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Abstract

With the faster and wider flow and production of information on media, people, such as journalists,
struggle to cope with the increasing data disclosure. It is hard to monitor and verify that informa-
tion that might also be corrupted (containing lies, inconsistencies, contradictions, etc.). Focusing
on contradictions spread on media, they might be difficult to capture and gather, for instance, due
to the time gap between them. Considering the problem above, and the constant evolution in Nat-
ural Language Processing (NLP) techniques and in machine learning, we are interested in taking
advantage of those recent developments to tackle the specific NLP task of detecting contradictions
in text.

This dissertation focus on transfer learning, thus we investigate the effect of resorting to dif-
ferent document relationships, but still related with our task of detecting contradictions, on the
performance of a supervised learning classification model. Hence, we address the problem as a
binary sentence-pair classification task, built on top of a pre-trained BERT model, to later predict
if two texts are contradictory or not. Literature on contradiction detection has focused almost on
separating antonyms and contrasting words. To the best of our knowledge, no systematic investi-
gation has considered transfer learning for the task of contradiction detection.

To illustrate our approach, contradictions in a political domain were used as a case study.
For the new document relationships under study, we collected data from five publicly available
corpora: MultiNLI, US2016, Argumentative Microtext, Argument Annotated Essays, and W2E.
And for the target relation to be tested, we have built two datasets containing pairs of contradictory
statements from two different sources: an online article exposing Donald Trump contradictory
claims, and government-related instances of the MultiNLI corpus. To evaluate the conducted
experiments, we measure classification performance mainly through ROC and Precision-Recall
curve analysis.

Our findings point towards the direction that other datasets, designed for different tasks, but
still related with the target task, can be used to boost the inference model learning performance on
our target task of detecting contradictions. We conclude that text genre, the relation of disagree-
ment between two propositions, and the specificity/profile of a person’s language have an higher
positive impact. Thus, it can be helpful to select new data that incorporates these types of relation-
ship between documents. Nonetheless, we have faced some limitations in our research, such as the
lack of robustness in the target dataset built by a single and untrained annotator. Furthermore, by
using BERT model, that achieves state-of-the-art results in several NLP tasks, we already obtain
high classification results just by using the target dataset for both train and test sets, leaving only
a small margin for improvements.
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Resumo

Com o rápido e maior alcance do fluxo de informação e produção da mesma nos media, pes-
soas, como os jornalistas, têm dificuldade em lidar com a crescente divulgação de dados. É difícil
monitorar e verificar essa informação que pode também estar corrompida (conter mentiras, incon-
sistências, contradições, etc.). Focando-nos em contradições divulgadas nos media, elas poderão
ser difíceis de identificar e reunir, por exemplo, devido ao intervalo de tempo entre as suas ocor-
rências. Considerando o problema acima, e a constante evolução em técnicas de processamento
de linguagem natural e machine learning, estamos interessados em tirar vantagens desses recentes
desenvolvimentos para atacar o caso específico de deteção de contradições em texto.

Esta dissertação centra-se em transfer learning (transferência de conhecimento), assim inves-
tigamos o efeito de recorrer a diferentes relações entre documentos, mas ainda relacionadas com
a nossa tarefa de detetar contradições, no desempenho de um modelo de classificação de apren-
dizagem supervisionada. Desta forma, abordamos o problema como uma tarefa de classificação
binária de pares de frases, desenvolvida sob um modelo BERT pré-treinado, para depois prever-
mos se dois textos são contraditórios ou não. Estudos em deteção de contradições têm-se focado
mais em distinguir antónimos e palavras contrastantes. Tanto quanto é do nosso conhecimento,
nenhuma investigação sistemática alguma vez considerou transfer learning para a tarefa de detetar
contradições.

Para ilustrarmos a nossa abordagem, contradições no domínio político foram usadas como
caso de estudo. Para as novas relações entre documentos a serem estudadas, reunimos dados
provenientes de cinco corpos disponíveis ao público: MultiNLI, US2016, Argumentative Micro-
text, Argument Annotated Essays e W2E. E para a relação alvo a ser testada, construímos dois
conjuntos de dados contendo pares de textos contraditórios provenientes de duas origens difer-
entes, um artigo online expondo aclamações contraditórias de Donald Trump, e instâncias do
género governamental do corpo MultiNLI. Para avaliar as experiências guiadas, medimos o de-
sempenho da classificação maioritariamente a partir de análises à curva característica de operação
(curva ROC) e à curva de Precisão-Abrangência.

Os nossos resultados apontam para que outros conjuntos de dados, desenvolvidos para difer-
entes tarefas, mas ainda relacionados com a tarefa alvo, podem ser usados para melhorar o de-
sempenho de aprendizagem de um modelo de inferência sobre a nossa tarefa alvo de detetar
contradições. Nós concluímos que a categoria dos textos, a relação de desacordo entre duas
proposições, e a especificidade/perfil de linguagem de uma pessoa, têm maior impacto positivo.
Assim, poderá ser útil selecionar novos dados que incorporem estes tipos de relações entre doc-
umentos. Não obstante, no nosso estudo enfrentamos limitações, como a falta de robustez no
conjunto de dados alvo construído por um único e não treinado anotador. De referir ainda, ao
usarmos o modelo BERT, que atinge resultados estado da arte em diversos problemas de processa-
mento de linguagem natural, já obtemos resultados de classificação altos apenas usando o conjunto
de dados alvo para ambos conjuntos de treino e teste, o que nos deixa com uma pequena margem
para melhorias.
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“You know, it really doesn’t matter what the media write,
as long as you’ve got a young and beautiful piece of ass.”

Donald John Trump
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Chapter 1

Introduction

Media is a tool that gathers and delivers information. It has played an important role in our

lives since the development of writing and paper, which not only enabled the preservation of

data but also longer-distance communications. Currently, we are in the Information age, where

the digitization of voice, image, sound and text, through the use of social networks (Al-Rawi,

2019), personal computers, mobile devices, and wearable technologies, provided the means for a

faster flow of information in a wider scale. Not only the distribution and access to information

is easier now, but also its production, which leads us to an environment predisposed to spreading

misinformation (Allcott et al., 2019). In fact, besides the problem of having false and contradictory

data, there are also cases where an entity shows a different opinion in different time-frames or

situations. All these inconsistencies are hard to monitor, detect and verify due to the amount

of information that we are exposed to (Cohen et al., 2011). There are professionals, namely

journalists, that dedicate their time dealing with this issue (Nieminen and Rapeli, 2019), but the

human being struggles to cope with the increasing data disclosure and complexity of the task.

Therefore, there is a need to automate this process (Graves, 2018).

Modern techniques in Natural Language Processing (NLP), for interpreting human language,

have proven to be a significant help in automating several tasks, such as fact-checking, entailment

recognition and contradiction detection, that, before, were just driven by professional workers

(Thorne and Vlachos, 2018). However, it faces some challenges, such as the amount of data

needed, the data structure (since the language has to be in a machine-interpretable format), word

meanings, and the relation between words (Sarr and Sall, 2017). Regarding capturing words mean-

ing, a very popular approach in NLP is word embeddings that are vector representations of words,

generated by Distributional Semantic Models (DSMs), capable of extracting lexical semantics

(Bakarov, 2018).

A contradiction is a semantic relation where two sentences cannot be true simultaneously.

Besides factual contradictions, where a sentence goes against common knowledge, people’s in-

terest might change over time, and so it is expectable to find contradictions in present and past

1



2 Introduction

speeches. These changes of beliefs can also be strategical, in order to please, manipulate or de-

ceive. An example is when candidates, in political campaigns, change their positions regarding

controversial issues (Putnam et al., 2014). Therefore, it is difficult to collect examples of real cases

of contradictions, not only because of a lack of resources, but also due to their subjective nature.

It is a complex task, but we believe that it can be addressed resorting to word embeddings and

machine learning. For this reason, the aim of this dissertation is to tackle the problem of detect-

ing contradictions, taking into account data limitations (the challenge of collecting contradictory

statements), by using NLP and machine learning modern techniques, namely word embeddings

and transfer learning, to achieve better performance in automatic detection of contradictions.

1.1 Problem Statement and Motivation

What people say in social media can be forgotten, ignored, or not given too much relevance at that

time, but cannot be deleted. Data is persistent, and so there is the possibility of taking advantage

of that and identify whenever someone goes against a previous claim. In Figure 1.1, we can see an

example of the referred problem, where, first, Donald Trump, the president of the United States of

America, asserts that he has no intention of running for President, and years later announces his

application.

(a) News article from TIME, 14 September 1987

(b) Donald Trump tweet, 16 June 2015

Figure 1.1: Donald Trump contradicting himself on his intentions of running for president.

http://content.time.com/time/magazine/article/0,9171,965417,00.html
https://twitter.com/realdonaldtrump/status/610838591242137600?lang=en


1.2 Research Questions and Objectives 3

From the previous example, we notice that the considered information can be from different

sources (social network services, online magazines, etc.), distinct timelines (time gap between

two contradictions), and of various formats (answers to interviews, quotes in news articles’ body,

posts). It is indisputable that the recognition of contradictions in this case is a challenging task, as

it requires an analytical ability and, mostly, access to previous data (i.e. given the statement in Fig-

ure 1.1b, the reader would need to be already aware of the past claim, Figure 1.1a, to acknowledge

the first as contradictory). Thus, it is also hard for a person to collect pairs of real-world examples

of contradictory texts.

We rely on computers for helping in several natural language processing tasks, such as email

filtering (spam, primary, social, and promotion filters), smart assistants (e.g., Apple Siri and Ama-

zon Alexa), and language translation. Recent machine techniques for natural language processing

have been very successful in many tasks, and are also promising for contradiction detection, al-

ready with some good results. Nevertheless, it is hard to collect data, so it would be useful if

knowledge from other related problems could be used to improve a model performance on con-

tradiction detection. Such reuse of knowledge can be achieved through Transfer Learning. There-

fore, the main aim of our study is to propose a model for automatic detection of contradictions,

while exploring and exploiting other related tasks for improving the model learning performance.

Hence, this approach can be of practical relevance for detecting contradictions in domains that

lack resources and data for that purpose, and speculate patterns of contradictory discourses and

similar relations.

1.2 Research Questions and Objectives

Taking into account the aim of our study, we formulate the following two research questions:

Considering our target task of detecting whether two documents are contradictory or not, ...

Q1. ... can a classification model be effective when only trained with examples whose document-

pair relations are different from the target one (contradictions)?

Q2. ... can other examples, that incorporate document-pair relations different from the target

one, be used to provide an extra training set of contradictory statements, in order to improve

a model learning performance?

The objectives, acting as milestones toward the main aim of the study, are as follows:

• Based on the revised researches, formulate a set of assumptions and hypotheses that will

serve as basis for the development of the proposed system;

• Select document-pair relationships that might be related with our target relation, contradic-

tion between two texts;

• Select existing corpus that can be applied to our research purpose;

• Collect and prepare own data, and construct our datasets;
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• Develop and implement a method for detecting contradictions between two texts;

• Evaluate the system on real cases (gathered data);

• Measure and compare models performances.

1.3 Document Structure

This dissertation structure consists of six chapters, followed by Appendix and References. Next,

we list a brief description of the remaining document structure:

1. Related Work: Covers the main concepts for this study, focusing on machine learning for

supervised classification, transfer learning, numerical representation of text, and detection

of contradictions. Also addresses previous works on language pattern analysis.

2. Methodology: Introduces language patterns, in general and in a political context, and de-

scribes the approach to accomplish the main aim of this study.

3. Data and Experimental Setup: Presents the datasets created for this study, the experimental

environment and experiments’ details.

4. Results and Discussion: Shows the results obtained from the conducted experiments, and

contains the analysis of those results, through evaluation measures, and conclusions drawn

from those analyses.

5. Conclusions and Future Work: Summarizes the findings, answers the research questions,

considers our research’s scientific contributions, outlines the limitations of the final product,

and gives insights for further research and areas to improve.



Chapter 2

Related Work

In this chapter we present the background and definitions of essential concepts, in the context of

this project. We start by introducing, in Section 2.1, Natural Language Processing and some of the

different existing applications in this field. Section 2.2 presents supervised learning, focusing on

classification tasks. Thus, we provide important definitions, such as input representation, the two

types of output, hard and soft classification, inference methods’ algorithms, and metrics used for

evaluation. Section 2.3 talks about transfer learning, its advantages and categories, and the types

of knowledge that can be transferred. Section 2.4 exposes the evolution of numerical vector repre-

sentation of text, distinguishing the two main types of text representation: localist and distributed.

Furthermore, we complement this section by giving examples of techniques used for each type of

text representation. We open section 2.5 with the definition of “contradiction", and then proceed

to present existing approaches addressing the problem of contradiction detection. Moreover, we

give an overview of datasets containing examples of contradictions that, therefore, can be used

for tackling this problem. Finally, section 2.6 covers the topic of language patterns, demonstrat-

ing different approaches held in order to analyse which are the prominent linguistic markers in

deceptive texts and how they can be used to help to predict the truthfulness of a text.

2.1 Introduction to Natural Language Processing

Natural language processing (NLP) uses a set of computational techniques with the purpose of pro-

cessing, understanding, and producing human language content (Hirschberg and Manning, 2015).

Below we list some of the several NLP tasks and applications:

• Automatic summarization: Shortening a set of data, creating a subset which represents the

most relevant contents (Tas and Kiyani, 2017).

• Named-entity linking (NEL): Assign a unique identity to entities (e.g, a person or a location)

present in a text (DAI et al., 2012).

• Named-entity recognition (NER): Identify and classify entities mentioned in a text into spe-

cific classes (e.g, person names, locations, dates, quantities) (Nadeau and Sekine, 2007).

5
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• Machine translation: Using corpus statistical, and neural techniques to translate text or

speech from one language to another, handling existing variations in linguistic typology

and idioms (Chu and Wang, 2018).

• Part-of-speech tagging (POS tagging): Classify words, as nouns, verbs, adjectives, adverbs,

etc, considering its definition and context (relationship with adjacent and related words in a

text) (Kanakaraddi and Nandyal, 2018).

• Question answering (QA): Being able to automatically answer questions made by humans

(Mishra and Jain, 2016).

• Textual entailment (TE): Check whether the truth of one text fragment is followed from

another text. Therefore, a termed text entails an hypothesis if who is reading the text can

infer that the hypothesis is most likely true (Androutsopoulos and Malakasiotis, 2010).

NLP faces several challenges which can be related with the structure of the data used, with

the amount of existing data considered for a task, and with data semantics. Regarding data, we

might deal with: limited available data, for instance, fewer resources for less popular languages

(Das et al., 2016); languages with complex linguistic structure, such as Arabic (Farghaly and

Shaalan, 2009) and Chinese (Ouyang et al., 2019); and dealing with large texts or multiple docu-

ment sources, which is harder to extract and process their contexts (e.g., multi-document summa-

rization (Hahn and Mani, 2000)). In natural language understanding, ambiguity is, perhaps, the

main problem in NLP as words meaning changes over contexts (Hussein, 2018). There is also the

issue of synonymy, where the same idea can be expressed through the use and conjugation of dif-

ferent terms, depending on the context (Tovar et al., 2018); co-reference which aims at identifying

all expressions referring to the same entity (Sukthanker et al., 2020); and author’s emotion and

subjectivity in statements, tackled by sentiment analysis (Khan et al., 2016).

2.2 Supervised Learning and Classification

In this section we will focus on supervised learning applied to classification tasks that are, indeed,

the type of tasks in which this learning method is usually employed.

Supervised learning, perhaps the most used type of machine learning in natural language pro-

cessing applications, aims at learning a function, over a set of labeled training examples, that for

an input (data instance) will predict its output (class/label).

Regarding the input, a data instance (d) is represented as a features vector (~d = 〈t1, ..., tn〉),
and its values (t1, ..., tn) depend on the chosen data representation scheme. As for the output, we

may have a multi-label classification (more than one possible label for an instance) or a single-

label classification, where we test if an instance belongs to the class of interest, the positive class;

otherwise, is predicted as negative.

The classification function can perform a hard classification, where the result is a value in a

discrete set, or a soft classification which predicts a value that can range over real values in interval
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[0, 1] (Liu et al., 2011). The soft approach can be seen as ranking a class, saying how likely it is

for the instance to belong to that class. Furthermore, a soft classification can be converted into a

hard one by thresholding.

Supervised learning involves splitting the data set into training set and test set (and also vali-

dation set if parameter tuning is going to be conducted). The data used in training should not be

used for testing, in order to prove that the induced classification function generalises to unseen

data (avoiding overfitting in the train data).

The algorithms used for the inference methods can be numeric (the output is a numeric score)

or symbolic (usually following a hard classification, the output is directly a class label) (Honavar,

1995). Two well known examples of approaches that can be used as symbolic inference methods,

also referred to as discriminant functions, are:

• Decision Trees: The features are discrete values, the test sequence is encoded as a tree struc-

ture (logical tree where the nodes represent conditions and conclusions, and the branches

decisions), and each classification conducts a binary test. An application example is a di-

agnostic Chatbot for supporting primary health care systems (Kidwai and RK, 2020), that

uses decision tree algorithm to help building, through a top-down approach, a diagnosis of

a user’s condition based on its symptoms.

• Support Vector Machines (SVMs): Considering a n-dimensional space, where n is the num-

ber of input features, a hyperplane divides that space into two sides, one for the positive

examples and the other for the negative ones. If the instances are not linearly separable, a

technique called “kernel trick" is used to transform the low-dimensional input space into

a higher-dimensional space, so the classes can then be separated. An application example

is a novel two-pass classifier architecture (Padmavathy et al., 2020), combining SVM and

artificial neural network, that infers the drug-satisfaction level of patients who have tried it.

A common numeric alternative is probabilistic classifiers, that output an estimation of the

conditional probability of an instance belonging to a certain class. A Naïve Bayes classifier is one

of those. There are different Naïve Bayes classifier variants, all based on applying Bayes’ theorem

that assumes that the input features, ~d = 〈t1, ..., tn〉, are independent of each other, given the class

variable, c, as shown in Equation 2.1:

P(~d | c) =
|T |

∏
k=1

P(tk | c) (2.1)

An application example of this probabilistic classifier is a machine learning approach to clas-

sify a person’s depression level based on its social media posts (on Facebook and Twitter), resort-

ing to Naïve Bayes algorithm to determine whether the sentiment in a post is positive, negative or

neutral (Asad et al., 2019).

In the probabilistic approach, the output relative magnitude can be seen as the degree of con-

fidence the classifier has in its prediction results.
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Table 2.1: Confusion matrix for binary classification. Positive is the class of interest.

Predicted values
Positive (P) Negative (N)

Positive
(P)

True Positive
(TP)

False Negative
(FN)

Actual
values

Negative
(N)

False Positive
(FP)

True Negative
(TN)

In natural language processing tasks, evaluation is usually done experimentally, rather than

analytically, due to the subjectivity of the task. In experimental evaluation we measure the classi-

fier effectiveness based on its ability to make correct predictions. Through a confusion matrix, we

can summarize the performance of a classification model. This N ∗N matrix, being N the num-

ber of classes, presents the cases of each distinguish class against the model prediction results for

those examples. Now we will focus on metrics computed considering a binary classification, thus,

Table 2.1 represents a confusion matrix in that situation.

The values in Table 2.1 (TP, FP, FN, and TN) are used in order to calculate measures for

evaluating a classifier, such as the ones listed bellow:

Precision

Measures the proportion of right predictions when considering only the cases which the

model classified as belonging to class of interest (positive class). A high precision value

means that an example classified as positive is, indeed, more likely to be positive. It can be

defined as follows:

Precision =
T P

T P+FP
(2.2)

Recall (or sensitivity)

Measures the proportion of positive examples that are recognized as so. A high recall value

means the class of interest is often correctly recognized. It can be defined as follows:

Recall =
T P

T P+FN
(2.3)

Accuracy

Measures the frequency of the model’s correct predictions, among all the ran predictions.

Accuracy faces the problem of assuming equal costs for both types of errors, FP and FN,

and can be misled when resorting to an unbalanced data set. For example, if we have an

unbalanced data set, consisting only of 1% positive examples, we can have all the positive

instances wrongly labelled as negatives and still achieve an accuracy of 99% (when all



2.3 Transfer Learning 9

instances are classified as negative). It can be defined as follows:

Accuracy =
T P+T N

T P+FN +T N +FP
(2.4)

Fallout

Measures the proportion of non-targeted items (negative instances) that were mistakenly

selected (predicted as belonging to the class of interest). It can be defined as follows:

Fallout =
FP

FP+T N
(2.5)

Receiver Operating Characteristic (ROC curve)

Measures how different levels of fallout influence recall. Therefore, it is created by plotting

the true positive rate (recall, Equation 2.3) against the false positive rate (fallout, Equa-

tion 2.5), varying the threshold value.

Precision and recall measure how well a classifier identifies the class of interest, and both

should not be considered isolated (Alvarez, 2002). Thus, there are two measures that combine

precision and recall: breakeven point and F functions. The breakeven point is the value at which

precision equals recall. It can be determined by plotting the precision-recall curve and a bisecting

line, and register the point where both intersect. F-measure (or F-score), assigns a degree of

importance to precision and recall. Indeed, that degree is represented by the factor β (0≤ β ≤∞),

meaning that recall is β times as important as precision. The general formula for F-measure is:

Fβ = (1+β
2)∗ Precision∗Recall

(β 2 ∗Precision)+Recall
(2.6)

When β is equal to 1, precision and recall assume the same importance, and F-measure (in

this case, F1 score) is seen as the their harmonic mean.

2.3 Transfer Learning

In machine learning, the training and testing data are usually in the same feature space and have

the same distribution. However, when there is no sufficient good and balanced data for training and

testing, both data sets might be in a different feature space, or with different distributions, in order

to improve the model learning process, and avoid the extra, costly and exhausting work of data

labeling, or even the need of re-collecting data. In this case we are resorting to transfer learning

(Pan and Yang, 2010), where we consider training and testing sets from distinguish domains, tasks,

and distributions, and take advantage from previously learned knowledge (from a source task) to

solve new problems (the target task) and boost performance. Therefore, in contrast to traditional

machine learning that learns a task from scratch, transfer learning passes the knowledge from a

source task to a target task when the latter struggles in lacking training data quality.
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Considering the variations in source and target tasks and domains, transfer learning can be

divided into three categories:

• Inductive transfer learning: The target and source tasks are different and labeled data is

mandatory in the target domain, in order to induce the objective predictive function. The

source and target labeled spaces can also be different.

• Transductive transfer learning: The target and source tasks are the same, but the domains

are different. The target domain has no labeled data, and source and target feature spaces

can be different.

• Unsupervised transfer learning: The target and source tasks are different, but related (ex-

plicit or implicit relationship between source and target domains). There is no labeled data

in both domains, therefore this transfer learning category is applied in unsupervised learning

problems, like clustering and dimensionality reduction.

Given the above definitions, only supervised learning can follow an inductive transfer learning

approach since it is the only category that requires labeled data in both domains, which is always

necessary in a supervised approach. Figure 2.1 schematizes the main goal of transfer learning.

Figure 2.1: The goal of transfer learning (adapted from Pan and Yang (2010))

Regarding what type of knowledge can be transferred, four approaches can be distinguished:

• Instance-transfer: Follows the assumption that source and target domains have a lot of over-

lapping features, and manipulates the impact the source domain has on the target domain by

re-weighting the first before re-using its instances in the target domain. For example, Dai

et al. (2007) not only update the incorrectly classified examples in the target domain, but

also does the same for source instances.

