.76 somehow summarizes what happens overall to CVs and AVs in terms of 
distance and delay. 

 

Figure 3.76 – Summary of the RNDP-AVs 

AV subnetworks have an essential role in segregating AVs from mixed traffic and the design of AV 
subnetworks first start in lower capacity roads, deviating AVs to shorter routes (lower distances) on 
lower speed roads (higher travel times as the AVs value of travel time reduces). The reduction of the 
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AVs value of travel time might conduct the dispersion of the AVs traffic, leaving highway arterials and 
driving in smaller urban roads. In this sense, the creation of AV subnetworks in these zones might be 
welcomed, since it “takes out” AVs from regular roads where CVs are used to drive and lower speeds 
could be positive at a road safety perspective in urban areas, especially when the first AVs level 4 start 
to be deployed. Overall, we may conclude that AV subnetworks should be designed once AVs reach 
25%, but the performance of the system will only show results when AVs are over 50% of the vehicle 
fleet. 

However, the decision also depends on the AV travel demand and diffusion of AVs over time because 
it will pressure the road network with more traffic flow and push forward/accelerate the creation of AV 
subnetworks by influencing the time lag between design stages. For instance, if the time lag from 1% 
to 50% of AVs is much longer than the time lag from 50% to 90% of AVs, the CV detour would be 
very present, which turns the incremental the best strategy to be considered regardless the road 
investment consideration.  

The application of the RNDP-AVs model points to the need of designing a subnetwork for AVs. Though 
the model was formulated with the introduction of some simplifications and assumptions, for example, 
a constant mixed traffic efficiency coefficient and a constant road investment per kilometer, an extended 
model joining together the decision AV subnetworks and strategic location problem for V2I 
communication sites (5 km of radius), as well with traffic efficiency parameters more accurate, could 
be solved through heuristic methods, though the optimal solution might not be guaranteed. Besides, an 
improvement could be taking public transport as another alternative mode of transport, but it would 
involve both bus routes and schedules, transforming the whole road network design problem into a 
massive combinatorial transit assignment problem. Moreover, it is also possible to add improvements 
such as other cost components involving pollution, noise reduction, or other benefits, for example, 
freeing space in the city center (e.g., parking and gas stations). 
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REVERSIBLE LANES FOR 
AUTOMATED TRAFFIC 

 

 

INTRODUCTION 

Reversible lanes are road car traffic lanes whose flow direction can be changed to accommodate 
shifting demands. Currently, this strategy is applied to median (central) lanes at multilane roads. 
Up until now, reversible lanes are of complex implementation because of difficult human driving 
adjustment and the need for investment on variable traffic signs (Cao et al., 2014). Previous 
research on road safety has always revealed that reversible lanes have a negative impact on road 
safety. However, with the promise of vehicle-to-infrastructure (V2I) communication and vehicle 
automation, car-to-car frontal crashes in reversible lanes can be highly mitigated (Kulmala et al., 
2008). 

In this sense, the new AVs paradigm clearly supports the use of reversible lanes in urban 
environments, as long as V2I guarantees that vehicles are informed of such changes. As reversible 
lanes have a direct impact on road capacity, the following research questions arise: Can reversible 
lanes contribute to mitigating congestion in urban areas? What impacts can one expect from this 
strategy? 

A novel network design problem is proposed in this thesis, designated as the Dynamic Reversible 
Lane Network Design Problem (DRLNDP) for AVs traffic. The DRLNDP is formulated as a 
macroscopic mathematical model in a mixed-integer non-linear programming (MINLP) problem. 
It aims at replicating the upcoming benefits of reversible lanes at a network level and testing their 
effects in two distinct traffic assignment mechanisms: user-equilibrium (UE) versus system-
optimum (SO) traffic assignment, i.e., the selfish and unselfish behavior, respectively. The 
number of lanes for each road direction is optimized while a traffic assignment equilibrium is 
computed for the given traffic demand (trips) and supply (road capacity).  

The remaining of this chapter is organized as follows. Section 4.2 presents a background literature 
review. Section 4.4 introduces the modeling formulation of the DRLNDP problem. In Section 
4.5, the application to the Delft case study is presented. Finally, Section 4.6 reports the main 
summary and conclusions of this chapter. 
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BACKGROUND 

The literature around reversible lanes has been increasing in the last two decades. The benefits of 
such a dynamic strategy are evident in road capacity increase and are applied in many facility 
types (Wolshon and Lambert, 2006). However, traffic conflicts have been identified due to the 
human maladaptation to reversible lanes, which led to low operating efficiency and a low lane 
utilization rate (Cao et al., 2014). In practice, they are often applied as median reversible lanes in 
bridges (Bede and Torok, 2014) and freeway construction zones (Waleczek et al., 2016). 

Hitherto research has been focusing on signalized intersections and median lane problems (Bede 
and Torok, 2014; Wang and Deng, 2015). Reversible lane problems assumed that there would be 
at least one lane in each road direction, but that assumption is no longer needed once vehicles 
become automated and a smart system is put in place to control the roadway layout. AVs’ driving 
task will be performed automatically and autonomously and, under a connected traffic control 
system, be informed of the road lane configuration dynamically (Chu et al., 2017). The roadway 
layout would then be decided dynamically as a function of the ongoing traffic flow to achieve the 
maximum benefits of this strategy. 

Most of the existent research related to reversible lanes involves the optimization of signalized 
intersections, from a microscopic perspective. Geraldes (2011) presented a methodology using 
genetic algorithms and micro-simulation techniques (AIMSUN) to estimate possible gains for 
real-time lane topological changes in a small network with eight signalized junctions while 
assuming an advanced traffic information system. Zhao et al. (2014) developed a single-level 
optimization model, formulated in mixed-integer linear programming (MILP), to design median 
reversible lanes while accounting for the turns and signal timing features, in an urban corridor 
with three signalized intersections. Wang and Deng (2015) defined a bi-level problem to optimize 
the capacity of the signalized road network by allocating reversible lanes in the upper level; and 
then performed a deterministic UE assignment, solved by genetic algorithms and applied the 
method to a numerical example. Zhao et al. (2015) focused on signalized diamond interchanges, 
presenting a binary mixed-integer linear program (BMILP) that simultaneously optimizes lane 
markings, dynamic usage of the reversible lane, and signal timings.  

Most of the literature concerning reversible lanes has been focused on emergency rescue and 
evacuation in metropolitan regions threatened by hurricanes and catastrophes (Hua et al., 2015; 
Tuydes and Ziliaskopoulos, 2007; Williams et al., 2007; Wolshon, 2002; Zhang et al., 2019). 
Looking at traffic operations, Wu et al. (2009) optimized reversible lanes within a traffic network 
by formulating a bi-level program, minimizing the total system cost based on flow entropy at the 
upper-level, and on the lower level the stochastic UE assignment; this was solved by a chaotic 
optimization algorithm. Karoonsoontawong and Lin (2011) proposed a simulation-based 
optimization problem on a grid network, through a bi-level formulation for the time-varying lane-
based capacity reversibility problem, and solved it by genetic algorithms and VISTA simulator 
that simulates traffic in UE conditions. Lu et al. (2018) proposed a bi-level model that considers 
queueing at signalized junctions: the upper model optimizes the reversible lane assignment that 
can be solved with the enumeration method or the Monte Carlo Algorithm for small and large 
networks, respectively; the lower level is a stochastic UE model that is solved by the method of 
successive averages. Within the topic of AVs, Chu et al. (2017) combined dynamic reversible 
lanes with AVs routing and scheduling though limited by not considering congestion (travel times 
are an input). 

Table 4.1 briefly summarizes the literature review around the topic of reversible lanes. 
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Table 4.1 – Summary of the literature review. 

Research 
Methodological Approach Formulation 

Traffic 
assignment 

Application AVs 
Simulation Optimization 

Single 
level 

Bi-
level 

UE SO 

Geraldes (2011) AIMSUN GA  X X  8 signalized 
intersections 

 

Zhao et al. (2014)  MILP  
X 

 - - 3 signalized 
intersections 

 

Wang and Deng 
(2015) 

 GA  X X  4 signalized 
intersections 

 

Zhao et al. (2015)  BMILP   - - 2 signalized 
intersections 

 

Wu et al. (2009)  COA  X X  5 link network  

Karoonsoontawong 
and Lin (2011) 

VISTA GA  X     

Lu et al. (2018)  MCA & 
MSA 

 X X  25 link network  

Mo et al. (2019)  Modified 
algorithm 

  - - 26 link network  

Chu et al. (2017)  ILP X  - - 51 link network X 

METHODOLOGY 

The decision problem regarding reversible lanes is also linked to the study of the contraflow 
problem, usually studied regarding evacuation operations. Reversible lanes in the context of AVs 
are therefore a form of network design problem both at the tactical (e.g., orientation of streets, 
lane allocation, and exclusive lanes) and at the operational level (e.g., scheduling problem). 
Typically formulated as bi-level, the upper-level decides on the lanes changing whose 
performance is dependent on the lower-level travelers’ routing decisions (Magnanti and Wong, 
1984). The formulation of such problem transforms, therefore, two problems in a complex 
problem with NP-hard solving nature (Ben-Ayed et al., 1988). Heuristics, metaheuristics and 
iterative optimization methods usually deal with this complexity, yet a local optimum may be 
found instead of the global optimum.  

Most of these studies have been formulated as bi-level problems to account for both the 
perspective of system-optimal design and travelers’ selfish routing behavior. They are generally 
solved in two-parts through metaheuristics (e.g., genetic algorithms), making the search for the 
optimal solution hard and mostly undetermined. The proposal for a single-level optimization 
model puts together both perspectives in a simpler formulation. It considers traffic congestion and 
tests the reversible lanes’ traffic strategy interaction with the traffic assignment problem in UE 
and/or SO conditions. The complexity of solving the problem is reduced, and global optimality 
can be guaranteed. Joining such interaction between the reversible lanes’ strategy and the traffic 
assignment method makes this problem highly combinatorial. Its calculation time is proportional 
to the network size and travel demand. 

THE DYNAMIC REVERSIBLE LANE NETWORK DESIGN PROBLEM (DRLNDP) 

The following mathematical formulation is a single-level problem, deciding on the reversible 
lanes while performing the traffic assignment in the same problem (Conceição et al., 2020). It 
admits periodic lane reconfigurations given a specific time-varying demand (origin-destination 
matrix for AVs for different periods of the day). It is assumed a 100% coverage of V2I 
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communication, and all AVs are equipped with this technology so that they are informed of the 
lane configuration throughout the network. 

This is a network optimization problem from a macro modeling perspective. All lanes are 
considered to be potentially reversible, and at every road intersection, the model guarantees that 
at least one lane converges or diverges from that node. 

The interaction between the reversible lanes and intersection performance is not evaluated in this 
paper, as signal control in a scenario with AVs might not be needed, and such performance is still 
mostly unknown. Also, pedestrians' interaction with reversible lanes is not part of the main 
problem, though naturally there should be traffic lights managing their crossing for road safety 
reasons. 

FORMULATION IN MINLP 

Sets 

𝑰 = (1, . . . , 𝑖, . . . , 𝐼): 
set of notes in the network, where 𝐼 is the number 
of nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀𝑖, 𝑗 ∈ 𝐼 ∩ 𝑖𝑗: 
set of arcs of the road network where vehicles 
move. 

𝑷 = {. . . , (𝑜, 𝑑), . . . } ∀𝑜, 𝑑 ∈ 𝐼 ∩ 𝑜𝑑: 
set of origin-destination pairs that represent the 
travel demand in the network. 

𝑯 = {1, … , ℎ, … , 24} : hours of the day 

Parameters 

𝐷
௢ௗ

 ௛೔௛೑: trips from an origin node 𝑜, towards a destination node 𝑑, from period ℎ௜ to period 
ℎ௙, ∀ 𝑜, 𝑑 ∈ 𝑫 ∩  ℎ௜, ℎ௙ ∈ 𝑯. 

𝑡௜௝
௠௜௡: minimum driving travel time in free-flow speed at link (𝑖, 𝑗) ∈ 𝑹, expressed in 

hours. 

 𝐿௜௝
௖௨௥௥௘௡௧: the current number of lanes at link (𝑖, 𝑗) ∈ 𝑹. 

𝐶௟௔௡௘: average lane capacity of link (𝑖, 𝑗) ∈ 𝑹, expressed in vehicles for the period of 
analysis. 

𝑀: big number. 

 

Decision variables 

𝑙
௜௝

௛೔௛೑  : integer variable equal to the number of lanes of each link (𝑖, 𝑗) ∈ 𝑹, from period 
ℎ௜ ∈ 𝑯 to period ℎ௙ ∈ 𝑯. 

𝑓
௜௝௢ௗ

௛೔௛೑  : continuous variable that corresponds to the flow of AVs in each link (𝑖, 𝑗) ∈ 𝑹 and 
each OD pair (𝑜, 𝑑) ∈ 𝑷 ∩ 𝐷௢ௗ

௠ > 0, from period ℎ௜ ∈ 𝑯 to period ℎ௙ ∈ 𝑯. 

 

Objective Function 

The objective function (4.1) minimizes the traffic assignment function in UE conditions. The 
alternative objective function (4.2) reproduces the SO traffic assignment. 
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Min(UE)= ෍ න 𝑡
௜௝

௛೔௛೑  𝑑𝑓
௙

೔ೕ

೓೔೓೑

଴(௜,௝)∈ோ

 (4.1) 

Min(SO)= ෍ 𝑓
௜௝

௛೔௛೑  𝑡
௜௝

௛೔௛೑

(௜,௝)∈ோ

 
(4.2) 

The BPR function (4.3) reflects the link performance functions, with α and 𝛽 as parameters. 

𝑡
௜௝

௛೔௛೑  = 𝑡௜௝
௠௜௡ ൦1 + 𝛼 ቌ

𝑓
௜௝

௛೔௛೑

𝑙
௜௝

௛೔௛೑𝐶௟௔௡௘ +
1
𝑀

ቍ

ఉ

൪ (4.3) 

Constraints 

The objective functions are subject to the following constraints (4.4)-(4.14). 

෍ 𝑓
௢௝௢ௗ

௛೔௛೑

௝∈𝑰

= 𝐷
௢ௗ

௛೔௛೑ , ∀  𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, ℎ௜ , ℎ௙ ∈ 𝑯 
(4.4) 

෍ 𝑓
௝ௗ௢ௗ

௛೔௛೑

௝∈𝑰

= 𝐷
௢ௗ

௛೔௛೑ , ∀  𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, 𝑣 ∈ 𝑽, ℎ௜ , ℎ௙ ∈ 𝑯 
(4.5) 

෍ 𝑓
௜௝௢ௗ

௛೔௛೑

௝∈𝑰

− ෍ 𝑓
௝௜௢ௗ

௛೔௛೑

௝∈𝑰

= 0, ∀ (𝑜, 𝑑) ∈ 𝑷, 𝑖 ∈ 𝑰, 𝑣 ∈ 𝑽, ℎ௜ , ℎ௙ ∈ 𝑯 ∩ 𝑖 ≠ 𝑜, 𝑑 
(4.6) 

𝑓
௜௝

௛೔௛೑ = ෍ 𝑓
௜௝௢ௗ

௛೔௛೑

(௢,ௗ)∈𝑷

, ∀ (𝑜, 𝑑) ∈ 𝑷, (𝑖, 𝑗) ∈ 𝑹 
(4.7) 

𝑙
௜௝

௛೔௛೑ ≥ 0 ∀ (𝑖, 𝑗) ∈ 𝑹, ℎ௜ , ℎ௙ ∈ 𝑯 (4.8) 

𝑙
௝௢

௛೔௛೑ ≥ 1 ∀  𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, ℎ௜ , ℎ௙ ∈ 𝑯 (4.9) 

𝑙
ௗ௝

௛೔௛೑ ≥ 1 ∀  𝑗 ∈ 𝑰, (𝑜, 𝑑) ∈ 𝑷, ℎ௜ , ℎ௙ ∈ 𝑯 (4.10) 

𝑙
௜௝

௛೔௛೑ ≤  𝐿௜௝
௖௨௥௥௘௡௧ +  𝐿௝௜

௖௨௥௥௘௡௧  ∀ (𝑖, 𝑗) ∈ 𝑹, ℎ௜ , ℎ௙ ∈ 𝑯 (4.11) 

𝑙
௜௝

௛೔௛೑ + 𝑙
௝௜

௛೔௛೑ = 𝐿௜௝
௖௨௥௥௘௡௧ +  𝐿௝௜

௖௨௥௥௘௡௧ , ∀ (𝑖, 𝑗) ∈ 𝑹, ℎ௜ , ℎ௙ ∈ 𝑯  (4.12) 

𝑙
௜௝

௛೔௛೑  ∈  ℕ଴ ∀ (𝑖, 𝑗) ∈ 𝑹, ℎ௜ , ℎ௙ ∈ 𝑯  (4.13) 

𝑓
௜௝௢ௗ

௛೔௛೑ ∈ ℝ ∀ (𝑜, 𝑑) ∈ 𝑷, (𝑖, 𝑗) ∈ 𝑹, ℎ௜ , ℎ௙ ∈ 𝑯  (4.14) 

Constraints (4.4)-(4.6) define the traffic assignment problem. For each O-D pair, AV flows are 
generated (4.4) in the origin node 𝑜 ∈ 𝑶, absorbed in the destination node 𝑑 ∈ 𝑫 (4.5), and there 
is a flow conservation (4.6) in the intermediate nodes. Constraints (4.8)-(4.12) define the 
reversible lanes’ problem. The first three constraints set the lower bound of the lane decision 
variables. In the intermediate nodes (4.8), flow is passing through and constraints (4.6) already 
assure that there is at least one lane converging and diverging from every node since the flow 
arriving must leave that node. However, in nodes (intersections) that generate or absorb trips, 
there must be one lane that converges and diverges to and from that node – constraints (4.9) and 
(4.10). Constraints (4.11) set the upper bound, i.e., the number of lanes of both road directions. 
Constraints (4.12) ensure that the sum of the lanes of both directions must correspond to the 
existent number of lanes on both sides of the road. Constraints (4.13) and (4.14) set the domain 
of the decision variables. 
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SCENARIOS 

In order to understand the benefits of reversible lanes and their traffic implications, four scenarios 
were defined and the results are detailed in Table 4.2. Scenario O is the base scenario and it 
represents the current traffic UE situation without reversible lanes. Scenario A represents the first 
days of implementation, showing the immediate impacts (short-term) of reversible lanes whereby 
AVs could still be following their previous paths (from scenario O). In scenario B, the model 
optimizes the reversible lane problem while performing a UE, meaning that AVs choose their 
path minimizing their individual travel times (selfish behavior), i.e., a UE scenario likely to 
happen in the long-term if there is no centrally managed traffic system. Scenario C optimizes the 
reversible lane problem under a SO traffic assignment which is only possible if the system (with 
V2I connectivity) gives instructions to AVs during their trips, forcing them to follow the system-
optimal paths (unselfish behavior). Lastly, scenario Z was introduced for comparison purposes, 
holding a pure SO traffic assignment without reversible lanes. In this sense, both scenarios O and 
Z are NLP models with continuous variables (traffic flow) within convex objective functions and 
vital to assure the convergence of the MINLP models (scenarios A, B and C).  

UE considers two main assumptions (Sheffi, 1985): first, all users have identical driving behavior; 
second, users have full information (i.e. travel time on every possible path), meaning that they 
consistently make the correct decisions regarding path choice. The SO assumes that vehicles 
choose their paths in order to benefit the whole social system (Newell, 1980). These assumptions 
can only be made in a scenario where vehicles will be directed to choose specific paths without 
the intervention of human drivers – a reality in a future with fully AVs. Smart cities having a 
connected traffic control system with V2I being aware of the traffic situation (e.g., congested 
roads, accidents and construction work) can inform and instruct vehicles to make socially 
desirable path choices.  

