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Resumo

A utilização de veículos subaquáticos autónomos (AUVs) exige transmissão de grandes quan-
tidades de informação entre estes equipamentos e as respetivas estações de monitorização. As
comunicações subaquáticas estão associadas à transmissão de sinais acústicos, óticos e de ra-
diofrequência (RF). Para implementações com utilização de modems acústicos, é possível fornecer
comunicações a longo alcance (alguns km), mas com baixo débito de transferência de dados, tor-
nando o processo moroso; por outro lado, as comunicações óticas exigem um alinhamento rigoroso
do emissor e receptor para a transmissão de informação. As comunicações RF, por outro lado, es-
tão associadas a elevados débitos, mas apenas a curto alcance (dezenas de centímetros até alguns
metros), não existindo, por isso uma solução capaz de fornecer um acesso de banda larga para
grandes distâncias debaixo de água.

Nesta tese propõe-se aumentar o débito e o alcance das comunicações sem fios subaquáticas
aproveitando os altos débitos associados às transmissões RF e expandindo o seu alcance através
do uso de pequenos drones subaquáticos - data mules - capazes de transportar informação entre
dois nós, criando uma ligação entre ambos. Para tal, serão aplicados protocolos de comunicações
adequados para redes com restrições de conectividade, denominadas Redes Tolerantes a Atrasos
(Delay Tolerant Networks - DTN).

As aplicações da plataforma DTN escolhida foram testadas em situações experimentais onde
a transferência de dados entre dois elementos ocorre com movimento de uma data mule (veículo
capaz de transportar informação entre dois nós para criar um link entre ambos). As estimativas
iniciais para débito resultante deste processo foram na ordem de 3 Mbit/s para uma distância de
20 m, um valor 96 vezes superior ao valor máximo de débito do conjunto de modems acústicos
disponíveis comercialmente (31.2 kbit/s). As aplicações foram avaliadas e, tendo em conta as
limitações encontradas, introduziram-se alterações no código fonte de forma a obter sincronização
bidireccional de ficheiros. Em seguida, foram planeados testes em meio subaquático e avaliadas as
alterações na aplicação, foi possível obter sincronismo de ficheiros unidirecional e bidireccional.
Desta forma, prova-se que a utilização de data mules em alternativa aos modems acústicos permite
aumentar o débito, uma vez que foram obtidos experimentalmente valores da ordem de 1.56 Mbit/s
e 519 kbit/s, 50 e 16 vezes superior ao débito acústico máximo esperado. A extrapolação desses
valores para comunicações de elevado alcance (1000 m) é demonstrada graficamente e também
apresenta ganhos consideráveis em relação às comunicações acústicas.
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Abstract

The use of autonomous underwater vehicles (AUVs) requires transmission of large amounts of
information between these devices and their monitoring stations. Underwater communications are
associated with the transmission of acoustic, optical and radiofrequency (RF) signals. For deploy-
ments using acoustic modems, it is possible to provide long-range (some km) communications,
but with low data throughput, making the process time-consuming; on the other hand, optical
communications require a strict alignment of the sender and receiver for the transmission of infor-
mation. RF communications, on the other hand, are associated with high speeds, but only at short
range (from tens of centimeters up to a few meters), so there is no solution capable of providing
broadband access for long distances underwater.

In this thesis we proposed to increase the throughput and range of underwater wireless com-
munications by taking advantage of the high rates associated with RF transmissions and expanding
their range through the use of small underwater drones, named data mules, which are vehicles that
are able to carry information between two nodes, creating a link between them. To this end, ap-
propriate communications protocols are applied to networks with connectivity constraints, called
Delay Tolerant Networks (DTN).

The applications of the DTN platform chosen were tested in experimental setup where the
transfer of data between two elements occurs with movement of a data mule. The initial estima-
tion for throughput of this process was in the order of 3 Mbit/s for distance of 20 m, a value 96
times higher than the maximum value of the set of commercially available (31.2 kbit/s) acoustic
modems. The applications were evaluated taking into account the limitations found, and changes
were introduced in the source code in order to obtain bidirectional synchronization of files. These
changes were evaluated in underwater environment, proving that it was possible to obtain unidi-
rectional and bidirectional file synchronism.

Thus, it is proven that the use of data mules as an alternative to acoustic modems increases the
throughput, since values in the order of 1.56 Mbit/s and 519 kbit/s, 50 and 16 times higher to the
maximum acoustic throughput using an acoustic modem available on the market. Extrapolation
of these values to high distance communications (1000 m) are graphically demonstrated and also
present considerable gains relative to acoustic communications.
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Chapter 1

Introduction

1.1 Context

The need of monitoring aqueous environments and necessity of reliable communications between

or with underwater vehicles, together with growing use of Autonomous Underwater Vehicles

(AUV) in underwater surveillance and inspection missions [7] has brought interest in extensive

research on underwater wireless communications [8]. Acoustic communications are used for long

range, in order of some kilometers, but allows only low bitrates [8], moreover, modems applied in

these systems have an high energy consumption, which limits the AUV endurance. On the other

hand, optical signals demand precise alignment of the emitter and receiver and are affected by wa-

ter turbidity [8]. Also, any obstacle to optical path between sender end receiver will compromise

the transmission. Radio frequency, however, has brought high bitrates transmissions, but only in

small ranges, typically some centimeters to some meters [2].

Set of specifications for wireless local area networks implied in norm IEEE 802.11 standard,

already used for aerial transmissions can also be used for cost effective, high bandwidth, short

range communications. The vehicles operating in underwater missions are now equipped with

strong precision sensors, designed for extensive gather of water’s proprieties (such as pH, tem-

perature, pollutant concentration) and are equipped with good resolution cameras for high quality

video recording, which produce high amount of data during a mission to be transferred to shore.

Underwater communications are also strongly prone to by high bit error, long delays and intermit-

tent connectivity, making conversational protocols, such as Transmission Control Protocol (TCP),

unable to effectively work in data transmission [3]: for these situations it may be more suitable to

apply protocols design for Delay Tolerant Networks (DTN), which are implemented for transmis-

sion scenarios with these characteristics.

1.2 Motivation

Autonomous Underwater vehicles demand for transmission of large amounts of data, at long

ranges. Acoustic transmissions can be used in long distance but only provides small data rates,
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2 Introduction

causing the process of files reception to take too much time.

Radiofrequency underwater communications have shown possibility of transmitting informa-

tion with fast data rates, such as 100 Mbit/s, but only in close range transfers [9]. In order to

extend the range of these communications, where no end-to-end communication path exists be-

tween eventual sender and receiver, the use of data mules -workers or vehicles scheduled to pass

through the monitored area periodically and carry the information from sender to receiver - was

tested, in order to bridge the gaps between the nodes [10].

Recently, DTN have gain considerable attention as an information gathering technology in

challenging environments, like underwater medium, where difficulties such as continuous delay,

disruption and disconnect may frequently occur [11]. The Bundle Protocol function in DTN

is to store messages in the bundle layer of the protocol while connection is unavailable. When

the connection is reestablished, DTN can restart forwarding the stored messages again to desti-

nation nodes without assuming end-to-end connectivity to them [11]. Implementation of DTN

applications in underwater vehicles may allow more effective data transmission in many sorts of

operations, since the environment in which they move is in line with DTN platforms purpose.

Considering this set of advantages, the proposed solution improves communications between

AUVs and the docking stations where the data is uploaded to shore, allowing wide range under-

water transmission of large data, and thus can represent an alternative to acoustic technologies.

1.3 Objectives

This thesis aims to study and evaluate the use of date mules capable of transporting data across

networks with tolerance to delay (DTN) between a transmitter and an underwater receiver, taking

advantage of high transfer rates at close range. Experiment procedure was carried with imple-

mentation of a file synchronization application that can tolerate high delays in the delivery of

information. The application will be tested in the underwater environment using the large tank

(dimensions of 6 meters long, 5 meters wide and 2 meters depth) available at INESC TEC and

airtight cylinders, and compared with theoretical results for this scenario.

1.4 Contributions

The main contributions of this thesis are the following:

Extending range in broadband underwater communication with the use of data mules
Data mule movement was applied in this dissertation for transferring data between distant elements

in underwater medium, in order to extend the range of RF communications. File transfer was

quantified and bit rates estimated for different experimental situations, and later compared with

acoustic results in similar conditions. Bit rates obtained were 3 Mbit/s, 1 Mbit/s and 500 kbit/s,

96, 32 and 16 times greater than maximum value of acoustic modems presented in this thesis (31.2

kbit/s). Also, extrapolation was made in order to estimate communication throughput at different
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distances, and for 5000 m, bit rate estimated was still superior to maximum value of acoustic

modem presented in this thesis.

Adapting an IBR-DTN application for bidirectional synchronization of files Underwater

communications are associated with loss of connectivity, which can be compensated with DTN

software. After installing IBR-DTN for this effect, some applications where tested and new code

was created for synchronization of files. The application was tested for the proposed effect and

results compared with present solutions.

1.5 Structure

The present document includes seven chapters. Chapter 2 explains underwater communications

problems and technologies implemented in these processes. Also, this chapter presents a descrip-

tion of some concepts associated with delay tolerant networks, as well as the protocols included.

Chapter 3 presents applications used in this thesis, with results of tests applied and in chapter 4,

we explain development of a file synchronization application.

Chapter 5 presents experimental scenario and problem considered in this thesis with planning

of proposed solution. Chapter 6 includes performance results obtained in planned testbed and

finally chapter 7 indicates summary of conclusions and future work regarding the objectives of

this thesis.
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Chapter 2

State-of-the-Art

In spite of the interest in reliable underwater communication [8], the aquatic medium consists

in regions where mobile devices find a diverse number of restrictions [12] in terms of technology

and network (topology and protocols). Signal propagation may not be totally effective in transmis-

sion between sender and receiver, due to the signal (mechanical or electromagnetic waves) nature,

which determines the propagation together with water’s physical characteristics. Also, communi-

cating links between nodes can be obstructed underwater by medium turbulence, and devices may

have considerable power limitations.