• Feature-representation-transfer: The source domain is used to learn a good feature repre-

sentation that will be used in the target domain. As we will see later (in section 2.4.2.3), the

BERT model resorts to this kind of transfer learning in its first unsupervised learning step

(the pre-training), based on a large corpus, to capture patterns in language.
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• Parameter-transfer: The motivation here is that if a well-trained source model has already

learned various structures, since source and target tasks are related, those structures can be

transferred to learn the target task. Thus, considering that the source and target models share

some parameters or prior distributions of hyper-parameters, parameter-transfer focuses on

regularizing those parameters in order to boost the target task’s performance. Therefore, the

shared parameter might assume different weights between source and target domains. For

example, Gao et al. (2008) explored a dynamic locally weighted approach to combine mul-

tiple models as knowledge sources in the transfer learning process, managing the weights

according to the impact each source model has on each test example in the target domain.

• Relational-knowledge-transfer: Assumes that there is some relationship among data in the

source domain (e.g. connection between sentiment words and topic words), and that rela-

tionship is similar to the one existing in the target domain’s data. Hence, in this approach

we transfer the relationship among data from the source domain to the target domain. An

example is the statistical relational learning approach of Mihalkova et al. (2007) that builds

Markov Logic Networks (MLNs) which consider two domains that are related, and repre-

sent entities as predicates and their relationships as first-order logic. Then, between those

two relational domains, we can find a mapping connecting entities and their relationships

from the source to the target domains. For instance, the role played by a professor in an

academic domain might be similar to the role played by a manager in an industrial man-

agement domain, and, consequently, the relationship between professor and students can be

approximated to the one between manager and workers. Therefore, a MLN would present a

link between professor and manager, and another link between the bound professor-student

and the bound manager-worker.

Nevertheless, transfer learning is not always successful and we might incur to negative transfer,

when the source domain data and task lead to a worse learning performance in the target task.

In NLP, transfer learning has been frequently used for Language model (LM) pre-training.

Word representations are learnt from unlabeled data (Collobert and Weston, 2008), avoiding the

need of extra annotation which can be time-consuming and expensive. Then, the obtained pa-

rameters can be used as a starting point for other supervised training models (Dai and Le, 2015).

It has been shown that fine-tuning a pre-trained language model on a specific NLP task reveals

successful improvements in the model performance on that task (Radford, 2018).

2.4 Text Representation

Data representation has a significant impact in machine learning performance. Machine learning

models require a numeric representation of the words to perform calculations, so, good data trans-

formations are needed in order to make it easier to extract useful information when building a

classifier. In this section we talk about two types of text representation: localist and distributed.

In the first, each entity is represented directly by a single and unique representation (one-to-one
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correspondence), while in the second, an entity is represented by a pattern of activation across a

set of elements that can be shared over different representations (many-to-many relationship).

2.4.1 Localist Representation

“In localist architectures each word within the lexicon is represented by a single

unit.” (Ralph, 1998)

Following the quote above, for the example of neural networks, each neuron is dedicated to only

one concept. This representation is easy to understand and implement, but it can only represent a

number of distinct concepts that is linear in the number of dimensions. This means that it cannot

deal with the curse of dimensionality1 because it requires O(N) parameters to distinguish O(N)

inputs (Bengio et al., 2013).

An example of this type of representation is one-hot encoding, where the feature representa-

tion is defined by the activation of a single element/position in a one-hot vector. One-hot vectors

are used to represent words. One vector has the same size as the vocabulary and each vector only

has one index with the value 1, corresponding to the respective word index in the vocabulary, and

the rest of the values are 0. Therefore, a one-hot vector of length N can only represent N distinct

values. Figure 2.2 shows an example of how a one-hot encoding model works.

Figure 2.2: Example of one-hot representation (extracted from Malinowski and Fritz (2016))

In light of the above, we can identify three problems in one-hot representations: data spar-

sity, incapability of handling out-of-vocabulary words, and jeopardising the relationship between

different words by ignoring their context during word representation.

2.4.2 Distributed Representation

Distributed representation, again, considering neural networks, represents a concept by a pattern

of activity over a set of neurons (Roy, 2017). This type of representation can describe a number of

concepts that is exponential in the number of dimensions since more than one neuron is required

to represent a concept and each neuron can be part of the representation of various concepts.

Therefore, a representation vector of length N can express 2N different values.

1When adding more dimensions brings exponential growth in data, and increases of unnecessary data, leading to
insignificant value gains compared to the overhead.
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Besides data sparsity (use of unnecessary vector space, with no valuable information), dis-

tributed representation addresses localist representation’s inability to capture word semantics (as

words are expressed independent of any context). It proposes an approach of encoding word mean-

ings in their representations, allowing to directly understand the similarity between words. We are

talking about word embeddings.

Word embedding is a set techniques to map words into a vector space. Since in word embed-

ding each dimension represents a latent feature, it is expectable to find similar words distributed

close to one another in the embedding space (words that have the same meaning have a similar rep-

resentation). Hence, word embeddings can boost the performance of NLP tasks as it can capture

context of a word in a text, semantic and syntactic similarity (by calculating the cosine similarity

between vectors), and the relation between words.

The next two sub-sections present the two existing types of word embeddings. The first can be

seen as static techniques, since a word will always be represented the same way, regardless of the

context it is in. In contrast, the other type can be called as dynamic techniques and addresses the

previous word embeddings’ inability to capture polysemy by taking into consideration the context

of the word.

2.4.2.1 Classic Word-Embeddings (context-free)

Mikolov et al. (2013) introduced Word2Vec, the first popular embeddings method for NLP tasks.

It is a neural network with a single hidden layer (with the embeddings being its weights) and has

two distinguished algorithms: Continuous Bag Of Words (CBOW) and Skip-gram.

The CBOW model uses the context (surrounding words) to predict a target word. The model

input is an one-hot vector, representing the context. There are two weight matrices, one mapping

the input to the hidden layer and another mapping the hidden layer outputs to the last output layer.

The hidden layer simply copies the weighted sum of inputs to the next layer, resulting in a vector

which elements are the softmax2 values. The size of the output vector is the same as the size of

the input vector. Figure 2.3 shows the architecture of a CBOW model.

On the other hand, the Skip-gram model uses a word to predict a target context. It takes the

center word as input, and, considering a window of neighbor words (the context), tries to predict

the context words by maximizing the probability of a word appearing in the context, given the

center word. Similarly to the CBOW model, the input, center word, is represented by a one-hot

vector. Figure 2.4 shows the architecture of a Skip-gram model.

Pennington et al. (2014) proposes GloVe, short for “Global Vectors", in order to overcome the

disadvantages of context window-based methods, like Word2Vec Skip-gram, of not considering

the total corpus statistics, not learning repetitions and large-scale patterns. GloVe is a count model,

looking at how frequently a word appears in another word context (co-occurrence probabilities),

within the whole corpus. Thus, this model learns the word representation vector by performing

dimensionality reduction on a co-occurrence counts matrix.

2Neural network’s final layer that yields probability scores for each class label. The softmax function takes a vector
of K real numbers as input and normalizes it into a probability distribution, K probabilities.
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Figure 2.3: CBOW model (extracted from Lil’Log). N is equal to the vocabulary size and X refers
to a word’s one-hot encoding representation.

Figure 2.4: The skip-gram model. (extracted from Lil’Log). N is equal to the vocabulary size and
X refers to a word’s one-hot encoding representation.

fastText (Bojanowski et al., 2017) addresses Word2Vec’s and GloVe’s inability of handling

out-of-vocabulary words. This model is based on the Skip-gram model, but, instead of using a

distinct vector representation for each word which ignores its internal structure, each word is rep-

resented as a bag of character n-grams. Then, each character n-gram owns a vector representation,

so a word is represented by the sum of its character n-grams’ vector representations. As fastText

model promotes different words to share same character n-gram representations, it is possible to

learn the representation of rare words and of words that did not appear in the training data set.

To sum up, the techniques referred above generally produce a matrix used for lookup opera-

tions that map a word to a vector which is later fed into a neural network. The main issue with

these models is that they generate the same word vector representation in different contexts.

2.4.2.2 Contextualised Word-Embeddings

Contextualised word embeddings tackle the problem of polysemy by capturing word semantics in

various contexts. These methods rely on some language model, to help modeling word represen-

https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
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tations. Language models calculate the probability of a word being the next word in the given

sequence, considering the previous words of that sequence. Long short-term memory (LSTM)

models became very popular in language modelling at the time when they were first used for that

purpose (Sundermeyer et al., 2012). An LSTM is an artificial recurrent neural network3 (RNN),

so, unlike feedforward neural networks, they have what is called feedback connections, and can

process entire sequences of data.

Peters et al. (2018) proposed Embeddings from Language Models (ELMo) that generate

vectors from a bidirectional LSTM4, pretrained on a large corpus. The word representations are

functions of the entire input sentence, learned from the internal hidden states of the deep bidi-

rectional language model (biLM). The internal states are considered by computing a linear com-

bination of the vectors yielded at the end of each internal layer, which proved to be superior to

only using the top LSTM layer. The result is very rich word representations that incorporate both

context-dependent aspects of word meaning (semantics), captured in higher-level LSTM states,

and aspects of syntax, extracted in lower-level LSTM states. Moreover, ELMo can be easily inte-

grated into existing models. Figure 2.5 depicts ELMo’s architecture.

Vaswani et al. (2017) developed a model called Transformer that revealed to outperform

LSTMs regarding dealing with long-term dependencies. Transformer is a model that relies en-

tirely on multi-headed self-attention, replacing the RNNs frequently used in encoder-decoder

architectures. Attention leads the model to focus on the relevant parts of the input sequence,

hence, this technique aims to deal with the problem of having long sentences as inputs (Bahdanau

et al., 2014) and speeds up the representation process. Self-attention is an attention mechanism

that in order to generate the representation of a word, relates this word with other positions of the

input sequence it is in. In this process, for each word embedding three vectors are generated –

query, key and value vectors – from the multiplication of the embedding by three matrices (also

called query, key and value matrices). Then, attentions are calculated through operations between

the three vectors of different words in the input sequence. As referred at the beginning of this para-

graph, Transformer, however, has a multi-headed attention mechanism which improves the model

ability to focus on various positions and considers more than one “representation subspaces". For

this mechanism, the only difference is that we have more than one attention head, and each of

them starts with different query, key and value matrices, leading to distinguish attentions among

those heads. At the end, the result matrices, obtained in each attention head, are combined into a

single one.

Furthermore, the Transformer model is based on a multi encoder-decoder structure. Each

encoder receives the input sequence or a sequence of continuous representations generated by its

preceding encoder, applies self-attention, and passes its results, through a feed-forward network,

to the next encoder or to the decoders (considering the last encoder in the stack of encoders). Then,

3Artificial neural networks that form a directed graph, along a temporal sequence. They use an internal state (mem-
ory) to process sequences of inputs.

4A bidirectional recurrent neural network offers a look-ahead ability (output layer getting information from both
backward and forward states), by introducing, in each state, a new hidden layer that passes information to its previous
state (information flowing in a backward direction).
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Figure 2.5: ELMo architecture (based on Yu et al. (2018), and A Step-by-Step NLP Guide to
Learn ELMo for Extracting Features from Text, by Prateek Joshi).

a decoder generates, element by element, an output sequence of symbols of the same type as the

ones in the input sequence.

Figure 2.6 depicts a summary of the Transformer model architecture and its multi-headed

attention mechanism. The example input sequence shown is “Thinking Machines". The figure

also presents two other layers, “Linear" and “Softmax". The linear layer is a fully connected

neural network that maps the vector of floats, outputted by the stack of decoders, into a vector of

the size of the model vocabulary, being each position the score of a single word. This linear layer

is followed by a softmax layer that converts the words’ scores into probabilities.

Transformer showed to be a better approach for machine translation, since results obtained

in learning dependencies between words through attention mechanisms are superior to the ones

obtain with RNNs and their stateful nature. But, by itself, this model is not enough for sentence

classification. For that purpose, Devlin et al. (2018) created the Bidirectional Encoder Represen-
tations from Transformers (BERT) model that, essentially, is a pre-trained Transformer Encoder

stack which can then be fine-tuned for other downstream tasks5. Moreover, like ELMo, a pre-

trained BERT can also be used to create contextualized word embeddings that are then fed to an

existing model.

5Supervised-learning tasks that combine a pre-trained language model with a classifier.

https://www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/
https://www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/
https://www.analyticsvidhya.com/blog/author/pjoshi15/
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(a) Encoder-decoder based structure of a Transformer of 2 stacked encoders and decoders.

(b) Multi-headed self-attention mechanism, considering the example input sequence “Thinking Machines".

Figure 2.6: Overview of the Transformer model architecture (extracted from Jay Alammar’s blog
The Illustrated Transformer).

2.4.2.3 Bidirectional Encoder Representations from Transformers (BERT)

BERT is an open-source6 pre-trained language representation model, develop by Google (Devlin

et al., 2018). In contrast to previous models that process words one-by-one, BERT performs a

deep bidirectional representation by considering both left and right contexts. The model can be

fine-tuned with just one additional output layer and minimal modifications.

As said before, BERT is based on a Transformer encoder. However, that transformer has

different configurations, depending on the BERT model size (base or large), being larger than the

Transformer default configuration presented by Vaswani et al. (2017) (which was 6 encoder layers,

512 hidden units, and 8 attention heads). For instance, the Base version has twelve encoder layers,

feedforward networks of 768 hidden units, and twelve attention heads.

6https://github.com/ google-research/bert

https://jalammar.github.io/
https://jalammar.github.io/illustrated-transformer/
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Moreover, BERT enables parallelization in the training process because it is deeply bidirec-

tional, in contrast to ELMo shallow bidirectional approach that generates the input representations

(features for downstream tasks) through the concatenation of independently trained left-to-right

and right-to-left LSTMs.

Figure 2.7 presents BERT architecture, depicting an overview of both pre-training and fine-

tuning phases.

Figure 2.7: BERT architecture (figure extracted from Devlin et al. (2018)).

Tokenization

BERT conducts tokenization7 using wordpieces (e.g. the word “playing" is divided into two sub-

words “play" and “##ing") instead of words. This allows resorting to a smaller vocabulary, and

increases the useful information available for each word. Therefore, it improves the handling of

out-of-vocabulary words. Still, if BERT fails to convert a word to wordspieces, using the available

WordPiece vocabulary, then the word is represented by the special unknown token, [UNK].

Input/Output Representation

BERT can receive, as input, more than one sentence, by packing them together into one token

sequence. That sequence always starts with the special classification token, [CLS]. The sentences,

in the token sequence, are separated by a special token [SEP]. For each token, a vector is gener-

ated, however, for the classification, only the vector of the [CLS] token is used.

Pre-training

This step is conducted on a large corpus so the model can capture patterns in language. The
7The process of splitting a string into smaller tokens and, perhaps simultaneously, ignoring certain characters, such

as punctuation.
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corpus consists of 800M words from BooksCorpus and 2,500M words from English Wikipedia

(only text passages), and, to get long contiguous sequences, BERT uses a document-level corpus.

The pre-training is based on two unsupervised tasks:

• Masked LM: To achieve bidirectional representations, BERT follows a “masked language

model” (MLM) pre-training. 15% of the sequence tokens are chosen randomly and they

will be replaced with the mask token [MASK] or with a random token, with the respective

probabilities of 80% and 10%. 10% of the time, the tokens are not changed. Next, the

model tries to predict the original vocabulary word index of each selected token (deduce the

missing words), based on the fused contexts from the left and right (using the final hidden

vector representation of each token).

• Next Sentence Prediction (NSP): To have a model capable of understanding the relation

between sentences, BERT does a “next sentence prediction" which is a joint pre-training of

text-pair representations. Given two sentences, it predicts how likely is one to follow the

other. The final hidden vector representation of [CLS] is used for this task.

Fine-tuning

Fine-tuning is a supervised training on a specific task with a labeled dataset. The task-specific

inputs (features) are fed into the BERT model that generates the input tokens representations.

The representations are used, along with the task-specific outputs (labels), to train the classifier (a

softmax output layer which produces a probability distribution). The output layer (classifier) can

receive all token representations or just the [CLS] representation, if the NLP task is, respectively,

a token-level task (like tagging) or a classification problem (like entailment).

Furthermore, for sentence-pair tasks, like textual entailment and semantic similarity, fine-

tuning takes advantage of the Transformer’s self-attention mechanism to include bidirectional

cross-attention between two sentences, by encoding the concatenation of both.

SuperGLUE benchmark and state of the art results

The GLUE8 benchmark is a evaluation framework for research in the field of natural language

understanding (NLU). It also provides a ranking, based on a single-number metric, for model per-

formance on different NLU tasks, built on existing public datasets. Since the recent developed

models’ performances on this benchmark showed outstanding results, close to the level of non-

expert humans, and even surpassing human performance on the same tasks (by 1.3 points in early

July 2019), this benchmark version is, thus, unsuitable for measuring model performance and

tracking their progress. Therefore, SuperGLUE9 was introduced, presenting a new set of harder

8https://gluebenchmark.com/
9https://super.gluebenchmark.com/

https://gluebenchmark.com/
https://super.gluebenchmark.com/
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Table 2.2: SuperGLUE Tasks.

Name Identifier Metric
Broadcoverage
Diagnostics AX-b Matthew’s Corr

CommitmentBank CB Avg. F1 / Accuracy
Choice of
Plausible
Alternatives

COPA Accuracy

Multi-Sentence
Reading
Comprehension

MultiRC F1a / EM

Recognizing
Textual
Entailment

RTE Accuracy

Words in Context WiC Accuracy
The Winograd
Schema
Challenge

WSC Accuracy

BooIQ BooIQ Accuracy
Reading
Comprehension
with
Commonsense
Reasoning

ReCoRD F1 / Accuracy

Winogender
Schema
Diagnostics

AX-g
Gender Parity /
Accuracy

NLU tasks, better resources, and a new public leaderboard. Moreover, it includes human perfor-

mance estimates, for all benchmark tasks. Table 2.2 lists SuperGLUE current available tasks and

the correspondent used metric to evaluate a model’s performance in each task.

According to the public leaderboard10, consulted on June 2020, SuperGLUE current state of

the art score is achieved by T5 (Text-To-Text Transfer Transformer)11, followed by variants of

BERT. Hence, the best registered results in NLU tasks resort to Transformers, and are built around

the BERT model.

2.5 Contradiction Detection

Contradiction is a semantic relation where two sentences cannot be true simultaneously. For in-

stance, the two sentences “Some people and vehicles are on a crowded street" and “Some people

and vehicles are on an empty street" are contradictory, as they claim two opposite ideas, the street

being crowded or empty (Li et al., 2017).

In contrast to the above definition, Marneffe et al. (2008) consider that the appropriate defini-

tion of contradiction for NLP tasks, which allows to capture incompatibility between descriptions

10https://super.gluebenchmark.com/leaderboard
11https://github.com/google-research/text-to-text-transfer-transformer

https://super.gluebenchmark.com/leaderboard
https://github.com/google-research/text-to-text-transfer-transformer
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of the same event, is that contradictions occur when two sentences are extremely unlikely to be

true simultaneously. Besides annotating Recognizing Textual Entailment (RTE) datasets for con-

tradiction, they then proposed a system where texts are represented as typed dependency graphs

produced by Standford parsers, and contradictions are captured based on mismatches between the

aligned texts graphs. For this task, they take into account seven features that reflect patterns of

contradiction: polarity difference (words being negated, or not, by a negation dependency in the

graph or by a linguistic marker of negation, such as “not", “no", and “few"); mismatches between

numbers, dates, and times; antonyms (antonyms and contrasting words from WordNet (Miller,

1995), and oppositional verbs from VerbOcean (Chklovski and Pantel, 2004)); syntactic structures

(the subject of one sentence overlapping the object of the other, and vice-versa); use of factive

words; patterns of modal reasoning (based on the presence of modality markers such as "can" and

"maybe"); and the relation between text elements. The results showed a lack of feature general-

ization, particularly in cases of contradictions marked by lexical and world knowledge. Harabagiu

et al. (2006) took a similar approach of focusing on linguistic information (negation, antonymy,

and semantic and pragmatic information), and addressing the recognition of contradictions, be-

tween two text inputs, as a classification problem that operates on the result of textual alignment

(lexical alignment and paraphrase acquisition components).

Lin et al. (2003) created monothematic pairs, from RTE pairs, to highlight and isolate the

linguistic phenomena (lexical, lexical-syntactic, syntactic, discourse, and reasoning phenomena)

that more commonly give rise to contradictions and that contribute to the entailment relation. They

concluded that the prominent phenomena in contradiction are quantity mismatching, semantic

opposition (antonymy), mismatching oppositions, and general inference.

Kloetzer et al. (2013) tackled the most complex linguistic phenomena, the semantic relation,

by proposing a method, at a text fragment level, for recognizing pairs of contradictory lexico-

syntatic binary patterns (e.g., <"X promotes Y", "X prevents Y">). The method explores the

interaction between contradiction and entailment by using three supervised classifiers, one for

detecting the contradictory binary patterns, other to recognize entailment, and a last one trained

with the entailment pairs and contradictions capture by the other two classifiers.

Regarding the issue of linguistic phenomena that require background knowledge (meronyms,

synonyms, hypernyms, and reference ambiguity), Ritter et al. (2008), in order to verify whether

phrases that initially appear contradictory are actually consistent statements, proposed an approach

based on functional relations (relations accepting unique values of their arguments, mapping one

entity to another and single entity). They converted sentences into tuples that represent the relation

between a subject and an object, and use those tuples to find contradictory assertions. Shih et al.

(2012) also faced the lack of background knowledge (e.g., limited number of antonyms available,

and unstated common sense knowledge), but for a Chinese dataset. Therefore, they resort to the

Web by first preparing mismatched conjunction phrases (queries), which consist of mismatches in

sentence pairs, and then checking the number of hits in a Web search. They assume that implicit

incompatibilities between two sentences originate a query that will have no or a low number of

search hits.
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As seen above, most of the studies on contradiction detection focus on investigating more

explicit linguistic phenomena. Thus, they rely on a set of features for capturing patterns of con-

tradiction, however, these features lack generalization. Still keeping in mind the linguistic phe-

nomena, Dragos (2017) introduced uncertainty assessments. Uncertainty can be expressed when

authors provide factual information with clues of how strong they support the reported facts, such

as words expressing beliefs (e.g., "I believe", "I assume", "it seems"), lexical clues (e.g., "possi-

bly", "probably", and "it is unlikely"), modal verbs, passive active language, and hedges (words

that modify the uncertainty assigned to propositions). They consider sentences conveying factual

information, represented through functional relations, and some degree of uncertainty. Then, for

detecting contradictions, they resort to two relations between sentences, disagreement and con-

flict. Disagreement is conceived as two sentences, of similar semantic content on a shared topic,

expressing different certainty of facts. Whereas, a conflict relation occurs when two sentences

have opposite content on a shared topic, but similar uncertainty assessments. The opposite content

arises at a lexical level, through negation, antonymy, and numerical mismatches, or from world

knowledge.

On the other hand, Tsytsarau (2011), instead of following linguistic analysis and textual entail-

ment, came up with an approach based on statistical principles and sentiment information. Hence,

they proposed to detect time intervals where contradictions occurred, regarding some topic, at a

large scale over time, based on the distribution of opposite sentiments. The sentiment towards a

topic is a real number in the range [-1, 1] that represents the polarity and strength of the author’s

opinion. To identify contradictions, for each topic the sentiment values of different texts on that

topic are gathered, and the sentiment average (the aggregated sentiment) and variance is calcu-

lated. They assume that an aggregated sentiment value close to zero and a high variance indicates

a very contradictive topic. The data analysed was drug reviews, and comments on YouTube videos

and on online short story posts from Slashdot. For each topic they store a time-tree structure where

a node corresponds to a time window, summarizing information for all documents belonging to

that interval, which allows to incrementally update the contradiction values over time. Likewise,

Badache et al. (2018) explored reviews, related to a web resource, and sentiment analysis. They

assumed that conflict of opinions about a specific aspect is followed by diversity of sentiments.