Table 4.2 – Scenarios description 

  
Traffic 

Assignment  

Reversible 
Lanes 

Problem 

Type of 
Mathematica

l Model 

Scenario O Current traffic situation without reversible lanes UE No NLP 

Scenario A First days after implementing reversible lanes, AVs 
follow previous paths (scenario O) 

No Yes MINLP 

Scenario B Long-term scenario with reversible lanes and UE 
traffic conditions. AVs choose their paths (selfish 
behavior) 

UE Yes MINLP 

Scenario C Long-term scenario with reversible lanes and SO 
traffic conditions. The system chooses AV paths 
(unselfish behavior) 

SO Yes MINLP 

Scenario Z A SO traffic situation without reversible lanes SO No NLP 

 

The pseudo-code used to run these scenarios is detailed in the following algorithms 1-3. 
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Algorithm 1 Scenarios O & Z: Traffic Assignment Problem without the Reversible Lane 
Problem  
1: 
2: 
3: 

4: 
5: 
6: 
7: 
8: 
9: 
10: 

ℎ௜ = 0  
While ℎ ≤ 𝑯 do 
        ℎ௙ = ℎ௜ + 1  

        𝑙
௜௝

௛೔௛೑ = 𝐿௜௝
௖௨௥௥௘௡௧ 

        function OBJECTIVE FUNCTION 
                min(𝑈𝐸 𝑜𝑟 𝑆𝑂) 
        end-function 
        Solve the DRLNDP 
        ℎ௜ = ℎ௜ + 1 
        Clear all decision variables 
end-do 

 Sets the problem of reversible lanes to be 
solved periodically, i.e., per hour 

 
 
 Fix the lane variables from the currently 

existing lane topology.  
 
 Minimize the objective function which for 

scenario O is function (4.1) and for scenario 
Z is (4.2). 

 
 

 

Algorithm 2 Scenario A: the Reversible Lane Problem without changing the Traffic 
Assignment 
1: 
2: 
3: 

4: 

5: 
6: 
7: 
8: 
9: 
10: 

ℎ௜ = 0  
While ℎ ≤ 𝑯 do 
        ℎ௙ = ℎ௜ + 1 

        read 𝑓
௜௝௢ௗ

௛೔௛೑  variables from scenario O 

        function Objective Function 
                min(𝑈𝐸) 
        end-function 
        Solve the DRLNDP 
        ℎ௜ = ℎ௜ + 1 
        Clear all decision variables 
end-do 

 Sets the problem of reversible lanes to be 
solved periodically, i.e., per hour 

 
 
 Fix the traffic flow variables to those obtained 

in scenario O. 
 

 Minimize the objective function (4.1). 
 

 

THE DRLNDP MODEL APPLIED TO THE CITY OF DELFT, THE NETHERLANDS 

The DRLNDP model is exemplified for the case study city of Delft, in the Netherlands. Figure 
4.1 illustrates the network of the city which has been simplified to 46 nodes and 122 links that 
represent 61 road segments, i.e., each link represents a direction. There are two types of road links 
with one (1-1) or two lanes (2-2) per direction with a free-flow speed of 50 and 70 km/h, 
respectively; and a lane capacity of 1441 vehicles per hour. The city center is close to node 3, 
while TU Delft campus, the biggest traffic generator, is close to node 31. Major residential areas 
are in the southern region (e.g., node 6). 

Algorithm 3 Scenarios B & C – Both the Reversible Lane and Traffic Assignment Problems 
(UE & SO) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 

ℎ௜ = 0  
While ℎ ≤ 𝑯 do 
        ℎ௙ = ℎ௜ + 1  
        function OBJECTIVE FUNCTION 
                min(𝑈𝐸 𝑜𝑟 𝑆𝑂) 
        end-function 
        Solve the DRLNDP 
        ℎ௜ = ℎ௜ + 1 
        Clear all decision variables 
end-do 

 Sets the problem of reversible lanes to be 
solved periodically, i.e., per hour 

 
 
 
 Minimize the objective function which for 

scenario B (UE) is (4.1) and for scenario C 
(SO) is (4.2).  
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Figure 4.1 – Network representation of the city of Delft, the Netherlands (Conceição et al., 2020). 

The traffic demand collected by the Dutch government (MON 2007/2008) is available for 
transport research. The filtered dataset contains a collection of 152 trips from 29 sampled 
households who travel inside the city on a working day in the year of 2008, ignoring external 
trips. Expansion factors were given for a typical working day, usually varying from 200 to 1300, 
leading to 137832 trips by 14,640 households, yielding an average sample rate of 0.2% (Correia 
and van Arem, 2016). The final travel demand corresponds to 120600 trips through 58 O-D pairs 
over the day (Figure 4.2). 

  
Figure 4.2 – Trips data of the city of Delft, the Netherlands (Conceição et al., 2020). 

The BPR (United States Bureau of Public Roads, 1964) function (4.3) uses the reference values: 
α = 0.15, β = 4 . 

The DRLNDP model is here implemented in the Mosel language and solved by Xpress 8.1 (FICO, 
2017) in a computer with a processor of 4.2 GHz Intel Core i7-7700K and 16GB RAM. The 
MINLP problem is solved by the FICO Xpress-NLP SLP solver designed for large scale 
nonconvex problems that use a mixed-integer successive linear programming approach, 
combining branch and bound and successive linear programming. 

↑N 
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For convex NLP problems, global optimality is guaranteed, and the same applies for MINLP 
problems if its continuous relaxation is convex. However, the relationship between the traffic 
assignment problem and the reversible lane problem is not linear; hence, the global optimality 
can be compromised. For more information about the Xpress Solver (Fair Isaac Corporation, 
2019), and the existent solvers for convex MINLP, the reader may consult (Kronqvist et al., 2019). 

EXPERIMENTS 

Table 4.3 summarizes the results of the experiments, showing the value of the objective function 
(expressed in hours vehicles) and its computation time. For the MINLP models (scenarios A, B 
and C), it is presented the differential of the objective function with its corresponding NLP model 
(scenarios O or Z).  

The separate problems are run in a few seconds: scenario O and Z just took 3 and 4 seconds, while 
scenario A took eleven seconds because of its mixed-integer nature. As Scenario B and C hold 
the complex RLNDP model, the calculation time rose to seventeen and fifty-three minutes, 
respectively. 

Table 4.3 – Model results: objective function. 

Period 
Objective Function (1) Objective Function (2) 

Scenario O Scenario A Scenario B Scenario C Scenario Z 
 [s]  ∆O [s]  ∆O [s]  ∆Z [s]  [s] 

6 7 105 0.1 105 0% 0.3 105 0% 0.4 105 0% 0.4 6346 0 
7 8 729 0.2 721 -1% 0.4 721 -1% 0.9 723 -3% 2.1 937 0 
8 9 1353 0.2 1338 -1% 0.4 1325 -2% 0.8 1374 -3% 4.0 2058 0 
9 10 2541 0.3 2528 -1% 1.4 2523 -1% 219.6 2588 -4% 1768.6 4588 1 

10 11 1733 0.2 1711 -1% 1.0 1673 -3% 21.6 1682 -11% 113.7 2140 0 
11 12 2220 0.2 2217 0% 0.7 2193 -1% 14.7 2220 -3% 433.3 2884 0 
12 13 1831 0.2 1826 0% 0.9 1825 0% 395.6 1851 -1% 764.1 2204 0 
13 14 353 0.1 345 -2% 0.4 345 -2% 0.5 345 -10% 0.5 391 0 
14 15 2046 0.2 2016 -1% 0.6 1934 -5% 8.8 1984 -6% 39.9 5330 0 
15 16 843 0.1 841 0% 0.6 841 0% 6.8 843 -1% 8.0 863 0 
16 17 2194 0.2 2124 -3% 0.5 2078 -5% 5.8 2085 -10% 42.7 3553 0 
17 18 374 0.1 370 -1% 0.4 370 -1% 0.5 370 -5% 0.5 391 0 
18 19 1120 0.2 1117 0% 0.4 1117 0% 6.5 1121 -1% 38.6 1302 0 
19 20 247 0.1 247 0% 0.7 247 0% 0.4 247 0% 0.4 250 0 
20 21 33 0.1 33 0% 0.3 33 0%- 334.4 33 0% 0.4 33 0 
21 22 638 0.2 627 -2% 0.3 615 -4% 1.4 618 -7% 4.4 706 0 
22 23 594 0.1 544 -8% 0.5 537 -10% 0.7 569 -23% 1.0 738 0 
23 24 404 0.1 402 -1% 0.4 402 -1% 0.4 402 -2% 0.4 416 0 
24 1 404 0.1 353 -13% 0.3 346 -14% 0.4 346 -31% 0.4 545 0 

Total  19761 00:00:03 19466 -1% 00:00:11 19230 -3% 00:17:00 19475 -6% 00:53:43 29437 00:00:04 
 [h veh] [h:m:s] [h veh]  [h:m:s] [h veh]  [h:m:s] [h veh]  [h:m:s] [h veh] [h:m:s] 

 

Figure 4.3 (a) analyzes the number of reversible lanes that vary every hour to the travel demand 
in order to optimize the overall traffic system performance. Figure 4.3 (b) depicts in box charts 
the variance of reversible lanes, revealing the hours that are outliers in the dataset. Figure 4.3 (c) 
shows the percentage of roads whose lane directions were changed throughout the day. It also 
shows the percentage of road links that became one-way roads. On average, 19% of the road links 
have reversible lanes, and 9% switch from two-way to one-way direction during the day. It is 
clear that reversible lanes are optimal throughout the day, even with the current driving paths 
(scenario A). In the long-term, such traffic rearrangement towards UE (scenario B) would need 
fewer reversible lanes than towards a SO traffic assignment (scenario C) (check Table 4.4). 
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(a) Scenario analysis. 
 

(b) Reversible lanes (no.) 

 
(c) Road links analysis 

Figure 4.3 – Graphical analysis of the reversible lanes strategy throughout the day: (a) Scenario analysis; 

(b) number of reversible lanes; (c) Road link analysis. 

Table 4.4 – Model results: reversible lanes. 

Period 
Reversible lanes [no.] Road links with reversible lanes [%] Road links that lost direction [%] 

Scenario 
A 

Scenario 
B 

Scenario 
C 

Scenario 
A 

Scenario 
B 

Scenario 
C 

Scenario 
A 

Scenario 
B 

Scenario 
C 

6 7 16 16 16 6% 6% 6% 3% 3% 3% 
7 8 60 60 62 27% 27% 31% 13% 13% 15% 
8 9 68 48 52 31% 21% 23% 15% 10% 11% 
9 10 38 42 44 24% 28% 28% 12% 14% 14% 

10 11 64 62 74 31% 33% 37% 15% 16% 19% 
11 12 46 54 56 23% 28% 30% 12% 14% 15% 
12 13 42 42 44 19% 18% 26% 9% 9% 13% 
13 14 28 28 28 8% 8% 8% 4% 4% 4% 
14 15 46 56 46 23% 29% 22% 11% 15% 11% 
15 16 44 44 58 16% 16% 24% 8% 8% 12% 
16 17 72 74 82 34% 35% 38% 17% 18% 19% 
17 18 30 30 30 15% 15% 15% 7% 7% 7% 
18 19 32 32 48 16% 16% 22% 8% 8% 11% 
19 20 22 22 22 7% 7% 7% 4% 4% 4% 
20 21 2 2 2 2% 2% 2% 1% 1% 1% 
21 22 40 38 40 18% 18% 18% 9% 9% 9% 
22 23 40 32 32 14% 11% 11% 7% 5% 5% 
23 24 48 48 48 22% 22% 22% 11% 11% 11% 
24 1 36 28 28 12% 8% 8% 6% 4% 4% 

Total  774 758 812 18% 18% 20% 9% 9% 10% 
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Reversible lanes are implemented hourly, so the design changes throughout the day in the 
network. Figure 4.4 illustrates the lane configuration for the period between 9 to 10 am. The 
roadway layout is colored according to types: roads with one lane per direction (type 1-1); roads 
with two lanes per direction (type 2-2) or one-way roads with two lanes (type 2-0); roads with 
three lanes in one direction and one lane in the opposite one (type 3-1); and one-way roads with 
four lanes (type 4-0). During this period from 9 am to 10 am it is clear that reversible lanes are 
mostly needed in the southern region, close to residential areas, as people commute to work. 
Besides, the northern part of the network highly varies amongst the scenarios A, B and C.  

(a) Scenario A.  
 

(b) Scenario B.  

 
(c) Scenario C. 

Figure 4.4 – Lane configuration for the period between 9h-10h am (Conceição et al., 2020). 

↑N ↑N 

↑N 
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Table 4.5 – Model results: traffic performance indicators 

Scenario  
Period 

Average Degree of Saturation [%] Average Congestion [%] Congested road links (≥100%) [km] 
O A B C Z O A B C Z O A B C Z 

6 7 39.3% 24.1% 24.1% 24.1% 39.3% 1.8% 1.2% 1.2% 1.2% 1.8% 0.00 0.00 0.00 0.00 0.00 
7 8 73.6% 51.2% 51.3% 48.6% 64.3% 11.1% 6.0% 6.0% 5.7% 10.9% 3.68 0.87 0.87 0.87 3.68 
8 9 71.6% 45.5% 57.4% 47.0% 57.2% 20.4% 14.5% 13.9% 15.0% 21.5% 15.06 8.77 8.77 7.88 9.39 
9 10 94.8% 81.4% 82.3% 70.1% 85.3% 35.3% 30.4% 29.7% 30.4% 38.3% 29.60 27.19 25.94 21.21 28.82 

10 11 85.1% 67.9% 65.8% 58.8% 67.9% 27.6% 21.2% 19.7% 19.9% 28.8% 17.90 15.06 8.82 8.98 16.31 
11 12 82.6% 71.8% 70.7% 63.4% 73.8% 36.7% 31.9% 30.0% 31.1% 37.3% 28.96 26.66 23.62 25.93 28.72 
12 13 82.9% 68.3% 67.7% 62.3% 72.8% 29.1% 23.5% 23.3% 21.7% 29.8% 20.11 16.44 16.44 12.91 15.94 
13 14 57.3% 36.9% 36.9% 36.9% 51.2% 5.9% 3.7% 3.7% 3.7% 5.9% 2.41 0.15 0.15 0.15 2.41 
14 15 89.2% 77.3% 70.8% 67.0% 76.3% 21.3% 17.9% 14.2% 17.0% 23.8% 13.53 10.64 5.28 10.09 11.22 
15 16 56.4% 44.5% 44.5% 38.4% 47.0% 15.4% 12.5% 12.5% 12.6% 15.3% 0.15 0.15 0.15 0.15 0.15 
16 17 100.4% 69.7% 68.5% 63.0% 75.2% 32.3% 23.2% 21.0% 20.1% 34.4% 26.68 15.43 11.89 10.84 23.29 
17 18 63.6% 42.3% 42.3% 42.3% 63.6% 6.9% 4.3% 4.3% 4.3% 6.9% 0.00 0.00 0.00 0.00 0.00 
18 19 72.5% 52.8% 52.7% 46.8% 57.7% 18.1% 12.9% 12.9% 13.2% 18.5% 1.92 1.15 1.15 1.15 1.92 
19 20 42.7% 27.2% 27.2% 27.2% 42.7% 4.5% 3.6% 3.6% 3.6% 4.5% 0.00 0.00 0.00 0.00 0.00 
20 21 36.1% 27.1% 27.1% 27.1% 36.1% 0.6% 0.5% 0.5% 0.5% 0.6% 0.00 0.00 0.00 0.00 0.00 
21 22 63.6% 38.5% 40.2% 35.4% 49.2% 10.2% 5.7% 5.0% 5.3% 10.6% 4.02 0.57 0.57 0.57 5.77 
22 23 83.4% 47.6% 55.6% 55.6% 57.6% 9.2% 5.7% 5.6% 5.6% 10.9% 3.31 0.17 0.17 0.17 3.31 
23 24 53.8% 28.1% 28.1% 28.1% 42.2% 6.8% 3.4% 3.4% 3.4% 6.9% 0.00 0.00 0.00 0.00 0.00 
24 1 108.1% 52.5% 67.4% 67.4% 63.3% 5.8% 2.4% 2.4% 2.4% 7.5% 3.31 0.17 0.17 0.17 3.31 

Total  71.4% 50.2% 51.6% 47.9% 59.1% 15.7% 11.8% 11.2% 11.4% 16.5% 170.64 123.41 103.99 101.06 154.24 

Scenario 
Period 

Total Distance [km veh] Total Travel Times [h veh] Delay Total [h veh] 
O A B C Z O A B C Z O A B C Z 

6 7 5975 5975 5975 5975 5975 106 105 105 105 106 1 0 0 0 1 
7 8 40752 40752 40694 40355 41924 945 908 908 907 937 271 233 234 229 256 
8 9 66066 66066 65826 68944 67415 2094 2021 2018 2001 2058 927 854 867 784 848 
9 10 102330 102330 102699 109752 110513 4833 4764 4690 4404 4588 2865 2796 2708 2271 2459 

10 11 86097 86101 86171 86407 87016 2167 2059 1903 1900 2140 543 435 287 272 474 
11 12 108008 108009 107118 108298 110217 2973 2957 2880 2802 2884 941 925 858 728 798 
12 13 98178 98178 98190 99949 100324 2279 2256 2266 2183 2204 560 538 551 415 424 
13 14 19777 19777 19777 19777 19789 391 353 353 353 391 48 9 9 9 47 
14 15 60916 60914 59198 64241 71328 5581 5432 5161 4988 5330 4419 4270 4034 3755 3984 
15 16 44758 44758 44758 45063 45859 870 860 860 858 863 34 24 24 20 20 
16 17 101387 101393 100481 101527 109864 3690 3344 3203 3191 3553 1871 1524 1406 1383 1579 
17 18 19388 19388 19388 19388 19388 391 373 373 373 391 22 4 4 4 22 
18 19 63122 63122 63118 62779 63057 1310 1294 1294 1291 1302 238 222 222 213 217 
19 20 13500 13500 13500 13500 13500 250 250 250 250 250 4 3 3 3 4 
20 21 1670 1670 1670 1670 1670 33 33 33 33 33 0 0 0 0 0 
21 22 37254 37255 36966 37056 37110 719 662 659 658 706 101 44 56 50 77 
22 23 31169 31169 30822 30822 35409 826 574 569 569 738 289 37 41 41 98 
23 24 23520 23520 23520 23520 23597 417 406 406 406 416 16 5 5 5 11 
24 1 20495 20495 20148 20148 24735 633 379 375 375 545 287 33 36 36 96 

Total  944360 944369 940019 959169 988689 30510 29031 28306 27648 29437 13436 11957 11344 10217 11414 
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TRAFFIC IMPACTS 

This subsection analyses traffic performance indicators (detailed in Table 4.5) in every scenario, 
more specifically the degree of saturation, congestion, number of congested road links, total travel 
distance, total travel times and total delay. 

The degree of saturation corresponds to the traffic flow divided by the road capacity at each link. 
Currently (scenario O), the degree of saturation is on average 71.4%. Hypothetically, in a 
centralized system (SO) without reversible lanes, the average degree of saturation would be 
59.1%. 

With the strategy of implementing reversible lanes, the degree of saturation reduced to an average 
of 50.2% in non-equilibrium traffic conditions (scenario A). In equilibrium conditions, the degree 
of saturation is between 51.6% and 47.9% for UE and SO scenarios (B and C, respectively). 
Scenario C seems to be the best scenario in the long-term, and that happens because the 
minimization of the total system travel times causes a geographical dispersion of the traffic flows 
and, consequently, an overall reduction of the degree of saturation. 

 
Figure 4.5 – Degree of saturation analysis. 

The congestion shown in Figure 4.6 is calculated through a weighted average of the degree of 
saturation using the length of each link as a weighting factor. The implementation of reversible 
lanes revealed to have a positive impact in reducing congestion, dropping from 15.7% (scenario 
O) to 11.4% (variation of 4.3%) in SO conditions (scenario C). The UE scenario seems to have 
lower congestion at the network level than the SO scenario. However, the UE-SO difference 
(scenarios B and C) is just 0.2%. This “lower” congestion level in UE occurs because in SO the 
traffic flow dispersion reduces the degree of saturation but induces slightly longer trips. 