2.1 Underwater wireless communications

The main transmission technologies implied within underwater communications are based on

acoustic, optical and RF signal transmission. Acoustic communications are the most used in this

context [13] [2] [14]. In the following sections, these technologies will be briefly described.

2.1.1 Acoustic wireless transmission

Sound waves propagate in fluids, like air and water, as a disturbance of pressure level. The speed

of sound in water is approximately 4 to 5 times the value seen in air (about 1500 m/s on water

relative to 340 m/s in air). This propagation speed is however dependent on water’s conditions

of temperature, pressure and salinity, which also can influence the direction of motion of sound

waves or make it propagate through longer distances [15] [16].

Acoustic transmission is best supported for lower frequencies, and bandwidth available for

communication is extremely limited, causing low data rates. These systems can operate in frequen-

cies ranges between 10 and 15 kHz [17], which results in a total bandwidth of 5 kHz. The band-

width is not negligible with respect to central frequency, which makes the system ultra-wideband

[15].

Sound propagation in water is favorable to introduce big sensitivity in these systems to acoustic

"noise" from other sources [15]. Some other limits can be found in shallow water, like reflection

and attenuation, poor performance in shadow water and sensitivity to environmental characteristics

5



6 State-of-the-Art

(a) LinkQuest UWM1000 [20] (b) EvoLogics S2CR 48/78 [21]

Figure 2.1: Examples of acoustic modems

[15]. Also, sound waves can be affected by multi-path, Dopler effect [18] [19] and spreading loss.

Real-time response synchronization and multiple access protocols are affected by high latency for

long range, which is associated to low speed propagation.

Figures 2.1a and 2.1b show two different examples of acoustic modems available on the mar-

ket.

Pressure associated with a spherical wave propagating in water can be expressed by[22]:

P(R, t) =
p0

R
exp(−γR)exp( jω(t− R

c
)) (Pa) (2.1)

Here, attenuation is expressed as a parameter γ (expressed in Np/m). The exponential decreases

of pressure gives a loss expressed in dB proportional to the propagation range: this is commonly

expressed by an attenuation coefficient α , which is quantified in decibels per meter, (dB/m), and

can be related with γ by the following expression :

α = 20 γ log e (2.2)

or, by approximation:

α = 8.686 γ (2.3)

Figure 2.2 shows attenuation dependency with frequency in saltwater and freshwater. Graphic

shows that attenuation grows with frequency.

Some features associated with commercial acoustic modems [15] can be found in table 2.1.

This table show that the fastest acoustic modem can only transmit at 31.2 kbit/s, with a 1000 m

range. It can also be seen that the modem with highest range (10 km) has a data bitrate of 5 kbits/s,

which is not suitable for transmission of extensive files that require faster data exchange, like

video or audio files [15]. Also, it must be refereed that these instruments also present considerable

weight, ranging from 4.1 to 21 kg, which reduce the endurance of the AUVs.

Acoustic modems can have interest when used in particular scenarios, namely in transmission

of basic control signals over extended distances (> 1 km), although wireless transmission is not

effective with this equipment if high data rates are required, even at short distances [15].
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Figure 2.2: Attenuation of sound underwater [1]

Table 2.1: Characteristics of different acoustic modems

Model
Distance

(m)
Rate
kbit/s

Operating
frequency

(kHz)

Power
(W)

Maximum
depth
(m)

Weight
(kg)

LinkQuest UWM1000 350 9.6 to 19.2 26.77 to 44.62 2 200 4.2
LinkQuest UWM2000 1500 9.6 to 19.2 26.77 to 44.62 8 4000 4.8
LinkQuest UWM3000 5000 2.5 to 5 7.5 to 12.5 12 7000 4.1
LinkQuest UWM4000 4000 4.8 to 9.6 12.75 to 21.25 7 7000 7.6
LinkQuest UWM10000 10000 2.5 to 5 7.5 to 12.5 40 7000 21
EvoLogics S2CR 48/78 1000 31.2 48 to 78 60 2000 2.25 to 6.5
EvoLogics S2CR 42/65 100 31.2 42 to 65 60 2000 2.3 to 6.5
EvoLogics S2CR 18/34 3500 13.9 18 to 34 80 2000 2.4 to 6.5
EvoLogics S2CR 7/17 8000 6.9 7 to 17 80 6000 4.7 to 7.78

2.1.2 Optical wireless transmission

Optical communications use light to transmit information. Light also consists in the oscillation of

an electromagnetic field, so it also presents similar characteristics to RF waves, but with higher

frequencies [15].

Visible light frequencies show the lowest attenuation in the electromagnetic spectrum. Wave-

lengths close to 470 nm are generally attenuated the least[15], and this value depends on water’s

chemical and biological compositions, since absorption and scattering are determined by this con-

ditioning.

The relatively low attenuation combined with high speed of electromagnetic waves makes

possible to obtain high data rate transmissions in underwater wireless communications with optical

systems, however operations are strongly depend on line-of-sight, which may not be possible in

underwater environment [15].

Recent improvements in LED technology have enabled the development of power efficient

optical transmitters at low cost that offer fast switching speeds, high level of light intensity, high
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(a) NEPTUNE (SA Photonics) [23]

(b) 1013C1 (Ambalux) [24]

Figure 2.3: Examples of optical modems

efficiency, and favorable wavelengths for underwater transmission. Quality of transmission can

be improved even further with the use of lasers since they provide a much better collimated light

beam. However it is not always considered, since lasers are very susceptible to misalignment [15].

Some characteristics of optical modems can be seen in table 2.2.

Optical systems may provide a better solution with higher bitrate transfer when compared to

acoustic modems in underwater communications, but range is significantly smaller. Some systems

may even achieve data rates in order of Mbit/s. Line-of-sight requirement and considerable lost

of performance due to scattering however, make these systems impossible to apply in some cases

[15].

Table 2.2: Characteristics of different optical modems

Model
Distance

(m)
Rate
kbit/s

Operating
frequency

(kHz)

Depth
(m)

AQUAmodem 500 250 25 to 100 bits/s 27 to 31 kHz 200
AQUAmodem Op1 1 19.2 kbits/s 610 to 575 THz 3000

NEPTUNE (SA Photonics) 10-200 10 - 250 Mbit/s 532 nm / 486 nm N/A
1013C1 (Ambalux) up to 40 10 Mbit/s N/A 60

Figures 2.3a and 2.3b show two diferent exemples of optical modems. AQUAmodem Op1 still

presents considerable weight, reaching 4.2 kg.

2.1.3 Radiofrequency wireless transmission

The limitations of acoustic and optical systems can be overcome with Radio-Frequency implemen-

tations. RF has the advantage of not being effected by turbidity, and can operate in non-line-of-

sight, allowing high bandwidth to be obtained at close range without the effect of acoustic noise.

However, RF wave propagation suffers strong attenuation underwater, especially if the 2.4 GHz

ISM band is used. Both theoretical and experimental studies of IEEE 802.11 underwater networks

based on RF only achieve ranges in the order of a few centimeters, bringing up the need to employ

lower frequencies to obtain higher ranges. Experimental results have shown also that by using
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frequencies under GHz, RF attenuation can be progressively reduced, with ranges achieving 5 m

and throughput exceeding 550 kbit/s in freshwater [9].

Propagation of RF waves in water is slower than what occurs in the air, and generally attenua-

tion of the signal will be stronger, due to dissolved salts and other matter. The propagation of RF

waves can be catheterized by a propagation constant, γ , given by [13]:

γ =
√

jωµ(σ + jωε) = α + jβ (2.4)

where σ is the conductivity of the medium expressed S/m, µ = µr.µ0 is the permeability of the

medium in N/A and ε = εr.ε0 is the permittivity of the medium in F/m.

The propagation constant is a complex value and can be expressed by an attenuation factor α ,

and a phase factor, β [2]:

α = ω
√

µε

[
1
2

(√
1+
(

σ

ωε

)2

−1

)] 1
2

(N p/m) (2.5)

β = ω
√

µε

[
1
2

(√
1+
(

σ

ωε

)2

+1

)] 1
2

(rad/m) (2.6)

The real part of the permitivitty ε is dependent of the complex frequency, and is commonly

described with the Debye model [2]:

ε = ε∞ +

[
εs− ε∞

1+ j
(

f
fre f

)](F/m) (2.7)

Where εs and ε∞ are the real relative permittivity at low and high frequencies, respectively in

F/m, fre f is the relaxation frequency in Hz and ε0 is the dielectric permittivity of the free space in

F/m.

The wavelength λ is calculated according to and the velocity is determined by [2]:

λ =
2π

β
(m) (2.8)

v =
ω

β
(m/s) (2.9)

Received power can be calculated by:
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Figure 2.4: Attenuation of RF underwater [2]

Prx(dBm) = Ptx +Gtx +Grx−LFSLP−Lwater (2.10)

where Ptx represents the transmission power in dBm, Gtx and Grx are, respectively, the gains

of the transmitter and receiver antennas in dBi, LFSPL is the free space path loss, and Lwater is

the attenuation of the RF waves in the water, which depends on the conductivity and operating

frequency of the water.

Figure 2.4 shows attenuation of RF waves for different values of conductivity. It can be easily

concluded that attenuation is strongly dependent of conductivity and increases with frequency.