So, they detect contradictions and calculate their intensity based on the sentiment polarity around

the aspect, and on the rating associate with the online review.

Another strategy for contradiction detection is learning the semantics from the input by using

word embeddings. However, context-free word embeddings, such as word2vec and GloVe, are

not viable for this task since words with similar context will be mapped close to each other in the

vector space, even if they have contrasting meanings (Devlin and Chang, 2018). Figure 2.8 shows

such problem, considering the previous example referred in the first paragraph of this section.

In order to tackle this issue, Mrkšić et al. (2016), Chen et al. (2015) and Liu et al. (2015) ben-

efited from public lexical databases, like WordNet (Fellbaum, 1998) and The Paraphrase Database

(PPDB) (Ganitkevitch et al., 2013), to create semantic constraints which would reflect a better sim-

ilarity relation between word vector representations. Still, these lexical resources are limited and
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Figure 2.8: Traditional context-free word embedding mapping contrasting words into close vectors
(extracted from Li et al. (2017)).

do not cover all existing antonym and synonym pairs. An improvement to these databases was the

method proposed by Li et al. (2017) that can generate a bigger corpus of contrasting pairs which

was then used to build a model that maximizes the semantic gap between contradictory words.

Hence, they developed a feedforward neural network for learning contradiction-specific word em-

bedding. Here, for representing the input words, they started by a trained embedding GloVe that is

updated as the model is trained on the generated extensive corpus of contrasting pairs. Then, the

learnt embeddings are used to represent the local and global semantic relations from the input sen-

tences, serving as features for a Convolutional Neural Network model for contradiction detection.

This approach outperforms the traditional context-free word embedding algorithms that map con-

trasting words into close vectors in an embedding space. Schwartz et al. (2015) toke a distinguish

path by using symmetric patterns (SPs) to generate vectors representing two words that co-occur

in a SP, allowing contradiction detection based on symmetric word relationships.

Table 2.3 presents some datasets that can be use for contradiction detection since the incorpo-

rate examples of document pairs labeled as contradiction.

2.6 Language patterns

Several researches were driven in understanding how different deceptive and truthful speeches are,

through analysis of linguistic features (Jiang and Wilson, 2018), and how those language patterns

can help improving prediction performances of whether a text content is true or not. Next, we will

expose some of the various approaches conducted which explore the impact of linguistic cues in a

model’s performance.

Mihalcea and Strapparava (2009) studied patterns in word usage in deceptive and truthful

texts using the words classes from Linguistic Inquiry and Word Count (LIWC) (Pennebaker et al.,

2001) and calculating each class coverage (percentage of words from a text that are part of the

class). They concluded that in deceptive texts the word classes from LIWC used more often are

metaphysic (e.g. god, die, sacred), human-related, but detached from self (avoid self-involvement),

and certainty (maybe for a more efficient persuasion).

Rubin and Vashchilko (2012) developed a methodology for deception detection based on

Rhetorical Structure Theory (Mann and Thompson, 1987) analysis and applying a vector space
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Table 2.3: Datasets containing examples of sentence pairs representing contradictions.

Dataset Language
Date of
publish

Short detail
Availability

address
PHEME RTE
(Lendvai et al., 2016)

English 2016 Tweets related to crisis events. PHEME

Sentences Involving
Compositional
Knowledge (SICK)
(Marelli et al., 2014)

English 2014

10,000 English sentence pairs annotated
for relatedness in meaning (with
relatedness scores) and entailment
(being the possible labels “entailment",
“contradiction", and “neutral").

SemEval-2014
Task 1

The Stanford Natural
Language Inference
(SNLI)
(Bowman et al., 2015)

English 2015
570k human-written sentence pairs
manually labelled as entailment,
contradiction, and neutral.

The Stanford
NLP Group

Multi-Genre Natural
Language Inference
(MultiNLI)
(Williams et al., 2018)

English 2018

A collection of 433k sentence pairs
annotated with textual entailment
information, containing examples
of different genres: “fiction"
“government", “slate", “telephone",
“travel", “9/11", “face-to-face", “letters",
“oup", and “verbatim".

NYU

model (VSM) to represent RST relations (similarities in stories’ coherence and structure) in a

story space, to later cluster them (one cluster for deceptive stories and another for truthful stories).

They showed that RST dimensions can be used to distinguish between truthful and deceptive sto-

ries, as well as to identify different levels of deception.

Feng et al. (2012) investigated the syntactic style using, as model features, four different en-

codings of production rules based on Probabilistic Context Free Grammar (PCFG) parse trees,

which proved to be helpful comparing with baselines (words represented by bag-of-words, and

syntax and syntactic information encoded by part-of-speech tags).

Markowitz and Hancock (2014) investigated linguistic patterns in scientific reports, consid-

ering words related to causality, scientific methods and investigations, terms related to scientific

reasoning, and language features used in describing scientific phenomena (quantities, terms ex-

pressing the degree of relative differences and words related to certainty). To analyze writing

style, they used Wmatrix (Rayson, 2008), a tool that provides word frequency lists, and semantic

and grammatical categories analyses. They found that fraudulent papers use more language to

emphasize and relativize differences on findings, fewer words to soften or limit empirical findings

and fewer adjectives.

Rashkin et al. (2017) explored linguistic attributes, through lexical resources such as LIWC,

subjective words, lexicons for hedging and intensifying lexicons (words implying a degree of

dramatization), to compare different types of fake news (propaganda, satire and hoax), by counting

lexicons in tokenized texts. Additionally, they studied the feasibility of predicting news reliability

(trusted, propaganda, satire or hoax), finding that the dominant features for each category were:

specific places or times for trusted news; vaguely facetious hearsay for satire; divisive topics

https://www.pheme.eu/2016/04/12/pheme-rte-dataset/
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://www.nyu.edu/projects/bowman/multinli/
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and dramatic cues for hoax; abstract generalities and specific issues for propaganda. They also

concluded that the LIWC features do not improve the LSTM neural network used in their model

for predicting truthfulness, maybe because some lexical information is redundant, as the model is

capable enough of learning by itself that information directly from the text.

Volkova et al. (2017) developed a model to classify news as verified or suspicious using meta-

data (social graph and linguistic markers). It resorted to a large Twitter corpus, collected during

the terrorist attacks in Brussels in 2016, that gathered tweets from both suspicious and verified

news accounts. The sub-network that processes the text is an embedding layer followed by a

LSTM layer or two 1-dimensional convolutional layers, and, finally, a max-pooling layer. The

social graph is a feed-forward sub-network feed with one-hot vectors representing user interac-

tions, whereas, linguistic markers can be bias, subjective, psycholinguistic and moral foundation

cues. These two representations are incorporated through “late fusion" to train the network, which

showed to have led to better prediction performance. The results show that suspicious news con-

tain more bias markers, hedges and subjective terms, and moral cues.

Taking all the above into consideration, in deceptive texts we might be more prompt to face

comparisons, lack of empirical results and details, like locations and time, and more abstract

generalization, dramatization and subjectivity.

Even though, we are interested in detecting contradictions, these researches serve to consider

that a target task, in this case detecting deceptive texts, can reveal characteristic language patterns,

which can be helpful for improving an inference model performance on that task. Our target task

is different from the one talked in this section, however it may also be marked by specific language

patterns.

2.7 Summary

Natural Language Processing is the main scope of our project, still, in this section, besides listing

some of the existing applications of NLP, we focus on contradiction detection. NLP is a very im-

portant and discussed area, however, there are not many studies regarding contradiction detection,

leaving enough headroom for further research.

Indeed, when addressing NLP tasks, machine learning is the most popular approach. We

have specially talked about supervised learning, giving emphasis to classification tasks. Hence,

we came across requirements for building a classification model: the input representation, the

output (multi-label or single-label classification, a discrete value or a continuous value), splitting

the dataset for training and testing, inference method (numeric or symbolic), and performance

evaluation.

In machine learning, a traditional method assumes that the training and testing data are in the

same feature space and have the same distribution. Nevertheless, we not always have enough and

perfect data, for learning and testing a task, thus we discuss transfer learning which tackles that

issue by passing the knowledge learned in one domain to another domain, the one of interest. But

this is not a silver bullet, and cannot be applied with whatever domain. There must be some relation
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between the source and the target domains in order to boost the model’s learning performance.

Otherwise we might face a negative transfer, having the opposite result, deteriorating the learning

process.

Undoubtedly, data plays a crucial role in machine learning, and so does its representation.

Localist representation was the first to be developed and uses a single unit to represent an item,

leading to data sparsity, and lacking the representation of the relationship between items. Now

researches and recent approaches resort to distributed representations, but localist is still used as

an auxiliary in distributed architectures. In distributed representations, we can capture words se-

mantics and the similarity between words by encoding them through word embeddings. Word

embeddings can be context-free (static representations that do not deal with polysemy) or con-

textualised (the same word having different vector representations, depending on the context it

appears). In fact, this last type of distributed representation is the most sophisticated way of en-

coding words, and so we present BERT, a recent model that combines Transformers and different

attention mechanisms, proved to be the base of the state of the art approaches.

At last, we assess whether there are linguistic markers characteristic of deceiving texts, and,

actually, previous researches, regarding language pattern, have proved so. Still, proving text’s

truthfulness is not the focus of our work, but this serves to present that language can reveal different

behaviours and markers depending on its intent.

In this chapter we noticed that the NLP task of detecting contradictions is complex, and there

are not sufficient studies around it. However, recent developments and trends in machine learn-

ing, such as the rapid evolution of contextualized text representations, and transfer learning (e.g.,

using pre-trained model, like BERT), might be key for new approaches regarding contradiction

detection.
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Methodology

This chapter provides the description of the proposed methodology for the task of detecting con-

tradictions, in a political domain as case study. Section 3.1 presents the concept of patterns in

language, covering the political context and contradictions in texts. Section 3.2 details the pro-

posed solution to address the problem of our task.

3.1 Language patterns and language in a political domain

Language is a powerful tool used for different objectives and might reflect those ambitions and

author’s personality. It can be manipulated in various ways, depending on the goal and context.

Jordan et al. (2019) found evidence, in multiple large corpora of American and other English-

speaking elected leaders, of a decrease in formal (analytic) language, in contrast to an increase in

informal and confident language, over time, in various political contexts. One of the factors that

brought this trend is the evolution in communication technologies and mass media, as they come

as both new opportunities and challenges for persuading the public and share messages.

Savoy (2018) specifically analysed the rhetoric and style adopted by Donald Trump and Hillary

Clinton during the 2016 US presidential election, through different stylistic measurements, such

as the most frequent used lemmas, sentence length (number of tokens), lexical density (informa-

tiveness of a text), frequency of big words, type-token ratio (ratio of rich vocabulary) and part-of-

speech distribution. They also did a semantic-based analysis, by grouping words of same semantic

meaning. They concluded that Trump follows a more direct style, using more verbs and adverbs,

brief sentences consisting of short words, and repetitions, aiming to be understood by all in the

audience. His style is associated to a strong masculine figure, energetic, nationalist and easy to

understand. On the other hand, Clinton chooses a more descriptive rhetoric (more nouns, adjec-

tives, prepositions, and determiners), using longer sentences with a richer vocabulary, covering

more topics.

Finally, a characteristic relationship between language and politics can also be visible through

the strategic use of personal pronouns and metaphors (Lin, 2012).

27
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In light of the above, it is clear that there are characteristic behaviours in how we use language

depending on the event and context we are in. Moreover, the target task also plays an important

role in language. An example is Dragos (2017) that, when addressing contradiction detection,

introduces the help of linguistic clues of uncertainty (the use of modal verbs, passive and active

voice, “possibly", “probably", “might be", “it is unlikely", “undoubtedly", etc.).

3.2 Approach to detect contradictions in a political domain

In this work, we propose an approach to tackle the issue of detecting contradictions through a

supervised classification model. As a case scenario, we choose to test in a political domain, to

depict a specific relation between two documents, their topic similarity. Nevertheless, is important

to highlight that our methodology does not intend to only draw conclusion for contradictions

in politics. We rather aspire to explore whether we can take advantage of examples presenting

different relations (e.g., the topic similarity, and arguments of attack) to infer the one we are testing,

the relation of contradiction between two documents. We start by considering that language is

context and goal driven. Thus, we believe that, through a supervised approach, datasets of a

different, but similar, task (designed for another purpose) can additionally be used for learning our

specific task of contradiction detection, in order to achieve better classification results. Therefore,

this methodology’s main aim is to study if those new datasets (source task domains) can be used to

improve an inference model performance in predicting contradictions (target task domain). This

process is called Transfer Learning. We also analyse if the source task domains by themselves

(not using any examples of the target task domain for training a model) are enough to learn the

target task.

To clarify our objective and supervised classification approach, formally we denote D =

{D1, ...,Dn} as a size n collection of documents (text corpus). The model input is a pair of doc-

uments, 〈C1,C2〉, with C1,C2 ∈ D. Considering l ∈ {0,1} as the possible label, where 0 and 1

represent, respectively, not contradiction and contradiction, the output will be the probability of

the two documents being, or not, contradictory: P(l|〈C1,C2〉).
Firstly, we define two assumptions that support the methodology:

Assumption 1 (The effect of the relation between documents in language). The difference/sim-

ilarity in language used in two documents is (partly) determined by the relation between those

documents.

Assumption 2 (Patterns in contradictory statements). Language reveals particular patterns in

contradictory statements.

Here, in Assumption 1, by relationship between documents, we refer to all possible interac-

tions and links, whether it is the context/topic they share, one text supporting the other, a relation

of entailment, how similar they are, etc.

Regarding Assumption 2, as expressed before in section 3.1, contradictions in texts are identifi-

able by the language, independently of the domain, and, therefore, might share similar behaviours
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and patterns across various text genres. Furthermore, a contradiction does not necessarily need

to be factual, where a text refers an event, date, location, or statistics different from established

global conceptualizations and common knowledge. It can be a change in opinion. If a change in

opinion is a conflict between two ideas proclaimed by a person or group in distinctive times, we

can see a similar behaviour when a person disagrees with another person’s allegation, since there

is a collision in beliefs (a proposition that is incompatible with another proposition, or that don’t

make sense when presented together). Thus, we describe one hypothesis:

Hypothesis 1 (Different relations revealing similar effects). Different types of relationship be-

tween documents may reveal similar behaviours and effects on language.

In the last paragraph we have talked about a possible relation that plays a similar role as

contradictions. To better represent this hypothesis, we have the following example of illocutions1

of disagreement, highlighted in bold, from the first Democratic primary debate of the 2016 United

States presidential election held on October 13, 2015, in Las Vegas, Nevada (transcript available

on CNN Press Room):

SANDERS: I think the governor gave a very good example about the weaknesses in that law and I think

we have to take another look at it. But here is the point, Governor. We can raise our voices,
but I come from a rural state, and the views on gun control in rural states are different
than in urban states, whether we like it or not.
Our job is to bring people together around strong, commonsense gun legislation. I think

there is a vast majority in this country who want to do the right thing, and I intend to lead

the country in bringing our people together.

O’MALLEY: Senator — Senator, excuse me.

(CROSSTALK)

O’MALLEY: Senator, it is not about rural — Senator, it was not about rural and urban.

SANDERS: It’s exactly about rural.

As mentioned in the previous chapter (Chapter 2, Section 2.5), Dragos (2017) considered, for

the task of detecting contradictions, the degree of uncertainty expressed by lexical cues. In the

above example of disagreement, we can also find such cues, the word “exactly" which marks how

strong Sanders supports the reported fact.

We might also consider the two examples below extracted from Argument Annotated Essays

corpus2. First, the case of a claim against the major claims, in a text. Second, a premise attacking

a claim:

Example 1:
1“an act performed by a speaker by virtue of uttering certain words, as for example the acts of promising or of

threatening" - Collins
2https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_

mining_1/argument_annotated_essays_version_2/index.en.jsp

https://cnnpressroom.blogs.cnn.com/2015/10/13/cnn-democratic-debate-full-transcript/
https://www.collinsdictionary.com/dictionary/english/illocution
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
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Major Claim 1: “we should attach more importance to cooperation during primary education"

Major Claim 2: “a more cooperative attitudes towards life is more profitable in one’s success"

Claim against: “competition makes the society more effective"

Example 2:

Claim: “living and studying overseas is an irreplaceable experience when it comes to learn standing

on your own feet"

Premise: “One who is living overseas will of course struggle with loneliness, living away from family

and friends"

Here, it is hard for a human to detect patterns that can be also manifested in examples of

contradiction. However, we choose the relation of attack as a possible source of knowledge to be

transferred, due to its definition, of a claim against another, sharing similarities with the definition

of contradictions. In both relations, one text questions the veracity and validity of another.

The three cases above are all examples of how we will explore the extension of other docu-

ments’ relations for our specific task of contradiction detection.

For this dissertation work, we have four main process phases, depicted in Figure A.1 from

Appendix A.

First, defining the domain and two baseline datasets which are, in the context of transfer learn-

ing, our target task domain. After that, we analyse each baseline dataset by training and testing a

neural network model with it. Then, for each new dataset (in the context of transfer learning, the

source task domains), we train a neural network model with it and run predictions with examples

from the two baseline datasets. Finally, we take each of the models trained in the previous step

and retrain them with part of a baseline dataset and run predictions on the other part. We do this

separately for both baselines.

Our methodology starts with the domain definition. Our test domain is indeed contradictions

in a political context. For this domain, we have built two datasets. One includes only the examples

of genre “government" from the Multi-Genre Natural Language Inference (MultiNLI) corpus3.

The other is a set of manually collected and annotated pairs of documents, from different sources.

Those documents are Donald Trump, the president of the United States, speeches in interviews

and debates, posts in the social media network Twitter, and propositions from his published books.

Some of those pairs are known to be contradictory. Because we want to explore how we can take

advantage of information that was not initially designed for this particular scope, we distance a

little from this domain and consider other datasets somehow related to the two previous ones.

Hence, Table 3.1 shows the corpora used for that purpose.

As mentioned in Section 2.3, we can incur to negative transfer learning when the used source

domain task leads to a worst learning performance in the target domain task. In this case, it is

3https://www.nyu.edu/projects/bowman/multinli/

https://www.nyu.edu/projects/bowman/multinli/
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better to discard that source domain task as it does not give valuable knowledge. We want to

prove that if the learning performance increases, when using a new source dataset, it is due to

the relationship between documents in those datatsets, and not because we are just increasing the

number of training examples. In order to corroborate this idea, we also consider, for transfer

learning, a dataset whose document-pair relationship is not related with the one presented in the

two baseline datasets. In this situation, we expect a worst performance, sign of negative transfer

learning. Otherwise, if the classification errors are too insignificant when using this dataset as

source task domain, we assume that the main factor for transfer learning with the other source task

domains was not necessarily the relationship between the documents, but perhaps just increasing

the training set. This case would reveal that the new considered relations between documents are

not relevant enough for transfer learning for the task of detecting contradictions. The last entry/row

of Table 3.1 refers to the dataset used for this motive.

After gathering the required data, we train a set of binary classifiers using each dataset, and

for a number e of epochs. Table 3.2 contains the class distribution for each dataset.

Considering each of the defined baseline datasets, we train and test a binary classifier with

examples from the same dataset. Then, for each baseline dataset, we train a different binary

classifier with that baseline dataset, and test with examples from another baseline dataset.

For the new datasets (MultiNLI-, US2016, ArgumentativeMicrotext, ArgumentEssays, and

W2E), we train a binary classifier for each of them, and, separately, run predictions using each of

the baseline datasets. Later, using these trained models, we perform retrainings, resorting to the

baseline datasets. So, for one new dataset (source task domain) we consider two distinguish binary

classifiers, both previously trained with the same source task domain data, but that will be retrained

with different data, one from DonaldTrump’s and the other from MultiNLIGovernment’s.

After the experiments, we analyse the results through the study of the Receiver Operating

Characteristic Curve (ROC curve), the Precision-Recall curve, the Area Under the Curve (AUC)

of both curves, and the F1-score for different threshold values. We also examine the case where we

consider as predicted label, for one input (pair of two documents), the one with higher score/prob-

ability value (threshold of 0.5).

This methodology aims to answer the two Research Questions already mentioned in Sec-

tion 1.2 of Chapter 1:

Considering our target task of detecting whether two documents are contradictory or not, ...

Q1. ... can a classification model be effective when only trained with examples whose document-

pair relations are different from the target one (contradictions)?

Q2. ... can other examples, that incorporate document-pair relations different from the target

one, be used to provide an extra training set of contradictory statements, in order to improve

a model learning performance?

For the first research question, we will see the performance of a model when trained on one

non-baseline dataset and tested in one baseline dataset. Therefore, we train in one dataset (one
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Table 3.1: The other datasets considered for the task.

Dataset Language
Date of
publish Short-detail

Relation being
tested

Availability
address

Multi-Genre
Natural
Language
Inference
(MultiNLI)

English 2018

A collection of 433k sentence pairs
annotated with textual entailment
information, containing examples
of different genres: “fiction",
“government", “slate", “telephone",
“travel", “9/11", “face-to-face",
“letters", “oup", and “verbatim".

Contradiction
in texts of
different
genres.

NYU

US2016 English 2019

Transcriptions of television debates
leading up to the 2016 US
presidential elections, and reactions
to the debates on Reddit. The
annotation of the corpus is based on
Inference Anchoring Theory (IAT),
containing three types of relations:
inference, conflict and rephrase.

Arguments of
disagreement
between
different
speakers.

AIFdb

Argumentative
Microtext
Corpus

English
and
German

2015

Short texts that respond to a trigger
question. The argumentation
structure identifies the central claim
of the text, supporting premises,
possible objections and counters to
these objections. The annotation
guidelines are available online.

Author’s
counter-
-arguments
attacking
his\her own
claims.

University
of Potsdam

Argument
Annotated
Essays

English 2017

Argument annotated persuasive
essays including annotations of
argument components (“Major
Claim", “Claim", and “Premise")
and argumentative relations
(“Support" and “Attack").

Author’s
counter-
-arguments
attacking
his\her own
claims.

TU Darmstadt

Worldwide
Event
(W2E)

English 2018

Dataset for topic detection and
tracking. 207,722 news articles
covering a large set of 4,501
popular events, each belonging
to one out of 10 categories.

Topic similarity.
W2E: A dataset
for TDT

https://www.nyu.edu/projects/bowman/multinli/
http://www.corpora.aifdb.org/US2016
http://www.ling.uni-potsdam.de/~stede/Papers/ArgGuidelinesEnglish.pdf
http://angcl.ling.uni-potsdam.de/resources/argmicro.html
http://angcl.ling.uni-potsdam.de/resources/argmicro.html
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
https://sites.google.com/site/w2edataset/
https://sites.google.com/site/w2edataset/
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Table 3.2: Datasets dimension. The two first rows correspond to our two baseline datasets.

Dataset

(our given name)
Short description

Total

examples

Total

positives

Total

negatives

DonaldTrump

Manually created dataset, based

on the article from POLITICO

about moments where Donald

Trump contradicts himself.

250 144 106

MultiNLIGovernment
All instances of genre

“government" from the

MultiNLI corpus.

79350 26418 52932

MultiNLI-
All instances, except the ones

of “government" genre, from

the MultiNLI corpus.