Therefore, the congestion at the network level does not give a clear perspective about congested 
roads (degree of saturation equal to or higher than one). Congested roads are a major concern in 
urban regions, linked with queueing and delay. Figure 4.7 illustrates the length of congested links 
in every scenario. Currently (scenario O), there are 171 kilometers of congested roads on the 
whole day. The implementation of reversible lanes would help to reduce it to 123 kilometers, with 
the potential of reduction to 101 kilometers in the long run with the SO assignment.  
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It is not clear which strategy is the most beneficial: UE (selfish behavior in which every occupant 
chooses a path) or SO (social centralized behavior). For example, for 9 am, congested roads were 
initially 30 km and dropped to 21 km in scenario C (SO conditions). At 11 am this length dropped 
from 29 km to 24 km in scenario B (UE conditions) – here SO conditions would not be as 
beneficial (26 km of congested roads). Therefore, traffic demand at each hour can perform 
differently in UE or SO conditions as far as congested links are concerned. 

 
(a) Average congestion. 

 
(b) Percent difference relative to Scenario O. 

Figure 4.6 – Congestion at network-level. 

 

Figure 4.7 – Congested road links evolution. 

The comparison of the total distance travelled amongst scenarios with scenario O is shown in 
Figure 4.8. As expected, reversible lanes do not have an impact on the short-term (scenario A), 
because the paths are the same as in scenario O. In UE conditions (scenario B), the total distance 
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reduces 4,000 km veh. In SO conditions, AVs are forced to follow the optimal system paths, and 
the total distance increases 19,000 km veh.  

Lastly, the total travel time and delay are depicted in Figure 4.9. Delay corresponds to the sum of 
the difference between the actual travel time and the minimum travel time (in free-flow 
conditions) in each road link. Reversible lanes already reduce travel times in the short-term 
(scenario A), especially in the long-term (scenario C). The SO scenario C is the most beneficial, 
producing lower travel times than the ones obtained in UE scenarios (A and B). There is a 
noticeable reduction of the total delay. In scenarios A and B (UE), the total travel time reduction 
is proportional to the total delay reduction. In scenario C (SO), the total travel time reduces 
2,900 h veh and the total delay reduction is 3,200 h veh, which reflects the reduction of congested 
roads accompanied by longer trips performed in free-flow speed. 

 
(a) Total distance with variation relative to 

current Scenario O 

 
(a) Hourly total distance variation relative to 

Scenario O in percentage 

Figure 4.8 – Total distance variation, daily and hourly, (a) and (b), respectively 

 

Figure 4.9 – Total travel time and total delay variation. 

The following Figure 4.10 shows the percentage difference of each scenario relative to scenario 
O in every performance indicator for every hour. The best scenario obtained from comparing UE 
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and the SO is depicted in black boxes. The SO is beneficial in some hours of the day (e.g., 9 am 
and 10 am), reducing congested roads and total delay. There are hours in which such difference 
is not clear (e.g., 6 am and 1 pm). Setting up a SO traffic distribution in some hours of the day 
while allowing AVs deciding on their own paths (UE) in the remaining part of the day – called 
“dual scenario” – could be beneficial. The criteria used to create the dual scenario (summarized 
at the end of Figure 4.10) were: first, the highest reduction of congested roads (degree of saturation 
equal or higher than one); then the highest reduction of total delay. In the remaining hours, the 
UE scenario was given preference so that AVs are free to follow their shortest paths, as the SO 
implies paths controlled by the centralized system. 

Figure 4.11 shows the daily aggregated analysis – each hour was weighted by its travel demand. 
Amongst scenarios B and C, the best solution for the whole day would be scenario C, forcing SO 
traffic assignment conditions all day. Scenario B (UE conditions all day) still revealed a fair traffic 
performance but greatly reducing the total distance. The dual scenario revealed an intermediate 
performance between scenarios B and C in most of the traffic indicators, total travel times are 
reduced up to 8%, while the total delay is reduced 19%. Nevertheless, the dual scenario is the one 
that highly reduces congested roads by 40%, still compromising the total distance with a slight 
increase of 1%. 

 
Figure 4.10 – Hourly analysis of the main traffic performance indicators (Conceição et al., 2020). 
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Figure 4.11 – Graphical comparison with nowadays scenario O: daily analysis (hours adjusted by travel 

demand). 

NETWORK IMPACTS 

An essential aspect of the network design is the location of these reversible lanes. The need for 
reversible lanes occurs in links where most of the traffic circulates in one direction rather than 
having a balance between the two directions. In the morning commute period, many lanes will 
turn to one direction, and in the afternoon the direction will be inverted. That might indicate that 
those reversible lanes will be much more dynamic in the suburbs because traffic demand is more 
imbalanced in those places compared to the city center. This section analyzes where the reversible 
lanes are being generated throughout the day in the case study city and their corresponding degree 
of saturation. 

Figure 4.12 depicts the degree of saturation in scenario O, which corresponds to nowadays 
situation. The illustration shows that in the city center (close to node 3), the daily average degree 
of saturation is above capacity (105-110%). Close to TU Delft (node 31) and towards the northern 
part of the city, roads are saturated way above 50% in both directions.  

 
Figure 4.12 – Graphical representation of the average degree of saturation in scenario O(Conceição et al., 

2020). 

Figure 4.13 shows the daily variability of reversible lanes and the degrees of saturation for 
scenario A – the scenario that reflects the implications of implementing reversible lanes in the 

↑N 
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first days where vehicles are still following the previous paths. Reversible lanes help the city 
center (node 3) to reduce its degree of saturation (from 105-110% to 86-103% each way), holding 
a different lane layout than the initially set 47% of the day (9 hours out of 19 hours analyzed). 
Close to residential areas (node 27), there is an average small degree of saturation (5%), that sets 
26% (5 out of 19 hours) of the day a different lane layout than the original one. 

(a) Lane layout variation (b) Average degree of saturation 

Figure 4.13 – Scenario A - network representation of the daily lane layout variation (a) and the degree of 

saturation (b) (Conceição et al., 2020). 

Similarly, Figure 4.14 illustrates the results for scenario B – the scenario with reversible lanes 
where the system reaches equilibrium in UE conditions (AVs follow their individual selfish 
paths). This scenario revealed similar results as in scenario A. Reversible lanes reduce congestion 
in the city center, for example, looking at link 4-44 the degree of saturation in the first days 
(scenario A) was 83-82% each way and decreased to 68-66% each way in the long-term (scenario 
B). The lane layout of link 4-44 varied 42% of the day (in scenario A was 26%), reflecting an 
increase of variability as the average degree of saturation decreases.  

Figure 4.15 illustrates the variability of reversible lanes and the average degree of saturation for 
scenario C – the scenario that implies SO paths all over the day (AVs are forced to follow a paths 
given by the centralized system). The city center clearly sees a reduction in traffic congestion 
under capacity level (63-82%), with a lane layout different from the original 58% of the day, 
showing a higher lane layout variability.  

The dual scenario – the one where SO works in some hours and UE in the remaining part of the 
day – revealed lower degrees of saturation all over the network, strongly reflecting the congestion 
reduction already mentioned. Still, in Figure 4.16, the congestion located in the city center is not 
so well mitigated as in the previous scenario C (SO), though it is still better than scenario B (UE). 
The variability of reversible lanes decreases in the suburbs (e.g., link 27-20 and 32-16), which 
can be positive for road safety 

↑N ↑N 
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(a) Lane layout variation (b) Average degree of saturation 

Figure 4.14 – Scenario B - network representation of the daily lane layout variation (a) and the degree of 

saturation (b) (Conceição et al., 2020). 

(a) Lane layout variation (b) Average degree of saturation 

Figure 4.15 – Scenario C - network representation of the daily lane layout variation (a) and the degree of 

saturation (b) (Conceição et al., 2020). 

 

↑N ↑N 

↑N ↑N 
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(a) Lane layout variation (b) Average degree of saturation 

Figure 4.16 – Dual Scenario - network representation of the daily lane layout variation (a) and the degree 

of saturation (b) (Conceição et al., 2020). 

Figure 4.17 zooms into the city center, showing the evolution of congestion (degree of saturation) 
across every scenario. Reversible lanes already help to reduce congestion in the short-term 
(scenario A), but congested roads only disappear in the long-term for a scenario with SO paths 
(scenario C). The dual scenario revealed an intermediate performance between scenarios B and 
C, though presenting results closer to scenario C (working in SO conditions). 

 
(a) Current scenario O – no reversible lanes 

 
(b) Scenario A – same 

previous routes 

 
(c) Scenario B – in UE 

conditions all-day 

 
(d) Scenario C – in SO 

conditions all-day 

 
(e) Dual scenario – SO in 

some hours of the day 

Figure 4.17 – Congestion in the city center (% degree of saturation) in every scenario evaluated (a), (b), 

(c), (d) and (e) (Conceição et al., 2020). 

 

↑N ↑N 
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SUMMARY 

The mathematical model for solving the Dynamic Reversible Lane Network Design Problem 
(DRLNDP) optimizes the number of lanes in each road direction on an urban road network for 
every hour of the day and it can be run under UE or SO traffic conditions – formulated as a 
MINLP. The contribution is focused on studying the implementation of reversible lanes in the 
short and long term, analyzing the immediate impacts when traffic is not yet in equilibrium and 
the impacts when traffic rearranges itself reaching an user-equilibrium, as well when AVs are 
forced to follow a system optimal path – a condition only possible with V2I connectivity and a 
centralized routing system that instructs AVs to follow SO paths. 

Five scenarios were calculated. Scenario O corresponds to the current situation as traffic runs 
under UE conditions without reversible lanes, i.e., a fixed lane layout; and Scenario Z corresponds 
to a hypothetical scenario with a centralized system controlling AVs’ paths working on SO 
without reversible lanes. Three scenarios with reversible lanes were considered: scenario A, 
reflecting the first days of implementing reversible lanes where paths are the same as the ones 
experienced in scenario O; and two long-term scenarios, B and C, that consider a UE and a SO 
traffic assignment, respectively. A sixth scenario is derived from a comparative hourly analysis 
of scenarios B and C - the so-called dual scenario considers SO in some hours of the day and UE 
in the remaining ones, optimizing the strategy of reversible lanes on an hourly basis.  

The model was applied to the network of the city of Delft, for every hour in all scenarios, and 
proved to be an easy tool to guide the reversible lane implementation throughout the day as a 
function of the travel demand and the existing road capacity. The optimal solutions were obtained 
within satisfactory computation times given the combinatorial nature of the problem. The simple 
traffic assignment problem, scenario O, took just a few seconds while scenario A, which 
corresponds to only deciding on the reversible lane problem, took eleven seconds. Scenarios B 
and C, the DRLNDP model, took eleven and fifty-four minutes, respectively. 

Reversible lanes have the potential to reduce the degree of saturation, congestion at the network-
level, congested roads, travel times and delay, regardless of the traffic assignment considered. 
However, travel distance is sensitive to the type of traffic assignment. With UE, the total distance 
reduces 0.4% while in SO increases by 2.0%. In peak hours, SO scenario revealed to have a better 
performance in most of the traffic performance indicators. The dual scenario combining UE or 
SO at each hour showed a total distance increase of 1.2%. In this optimal scenario, congested 
roads were reduced by 40.1%, total travel times and delay decreased 8.0% and 18.8%, 
respectively. 

The study of the spatial location of congestion and variability of this strategy revealed that 
reversible lanes naturally vary more frequently in zones where demand is imbalanced throughout 
the day (residential areas). In city centers, congestion can still be reduced by the use of reversible 
lanes, though congested roads only disappear in the SO scenario. 

Given these results, the SO scenario confirmed to be the ideal one in the future to reduce total 
travel times, delay, and traffic congestion located in the city center. Notwithstanding, the mixed 
UE-SO scenario appears to be the best on reducing congested roads all over the day. 

Table 4.6 summarizes the overall benefits of implementing reversible lanes. Reversible lanes are 
an excellent strategy to be implemented reducing the overall degree of saturation, congestion, 
congested road links, total travel times and delay. The total traveled distance is very sensitive to 
the type of traffic assignment implemented (UE or SO). 
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Table 4.6 – Benefits of reversible lanes. 

 Daily 
Degree of saturation 19-24% reduction 
Congestion at 
network-level 

5-6% reduction 

Congested road 
links 

21-40% reduction 

Distance 
-0.7% or +2.0%, depending on the traffic 

assignment  
Total Travel Time 4-9% reduction 
Total Delay 7-22% reduction 

The experiments showed that the difference between the assignments – UE and SO – is reduced 
by the presence of reversible lanes. Table 4.7 summarizes the SO-UE gap in every traffic 
performance indicator based on daily results. 

Table 4.7 – SO and UE traffic assignment comparison. 

 Behavior SO-UE Gap 

 UE SO 
Without 

Reversible Lanes 
With Reversible 

Lanes 
Degree of saturation ↑ ↓ -12.7% -5.1% 
Congestion at network-
level 

↓ 
↑ +1.1% 

+0.3% 

Congested road links ↑ ↓ -8.6% -2.0% 
Distance ↓ ↑ +4.8% +2.7% 
Total Travel Time ↑ ↓ -3.6% -2.5% 
Total Delay ↑ ↓ -13.7% -9.3% 

Municipalities are mostly concerned with congested road links and their influence on air pollution 
and energy consumption. Therefore, a future with SO paths that might be a reality with automated 
traffic and a smart traffic control system can have a positive impact and contribute to achieving 
sustainability goals. The application of the DRLNDP model points for the need for investment to 
inform AVs of their required SO paths and make the SO traffic assignment a reality. 

Table 4.8 shows how much money can be saved by using the reversible lanes’ strategy. Nowadays 
the value of travel time in the Netherlands is ten euros per hour approximately (Yap et al., 2016), 
which means that the total travel time cost savings per day are between 10.7k € in the short-term 
and 27.4k € on the long-term. Even considering a reduction in the value of travel time in an AVs 
scenario of six euros per hour (Correia et al., 2019), the total travel time cost savings per day 
would be between 6.5k € on the short-term and 16.4k € on the long-term for the Delft case-study.  

Table 4.8 – Daily total travel time cost savings from implementing reversible lanes. 

 Short-term Long-term 

 
3.5% reduction 

(scenario A) 
6.4% reduction 

(scenario B) 
9.0% reduction 

(scenario C) 
Value of travel time in a car nowadays:10€/h 10 764.67 € 19 644.09 € 27 388.99 € 
Value of travel time with AVs if work is possible: 
6€/h 

 6 458.80 € 
11 786.45 € 

16 433.40 € 

The DRLNDP model can be adjusted to some of the prospective benefits of the automated driving 
features, such as the chance to have smaller lanes that will raise the overall existing road capacity. 
Nevertheless, the model was formulated with the introduction of some simplifications and 
assumptions; for example, the time for the lane adjustment between the different hours is not 
considered; and mobility patterns are considered to be the same as today. Also, the model 
simplified the dynamic of the reversible lanes’ strategy in every intersection, ignoring the number 
of turns which could generate a delay in the nodes. As future work, adding the delay in every 
node in a scenario with AVs at a macroscopic perspective (i.e., network level) and studying the 
impacts on pollution.
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A SIMULATION-OPTIMIZATION 
FRAMEWORK FOR THE 

REVERSIBLE LANE PROBLEM ON 
REAL CITY SIZE NETWORKS 

 

 

INTRODUCTION 

A road network design problem (RNDP) usually involves two levels: the main design decision 
and the subsequent network performance that derives from that network design. In real-world 
cities, solving these two levels together in a single-level framework through mathematical 
methods (optimization) increases the overall numerical complexity of the problem, turning the 
problem very computationally expensive and the solving process becomes cumbersome (most of 
the times). 

The previous chapters introduced two network design problems, the subnetworks and the 
reversible lanes for automated traffic. Both problems were tested in a case study that involved a 
road network of 61 road segments (that turn into 122 directional links) which allowed to be solved 
through single-level mathematical programming. Yet, the road network of the city case study has 
been formerly simplified to reduce the complexity of the RNDP. 

For larger case studies, single-level optimization is not the most advisable method to solve these 
problems. Simulation methods appear as a method to reduce the complexity of the mathematical 
problem by solving one part of the issue. In RNDP, simulation solves the lower-level problem by 
estimating the performance of the network for a given network design solution in a much faster 
way than the mathematical methods (at larger road networks). Yet, joining optimization together 
with simulation requires an interface and a framework that can be very computationally 
expensive; plus, the methodology for solving the higher-level problem through optimization is 
usually through (meta)heuristics that generate (“random”) design solutions not through 
mathematical programming. Joining simulation and optimization is challenging in terms of 
programming, software interfaces and time resources; yet a feasible solution (the global optimal 
solution is not guaranteed) can be obtained even when the solution process does not reach the 
end. 
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Therefore, this chapter explores simulation and optimization methodologies in theory and practice 
through the application of a RNDP – the reversible lanes problem – in a case study with a much 
larger road network than the one previously tested. Section 5.2 presents a background literature 
review. Section 5.4 presents the simulation-optimization framework for solving the RL-NDP that 
uses genetic algorithms and macro-simulation. Section 5.5 sets up the dataset and the conditions 
in which the case study is based – the city of Porto, Portugal. Section 5.6 presents the results of 
the experiments. Section 5.7 withdraws the summary and conclusions of this chapter. 

BACKGROUND 

A brief literature review regarding reversible lanes was introduced in the previous chapter, section 
4.2. According to the preceding Table 4.1, two studies solved this problem through simulation 
and optimization techniques: Geraldes (2011) and Karoonsoontawong and Lin (2011).  

Geraldes (2011) used simulation and optimization for intelligent/advanced traffic incident 
management system purposes to control reversible lanes in eight signalized intersections with 
time signal settings. Their framework used microscopic simulation (AIMSUN software) and 
genetic algorithms (GA). 

Karoonsoontawong and Lin (2011) used a simulation-based optimization problem for the time-
varying lane-based capacity reversibility problem, through a bi-level formulation that, in the 
upper-level problem (reversible lanes decision), is solved by GA; and, in the lower-level problem 
(traffic flow distribution), it uses the Visual Interactive System for Transportation Algorithms 
(VISTA) simulator developed by Ziliaskopoulos and Waller (2000) which corresponds to a 
mesoscopic simulator based on an extension of the cell transmission model that propagates traffic 
and satisfies capacity constraints as well as the first-in-first-out traffic property. Their main 
contribution focuses on comparing the performance and convergence of GA on a grid network. 
Four GA variations are proposed. GA1 is a simple GA. GA2, GA3, and GA4 are developed with 
the jam-density factor parameter, employing time-dependent congestion measures in their 
decoding procedures, and increasing degrees of randomness. GA3 performed best on the three 
criteria on a grid test problem, whereas the simple GA appears second. The performance 
comparison considered three criteria: solution quality, convergence speed, and CPU time. Their 
study showed that the GA with appropriate inclusion of problem-specific knowledge and 
parameter calibration can provide better results than the simple GA.  

METHODOLOGY 

The integration of simulation and optimization is particularly useful when the problem is 
extremely difficult to solve by mathematical linear models, as the raw complexity of the problem 
does not permit to represent complex systems and stochastic effects. In fact, almost all real-world 
systems generate problems that are too complex to be mathematically expressed either because it 
is not possible to solve linearly (unfeasible) or because it takes unreasonable calculation times to 
perform the search process for a solution. Nevertheless, the nature of the problem can raise 
questions of functionality that surpass the mathematical difficulty. 

According to Allaoui and Artiba (2004), the complexity of a problem might arise from two 
natures: algorithmic complexity, plus structural and functional complexity. When a problem 
presents both characteristics, simulation and optimization reveal to be a good methodology to 
solve. Whereas optimization deals with algorithmic complexity and is intended for NP-hard 
problems, simulation deals with structural and functional complexity and is intended for dynamic 
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complex systems. When NP-hard problems and complex systems nature collide, the solving 
methods integrate simulation and optimization. 