The plot also shows that, for freshwater, with typical conductivity values of σ = 0.01 S/m, the

attenuation Lwater is 269 dB/m for 2.4 GHz and 28 dB/m for 700 MHz; in sea water, presenting

typical conductivity values of σ = 4 S/m, the attenuation Lwater is much higher, raising to 1000

dB/m for 2.4 GHz and 700 dB/m at 700 MHz. The conductivity limit for freshwater is σ = 0.05

S/m and represents the worst case scenario for freshwater [2]. Frequencies between 10 and 100

MHz can extend range in RF underwater communications, allowing relative low attenuation and

sufficient bandwidth for broadband communication.

Table 2.3: Attenuation values of RF in water for different frequencies

Frequency Propagation velocity (m/s) Attenuation (dB/m)
768 MHz 3.33x107 28

2.462 GHz 3.35x107 269
5.240 GHz 3.43x107 1161

The attenuation for different frequencies [25] can be expressed in the table 2.3. These values

show that propagation speed does not suffer strong variations with frequency, in spite of the lower

frequencies showing less attenuation. In RF it is possible to obtain bitrates as high as 100 Mbit/s
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[9] in underwater communications, which makes this technology interesting for high bandwidth

applications.

2.2 Delay Tolerant Networks

The growing use of AUVs in underwater surveillance and inspection missions has also brought

interest in underwater wireless communications [26]. However, the challenge associated with

introduction of internet communicating services in areas with strong connectivity limitations, such

has the sub-aquatic medium (high delay in data transfer, high bit error rate and no guarantee of end-

to-end path between nodes) has capture interest from developers and general scientific community

in research of technologies to overcome these setbacks.

2.2.1 Application scenarios

The first use of Delay Tolerant Networks (RFC 4838 [27]) was applied in Space programs, but

soon applications of these systems became extendable to terrestrial communications. Some present

applications of these networks can be found in [3]:

• Space Agencies - interplanetary communication and space monitoring.

• Military and intelligence organizations - mobile ad-hoc networks (MANET) for wierless

communication and monitoring, search and rescue communications, cargo tracking, UAV

communications and control.

• Commercial use - preform cargo and vehicle tracking, in-store and in-warehouse asset track-

ing, culture monitoring.

• Public service and safety - security and disaster communication, search and rescue commu-

nications, smart electric power networks.

• Personal use - communicating in wildness and urban areas, and environmental monitoring.

• Engineering and scientific research -o develop academic networks projects.

2.2.2 Architecture

Traditional data networks are modeled by a connected graph [4], assuming at least one end-to-end

connection exists between any eventual communicating pair of nodes. Links between the network

elements are treated as bidirectional, providing symmetric data flow with low delay and bit error

rate. Also, it is common that nodes remain functional most of the time [4]. This network traffic

is also associated with packet flow in which it is not common for the information units to be

stored for a long time before reaching destination. In these systems, buffer size implemented is

relatively small, and optimized for keeping a low packet drop rate due to buffer overload. The

Internet is a global switching packet network based on traffic with these features, and relies on
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protocols, like TCP/IP that were developed for these structures. The TCP protocol is commonly

said to be a conversational protocol because a complete one-way message involves many sources-

to-destination signaling round trips [3].

While internet technologies began to show expansion of wireless transmission, space agen-

cies tried to extend the communicating ranges of satellites, shuttles and several probes installed in

outer space, and it was clear that the equipment used would be subject to severe ambient condi-

tions, causing great connectivity restrictions. Communicating devices in these scenarios demand

tolerance of delay in transmission, and must deal with high bit error rate and useful information

loss, and there even may not exist an end-to-end path between nodes: the network protocols must

account for these conditions. Each node must operate independently, as most of the network ele-

ments are often unavailable to operate [4].

Arriving data or data that needs retransmission due to previous failure may have to be queued

until next contact becomes available, which may take unpredictable time. Bandwidth asymmetry

together with unpredictable delay makes the design of transmission/retransmission timers harder.

However, users need to be continually informed of the delays and transmission errors, and the need

of interactiveness at this level consumes bandwidth and power resources. Also, the possibility of

the network nodes suffering buffer’s overflow may lead to the loss of critical information. Mul-

tiple transmission can ensure timely delivery, but may cause battery depletion, and shutdown of

critical network elements may occur. Message duplication increases delivery ratio and decreases

delivery delay, however it is associated with high power consumption and network nodes become

more prone to buffer overflow. Replicating the message to high number of nodes increases the

probability that the information finds adequate path to the destination within cutoff time, however

the repeating of message to nodes that are unavailable to accommodate new information leads to

waste of resources: It is generally agreed that obtaining both high delivery rates and low delays

simultaneously is difficult, if not impossible – network resources must be carefully managed in

order to obtain desired purpose [4].

The problem associated with communications in areas with these connectivity adversities is

directly associated with the concept of Intermittently Connected Network (Challenged Network)

which is an infrastructure-less wireless network that supports the proper functionality of one or

several wireless applications operating in stressful environments, where excessive delay and un-

guaranteed existence of end-to-end path(s) between any arbitrary source-destination pair, result

from highly repetitive link disruption [4]. Delay and disruption tolerant network (DTN), how-

ever, consists in a network of smaller networks, which allow communication between intermittent

nodes by isolating delay and disruption with store-and-forward technique. These systems support

compatibility with other networks, and can accommodate many kinds of wireless technology, such

has radiofrequency (RF), optical signals, ultra-wide band (UWB) and acoustic [3]. In severe en-

vironments, packet loss may be very high due to intermittent connectivity. If a packet cannot be

immediately forward, it will be usually dropped (discarded) and the TCP protocol allows a slower

retransmission in this case. DTNs overcome the problem of intermittent connectivity and long or

variable delays with the so called store-and-forward process. This switching method consists in
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storing information in on node, which moves toward another node and forwards the information to

him. The second node stores information and forwards it when finds another node of interest and

so the store and forward method is repeated, describing a path between source and destination,

until adequate transfer of data is accomplished [4].

The message switching implied with store and forward implementation is based on an ar-

chitecture known as bundle protocol, represented in figure 2.5. This structure ties together the

lower-level protocols, so applications can communicate between themselves, regardless of their

lower-level protocol in conditions of high and variable delay - it is possible to achieve isolation

between conversational protocols and delay with bundle layer. Bundles (RFC5050 [28]) are iden-

tified by creation timestamp, source EID fragment offset (in case its fragmented) and payload

size. These units are stored and forwarded between nodes by bundle protocol agents, and can be

converted to Application Data Units (ADU) at the bundle layer (RFC4838 [27]). A single bundle

protocol is used in a DTN [3], concerning three main entities: Application Agent, Bundle Protocol

Agent (BPA) and Convergence Layer Adapter (RFC5050).

Figure 2.5: Architecture of bundle protocol [3]

Store and forward, represented in figure 2.6, depends on messages being stored indefinitely

(persistent storage). DTN routers need persistent storage for handling their packet queues, because

the communicating link may not be available for their next hop, as also there can be the case

where one node may be much faster than the other in eventual commutating pair. Also, a message

may need to be retransmitted if an error occurs, or if the upstream node declines to accept the

forwarding of message. Network nodes have knowledge of message sizes, by moving a whole

message in a single transfer (message switching technique): this is also helpful in adjusting the

requirements for intermediate storage space and retransmission bandwidth [3].
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Figure 2.6: Store and forward [3]

Data delivery is achieved in DTN with nodes having storage capability augmented and being

equipped with relatively large buffer size, enabling the system to preform the store-and forward

process. Unknown network capability impels nodes to launch multiple message copies to increase

message delivery probability, in a process called flooding [4]. However, this mechanism causes

rapid buffer overflow, and therefore the drop rate of information generally increases. Buffer size

is for this reason treated as an important resource to be managed and analyzed for effective trans-

mission.

Nodes are identified in DTN’s by Endpoint Identifiers (EIDs) (maximum length of 1024 bytes)

[4] that can be treated as Uniform Resource Identifier (URI). Each EID can identify a single node

or a group of nodes, in latter case with support to multicast.

Communication in DTNs is subject to various time dependent constrains and is characterized

by begin and end instants, directions and endpoints and, most importantly link capacities and

delays. Also, communication in these networks is not always bidirectional. Therefore, usually

DTNs are represented by abstract graphs [4], as can be seen in figure 2.7.

In TCP protocol, data transfer service is reliable, and only end nodes are responsible for ac-

knowledging the reception of error-free packets, or requesting retransmission of lost or corrupted

data. This process works, because most of the nodes are available in traditional internet infras-

tructures. In DTNs however, network constrains previously referred make this process impossible.

Storage of packets for long periods of time and retransmission of data made necessary to introduce

a mechanism in bundle protocol called custody transfer, to convey the responsibility of retransmis-

sion of a bundle (or fragment) that has not yet reached final destination, to another node.

The node that currently holds custody of the bundle is called the bundle custodian, and ul-

timately works as the bundle source. Custody may be transferred to other intermediary nodes,

however the next hop chosen must be closer to the bundle destination, demonstrating favorable

storage capability and enough power [4].

Store and Forward mechanism is illustrated in figure 2.8 can be explained in the following
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Figure 2.7: DTN graph abstraction [4]

example [4]: source S encounters a node I1. S initially transfers a bundle to I1, which in turn

receives and stores it in its persistent storage space. This occurs with S transmitting a special

request bundle to I1, asking to take custody of the bundle, and starts a time-out timer. If there

is no reply from I1 before the timer expires, S then re transmits the bundle again, followed by

another request, however if I1 accepts custody, it will transmit an acknowledgment bundle back to

S. After receiving the ACK, S deletes the bundle from its buffer and ends the process successfully.

This mechanism is continually repeated until the bundle finds his last destination. Generally, an

additional option exists to enable confirmation from destination of the correct bundle arrival [4].