333352 110938 222414

US2016
US2016, the largest publicly

available set of corpora of

annotated dialogical argumentation.

1882 941 941

ArgumentativeMicrotext
The argumentative microtext

corpus consists of short texts

that respond to a trigger question.

1133 403 730

ArgumentEssays
Argument Annotated Essays

corpus.
6673 715 5958

W2E
A Worldwide-Event Benchmark

Dataset for TopicDetection and

Tracking.

4800 2400 2400



34 Methodology

source task domain) and run predictions with examples from a different dataset (one target task

domain). If the model’s performance is better than or close to the one when only using the baseline

dataset for both training and testing, the new dataset used is reliable for learning the task. On the

other hand, if it has a worse performance, but still good classification results, maybe the dataset

is still good enough to be used for improving the learning of the task if later the model is refined

with additional training, but now resorting to instances of the baseline dataset.

The second research question is answered by training a model with examples from a baseline

dataset and a new dataset, test with different instances of the same baseline dataset used for train-

ing, and then verify if there were improvements in the classification results (through analyses of

different evaluation metrics).

3.3 Summary

We provided an overview of how the text domain/topic can reveal particular behaviours in lan-

guage, and the possibility that linguistic cues can reflect or help in detecting contradictions and

deception.

We consider the wide range of the concept “contradiction" (not always just factual), specu-

lating whether other relations between texts (e.g., disagreements, arguments of attack, premises

against claims) can be seen as contradiction. Therefore, we propose a methodology to detect con-

tradictions, exploring data not originally designed for this task. The approach consists of training a

set of classifiers to predict if two documents are contradictory (1, positive class) or not (0, negative

class). The performance of the models is used to conclude if the hypothesis of using information

not directly targeted for contradictions, in a particular domain, can still be reliable for the task.



Chapter 4

Data and Experimental Setup

This chapter contains a description of the data used and of the experiments conducted to empir-

ically test the methodology proposed in the previous chapter. Section 4.1 presents the various

corpora details and how we take advantage of them to build our datasets. Section 4.2 describes the

experimental procedures, driven in order to implement our methodology.

4.1 Datasets

4.1.1 Baselines

As said in the previous chapter, our work is focused on contradictions, and we will use the political

domain as a case study. For that purpose, we use two datasets as baselines, one built by us from

scratch, based on an online article, and the other containing a specific section of the publicly avail-

able corpus MultiNLI. Baseline datasets represent the target task domain in the context of transfer

learning, therefore, the remaining datasets referred below (from Section 4.1.2 to Section 4.1.6)

will be the source task domains.

4.1.1.1 DonaldTrump

For this dataset we focus on a specific entity, Donald Trump, the president of the United States, as

a case study. The reason why we chose this well-known person is that there is a lot of controversy

around his allegations, and the online magazine POLITICO Magazine 1 has an article exposing

some of Trump’s self-contradictions2. Hence, our domain is expected to be, mainly, political

statements, although it can contain other topics escaping from our scope.

The article has a list of Trump’s quotes in interviews, debates, posts in the social media net-

work Twitter, and propositions from his published books. However, the list does not have a pattern,

meaning that, you do not always have one quote followed by another that contradicts it. Thus, it

requires to read and to analyse each quote. Moreover, not all the instances provide the source link

1https://www.politico.com/section/magazine
2https://www.politico.com/magazine/story/2016/05/donald-trump-2016-

contradictions-213869

35

https://www.politico.com/magazine/story/2016/05/donald-trump-2016-contradictions-213869
https://www.politico.com/magazine/story/2016/05/donald-trump-2016-contradictions-213869
https://www.politico.com/section/magazine
https://www.politico.com/magazine/story/2016/05/donald-trump-2016-contradictions-213869
https://www.politico.com/magazine/story/2016/05/donald-trump-2016-contradictions-213869
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(e.g. when it is quotes from Trump’s books), or the provided source link is sometimes unavailable

or requires website subscription (like some blocked articles from The New York Times). So, in

order to approve and verify quotes, we occasionally had to manually search on the internet for

the quote, resorting to different sources, until we could find means to prove the reliability of the

sentences.

Politico is an American political opinion company that produces contents covering politics and

policy in the United States and internationally. It has professional journalists working for them to

provide interesting, true and authentic content, so we assume we can trust this source. Neverthe-

less, some quotes are not easily identified as contradictions, as we can see in the following four

examples:

Example 1:

“I love the poorly educated."

“I see no value whatsoever in believing ignorance to be an attribute."

We can argue that it is contradictory to be against ignorance, considering it an unacceptable “at-

tribute", and, at the same time, claim to adore ignorant and poorly educated people. However, it is

possible to judge the ignorance of people, but still like them.

Example 2:

“I’m very pro-choice."

“And I am very, very proud to say that I am pro-life."

Here it is impossible to capture the contradiction if you do not know the meaning of the concepts

“pro-choice"3 and “pro-life"4.

Example 3:

“Everybody kisses your ass when you’re hot. If you’re not hot, they don’t even call. So it’s

always good to stay hot."

“He thinks he’s hot stuff. And I hate people that think they’re hot stuff, and they’re nothing."

While Donald Trump believes that it is good to “stay hot", he also says that he hates “people that

think they’re hot stuff". But, is he talking about everyone who thinks is “hot stuff" or the ones that

think that, but, in fact, they are not? If we consider the first case, then it would not make sense

supporting “to stay hot" and hate those who think they are. On the other hand, the second scenario

does not create conflicts in recommending to “stay hot" and hating people that think they are more

popular than they actually are.

3Favour the legal right of a woman to choose whether or not she will have an abortion.
4Opposing abortion and euthanasia.

https://www.nytimes.com/


4.1 Datasets 37

Example 4:

“And I win, I win, I always win. In the end I always win, whether it’s in golf, whether it’s in

tennis, whether it’s in life, I just always win. And I tell people I always win, because I do."

“I want to win, and I’m not happy about not winning."

If Trump always wins, it is contradictory to consider the case where he does not. Yet, the second

quote might not be considering the possibility of losing, but rather highlighting how eager he is to

win.

While verifying the used quotes, we could also find paraphrases or similar phrases, also said

by Donald Trump, and used them to extend the dataset. For example, when searching for “Here’s

a man that not only got elected, I think he’s doing a really good job.", we managed to find “I

think that he’s really doing a nice job in terms of representation of this country. And he represents

such a large part of the country." and “Well, I really like him. I think that he’s working very

hard.". These similar instances were not only used to increase the positive examples, but also to

generate negative examples, because a pair of equivalent texts cannot be contradictory. Therefore,

if there was a pair of documents 〈D1,D2〉 known to be contradictory, and later we would find a

third document D′1 which meaning and content is similar (both documents expressing the same

idea) to D1, then we would generate a new positive example 〈D′1,D2〉 and a new negative example

〈D1,D′1〉.
Besides the negative examples formed from paraphrases that we found as we looked for evi-

dence, we also resort to the platform Factbase that provides the entire corpus of Donald Trump’s

public, and unedited, statements and recordings. The transcribed information is linked directly to

the originating source. For this process, we filtered transcripts by keywords, like “gun control",

or just opened random transcripts. Then, we extracted, from those selected transcripts, sentences

where Trump would repeat the same idea.

To analyse the distribution of topics through positive and negative examples, we used the

Latent Dirichlet Allocation (LDA) algorithm, for topic modeling, through python’s library Scikit

learn.

Before generating the topics, we consider the unique instances of all dataset examples (we

do not use duplicate documents), and perform data cleaning (remove backslashes, commas and

semicolons) and tokenization.

Then, to create the document word matrix, the LDA model main input, we use CountVector-

izer. We configured it to ignore terms that appear in more than 95% of the documents (max_df=0.95)

and terms that appear in less than 2 documents (min_df=2), to remove built-in english stopwords

(stop_words=‘english’), to convert all words to lowercase (lowercase=True), and to impose that

a word has to contain numbers and/or alphabets, of at least length 3, in order to be qualified as a

word (token_pattern=‘[a-zA-Z0-9]{3, }’).

When building the LDA model, we set the number of topics to 15 (n_components=15), the

maximum learning iterations to 5 (max_iter=5), the learning method to online (learning_method=

https://factba.se/transcripts
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Table 4.1: The number of instances of each topic that appear in positive examples (contradictions)
and negative examples, and the difference in frequency of topic occurrence (Diff.) between these
two classes.

Topics
Positive

examples
Negative
examples

Diff.

great 24 3 21
oil 14 43 -29
win 20 10 10
love 11 6 5
like 14 21 -7
people 31 13 18
dont 39 39 0
jobs 3 10 -7
think 39 19 20
pro 41 7 34
penalty 16 5 11
going 18 4 14
cancer 4 8 -4
thinker 8 2 6
years 6 22 -16

‘online’), the learning offset/tau_0 to 50 (learning_offset=50.), and the seed used by the random

number generator to 0 (random_state=0).

Table 4.1 shows the obtained topics and the distribution of each topic for all positive examples

(pair of two documents) and for all negative examples. The LDA model performance is out of the

scope and its the denomination of each of the 15 obtained topics is not that relevant. We just want

to explore the difference in frequency of topic occurrence (Diff.) between the two classes.

According to Table 4.1, the three most frequent topics in positive examples (pairs of contra-

dictions) are “pro", “think" and “dont", whereas for the negative examples are “oil", “dont" and

“years". The top five of most unbalanced topic distributions between the two classes are “pro",

“oil", “great", “think" and “people". These values may have an impact on the experimental results,

as we consider the possibility of having the model predicting based on the input topic, instead of

predicting based on the relation of contradiction between two given documents.

It is important to remember that there might be other factors influencing and creating bias in

this dataset, since it was not built by trained annotators.

4.1.1.2 MultiNLIGovernment

The Multi-Genre Natural Language Inference (MultiNLI)5 corpus (Williams et al., 2018) ad-

dresses the coverage limitation faced by other Natural Language Inference (NLI) datasets, in terms

of variety of meanings, expressed in English. It is one of the largest corpora for NLI tasks, and

5https://www.nyu.edu/projects/bowman/multinli/

https://www.nyu.edu/projects/bowman/multinli/
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includes ten distinct genres of written and spoken English. The wide range of styles, degrees of

formality, and topics introduce greater linguistic difficulty and diversity, and make this corpus a

benchmark for cross-genre domain adaptation. Moreover, the MultiNLI dataset allows to evaluate

a model’s ability to generate sentence representations in unfamiliar domains (cross-domain trans-

fer learning). These characteristics and objectives meet our purpose too, as we want to mitigate

whether we can take advantage of unknown and different, but still similar, document relations for

our specific task of detecting contradictions.

Nine of the genres were extracted from the second release of the Open American National

Corpus (OANC):

• FACE-TO-FACE genre uses transcriptions from the Charlotte Narrative and Conversation

Collection of two-sided conversations.

• GOVERNMENT genre uses reports, speeches, letters, and press releases from public do-

main government websites.

• LETTERS genre uses letters from the Indiana Center for Intercultural Communication of

Philanthropic Fundraising Discourse.

• 9/11 genre resorts to the public report from the National Commission on Terrorist Attacks

Upon the United States.

• OUP genre uses five non-fiction works on the textile industry and child development, pub-

lished by the Oxford University Press.

• SLATE genre uses popular culture articles from the archives of Slate Magazine.

• TELEPHONE genre uses transcriptions from University of Pennsylvania’s Linguistic Data

Consortium Switchboard corpus of two-sided telephone conversations.

• TRAVEL genre uses travel guides published by Berlitz Publishing.

• VERBATIM genre uses short posts about linguistics for non-specialists from the Verbatim

archives.

The tenth genre, FICTION, uses several freely available works of contemporary fiction.

MultiNLIGovernment is the name we gave to the subset of MultiNLI corpus that only includes

the examples of “government" genre. MultiNLI corpus has three possible labels:

• Entailment: relation between two sentences, a premise and a hypothesis, where the hypoth-

esis is necessarily true or appropriate whenever the premise is true.

• Contradiction: relation between two sentences, a premise and a hypothesis, where the

hypothesis is necessarily false or inappropriate whenever the premise is true.

• Neutral: relation between two sentences, a premise and a hypothesis, where none of the

above conditions (entailment and contradiction) are applicable.
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Since our task is to detect contradictions, using only two labels (0 and 1, respectively not

contradiction and contradiction), we consider the labels “entailment" and “neutral" to be negative

examples (not contradictions).

To built the dataset we used the JSON Lines format of the corpus. We filter the objects of

‘genre’ ‘government’ because, as said before, we are considering a political domain and the “gov-

ernment" type belongs to that field. To create an input pair, we use object’s values for ‘sentence1’,

‘sentence2’ and ‘gold_label’. Gold-label is the label used for classification. In the validation pro-

cess of the MultiNLI corpus, when an example does not receive a three-vote consensus on any

label, the golden-label is ‘-’. In this case, we consider it to be a negative example.

We use the python’s library Pandas to use its data structure DataFrame. We create three data

frames, for test, validation and train sets. We split 70% of the obtained data for training, 10% for

validation, and 20% for testing, then we save each set in a tab separated text format (‘test.tsv’,

‘dev.tsv’ and ‘train.tsv’).

At the end, we got a total of 79,350 examples, 26,418 positives and 52,932 negatives (Ta-

ble 3.2).

4.1.2 MultiNLI-

This dataset follows the same procedure as the one described for the MultiNLIGovernment dataset.

However, since we aim at exploring a model’s learning performance when giving data containing

different relations from the ones we are using as baselines (contradictions in a political domain),

we use all the examples of the MultiNLI corpus, except the ones of “government" genre. We also

split the data in two sets, 80% for training (‘train.tsv’) and 20% for testing (‘test.tsv’). In this case,

we got a total of 333,352 examples, 110,938 positives and 222,414 negatives (Table 3.2).

We decided to ignore the examples of “government" genre because we want to explore the

behaviour of different document relations. Since we are going to use the political domain as a case

study, we remove the “government" genre to only include genres that are not closely related to the

political field.

4.1.3 US2016

US20166(Visser et al., 2019) is the largest corpus of annotated dialogical argumentation7. It com-

prises transcripts, collected from The American Presidency Project, of televised debates leading up

to the 2016 presidential election in the United States of America: the first Republican primary de-

bate on 6 August 2015 in Cleveland, Ohio; the first Democrat primary debate on 13 October 2015

in Las Vegas, Nevada; and the first general election debate between Hillary Clinton and Donald

Trump on 26 September 2016 in Hempstead, New York. Therefore, the domain is argumentation

in political debate. US2016 also includes online reactions, from Reddit, towards the three pre-

sented debates. Anyone who is a registered user in this social media platform can make posts,

6http://www.corpora.aifdb.org/US2016
7Argumentation is reasoning in discourse to support a contested point of view. To resolve disagreements, arguments

can be used and the reason supporting them can be tested.

https://www.presidency.ucsb.edu/
https://www.reddit.com/
http://www.corpora.aifdb.org/US2016
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which leads to a greater diversity in language used, due to having people contributing from vary-

ing backgrounds, nationalities and education levels. Thus, for the online reactions, it is expected

a mixed argumentative quality (rhetorical efficacy, and dialectical and logical fallaciousness) and

many less well-crafted and well-signalled examples.

We are again facing cross-genre data, as we have both televised election debates and social

media discussions. The US2016 corpus is a set of “argument maps" that are the result of the

text annotation. It is organized in sub-corpora related to either the television debated transcripts

(US2016tv) or Reddit threads (US2016reddit), for each of the three candidate debates preced-

ing the 2016 US presidential elections (US2016R1, US2016D1 and US2016G1): US2016R1tv,

US2016R1reddit, US2016D1tv, US2016D1reddit, US2016G1tv, and US2016G1reddit.

The data annotation format is based on Inference Anchoring Theory (IAT) (Budzynska and

Reed, 2011). IAT adheres to the extended Argument Interchanged Format (AIF+) standard which

is a graph-based ontology that facilitates the representation of arguments. For the annotation, we

have the following concepts:

• Locution: speaker identification followed by an argumentative discourse unit (ADU) which

is a segmented transcribed text, that has a discrete argumentative function (right top and

bottom boxes in Figure 4.1).

• Transitions: functional relation between locutions, representing the dialogue protocol (right

middle box in Figure 4.1).

• Illocutions: the intended communicative function of a locution or of a transition between

two locutions (middle column of boxes in Figure 4.1), and can be agreeing, arguing, assert-

ing, challenging, disagreeing, questioning, restating and default illocution.

• Proposition: propositional content reconstructed from a locution (left top and bottom boxes

in Figure 4.1).

• Inference: relation between two propositions where one supplies a reason for accepting the

other (premise of an argument supporting its conclusion).

• Conflict: relation between two propositions where one is incompatible with the other (left

middle box in Figure 4.1).

• Rephrase: relation between two propositions where one is meant to be a reformulation of

another proposition.

Figure 4.1 shows an example of disagreement and how the argumentation is anchored in the

structure of the dialogue. The blue boxes on the right are locutions and the ones on the left are the

correspondent propositions.

Since we are proposing a binary classification model, we only use two labels (0 and 1, respec-

tively, not contradiction and contradiction). In this dataset, we see both inference and rephrase
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Figure 4.1: Diagrammatic visualisation of an example of disagreement showing how the proposi-
tional reasoning on the left is anchored in the dialogical realisation of the argument on the right.
This example was taken from US2016 corpus and is available online at http://www.aifdb.
org/argview/10439.

relations as negative examples (not contradictions) and the relation of conflict as a positive ex-

ample. A relation of conflict is linked to a disagreement illocution. A disagreement occurs when

two interlocutors dispute the acceptability of a standpoint (an opinion, a belief, a proposal). They

can, then, give arguments in order to resolve the disagreement while testing the reasons supporting

their arguments. Hence, we are talking about the case when two people share different opinions

which we see as a contradiction when considering both points of view as true.

To build our dataset we use the entire US2016 corpus in JSON format. The JSON includes

a list of nodes and a list of edges. Each node is an object that has ‘nodeID’, ‘text’, ‘type’ and

‘timestamp’. Below we present the seven possible node types:

• L - Locutions, excerpts from the used transcripts. In this case, the node text is the extracted

snippet.

• TA - A transitions (link between locutions). In this case, the node text is “Default Transi-

tion".

• YA - Illocutions that link locutions to propositions. In this case, the node text can be “Agree-

ing", “Arguing", “Asserting", “Challenging", “Default Illocuting", “Disagreeing", “Restat-

ing", and “Questioning".

• I - Proposition. In this case, the node text is a processed locution.

• RA - Relation of inference which is a link between two propositions where one gives a

reason for the other to be accepted. In this case, the node text is “Default Inference".

http://www.aifdb.org/argview/10439
http://www.aifdb.org/argview/10439
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• CA - Relation of conflict which is a link between two propositions where one is an incom-

patible alternative to another. In this case, the node text is “Default Conflict".

• MA - Relation of rephrase which is a link between two propositions where one reformulates

the other. In this case, the node text is “Default Rephrase".

An edge represents the connection between two nodes. It has an ‘edgeID’, ‘fromID’ (id of the

source node), ‘toID’ (id of the destination node), and ‘formID’ (which is always “null"). There-

fore, to form an input pair, we get the ‘nodeID’ from a node of type CA. That node would be the

red box from Figure 4.1. Then, we need two edges, one that has the CA node as ‘fromID’ and

other that has it as ‘toID’. There will be two distinct edges with the CA node as ‘toID’ because,

besides the proposition node (blue box in Figure 4.1 upper left corner), there is always an illocu-

tion node (yellow boxes in the middle of Figure 4.1) anchoring the propositional reasoning to the

dialogical act (linking the boxes on the right side to the boxes on the left side, in Figure 4.1).

From the edges coming and leaving the CA node, we get the proposition nodes (type I). The

text of those two nodes are the sentences of the input and, in this case, the label will be 1 (con-

tradiction). For the negative examples (label 0), we follow the same procedure, but resorting to

relation nodes of type RA and MA.

Regarding the count of propositional relations, this corpus has 2830 inference relations, 942

Conflict relations and 764 Rephrase relations. In our dataset we keep a balanced ratio of positive

and negative examples by using 941 conflict relations (one of the conflict relations had an error

since it was missing a node linking to the CA node) and getting a total of 941 examples from

both inference and rephrase relations. We give priority to the examples of rephrase because in this

relation it is more clear that the two sentences do not conflict, since one is basically paraphrasing

the other. However, we ended up not using all the 764 rephrase instances because there were ones

that were too small and simple to matter, like the following examples:

1. “CHINA. Mexico" and “Mexico. CHINA"

2. “flat tax" and “I ’ve advocated a proportional tax system"

3. “X for TRUMP’s family" and “X"

4. “Wrong. Wrong wrong" and “Wrong"

Thus, for the negative examples, we only consider pairs in which each sentence has at least

four words.

Finally, we shuffle all obtained examples and split them in two sets, 80% for training (‘train.tsv’)

and 20% for validation (‘dev.tsv’).

4.1.4 ArgumentativeMicrotext

The Argumentative Microtext Corpus8 is the result of argumentation mining which involves cap-

turing the different aspects of the argumentation structure of a text (central claim, supporting
8http://angcl.ling.uni-potsdam.de/resources/argmicro.html

http://angcl.ling.uni-potsdam.de/resources/argmicro.html
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reasons, possible objections, counters to the objections). Thus, the argumentation structure of a

text is a graph representation, depicting the argumentative relation between the propositions.

The corpus provides short texts which are responses to trigger questions and is divided in two

parts. The first part (Peldszus and Stede, 2016) has 122 texts: 89 texts collected in a controlled

text generation experiment based on a list of controversial questions9, and 23 texts written by

Andreas Peldszus, as a “proof of concept" for the idea, and with the purpose of teaching and

testing students argumentative analysis. The second part (Skeppstedt et al., 2018) was produced

by a crowdsourcing experiment, also based on a list of trigger questions10, resulting in 171 more

texts.

The annotation scheme is based on the idea of modeling the argumentation as a hypothetical

discussion between the proponent, who presents and defends its claims, and the opponent, who

question and criticizes them. However, each microtext of this corpus only has one author that

not only gives reasons in favour of the main claim, but may also take counter-arguments into

consideration. Figure 4.2 shows the schematic diagram of one of the corpus microtexts. The nodes

represent propositions extracted from text segments (the grey boxes). The shape of the nodes

indicates the role of the correspondent proposition: round nodes are in favour of the claim and

square nodes against it. The arrowhead, circle-head and square-head edges represent, respectively,

a supporting move, an attacking move of rebuttal (challenging the acceptability of a proposition),

and an attacking move of undercutter (challenging the acceptability of an inference between two

propositions). In the example in Figure 4.2, the fourth segment rebuts the first segment, and this

rebutting move is undercut by the fifth segment.

Figure 4.2: Microtext and argumentation graph. This example was taken from the first part of
the Argumentative Microtext Corpus and is available online at https://github.com/peldszus/arg-
microtexts/blob/master/corpus/en/micro_b006.pdf

To build our dataset, we resort to the corpus XML format. The XML representing a microtext

graph has elementary discourse unit (EDU) elements and argumentative discourse units (ADU)

elements, which are EDUs that serve as independent arguments to the argumentation. The EDU

9https://github.com/peldszus/arg-microtexts/blob/master/topics_triggers.md
10https://github.com/discourse-lab/arg-microtexts-part2/blob/master/topics_

triggers.md

https://github.com/peldszus/arg-microtexts/blob/master/corpus/en/micro_b006.pdf
https://github.com/peldszus/arg-microtexts/blob/master/corpus/en/micro_b006.pdf
https://github.com/peldszus/arg-microtexts/blob/master/topics_triggers.md
https://github.com/discourse-lab/arg-microtexts-part2/blob/master/topics_triggers.md
https://github.com/discourse-lab/arg-microtexts-part2/blob/master/topics_triggers.md
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element’s content is character data (CDATA) presenting a text segment, and the ADU element

has an attribute ‘type’ that says if the text segment supports (“type=“pro"") or refutes/attacks

(“type=“opp"") the main claim. The XML also has edge elements with four attributes: “id", “src"

(element from where the edge is leaving), “trg" (edge destination element), and “type" (type of

link between two XML elements). We are interested in four edge types:

• seg - an edge of this type connects an EDU element to its correspondent ADU element.