In fact, real problems are often too complex in order for them to be deal with only mathematical 
programmingplus also some performance measures can only be obtained by simulation rather 
than with a linear function. Therefore, the integration of simulation and optimization embraces 
two approaches: 

 Simulation-optimization, that gives more “importance” to the simulation process and thus 
can be called optimization for simulation (Fu, 2002). 

 Optimization-simulation, where simulation is an add-on to the main optimization tool 
whereby inputs are generated for the soving of multiple instances, for example the Monte 
Carlo simulation. This method is also called simulation for optimization (Fu, 1994). 

The distinction between these two methods is represented in Figure 5.1.  

 

Figure 5.1 – Integration schemes of simulation and optimization approaches: simulation-optimization and 

optimization-simulation, adapted from Fu (2002) 

The methodological approach used in this chapter is the simulation-optimization. This 
methodology consists of two sub-routines under a feedback process: the simulation model runs 
creating an output that the optimization algorithm analyzes and returns another solution to be an 
input to the simulation model again. In other words, the optimization model runs, creating a set 
of feasible decision variables (simulation input). The simulation model returns performance 
estimates to the optimization sub-routine which adjusts the algorithm towards the optimal 
searching process (calculation of the objective function) and henceforth creates again a new set 
of feasible solutions – creating a feedback loop process. When the stop criterion is reached, the 
best “optimal” solution is found (Fu, 2002). 

Carson and Maria (1997) define Simulation-Optimization as “the process of finding the best input 
variable values from among all possibilities without explicitly evaluating each possibility”. In this 
methodology, the resources spent while maximizing the information obtained in a simulation 
experiment are minimized. In this process, the inputs of this methodology can be called: 
controllable parameter settings, values, variables, (initial proposed solutions), designs, 
configurations or factors. Outputs can be called: performance measures, criteria, or responses. 
Some of these outputs can be part of the objective function (Carson and Maria, 1997). 

In the optimization sub-routine, depending on the complexity of the problem, the solution search 
process might take a long time to solve. Heuristics appear as a good solution to shorten the time 
needed for the process, as they allow to determine near-optimal solutions by evaluating only part 
of the combinatorial possible solutions. Meta-heuristics are better tools to integrate into 
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simulation tools, since they can be applied to a major number of problems and evaluate more 
efficiently an optimal or near-optimal set of parameters which relieves the computational cost. 
The metaheuristics include algorithms such as (Fu et al., 2005): 

 Simulated Annealing is a variant of local iterative search, proposed by Kirkpatrick et al. 
(1983). The solution search process reminds the annealing cooling process through a 
temperature function. In other words, it aims to find the global optimum of a given 
function and at each step, a probability function is applied to decide whether to move to 
the new solution or not. 

 Tabu Search introduces an adaptive memory into the metaheuristic search. It evaluates 
all solutions in the neighborhood. It involves an attribute-based focus to evaluate 
solutions and impose restrictions on a set of attributes (Glover and Laguna, 1997).  

 Genetic Algorithm (GA) is a metaheuristic that randomly creates solutions through 
different processes (reproduction, crossover and mutation). It starts with initial solutions 
that iteratively are associated/combined to form other solutions with better objective 
values. 

 Scatter Search is similar to the genetic algorithm because it involves an evolutionary 
population-based algorithm that constructs solutions by combining others. The main 
difference from the genetic algorithm is that it chooses more intelligently by incorporating 
history, e.g. past evolutions (Glover, 1999). According to Fu et al. (2005), scatter search 
consists of five methods: a diversification generation method, an improvement method, a 
reference set update method, a subset generation method and a solution combination 
method. 

 Neural networks often are combined to function approximation, such as forecasting and 
curve-fitting role. Basically, they accelerate the search by predicting results as bad or 
inferior relative to the others (Fu et al., 2005). Since it requires iterations to achieve 
information that trains the model, it is applied to greater complexities. 

Moreover, while the optimization model is running, the simulation sub-routine might evolve to 
add more elements (Glover et al., 1996).  

The simulation sub-routine is important because each solution given from the optimization sub-
routine is tested and the results from the simulation results are very crucial for an efficient 
computational cost. The performance results come from this sub-routine process.  

In traffic simulation, there are three types of performing the simulation subroutine: micro, macro 
or meso simulation. Examples of micro-simulation software are AIMSUN, VISSIM, 
INTEGRATION and Paramics. DYNASMART is a software that performs meso-simulation. For 
macro-simulation, there is VISUM, CUBE and EMME/2. While micro-simulation focus on the 
mobility of each individual vehicle, involving more details and parameters that characterize the 
specificities of roads (geometry, traffic lights delay, etc.); macro-simulation focus on the complete 
road traffic flow, taking into account the general traffic density, vehicles distribution, different 
specificities (road capacity, free-flow speed, etc.). 

Besides micro, macro or meso simulation, agent-based models are also a good approach to settle 
traffic simulation. The agent-based models have been studied only since the 1980s and were 
created within the field of artificial intelligence. This method can also be called as multi-agent 
simulation, where the agents belong to a class of computational models that attribute behaviors 
and actions to each agent. In this way, the interactions of the “autonomous” agents (individual or 
collective entities) will allow assessing their effects on the whole system. These classes of 
behaviors that each agent is assigned can be managed as: a rule-based decision making, discrete 
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choice modeling, game theory, optimization, among others. This last, optimization, corresponds 
to the aim of our research proposal. The agent-based models may contain stochastic effects 
(randomness) introduced by Monte-Carlo methods, for example (Marik et al., 2001). 

The integration of simulation and optimization methodologies has only begun around the 2000s. 
This hybrid methodology was only possible with the research advancement in operations research 
and artificial intelligence areas (Allaoui and Artiba, 2004).  

Fu et al. (2005) presented some of the software routines for performing simulation optimization. 
At the time, the two most popular optimization sub-routines were AutoStat and OptQuest. 
Currently, integrating optimization and simulation can be easily implemented, for instance, in 
python or Matlab interfaces, that connect both the optimization (e.g., metaheuristics such GA or 
simulated annealing) and the simulation routines (e.g., traffic simulator such VISUM or VISSIM). 

A SIMULATION OPTIMIZATION FRAMEWORK (SOF) FOR SOLVING THE RL-NDP 

FORMULATION OF THE RL-NDP-SOF 

The simulation-optimization methodological approach that addresses the RL-NDP problem is 
schematized in four subgroups. This scheme represents the methodological scheme using a 
simulation-optimization approach to our RL-NDP problem. The optimization routine (blue color) 
represents the solution search process whereas the simulation routine (red color) represents the 
performance evaluation of the system. The stopping criteria (green box) is a crucial step of this 
methodology to compare if the solution that was found is better than the previous one and to 
restrain the improvement stage (loop). The SOF was implemented in the Matlab interface. 

 

Figure 5.2 – Methodological scheme used for solving the RL-NDP-SOF. 

If given, the initial network solution is always a benchmark on comparing the following solutions 
found in the GA method. In the RL-NDP, the initial solution is the current fixed road lane layout. 
The simulation routine (VISUM software) receives the lane layout and performs the traffic 
assignment procedure to estimate the distribution of the traffic flow (network performance), 
ending reporting those road flows to the optimization routine (GA implemented in Matlab). The 
GA first calculates the value of the objective function and checks with the stopping criteria 
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whether to continue generating and evaluating new solutions of lane configurations of the urban 
network. If the stopping criteria are not reached, the process will return. This loop ends when one 
of the stopping criteria is attainable. In the following subsections, these processes are detailed. 

There are three types of requirements for implementing the RL-NDP-SOF: 

 Interfaces and connectivity: COM script to link Matlab-VISUM software; internet to verify 
licenses. 

 Database integration: network data from VISUM is read as a cell and is transformed into 
numerical. 

 Modeling needs: time-consuming. It is very computationally expensive to run VISUM at every 
solution generated from the GA. 

OPTIMIZATION ROUTINE 

As argued before, the linearization of the problem is not suitable for large networks and variables 
that best reflect the problematic and performance measures – the complexity rises exponentially. 
As the RL-NDP embraces a non-linear objective function, the optimization routine implemented 
a metaheuristic - the GA due to its evident efficiency and effectiveness in the literature (Adeli and 
Cheng, 1994a, 1994b; Teklu et al., 2007; Unnikrishnan et al., 2009). 

The following outline summarizes how the genetic algorithm works (Mathworks, 2019a): 

 In the first stage (generation 1), the GA creates several random network solutions/lane 
layouts (first population). In the RL-NDP, it is given the fixed lane layout as a starting point as 
a feasible network solution to help the creation of the first set of network solutions (first 
population) that will be tested in the simulation routine in order to calculate their value of the 
objective function (so-called fitness function). 

 The GA performs a sequence of new generations, each one with new network solutions 
(several lane layouts) that are called populations. 

 In every stage (generation), the GA uses the network solutions (current population) of 
the current stage (generation) to create the next set of solutions (next population) as the 
following:  

- Scores each network solution of the current population by computing its value of 
the objective function (fitness value). 

- Scales the values previously obtained and converts them into a range of values 
called the expectation values. 

- Selects the network solutions (parents) based on their expectation values. 
- The network solutions with the best (fitness) values are called elite and 

automatically pass to the next stage (next generation). 
- The prior best network solutions (parents) will be combined with the entries of 

their vectors (genes) to create new network solutions (children). The new network 
solutions (children) are created either by mutation (random changes of a single 
network solution/parent) or crossover (the combination of the vector entries of the 
pair of network solutions/parents). 

- Replaces the current population with the new set of network solutions (new 
population: elite plus children) to initiate the next generation. 

 The algorithm stops when one of the stopping criteria is met: maximum number of 
generations, maximum number of stall generations (a GA performance indicator that describes 
the improvement of the best fitness values and indicates the stagnation in the evolution process), 
Time limit, stall time limit (the maximum time limit for the stagnation process), fitness 
(objective) function limit, fitness (objective) function tolerance, among others. 
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The following notation is introduced for the RL-NDP-SOF: 

Sets 

𝑵 = (1, . . . , 𝑖, . . . , 𝐼): 
set of notes in the network, where 𝐼 is the number 
of nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀𝑖, 𝑗 ∈ 𝐼 ∩ 𝑖𝑗: 
set of arcs of the road network where vehicles 
move. 

Parameters 

𝑉(௜,௝)
௧௥௨௘: binary parameter that indicates whether reversible lanes can be implemented in 

link (𝑖, 𝑗) ∈ 𝑹. Note that in roads networks, there are roads that are assigned to 
different modes of transport like pedestrians, cyclists, public transport; therefore, 
𝑉(௜,௝)

௧௥௨௘ might have be different of 𝑉(௝,௜)
௧௥௨௘. 

𝑡(௜,௝)
௠௜௡: minimum driving travel time in free-flow speed at link (𝑖, 𝑗) ∈ 𝑹, expressed in 

hours. 

 𝐿(௜,௝)
௥௢௔ௗ: the total number of lanes of the road, including both directional links (𝑖, 𝑗), (𝑗, 𝑖) ∈

𝑹. Note that 𝐿(௜,௝)
௥௢௔ௗ = 𝐿(௝,௜)

௥௢௔ௗ. 

𝐶(௜,௝)
௟௔௡௘: average lane capacity of link (𝑖, 𝑗) ∈ 𝑹, expressed in vehicles for the period of 

analysis. 

𝑀: big number. 

Decision variables 

𝑙(௜,௝) : integer variable equal to the number of lanes of each link (𝑖, 𝑗) ∈ 𝑹. 

𝑓(௜,௝) : continuous variable that corresponds to the flow of AVs in each link (𝑖, 𝑗) ∈ 𝑹 – 
note that this variable is obtained through the simulation routine. 

Objective Function 

The fitness function used in the GA is similar to the previously non-linear objective function 
introduced for the RL-NDP, reproducing a user-equilibrium traffic assignment. In this 
experiment, the minimization of the total travel time of all passengers is reflected by the following 
expression (5.1) –  α and 𝛽 are the parameters of the BPR function. 

Min(Total Travel Time)= ෍ න 𝑡௜௝
௠௜௡ ൦1 + 𝛼 ቌ

𝑓
௜௝

௛೔௛೑

𝑙
௜௝

௛೔௛೑𝐶௟௔௡௘ +
1
𝑀

ቍ

ఉ

൪  𝑑𝑓
௙

೔ೕ

೓೔೓೑

଴(௜,௝)∈ோ

 (5.1) 

Constraints 

The previous constraints (4.8)-(4.12) are now formulated differently. Constraints (4.8) represent 
a lower-bound of the integer variable, while constraints (4.11) are an upper-bound of the variable. 
Constraints (4.9)-(4.10) and the flow constraints are removed, since the traffic flow distribution 
amongst the lane layout is solved by the simulation routine. Yet, in order to run the simulation 
software, a path for each O-D pair is required. In cases that the solution given by the GA did not 
present a feasible path for a certain O-D pair, the connection between Matlab (GA) and VISUM 
is stopped and the GA stops. Therefore, in order to overcome this issue, the following constraints 
(5.2) indicate that the lower-bound is 1, meaning that there still must exist one lane in every 
direction – two-way to one-way will not occur. As upper-bound, constraints (5.3) indicate that 
the number of lanes can go up to the total existent number of lanes in the whole road (both 
directions) minus one lane for the opposite direction. 
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Constraints (5.4) define the integer constraint of the main decision variable. Note that only one 
direction of the road link is considered for this problem, to simplify the solution search process 
of the GA. Theoretically, there would be an equality constraint to ensure that the lanes assigned 
for both directions would be equal to the total amount of lanes of that road. The genetic algorithm 
method that solves mixed-integer optimization does not allow equality constraints – check 
Mathworks (2019a) and Deep et al. (2009) for details. In such case, inequality constraints would 
be used, and the minimization of the problem would likely solve this issue as it tries to increase 
the road capacity, and therefore, the number of lanes. However, the penalty algorithm used for 
evaluating the value of the objective functions of the solutions allows that these constraints might 
be broken by adding a penalty term to the function when such constraints are not satisfied which 
will increase the value of the objective function. In other to overcome this issue that would take 
much longer to find a feasible solution that satisfied all the constraints, the opposite direction was 
neglected in the GA algorithm only. In other words, this means that the GA will only try to decide 
the number of lanes in one direction of the road, and while transferring the data from GA to 
VISUM, these constraints are added to the opposite direction on every road link. This “trick” 
allows to transform an initial mixed-integer constrained problem (previous chapter) to an integer 
problem only, while maintaining the structural form of the initial problem. 

Lower-bound 

𝑙(௜,௝) ≥ 𝑉(௜,௝)
௧௥௨௘ ∀ (𝑖, 𝑗) ∈ 𝑹 (5.2) 

Upper-bound 

Integer constraints 

 

Nevertheless, solving integer programming through GA involves modifications of the basic 
algorithm – see (Mathworks, 2019a, 2019b). For instance, the creation, crossover, and mutation 
functions must enforce variables to be integers (Deep et al., 2009). For integer optimization, the 
GA attempts to minimize a penalty function, not the objective function, as it might include an 
extra term for infeasibility. When the solution is feasible, the penalty function corresponds to the 
objective function. When the solution is infeasible, the penalty function is the maximum value of 
the objective function among the feasible solutions, plus a sum of constraint violations of the 
infeasible solution (Deb, 2000). The GA does enforce linear constraints when there are integer 
constraints but incorporates linear constraint violations into the penalty function. 

Figure 5.3 shows the workspace of Matlab software, moreover the simulation (VISUM) call inside 
the objective function defined inside the optimization routine (GA). The integration of VISUM is 
done through a VISUM COM script. 

𝑙(௜,௝) ≤  𝐿(௜,௝)
௥௢௔ௗ  ∀ (𝑖, 𝑗) ∈ 𝑹 (5.3) 

𝑙(௜,௝)  ∈  ℕ଴ ∀ (𝑖, 𝑗) ∈ 𝑹, (𝑖, 𝑗)(𝑗, 𝑖)  (5.4) 
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Figure 5.3 – Example of a Matlab workspace. 

SIMULATION ROUTINE 

The simulation subroutine evaluates each solution given by the optimization routine and estimates 
the traffic effect of the whole road network. The VISUM macroscopic simulator was chosen since 
it is easier, quicker and, at the light of the problem, the microscopic variables (such geometric 
characteristics) won’t have a significant influence in this problem. The traffic flow can be 
characterized without microscopic variables. 

The inputs of this simulation gather the design of the road network, represented by road links 
where each direction must be defined individually. Each link requires the definition of the number 
of lanes, road capacity, speed, length, transport systems permitted to use the directional link. After 
drawing the road links, the allowed turns in each node must be defined. 

Another input is the demand (OD matrix) that must be set for each transport system existent in 
the network (bus, cars, pedestrians). This OD matrix is defined in zones that correspond to a 
specific area of the network. In order to link zones with the nodes where traffic will arrive/depart, 
the so-called connectors must be defined beforehand. 

Following, the procedure sequence in the academic license of VISUM allows several types of 
traffic assignment: incremental assignment, equilibrium assignment, equilibrium assignment 
LUCE, equilibrium assignment bi-conjugate Frank-Wolf, equilibrium Lohse, Assignment with 
ICA, Stochastic assignment, dynamic user-equilibrium DUE, dynamic stochastic assignment and 
simulation-based dynamic assignment. In conformity with the objective function used in the GA, 
the user equilibrium was chosen together with the BPR function (same reference parameters). As 
explained before, in order to the procedure succeed there must be a feasible path for every 

The results from the user-equilibrium procedure reflect the distribution of the traffic flow for a 
specific configuration of the network. The VISUM software uses the capacity in the denominator 
of the BPR functions, yet the integer lane variables are needed to reduce or increase capacity in a 
realistic way. 

Figure 5.4 The workspace of VISUM software with the network of Porto 
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Figure 5.4 – Example of a VISUM workspace. 

SETTING UP THE CASE STUDY OF THE CITY OF PORTO, PORTUGAL 

The application of the RL-NDP-SOF is exemplified in a case study of the city of Porto, in 
Portugal. The original database was developed by FEUP and Porto’s municipality and is used for 
transport planning and research purposes. Figure 5.5 shows the initial dataset with more than 8000 
nodes and 21000 links. The road hierarchy is characterized by: freeways (black color) that 
surround the city center and connect in six points to the traffic coming from a neighboring city 
across the river (south); freeway interchanges (red color); principal arterials (blue color), vital for 
traffic distribution across the city; collectors (green color) are roads that distribute the traffic flow 
inside the city, connecting with the local roads (grey color). 

The original travel demand database was also provided together with the network file. The O-D 
Matrix represents the peak-hour with traffic estimations for the year 2018. The travel dataset 
contains a demand of 125700 trips across 122 zones – see Figure 5.6. 

As previously introduced, the user-equilibrium uses a BPR function. The reference values (α =

0.15;  β = 4 when the degree of saturation is ≤1, otherwise β = 8). The user-equilibrium 
procedure uses an initial solution calculated by an incremental assignment. The OD demand share 
per iteration step is 30%,20%, 10%, 10%, 10%, 5%, 5%, 5%, 2%, 2% and 1%. No impedance 
functions are used in the nodes. 
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(a) 

(b) 

Figure 5.5 – Map of the city of Porto (a) and graph representation (b)  (links and nodes from VISUM). 

 
Figure 5.6 – Map of the zones and connectors considered in the Porto case study (from VISUM). 
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Based on the existent highway hierarchy, a simplified network of Porto in a map of the region 
was created as illustrated in Figure 5.7, ignoring local roads while trying to maintain the main 
intersections and connectors to represent the connection with the local neighborhoods. This is the 
network used for the following experiments that include 5390 links and 1189 nodes. The initial 
O-D matrix and the number of zones are maintained. 

 

Figure 5.7 – Simplified map of the Porto case study: links and nodes representation (from VISUM). 