Bundle protocol can not determine if a received bundle is corrupted [4]. Also, custody transfer

may not be confirmed correctly if communication between receiver and source suddenly becomes

unavailable. There is also the possibility that node congestion arises from the presence of mali-

cious elements or other factors that make buffer space unavailable and bundle drop arises.

The storing of bundles demands resources that must be freed after some time, when elements

are considered invalid: for this effect, the timestamp of bundles is evaluated together with cor-

responding lifetime, and in case the element is considered expired, it can be deleted in order to

free buffers and memory. Correct treatment of data transfer demands adequate synchronization

between nodes in these networks, which can be very difficult to obtain with DTNs connectivity

restrictions and strong delay.

Problems may arise, for in restricted network conditions nodes may not present correct time

value: in some cases, a node may be chosen as a time reference if the system displays a reliable

clock signal and periodically informs the other elements about the current time. The solution may

also involve the introduction of a gateway element node, working as a Network Time Protocol

(NTP) client, obtaining time information from a server outside the DTN restrictions - the other
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Figure 2.8: Store and forward mechanism [4]

nodes may obtain the right clock value from these gateways. However, these synchronization

processes are conditioned by connectivity between nodes, which in DTN context is not always

guaranteed.

2.2.3 Message sequence diagrams of bundle protocol

Store and forward mechanism can be expressed by a message sequence diagrams. For a scenario

with three nodes, having EID’s dtn://node1.dtn, dtn://node2.dtn and dtn://node3.dtn, if dtn://node1.dtn

wants tho send a bundle to dtn://node3.dtn, with dtn://node2.dtn moving between them as a data

mule node to carry the bundle, the expected exchange of messages will be as represented in figure

2.9.

Sending node dtn://node1.dtn receives an "Hello message" from a custodian node dtn://node2.dtn,

and then sends a “forwarding-bundle request", containing information about the destination EID

of the bundle, to the custodian node for obtaining permission to send the bundle [29].

The custodian node then sends a “forwarding-bundle response", which confirms or declines

acceptance of the bundle custody. In case of custody acceptance, the sending node dtn://node1.dtn

sends a copy of the bundle to the custodian node dtn://node2.dtn. Otherwise, custody can be

requested to another node [29].

After receiving the bundle, the custody node dtn://node2.dtn sends an acknowledgement (ACK)

message to the sending node, acknowledging that it has received the bundle. The sending node
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Figure 2.9: Message sequence diagram between two nodes, with a data mule

never repeats transmission of a bundle that has the same identifier as the one contained in the ACK

message. The custody node can now request custody to another node, in a similar way.

After some travel time, when the custodian node reaches the receiver node dtn://node3.dtn,

with EID matching the bundle destination EID, receiving node sends a “Hello message” to cus-

todian node. This one returns a “bundle offer”, containing the bundle identifiers of the bundles

destined to the EID of the receiving node.

A “bundle request” is returned by receiving node, containing the bundle identifiers of elements

in the “bundle offer” that it does not have. Finally, custodian node sends the requested bundles

to receiving node dtn://node3.dtn. For adequate reception of data, the receiver generally must set

DTN application before sender emits message, in order to process bundles right upon reception.

2.2.4 Bundle Protocol Implementations

The current most sophisticated DTN implementations supported by Delay Tolerant Networks Re-

search Group (DTNRG) are Delay Tolerant Networking version 2 (DTN2) and Interplanetary

Overlay Network (ION) [30]. The Bundle Protocol reference is currently DTN2 implementation

(the original prototype implementation). On the other hand, ION is not just an implementation

of Bundle Protocol, since it also implements the Licklider Transmission Protocol (LTP) as well

as Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP) and

Asynchronous Message Service (AMS). Comparing both implementations, DTN2 is taken as more

flexible and flexible to experiment with Bundle Protocol [30].

DTN Reference Implementation (DTN-RI) was developed in Dublin Ireland, by Trinity Col-

lege. It was designed for Linux, Solaris, Win32 (through Cygwin environment), Linux on Personal

Digital Assistant (PDA)-ARM, FreeBSD, and Mac OS X. DTN-RI was initially developed in C++,

and included a discrete event simulator for testing and prototyping. DTN-RI latter evolved into
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current DTN reference implementation - DTN2. This platform is written in C++ and tested on

Linux (x86 or x64) and Mac OS X (PPC and x386). DTN2 supports tablebased routing, Bonjour,

Probabilistic Routing Protocol using History of Encounters and Transitivity (ProPHET), Delay

Tolerant Link State Routing (DTLSR), and epidemic routing and also external routing via Exten-

sible Markup Language, (XML) messaging [31].

The DTN2 implementation was created as a platform where researchers can validate the pro-

tocol design, and do experiments to show that the DTN protocol is working as expected or suitable

for a given application. Besides implementing the bundle protocol, DTN2 also provides a num-

ber of routing mechanisms to direct the forwarding of bundles to their intended destinations. The

reference implementation includes a number of Convergence Layer Adapter (CLAs) that interface

between the bundle protocol and the transport.

The convergence layer manages the interfacing with particular underlying protocol, network

or device and presents a consistent interface to the bundle layer. Complexity of the convergence

layer is mostly determined by the underlying protocol it adapts: a TCP/IP convergence layer used

for internet, for example, might only have to add message boundaries to TCP streams, whereas

a convergence layer for some network where no reliable transport protocol exists may be much

more complex (implementation of reliability, fragmentation, flow control, and other features) in

order to obtain reliable delivery to the bundle layer. DTN2 includes a special convergence layer

called External Convergence Layer (ECL), which allows the implementation of CLAs outside the

DTN2 code base. CLAs implemented with this interface exchange XML messages with ECL via

a TCP/IP socket.

ION – Interplanetary Network (ION-IPN) project required implementation for space of Jet

Propulsion Laboratory (JPL), which led to ION development at the University of Ohio. ION is a

software implementation of the bundle protocol stack and capable of routing for space environ-

ment. ION provides an implementation in the C language for the Bundle Protocol, the LTP, the

Consultative Committee for Space Data Systems (CCSDS) protocols CFDP and Asynchronous

Message Service AMS, and the Contact Graph Routing (CGR) algorithm, which is considered to

be the most suitable for space contacts. ION is tested on Linux, Mac OS X, FreeBSD, Solaris,

Real-Time Executive for Multiprocessor Systems RTEMS, and VxWorks. Includes supports for

TCP, UDP, and LTP as convergence layers. Saratoga space protocol is also supported on ION [31].

Currently, other known DTN implementations are available, and some of them are refered in

table 2.4.

Table 2.4: Implementations for DTN

Name Source code
Operating
Systems

Bytewalla [31] Java Android
IBR-DTN [31] C++ OpenWRT

POSTELLATION [31] C Linux, Windows
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2.2.5 Applications over Bundle Protocols implementations

Some applications over bundle protocols can be found, such as BPTAP (IP over DTN implemen-

tation) [32], HTTP over DTN (HTTP-DTN) [33], e-mail [34] and peer-to peer [35]. However,

some improvements can be made in the existing platforms and also developments of new solutions.

The interest of using embedded systems on drones imposed the need of using light operat-

ing systems such as OpenWRT. This software is suited for networking embedded platforms and

provides great resources for support off-the-shelf wireless routers [36]. Attending to the advan-

tages of applying this operating system, IBR-DTN was also considered an interesting platform:

the software was developed in order to obtain an implementation of the bundle protocol in low

performance devices and also in standard Linux computers [37].

The IBR-DTN software provides not only the daemon and tools to set up a DTN on embed-

ded hardware or standard PC’s, but also includes features like TCP and UDP convergence layer

[38] [39], IP neighbor discovery (IPND) and epidemic routing support, besides standard bundle

protocol. [40]. A fully functional Bundle Protocol implementation of IBR-DTN for Android is

also available. IBR-DTN can run on smartphones and is compatible with other Bundle protocol

implementations, such as DTN2 or ION [41]. Some applications included in this software, such as

dtnd, dtnping, dtnsend, dtnreceiv, dtninbox, dtnoutbox, are useful in bundle transfer customization

and will be briefly explained in the following chapter.

The background process running in every DTN node is called DTN daemon [42]. In IBR-DTN

case, this element implements an architecture presenting the following entities:

• Event switch: allows modules to register themselves and supports raising of events. Repre-

sents the core module of IBR-DTN, enabling the interaction between the different modules.

• Bundle storage: before transmission, the bundles can be stored (store and forward) or re-

trieved after reception from the bundle storage. This process may use RAM memory, SQL

database or persistent file system for consistent element storing.

• Connection Manager: provides interaction between the transport layer (TCP, UDP, HTTP)

and the bundle layer. This mechanism is supported by the convergence layer.

• Discovery Agent: implementation of the DTN node awareness, supporting various discov-

ery plug-ins. Supports two compatible plug-ins: the IP-Discovery frames compatible to

DTN2 and DTN IP Neighbor Discovery.

• API Server: socket based Application Programming Interface (API) that comes from the

TCP convergence layer. This interface could be a Unix domain socket or TCP based socket.

• Wall Clock: reads the clock of the host to determine the global time. The timestamp pro-

vided by the wall clock is used as a reference for determining when a bundle should expire.

This process allows time synchronization between the nodes.
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• Base Router: implements different routing protocols as plug-ins of IBR-DTN. The base

router module communicates with the discovery agent module through events, determining

when a DTN node has been discovered.



Chapter 3

IBR-DTN applications

The following chapter presents the hardware and software choices in order to support DTN appli-

cations, and also results and conclusions of tests carried with these applications.