• sup - an edge of this type represents a relation of support, connecting an ADU element to

another ADU element, with the objective of increasing the credibility of the second (“trg"

element) by providing a reason (“scr" element) for accepting it.

• reb - an edge of this type represents a rebutter (attack between propositions), connecting an

ADU element to another ADU element, using the first (“src" element) to refute or weaken

the force of the second ADU (“trg" element).

• und - an edge of this type represents an undercutter (attack to the relation between propo-

sitions), connecting an ADU element to an edge element, using the first (“src" element) to

challenge the second (“trg" element).

In this scenario, we will use the support relations as negative examples and the attack relations

as positive examples, because a supporting statement aims to increase the strength of the argument

and a attacking statement aims to refute the target.

Regarding rebutters, if the two elements of this relation have other elements directly supporting

them, we concatenate those text segments to give more context to the document used in the input

pair. In the example from Figure 4.3, where the trigger question is “Should the statutory retirement

age remain at 63 years in the future?", text segments two and three support the first, and the fourth

text segment rebuts the first, so, here, the input pair with label 1 (contradiction), would be 〈“The

implementation of retirement at 63 is no longer socially sustainable, as the population in Germany

has, viewed demographically, a disproportionate number of old people, and constantly declining

birth rates are being recorded." ; “Admittedly the number of immigrants is constantly rising in

Germany"〉. The first document of this input pair talks about the struggle of retiring people at the

age of 63 because the elderly population in Germany is increasing and the birth rate is decreasing.

By doing so, Germany would lose many employees, ending up missing workers. The second

document of the pair attacks the first by stating that the number of immigrants is rising which can

help covering the lack of employees created due to the possibility of retiring at 63. Thus, the issue

of the first document would no longer be a problem. That is why we see this as a contradiction,

because if the counter argument holds, then the first claim loses its strength and/or meaning. Still,

it is not truly a contradiction, since it is not certain that the fact expressed in the second statement

is a solution for the problem presented in the first statement, hence both statements might co-exist

(be simultaneously true).

Regarding undercutters, since the target element (“trg") is a relation (an edge) between two

elements, from that relation we get the two linked elements/nodes. Then, we only use the ones
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Figure 4.3: Microtext and argumentation graph. This example was taken from the first part
of the Argumentative Microtext Corpus and is available online at https://github.com/
peldszus/arg-microtexts/blob/master/corpus/en/micro_k017.pdf

that are of a different type (“pro" or “opp") as compared to the undecutter’s source element (“src").

In the example from Figure 4.3, the fifth text segment undercuts the relation of attack between seg-

ments one and four. Since the fourth text segment is of proponent type (“type=“pro"") ant the fifth

text segment is of opponent type (“type=“opp""), the input pair with label 1 would be 〈“Admittedly

the number of immigrants is constantly rising in Germany" ; “but without sufficient, well-qualified

junior employees there is hardly a possibility for adequate pension financing."〉. The second doc-

ument of this input pair shows that, although the number of immigrants is increasing, we should

not take it for granted since number is not the only factor, the employees qualification and skills

is equally important. Even though these two statement are of different types (one supports the

main claim and other is against it), the contradiction is barely understandable. It can be explained

through the fact that, besides the lack of context, while a rebutter can be seen as an argument for

the negation of the proposition under attack, an undercutter does not challenge the validity of a

proposition, but challenges the acceptability of an inference between two propositions.

After gathering the input pairs (a total of 1133 examples, 403 positive and 730 negative),

we shuffle them and split them in two sets, 80% for training (‘train.tsv’) and 20% for validation

(‘dev.tsv’).

4.1.5 ArgumentEssays

Argument Annotated Essays11(Stab and Gurevych, 2017) is a corpus of 402 persuasive essays

annotated with discourse-level argumentation structures modeled as a connected tree. The major

claim (author’s standpoint) is the root node and is usually found in the essay’s introduction, that

describes the controversial topic. The arguments, presented in individual paragraphs of an essay,

can support or attack the major claim. One argument consists of a claim (central component) and,

at least, one premise (reason of the argument). Each claim has a stance that can be either “for"

11https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_
mining_1/argument_annotated_essays_version_2/index.en.jsp

https://github.com/peldszus/arg-microtexts/blob/master/corpus/en/micro_k017.pdf
https://github.com/peldszus/arg-microtexts/blob/master/corpus/en/micro_k017.pdf
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
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(supporting argument) or “against" (attacking argument) the major claim. A premise can be used

to justify a claim (relation of support) or to refute it (relation of attack).

In contrast to the previous corpus annotation scheme (described in Section 4.1.4) that splits

a microtext/answer in different text segments, but does not process them, this corpus annotation

has stricter argument component boundary rules, such as ignoring “shell language", phrases like

“Another reason is that" or “I am strongly convinced", that are not relevant for the argument’s

content.

The corpus has, for each essay, a “.txt" file, that is the entire and unchanged essay, and an

annotation file (e.g., “essay001.ann") which contains:

• Entities - They can be “MajorClaim", “Claim" or “Premise". One line representing an entity

has the entity id, the entity tag, character positions in the essay “.txt" file where the entity

starts and ends, and the entity content, as shown in the following example: T1 MajorClaim

503 575 we should attach more importance to cooperation during primary education

• Relations - They can assume the values “supports" or “attacks". One line representing a

relation has the relation id, the relation value, the relation’s source argument/entity id (that

can only be of a premise or of a claim), and the relation’s target argument/entity id (that can

be of a premise, claim or major claim), as shown in the following example: R1 supports

Arg1:T4 Arg2:T3

• Attributes - They are the claim’s stance and can be “For" or “Against". One line represent-

ing an attribute has the attribute id, the tag “Stance", the claim id, and the value, as shown

in the following example: A2 Stance T7 Against

When building our dataset, we consider the positive examples to be the pairs of major claim

and claim with stance “Against", and the pairs of two entities that share a relation of attack. On the

other hand, the negative examples will be the pairs of major claim and claim of stance “For", and

the pairs of two entities that share a relation of support. After gathering the input pairs (a total of

6673 examples, 715 positive and 5958 negative), we shuffle them and split them in two sets, 80%

for training (‘train.tsv’) and 20% for validation (‘dev.tsv’).

4.1.6 W2E

As mentioned in the previous chapter, to confirm that a successful transfer learning is caused by

the relevance of document relationships depicted in a source dataset, and not only by the increase

of training examples, we collected data from W2E12 (Hoang et al., 2018). With this dataset we

expect to achieve negative transfer learning as the documents relationships are not related with

the ones in our baseline datasets. While the baselines present contradiction in a political domain,

W2E dataset was designed for topic detection and tracking.

W2E is a Worldwide-Event benchmark dataset for topic detection and tracking, containing

207,722 news articles written in English, from 52 mass media channels (e.g., CNN, BBC, Fox
12https://sites.google.com/site/w2edataset/

https://sites.google.com/site/w2edataset/
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News, etc.). The news articles cover a large set of 4,501 popular events, within the entire year of

2016, each belonging to one out of 10 categories: “Sport", “Science and technology", “Politics

and elections", “Law and crime", “International relations", “Health and medicine", “Disasters and

accidents", “Business and economy", “Arts and culture", “Armed conflicts and attacks". To select

the events, the authors resorted to Wikipedia’s Current Event portal13 (WCEP) which contains

short summaries of events. They chose the year of 2016 because of the variety of popular long-run

stories in that period, such as the US presidential election, UK’s European Union membership

referendum, Middle East wars, the Summer Olympics, and disasters in North America.

Since different news sources were used, W2E includes distinct views of the same event. Dif-

ferent news articles regarding the same issue belong to the same topic which is assigned to a more

generic category. There is a total of 2,015 topics. W2E provides, for each topic, the topic’s in-

formation (id, category, and description) and its correspondent events (date of the event, event’s

summary, and search query). The fields in each line are tab-separated. Next, we have an example

of a topic and its events:

“

TOPIC-7 Disasters and accidents *** Kollam temple fire

2016-04-10 A fire occurs at a Hindu temple in the Kollam district ...

Kollam Kerala India Hindu temple fire

2016-04-11 Five workers from the company that supplied fireworks to the Puttingal Temple ...

worker fireworks Puttingal Temple dead

"

Thus, TOPIC-7 belongs to the “Disasters and accidents" category, its description is “Kollam

temple fire", and it has two events (one happening on 2016-04-10, and the other on 2016-04-11).

When building our dataset, we consider the positive examples to be a pair of summaries of

two news articles from topics assigned to distinct categories, and from topics assigned to the same

category for negative examples. We only extracted data from four categories that seemed more

distant regarding the content context (“Sport", “Science and technology", “Politics and elections",

“Health and medicine"). For both classes, we have the same distribution for each category, as

depicted in Table 4.2.

After gathering the input pairs (a total of 4800 examples, 2400 positive and 2400 negative),

we shuffle them and split them in two sets, 80% for training (‘train.tsv’) and 20% for validation

(‘dev.tsv’).

4.2 Experimental setup

For each dataset, we train the downstream task by fine-tuning a pre-trained BERT-Base Uncased

model (12-layer, 768-hidden, 12-heads, 110M parameters) for sentence-pair classification. When

running predictions, the classification model outputs, through a softmax function, a probability

distribution over the two possible classes. These probabilities/scores can be seen as the degree of

13https://en.wikipedia.org/wiki/Portal:Current_events

https://en.wikipedia.org/wiki/Portal:Current_events
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Table 4.2: Distribution of text categories in an input pair for each class. The short form for each
category is “S" for “Sport", “ST" for “Science and technology", “PE" for “Politics and elections",
and “HM" for “Health and medicine".

Class
Categories

in a pair

Number of

examples

S-ST 400

S-PE 400

S-HM 400

ST-PE 400

ST-HM 400

Positive

PE-HM 400

S-S 600

ST-ST 600

PE-PE 600
Negative

HM-HM 600

certainty that a pair of two documents are contradictory or not. Moreover, we consider the highest

scored class as being the prediction result.

4.2.1 Environment and tools

The experiments were conducted on the Google Colaboratory platform14 in order to take advantage

of the 12-hours Python 3 runtime with free Colab Cloud Tensor Processing Unit (TPU) hardware

acceleration running on the Ubuntu operating system.

We used the BERT modules from the original tensorflow source code15. Important things to

retain from the repository code are: the model (class BertModel) is implemented in modeling.py;

we use the run_classifier.py to construct the classification layer used for the fine-tuning process

of the supervised model; and tokenization.py is the tokenizer used to convert the input words

into WordPieces, appropriate for BERT. When using the run_classifier to create a classification

model, it includes the pooler layer of the pre-trained model to take the representation/embedding

of the initial token ([CLS]), that, through multiple attention layers, depends on the rest of the

input tokens. It also resorts to the softmax function of TensorFlow’s tf.nn module to perform the

classification.

Our models and evaluation and test results were stored in a Google Cloud Storage (GCS)

bucket. The datasets used were in a personal Google Drive which we could access by mounting it

to Google Colab.

Regarding result analysis, we calculated Precision-Recall, ROC curves and AUC, resorting

to ‘precision_recall_curve’, ‘roc_curve’ and ‘auc’ from Scikit-learn’s sklearn.metrics module.

14https://colab.research.google.com/notebooks/intro.ipynb
15https://github.com/google-research/bert

https://github.com/google-research/bert/blob/master/modeling.py
https://github.com/google-research/bert/blob/master/run_classifier.py
https://github.com/google-research/bert/blob/master/tokenization.py
https://colab.research.google.com/notebooks/intro.ipynb
https://github.com/google-research/bert
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Table 4.3: Software and respective versions.

Software Version
Matplotlib 3.2.1
Pandas 1.0.4
Python 3.6.9
Scikit-learn 0.22.2.post1
TensorFlow 1.15.2
Ubuntu 18.04

For plotting, we used the ‘pyplot’ interface from the Python’s library Matplotlib. We also used

Pandas ‘crosstab’ to display confusion matrices, and the ‘classification_report’ of Scikit-learn’s

sklearn.metrics module to build text reports containing the main classification metrics.

For experimental reproducibility purposes, Table 4.3 presents the versions of the used soft-

ware.

4.2.2 Train, evaluation and test

In this section we describe the steps we took in order to fine-tune a sentence-pair classification

task built on top of a pre-trained BERT model and run predictions on the tuned model.

Table 4.4 shows the used neural network hyperparameters.

Since we are using the Google Cloud TPUs, the optimizer used for fine tuning is

tf.contrib.tpu.CrossShardOptimizer, that averages gradients across TPU shards. It encapsulates a

basic Adam optimizer that includes “correct" L2 weight decay. This optimization algorithm is a

type of Stochastic Gradient Descent16 with momentum (moving average of the gradient).

One epoch means passing, forward and backward, the entire dataset through the neural net-

work, only in one time. Nevertheless, in practice, we do not feed the entire dataset at once. We

rather divide it in several batches and pass them multiple times (more than one epoch). Moreover,

using only one epoch would not be enough to update the neural network weights since we are

using a type of Gradient Descent which is an iterative learning optimization process.

16An iterative optimization algorithm which has a learning rate.

Table 4.4: Model hyperparameters

Hyperparameter Value
Train batch size 32
Validation batch size 8
Predictive batch size 8
Learning rate 2x10−5

Maximum sequence length 512
Warmup propotion 0.1
Number of training epochs 5

https://www.tensorflow.org/api_docs/python/tf/compat/v1/tpu/CrossShardOptimizer
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A batch is a set of examples, hence, the train batch size is the total number of training examples

in a single batch.

Iteration is the number of batches needed to complete one epoch. Therefore, if we have a

dataset of E examples which we divide into batches of EB examples each, then we need E/EB

iterations to complete one epoch.

A model’s checkpoint captures the exact value of all model parameters (tf.Variable objects) and

weights. Following the previous definition of iteration, in order to save a tensorflow checkpoint

of the model at the end of each epoch, after selecting the dataset, we configure the model with a

‘save_checkpoints_steps’ (number of steps to complete before saving a checkpoint) equal to the

quotient of dividing the number of training examples by the train batch size.

For each dataset we perform the following procedure:

1. Get the train set (a subset of the chosen dataset);

2. Set the model’s number of steps required to save a checkpoint;

3. Train the classification model for 5 epochs;

4. Validate the last checkpoint of the model on the development dataset (a subset of the chosen

dataset);

5. Choose a dataset to test;

6. Test the model, in its last state/checkpoint.

BERT is a language representation model that was pre-trained on a Wikipedia large corpus

in order to learn language patterns. Due to the corpus dimension and diversity, the learned word

representations are expected to be generic enough and free from bias that could affect our model

performance.

We fine-tune a classification task built on top of a pre-trained BERT model that we load from

a saved checkpoint provided by Google in a public Google Cloud storage bucket (gs://cloud-

tpu-checkpoints/bert/uncased_L-12_H-768_A-12). This checkpoint was converted from google-

research/bert.

To convert data for sequence classification datasets, BERT has four processor classes: Xnli

(Cross-Lingual NLI), Mnli (Multi-Genre Natural Language Inference), Mrpc (Microsoft Research

Paraphrase Corpus), and Cola (The Corpus of Linguistic Acceptability). These classes extract data

into the following parameters: guid (example’s unique id), text_a (untokenized text corresponding

to the first sequence, and the only required sequence when considering single sentence classifica-

tion tasks), text_b (optional untokenized text corresponding to the second sequence, and should

only be specified in sentence-pair classification tasks), and label (example’s label).

Hence, we choose the BERT fine-tuning runner’s processor for the Microsoft Research Para-

phrase Corpus (MRPC) data set (GLUE version) because this is a corpus of sentence pairs anno-

tated with only two possible labels, 0 or 1. However, we do not use that corpus from the GLUE

https://github.com/google-research/bert
https://github.com/google-research/bert
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benchmark. We rather adapt our datasets to the MRPC format so the processor can handle our

data. Therefore, as referred in Section 4.1, for a dataset we need to create a Tab Separated Values

file for training (“train.tsv"), another for evaluation (“dev.tsv"), and another for testing (“test.tsv").

According to the previous paragraph, we mimic the MRPC data set schema by composing each of

these files with five columns: “Quality" (the example label, 0 or 1), “#1 ID" (id of the first docu-

ment of the example pair), “#2 ID" (id of the second document of the example pair), “#1 String"

(the first document of the example pair), and “#2 String" (the second document of the example

pair).

4.2.3 Experiments

The conducted experiments are summarized in Table 4.5.

For baseline DonaldTrump, we do a 10-fold cross validation due to its small dimension, while,

for the baseline MultiNLIGovernment we opt for a simple train-validation-test split (70% train,

10% validation, 20% test). For each baseline, we also train a binary classifier on the entire set of

examples and test on the other baseline dataset.

For the other datasets (MultiNLI-, US2016, ArgumentativeMicrotext, ArgumentEssays, and

W2E), we use 80% for training and 20% for validation/evaluation. Then, we run predictions on

baseline datasets. We later, for each of these datasets, perform two separate retrainings. So, for one

dataset we consider two distinct binary classifiers, both previously trained with that same data, but

that will be retrained with different data, from DonaldTrump or MultiNLIGovernment datasets.

Every time we test with the DonaldTrump dataset (except in cases of 10-fold cross validation),

we use the entire set. While with MultiNLIGovernment, we use the same test set used for the

experiment where we train and test only with examples from the MultiNLIGovernment dataset.

That is, we use 20% of the MultiNLIGovernment baseline.

Tables 4.6, 4.7, 4.8, 4.9 and 4.10 present the size of the training, validation and test sets used

in each experiment.

In the first experiment (Table 4.6) we focus on the baseline datasets (Section 4.1.1), Don-

aldTrump and MultiNLIGovernment. We divide this experiment in two parts, 1.a and 1.b.

In the first part (experiment 1.a), we train and test one uncased BERT base model (BERTBase)

with the DonaldTrump dataset (experiment 1.a DonaldTrump), through 10-fold cross valida-

tion (10-FCV), and another BERTBase with the MultiNLIGovernment dataset (experiment 1.a
MultiNLIGovernment). Because for experiment 1.a, in the DonaldTrump dataset we have a lim-

ited number of examples and perform 10-FCV, we do not validate the model, so we do not have a

development set in this case.

On the other hand, in the second part (experiment 1.b), we train a BERTBase with one baseline

dataset, and test the model with a different baseline dataset. For experiment 1.b DonaldTrump,

we train a new BERTBase because, this time, since we use the entire DonaldTrump dataset for
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Table 4.5: Summary of the conducted experiments and the split ratio of the datasets used in them.
The short forms for the (re)training procedures are “10FCV" for “10-fold cross validation", “T-V"
for “train-validation split", and “T-V-T" for “train-validation-test split".

Training set
Training

procedure
Retraining set

Retraining
procedure

Testing set

DonaldTrump
10FCV - DonaldTrump

90%-10%
T-V

- MultiNLIGovernment

MultiNLIGovernment
70%-10%

T-V
- DonaldTrump

70%-10%-20%
T-V-T

- MultiNLIGovernment

MultiNLI-
80%-20%

T-V

- DonaldTrump
- MultiNLIGovernment

DonaldTrump 10FCV DonaldTrump

MultiNLIGovernment
70%-10%-20%

T-V-T
MultiNLIGovernment

US2016
80%-20%

T-V

- DonaldTrump
- MultiNLIGovernment

DonaldTrump 10FCV DonaldTrump

MultiNLIGovernment
70%-10%-20%

T-V-T
MultiNLIGovernment

Argumentative
Microtext

80%-20%
T-V

- DonaldTrump
- MultiNLIGovernment

DonaldTrump 10FCV DonaldTrump

MultiNLIGovernment
70%-10%-20%

T-V-T
MultiNLIGovernment

ArgumentEssays
80%-20%

T-V

- DonaldTrump
- MultiNLIGovernment

DonaldTrump 10FCV DonaldTrump

MultiNLIGovernment
70%-10%-20%

T-V-T
MultiNLIGovernment

W2E
80%-20%

T-V

- DonaldTrump
- MultiNLIGovernment

DonaldTrump 10FCV DonaldTrump

MultiNLIGovernment
70%-10%-20%

T-V-T
MultiNLIGovernment
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Table 4.6: Dataset size for each baseline experiment. Experiment 1.a is when we train and test a
model with the same baseline dataset. Experiment 1.b is when we train in a baseline dataset and
test on the other baseline dataset.

Exp. 1.a
DonaldTrump

Exp. 1.a
MultiNLIGovernment

Exp. 1.b
DonaldTrump

Exp. 1.b
MultiNLIGovernment

Train 225 55545 225 -
Dev - 7935 25 -
Test 25 15870 15870 250

training, we do not resort a 10-FCV, but rather train with a 90%-10% train-validation split ap-

proach. Whereas for experiment 1.b MultiNLIGovernment, we load the already trained and val-

idated model from experiment 1.a MultiNLIGovernment, and run prediction on the entire Don-

aldTrump dataset.

Table 4.7: Dataset size for each experiment 2.a. Experiment 2.a is when we train and validate on
a dataset we are exploring, and test on the DonaldTrump baseline dataset.

Exp. 2.a
MultiNLI-

Exp. 2.a
US2016

Exp. 2.a
ArgumentativeMicrotext

Exp. 2.a
ArgumentEssays

Exp. 2.a
W2E

Train 266682 1507 907 5339 3840
Dev 66670 375 226 1334 960
Test 250 250 250 250 250

Table 4.8: Dataset size for each experiment 2.b. Experiment 2.b is when we load the trained and
validated model from experiment 2.a and test on the MultiNLIGovernment baseline dataset.

Exp. 2.b
MultiNLI-

Exp. 2.b
US2016

Exp. 2.b
ArgumentativeMicrotext

Exp. 2.b
ArgumentEssays

Exp. 2.b
W2E

Train - - - - -
Dev - - - - -
Test 15870 15870 15870 15870 15870

In the second experiment we focus on training a BERTBase model for each dataset we are

exploring (Sections 4.1.2, 4.1.3, 4.1.4 and 4.1.5). This experiment is divided in two parts, 2.a

and 2.b. In the first part (experiment 2.a, Table 4.7), we train and validate a different BERTBase

with each source dataset, MultiNLI- (experiment 2.a MultiNLI-), US2016 (experiment 2.a
US2016), ArgumentativeMicrotext (experiment 2.a ArgumentativeMicrotext), ArgumentEs-

says (experiment 2.a ArgumentEssays) and W2E (experiment 2.a W2E). Each of these trained

models is tested with the entire DonaldTrump dataset. In the rest of this section, we will call these

five trained models BERTMultiNLI−, BERTUS2016, BERTMicrotext , BERTEssays and BERTW2E . In the

second part (experiment 2.b, Table 4.8), we used the trained models from experiment 2.a and run

predictions, with each of them, on the MultiNLIGovernment baseline dataset.
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Table 4.9: Dataset size for each experiment 3.a. Experiment 3.a is when we load the trained and
validated model from experiment 2.a, and retrain it and test on the DonaldTrump baseline dataset.