Additionally, a design rearrangement in the Porto case-study was done in the freeways 
surrounding the city center. The previously freeway layout required physical separation of both 
flow directions. Once vehicles become connected AVs and reversible lanes are inside freeways, 
there’s no physical barriers. Therefore, the design modeling in VISUM software changes to a 
design as the one presented in Figure 5.8 (b).  

 

 
(a) 

 
(b) 

Figure 5.8 –Rearrangement of the Porto case study: from (a) physical to (b) non-physical separation of 

both directions freeway (from VISUM). 

Figure 5.9 illustrates the applicability of reversible lanes in the Porto case study. Reversible lanes 
are applied in two-way roads that have three lanes or more. Roads with one lane per direction 
(total of two lanes) were not considered in this experiment. The total number of roads where 
reversible lanes are accepted was 166 roads, each one with two directions (leading to 332 road 
links). 
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Figure 5.9 –Applicability of reversible lanes in the Porto case study (from VISUM). 

EXPERIMENTS 

The RL-NDP-SOF is applied for the Porto case study in two scenarios: scenario O and scenario 
I, without and with optimized lane layout (reversible lanes strategy). For scenario I, three 
experiments were performed to test the convergence of the GA: 

 Experiment I: GA does not consider random mutation in the generation of populations; plus, 
the stopping criteria are a maximum run time of 12h and a maximum number of stall 
generations of 5. 

 Experiment II: GA considers both crossover (80%) and random mutation (20%) in the 
generation of populations; plus, the stopping criteria are a maximum run time of 12h and a 
maximum number of stall generations of 5. 

 Experiment III: GA considers both crossover (90%) and random mutation (10%) in the 
generation of populations; plus, the stopping criteria are a maximum run time of 24h and a 
maximum number of stall generations of 5. 

The RL-NDP-SOF has been implemented in Matlab (R2019a-academic use) together with 
VISUM (version 18.02- academic thesis license) in a laptop with a processor of 2.11 GHz Intel 
Core i7-8650U and 16GB RAM. The next two subsections explore the experiments from the 
application of the RL-NDP-SOF to the Porto case-study. 

PREVIOUS LANE LAYOUT: SCENARIO O 

Scenario O was only simulated in VISUM software and its flow outputs transferred to the Matlab 
interface in order to calculate the value of the objective function, which represents the total travel 
time of all vehicles that travel under user-equilibrium ,i.e., replicating a selfish-behavior where 
each vehicle minimizes its individual travel time. For scenario O, the value of the objective 
function is 8332.4 hours. In this case-study, VISUM takes about 33 seconds to perform a traffic 
assignment. 

The assignment of all vehicles performed in VISUM software led to the results graphically 
presented in Figure 5.10 that shows the degree of saturation in every link considered. The traffic 
assignment performed by VISUM takes, on average, 33 seconds. The freeway surrounding the 
city center of the city of Porto presents high levels of degree of saturation, between 50-75%. In 
particular, there is one link whose flow is over 75% of road capacity.  
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Figure 5.10 – The degree of saturation of Scenario O without reversible lanes (VISUM). 

OPTIMIZED LAYOUT: SCENARIO I – EXPERIMENT I 

This section evaluates the application of the RL-NDP-SOF in a scenario that holds reversible 
lanes in some road links of the network. This section analyses the results of the first experiment, 
where the GA was run under a stopping criterion of 12 hours, a maximum number of stall 
generations of five and an objective function tolerance of 1e-6 between the stages (generations).  

For twelve hours, the GA performed 4 stages (generations) that created 1500 network solutions 
(lane layouts) which took twelve hours to solve (43294 seconds). Each stage (generation) includes 
a set of network solutions (i.e., a population) that is created from the previous ones. The current 
(fixed) lane layout was given to create the initial set (population) of 600 solutions that takes five 
hours to complete, which, subsequently, at each following stage (generation) creates a new set of 
300 individual solutions (children – next population) that takes two and half hours to complete. 
The feasible network solutions (the ones that satisfy the constraints) are tested by VISUM to 
return the road flows to the GA for calculating the values of the objective function of every 
network solution. The number of elite solutions is 10% of the population size at each generation, 
i.e., the best 30 solutions with the least values of objective function pass directly to the next 
generation. In this example, no random mutation from a single parent was allowed for creating 
the children solutions. Instead, the only crossover function was allowed, combining the entries of 
a pair of parents.  

Table 5.1 shows the output of the GA for every generation. As previously introduced, the penalty 
function is the objective function plus a term for infeasibility. The best solution found in the 
experiment I revealed a value of the objective function of 8309.25 hours – meaning a reduction 
of 23 hours on all vehicles travel paths from Scenario O from the use of the optimal lane layout 
through reversible lanes implementation. These 23h of reduction represent an average 0.28% 
benefit in terms of travel cost reduction throughout the network, and an average local benefit of 
2.60% in the roads where reversible lanes are possible (with a maximum local maximum of 
6.58%). The best solution found in this experiment was already found in the first generation, i.e., 
after 5 hours of running calculations. Note that the process is becoming stagnate overtime, 
endorsed in the stall generations indicator from Table 5.2 
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Table 5.1 – Matlab output of the GA generation process: experiment I. 

Best Mean Stall 
Generation Func-count Penalty Penalty Generations 

1 600  8309 8496 0 
2 900  8309 8461 1 
3 1200  8309 8442 2 
4 1500  8309 8428 3 

Optimization terminated: time limit exceeded. 

 

Figure 5.11 illustrates the output from the process of finding the best lane layout under the GA 
solution search process. Figure 5.11 (a) shows the evolution of the best value of the penalty 
funcion found at each generation. The mean objective (penalty) value includes all solutions of 
that set (population). The values of the penalty function given for each infeasible solution is a 
sum of the worst value of the objective function (worst feasible solution found) plus a penalty 
value that is calculated by the constraints violations. This means that, as all the solutions are 
feasible, the best penalty value corresponds exactly to the objective function. Figure 5.11 (b) 
reveals the integer value of the decision variable, i.e., the number of lanes of each road link, of 
the best network solution found in this experiment I. 

 
(a) 

 
(b)  

Figure 5.11 – RL-NDP_SOF: experiment I output of the Porto case study: (a) GA objective (penalty) 

function; (b) best network solution. 

Figure 5.12 (a) depicts the fitness scaling of the GA that converts the raw fitness scores that are 
returned by the fitness function to values in a range that is suitable for the selection function. Each 
network solution is scored as shown in Figure 5.12 (b). Along the process (generations), the 
differences among the best, worst and mean values tend to reduce – see Figure 5.12  (c). The 
average distance between the solutions is somehow reducing over time – see Figure 5.12 (d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.12 – RL-NDP_SOF: experiment I output of the Porto case study: (a) fitness scaling; (b) score 

histogram (c) best, worst and mean values of every population; (d) average distance between solutions. 

Figure 5.13 (a) shows the number of network solutions (children) created from each previous 
network solution (parent) from the preceding stage. Figure 5.13 (b) shows the genealogy of the 
solutions during this process. 

 

 
(a) 

 
(b) 

Figure 5.13 – RL-NDP_SOF: experiment I output of the Porto case study: (a) selection function; (b) 

genealogy of the solutions. 

In this sense, Figure 5.14 compares the optimal lane layout found with the previous lane layout. 
Reversible lanes were implemented in the main freeway, and the RL-NDP-SOF revealed that the 
algorithm makes use of this possibility to implement a different layout. Therefore, green color 
illustrates the road links where a lane layout change happened by using reversible lanes. Red color 
reveals the links where reversible lanes were not implemented, even though it was possible to do 
so. Grey color are the roads that did not implement reversible lanes and have the same previous 
lane layout.  
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Figure 5.14 – Lane layout of the RL-NDP_SOF experiment I of the Porto case study (VISUM). 

 

Figure 5.15 and Figure 5.16 illustrate the improvements in the traffic flow distribution in terms 
of the degree of saturation. Figure 5.15 shows where the traffic assignment (degree of saturation) 
improved and the links who experienced more improvement are drawn in thicker lanes. Figure 
5.16 details the percentages of such degree of saturation improvement throughout the network. 
On average, the improvement of the degree of saturation was 1.82% in the entire road network, 
while in roads that used reversible lanes the degree of saturation reduced 14.45%. The total 
number of reversible lanes was 196. 

 

Figure 5.15 – Analysis of the traffic improvement in terms of the degree of saturation in the RL-NDP_SOF 

experiment I of the Porto case study (VISUM). 
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Figure 5.16 – Analysis of the percentage of the degree of saturation improvement in the RL-NDP_SOF experiment I of the Porto case study (extracted from VISUM). 
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OPTIMIZED LAYOUT: SCENARIO I – EXPERIMENT II 

This section presents application of the RL-NDP-SOF in the same scenario I in a second 
experiment that tests different GA configurations, moreover a stopping criterion of 12 hours, a 
maximum number of stall generations of 5, and a mutation factor of 20%. 

The GA evolved through five stages (5 generations) that corresponds to 1800 network solutions, 
which took about fourteen hours (51187 seconds) – the 5th generation had started before the 12h 
stopping criterion. In this example, a random mutation from a single network solution (one 
parent) was allowed; as well as crossover to combine the entries of a pair of network solutions (2 
parents). The proportion for mutation and crossover was 20% and 80%, respectively. 

Table 5.2 shows the output of the GA for every stage (generation). The best solution found in the 
experiment IIrevealed a value of the objective function of 8308.53 hours – a reduction of 24 hours 
from the initial lane layout. Note that the previous experiment I had already found a fair solution 
in the first generation (5 hours later), while this experiment only found a similar solution in the 
4th generation (12 hours later) – indicating that the mutation factor is not helping the experiment. 
The best solution (24h of travel time reduction) benefits on average 0.11% benefit in terms of 
travel cost reduction throughout the network, and an average local benefit of 3.66% in the roads 
where reversible lanes are possible (with a maximum local maximum of 5.06%). 

Table 5.2 – Matlab output of the GA generation process: experiment II. 

    Best Mean Stall 
Generation Func-count Penalty Penalty Generations 
 1 600  8332 8520 0 
 2 900  8332 8496 1 
 3 1200  8332 8481 0 
 4 1500  8309 8460 0 
 5 1800  8309 8453 1 
Optimization terminated: time limit exceeded. 

 

Figure 5.17 illustrates the process of finding the best lane layout under the GA framework 
throughout the generations. Figure 5.17 (a) shows the evolution of the best objective function 
value found at each generation. The convergence of the values in the objective (penalty) function 
is very slow, and the optimal network solution (local optimal solution) is very close to the initial 
fixed lane layout. Yet, the mean (penalty) value is decreasing overtime, which means that the 
process is converging overtime. Figure 5.17 (b) shows the vector of the best network solution 
found in this experiment. 

 
(a) 

 
(b) 

Figure 5.17 – RL-NDP_SOF: experiment II output of the Porto case study: (a) GA objective (penalty) 

function; (b) best network solution. 
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Figure 5.18 (a) shows the fitness scaling of the solutions found in the last iteration of the GA. 
Most solutions are concentrated around 8450 which indicates that the distance between solutions 
is decreasing overtime – see Figure 5.18 (d). Figure 5.18 (b) reveals that the scores are very similar 
to each other. Figure 5.18 (c) shows the best, worst and mean values range in every generation – 
note that the mutation factor might have an impact on the convergence of the process. The 5th 
generation found a higher worst score than the one found in the previous generation which is 
explained by the random mutation factor that revokes the tendency depicted in Figure 5.12 (b). 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.18 – RL-NDP_SOF: experiment II output of the Porto case study: (a) fitness scaling; (b) score 

histogram (c) best, worst and mean values of every population; (d) average distance between solutions. 

Figure 5.19 (a) depicts the number of network solutions (children) that derived from a previous 
network solution (parent). Figure 5.19 (b) shows the genealogy of the solutions during this 
process: blue color are the solutions created by crossover, black color are the elite solutions, while 
red color are the solutions created by mutation.  

 
(a) 

 
(b) 

Figure 5.19 – RL-NDP_SOF: experiment II output of the Porto case study: (a) selection function; (b) 

genealogy of the solutions. 
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Figure 5.20 illustrates the lane layout found for the best solution found in this experiment II. 
Reversible lanes were implemented in part of the road network. The RL-NDP-SOF revealed that 
this strategy is used in almost every road link that could implement reversible lanes. Green color 
illustrates the road links where a lane layout change happened. Red color reveals the links even 
though reversible lanes were possible, the previous lane layout was already optimal. Grey color 
reveals that the links with a fixed lane layout where reversible lanes could not be implemented. 

The main difference between the solutions found in the experiments I and II is that the GA 
explored more links with reversible lanes. The major difference between Figure 5.14 and Figure 
5.20 is the arterial located on the left, next to the sea, as well more sections of the main freeway. 
The experiment II found a better solution that uses more reversible lanes than the experiment I 
best solution. 

 

Figure 5.20 – Lane layout of the RL-NDP_SOF experiment II of the Porto case study (VISUM).  

Figure 5.21 and Figure 5.22 illustrate the improvements in the traffic flow distribution in terms 
of the degree of saturation. Figure 5.21 tells whether the traffic assignment (degree of saturation) 
was improved or not. The road links who experienced improvement are drawn proportionally in 
thicker green lanes.  

Figure 5.22 details the percentages of the degree of saturation improvement all over the network. 
Even though only some roads allow the implementation of reversible lanes, overall the traffic 
flow distribution was improved with a degree of saturation reduction up to 25%. The major 
improvements are in the major freeway that surrounds the city center, with improvements up to 
76%. On average, the improvement of the degree of saturation was 2.17% in the entire road 
network, while in roads that used reversible lanes the degree of saturation reduced on average 
15.24%. The total number of reversible lanes with changed direction was 234. 
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Figure 5.21 – Analysis of the traffic improvement in terms of the degree of saturation in the RL-NDP_SOF 

experiment II of the Porto case study (VISUM). 

OPTIMIZED LAYOUT: SCENARIO I – EXPERIMENT III 

This section presents the results for the experiment III that involved the following GA 
characteristics: a stopping criterion of 24 hours, a maximum number of stall generations of five, 
and a mutation factor of 10%. This third experiment was aimed to depict the convergence of the 
model and evaluate the influence of the mutation factor in the solution search process.  

The GA evolved through eight stages (8 generations) that corresponds to 2700 network solutions, 
which took about twenty-two hours (80588 seconds) – the maximum number of stall generation 
was the stopping criterion. In this example, the proportion for mutation and crossover was 10% 
and 90%, respectively. 

Table 5.3 shows the output of the GA for every stage (generation). The best solution found in the 
experiment III revealed a value of the objective function of 8300.72 hours found at the third 
generation (after 10 hours) – which means a travel time reduction of 32 hours from the initial lane 
layout. Note that a very similar solution to the optimal was found in the second generation (after 
7.5 hours). The best solution (32 hours of travel time reduction) benefits on average 0.20% benefit 
in terms of travel cost reduction throughout the network, and an average local benefit of 4.36% 
in the roads with reversible lanes. 

Table 5.3 – Matlab output of the GA generation process: experiment III. 

    Best Mean Stall 
Generation Func-count Penalty Penalty Generations 
 1 600  8326 8509 0 
 2 900  8301 8470 0 
 3 1200  8301 8453 0 
 4 1500  8301 8448 1 
 5 1800  8301 8448 2 
 6 2100  8301 8432 3 
 7 2400  8301 8419 4 
 8 2700  8301 8420 5 
 
Optimization terminated: average change in the penalty fitness value less 
than options.FunctionTolerance and constraint violation is less than 
options.ConstraintTolerance. 
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Figure 5.22 – Analysis of the percentage of the degree of saturation improvement in the RL-NDP_SOF experiment II of the Porto case study (extracted from VISUM). 
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Figure 5.23 illustrates the process of finding the best lane layout under the GA framework 
throughout the generations. Figure 5.23 (a) shows the evolution of the objective function value – 
showing a very slow convergence - the process is stagnate overtime which the stall generations 
indicator from Table 5.3 corroborates. Yet, the mean (penalty) value is decreasing overtime. 
Figure 5.23 (b) shows the vector of the best network solution found in this experiment. 

 
(a) 

 
(b) 

Figure 5.23 – RL-NDP_SOF: experiment III output of the Porto case study: (a) GA objective (penalty) 

function; (b) best network solution. 

Figure 5.24 (a) shows the fitness scaling of the solutions found in the last iteration of the GA. 
Figure 5.24 (b) reveals that most solutions are concentrated around 8400 which indicates that the 
distance between solutions is very short – see Figure 5.24 (d). Figure 5.24 (c) shows the best, 
worst and mean values range in every generation – the non-convergence of the worst values is 
explained by the random mutation factor. 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

Figure 5.24 – RL-NDP_SOF: experiment III output of the Porto case study: (a) fitness scaling; (b) score 

histogram (c) best, worst and mean values of every population; (d) average distance between solutions. 

Figure 5.25 (a) depicts the number of network solutions (children) that derived from a previous 
network solution (parent). Figure 5.25 (b) shows the genealogy of the solutions during this 
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process: blue color are the solutions created by crossover, black are the elite solutions, whereas 
red color are the solutions created by mutation. 

 
(a) 

 
(b) 

Figure 5.25 – RL-NDP_SOF: experiment III output of the Porto case study: (a) selection function; (b) 

genealogy of the solutions. 

Figure 5.26 illustrates the lane layout found for the best solution found in this experiment III. 
Contrary to what happened in the previous experiments, this experiment tried less variations of 
the initial lane layout – as there are more red lines than in the previous figures Figure 5.14 and 
Figure 5.20. Green color illustrates the road links where a lane layout change happened. Red color 
reveals the links with reversible lanes where the previous lane layout was maintained. Grey color 
reveals that the links with a fixed lane layout where reversible lanes could not be implemented. 

 

Figure 5.26 – Lane layout of the RL-NDP_SOF experiment III of the Porto case study (VISUM).  

Figure 5.27 and Figure 5.28 illustrate the improvements in the traffic flow distribution in terms 
of the degree of saturation. Figure 5.27 tells whether the traffic assignment (degree of saturation) 
was improved or not. The road links who experienced improvement are drawn in thicker green 
lanes, which in this case are located in the main freeway and some major arterials. 

Figure 5.28 illustrates the percentages of the degree of saturation improvement throughout the 
network. Overall the traffic flow distribution was improved with a degree of saturation reduction 
up to 25%. The major improvements are located in some nodes of the major freeway, with 
improvements up to 65%. On average, the improvement of the degree of saturation was 1.34% in 
the entire road network, while in roads that used reversible lanes the degree of saturation reduced 
on average 8.98%. The total number of reversible lanes was 130. 
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Figure 5.27 – Analysis of the traffic improvement in terms of the degree of saturation in the RL-NDP_SOF 

experiment III of the Porto case study (VISUM). 

SUMMARY 

This chapter proposed a simulation-optimization framework (SOF) for solving the previous RL-
NDP in large road networks. The SOF was implemented in the Matlab environment with COM 
scripts establishing the connection with a macro-simulator (VISUM software) whose outputs are 
analyzed by GA. The contribution is focused on studying the implementation of reversible lanes 
in a large complex network with different hierarchy levels that limit the implementation of 
reversible lanes and several O-D pairs for travel demand.  

Two scenarios were tested. Base Scenario O corresponds to the current situation as traffic runs 
under UE conditions without reversible lanes, i.e., there is no optimization routine. Scenario I 
with reversible lanes in some roads of the network is considered. The model was applied to the 
network of the city of Porto, for a single hour which is the most congested. However, given the 
complexity of case-study, the performance of the SOF performed three experiments with different 
GA configurations. 

The network solutions were obtained with a satisfactory performance, especially when compared 
with Scenario O. The experiment I found a solution that reduced the overall total travel time of 
23 hours, the experiment II found a solution that reduced 24 hours, and the experiment III found 
a solution that reduced 32 hours. The performance of the GA revealed that the experiment III 
found a very good solution in the 2nd generation – the problem did not converge much afterwards. 