3.1 Hardware specifications

This thesis considers the creation of three underwater nodes representing the AUV, the data mule

and the received. The hardware must be capable of being integrated in airtight cylinders and

communicate using IEEE 802.11n standard. Wireless network interfaces used for this project

was the RouterBOARD R52n-M (represented in figure 3.2) in the 2.4 GHz band, using IEEE

802.11n standard [15]. These wireless cards were assembled in the system board alix3d3 from PC

Engines (represented in figure 3.1), and carefully inserted in airtight cylinders manually created

at INESC TEC CTM unit, which in turn will act as emitter (AUV), receiver and drone (data

mule). Previous work made at INESC TEC proved that PC Engines ALIX3D3 are a robust and

reliable solution for research. These elements allow wide range of applications, as in industrial

development, firewall or routers implementations. Presenting a 500 MHz AMD Geode LX800

processor and 256 Mbyte DDR RAM, ALIX3D3 allows full range 32 bit x86 application. In this

thesis, these boards were powered by passive Power over Ethernet (PoE), which also includes LAN

port for communicating with other devices. The two USB ports were used, either for connecting

a keyboard when needed or inserting the Operating System in a Pen Flash Drive. Also, compact

size of this device makes it suitable for being enclosed in the acrylic cylinders created at INESC

TEC. Specifications associated with ALIX3D3 are presented in table 3.1. The nodes can be

autonomous, with the use of batteries suitable for the effect.

Table 3.1: Caractheristics of ALIX3D3 Boards

Parameter Value
CPU 500 MHz AMD Geode LX800
RAM 256 Mbyte DDR DRAM
Power DC jack or passive POE, min. 7 V to max 20 V

Expansion 2 miniPCI slots, LPC bus

21
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Figure 3.1: Alix3d3 board [5]

Figure 3.2: Mikrotik routerboard r52n-M [6]

The Routerboard r52n-M presents high performance in 802.11a/b/g/n standards, in both 2.4

and 5 GHz bands, this card also presents strudy MMCX connectors for use of external antennas

and adds extra durability. Physical rates supported are about 300 Mbit/s and is possible to obtain

up to 200 Mbit/s actual user throughput, upling and downlink, with MIMO technology. Also,

power transmission output can be up to 23 dBm. Atheros AR9220 chipset present in this board,

and fully compatible drivers are available and continually optimized for Linux operating systems,

such as ath9k driver. More relevant characteristics of this wireless card are summarized in 3.2.

Table 3.2: RouterBOARD r52n-M Specifications

Parameter Value
Chipset Atheros AR9220
Standard Dual band IEEE 802.11a/b/g/n standard

Output power up to 23 dBm
Antenna Connectors Two MMCX Antenna Connectors

Operating temperatures -50o C to +60o C
Performance up to 300 Mbit/s physical data rates



3.2 Software specifications 23

3.2 Software specifications

The software used in the dissertation will be mainly the two following platforms:

• Debian - this operating system presents easy installation, stability, strong security and very

good packing system avoiding conflict of software. Also provides compatibility with many hard-

ware architectures and kernels. Packages are very well integrated in Debian, allowing easy up-

grades and most drivers available are open source;

In initial stage of dissertation, OpenWRT was used, and for the effect an image was com-

piled from source code obtained from github repositories, including all software packages needed.

However, connection losses were found when transferring files of size 100 Mbyte, with available

version ath9k in Chaos Calmer version. Trunk version of the software showed unstable initial-

ization of IBR-DTN daemon in many situation with ad-hoc network configuration. Also, some

features of IBR-DTN were not available in OpenWRT, and found in Debian. However, IBR-DTN

was studied in a first stage with OpenWRT and features regarding synchronization of nodes and

connectivity were tested.

• IBR-DTN - this software provides a bundle protocol suitable for embedded devices and is

compatible with Debian and OpenWRT [43]. More description of this package can be found in

chapter 2.2.4.

IBR-DTN defines a set of applications used for communication and file sharing. This chapter

describes some of the functional characteristics ant tests preformed with these tools.

3.3 IBR-DTN configuration and API

After installation, IBR-DTN must be configured in order to associate the daemon with the ade-

quate network interface, and also for choosing the node as a time reference announcer or a slave

depending on foreign time message. The suitable configuration may be verified with the following

command:

telnet ip 4556

which should respond with a message including the host EID.

IBR-DTN API
User can get access to the API of IBR-DTN and obtain the information about neighbor list

with the following commands: (represented in figure 3.3):

telnet localhost 4550

protocol extended

neighbor list
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Figure 3.3: Example of the IBR-DTN API use

3.4 dtnd

This application is used start the IBR-DTN daemon.

Example: (represented in figure 3.4)

dtnd

Figure 3.4: Output of dtnd invocation

3.5 dtnping

This application is used to ping another dtn instance, and can be used to verify the presence of

nodes carrying IBR-DTN daemon in the network. Example (represented in figure 3.5):

dtnping dtn://node3.dtn/echo

This command sends a request to dtn://node3.dtn, which in case of the communication is

established, sends a echo reply to the requesting node.

The IBR-DTN applications were tested in this thesis with intention of characterizing their

functionality and limitations in this platform. Connectivity loss in this stage was simulated with

iptable rules to block traffic between nodes in scheduled scripts. The three Alix3d3 nodes used

were connected to an ethernet switch (node A: IP=192.168.1.1 netmask=255.255.255.0; node

B: IP=192.168.1.2, netmask=255.255.255.0; node C: IP=192.168.1.3, netmask=255.255.255.0).
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Figure 3.5: Example of the dtnping use

Elements were synchronized with NTP according to the time imposed by INESC TEC PC (IP=

192.168.1.10, netmask = 255.255.255.0), once this network allowed direct access to all three nodes

and synchronization in this case avoid choosing a master and slave nodes. The experimentation

testbed is represented in figure 3.6.

In all preformed 6 testes, the Wi-Fi network used was named "teste", in ad-hoc mode. The

channel selected was 36 (f=5.18 GHz) and bandwidth 20 MHz (mode 802.11n) for low inter-

ference and high throughput. Power output in wireless board was 23 dBm, corresponding to

maximum value on the hardware.

Node A was set with IP= 10.0.0.1 netmask = 255.255.255.0, node B IP= 10.0.0.2 netmask =

255.255.255.0 and node C IP= 10.0.0.3 netmask = 255.255.255.0.

The EID nodes of the elements were: node A dtn://node1.dtn; node B dtn://node2.dtn and node

C, dtn://node3.dtn. Routing configuration selected in IBR-DTN was set to flooding, considering

the advantages and simplicity in transmitting data between nodes with this configuration in small

networks. Table 3.3 shows different addresses and EID chosen for each node.

Table 3.3: IP configuration of Ethernet and Wi-Fi addresses used in the tests

Node IP (Ethernet) IP (Wi-Fi) EID
A 192.168.1.1 10.0.0.1 dtn://node1.dtn
B 192.168.1.2 10.0.0.2 dtn://node2.dtn
C 192.168.1.3 10.0.0.3 dtn://node3.dtn

3.6 dtnrecv

This application is used to receive bundles, and must be executed before these elements are sent

in the network [42]. On reception, it displays the information received in the standard output.
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Figure 3.6: Testbed for simulation of datamule between sender and receiver nodes

Apart from this waiting process, the bundle is received by the destination node automatically,

upon discovery instant of the communicating pair. [42].

Example (represented in figure 3.7):

dtnrecv –name dtnReceiver

Figure 3.7: Example of the dtnrecv usage
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3.7 dtnsend

This application is used to send bundles generated from files to a chosen destination [42]. The dtn

deamon access is provided by IBR-DTN API and injects the bundles in the DTN.

Example: (represented in figure 3.8)

dtnsend dtn://node3.dtn/dtnReceiver

Figure 3.8: Example of the dtnsend use

These applications were tested in the following procedures, presented in test 1 and 2. The

application dtnsend was tested with four files, sending data from node A (dtn://node1.dtn) to node

C (dtn://node3.dtn) with the following commands:

In node A:

dtnsend dtn://node3.dtn/dtnReceiver <filename>

The waiting process was applied in node C without direct connectivity between A and C, with

the command:

dtnrecv –name dtnReceiver > <filename>

where <filename> was the chosen name for destination of receive archive.

Direct connectivity between nodes A and C is avoided in the procedure, and data between

these two elements is carried by node B, assuming function of data mule.

Store and forward and fragment test

• Objective
The purpose of this test was to verify the store and forward mechanism, as well as fragment

creation from imposed maximum size in configuration file. The fragmentation size imposed was

500 kbytes. Also, this experiment intended to determine the time interval between node detection

and file sending.

• Procedure
The beginning of each procedure consisted in blocking traffic in nodes A and C. Next, IBR-

DTN deamon would be initialized in three nodes, together with packet capture with tcpdump.

Traffic in node A was unblocked, and dtnsend application was then applied in this node for transfer

the file with destiny to node C. Here, the dtnrecv application was applied for adequately receiving

the file. In node B, the access to the API for verification of received bundles allowed the confir-

mation of accepted fragments, and after sending the file, node A would be blocked again. Finally,

node C would be unblocked for receiving the file. Traffic was blocked with following command:

iptables -A INPUT -i adhoc -j REJECT
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iptables -A OUTPUT -o adhoc j REJECT

Consequently, unblocking of traffic was imposed with the instruction:

iptables -F

The movement simulated in this test is represented in figure 3.9. Four files were tested, with

ten repetitions of this procedure for each archive.