Exp. 3.a
MultiNLI-

Exp. 3.a
US2016

Exp. 3.a
ArgumentativeMicrotext

Exp. 3.a
ArgumentEssays

Exp. 3.a
W2E

Train 225 225 225 225 225
Dev - - - - -
Test 25 25 25 25 25

Table 4.10: Dataset size for each experiment 3.b. Experiment 3.b is when we load the trained and
validated model from experiment 2.a, and retrain it and test on the MultiNLIGovernment baseline
dataset.

Exp. 3.b
MultiNLI-

Exp. 3.b
US2016

Exp. 3.b
ArgumentativeMicrotext

Exp. 3.b
ArgumentEssays

Exp. 3.b
W2E

Train 55545 55545 55545 55545 55545
Dev 7935 7935 7935 7935 7935
Test 15870 15870 15870 15870 15870

In the third experiment we focus on retraining and testing the previously trained models,

BERTMultiNLI−, BERTUS2016, BERTMicrotext , BERTEssays and BERTW2E , on our baseline datasets.

In the first part (experiment 3.a), we perform a 10-FCV with each trained model from experiment

2.a and using the baseline DonaldTrump dataset. In the second part (experiment 3.b), we also use

the trained models from experiment 2.a and train, validate and test them on the MultiNLIGovern-

ment baseline dataset.

4.3 Summary

In this chapter we explained the datasets used in the experiments and the experiments itself.

We detailed each corpus characteristics and how we built our datasets from them. Moreover,

we present data examples from those corpora used as source task domains, and compare and

relate them with our task of contradiction detection. Nonetheless, we introduce three relations that

we are going to study: contradictions in a different domain (across various text genres/topics) ,

disagreement as contradiction, and arguments of attack as contradictions.

Finally, we describe the project setup and the three conducted experiments: test the baseline

datasets (source task domains), explore the new datasets alone, and analyse the new datasets when

retrained with examples from our baseline datasets.
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Chapter 5

Results and Discussion

In this chapter we reveal the experimental results, analyse and discuss them, and draw conclusions.

Due to the fact that we are facing a binary classification problem, to interpret the results,

we will resort to the Receiver Operating Characteristic (ROC) curve, Precision-Recall curve, and

Area Under the Curve (AUC) for ROC curve. As said before, when running predictions, our

model outputs the probability of an instance (pair of two documents) belonging to each class

(contradiction and not contradiction). This way is more flexible since we can interpret those

probabilities through different thresholds, contrasting various types of errors, like comparing the

number of False Positives (FP) with the number of False Negatives (FN). Indeed, balancing and

correlating different measures is important when their costs have distinct impacts.

We also consider the case where the predicted class is the one with higher score/probability

(assuming a threshold of 0.5) and, from there, we calculate the number of correct and incorrect

predictions, the number of examples predicted as positive or as negative, true positives, false

negatives, true negatives, false positives, accuracy, recall, and precision. At the end, we examine

the difference between accuracy, recall and precision obtained from the baselines (in experiment

1) and the ones obtained in experiments 2 and 3, in order to see if there were improvements in

performance when exploiting new datasets.

5.1 Concepts

This section presents the definition and purpose of some basic concepts important for the following

result analysis. Therefore, we describe the metrics and tools used that helped us to interpreting the

forecasts of our classification models.

Receiver Operating Characteristic Curve (ROC curve) is a graphical plot that illustrates

the diagnostic ability of a binary classifier system as its discrimination threshold is varied. It is

represented by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR),
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at various threshold1 settings. As we reduce the threshold value, the predicted condition posi-

tive increases, so it is expectable to obtain a higher TPR and higher Recall. However, the FPR

also increases, as, in general, we are predicting more examples to be in a positive class. There-

fore, specificity (true negative rate, the proportion of actual negatives that are correctly identified)

decreases.

ROC is a probability curve and the Area Under the Curve (AUC) represents the degree of

separability (tells how much a model is capable of distinguishing between classes). For instance,

if the AUC is 0.7, this means there is a 70% chance the model will be able to distinguish correctly

between positive and negative classes. An excellent model has an AUC near to 1 which means it

has a good measure of separability. When the AUC is near 0, the model is predicting 0s (actual

negatives) as 1s (positives), and vice versa. Finally, when the AUC is close to 0.5, it means that

the model has no class separation capacity whatsoever.

The early retrieval area of the ROC plot, where the specificity and threshold are high, can be

used to evaluate high-ranked instances. A model with a good retrieval level has a bigger AUC

in the early retrieval area, meaning that the performance (separability capacity) is better.

The Precision-Recall curve shows a trade-off between precision and recall for different thresh-

olds. A high area under the curve represents both high recall (low FNR) and high precision (low

FPR). In the case of a bad model, the curve is a horizontal line at the level of the ratio of positive

examples existing in the test set. This straight line is called baseline. So, if we have a balanced

dataset, the baseline would be a straight line of value y = 0.5. On the other hand, a perfect model

presents a curve that is the combination of two straight lines, linking the points (0, 1), (1, 1) and

(1, y), where y is the baseline (ratio of positive instances). Bad classifiers reach a high recall only

at low precision.

F-1 score is the harmonic mean of precision and recall. When this score has the value of

1 (the higher F-1 score possible) means that the model reaches perfect precision and recall. As

we analyse higher threshold values, the precision gets higher because we are looking at the high-

scored instances, which are also fewer. In this case we have less positive predictions. Thus, the

model has less FP (errors concerning the positive class). However, consequently, the recall is

lower due to the same reason, the model predicting fewer positives.

Figure 5.1 shows a scheme of the metrics mentioned above.

5.2 Experiment 1

In this section we describes experiment 1, where we test models performance when using the

baseline datasets (the target datasets). For experiment 1.a, we train a model and test it with in-

stances from the same dataset, while for experiment 1.b, the training is done in one baseline and

the testing in the other baseline. With this experiment we intent to observe the model capacity for

learning contradictions, in the context defined as case study (political domain). Additionally, we

1Probability value that must be exceeded by a class score, when classifying an example, in order to predict the
example as belonging to that class.
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Figure 5.1: Confusion Matrix.

aim to examine how the source of the two baselines impacts the performance when considering

simultaneously both datasets for training and testing a model.

As expected, in experiment 1.a MultiNLIGovernment (Figure 5.2b), as we have a large size

dataset, the model is able to learn the relation of contradiction between two documents of genre

“government". We observe that by the high ROC curve’s AUC and high precision at high recall

values. Likewise, for experiment 1.a DonaldTrump (Figure 5.2a), the model is capable of learning

the relation of contradiction between two documents of Donald Trump phrases, despite the little

number of training examples.

Regarding F1 score, the model in experiment 1.a DonaldTrump can keep a high F1 score

around 0.90 through various threshold values (from 0.997 to 0.001), as presented in Appendix B.1.1.

For experiment 1.a MultiNLIGovernment, the model can keep its best F1 score of 0.84, with an

accuracy of 0.89, through various threshold values (from 0.993 to 0.005), as presented in Ap-

pendix B.1.2. These two F1 scores are high which also reflects the separability capability because

even when considering very low thresholds, where predicting positive is more frequent, we still

have few errors (few false positives). We already achieve the best F1 score at high thresholds

in experiment 1.a MultiNLIGovernment, due to the fact of not having a balanced test set (35%

of the test examples are positive), while for the DonaldTrump dataset we have 57.6% of positive

examples in the test set.

For experiment 1.b, we run predictions on a different dataset, therefore it is expectable to have

worse performances than the ones of the previous experiment 1.a.

When training with DonaldTrump dataset and testing with MultiNLIGovernment dataset (Fig-

ure 5.2c), we obtain a model that behaves similarly to a random model (that cannot distinguish

between the two classes), since the ROC curve coincides with the diagonal. Also, the Precision-

Recall curve is close to the baseline, y=0.35, and the best F1 score (Appendix B.2.1) is of only

0.52, at a threshold of 0.003 where all the predictions are positive. We believe that the bad perfor-

mance is not only due to the dimension difference between train and test sets (very few training
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(a) Experiment 1.a DonaldTrump

(b) Experiment 1.a MultiNLIGovernment

(c) Experiment 1.b DonaldTrump

(d) Experiment 1.b MultiNLIGovernment

Figure 5.2: ROC and Precision-Recall curves for each experiment 1 procedure.
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Table 5.1: Results for experiment 1 when considering the higher scored label as the predicted
class.This table presents the TP, FN, TN, and FP values, and the number of instances predicted as
positive examples or as negative examples.

True
Positives

False
Negatives

True
Negatives

False
Positives

Predict
Condition
Positive

Predict
Condition
Negative

Experiment 1.a
DonaldTrump 13.3 1.1 9 1.6 14.9 10.1

Experiment 1.a
MultiNLIGovernment 4597 966 9512 795 5392 10478

Experiment 1.b
DonaldTrump 486 5077 9600 707 1193 14677

Experiment 1.b
MultiNLIGovernment 68 76 80 26 94 156

examples), but also due to the fact that the test set contains texts from different authors, therefore

might contain various language styles, while the train set only has texts from the same person, so

is more specific and related to a particular language pattern.

On the other hand, when training with MultiNLIGovernment dataset and testing with Don-

aldTrump dataset (Figure 5.2d), we have better results than in experiment 1.b DonaldTrump, be-

cause we train the model with more examples and larger variety of linguistic markers. Still, the

early retrieval area of the ROC curve is small, meaning that the model is not too confident when

predicting positive class. Also, the best F1 score (Appendix B.2.2) is of 0.73, but only when clas-

sifying all the inputs as positive (at a threshold of 0). Otherwise, through various thresholds, F1

score is around 0.58. This means that both precision and recall are low because we still have a lot

of false negatives.

Focusing on Tables 5.1 and 5.2, where we consider the default threshold of 0.5, the recall

value for experiment 1.b DonaldTrump is too small, of only 0.087, since the model trained with

DonaldTrump examples struggles to classify correctly contradictions. This might be a sign that

contradictions in the DonaldTrump scope are well marked by the author’s language profile, dis-

abling the model to adapt to a new dataset. The accuracy in experiment 1.b DonaldTrump is

slightly better than the one in experiment 1.b MultiNLIGovernment, but that is because the model

in the first case is predicting far more negatives than positives (the number of positive predictions

is rounded 8.13% of the number of negative predictions), and the test set is not balanced, having

more negative examples (the number of positives is rounded 54.0% of the number of negative ex-

amples). However, recall and precision are much better in experiment 1.b MultiNLIGovernment.

5.3 Experiment 2

In this section we detail experiment 2, where we train a model on one none-baseline dataset and

test it in a different dataset, that is a baseline dataset. Thus, for experiment 2.a we use the baseline
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Table 5.2: Results for experiment 1 when considering the higher scored label as the predicted
class.This table presents the number of correct and incorrect predictions, accuracy, recall, and
precision.

Correct
Predictions

Incorrect
Predictions

Accuracy Recall Precision

Experiment 1.a
DonaldTrump

22.3 2.7 0.892 0.925 0.897

Experiment 1.a
MultiNLIGovernment

14109 1761 0.889 0.826 0.853

Experiment 1.b
DonaldTrump

10086 5784 0.636 0.087 0.407

Experiment 1.b
MultiNLIGovernment

148 102 0.592 0.472 0.723

DonaldTrump for running prediction, while in experiment 2.b we use the baseline MultiNLIGov-

ernment. With this experiment we intend to observe if datasets not designed for the same purpose

as the baselines (containing relations, between two documents, of contradiction in a political do-

main) can still be used for the task.

Both experiments 2.a MultiNLI- and 2.a US2016 revealed good results, having a ROC curve’s

AUC of, respectively, 0.7497 and 0.7749 which means that these two models can distinguish well

between the two classes. The early retrieval area of the ROC plot in Figure 5.3a is better than the

one in Figure 5.3b, meaning that the model in the first case is more confident when predicting the

positive class (true positives with higher score). On the other hand, the model in the second case

has better results (bigger ROC curve’s AUC) with smaller threshold values. Hence, as we can see

in Table 5.4, with a threshold of 0.5, the model in experiment 2.a MultiNLI- performs better than

the model in experiment 2.a US2016.

Regarding F1 score, the model in experiment 2.a MultiNLI- reaches its best value of 0.73 at a

threshold of 0.001, with an accuracy of 0.72 (Appendix B.3.1). Whereas, the model in experiment

2.a US2016 reaches its best F1 score of 0.81 at the same threshold, with an accuracy of 0.76 (Ap-

pendix B.3.2) which confirms that this model is better than the one in experiment 2.a MultiNLI-

at really small thresholds. However, experiment 2.a MultiNLI-, through various threshold values,

has a F1 score around 0.64, and its lowest F1 score is of 0.51. While, experiment 2.a US2016,

through various threshold values, has a F1 score around 0.39, and its lowest F1 score is of 0.12.

A justification for achieving better results in experiment 2.a when resorting to these two

datasets might be the fact that the MultiNLI- dataset has examples of real contradiction prepared

by professional annotators. Besides that, this dataset has a big dimension. In contrast, the US2016

was not design to contain examples of contradiction, but it is in a political domain and, on top

of that, it has examples of Donald Trump speeches which might have helped the model, at some

extend, learning language patterns characteristic of this person.

The ArgumentativeMicrotext and ArgumentEssays datasets are not useful for the task since

with the latter we obtain a model that behaves similarly to a random model (Figure 5.3d), incapable
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(a) Experiment 2.a MultiNLI-

(b) Experiment 2.a US2016

(c) Experiment 2.a ArgumentativeMicrotext

(d) Experiment 2.a ArgumentEssays

Figure 5.3: ROC and Precision-Recall curves for each experiment 2.a procedure.
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(e) Experiment 2.a W2E

Figure 5.3: ROC and Precision-Recall curves for each experiment 2.a procedure (cont.).

Table 5.3: Results for experiment 2.a (test models on baseline DonaldTrump) when considering
the higher scored label as the predicted class. This table presents the TP, FN, TN, and FP values,
and the number of instances predicted as positive examples or as negative examples.

True
Positives

False
Negatives

True
Negatives

False
Positives

Predict
Condition
Positive

Predict
Condition
Negative

Experiment 2.a
MultiNLI- 76 68 92 14 90 160

Experiment 2.a
US2016 36 108 97 9 45 205

Experiment 2.a
ArgumentativeMicrotext 35 109 63 43 78 172

Experiment 2.a
ArgumentEssays 1 143 105 1 2 248

Experiment 2.a
W2E 0 144 106 0 0 250

Table 5.4: Results for experiment 2.a (test models on baseline DonaldTrump) when considering
the higher scored label as the predicted class.This table presents the number of correct and incor-
rect predictions, accuracy, recall, and precision.

Correct
Predictions

Incorrect
Predictions

Accuracy Recall Precision

Experiment 2.a
MultiNLI-

168 82 0.672 0.528 0.844

Experiment 2.a
US2016

133 117 0.532 0.250 0.800

Experiment 2.a
ArgumentativeMicrotext

98 152 0.392 0.243 0.449

Experiment 2.a
ArgumentEssays

106 144 0.424 0.007 0.500

Experiment 2.a
W2E

106 144 0.424 0.000 0.000
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Table 5.5: Results for experiment 2.b (test models on baseline MultiNLIGovernment) when con-
sidering the higher scored label as the predicted class. This table presents the TP, FN, TN, and FP
values, and the number of instances predicted as positive examples or as negative examples.

True
Positives

False
Negatives

True
Negatives

False
Positives

Predict
Condition
Positive

Predict
Condition
Negative

Experiment 2.b
MultiNLI- 4669 894 9677 630 5299 10571

Experiment 2.b
US2016 1236 4327 9706 601 1837 14033

Experiment 2.b
ArgumentativeMicrotext 2568 2995 5781 4526 7094 8776

Experiment 2.b
ArgumentEssays 54 5509 10215 92 146 15724

Experiment 2.b
W2E 25 5538 10281 26 51 15819

of distinguish between the two classes, while with the first even worst, a model that frequently

mistakes positives with negatives, and vice versa (ROC curve’s AUC bellow 0.5 in Figure 5.3c).

In Figure 5.3e, the reasonable early retrieval area of the ROC plot might lead us to the wrong

conclusion that the model in experiment 2.a W2E has high ranked true positives. However, the

threshold considered in that area is already too small, as we can see in Appendix B.3.3 where the

first example predicted as positive is when the considered threshold is of 0.3. Indeed, this model

is always outputting an high probability for the case of an instance belonging to the negative class

(not contradiction). From the beginning, we were expecting a bad performance while using the

W2E dataset for training, since it was designed for a task (topic detection) that is not close, what-

soever, to our target task (detecting contradictions). We believe that the model always predicting

the negative label is due to the fact that W2E dataset has negative examples that consist of a pair of

two documents in a political context (from the category “Politics and election"), therefore, when

it receives an example from the testing dataset, DonaldTrump, which is a pair of two texts in a

political context, or at least regarding the same topic, the output will be the negative class.

Moreover, the Precision-Recall curves in Figures 5.3c, 5.3d and 5.3e support that the cor-

respondent models are bad since those curves converge towards the baseline, y=0.576, whereas

the good models from experiments 2.a MultiNLI- and 2.a US2016 have higher Precision-Recall

curve’s AUC.

As expected, experiment 2.b MultiNLI- yielded excellent results (in Figure 5.4a both ROC

and Precision-Recall curves are close to the ones of a perfect model) because both MultiNLI- and

MultiNLIGovernment have examples from the same corpus. Moreover, as the MultiNLI- dataset

covers all corpus genres, except the “government" genre, it has bigger dimension which might

be the reason why, in this experiment, the model outperforms the baseline, in experiment 1.a

MultiNLIGovernment. Though the improvements were not significant.

Experiment 2.b US2016 also showed good results. From Table 5.6 we can see that, considering
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(a) Experiment 2.b MultiNLI-

(b) Experiment 2.b US2016

(c) Experiment 2.b ArgumentativeMicrotext

(d) Experiment 2.b ArgumentEssays

Figure 5.4: ROC and Precision-Recall curves for each experiment 2.b procedure.
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(a) Experiment 2.b W2E

Figure 5.5: ROC and Precision-Recall curves for each experiment 2.b procedure (cont.).

Table 5.6: Results for experiment 2.b (test models on baseline MultiNLIGovernment) when con-
sidering the higher scored label as the predicted class.This table presents the number of correct
and incorrect predictions, accuracy, recall, and precision.

Correct
Predictions

Incorrect
Predictions

Accuracy Recall Precision

Experiment 2.b
MultiNLI-

14346 1524 0.904 0.839 0.881

Experiment 2.b
US2016

10942 4928 0.689 0.222 0.673

Experiment 2.b
ArgumentativeMicrotext

8349 7521 0.526 0.462 0.362

Experiment 2.b
ArgumentEssays

10269 5601 0.647 0.010 0.370

Experiment 2.b
W2E

10306 5564 0.649 0.004 0.490
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the threshold default value of 0.5, in this experiment we achieved an accuracy and precision of

rounded 70%. However, recall has a low value of 22.2%, meaning that the model does not capture

a lot of the existing positive cases. The satisfactory outcome here might be due to the fact that

US2016 is in a political domain and that a relation of disagreement is, indeed, a good fit for our

task of contradiction detection.

Once again, ArgumentativeMicrotext (Figure 5.4c) and ArgumentEssays (Figure 5.4d), present

really poor results, similar to the ones of a random model. Furthermore, from Tables 5.3 and 5.5,

we can spot that training with ArgumentativeEssays dataset, the model predicts more negatives

than positives, leading to low recall values, as a result of being an unbalanced dataset, with more

negative instances (the number of positives is rounded 12.0% of the number of negative examples).

The results achieved while using the W2E dataset for training are bad as we anticipated, close

to the ones of a random model, and the model is also predicting much more negatives than posi-

tives, perhaps due to the same reason mentioned above for experiment 2.a W2E.

Regarding Precision-Recall curve, the bad models in Figures 5.4c, 5.4d and 5.5a have one that

overlaps the the baseline y=0.351. The model in Figure 5.4b, as said before, revealed a better

classification performance, and, thus, its Precision-Recall curve has also a higher AUC, but the

curve sooner starts to converge towards the baseline. Finally, the Precision-Recall curve from

experiment 2.b MultiNLI- reflects the model outstanding classification performance, as the curve

is close to the one of a perfect model.

5.4 Experiment 3

In this section we detail experiment 3, where we use previously trained models, from experiment 2,

to retrain them and test them again on our baseline datasets. Thus, for experiment 3.a the retraining

and testing are done only with instances from the baseline DonaldTrump, while in experiment 3.b

those processes are conducted just with examples from MultiNLIGovernment dataset. With this

experiment we intend to observe whether we can refine the baseline models with instances of other

datasets.

In experiment 3.a, as well as in experiment 3.b, all models, except the ones that also use W2E

dataset for training (experiment 3.a W2E and experiment 3.b W2E), revealed high performances,

independently of the base model used (trained model from experiment 2). Indeed, there is no

significant difference in performance between source datasets used for refining a model that is

later retrained and tested with a baseline dataset. Hence, both ROC and Precision-Recall curves

in experiments using the datasets MultiNLI- (Figure 5.6a and Figure 5.8a), US2016 (Figure 5.6b

and Figure 5.8b), ArgumentativeMicrotext (Figure 5.6c and Figure 5.8c) and ArgumentEssays

(Figure 5.6d and Figure 5.8d) are similar to the ones of a perfect model.

On the other hand, when trying to refine a model by using the W2E datatset, not only it did

not improve the model or, at least, achieved good prediction results, but also lead to a model

which behaviour is similar to the one of a random model. Thus, in this case (Figure 5.7a and

Figure 5.9a), both ROC and Precision-Recall curves are similar to the ones of a random classifier
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(a) Experiment 3.a MultiNLI-

(b) Experiment 3.a US2016

(c) Experiment 3.a ArgumentativeMicrotext

(d) Experiment 3.a ArgumentEssays

Figure 5.6: ROC and Precision-Recall curves for each experiment 3.a procedure.
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(a) Experiment 3.a W2E

Figure 5.7: ROC and Precision-Recall curves for each experiment 3.a procedure (cont.).

Table 5.7: Results for experiment 3.a (retrain models on baseline DonaldTrump) when considering
the higher scored label as the predicted class. This table presents the TP, FN, TN, and FP values,
and the number of instances predicted as positive examples or as negative examples.

True
Positives

False
Negatives

True
Negatives

False
Positives

Predict
Condition
Positive

Predict
Condition
Negative

Experiment 3.a
MultiNLI- 13.2 1.2 9.7 0.9 14.1 10.9

Experiment 3.a
US2016 12.9 1.5 10.1 0.5 13.4 11.6

Experiment 3.a
ArgumentativeMicrotext 13.6 0.8 9.2 1.4 15 10

Experiment 3.a
ArgumentEssays 13.5 0.9 9.2 1.4 14.9 10.1

Experiment 3.a
W2E 5.4 9 7.2 3.4 8.8 16.2

Table 5.8: Results for experiment 3.a (retrain models on baseline DonaldTrump) when considering
the higher scored label as the predicted class. This table presents the number of correct and
incorrect predictions, accuracy, recall, and precision.

Correct
Predictions

Incorrect
Predictions

Accuracy Recall Precision

Experiment 3.a
MultiNLI-

22.9 2.1 0.921 0.921 0.938

Experiment 3.a
US2016

23 2 0.920 0.899 0.965

Experiment 3.a
ArgumentativeMicrotext

22.8 2.2 0.912 0.948 0.907

Experiment 3.a
ArgumentEssays

22.7 2.3 0.908 0.941 0.910

Experiment 3.a
W2E

12.6 12.4 0.504 0.377 0.552
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(a) Experiment 3.b MultiNLI-

(b) Experiment 3.b US2016

(c) Experiment 3.b ArgumentativeMicrotext

(d) Experiment 3.b ArgumentEssays

Figure 5.8: ROC and Precision-Recall curves for each experiment 3.b procedure.
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(a) Experiment 3.b W2E

Figure 5.9: ROC and Precision-Recall curves for each experiment 3.b procedure (cont.).