This chapter also revealed a new dimension of reversible lanes in the traffic system: overall the 
traffic flow distribution was improved, even in links where reversible lanes didn’t exist. On 
average, the degree of saturation was reduced 9%, up to 65% in some roads, which corroborates 
with the results found in the numerical experiment of the previous chapter. On average, the 
improvement of the degree of saturation was 1.34% in the entire road network. 

Overall, the SOF proved to be an easy tool to guide the reversible lane implementation, yet more 
advancements in the methodology are advisable to optimize the solution search process. As future 
work, more tests with randomness parameters, different shares of mutation and crossover, various 
number of solutions for the populations, and even different algorithms are suggested. Hybridizing 
the SOF by adding a neighborhood search algorithm in the local solution search process would 
be an asset for increasing the performance of the framework. Additionally, adding the delay in  



Chapter 5 – A Simulation-optimization Framework for the Reversible Lane problem on real city size networks 

147 

 

Figure 5.28 – Analysis of the percentage of the degree of saturation improvement in the RL-NDP_SOF experiment III of the Porto case study (extracted from VISUM). 
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every node in a scenario with AVs at a mesoscopic perspective (i.e., network-level) through impedance 
functions and studying its impacts on pollution.  

In real-time, a similar framework to the one proposed could be applied only in several individual small 
scales to reduce the number of variables and the complexity of the problem and solve it in seconds or 
minutes. For instance, if each road (freeway) with V2I and reversible lanes received traffic data from 
the other hierarchical levels. Traffic assignment distribution would not be needed in real-time problems. 
In such a case, the flow variables provided by the VISUM software would be replaced by other traffic 
data sources. 
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CONCLUSIONS 

 

 

KEY-FINDINGS 

The main goal of this thesis is to aid the transport planning of urban metropolitan areas to engage in 
AVs technology and tackle urban congestion by improving the overall traffic system. The research goal 
acts on two levels: one supporting transport planners in the design of AV subnetworks and the other on 
supporting traffic engineers with a novel traffic control system centered on reversible lanes for 
automated traffic only. The general objectives of this thesis were set out to be the following: to study 
whether the segregation of mixed and automated traffic through dedicated roads is valuable for the 
system; to estimate the AVs’ impact on traffic and congestion levels during the transition period; to 
evaluate the benefits of having a dynamic reversible lane approach applied in AV dedicated roads; to 
analyze the utility of centralized (system-optimal) AV paths on mitigating congestion. Henceforth, the 
main conclusions and key-findings from each chapter are introduced. 

Chapter 2 «State of the art» presented the existent research developed around the topic of AVs. First, a 
brief presentation on the several AVs concepts and the explanation of the reasons why the term 
“automated vehicle” is considered the most accurate nowadays, reflecting the highest levels of 
automation (levels 4 and 5). Following, a literature review on the forthcoming impacts of AVs is 
presented which is divided into impacts on traffic, mobility, and urban environments. Finally, the 
deployment of AVs in urban areas is briefly reviewed for a transition period that revealed an increasing 
need for transport policy and the network design is seen as valuable for the future planning of AV traffic 
operation. The key-findings of this chapter are the following: 

 Over the last decades, automated driving technology has developed at a fast track, and several levels 
of automation distinguish AVs. Research related to AVs upcoming impacts is quite dispersed, 
although far more developed on the traffic topic than on the mobility and urban environments topics. 
The conclusions have been somewhat consensual on AVs over level 3, positively impacting the traffic 
system from their platooning and efficiency skills. The literature review on the mobility impacts 
revealed that once AVs reach levels 4 and 5, increased travel demand is likely to happen that would 
eventually worsen congestion. The urban environmental impacts are highly vulnerable to these 
previous effects (traffic and mobility), although recent studies show that AVs might help road safety 
and reduce carbon emissions in urban areas. 
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 The literature review on the deployment of AVs in urban areas reinforces that it must be assumed a 
transition period to outline the best deployment until the full dissemination of AVs (levels 4 and 5). 
The level 4 automation reflects the most likely automation level in this “transition period” and that 
means that this would be the turning point when AVs might drive automatically yet requiring a human 
driver inside the vehicle. The place of non-AVs (human-driven vehicles) cannot be forgotten. 
Regulations promoting the deployment of AVs in urban areas are missing, especially at a transport 
planning by a smart traffic operation perspective – the existent regulations are mostly focused on the 
definition of AVs levels of automation and guidance for testing AVs in real environments.  

 It is notorious the need to study the AVs topic in urban areas at the network level to improve mobility 
and tackle the congestion problem accrued by higher travel demand and high population density. As 
AVs level 4 and 5 are not yet a reality, academia represents the opportunity to study and evaluate 
future transport policy alternatives to help the governments state proactive directives for policy actions 
in the future.  

 Network design is a viable methodology to first study transport policy in the context of AVs in a 
proactive way. Two levels are embedded in this methodology, the municipality decision (policy 
action/strategy) and the consequential network performance that accrues from the citizens' behavior 
(traffic assignment). 

Chapter 3 «Subnetworks for Automated Vehicles» introduced a transport planning problem of 
designing AV subnetworks during a transition period where AVs coexist with CVs – AV penetration 
rate evolves from 0% to 100%. A road network design problem (RNDP) is presented, selecting 
dedicated roads for AVs inside an urban network. The road investment effect on the RNDP is discussed. 
The model is applied to a case study of the city of Delft, in the Netherlands. The design for the peak 
hour and the whole day is debated. The key-findings of this chapter are the following: 

 In the peak-hour analysis, AVs subnetworks first appear in zones that are highly demanded (residential 
areas) and in which there is a compromise between the AV benefits, in terms of travel time cost 
savings, and CV detours. Through the experiments done at each penetration rate, it was found that for 
the considered peak-hour, AV subnetworks are a useful strategy to reduce the overall congestion and 
generalized costs, while degrading congestion in the surroundings of the AV subnetworks. From the 
experiments on the planning approaches designed for the peak-hour, the following conclusions can be 
drawn: when road investment for infrastructure improvement is part of the problem, the incremental 
planning strategy seems the best strategy; the hybrid planning strategy is preferred when road 
investment is irrelevant. The long-term planning strategy should only be initiated when at least 25% 
of the vehicle fleet is automated in order to avoid extra generalized costs and CV detour in the early 
stages of AVs deployment. CV detour might be considered the tie-breaking criteria regarding the 
decision of the best planning strategy - incremental planning is the strategy that mitigates the most 
this problem. 

 The implications of the peak-hour design in the remaining hours of the day were tested. Since the 
travel demand of the peak-hour does not coincide with the remaining demand throughout the day, the 
design for the peak hour implied that CV owners with other trips routines and would be constrained 
to enter or leave AV subnetworks, so an alternative mode of transport is required - walking was 
evaluated in this sense. Nevertheless, this situation (alternative mode required) only happened for 
significant shares of AVs (75% onwards) from the large AV subnetworks at this stage. 

 The design for the whole day revealed a substantial decrease in the total travel costs for the whole 
day, as it optimizes the road network configuration for the daily demand. From the experiments on 
the planning approaches, the following conclusions can be drawn:  

- When road investment for infrastructure improvement is part of the problem, the hybrid 
planning is very satisfactory as it is the strategy that most mitigates the CV detour problem. 
It should be applied mainly if AV subnetworks only appear after AVs have already a 
significant share of the vehicle fleet (over AV penetration rates of 25%). Nevertheless, the 
long-term planning strategy is preferred because it distributes the road investment 
throughout the period since the early stages of deployment (10%).  
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- When road investment is not evaluated, the LTP is indicated when AVs subnetworks first 
start to be designed in the second half of the transition period (50% of AVs onwards). At 
that stage, i.e., when AVs and CVs are equally balanced (50%), CVs experience more 
congestion (30% increased delay). The hybrid here revealed a good performance and can 
be used since the first half of the transition period, but then CV detour occurs when AVs 
are 90% of the fleet. 

 AV subnetworks have an essential role in segregating automated from mixed traffic and its design 
first start in lower capacity roads, deviating AVs to shorter routes (lower distances) on lower speed 
roads (higher travel times as the AVs value of travel time reduces). The reduction of the AVs value 
of travel time might conduct the dispersion of the AVs traffic, leaving highway arterials and driving 
in smaller urban roads. In this sense, the creation of AV subnetworks in these zones might be 
welcomed, since it “takes out” AVs from regular roads where CVs are used to drive and lower speeds 
could be positive at a road safety perspective in urban areas, especially when the first AVs level 4 
start to be deployed. Overall, we may conclude that AV subnetworks should be designed once AVs 
reach 25%, but the performance of the system will only show positive results when AVs are over 50% 
of the vehicle fleet. 

 Nevertheless, the RNDP-AVs also depends on the AV demand diffusion over time because it will 
pressure the road network with more traffic flow and push forward/accelerate the creation of AV 
subnetworks by influencing the time lag between design stages. For instance, if the time lag from 1% 
to 50% of AVs is much longer than the time lag from 50% to 90% of AVs, the CV detour would be 
very present, which turns the incremental the best strategy to be considered regardless the road 
investment consideration.  

Chapter 4 «Reversible Lanes for Automated Traffic» discusses the traffic operation of AVs working in 
dedicated infrastructure that carries V2I connectivity – only possible in smart cities. An optimization 
problem of reversible lanes applied at the network level is presented. In addition, it is debated whether 
a centralized traffic control system should (not) take control over AVs paths. The model is applied to a 
case study of the city of Delft, in the Netherlands, for a penetration rate of 100% of AVs. The key-
findings of this chapter are the following: 

 Reversible lanes have the potential to reduce the degree of saturation, congestion, congested roads, 
travel times and delay, regardless of the traffic assignment considered. However, travel distance is 
sensitive to the type of traffic assignment. Within UE, the total distance reduces 0.4% while within 
SO it increases by 2.0%. In peak hours, the SO scenario revealed to have a better performance in most 
of the traffic performance indicators. The dual scenario combining UE or SO at each hour showed a 
total distance increase of 1.2%. In this optimal scenario, congested roads were reduced by 40.1%, total 
travel times and delay decreased by 8.0% and 18.8%, respectively. 

 The study of the spatial location of congestion and variability of this strategy revealed that reversible 
lanes naturally vary more frequently in zones where demand is imbalanced throughout the day 
(residential areas). In city centers, congestion can still be reduced by reversible lanes, though 
congested roads only disappear in the SO scenario. 

 In terms of reducing total travel times, delay, and traffic congestion located in the city center, the SO 
scenario confirmed to be the ideal one. Notwithstanding, the mixed UE-SO scenario appears to be the 
best on reducing congested roads throughout the network all over the day. 

 As municipalities are mostly concerned with congested road links and their influence on air pollution 
and energy consumption, a future with SO paths that might be a reality to achieving sustainability 
goals. The application of the RL-NDP model points for the need for investment to inform AVs of their 
SO paths and make the SO traffic assignment a reality.  

 The RL-NDP model can be adjusted to some of the prospective benefits of the automated driving 
features, such as the chance to have smaller lanes that will raise the overall existing road capacity.  

Chapter 5 «A Simulation-optimization Framework for the Reversible Lane problem on real city size 
networks» presents a framework that joins both simulation and optimization in a single framework to 
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solve road network design problems in large urban areas. The main difference of this chapter from the 
others in that the main aim of the chapter is to verify how road network design problems can be solved 
when larger and complex networks exist. Contrariwise, chapters 3 and 4 tested and estimated novel 
ideas of road network design problems in a case study that mathematical programming was able to 
solve. This chapter proposed a simulation-optimization framework (SOF) for solving the previous RL-
NDP (chapter 4) in a larger case study: the city of Porto in Portugal. The key-findings of this chapter 
are the following: 

 The SOF, implemented in the Matlab environment with VISUM COM scripts and GA, proved to be 
an easy tool to guide the reversible lane implementation, yet more advancements in the methodology 
are advisable to optimize the solution search process (e.g., randomness in the creation of solutions). 

 SOF establishing a connection between simulation (VISUM software) and optimization (GA) routines 
imply extended calculation times since the simulation routine is called every time a solution is 
generated to calculate the objective function of that solution. 

 Given the running time as stopping criteria and an adjustable mutation factor, the solutions obtained 
in all three experiments were satisfactory. The experiment I found a solution that reduced the travel 
time of 23 hours comparatively with scenario O, the experiment II found a solution that reduced total 
travel time of 24 hours, while the last experiment II found a solution that reduced total travel time of 
32 hours. The analysis of the GA outputs revealed that, in the experiment III, the problem was found 
in stagnation, and the solution found until that point was probably very close to a local optimum. 

 By implementing reversible lanes in a part of the network, the overall traffic flow distribution induced 
a lower degree of saturation even in links where reversible lanes didn’t exist, improving the overall 
traffic in the road network. This might indicate that an increase of capacity in the main freeways might 
have an influence on the paths for each O-D pair. 

 On average, the degree of saturation was reduced by 1.34%, up to 65%. In roads that implemented 
reversible lanes, the reduction was on average 8.98%. These results corroborate with the ones from 
the numerical experiment of previous chapter 4. 

 

Overall, this thesis offered a new perspective on how to deal with the deployment of AVs and potentiate 
their benefits in urban areas. The first of this thesis supports the transport planning of urban areas 
through a model that designs AV subnetworks inside urban road networks throughout this transition 
period (i.e., CVs are present in the road network). Then, the second part of this thesis supports the traffic 
operation and management through a model that decides for each period (i.e., hour) how many lanes 
each direction should have. While the first part is intended for the whole transition period, the second 
part is intended to be applied inside AV subnetworks only – and the experiments done in this thesis 
present the results for the full deployment of AVs (penetration rate of 100%). The thesis ends with a 
framework that joins simulation and optimization techniques to solve larger road network design 
problems. 

The first main conclusion of this thesis is that AV subnetworks will be particularly useful in the second 
half of the transition period (AVs penetration rate over 50%), in order to reduce travel costs that includes 
also a road investment on every dedicated road for AVs. The road investment clearly constraints the 
development of AV subnetworks. The devaluation of the value of travel time in AV passengers will 
allow starting designing AV subnetworks in shorter roads that have lower speeds (higher travel times) 
and transfer AV traffic out of the main arterials where CVs will continue to circulate.  

The second main conclusion of this thesis is that reversible lanes have enormous potential for reducing 
travel times up to 9% at the end of the deployment period (100% of AVs). Through chapters 4 and 5, it 
has been demonstrated that reversible lanes can be put in practice and improve traffic efficiency all over 
the network, influencing the paths chosen for each O-D pair. 



Chapter 6 – Conclusions 

153 

As one might conclude, the contributions of the thesis are mostly directed on benefiting society at the 
transportation level, by giving a scientific viewpoint for supporting policymakers with two promising 
strategies, the segregation of AVs circulation from the remaining traffic, and the implementation of 
reversible lanes, that could be applied in the next decades to embrace the deployment of AVs in urban 
areas. 

LIMITATIONS AND FUTURE RESEARCH PERSPECTIVES 

Although AVs level 4 and 5 are not yet a reality, this thesis focuses on problems that  will likely occur 
in the next few decades. In the first part of the thesis, the application of the RNDP-AVs model to the 
Delft case study points to the need of designing a subnetwork for AVs. In the second part of the thesis, 
the application of the RL-NDP model to the Delft case study also points to the need of implementing 
reversible lanes in dedicated infrastructure to conduct AVs traffic in the most efficient way. 

In chapter 3, the RNDP-AVs model related to AV subnetworks creation was formulated with the 
introduction of some simplifications and assumptions, for example, a constant mixed traffic efficiency 
coefficient and a constant road investment per kilometer, an extended model joining together the 
decision AV subnetworks and strategic location problem for V2I communication sites (5 km of radius), 
as well with traffic efficiency parameters more accurate, perhaps could be solved through heuristic 
methods, though more computationally costly to solve and the optimal solution might not be guaranteed. 
An improvement could be taking public transport as another alternative mode of transport, but it would 
involve bus routes and its scheduling problem, transforming the whole road network design problem 
into a massive combinatorial transit assignment problem. Moreover, it is also possible to add 
improvements such as other cost components involving pollution, noise reduction, or other benefits, for 
example, freeing space in the city center (e.g., parking and gas stations). 

In chapter 4, the RL-NDP model related to the reversible lanes traffic operation decision was formulated 
with the introduction of some simplifications and assumptions; for example, the time for the lane 
adjustment between the different hours is not considered. Also, the model simplified the dynamic of the 
reversible lanes’ strategy in every intersection, ignoring the number of turns which could generate a 
delay in the nodes. Also, as future work, adding the delay in every node in a scenario with AVs at a 
macroscopic perspective (i.e., network level) and studying the impacts on pollution. Nevertheless, the 
RL-NDP model can be adjusted to some of the prospective benefits of the automated driving features, 
such as the chance to have narrower lanes that will increase the overall existing road capacity.  

In chapter 5, the simulation-optimization framework applied a RNDP in a larger and complex case-
study, the city of Porto, and that framework was applied to the reversible lanes problem. As future work, 
more tests with randomness parameters in the GA with different shares of mutation and crossover, and 
testing different algorithms are suggested. Hybridizing the SOF by adding a neighborhood search 
algorithm in the local solution search process would be an asset for increasing the performance of the 
framework. Additionally, studying the performance of the reversible lanes’ strategy with and without 
the effect of impedance functions in every node (e.g., the delay from traffic lights) would validate the 
numerical experiment done in the previous chapter 4 that didn’t consider that effect. 

Correspondingly, studying the AV subnetworks problem together with the reversible lanes would be 
very advantageous, especially in the beginning of the transition period. The application of the RNDP-
AVs model revealed that even considering an AVs increasing traffic efficiency, the creation of AV 
subnetworks that focused on the minimization of total travel costs takes advantages of the decreasing 
value of AVs travel time to induce longer AV trips (time) at the beginning of the deployment transition 
period. Perhaps implementing together dedicated infrastructure for AVs with reversible lanes would 
mitigate this travel time increase for both CV and AV passengers in the early stages of AVs deployment. 
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The whole problem would be more complex to be solved – only possible through a simulation-
optimization framework like the one that has been proposed. 

With respect to the methodologies implemented in this thesis, two approaches were taken to solve 
RNDPs: optimization that used mathematical programming and simulation-optimization that used a 
macroscopic simulator and metaheuristics.  

The complexity of any RNDP is due to the non-linearity characteristics of the problem and the 
dimension of the road network, which influences the decision upon the appropriate methodology. 
Methodologies involving optimization-only, like mathematical programming and (meta)heuristics, are 
limited when one of these two factors occur. Yet, when the problem is non-linear, mathematical 
programming is able to guarantee a global optimum whereas (meta)heuristics don’t. Furthermore, 
methodologies involving simulation and optimization involve two methods that work together to find 
the best optimal solution and usually do not guarantee a global optimal. In this case, the optimization 
routine is only possible to use (meta)heuristics that generates solutions to be tested in the simulator that 
returns the outputs needed to estimate the value of the objective function of that solution. Nevertheless, 
in both methodological approaches, the computer capacity has a crucial role in the calculation time. 

Therefore, from a practical point-of-view, optimization-only is only possible to use for the simplest and 
parsimony RNDP models. For smaller or simplified road networks with a fair numerical structure of 
the problem, optimization is more advisable since it solves the RNDPs faster than simulation-
optimization, as it calls the simulation routine each time a feasible solution is generated. However, for 
larger and complex road networks, simulation-optimization is the only alternative. Optimization-only 
is unreasonable (almost impossible) and computationally expensive for large numerical structures – 
especially the traffic assignment problem that would lead to unreasonable calculation times. In such 
cases, the simulation routine solves this lower-level problem in a much faster way than mathematical 
programming. Yet, the upper-level problem is the one that generates the solutions to be tested in the 
simulation and the iterative process might be taking to much time. Several trials are needed to improve 
the generation of solutions process from the optimization routine. 

The main limitations found while doing this thesis were: the computer capacity, software licenses, 
compatibility amongst software, transference, and interpretation of data, and time. 