Figure 3.9: Movement of data mule (node B) simulated between nodes A and C in test 1

• Results and conclusions
Experiments with dtnsend application indicated problems in sending files of size bigger than

50 Mbytes due to processing difficulties with limited hardware RAM memory, and so this test

procedure was carried with small archives in order not to interfere with deamon functioning. From

verification with md5 checksum integrity, all files were correctly received in node C. The API

messages regarding number of bundles received in node B demonstrated correct fragmentation of

elements, in the first stage, when the number of bundles stored demonstrated division of files in

500 kbytes bundles. When node C was unblocked, API in node C informed these bundles to be

deleted. Table 3.4 shows the number of fragments obtained for each file, and figure 3.10 plots

the number of bundles generated against file size.

Wireshark logs analysis also showed a first stage of bundle transfer, between nodes A and

B, and a final stage, between nodes B and C. In node A logs, a peak of transfer was registered,
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Table 3.4: Number of fragments obtained in each file

File size (Mbytes) Bundle fragments
4.8 10
9.6 20
19.3 39
49.7 100

representing bundle transfer from A to B. In node B two peeks were recorded, corresponding to

transfer of bundles from node A to B and from B to C, as for in node C a peek was registered

corresponding to transfer of bundles from B to C.

Also, these bundle transfer occurrences were registered in conformance to node availability,

regarding the predicted contacts between elements. Results expressed in table 3.5 correspond

to time interval between start of node detection, regarding nodes B and C, and start of bundle

transmission for files of size 4.9, 9.6, 19.3 and 49.7 Mbytes. Table 3.6 shows average time

between node detection (node B detecting node C) and start of file exchange, corresponding to

the average difference in start of bundle transmission and first packet exchange (showed in figure

3.11). Transfer of bundles between nodes A and B is represented in figure 3.12, and final delivery

of elements from B to C is represented in figure 3.13.

Table 3.5: Time between start of node detection and start of bundle transmission

4.9 Mbytes 9.6 Mbytes 19.3 Mbytes 49.7 Mbytes
Experiment Time (s) Time (s) Time (s) Time (s)

1 0.02 3.158 0.013 0.86
2 2.318 2.448 0.03 0.023
3 0.02 0.02 0.02 0.808
4 0.02 3.65 0.02 0.02
5 0.244 0.02 0.197 1.63
6 2.118 0.03 0.03 0.02
7 3.175 0.02 1.63 2.22
8 2.554 0.06 0.02 0.022
9 0.019 0.02 0.02 2.197
10 1.839 0.77 0.02 0.026

Table 3.6: Average time between start of node detection and start of bundle transmission

File size (Mbytes) Average time between node detection and file sending (s) Standard deviation (s)
4.8 1.23 1.27
9.6 1.02 1.47
19.3 0.2 0.51
49.7 0.78 0.924

Results suggest average time is low in our system, without introduction of high delays.
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Figure 3.10: Number of bundles generated by fragmentation vs. file size

Figure 3.11: Wireshark capture in transferring file 4.9 Mbytes with dtnsend

Figure 3.12: Wireshark capture in transferring file 49.7 Mbytes between nodes A and B

Figure 3.13: Wireshark capture in transferring file 49.7 Mbytes between nodes B and C

In experiment 1, for file of 4.9 Mbytes, figure 3.11 shows time since node discovery between

nodes B and C and start of bundle exchange can be determined by difference between bundle

emission at 72.68 s and first packet exchange at 72.66 s, resulting in the first value of table 3.5 of
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0.02 s. Other values of table were determined in similar way. Table 3.7 shows time to copy a file

from node A to C, compared with value of time for final delivery of archive from data mule B to

node C.

Table 3.7: Average time of final delivery of bundles from node B to node C, compared with time
to copy files from A to C

File size (Mbytes)
Time for copying file

from node A to node C (s)
Final transfer from

node B to node C (s)
4.8 2 3
9.6 4 4
19.3 9 7
49.7 22 18

3.8 dtninbox and dtnoutbox

The applications dtninbox and dtnoutbox allow the creation of a automatic process of sending

bundles. The user can automatically send the files created in a selected outbox folder to a destiny

inbox folder.

Figure 3.14: Example of the dtnoutbox use

Figure 3.15: Example of the dtninbox use

Both applications dtninbox and dtnoutbox were tested in experiments presented in following

tests.
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One way folder transfer using dtnoutbox and dtninbox

• Objective
Verify the possibility of transferring files with dtninbox and dtnoutbox applications, using

alix3d3 as data mule between two nodes.

• Procedure
The experiment started with the creation of folders outboxFolder in node A, and inboxFolder

in node C. Files of size 4.9, 9.6, 19.3 and 49.7 Mbytes were placed in outboxFolder. Nodes A and

C were blocked and the daemon was started in the three elements. The application dtnoubox would

be started in node A and in node C, the application dtninbox would set a process for reception of

bundles. The following command was used in node A for this effect: dtnoutbox outboxSender out-

boxFolder dtn://node3.dtn/inboxReceiver while in node C, the following command was applied:

dtninbox inboxReceiver inboxFolder/. Also, in the three nodes, tcpdump capture would be started

for analyzing traffic in the procedure.

Two scripts were created in nodes A and C for simulation of data mule movement, node B,

between them, imposing blocking and unblocking of traffic in synchronized fashion. The scripts

included a cycle with initial blocking of node C and open traffic in node A, for simulation of

docking time for 20 s between A and B, followed by blocking node A, for simulation of trip time

of 20 s in node B, and ending with unblocking of node C for delivering bundles received from

node A for 20 s. Following this procedure, return of node B to A was simulated with blocking

node C for more 20 s. Cron service was set in nodes A and C so that both scripts would start

simultaneously.

• Results and conclusions
In this experiment, correct transfer of files was confirmed with md5 checksum verification.

For total transfer of files, three trips were needed in each of the three repetitions of the procedure.

For a total trip time of 80 s, total bit rate transfer can be quantified in the following determina-

tion:

Rbit =
Total size o f data

Total trip time = 83.4×8
80×3 = 2.78 Mbit/s.

This estimation shows the possibility of obtaining high bit rates in data transferring, when gain

is compared to values of acoustic transmission.

One way folder transfer using dtninbox and dtnoutbox simultaneously

• Objective
Experiment the effect of using dtninbox and dtnoutbox together, applied in the same folder for

obtaining file transfer in selected paths.
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• Procedure
The test was initialized with creation of folder TesteA in node A, containing files, of size 4.9,

9.6, 19.3 and 49.7 Mbytes. In node B, folder TesteB was created, represented in figure 3.16.

In both nodes, a tcpdump reading would be started, and the daemon was then initialized: in

node A with TesteA defined with application dtninbox as inboxfolder and defined with application

dtnoutbox as outboxfolder; in node B the folder TesteB was defined with application dtninbox as

inboxfolder and as outboxfolder with application dtnoutbox.

Figure 3.16: Procedure applied in testing one way folder transfer using dtninbox and dtnoutbox
simultaneously

Figure 3.17: Results obtained in wireshark reading one way folder transfer using dtninbox and
dtnoutbox simultaneously (packets blue have IP source 10.0.0.1 and packets red have IP source
10.0.0.2)



34 IBR-DTN applications

• Results and conclusions
In the end of each procedure, both nodes obtained equal files in folders TesteA and TesteB.

However, its possible to conclude from wireshark log observation, showed in figure 3.17 that after

node B receives the files, these are sent back to node A, resulting in unnecessary exchange of files

already present in elements.

Bidirectional file transfer experiment with dtninbox and dtnoutbox

• Objective
Testing the use of dtninbox and dtnoutbox for file sharing in two folders with different initial

content.

• Procedure
The test was initialized with creation of a folder named TesteA in node A, containing files, of

size 4.9, 9.6 Mbytes. In node B, it was created a folder named TesteB containing files of size 19.3

and 49.7 Mbytes, represented in figure 3.18, and daemon was initialized in each element.

Figure 3.18: Procedure applied in testing bidirectional file transfer with dtninbox and dtnoutbox

In node A folder TesteA was defined with application dtninbox as inboxfolder and as outbox-

folder with application dtnoutbox, as in node B TesteB was defined with application dtninbox as

inboxfolder and as outboxfolder with application dtnoutbox.

• Results and conclusions
Similar to previous observations, both nodes obtained equal files in folders TesteA and TesteB

in the end of each experiment. Whireshark graph regarding this experiment is represented in figure

3.19.
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Figure 3.19: Results obtained in wireshark reading with bidirectional file transfer experiment with
dtninbox and dtnoutbox (packets blue have IP source 10.0.0.1 and packets red have IP source
10.0.0.2)

Bidirectional file transfer experiment with dtninbox and dtnoutbox with the use of data
mule

• Objective

Verify the use of dtninbox and dtnoutbox together for file sharing in DTN nodes, with the

intervention of a data mule for bundle transport.

• Procedure

After experimenting the possibility of sharing files, folder named TesteA in node A was again

filled with content similar to beginning of test 4, containing two files, of size 4.9 and 9.6 Mbytes.

In node C, it was created a folder named TesteC containing two files of size 19.3 and 49.7 Mbytes.

Cron service was set to start scripts used in test 2 simultaneously, in order to simulate data

mule travel of node B between nodes A and C.

• Results and conclusions

In this experiment, in spite of exchange of bundles verified with wireshark, applications could

not create the files in nodes A and C. Results suggest that in high disruption situations, convergence

layer may fail bundle delivery, and so in future experiments docking time and travel period was

raised.
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3.9 dtnstream

Streaming multimedia files is also possible with the IBR-DTN deamon usage, by invoking the ap-

plication dtnstream. Other node (in this case dtn://node2.dtn) can set the stream with the following

command (represented in figure 3.20):

dtnstream -s dtnstreamReceiver

Figure 3.20: Example of the dtnstream use - receiver

The other element can send the stream with the following command (represented in figure

3.21):

Figure 3.21: Example of the dtnstream use - sender

The dtnstream application was tested with procedures described in the following two tests.