Table 5.9: Results for experiment 3.b (retrain models on baseline MultiNLIGovernment) when
considering the higher scored label as the predicted class. This table presents the TP, FN, TN, and
FP values, and the number of instances predicted as positive examples or as negative examples.

True
Positives

False
Negatives

True
Negatives

False
Positives

Predict
Condition
Positive

Predict
Condition
Negative

Experiment 3.b
MultiNLI- 4755 808 9696 611 5366 10504

Experiment 3.b
US2016 4652 911 9501 806 5458 10412

Experiment 3.b
ArgumentativeMicrotext 4606 957 9491 816 5422 10448

Experiment 3.b
ArgumentEssays 4594 969 9459 848 5442 10428

Experiment 3.b
W2E 1848 3715 6690 3617 5465 10405

Table 5.10: Results for experiment 3.b (retrain models on baseline MultiNLIGovernment) when
considering the higher scored label as the predicted class. This table presents the number of correct
and incorrect predictions, accuracy, recall, and precision.

Correct
Predictions

Incorrect
Predictions

Accuracy Recall Precision

Experiment 3.b
MultiNLI-

14451 1419 0.911 0.855 0.886

Experiment 3.b
US2016

14153 1717 0.892 0.836 0.852

Experiment 3.b
ArgumentativeMicrotext

14097 1773 0.888 0.828 0.850

Experiment 3.b
ArgumentEssays

14053 1817 0.886 0.826 0.844

Experiment 3.b
W2E

8538 7332 0.538 0.332 0.338
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Table 5.11: Improvements of using other datasets: the difference (Diff) in accuracy (A), recall (R)
and precision (P) between the performance of an experiment 3 model and the performance of an
experiment 1.a model.

Experiment 3

Experiment 3

Model

Performance
Baseline

Baseline

Model

Performance

Diff

A R P A R P A R P

Experiment 3.a

MultiNLI-
0.921 0.921 0.938 DonaldTrump 0.892 0.925 0.897 0.029 -0.004 0.041

Experiment 3.a

US2016
0.920 0.899 0.965 DonaldTrump 0.892 0.925 0.897 0.028 -0.026 0.068

Experiment 3.a

Argumentative

Microtext

0.912 0.948 0.907 DonaldTrump 0.892 0.925 0.897 0.020 0.023 0.010

Experiment 3.a

ArgumentEssays
0.908 0.941 0.910 DonaldTrump 0.892 0.925 0.897 0.016 0.016 0.013

Experiment 3.a

W2E
0.504 0.377 0.552 DonaldTrump 0.892 0.925 0.897 -0.388 -0.548 -0.345

Experiment 3.b

MultiNLI-
0.911 0.855 0.886

MultiNLI

Government
0.889 0.826 0.853 0.022 0.028 0.034

Experiment 3.b

US2016
0.892 0.836 0.852

MultiNLI

Government
0.889 0.826 0.853 0.003 0.010 0.000

Experiment 3.b

Argumentative

Microtext

0.888 0.828 0.850
MultiNLI

Government
0.889 0.826 0.853 -0.001 0.002 -0.003

Experiment 3.b

ArgumentEssays
0.886 0.826 0.844

MultiNLI

Government
0.889 0.826 0.853 -0.004 -0.001 -0.008

Experiment 3.b

W2E
0.538 0.332 0.338

MultiNLI

Government
0.889 0.826 0.853 -0.351 -0.494 -0.514

(ROC and Precision-Recall curves close to, or even overlapping, respectively, the diagonal and the

baseline).

Table 5.11 contains the difference (Diff) in accuracy (A), recall (R) and precision (P) between

the performance of a baseline model, from experiment 1.a, and the performance of a model, from

experiment 3, trained on a source task domain (new dataset) and retrained on a target task domain

(baseline dataset). The metrics here were registered based on a threshold of 0.5 (predicted class

being the one with higher probability value).

In bold we highlight the improvements which we can notice that are not that relevant. Still, we

had more improvements when considering DonaldTrump as the baseline used because this dataset

has less examples, so, by adding examples of another dataset, we are increasing the training set

which has proved to be helpful. Furthermore, using the ArgumentativeMicrotext and ArgumentEs-
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says datasets, to extend the MultiNLIGovernment dataset, in general, yields worst results, although

it is a minimal loss.

In relation to W2E dataset, there were relevant losses in accuracy, recall, and precision, for

both target datasets (our baselines), having decreases ranging from 34.5% to 54.8%.

5.5 Discussion

To the best of our knowledge, this project presents a novel approach of transfer learning for the

classification task of detecting contradictions. Even though some models’ performances have

shown no significant differences between the various datasets tested for our purpose, the obtained

results are enough to draw interesting conclusions and answer our research questions.

In experiment 1, it is clear that the BERT model is capable of learning very well the relation

between two documents, despite the small number of examples in the train set, which happens in

our DonaldTrump dataset. When training a model with one baseline dataset and testing with the

other, we achieved better results when training with the MultiNLIGovernment dataset. Besides

the bigger set dimension, the MultiNLIGovernment contains reports, speeches, letters and press

releases from public domain government websites. Therefore, we are training with documents

from different authors, feeding the model with inputs featuring a variety of linguistic patterns.

Hence, our theory is that the MultiNLIGovernment is more generic, having cases that can be

approximated to Donald Trump characteristic speaking behaviours. Whereas, the DonaldTrump

dataset is more specific, unable to adapt to the diversity of the other baseline dataset.

In experiment 2, where the train set is in a different feature space than the test set, we ob-

tained better results training with MultiNLI- and US2016 datasets. MultiNLI- does not cover the

political domain, but has reliable examples of contradiction. On the other hand, US2016 is in a

political domain, and even incorporates transcripts of Donald Trump speeches (singular language

patterns) and online reactions from people of varying backgrounds (wide range of language pat-

terns). Nevertheless, the positive class includes examples of disagreement instead of contradiction.

The satisfactory outcomes of using these two datasets corroborate our idea that there might be lan-

guage patterns characteristic of our target task and domain, since these two cases share common

features with our baseline datasets: document-pair relation of contradictions, being in the political

domain, and texts of a particular person.

From the findings of experiment 2, we were already expecting better knowledge transfer results

when using MultiNLI- and US2016 datasets as source datasets. Nonetheless, as in experiment 1.a

the two models performances are already outstanding, the improvements of extending the training

set with examples from other datasets, in experiment 3, are not significant.

Additionally, experiments 2 and 3 revealed that arguments’ relations of support and attack,

in both ArgumentativeMicrotext and ArgumentEssays datasets, are not reliable for transfer learn-

ing for the task of detecting contradictions, as those two datasets only lead to gains that are too

irrelevant, and even to decreases in performance (worst accuracy, precision, and recall).
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Finally, we considered the W2E in order to confirm that, if there was any successful transfer

learning, such as the gains in accuracy and precision while using MultiNLI- and US2016 datasets

in experiment 3, the reason for it would not only be the increased amount of training examples,

but rather the documents’ relationship present in the used source datasets. Therefore, since W2E

contains a document relationship (two texts sharing the same topic/category or not) that is not

related to our target task (detecting contradictions), we anticipated a worst learning performance

in experiment 3 for this dataset, which ended-up happening. Hence, it confirmed our idea that

relationship between documents was the prominent factor in transfer learning. Otherwise, we

would have still achieved good classification results when enlarging the training set with examples

from W2E.



76 Results and Discussion



Chapter 6

Conclusions and Future Work

This dissertation aim was to propose and implement a methodology to detect contradictions, re-

sorting to transfer learning in order to explore whether other datasets, not specifically designed for

the task, can be used to improve the model performance.

We presented a method based on transfer learning, supervised learning, and BERT model for

text representation for detecting contradictions between two documents. Our aim was to build a

system to identify whether two documents are contradictory or not. We addressed the problem

of detecting contradictions as a supervised binary classification problem that takes as input a pair

of two documents/texts, and outputs a probability for each of the two possible classes. We em-

ployed the BERT model for language modelling and fine-tuned it for our sentence-pair task of

contradiction detection.

Considering the assumption that the relation between documents implies specific language

patterns, we wanted to test the hypothesis that other distinguishing relations between documents

may also suggest similar effects on language. Thus, we believe that such can be proved by com-

paring the performance of a model only trained on a baseline dataset with the performance of

another model trained with examples from both a baseline dataset and a new dataset. If the last

model yields better classification results, then our hypothesis is verified.

Following the previous paragraph, experiments were conducted on a total of seven datasets,

being two of them the baseline datasets, with the purpose of studying if different document rela-

tionships, from various datasets, can be exploited for our task of contradiction detection (a suc-

cessful transfer of knowledge from one domain to another). In the context of transfer learning, the

baselines represent the target task domain, and the five remaining datasets the source task domains.

Regarding the two baseline datasets, one was built from certain examples of MultiNLI corpus, and

the other was manually constructed and annotated, resorting to an online article listing Donald

Trump’s contradictions. For the five source task domains, we developed datasets from the fol-

lowing publicly available corpora: MultiNLI corpus1, US2016 corpus2, Argumentative Microtext

1https://www.nyu.edu/projects/bowman/multinli/
2http://www.corpora.aifdb.org/US2016
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Corpus3, Argument Annotated Essays corpus4, and W2E corpus5.

The experiments were divided in three sets with different objectives: observe the model ca-

pability of learning contradictions, considering only the baseline datasets; observe if datasets not

designed for the same purpose as the baselines can still be used for the task; and observe whether

we can refine the baseline models with instances of other datasets. The obtained results do not

show significant improvements when adding the new datasets for transfer learning. Still, they

were sufficient for our investigation purpose.

The higher improvements were in precision when the target task domain was based on the

DonaldTrump dataset, and the source task domain was based on the MultiNLI- dataset (with an

improvement of 4.1%) or the US2016 dataset (with an improvement of 6.8%). We also had in-

creases around 2% and 3% in accuracy and recall with other source task domains, but in general

we had more gains while using the DonaldTrump baseline as target. As expected, using as source

task domain the W2E dataset, the resultant model yield worst classification results than the models

only trained with examples from baseline datasets. In this case, we registered significant losses

ranging from 34.5% to 54.8% in accuracy, precision, and recall (considering a threshold value of

0.5).

Based on the findings, we drew conclusions that, when considering transfer learning for the

task of detecting contradictions, the documents topic similarity (different document-pair relations,

but same domain genre/topic, or same document-pair relations in various domain genres), the

relation of disagreement between two propositions, and texts from the same author are relations

that should be taking into account when building a source task domain. Indeed, these three factors

might help boosting the model learning performance of the target task (detecting contradictions).

With respect to the goals stated in Chapter 1, we consider them as fulfilled, as we gathered the

necessary data, presented a methodology to detect contradictions (Chapter 3), and tested it through

empirical evaluations (Chapters 4 and 5).

6.1 Answers to the Research Questions

Below we answer to the research questions raised in Chapter 3.

Considering our target task of detecting whether two documents are contradictory or not, ...

Q1. ... can a classification model be effective when only trained with examples whose document-

pair relations are different from the target one (contradictions)?

In experiment 2, we noticed that when training a model with our MultiNLI- dataset we

obtained outstanding results when running predictions with instances of the MultiNLIGov-

ernment dataset. However, the main cause might be the fact that these two datasets where

built based on the same corpus. Still, when testing both baseline datasets, DonaldTrump and

3http://angcl.ling.uni-potsdam.de/resources/argmicro.html
4https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_

mining_1/argument_annotated_essays_version_2/index.en.jsp
5https://sites.google.com/site/w2edataset/

http://angcl.ling.uni-potsdam.de/resources/argmicro.html
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
https://www.informatik.tu-darmstadt.de/ukp/research_6/data/argumentation_mining_1/argument_annotated_essays_version_2/index.en.jsp
https://sites.google.com/site/w2edataset/
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MultiNLIGovernment, the positive outcomes achieved considering MuiltiNLI- and US2016

datasets as train set sources, lead us to believe that, yes, different datasets can be used and

adapted for our target task. Nonetheless, we still had losses in performance when only

considering these two new datasets for training.

Q2. ... can other examples, that incorporate document-pair relations different from the target

one, be used to provide an extra training set of contradictory statements, in order to improve

a model learning performance?

Although the results exposed in Chapter 5 Section 5.4 show that the improvements are

not too significant, being the best improvements an increase of 3% in accuracy and 7% in

precision (Table 5.11, experiments 3.a MultiNLI- and 3.a US2016), we verify that, indeed, it

is possible to improve the model classification performance when retraining it with instances

of different datasets, initially designed for other tasks. Therefore, it means we are refining

an inference model for contradiction detection through transfer learning.

6.2 Contributions

The main contribution of this entire project are the following:

• The use of neural language representation models to build the language profile of contradic-

tions, in the defined domain (political);

• The use of neural language representation model to build the language profile of a particular

entity (Donald Trump, the president of the United States);

• The use of a classification approach, assuming the existence of language patterns character-

istic of the relation between two documents under study, to capture whether two documents

contradict themselves;

• The use of various datasets to test the adaptability of different relations, between two docu-

ments, when applied to our specific task of contradiction detection;

• Building new datasets for the purpose of detecting contradictions, and making them avail-

able online6;

• The application of the proposed method, using examples created and gathered by experts

in publicly available corpora, and real-world data, collected and processed by us (Donald

Trump contradictions).

6https://github.com/BeatrizBaldaia/sentence-pair-contradictions

https://github.com/BeatrizBaldaia/sentence-pair-contradictions
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6.3 Future Work

This research proposes a novel approach to tackle the complex, recurring and relevant problem

of detecting contradictions. Therefore, new opportunities, different approaches and possible im-

provements never cease. In this section we attempt to enumerate some of them.

6.3.1 Improvements

• The proposed method is independent of the neural language representation model used, thus

this one can be replaced by another. It is always recommended to choose the state-of-the-

art model when implementing the designed approach and we have been witnessing a rapid

evolution regarding state-of-the-art in NLP tasks. Therefore, we believe that improvements

can be achieved by trying new models.

• One of the baseline datasets used (DonaldTrump dataset) was built manually by us, missing

robustness due to the lack of annotation guidelines, and the lack of professional training,

preparation and knowledge of how to create a reliable and representative corpus for a spe-

cific task. Furthermore, since this dataset was constructed by a single annotator, we do not

employ any technique for calculating annotators agreement level, such as the Inter Annota-

tor Agreement (IAA) metric. Besides all the above, the number of examples incorporated

in that dataset is small. Thus, polishing, enriching and increasing this dataset is essential.

• Not all datasets used are balanced in terms of positive and negative examples, which can

have serious implications in the model learning process and, consequently, in its classifica-

tion performance. Therefore, this issue should be addressed.

• Since we are testing various relations between documents for transfer learning in a classifi-

cation problem, not only we can find other datasets illustrating the same proposed relations,

as we can also explore new relations not introduced in this report.

• Explore different variations in BERT model hyperparameters in order to improve the learn-

ing process.

6.3.2 Extensions

• In our proposed approach, the model is trained to classify a pair of two documents as con-

tradictory (positive class) or not (negative class). We drew our conclusions based on eval-

uation metrics, such as accuracy, precision, and recall. However, in order to find which

exact relation had a major impact, deep interpretations of neural model predictions could be

conducted by applying, for example, gradient-based saliency maps and input reduction (to

highlight the most important input features).

• This project could be used as a tool to tackle current real life examples and events. For

instance, considering a new model developed to contain a certain person profile (extensive
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database of that person speeches, interviews and posts in social media) that would be used to

find similar texts to the ones it would dynamically receive from social media websites (like

Twitter7) or online collections of that personality’s interviews and speeches (like Factbase8),

our trained models could be used to run predictions with the documents found in the person

profile and the ones dynamically received.

7https://twitter.com/explore
8https://factba.se/

https://twitter.com/explore
https://factba.se/


82 Conclusions and Future Work



Appendix A

Methodology overview

A scheme of our proposed methodology.
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Appendix B

Confusion matrices and classification
reports

Confusion matrices and classification reports for various threshold values in conducted experi-

ments.

B.1 Experiment 1.a

B.1.1 DonaldTrump

t h r e s h o l d : 1 . 0

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 104 2 106

1 114 30 144

A l l 218 32 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 8 0 . 9 8 0 . 6 4 106

1 0 . 9 4 0 . 2 1 0 . 3 4 144

a c c u r a c y 0 . 5 4 250

macro avg 0 . 7 1 0 . 5 9 0 . 4 9 250

w e i g h t e d avg 0 . 7 4 0 . 5 4 0 . 4 7 250
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t h r e s h o l d : 0 .999

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 100 6 106

1 46 98 144

A l l 146 104 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 8 0 . 9 4 0 . 7 9 106

1 0 . 9 4 0 . 6 8 0 . 7 9 144

a c c u r a c y 0 . 7 9 250

macro avg 0 . 8 1 0 . 8 1 0 . 7 9 250

w e i g h t e d avg 0 . 8 3 0 . 7 9 0 . 7 9 250

t h r e s h o l d : 0 .997

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 95 11 106

1 28 116 144

A l l 123 127 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 7 7 0 . 9 0 0 . 8 3 106

1 0 . 9 1 0 . 8 1 0 . 8 6 144

a c c u r a c y 0 . 8 4 250

macro avg 0 . 8 4 0 . 8 5 0 . 8 4 250

w e i g h t e d avg 0 . 8 5 0 . 8 4 0 . 8 4 250

t h r e s h o l d : 0 .996
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−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 95 11 106

1 23 121 144

A l l 118 132 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 8 1 0 . 9 0 0 . 8 5 106

1 0 . 9 2 0 . 8 4 0 . 8 8 144

a c c u r a c y 0 . 8 6 250

macro avg 0 . 8 6 0 . 8 7 0 . 8 6 250

w e i g h t e d avg 0 . 8 7 0 . 8 6 0 . 8 6 250

t h r e s h o l d : 0 .986

−−−−−−−−−−
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R e a l i t y

0 92 14 106
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C l a s s i f i c a t i o n r e p o r t :
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0 0 . 8 4 0 . 8 7 0 . 8 6 106

1 0 . 9 0 0 . 8 8 0 . 8 9 144

a c c u r a c y 0 . 8 8 250

macro avg 0 . 8 7 0 . 8 7 0 . 8 7 250

w e i g h t e d avg 0 . 8 8 0 . 8 8 0 . 8 8 250

t h r e s h o l d : 0 .979

−−−−−−−−−−
P r e d i c t e d 0 1 A l l
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R e a l i t y
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1 15 129 144
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macro avg 0 . 9 1 0 . 8 9 0 . 9 0 250

w e i g h t e d avg 0 . 9 0 0 . 9 0 0 . 9 0 250

t h r e s h o l d : 0 .004

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 87 19 106

1 7 137 144

A l l 94 156 250
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C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 3 0 . 8 2 0 . 8 7 106

1 0 . 8 8 0 . 9 5 0 . 9 1 144

a c c u r a c y 0 . 9 0 250

macro avg 0 . 9 0 0 . 8 9 0 . 8 9 250

w e i g h t e d avg 0 . 9 0 0 . 9 0 0 . 8 9 250

t h r e s h o l d : 0 .002

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 87 19 106

1 5 139 144

A l l 92 158 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 5 0 . 8 2 0 . 8 8 106

1 0 . 8 8 0 . 9 7 0 . 9 2 144

a c c u r a c y 0 . 9 0 250

macro avg 0 . 9 1 0 . 8 9 0 . 9 0 250

w e i g h t e d avg 0 . 9 1 0 . 9 0 0 . 9 0 250

t h r e s h o l d : 0 .001

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 78 28 106

1 2 142 144

A l l 80 170 250

C l a s s i f i c a t i o n r e p o r t :
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p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 7 0 . 7 4 0 . 8 4 106

1 0 . 8 4 0 . 9 9 0 . 9 0 144

a c c u r a c y 0 . 8 8 250

macro avg 0 . 9 1 0 . 8 6 0 . 8 7 250

w e i g h t e d avg 0 . 8 9 0 . 8 8 0 . 8 8 250

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 106

1 0 . 5 8 1 . 0 0 0 . 7 3 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 2 9 0 . 5 0 0 . 3 7 250

w e i g h t e d avg 0 . 3 3 0 . 5 8 0 . 4 2 250

B.1.2 MultiNLIGovernment

t h r e s h o l d : 1 . 0

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 10037 270 10307

1 1829 3734 5563

A l l 11866 4004 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t
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0 0 . 8 5 0 . 9 7 0 . 9 1 10307

1 0 . 9 3 0 . 6 7 0 . 7 8 5563

a c c u r a c y 0 . 8 7 15870

macro avg 0 . 8 9 0 . 8 2 0 . 8 4 15870

w e i g h t e d avg 0 . 8 8 0 . 8 7 0 . 8 6 15870

t h r e s h o l d : 0 .998

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9776 531 10307

1 1269 4294 5563

A l l 11045 4825 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 8 9 0 . 9 5 0 . 9 2 10307

1 0 . 8 9 0 . 7 7 0 . 8 3 5563

a c c u r a c y 0 . 8 9 15870

macro avg 0 . 8 9 0 . 8 6 0 . 8 7 15870

w e i g h t e d avg 0 . 8 9 0 . 8 9 0 . 8 8 15870

t h r e s h o l d : 0 .993

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9646 661 10307

1 1097 4466 5563

A l l 10743 5127 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 0 0 . 9 4 0 . 9 2 10307
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1 0 . 8 7 0 . 8 0 0 . 8 4 5563

a c c u r a c y 0 . 8 9 15870

macro avg 0 . 8 8 0 . 8 7 0 . 8 8 15870

w e i g h t e d avg 0 . 8 9 0 . 8 9 0 . 8 9 15870

t h r e s h o l d : 0 .509

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9512 795 10307

1 968 4595 5563

A l l 10480 5390 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 1 0 . 9 2 0 . 9 2 10307

1 0 . 8 5 0 . 8 3 0 . 8 4 5563

a c c u r a c y 0 . 8 9 15870

macro avg 0 . 8 8 0 . 8 7 0 . 8 8 15870

w e i g h t e d avg 0 . 8 9 0 . 8 9 0 . 8 9 15870

t h r e s h o l d : 0 .251

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9486 821 10307

1 948 4615 5563

A l l 10434 5436 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 1 0 . 9 2 0 . 9 1 10307

1 0 . 8 5 0 . 8 3 0 . 8 4 5563
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a c c u r a c y 0 . 8 9 15870

macro avg 0 . 8 8 0 . 8 7 0 . 8 8 15870

w e i g h t e d avg 0 . 8 9 0 . 8 9 0 . 8 9 15870

t h r e s h o l d : 0 .093

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9466 841 10307

1 925 4638 5563

A l l 10391 5479 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 1 0 . 9 2 0 . 9 1 10307

1 0 . 8 5 0 . 8 3 0 . 8 4 5563

a c c u r a c y 0 . 8 9 15870

macro avg 0 . 8 8 0 . 8 8 0 . 8 8 15870

w e i g h t e d avg 0 . 8 9 0 . 8 9 0 . 8 9 15870

t h r e s h o l d : 0 .005

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9188 1119 10307

1 764 4799 5563

A l l 9952 5918 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 2 0 . 8 9 0 . 9 1 10307