PUBLICATIONS SUMMARY 

Most of the research developed in these last 4 years resulted in several scientific publications and was 
discussed in several international and national conferences, between 2016 and 2019. These are listed 
below:  

 

Journals – Articles 

 Article 1 
Conceição L., Correia G., Tavares J.P. “A road network design problem for the deployment of 
automated vehicles in urban networks: a nonlinear programming mathematical model” 2019 
(submitted to the Journal of Intelligent Transportation Systems: Technology, Planning, and 
Operations) – Chapter3 

 Article 2 
Conceição L., Correia G., Tavares J.P. “The reversible lane network design problem (RLNDP) for 
smart cities with automated traffic” published in 08-02-2020 Sustainability Journal 2020. 12 1226 
(DOI: 10.3390/su12031226) – Chapter4 
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 Article 3 
Conceição L., Correia G., Tavares J.P. “Reversible lanes in large-scale road network design 
problems: a simulation-optimization framework” 2020 (to be submitted) – Chapter5 

 Article 4 
Conceição L., Tavares J.P. “Envisioning transport policy in a future with autonomous vehicles: a 
brief overview” accepted on 10-04-2020 to IEEE Potentials – Chapter2 

 

Table 6.1 corresponds to the hypothesis tested on each major article, each focusing on answering the 
corresponding research questions introduced in previous Chapter 1, section 1.2.3. 

Table 6.1 – Articles and research questions correlation 

 Article 1 Article 2 Article 3 

RQ1  X   

RQ2  X X 

RQ3  X  

 

Conference Presentations – Full paper 

1. Conceição L., Rossetti R.. "Multivariate modelling for autonomous vehicles: Research trends in 
perspective." 2016 IEEE Intelligent Transportation Systems Conference (ITSC) Rio de Janeiro, 
Brazil. DOI: 10.1109/ITSC.2016.7795536 – Chapter 2 

2. Conceição L., Correia G., Tavares J.P. “The deployment of automated vehicles in urban transport 
systems: a methodology to design dedicated zones” EWGT conference. Budapest, Hungary. 
Transportation Research Procedia 27, 230-237, EWGT 2017 DOI: 10.1016/j.trpro.2017.12.025 – 
Chapter3 

3. Conceição L., Correia G., Tavares J.P. “Inconveniences from the design of AV subnetworks: when 
walking is the only alternative” (accepted for the 2020 EWGT conference) – Chapter3 

 

Conference Presentations – Abstracts, Short Papers and Posters 

1. Conceição L., Correia G., Tavares J.P. “The Deployment of Automated Vehicles in Urban Transport 
Systems” CITTA General Assembly and 1st PhD Student Workshop, University of Coimbra, 
Portugal, November 17th, 2016 (Abstract) – Chapter1 

2. Conceição L., Correia G., Tavares J.P. “The Deployment of Automated Vehicles in Urban Transport 
Systems” 14º Encontro do Grupo de Estudos em Transportes, Fatima, Portugal, February 21st, 2017 
(Abstract) – Chapter2 

3. Conceição, L. “The deployment of automated vehicles: a model to design dedicated roadways in 
urban centers”, TRAIL PhD Congress 2017, Utrecht, November 9th, 2017 (Abstract) – Chapter3 

4. Conceição L., Correia G., Tavares J.P. “The Deployment of Automated Vehicles: Dedicated Zones 
as a Urban Planning Strategy”, SYSORM 2017, University of Granada, November 13th, 2017 
(Abstract) URL: https://congresos.ugr.es/sysorm17/wp-content/uploads/sites/15/2017/12/Proceedi 
ngsSYSORM17.pdf – Chapter3 

5. Conceição L., Correia G., Tavares J.P. “Automated Vehicles and the Transport Planning in Urban 
Environments” CITTA 11th Annual Conference on Planning Research: o Espaço Lusófono e o 
Futuro das Cidades, University of Porto, Portugal, October 24th, 2018 (Short Paper) – Chapter3 
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6. Conceição L., Tavares J.P., Correia G. “The Deployment of Automated Vehicles in Urban 
Environments: Traffic Strategies in a Safety Perspective”, 31ST ICTCT conference, University of 
Porto, October 25th, 2018 (Abstract) URL: https://www.ictct.net/wp-content/uploads/ICT 
CT\_Book\_of\_abstracts\_Porto.pdf – Chapter2 

7. Conceição L., Correia G., Tavares J.P. “Automated vehicles in urban environments: dedicated roads 
as a transport planning strategy” GET – 16th Conference, Penela, Portugal, January 8th, 2019 
(Abstract) – Chapter3 

8. Conceição L., Correia G., Tavares J.P. “How transport planning in urban regions shall be addressed 
to integrate automated vehicles reality: a mixed traffic analysis” NECTAR conference, Towards 
Human Scale Cities – Open and Happy, University of Helsinki, Finland June 6th, 2019 (Short 
Paper)URL: https://www.helsinki.fi/sites/default/files/atoms/files/nectar2019\_abstract\_book.pdf 
– Chapter3 

9. Conceição L., Correia G., Tavares J.P. “The future of smart cities with automated vehicles: benefits 
from reversible lanes in a connected traffic control system” MIT Portugal conference September 
2019, University of Azores, Portugal September 30th, 2019 (Poster) – Chapter4 
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A.1. THE MIXED INTEGER PROGRAMMING (MIP) MODEL 

This section presents the first formulation to solve the RNDP-AVs by mathematical programming 
(Conceição et al., 2017). Here, the objective function maximizes the benefits based on a traffic 
performance indicator, the average travel time at each road link. A walking penalty might occur when 
CVs trespass AV zones and a road investment is considered at each AV dedicated road. 

The assumptions of the MIP model are: 

 The trips performed are either done by AVs or CVs, according to their penetration rate; 
 Each trip is assigned to one car (a person by car); 
 An AV is considered to be level 4 (SAE, 2018) which means that inside dedicated areas they 

drive automatically; 
 In a trip done in a CV, when the car reaches the boarders of the dedicated area, the traveler may 

walk toward the destination; 
 AVs travel more efficiently than CVs, allowing an increase of capacity of the roadway; 
 No external trips to the city are considered in the network. 

The model is formulated as a discrete integer programming problem, as follows: 

Sets 

𝑰 = (1, . . . , 𝑖, . . . , 𝐼): 
set of notes in the network, where 𝐼 is the number of 
nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀𝑖, 𝑗 ∈ 𝐼 ∩ 𝑖𝑗: set of arcs of the road network where vehicles move. 

𝑽 = {𝐴𝑉, 𝐶𝑉} : type of vehicles (mode) in the network: AV and CV 

Parameters 
𝜌: penetration rate of AVs on the vehicle fleet, between 0 and 1. 

𝛼: coefficient that reflects the efficiency of automated traffic on the road capacity, i.e. the 
number of CVs to which an AV corresponds to. Defined between 0 (an AV has no effect 
on traffic) and 1 (an AV is as efficient as a CV). 

𝜏: walking speed, expressed in kilometers per hour. 

𝜇 parameter that reflects the “walking capacity” of the network 
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𝑉𝑂𝑇: value of travel time in monetary units per hour. 

𝑇𝑇ఘୀ଴: travel times when penetration rate is null, expressed in hours. 

𝑉𝑂𝐼: value of investment for road upgrade in each dedicated road link, in monetary units. 

𝐷௜௝
௩ : trips of mode 𝑣 ∈ 𝑽 from an origin, node 𝑖, towards a destination, node j, ∀ 𝑖, 𝑗 ∈ 𝑰. 

𝑡௜௝
௠௜௡: minimum driving travel time in free-flow speed at each link (𝑖, 𝑗) ∈ 𝑹, expressed in hours. 

𝑡௜௝
௠௔௫: maximum driving travel time from  10% of the free-flow speed at each link (𝑖, 𝑗) ∈ 𝑹, 

expressed in hours. 

𝐿௜௝ : length of each link (𝑖, 𝑗) ∈ 𝑹, expressed in kilometres. 

𝐶௜௝: capacity of each link (𝑖, 𝑗) ∈ 𝑹, in vehicles for the period of analysis. 

Decision variables 
𝑥௜௝  : binary variable equal to 1 if link (𝑖, 𝑗) ∈ 𝑹 is assigned for AV only driving. 

𝑓௜௝
௩ : integer variable that corresponds to the flow of vehicles 𝑣 ∈ 𝑽 in each link (𝑖, 𝑗) ∈ 𝑹 and each 

pair (𝑜, 𝑑) ∈ 𝑷 ∩ 𝐷௢ௗ
௠ > 0. 

𝑤௜௝  : integer variable that indicates the flow of CV trips which are not allowed in dedicated roads, 
and therefore, it represents the people who are walking towards their destination, in each link 
(𝑖, 𝑗) ∈ 𝑹  

𝑡௜௝
௖௔௥: continuous variable that reflects the total car travel time (AV and CV) in each link (𝑖, 𝑗) ∈ 𝑹. 

𝑡௜௝
௪௔௟௞ : continuous variable that reflects the total walking travel time in each link (𝑖, 𝑗) ∈ 𝑹. 

Objective Function 

Max(Benefits) = 𝑉𝑂𝑇 ∗ (𝑇𝑇ఘୀ଴ − ෍ 𝑡௜௝
௖௔௥

(௜,௝)∈ோ

) − 𝑉𝑂𝑇 ෍ 𝑡௜௝
௪௔௟௞

(௜,௝)∈ோ

− 𝑉𝑂𝐼 ෍ 𝑥௜௝

(௜,௝)∈ோ

 
(A.1) 

The objective function (A.1) maximizes the benefits, expressed in monetary units, from having 
dedicated roads for AVs. The first component considers the travel time savings which is computed from 
a scenario where only CVs circulate and a scenario where a ratio of AVs and CVs exist. The second 
and third component compute penalties from having dedicated roads: extra walking travel times for CV 
users and road investment for municipalities. 

Constraints 

෍  

௝∈ூ

𝑓௜௝
௩ = ෍ 𝐷௜௝

௩

௝∈ூ

 , ∀ 𝑖 ∈ 𝑰 
(A.2) 

෍  

௜∈ூ

𝑓௜௝
௩ = ෍ 𝐷௜௝

௩  

௜∈ூ

, ∀𝑗 ∈ 𝑰 (A.3) 

෍  

௜∈ூ

𝑓௜௝
௩ − ෍  

௜∈ூ

𝑓௝௜
௩ = 0 , ∀ 𝑗 ∈ 𝑰 (A.4) 

𝑓௜௝
஺௏ ∗ 𝛼 + 𝑓௜௝

஼௏ ≤ 𝐶௜௝ + 𝑥௜௝ ∗ 𝑀 , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.5) 

𝑓௜௝
஺௏ ∗ 𝛼 ≤ 𝐶௜௝ + (1 − 𝑥௜௝) ∗ 𝑀 , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.6) 

𝑓௜௝
஼௏ ≤  𝐶௜௝(1 − 𝜌) , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.7) 

𝑓௜௝
஺௏ ≤  𝐶௜௝ ∗ 𝜌 , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.8) 

𝑤௜௝ ≥   𝑓௜௝
஼௏ − (1 − 𝑥௜௝) ∗ 𝑀   , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.9) 
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𝑤௜௝ ≤   𝑓௜௝
஼௏ , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.10) 

𝑤௜௝ ≤   𝐶௜௝ ∗ 𝑥௜௝ , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.11) 

𝑥௜௝ ≤   𝑓௜௝
௩ , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.12) 

𝑡௜௝
௖௔௥= 𝑡௜௝

௠௜௡ +
𝑓௜௝

஺௏ ∗ 𝛼 + 𝑓௜௝
஼௏ − 𝑤௜௝

𝐶௜௝

∗ ൫𝑡௜௝
௠௔௫ − 𝑡௜௝

௠௜௡൯, (𝑖, 𝑗) ∈ 𝑹 (A.13) 

𝑡௜௝
௪௔௟௞=

𝑤௜௝

𝜇
∙

𝐿௜௝

𝜏
 (A.14) 

𝑥௜௝ ∈ {1,0} , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.15) 

𝑓௜௝
஺௏ , 𝑓௜௝

஼௏ , 𝑤௜௝ ∈ ℕ଴ , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.16) 

𝑡௜௝
௖௔௥ , 𝑡௜௝

௪௔௟௞ ∈ ℝ , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.17) 

The objective function is subject to the constraints expressed between (A.2) and (A.17). Constraints 
(A.2) assure that trips are generated in the centroid nodes where trips start. Constraints (A.3) assure that 
trips are absorbed in the destination nodes. Constraints (A.4) assure the equilibrium in the nodes, i.e. 
the balance between the flow that arrives and departs must be null. Constraints (A.5) and (A.6) assure 
the capacity limitation in each link in the network for regular and dedicated road links, respectively. 
Constraint (A.7) assures that there is no CVs flow when the AV penetration rate is equal to 1. 
Constraints (A.8) assure that there is no AVs flow when the penetration rate is null. From constraints 
(A.9) to (A.11) the existence of a walking flow is assured when CVs that are not allowed to circulate 
inside AV zones and passengers are forced to park the vehicle and walk towards their destination. In 
detail, constraints (A.9) state that walking flow must be higher than CVs flow in dedicated road links, 
while constraints (A.10) forces to take that exact value as the conventional flow. Constraints (A.11) 
assure that walking flow only happens in AVs links, beyond those links it is null.  Constraints (A.12) 
assure that dedicated roads only make sense where flow circulates. Equations (A.13) and (A.14) 
calculate the link travel times by car and walking, respectively. Constraints (A.15) to (A.17) set the 
domain of the decision variables. 

NUMERICAL EXPERIMENTS IN A TESTING NETWORK 
The MIP model was applied to a grid symmetrical network, composed of 49 nodes and 84 arcs with 
two ways of circulation. The trips were equally distributed in eight nodes (1,4,7,22,28,43,46,49) with 
the sole destination in the central node (25). In order to give some realism to the network, speed and 
capacity decrease towards the centre of the network. Since the central node is surrounded by just 4 links, 
the maximum number of trips was limited to the sum of those capacities for the traffic assignment 
period being considered 

In the MIP model, the travel time function is linear. The minimum travel time in each link is calculated 
in free flow speed whereas the maximum travel time in each link occurs when capacity is reached and 
speed turns 10% of the free flow speed. Regarding the efficiency coefficient (𝛼) that details the effect 
of AVs on traffic, it was considered that AVs benefit capacity of 25% all over the network. Calvert et 
al. (2011) found a benefit around 22 when penetration rate is 50%. The value of travel time was 
considered 10 monetary units per hour. The walking time considered a pedestrian speed of around 4 
km/h. Note that walking capacity (𝜇) is needed to compare at the same units both car travel and walking 
time, which was considered 4000 persons. The cost for V2I infrastructure in each link was considered 
300 monetary units. 

The model was implemented in the Mosel language and solved using Xpress 7.7, an optimization tool 
that uses branch-and-bound for solving MIP problems (FICO, 2017). Each scenario was run in a 
computer with a processor of 2.9 GHz Intel Core i5 and 8GB RAM. 
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In a first experiment, the model minimizes the link travel times in the network, only considering car 
traffic, as expression (A.18) details. 

Min(sum of link travel times)= ෍   𝑡௜,௝

௜,௝∈ூ

 
(A.18) 

Table A.1 – The effect of the penetration rate on the sum of link travel times 

Penetration Rate Sum of link travel times (min) 
No. of dedicated 

links for AVs 

0.00 208.83 0 
0.10 116.07 15 
0.25 128.16 15 
0.50 148.33 16 
0.75 168.50 17 
0.90 180.60 19 
1.00 188.67 0* 

* In this scenario, all network is already for AVs only. 

Table A.1 presents the results for different penetration rates. Congestion happens when there are no 
AVs in the network. Two patterns on the results can be distinguished. The first regards the scenario 
where the AVs percentage is 10% where the existence of dedicated links reduce significantly the travel 
times. Subsequently, that value slightly increase as more AVs enter in the network and the travel times 
inside dedicated zones slightly rise. The second pattern shows that when the penetration rate becomes 
significant, the need for AV dedicated links is obvious. It is also noticeable that the number of links for 
AV rises alongside with the penetration rate. 

The second experiment, defined by the objective function (A.1), maximizes the benefits by selecting 
dedicated zones for AVs. Several stages were created varying the ratio of the number of AVs and CVs 
and Table A.2 presents the results. 

Table A.2 – The effect of penetration rate on the societal benefits. 

Penetration Rate Benefit cost (monetary units) 
No. of dedicated 

links for AV 
0.00 6,666.67 0 
0.10 2,498,227.70 14 
0.25 2,216,831.15 14 
0.50 1,747,602.67 14 
0.75 1,278,407.32 14 
0.90 996,800.00 14 
1.00 813,333.33 0* 

* In this scenario, all network is already for AVs only. 

Similar to what happened in traffic analysis, the scenario with the highest benefits were achieved in the 
beginning of the AV deployment. Therefore, the pattern of travel times shown in the previous model 
are also present here. However, the number of links selected for AVs was lower in comparison with the 
previous experiment. Moreover, it seems that the penetration rate does not have effect on the number 
of links selected for AVs like in the previous experiment. Both situations were expected to happen since 
other costs, such as walking time and V2I communication, are part of the objective function. Figure 1 
presents the network for a scenario when 𝜌=0.75. 
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Figure A.1 – Optimal solution for the scenario with a high AV penetration rate (𝜌 = 0.75). 

 

A.2. THE MIXED-INTEGER QUADRATIC PROGRAMMING (MIQP) MODEL 

In this section, a MIQP mathematical model is proposed to solve the RNDP-AVs. The model decides 
the road links in which only fully-AVs are allowed to circulate for each deployment stage (penetration 
rate). The objective function comprises the minimization of generalized costs, which includes travel 
times for all the Origin-Destination (O-D) pairs of all travellers while driving and walking, plus a road 
investment for each dedicated road link. A system-optimum traffic assignment results naturally from 
the overall travel times’ minimization as part of the objective function.  

The assumptions of the problem are: 

• A constant trip matrix exists for AV drivers and another one for CV drivers; 
• No external trips to the city considered; 
• Each trip is assigned to an AV or a CV; 
• AVs circulate everywhere, whereas CVs circulation is prohibited within AV dedicated roads; 
• AVs are assumed to be Level 4 (SAE, 2018), meaning they can be driven manually outside dedicated 

roads and will assume autopilot mode inside AV zones; 
• Public authorities invest in each dedicated road to make it fit for AVs; 
• A dedicated road comprises both directions dedicated to automated traffic; 
• Every road link has sidewalks for pedestrians. 

To formulate the MIQP model, the following notation is introduced: 

Sets 

𝑰 = (1, . . . , 𝑖, . . . , 𝐼): 
set of notes in the network, where 𝐼 is the number of 
nodes. 

𝑶 = (1, . . . , 𝑜, . . . , 𝑂): 
vector of origin nodes for the trips within the network, 
where 𝑂 is the number of nodes. 

𝑫 = (1, . . . , 𝑑, . . . , 𝐷): 
vector of destination nodes of the trips within the network, 
where 𝐷 is the number of nodes. 

𝑹 = {. . . , (𝑖, 𝑗), . . . } ∀𝑖, 𝑗 ∈ 𝐼 ∩ 𝑖𝑗: set of arcs of the road network where vehicles move. 
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𝑷 = {. . . , (𝒐, 𝒅), . . . } ∀𝒐 ∈ 𝑶 ∩ 𝒅 ∈ 𝑫 ∩ 𝒐𝒅: 
set of origin-destination pairs that represent the trips 
demand in the network. 

𝑽 = {𝑨𝑽, 𝑪𝑽} : 
set of vehicles present in the network: automated and 
conventional vehicles. 

Parameters 
𝜌: penetration rate of AVs on the vehicle fleet, between 0 and 1. 

𝛼௠௜௫௘ௗ : coefficient that reflects the efficiency of automated traffic on the road capacity in mixed 
traffic conditions, i.e. the number of CVs to which an AV corresponds to. Defined between 
0 (an AV has no effect on traffic) and 1 (an AV is like a CV). 