Dtnstream application for online radio streaming with use of data mule

• Objetive
Test the use of a data mule between two nodes for transferring bundles with dtnstream in

streaming radio.

• Procedure
Verification of dtnstream operation was carried with transfer of online radio music between

nodes A (sender) and C (receiver). Node B would assume function of data mule, with scripts in

nodes A and C similar to the ones applied in test 2. However, in this experiment, the docking time

was raised for 60 seconds and fragmentation was set to 2000 kbytes in each node. The radio used

for streaming was http://stream.laut.fm:80/jazzloft.
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• Results and conclusions
In this experiment, it was not possible to obtain continuous display of radio in node C. How-

ever, the receiver could record the stream in a mp3 file, which showed correct display after collec-

tion of stream. Also, the reception of bundles in node C was confirmed with daemon messages.

Wireshark capture of streaming with DTN is represented in figures 3.22 and 3.23.

Figure 3.22: Whireshark capture of streaming between nodes A and B

Figure 3.23: Wireshark capture of streaming between node B and C

Video transmission with dtnstream application and the use of data mule

• Objective
Determining the adequate conditions for video transmission in DTN network with the use of

data mule.

• Procedure
Verification of dtnstream operation was carried with transfer of video between nodes A (sender)

and C (receiver). Node B would assume function of data mule, with scripts in nodes A and C sim-

ilar to the ones applied in previous test.

• Results and conclusions
Video display transfer between two nodes was first experimented (nodes A - sender, node C-

receiver), and although node C could record a video transmitted by A with dtnstream application,

VLC player could not display the images, due to low capacity of graphic processing with Alix3d3.

In the experiment with the use of data mule, reception of bundles in node B was confirmed with

daemon messages. Also, the experiment was conducted with recording of the received video

stream, which could later be displayed on INESC TEC PC.

3.10 dtntracepath

A dtn-version of tracepath is available (represented in figure 3.24).
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The following commands can be used in dtn://node1.dtn with the application to trace dtn://node1.dtn

and dtn://node2.dtn:

dtntracepath dtn://node1.dtn/echo

dtntracepath dtn://node2.dtn/echo

Figure 3.24: Example of the dtntracepath use

3.11 dtnconvert

This application can create bundles in standard output.

Command for this purpose is:

cat content | dtnconvert -c -s dtn://host1/echo

3.12 dtntrigger

This application triggers a script upon received bundles.

Command for this effect can be:

dtntrigger triggerReceiver bash.

/triggerScript

3.13 dtntunnel

Creating a dtn-tunnel is also possible with this application, through which IP packets can be routed.

For this, the following command can be used:

dtntunnel dtn://host1/tunnel

Also included in IBR-DTN implementations is a Distributed Hash Tables (DHT) for naming

in BitTorrent file sharing system, and is compatible with other DTN implementations [44].

3.14 Conclusions

These tests could validate the possibility of obtaining high bit rates in data transfer between two

nodes with the use of a data mule to carry bundles. Application dtnsend was first tested, showing

store and forward in transport of bundles with a data mule, from a sender node to a receiver, and
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correct number of bundles generated with the chosen fragmentation size. Also, this experiment

showed limit of file size in sending archives for adequate deamon operation, when files of size

bigger than 50 Mbytes were used, and so tests were made with archives smaller. Regarding the

code associated with dtninbox and dtnoutbox, the later application includes a cycle for verification

of new files, comparing a calculated hash with previous values recorded in a list for previous sent

files. If the hash is not found in the list of these elements, the archive will be sent, regardless

if present or not in destination folder. New hash value is attributed to files when recorded, even

if no change in content occurs. After bundle is sent, no guarantee of reception exists. These

characteristics make undesirable occurrence of repetition in archive exchange with no guarantee

of file reception, and overall file synchronization is not possible.

For dtnstream application, tests made reveal good functioning in radio transmission, although

reproduction was not possible, still audio recording was achieved. Video transmission was also

possible, although for small recording time of five to six minutes.

File sharing between AUV or Remotely Operated Vehicles - ROV can be useful for synchro-

nization of content between elements in situations of transfer sensor data or video samples in a

practical and automatic process, without need of complex solutions for archive transfer. The next

stage of this dissertation consisted in development and evaluation of an application in underwater

environment.
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Chapter 4

Syncronization application

The applications dtnoutbox and dtninbox are not sufficient for file synchronization purpose, as

showed in the functional tests. These elements do not guarantee bundle delivery to destiny, once

dtnoutbox sends bundles only when hash value of file is not present in a sent hash list without

confirmation of reception or repetition, in case file is not received, and altogether unnecessary file

transfer may occur- file is sent even if already present in destiny folder. Analyzing dtnoutbox code,

the decision of file sending is based on the presence of archive reference in the list of files to send.

In case this list is not empty, files contained are grouped in the next bundle to send. However,

the files to send list is filled with archive reference according to a condition that only includes

elements with hash not present in sent hashes list: if a file changes hash value, transfer will occur

even if already present in destination folder, and if a file does not change hash value, transfer will

not occur even if the destiny folder did not receive it in a previous transfer.

Hash value changes with last modification date of file, even if content remains unchanged, ex-

plaining the situation when new archive detected in dtnoutbox is automatically sent to destination

folder each time it reaches reception, due to new hash value associated.

To avoid this situation, correcting unnecessary data transfer and introducing guarantee of file

delivery, an application was developed in order to create a list with file names and md5 checksum

value: the code creates a vector with elements present during cycle and compares with files de-

tected in list received from the other pair and only files with different combination of name and

checksum value are exchanged. Diagram explaining the algorithm is represented in figure 4.1.

Bundles are sent only with files not common to nodes, in case the list of local host has files

not present in node pair, until a list is received with reference to files in remote pair confirming

reception, in a way to guarantee delivery. When both list have same archives, transfer stops and

only the lists of files in elements are exchanged.

Application starts with creation of adequate TCP stream, initialization of client and connection

to the server. Next, a cycle starts clearing string vectors used for data storing. Files present in

chosen folder are then verified, and reception of the list of files present in remote host is also

confirmed and recorded.

Each file combination of name and md5 checksum value is added to a list of current files, with

41
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Figure 4.1: Algorithm used in file sharing application
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name attributed by the destination of the folder. For example, if the application is configured with

destination dtn://node2.dtn/inboxReceiver, the name of the file list will be node2.dtn - this allows

each list to have a different name. In this step, a condition imposes the list name of files received

from pair is not written in the list of files, in order to avoid not obtaining the list of the pair; also

the name of the list is not written.

Current files name and checksum value is recorded in a string vector in the following stage,

and the list received from remote node is opened, in case the presence of the list was detected

previously. Each file data is compared with information placed in vector of current archives: if

equal elements are detected, the name and md5 checksum value associated is stored in a different

string vector, with common elements. Observed files are again updated and each file presence in

the common files vector previously created is verified: in case the element is present, meaning

already in remote host destination folder, the archive will not be added to the list of files to send.

Finally, the archives included in files to send list are added to bundles, and destination EID of

elements is established. Bundles are sent to client, and flushed before cycle restarts.

Archives created with the list of files in each node present extension ".dtn" and present format

of common text files. Each line in these lists contains the following representation for each file:

<date of last modification> <MD5 checksum value> <filename> The date of last modification

and name of archives can be obtained from functions included in library available in IBR-DTN,

as for MD5 checksum value is obtained by a function created by research of this algorithm. Each

line can be read by the receiving node and data from files included in foreign host target folder is

compared to local host information.

List of files must take into account some precautions for correct file exchange: local host

can never transmit list received from foreign node, to avoid interfering with list creation, hence

conditions are imposed to avoid sending files with extension "dtn" and name different from local

host list. Also, before receiving a list of files from the remote node, local host only sends his

own list, to avoid unnecessary file transfer. The lists are named according to application destiny,

imposing different names, to avoid confusion between archives. The sequence diagram associated

with this application is presented in figure 4.2

Node B approaches node A in stage I), and file list is delivered from A to B. Travel of node

B then occurs from A to C, and delivery of the file list received from A occurs in stage II). Node

C then verifies files in this list, and in case the folder defined in the application includes archives

not present in target folder in node A, bundles with files not present in node A are delivered to

node B. Once the elements are received, node B travels again to node A and delivers received

archives in stage III), together with file list of node C. Now, node A can verify files present in

list received from node C target folder, and sends files that are not included. These archives are

delivered together with list of files from node A to node B. Data mule travels again from node A

to C, delivering missing files and both folders reach equal content in stage IV).
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Figure 4.2: Sequence diagram file synchronization application
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Application use of IBR-DTN libraries can access API functions, which in turn interact with

deamon for sending bundles, as represented in figure 4.3.

Figure 4.3: Interaction between application and API

This application was developed in C++ with the use of libraries included in IBR-DTN plat-

form. Source code for IBR-DTN applications was obtained from github repository [45], and

necessary libraries for compiling were also installed. Code used in this application is presented in

appendix A.
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Chapter 5

Experimental planning and testbed
design

This chapter presents the description of the scenario considered and the experimental evaluation

taken place in a freshwater tank at INESC TEC. Also, a study on the movement conditions for

favorable binary rate transfer is presented.

5.1 Experimental evaluation

For the proposed scenario, we tested data transfer between source and destination nodes, using

an underwater data mule to deliver data from source to destination, as represented in figure 5.1.

These elements were tested in a laboratory environment with a fresh water tank at INESC TEC

Robotics facilities, presenting dimensions of 6 meters long, 5 meters wide and 2 meters depth.

Figure 5.1: Experimental scenario considered for the application test in underwater environment

Data rate transfer in our system can be predicted, assuming ideal conditions, for different

velocities of carriers and 100 Mbit/s file transfer rate between close nodes. Proximity between

drones will also be evaluated in order to minimize their traveled distance.