1 0 . 8 1 0 . 8 6 0 . 8 4 5563

a c c u r a c y 0 . 8 8 15870

macro avg 0 . 8 7 0 . 8 8 0 . 8 7 15870
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w e i g h t e d avg 0 . 8 8 0 . 8 8 0 . 8 8 15870

t h r e s h o l d : 0 .004

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9124 1183 10307

1 728 4835 5563

A l l 9852 6018 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 3 0 . 8 9 0 . 9 1 10307

1 0 . 8 0 0 . 8 7 0 . 8 3 5563

a c c u r a c y 0 . 8 8 15870

macro avg 0 . 8 6 0 . 8 8 0 . 8 7 15870

w e i g h t e d avg 0 . 8 8 0 . 8 8 0 . 8 8 15870

t h r e s h o l d : 0 .002

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 8771 1536 10307

1 606 4957 5563

A l l 9377 6493 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 4 0 . 8 5 0 . 8 9 10307

1 0 . 7 6 0 . 8 9 0 . 8 2 5563

a c c u r a c y 0 . 8 7 15870

macro avg 0 . 8 5 0 . 8 7 0 . 8 6 15870

w e i g h t e d avg 0 . 8 8 0 . 8 7 0 . 8 7 15870



96 Confusion matrices and classification reports

t h r e s h o l d : 0 .001

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 8015 2292 10307

1 429 5134 5563

A l l 8444 7426 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 9 5 0 . 7 8 0 . 8 5 10307

1 0 . 6 9 0 . 9 2 0 . 7 9 5563

a c c u r a c y 0 . 8 3 15870

macro avg 0 . 8 2 0 . 8 5 0 . 8 2 15870

w e i g h t e d avg 0 . 8 6 0 . 8 3 0 . 8 3 15870

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 10307 10307

1 5563 5563

A l l 15870 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 10307

1 0 . 3 5 1 . 0 0 0 . 5 2 5563

a c c u r a c y 0 . 3 5 15870

macro avg 0 . 1 8 0 . 5 0 0 . 2 6 15870

w e i g h t e d avg 0 . 1 2 0 . 3 5 0 . 1 8 15870
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B.2 Experiment 1.b

B.2.1 DonaldTrump

t h r e s h o l d : 0 .997

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 10305 2 10307

1 5560 3 5563

A l l 15865 5 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 1 . 0 0 0 . 7 9 10307

1 0 . 6 0 0 . 0 0 0 . 0 0 5563

a c c u r a c y 0 . 6 5 15870

macro avg 0 . 6 2 0 . 5 0 0 . 3 9 15870

w e i g h t e d avg 0 . 6 3 0 . 6 5 0 . 5 1 15870

t h r e s h o l d : 0 .482

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9594 713 10307

1 5076 487 5563

A l l 14670 1200 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 9 3 0 . 7 7 10307

1 0 . 4 1 0 . 0 9 0 . 1 4 5563

a c c u r a c y 0 . 6 4 15870

macro avg 0 . 5 3 0 . 5 1 0 . 4 6 15870

w e i g h t e d avg 0 . 5 7 0 . 6 4 0 . 5 5 15870
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t h r e s h o l d : 0 .449

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9583 724 10307

1 5071 492 5563

A l l 14654 1216 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 9 3 0 . 7 7 10307

1 0 . 4 0 0 . 0 9 0 . 1 5 5563

a c c u r a c y 0 . 6 3 15870

macro avg 0 . 5 3 0 . 5 1 0 . 4 6 15870

w e i g h t e d avg 0 . 5 7 0 . 6 3 0 . 5 5 15870

t h r e s h o l d : 0 . 2 8

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9502 805 10307

1 5028 535 5563

A l l 14530 1340 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 9 2 0 . 7 7 10307

1 0 . 4 0 0 . 1 0 0 . 1 6 5563

a c c u r a c y 0 . 6 3 15870

macro avg 0 . 5 3 0 . 5 1 0 . 4 6 15870

w e i g h t e d avg 0 . 5 6 0 . 6 3 0 . 5 5 15870
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t h r e s h o l d : 0 .154

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9433 874 10307

1 4984 579 5563

A l l 14417 1453 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 9 2 0 . 7 6 10307

1 0 . 4 0 0 . 1 0 0 . 1 7 5563

a c c u r a c y 0 . 6 3 15870

macro avg 0 . 5 3 0 . 5 1 0 . 4 6 15870

w e i g h t e d avg 0 . 5 6 0 . 6 3 0 . 5 5 15870

t h r e s h o l d : 0 .038

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 9187 1120 10307

1 4841 722 5563

A l l 14028 1842 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 8 9 0 . 7 6 10307

1 0 . 3 9 0 . 1 3 0 . 2 0 5563

a c c u r a c y 0 . 6 2 15870

macro avg 0 . 5 2 0 . 5 1 0 . 4 8 15870

w e i g h t e d avg 0 . 5 6 0 . 6 2 0 . 5 6 15870

t h r e s h o l d : 0 . 0 1
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−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 8680 1627 10307

1 4589 974 5563

A l l 13269 2601 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 8 4 0 . 7 4 10307

1 0 . 3 7 0 . 1 8 0 . 2 4 5563

a c c u r a c y 0 . 6 1 15870

macro avg 0 . 5 1 0 . 5 1 0 . 4 9 15870

w e i g h t e d avg 0 . 5 6 0 . 6 1 0 . 5 6 15870

t h r e s h o l d : 0 .007

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 8319 1988 10307

1 4394 1169 5563

A l l 12713 3157 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 5 0 . 8 1 0 . 7 2 10307

1 0 . 3 7 0 . 2 1 0 . 2 7 5563

a c c u r a c y 0 . 6 0 15870

macro avg 0 . 5 1 0 . 5 1 0 . 5 0 15870

w e i g h t e d avg 0 . 5 5 0 . 6 0 0 . 5 6 15870

t h r e s h o l d : 0 .006

−−−−−−−−−−
P r e d i c t e d 0 1 A l l
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R e a l i t y

0 8061 2246 10307

1 4233 1330 5563

A l l 12294 3576 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 6 0 . 7 8 0 . 7 1 10307

1 0 . 3 7 0 . 2 4 0 . 2 9 5563

a c c u r a c y 0 . 5 9 15870

macro avg 0 . 5 1 0 . 5 1 0 . 5 0 15870

w e i g h t e d avg 0 . 5 6 0 . 5 9 0 . 5 7 15870

t h r e s h o l d : 0 .005

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 7426 2881 10307

1 3898 1665 5563

A l l 11324 4546 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 6 0 . 7 2 0 . 6 9 10307

1 0 . 3 7 0 . 3 0 0 . 3 3 5563

a c c u r a c y 0 . 5 7 15870

macro avg 0 . 5 1 0 . 5 1 0 . 5 1 15870

w e i g h t e d avg 0 . 5 5 0 . 5 7 0 . 5 6 15870

t h r e s h o l d : 0 .004

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 4938 5369 10307
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1 2576 2987 5563

A l l 7514 8356 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 6 0 . 4 8 0 . 5 5 10307

1 0 . 3 6 0 . 5 4 0 . 4 3 5563

a c c u r a c y 0 . 5 0 15870

macro avg 0 . 5 1 0 . 5 1 0 . 4 9 15870

w e i g h t e d avg 0 . 5 5 0 . 5 0 0 . 5 1 15870

t h r e s h o l d : 0 .003

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 10307 10307

1 5563 5563

A l l 15870 15870

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 10307

1 0 . 3 5 1 . 0 0 0 . 5 2 5563

a c c u r a c y 0 . 3 5 15870

macro avg 0 . 1 8 0 . 5 0 0 . 2 6 15870

w e i g h t e d avg 0 . 1 2 0 . 3 5 0 . 1 8 15870

B.2.2 MultiNLIGovernment

t h r e s h o l d : 1 . 0

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 90 16 106

1 100 44 144
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A l l 190 60 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 7 0 . 8 5 0 . 6 1 106

1 0 . 7 3 0 . 3 1 0 . 4 3 144

a c c u r a c y 0 . 5 4 250

macro avg 0 . 6 0 0 . 5 8 0 . 5 2 250

w e i g h t e d avg 0 . 6 2 0 . 5 4 0 . 5 1 250

t h r e s h o l d : 0 .979

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 83 23 106

1 81 63 144

A l l 164 86 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 7 8 0 . 6 1 106

1 0 . 7 3 0 . 4 4 0 . 5 5 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 6 2 0 . 6 1 0 . 5 8 250

w e i g h t e d avg 0 . 6 4 0 . 5 8 0 . 5 8 250

t h r e s h o l d : 0 .723

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 80 26 106

1 78 66 144

A l l 158 92 250
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C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 7 5 0 . 6 1 106

1 0 . 7 2 0 . 4 6 0 . 5 6 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 6 1 0 . 6 1 0 . 5 8 250

w e i g h t e d avg 0 . 6 3 0 . 5 8 0 . 5 8 250

t h r e s h o l d : 0 .492

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 80 26 106

1 75 69 144

A l l 155 95 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 2 0 . 7 5 0 . 6 1 106

1 0 . 7 3 0 . 4 8 0 . 5 8 144

a c c u r a c y 0 . 6 0 250

macro avg 0 . 6 2 0 . 6 2 0 . 6 0 250

w e i g h t e d avg 0 . 6 4 0 . 6 0 0 . 5 9 250

t h r e s h o l d : 0 .395

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 78 28 106

1 75 69 144

A l l 153 97 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t
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0 0 . 5 1 0 . 7 4 0 . 6 0 106

1 0 . 7 1 0 . 4 8 0 . 5 7 144

a c c u r a c y 0 . 5 9 250

macro avg 0 . 6 1 0 . 6 1 0 . 5 9 250

w e i g h t e d avg 0 . 6 3 0 . 5 9 0 . 5 9 250

t h r e s h o l d : 0 .097

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 77 29 106

1 75 69 144

A l l 152 98 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 7 3 0 . 6 0 106

1 0 . 7 0 0 . 4 8 0 . 5 7 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 6 1 0 . 6 0 0 . 5 8 250

w e i g h t e d avg 0 . 6 2 0 . 5 8 0 . 5 8 250

t h r e s h o l d : 0 .041

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 77 29 106

1 74 70 144

A l l 151 99 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 7 3 0 . 6 0 106
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1 0 . 7 1 0 . 4 9 0 . 5 8 144

a c c u r a c y 0 . 5 9 250

macro avg 0 . 6 1 0 . 6 1 0 . 5 9 250

w e i g h t e d avg 0 . 6 2 0 . 5 9 0 . 5 9 250

t h r e s h o l d : 0 . 0 1

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 74 32 106

1 73 71 144

A l l 147 103 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 0 0 . 7 0 0 . 5 8 106

1 0 . 6 9 0 . 4 9 0 . 5 7 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 6 0 0 . 6 0 0 . 5 8 250

w e i g h t e d avg 0 . 6 1 0 . 5 8 0 . 5 8 250

t h r e s h o l d : 0 .005

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 72 34 106

1 69 75 144

A l l 141 109 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 6 8 0 . 5 8 106

1 0 . 6 9 0 . 5 2 0 . 5 9 144



B.2 Experiment 1.b 107

a c c u r a c y 0 . 5 9 250

macro avg 0 . 6 0 0 . 6 0 0 . 5 9 250

w e i g h t e d avg 0 . 6 1 0 . 5 9 0 . 5 9 250

t h r e s h o l d : 0 .004

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 69 37 106

1 65 79 144

A l l 134 116 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 1 0 . 6 5 0 . 5 8 106

1 0 . 6 8 0 . 5 5 0 . 6 1 144

a c c u r a c y 0 . 5 9 250

macro avg 0 . 6 0 0 . 6 0 0 . 5 9 250

w e i g h t e d avg 0 . 6 1 0 . 5 9 0 . 5 9 250

t h r e s h o l d : 0 .003

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 67 39 106

1 60 84 144

A l l 127 123 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 3 0 . 6 3 0 . 5 8 106

1 0 . 6 8 0 . 5 8 0 . 6 3 144

a c c u r a c y 0 . 6 0 250

macro avg 0 . 6 1 0 . 6 1 0 . 6 0 250



108 Confusion matrices and classification reports

w e i g h t e d avg 0 . 6 2 0 . 6 0 0 . 6 1 250

t h r e s h o l d : 0 .001

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 55 51 106

1 45 99 144

A l l 100 150 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 5 0 . 5 2 0 . 5 3 106

1 0 . 6 6 0 . 6 9 0 . 6 7 144

a c c u r a c y 0 . 6 2 250

macro avg 0 . 6 0 0 . 6 0 0 . 6 0 250

w e i g h t e d avg 0 . 6 1 0 . 6 2 0 . 6 1 250

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 106

1 0 . 5 8 1 . 0 0 0 . 7 3 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 2 9 0 . 5 0 0 . 3 7 250

w e i g h t e d avg 0 . 3 3 0 . 5 8 0 . 4 2 250
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B.3 Experiment 2.a

B.3.1 MultiNLI

t h r e s h o l d : 1 . 0

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 100 6 106

1 93 51 144

A l l 193 57 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 2 0 . 9 4 0 . 6 7 106

1 0 . 8 9 0 . 3 5 0 . 5 1 144

a c c u r a c y 0 . 6 0 250

macro avg 0 . 7 1 0 . 6 5 0 . 5 9 250

w e i g h t e d avg 0 . 7 4 0 . 6 0 0 . 5 8 250

t h r e s h o l d : 0 .985

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 96 10 106

1 70 74 144

A l l 166 84 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 8 0 . 9 1 0 . 7 1 106

1 0 . 8 8 0 . 5 1 0 . 6 5 144

a c c u r a c y 0 . 6 8 250

macro avg 0 . 7 3 0 . 7 1 0 . 6 8 250

w e i g h t e d avg 0 . 7 5 0 . 6 8 0 . 6 7 250
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t h r e s h o l d : 0 .873

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 92 14 106

1 69 75 144

A l l 161 89 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 7 0 . 8 7 0 . 6 9 106

1 0 . 8 4 0 . 5 2 0 . 6 4 144

a c c u r a c y 0 . 6 7 250

macro avg 0 . 7 1 0 . 6 9 0 . 6 7 250

w e i g h t e d avg 0 . 7 3 0 . 6 7 0 . 6 6 250

t h r e s h o l d : 0 .056

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 92 14 106

1 66 78 144

A l l 158 92 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 8 0 . 8 7 0 . 7 0 106

1 0 . 8 5 0 . 5 4 0 . 6 6 144

a c c u r a c y 0 . 6 8 250

macro avg 0 . 7 2 0 . 7 0 0 . 6 8 250

w e i g h t e d avg 0 . 7 4 0 . 6 8 0 . 6 8 250
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t h r e s h o l d : 0 .005

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 91 15 106

1 61 83 144

A l l 152 98 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 0 0 . 8 6 0 . 7 1 106

1 0 . 8 5 0 . 5 8 0 . 6 9 144

a c c u r a c y 0 . 7 0 250

macro avg 0 . 7 2 0 . 7 2 0 . 7 0 250

w e i g h t e d avg 0 . 7 4 0 . 7 0 0 . 6 9 250

t h r e s h o l d : 0 .002

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 86 20 106

1 56 88 144

A l l 142 108 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 1 0 . 8 1 0 . 6 9 106

1 0 . 8 1 0 . 6 1 0 . 7 0 144

a c c u r a c y 0 . 7 0 250

macro avg 0 . 7 1 0 . 7 1 0 . 7 0 250

w e i g h t e d avg 0 . 7 3 0 . 7 0 0 . 7 0 250

t h r e s h o l d : 0 .001

−−−−−−−−−−
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P r e d i c t e d 0 1 A l l

R e a l i t y

0 82 24 106

1 47 97 144

A l l 129 121 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 6 4 0 . 7 7 0 . 7 0 106

1 0 . 8 0 0 . 6 7 0 . 7 3 144

a c c u r a c y 0 . 7 2 250

macro avg 0 . 7 2 0 . 7 2 0 . 7 1 250

w e i g h t e d avg 0 . 7 3 0 . 7 2 0 . 7 2 250

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 106

1 0 . 5 8 1 . 0 0 0 . 7 3 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 2 9 0 . 5 0 0 . 3 7 250

w e i g h t e d avg 0 . 3 3 0 . 5 8 0 . 4 2 250

B.3.2 US2016

t h r e s h o l d : 0 .999

−−−−−−−−−−
P r e d i c t e d 0 1 A l l
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R e a l i t y

0 106 0 106

1 135 9 144

A l l 241 9 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 4 1 . 0 0 0 . 6 1 106

1 1 . 0 0 0 . 0 6 0 . 1 2 144

a c c u r a c y 0 . 4 6 250

macro avg 0 . 7 2 0 . 5 3 0 . 3 6 250

w e i g h t e d avg 0 . 7 6 0 . 4 6 0 . 3 3 250

t h r e s h o l d : 0 .981

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 100 6 106

1 126 18 144

A l l 226 24 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 4 0 . 9 4 0 . 6 0 106

1 0 . 7 5 0 . 1 2 0 . 2 1 144

a c c u r a c y 0 . 4 7 250

macro avg 0 . 6 0 0 . 5 3 0 . 4 1 250

w e i g h t e d avg 0 . 6 2 0 . 4 7 0 . 3 8 250

t h r e s h o l d : 0 .973

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 100 6 106
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1 122 22 144

A l l 222 28 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 5 0 . 9 4 0 . 6 1 106

1 0 . 7 9 0 . 1 5 0 . 2 6 144

a c c u r a c y 0 . 4 9 250

macro avg 0 . 6 2 0 . 5 5 0 . 4 3 250

w e i g h t e d avg 0 . 6 4 0 . 4 9 0 . 4 1 250

t h r e s h o l d : 0 . 9 4

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 100 6 106

1 117 27 144

A l l 217 33 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 6 0 . 9 4 0 . 6 2 106

1 0 . 8 2 0 . 1 9 0 . 3 1 144

a c c u r a c y 0 . 5 1 250

macro avg 0 . 6 4 0 . 5 7 0 . 4 6 250

w e i g h t e d avg 0 . 6 7 0 . 5 1 0 . 4 4 250

t h r e s h o l d : 0 .745

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 99 7 106

1 112 32 144

A l l 211 39 250
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C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 7 0 . 9 3 0 . 6 2 106

1 0 . 8 2 0 . 2 2 0 . 3 5 144

a c c u r a c y 0 . 5 2 250

macro avg 0 . 6 4 0 . 5 8 0 . 4 9 250

w e i g h t e d avg 0 . 6 7 0 . 5 2 0 . 4 7 250

t h r e s h o l d : 0 .506

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 97 9 106

1 108 36 144

A l l 205 45 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 7 0 . 9 2 0 . 6 2 106

1 0 . 8 0 0 . 2 5 0 . 3 8 144

a c c u r a c y 0 . 5 3 250

macro avg 0 . 6 4 0 . 5 8 0 . 5 0 250

w e i g h t e d avg 0 . 6 6 0 . 5 3 0 . 4 8 250

t h r e s h o l d : 0 .124

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 97 9 106

1 96 48 144

A l l 193 57 250

C l a s s i f i c a t i o n r e p o r t :
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p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 0 0 . 9 2 0 . 6 5 106

1 0 . 8 4 0 . 3 3 0 . 4 8 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 6 7 0 . 6 2 0 . 5 6 250

w e i g h t e d avg 0 . 7 0 0 . 5 8 0 . 5 5 250

t h r e s h o l d : 0 . 0 1

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 92 14 106

1 84 60 144

A l l 176 74 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 2 0 . 8 7 0 . 6 5 106

1 0 . 8 1 0 . 4 2 0 . 5 5 144

a c c u r a c y 0 . 6 1 250

macro avg 0 . 6 7 0 . 6 4 0 . 6 0 250

w e i g h t e d avg 0 . 6 9 0 . 6 1 0 . 5 9 250

t h r e s h o l d : 0 .004

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 90 16 106

1 73 71 144

A l l 163 87 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t
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0 0 . 5 5 0 . 8 5 0 . 6 7 106

1 0 . 8 2 0 . 4 9 0 . 6 1 144

a c c u r a c y 0 . 6 4 250

macro avg 0 . 6 8 0 . 6 7 0 . 6 4 250

w e i g h t e d avg 0 . 7 0 0 . 6 4 0 . 6 4 250

t h r e s h o l d : 0 .003

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 90 16 106

1 66 78 144

A l l 156 94 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 5 8 0 . 8 5 0 . 6 9 106

1 0 . 8 3 0 . 5 4 0 . 6 6 144

a c c u r a c y 0 . 6 7 250

macro avg 0 . 7 0 0 . 7 0 0 . 6 7 250

w e i g h t e d avg 0 . 7 2 0 . 6 7 0 . 6 7 250

t h r e s h o l d : 0 .001

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 63 43 106

1 18 126 144

A l l 81 169 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 7 8 0 . 5 9 0 . 6 7 106

1 0 . 7 5 0 . 8 8 0 . 8 1 144
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a c c u r a c y 0 . 7 6 250

macro avg 0 . 7 6 0 . 7 3 0 . 7 4 250

w e i g h t e d avg 0 . 7 6 0 . 7 6 0 . 7 5 250

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 106

1 0 . 5 8 1 . 0 0 0 . 7 3 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 2 9 0 . 5 0 0 . 3 7 250

w e i g h t e d avg 0 . 3 3 0 . 5 8 0 . 4 2 250

B.3.3 W2E

t h r e s h o l d : 1 . 3

−−−−−−−−−−
P r e d i c t e d 0 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 2 1 . 0 0 0 . 6 0 106

1 0 . 0 0 0 . 0 0 0 . 0 0 144
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a c c u r a c y 0 . 4 2 250

macro avg 0 . 2 1 0 . 5 0 0 . 3 0 250

w e i g h t e d avg 0 . 1 8 0 . 4 2 0 . 2 5 250

t h r e s h o l d : 0 . 3

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 106 0 106

1 143 1 144

A l l 249 1 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 3 1 . 0 0 0 . 6 0 106

1 1 . 0 0 0 . 0 1 0 . 0 1 144

a c c u r a c y 0 . 4 3 250

macro avg 0 . 7 1 0 . 5 0 0 . 3 1 250

w e i g h t e d avg 0 . 7 6 0 . 4 3 0 . 2 6 250

t h r e s h o l d : 0 .002

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 106 0 106

1 141 3 144

A l l 247 3 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 3 1 . 0 0 0 . 6 0 106

1 1 . 0 0 0 . 0 2 0 . 0 4 144

a c c u r a c y 0 . 4 4 250

macro avg 0 . 7 1 0 . 5 1 0 . 3 2 250
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w e i g h t e d avg 0 . 7 6 0 . 4 4 0 . 2 8 250

t h r e s h o l d : 0 .001

−−−−−−−−−−
P r e d i c t e d 0 1 A l l

R e a l i t y

0 102 4 106

1 107 37 144

A l l 209 41 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 4 9 0 . 9 6 0 . 6 5 106

1 0 . 9 0 0 . 2 6 0 . 4 0 144

a c c u r a c y 0 . 5 6 250

macro avg 0 . 7 0 0 . 6 1 0 . 5 2 250

w e i g h t e d avg 0 . 7 3 0 . 5 6 0 . 5 0 250

t h r e s h o l d : 0 . 0

−−−−−−−−−−
P r e d i c t e d 1 A l l

R e a l i t y

0 106 106

1 144 144

A l l 250 250

C l a s s i f i c a t i o n r e p o r t :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 106

1 0 . 5 8 1 . 0 0 0 . 7 3 144

a c c u r a c y 0 . 5 8 250

macro avg 0 . 2 9 0 . 5 0 0 . 3 7 250

w e i g h t e d avg 0 . 3 3 0 . 5 8 0 . 4 2 250
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