𝛼௔௨௧௢௠௔௧௘ௗ: coefficient that reflects the maximum efficiency of automated traffic on road capacity, e.g., 
in dedicated roads where only AVs are allowed, also between 0 and 1. 

𝜏: walking speed, expressed in kilometers per hour. 

𝑉𝑂𝑇௖௔௥ : value of travel time while travelling by car in monetary units per hour. 

𝑉𝑂𝑇௪௔௟௞ : value of travel time while walking in monetary units per hour. 

𝑉𝑂𝐼: value of investment for V2I communication, in each dedicated road, in monetary units per 
kilometer. 

𝐷௢ௗ
௩ : trips of mode 𝑣 ∈ 𝑽 from an origin, node 𝑜, towards a destination, node 𝑑, ∀ 𝑜 ∈ 𝑶 ∩ 𝑑 ∈

𝑫. 

𝑡௜௝
௠௜௡: minimum travel time in each road link (𝑖, 𝑗) ∈ 𝑹, expressed in hours. 

𝑡௜௝
௠௔௫: maximum travel time in each road link (𝑖, 𝑗) ∈ 𝑹, expressed in hours. 

𝐿௜௝ : length of each road link (𝑖, 𝑗) ∈ 𝑹, expressed in kilometres. 

𝐶௜௝: capacity of each road link (𝑖, 𝑗) ∈ 𝑹, in vehicles for the period of analysis. 

𝑀: big number. 

Decision variables 
𝑥௜௝  : binary variable equal to 1 if road link (𝑖, 𝑗) ∈ 𝑹 is assigned for AV only driving. 

𝑓௜௝௢ௗ
௩  : continuous variable that corresponds to the flow of vehicle 𝑣 ∈ 𝑽 in each link (𝑖, 𝑗) ∈ 𝑹 and 

each pair (𝑜, 𝑑) ∈ 𝑷 ∩ 𝐷௢ௗ
௠ > 0. 

𝑤௜௝௢ௗ  : discrete variable that indicates the flow of CV trips which are not allowed in dedicated roads, 
and therefore, represent the people that are walking towards their destination, in each link 
(𝑖, 𝑗) ∈ 𝑹 and each pair (𝑜, 𝑑) ∈ 𝑷. 

𝑧௜௝௢ௗ  : continuous variable that represents the flow of AVs when a link (𝑖, 𝑗) ∈ 𝑹 is dedicated for 
AVs only (𝑥௜௝ = 1), regarding each O-D pair (𝑜, 𝑑) ∈ 𝑷. 

The main decision variables are 𝑥௜௝ , 𝑓௜௝௢ௗ
௠ .The remaining variables depend on the first through the 

constraints. 
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Objective Function 

Min(Cost) = 𝑉𝑂𝑇௖௔௥ × ෍ ቈ𝑓௜௝ × ቆ𝑡௜௝
௠௜௡ +

൫𝑡௜௝
௠௔௫ − 𝑡௜௝

௠௜௡൯

𝐶௜௝

× 𝑓௜௝ቇ቉

௜,௝∈ூ

 

+𝑉𝑂𝑇௪௔௟௞ × ෍ ൥ ෍ 𝑤௜௝௢ௗ ×
𝐿௜௝

𝜏
௢,ௗ∈𝑰

൩

௜,௝∈ூ

 

+𝑉𝑂𝐼 × ෍ 𝑥௜௝ ×

௜,௝∈ூ

𝐿௜௝  

(A.19) 

The objective function (A.19) minimizes the costs of travel times (driving and walking) and a road 
investment cost, expressed in monetary units. The first component of the objective function computes 
the cost of driving travel times of all travelers. The travel time function is linear (see Figure A.2) 
between ]𝑡௜௝

௠௜௡, 𝑡௜௝
௠௔௫]  ∀(𝑖, 𝑗) ∈ 𝑹 ∩ 𝑓௜௝ > 0. To perform the minimization of all users’ travel time costs, 

the model computes the product of the total flow and the travel time at each link, leading to a quadratic 
term in the objective function. The second component of the objective function computes the cost 
associated with the walking travel times of the CV drivers. The walking travel times are computed in 
each link through the product between the walking flow and the walking travel time of that link (quotient 
of link length and walking speed).The third component of the objective function computes the total cost 
of V2I communication investment through the number and length of the dedicated road links. 

Remind the reader that the value of travel time of both AVs and CVs is implicitly calculated in the 
objective function. Since the total flow involves a discount factor for AVs regarding their efficiency 
(different in mixed and dedicated roads), the value of travel time spent inside CVs is the (𝑉𝑂𝑇௖௔௥) 
whereas a reduction of the AV travel time cost occurs both in dedicated links (𝑉𝑂𝑇௖௔௥ ∗ 𝛼௔௨௧௢௠௔௧௘ௗ) 
and mixed links (𝑉𝑂𝑇௖௔௥ ∗ 𝛼௠௜௫௘ௗ). 

 
Figure A.2 – Driving travel time as a function of the flow of vehicles 

Constraints  

The objective function is subject to the following constraints (A.20)-(A.36). 

෍ 𝑓௜௝௜ௗ
௩

௝∈𝑰

= 𝐷௜ௗ
௩ , ∀ 𝑖 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑣 ∈ 𝑽 

(A.20) 

෍  

௝∈𝑰

𝑓௝௜௢௜
௩ = 𝐷௢௜

௩ , ∀ 𝑜 ∈ 𝑶, 𝑖 ∈ 𝑫, 𝑣 ∈ 𝑽 
(A.21) 

෍  

௜∈𝑰

𝑓௜௝௢ௗ
௩ − ෍  

௜∈𝑰

𝑓௝௜௢ௗ
௩ = 0 , ∀ 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑖 ∈ 𝑰, 𝑣 ∈ 𝑽 ∩ i ≠ 𝑜, 𝑑 (A.22) 

f௜௝ = ෍  

௢,ௗ∈𝑰

ൣ൫𝛼௔௨௧௢௠௔௧௘ௗ ∗ 𝑧௜௝௢ௗ + 𝛼௠௜௫௘ௗ ∗ (𝑓௜௝௢ௗ
஺௏  − 𝑧௜௝௢ௗ)൯  +  ൫𝑓௜௝௢ௗ

஼௏ − 𝑤௜௝௢ௗ൯ ൧ ∀ 𝑖, 𝑗 ∈ 𝑰 
(A.23) 
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f௜௝ ≤ 𝐶௜௝   ∀ 𝑖, 𝑗 ∈ 𝑰 (A.24) 

𝑤௜௝௢ௗ ≥ 𝑓௜௝௢ௗ
஼௏ − 𝑀 ∗ (1 − 𝑥௜௝) , ∀ i, 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫 (A.25) 

𝑤௜௝௢ௗ ≤ 𝑓௜௝௢ௗ
஼௏  , ∀ i, 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫 (A.26) 

𝑤௜௝௢ௗ ≤ 𝑤௝௜௢ௗ + 𝐶௜௝ ∗ 𝑥௜௝ , ∀ i, 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑖 ≠ 𝑜, 𝑑 (A.27) 

෍  

௝∈𝑰 

𝑤௝௜௢ௗ ≤ ෍  

௝∈𝑰

𝑤௜௝௢ௗ  , ∀ i, 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑖 ≠ 𝑜, 𝑑 
(A.28) 

𝑤௢௝௢ௗ ≤ 𝐷௢ௗ
஼௏ ∗ 𝑥௢௝ , ∀ 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑖 ≠ 𝑑 (A.29) 

𝑤௜ௗ௢ௗ ≤ ෍  

௝∈𝑰

𝑤௝௜௢ௗ + 𝐶௜ௗ ∗ 𝑥௜ௗ , ∀ 𝑖, 𝑗 ∈ 𝑰, 𝑜 ∈ 𝑶, 𝑑 ∈ 𝑫, 𝑖 ≠ 𝑑 
(A.30) 

𝑧௜௝௢ௗ ≤ 𝑄௜௝ ∗ 𝑥௝௜  , ∀ 𝑖, 𝑗, 𝑜, 𝑑 ∈ 𝑰 (A.31) 

𝑧௜௝௢ௗ ≤ 𝑓௜௝௢ௗ
஺௏  , ∀ 𝑖, 𝑗, 𝑜, 𝑑 ∈ 𝑰 (A.32) 

𝑧௜௝௢ௗ ≥ 𝑓௜௝௢ௗ
஺௏ − M ∗ (1 − 𝑥௜௝), ∀ 𝑖, 𝑗, 𝑜, 𝑑 ∈ 𝑰 (A.33) 

𝑥௜௝ = 𝑥௝௜  , ∀ 𝑖, 𝑗 ∈ 𝑰 (A.34) 

𝑥௜௝  ∈  {1,0} , ∀ (𝑖, 𝑗) ∈ 𝑹 (A.35) 

f௜௝ , 𝑓௜௝௢ௗ
௩ , 𝑤௜௝௢ௗ , 𝑧௜௝௢ௗ ∈  ℕ , ∀ (𝑖, 𝑗) ∈ 𝑹, 𝑜, 𝑑 ∈ 𝑰  (A.36) 

Constraints (A.20)-(A.22) assure the traffic flow distribution. For each O-D pair, both AVs and CVs 
flows (𝑣 ∈ 𝑽) are generated (A.20) in the origin node 𝑜 ∈ 𝑶, absorbed (A.21) in the destination node 
𝑑 ∈ 𝑫 and there is a flow equilibrium (A.22) in the intermediate nodes, between the origin and 
destination, where the balance between the flow that arrives and departs must be null. Constraints (A.23) 
compute the total flow in each link (𝑖, 𝑗) ∈ 𝑹. The total flow includes the AVs flow (discounted by the 
efficiency benefit) and the flow of CVs (discounted by the walking flow). Constraints (A.24) limit the 
flow to the capacity of each link (𝑖, 𝑗) ∈ 𝑹. Constraints (A.25) to (A.30) define the walking flows. In 
detail, constraints (A.25) and (A.26) assure for each O-D pair that, in dedicated roads (𝑖, 𝑗) ∈ 𝑹 ∩ 𝑥௜௝ =

1, the walking flow is identical to the CV flow. In non-dedicated roads (𝑖, 𝑗) ∈ 𝑹 ∩ 𝑥௜௝ = 0, the range 
of walking flow is ൣ0; 𝑓௜௝௢ௗ

஼௏ ൧ ∀𝑖, 𝑗, 𝑜, 𝑑 ∈  𝑰, yet the lower limit of that interval is naturally chosen since 

the nature of the model is the minimization. Constraints (A.27) assure that the walking flow of link 
(𝑖, 𝑗) ∈ 𝑹 is limited to the preceding flow of link (𝑗, 𝑖) ∈ 𝑹 and extra walking flow might be added if 
that link is dedicated. Constraints (A.28)guarantee the continuity of the walking flow through the 
network: walking flow departing node 𝑖 ∈ 𝑰 shall be higher than the walking flow arriving to that node, 
except in the origin and destination of each O-D pair. Constraints (A.29) assure that travelers shall start 
their trips in CVs and they can only start their trips by walking if their path starts inside a AV 
subnetwork. Constraints (A.30) give a valid inequality of the walking flow concerning the links around 
the destination node of each O-D pair. Constraints (A.31)-(A.33) compute variables 𝑧௜௝௢ௗ  to distinguish 
efficiency between dedicated and non-dedicated roads (automated and mixed traffic, respectively). In a 
non-dedicated road, this variable is null by constraints (A.31) whereas, in a dedicated road, the variable 
assumes AV flow through constraints (A.32) and (A.33). Constraints (A.34) assure that a dedicated 
road for AVs comprises both directions of the road. Constraints (A.35) and (A.36) set the domain of 
the decision variables. 
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NUMERICAL EXPERIMENTS IN A TESTING NETWORK 
A simple testing network is used for verification purposes of the MIQP formulation. The testing 

network (Figure A.3) has 7 arcs and 5 nodes (two ways circulation allowed). Three experiments are 
tested with 50% of AVs presence in the vehicle fleet: 

 Experiment A: no road investment considered in the objective function to understand if the MIQP 
is working properly in producing the assignment within the network.  

 Experiment B: road investment considered for dedicated roads: 2000 €/km. This experiment is 
important to validate the convergence of the model. 

 Experiment C: does not consider a subnetwork at all. This experiment is useful to understand the 
congestion state without a subnetwork and evaluate how much this strategy can be beneficial for 
the system. 

 
Figure A.3 – Testing network 

The trips were equally distributed in four O-D pairs with 1000 trips each. The trip origins correspond 
to the external nodes (1,2,3,4) with a single destination, the central node (5). In order to give some 
realism to the problem, the internal links were given a free-flow speed of 30km/h and a capacity of 1000 
veh/h, whereas the external links were given a free-flow speed of 50km/h and a capacity of 1500 veh/h. 
Furthermore, a value of travel time in the car of 10 €/h and walking of 12 €/h were used (Yap et al., 
2016). The minimum travel time in each link was calculated under free-flow conditions, i.e., with 
maximum speed allowed, whereas the maximum travel time was calculated for a free-flow speed 
degradation of 90% when capacity is reached. The walking speed reflects the average pedestrian’s speed 
on an empty sidewalk, 5.0 ft/s equivalent to 5.48 km/h (HCM, 2010). The efficiency coefficient in 
dedicated links was considered to be 1.68 in dedicated links and 1.22 in mixed links, given a penetration 
rate of 50% (Calvert et al., 2011). 

The model has been implemented in the Mosel language and solved using Xpress 7.7 (FICO, 2014). 
This optimization tool solves quadratic problems, quite similar to the mixed integer programming 
(MIP), the only difference is that the initial LP relaxation is solved by the Newton-Barrier algorithm, 
not with the Simplex method. Then it performs MIQP root cutting and heuristics in the initial phase of 
the search solution and then Branch-and-Bound search, like in MIP problems. When the search is 
completed, the optimality of the final solution is guaranteed. Each scenario was run in a computer with 
a processor of 2.9 GHz Intel Core i5 and 8GB RAM. The model runs each experiment in just one 
second. The outputs obtained by FICO Xpress software are shown from Figure A.4 to Figure A.7. 

The main results of the three experiments are summarized in Table A.5. Experiment A obtained an 
optimal solution where most of the network should be dedicated for AVs (six out of eight road links). 
In contrast, the optimal solution of experiment B only includes two out of the eight possible road links 
in the network. This was already expected since a subnetwork is not cost free in experiment B. 

With respect to experiment A, Figure A.4-(a) depicts the subnetwork solution, Figure A.4-(b) illustrates 
the distribution of both CV and walking flows, and, lastly, Figure A.4-(c) shows the assignment of AV 

1

52

3

4
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flows. For a penetration rate of 50%, an AVs subnetwork covers most of the network which means that 
this is a cost-efficient solution. Figure A.5 illustrates the convergence of the model through the MIP 
objective and gap charts obtained from Xpress. 

 
(a)   

 
(b)  

 
(c)  

Figure A.4 – Experiment A optimal solution: dedicated links, figure (a), and flow distribution of CV, walking and 

AV flor, figures (b) and (c) respectively. 

 

Figure A.5 – Experiment A: MIP objective and MIP gap. 

The traffic assignment is confirmed through the following Table A.3 and Table A.4, detailing the 
decision variables of the optimal solution per arc (𝑖, 𝑗)  ∈  𝑹 and O-D pair (𝑜, 𝑑)  ∈  𝑷. 



Appendix A 

177 

Table A.3 – Experiment A results per arc (𝑖, 𝑗)  ∈ 𝑹. 

Roadway link Decision variables 

Node i Node j 𝑓௜௝ ෍ 𝑓௜௝௢ௗ
஺௏

(௢,ௗ) ∈𝑷

 ෍ 𝑧௜௝௢ௗ

(௢,ௗ) ∈𝑷

 ෍ 𝑓௜௝௢ௗ
஼௏

(௢,ௗ) ∈𝑷

 ෍ 𝑤௜௝௢ௗ

(௢,ௗ) ∈𝑷

 𝑥௜௝ 

1 2 18 30 30 0 0 1 
1 4 0 0 0 0 0 1 
1 5 381 640 640 500 500 1 
2 1 0 0 0 0 0 1 
2 3 0 0 0 0 0 0 
2 5 316 530 530 1000 1000 1 
3 2 500 0 0 500 500 0 
3 4 298 500 500 0 0 1 
4 1 102 171 171 0 0 1 
4 3 0 0 0 0 0 1 
4 5 493 829 829 500 500 1 
5 1 0 0 0 0 0 1 
5 2 0 0 0 0 0 1 
5 4 0 0 0 0 0 1 

Table A.4 – Experiment A results per O-D pair, (𝑜, 𝑑) ∈ 𝑻. 

Roadway link Trip O-D pair Decision variables 
Node 𝑖 Node 𝑗 Origin Destination 𝑓௜௝௢ௗ

஺௏  𝑧௜௝௢ௗ 𝑓௜௝௢ௗ
஼௏  𝑤௜௝௢ௗ 𝑥௜௝ 

1 5 1 5 500 500 500 500 1 
2 5 2 5 500 500 500 500 1 
3 2 3 5 0 0 500 0 0 
3 4 3 5 500 500 0 0 1 
4 1 3 5 30 30 0 0 1 
1 2 3 5 30 30 0 0 1 
2 5 3 5 30 30 500 500 1 
4 5 3 5 470 470 0 0 1 
4 1 4 5 141 141 0 0 1 
1 5 4 5 141 141 0 0 1 
4 5 4 5 329 329 500 500 1 

 

From experiment B, Figure A.6-(a) shows two roads selected to be dedicated for AVs in the center of 
the urban testing network (destination node). Figure A.6-(b) depicts CV and walking flows, whereas 
Figure A.6-(c) shows the AV flows distribution. In this small example, regular roads (such as link 3-2) 
have both AV and CV co-existing within mixed traffic, and dedicated roads (such as link 2-5) where 
CV traffic is transformed in walking flow and AV flow circulates autonomously. 
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(a)   

 
(b)  

 
(c)  

Figure A.6 – Experiment B optimal solution: dedicated links, figure (a), and distribution of CV, walking and AV 

flor, figures (b) and (c) respectively. Output from Xpress-MP. 

As mentioned before, the experiment C does not consider any subnetwork dedicated for AVs. Figure 
A.7 (a) confirms the non-existence of the subnetwork whereas Figure A.7-(b) and (c) depict the CV and 
AV flow assignment, respectively. 

Figure A.8 summarizes the main results fromTable A.5. Figure A.8-(a) shows that a subnetwork reduces 
the generalized costs. Through Figure A.8-(b) it is possible to see that congestion is reduced to half by 
the presence of a subnetwork. Despite the road investment consideration, the congestion level of 
experiment B (2.3%) is comparable to experiment A (1.8%). 

Regardless these statistics and results, this testing network was built on synthetic data, so no further 
conclusions can be taken. Both traffic assignment validation and formulation convergence have been 
accomplished. 
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(a)   

 
(b)  

 
(c)  

Figure A.7 – Experiment C optimal solution: dedicated links, figure (a), and distribution of CV, walking and AV 

flor, figures (b) and (c) respectively. Output from Xpress-MP. 

(a) Generalized costs of the three components 
from the objective function: driving, walking 
and V2I investment cost 

(b) Overall percentage of AV subnetwork in the 
system and the corresponding percentage of 
congestion 

 

Figure A.8 – Result analysis of the testing network experiments. 
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Table A.5 – Results from the testing network experiments 
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A 50% 7130.03 2750.47 4379.56 - 6 85.7% 1.8% 0.5 60.2% 364 58 365 787 117.66% 100.0% 1 

B 50% 11860.84 3645.95 4214.89 4000.00 2 28.6% 2.3% 0.6 50.4% 395 97 351 844 103.17% 96.2% 1 

C 50% 15595.80 15595.80 0.00 0 0 0.0% 4.6% 1.3 - 855 859 0 1714 - 0.0% 1 

1Both congestion and delay are calculated based on the travel time driven above the free-flow speed.  
2 Comparison with experiment C where there is no subnetwork for AVs.  

 

 