47



48 Experimental planning and testbed design

(a) Binary rates for different distances (b) Minimum docking time for video display

Figure 5.2: Simulation of useful bitrate and minimal docking time variations with distance

Useful throughput Rb,use f ul can be determined considering transfer throughput between ele-

ments of Rb in Mbit/s, velocity v in m/s, docking time tdocking in s and a distance path d (in meters)

with the following expression:

Rb,use f ul =
Rb× tdocking

2× tdocking +2× d
v

(Mbit/s) (5.1)

Considering Rb= 100 Mbit/s, tdocking = 100 s, and v = 1 m/s, Rb,use f ul will be:

Rb,use f ul =
104

200+2×d
(Mbit/s) (5.2)

The graphical representation of Rb,use f ul versus distance in figure 5.2a shows that for distances

as high as 10000 m, useful throughput is 0.5 Mbit/s, which is still superior to most acoustic rates

available (31.2 kbits/s).

Minimal docking time can be obtained by rearranging 5.5:

tdocking =
2× d

v
Rb

Ruse f ul
−2

(s) (5.3)

For an effective video streaming, considering video H.264/AVC High Profile 12 Mbps en-

coding [46], minimum docking time can be determined, considering transfer throughput between

elements of 100 Mbit/s and velocity of 1 m/s for different transmission distances in the following

expression:

tdocking =
24×d

76

The graphical representation of docking time versus distance is represented in figure 5.2b,

showing linear behavior.

Total delay of video transmission can be determined with the following expression:

Delay = 2×d/v+2× tdocking (s) (5.4)
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Figure 5.3: Total delay versus distance

The graphical representation of delay versus distance,considering a docking time of 100 s is

represented in figure 5.3, showing linear behavior.

5.2 Study of movement conditions for favorable binary rate transfer

In order to determine favorable conditions for data transfer in our system, equation 5.5 can be

derived in order to both docking time (equation 5.6) and velocity (equation 5.7).

Rb,use f ul =
Rb× tdocking

2× tdocking +2× d
v

(5.5)

dRb,use f ul

dtdocking
=

d
v ×Rb

2×

(
tdocking +

d
v

)2 (5.6)

dRb,use f ul

dv
=

d
v2 ×Rb× tdocking

2×

(
tdocking +

d
v

)2 (5.7)

Comparing equations 5.6 and 5.7, derivative functions show that in similar conditions, raising

docking time might raise useful bitrate faster than increasing velocity. This effect leads, however,

to higher delay of data reception.

Graphical representations of figure 5.4 show useful bitrate dependency with distance for dif-

ferent docking times (100, 200, 300 and 400 s).
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(a) tdocking = 100s (b) tdocking = 200s

(c) tdocking = 300s (d) tdocking = 400s

Figure 5.4: Useful bitrates vs distance (path velocity 1 m/s)

Figure 5.5 shows representation of bitrates dependency with velocity, for different docking

times (100, 200, 300 and 400 s). Graphical representations show a strong decay in equivalent bit

rate with distance path, however raising docking time and bit rate between nodes may decrease this

effect. Also, an increase in velocity in this movement raises equivalent bit rate. Data correction

can be applied to our scenario, with an Automatic Repeat reQuest (ARQ) method. Go-Back-N

can present a more suitable result for networks limited by delay and restrictions of connectivity,

by allowing transmission of new packets before acknowledgment of older ones.
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(a) tdocking = 100s (b) tdocking = 200s

(c) tdocking = 300s (d) tdocking = 400s

Figure 5.5: Useful bitrates vs velocity (path distance 1000 m)

Go-back-N

Assuming window size of sender packets W > 2a+1, efficiency S of Go-back-N can be given

by [47]:

SGo−Back−N =
1−FER

1+2.a.FER
(5.8)

The factor a can be determined with the following expression:

a =
Propagation time
Transmission time

(5.9)

where propagation time can be determined simply dividing propagation distance dp by velocity

of propagation vp, and transmission time is determined by dividing frame length L by bit rate Rb.

If these parameters are substituted in equation 5.9, we obtain:
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Figure 5.6: Efficiency for Go-back-N estimated for different values of FER

a =
dp×Rb

vp×L
(5.10)

For a path distance, dp = 1000 m, vp = 1 m/s and L= 1500 bytes, a can be estimated by:

a = 1000×106

1×1500×8 = 83333.3

For this value of a, efficiency of Go-back-N can be graphically plotted, for different values of

Frame Error Ratio - FER, as represented in 5.6. Plot shows strong decay of efficiency with FER,

however for values inferior to 2×10−6 efficiency is superior to 70 %.

5.2.1 Metrics to be considered in the evaluation

The implemented application will be evaluated in terms of different metrics, such as:

• Average data rate: maximum achievable throughput from the sender node to the receiver;

• Delay: time required for a packet to reach the destination, after transmission.

Conclusions from these observations will help in obtaining traffic optimization.

5.2.2 Analysis of results

The results obtained in this thesis will be compared with a similar solution using data rates and

delays associated with acoustic transmission. All conclusions and further research will be sum-

marized in the dissertation and an article concerning the achievements will be written.



Chapter 6

Preformance results

After development of proposed solution, the applications was tested in an underwater tank at

INESC TEC. The three Alix3d3 nodes used were connected to Ethernet switch, as in previous

tests with address scheme 192.168.1.x. Elements were also synchronized with NTP according to

the time imposed by INESC TEC PC, as previously.

The three elements were placed in different acrylic cylinders (represented in figure 6.1), and

closed with two end-caps, each with two o-rings for protection and avoiding water inside.

Figure 6.1: Cylinder used in experiments

Each Alix3d3 was fixed in acrylic boards and connected with two antennas, maintaining dis-

tance between these emitters greater than λ

2 = 3×108

2×2.4×109 ≈ 7 cm in order to avoid destructive

interference. The movement of data-mule cylinder was induced in experiments with ropes sus-

pending the cylinders. Experimentation testbed is represented in figure 6.2. Each cylinder was

powered using PoE.
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Figure 6.2: Testbed for data mule experiments between sender and receiver nodes

Figure 6.3: Testbed for data mule experiments between sender and receiver nodes in INESC TEC

The real scenario of the tests can be seen in figure 6.3. As defined in previous functional tests,

the Wi-Fi network used was named "teste", in ad-hoc mode. The channel selected was 6 (f=2.437
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GHz) and bandwidth 20 MHz (mode IEEE 802.11 n). This mode was chosen due to possibility of

operating in 2.4 GHz or 5 GHz and also allowing to boost data rate with the use of MIMO. Power

output in wireless board was 23 dBm. Address attributed to each element was defined in the same

scheme 10.0.0.x as previously.

The EID nodes of the elements were: node A dtn://node1.dtn; node B, dtn://node2.dtn and

node C, dtn://node3.dtn. Routing configuration selected in IBR-DTN was set to flooding.

6.1 Single-hop performance comparison of dtnsend and iperf

This test aimed at determining the transfer time of a single file with IBR-DTN application dtnsend,

and comparing the value with the result obtained with iperf, i.e., without the DTN protocol stack.

To preform this test, a file of 49.7 Mbytes was sent from node A to node B with dtnsend appli-

cation. The procedure was made together with tcpdump capture in both nodes. Experiment was

repeated ten times.

The application iperf was used with node B as server and node A as client. The file of 49.7

Mbytes was sent and average flow rate was measured in server. The experiment was also repeated

ten times.

The results obtained with iperf application are presented in table 6.1.

Table 6.1: Time required for transfer of bundles between nodes A and B

Experiment Average bit rate (Mbit/s)
1 25.3
2 36
3 37.1
4 36.9
5 36.2
6 25.5
7 27.3
8 36.6
9 37.2

10 36.5

The average flow rate of values obtained in iperf simulations here is 34.46 Mbits/s with stan-

dard deviation of 5.16 Mbit/s, which corresponds to a transfer of 49.7 Mbytes of 49.7×8
34.46 = 11.53 s.

Time associated with transferring bundles between nodes A and B is presented in table 6.2.

The experiments regarding transfer of 49.7 Mbytes file with dtnsend showed an average value

of 15.7 s for transmission with standard deviation of 4.24 s, equivalent to a bit rate of 26.7 Mbit/s,

with standard deviation of 5.94 Mbit/s. Transfer shows slightly lower value of transfer time for

IBR-DTN application, as expected. Slower performance with IBR-DTN deamon relative to raw

TCP results is associated with the fact of Bundle protocol running on top of TCP, so overhead

associated with Bundles and user-space processing is added to overhead in common TCP.
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Table 6.2: Time required for transfer of bundles between nodes A and B

Experiment Time seconds
1 24
2 18
3 12
4 13
5 13
6 15
7 14
8 14
9 12

10 22

Difference between these values can also be quantified with percentage deviation, and the

following value is obtained:
|34.46−26.7|×100

26.7
≈ 29% (6.1)

6.2 Store and forward with the use of data mule in underwater envi-
ronment

This experiment was made in order to obtain the value of transfer time for a file of 49.7 Mbytes

between two nodes, with the use of a data mule. Also, this procedure intended to confirm store and

forward mechanism and the fragmentation of bundles. The three cylinders containing nodes A, B

and C were placed far apart, avoiding connectivity between nodes. Node B was brought close to

node A, as in this node a file was sent with dtnsend application. Next, node B was again placed

apart from node A and C, for about three minutes, and then it was placed next to node C, for file

reception. Time for transfer of bundles between nodes is expressed in tables 6.3 and 6.4.

Table 6.3: Time required for transfer of 49.7 Mbytes file between nodes A and B

Experiment Time (seconds)
1 19
2 18.5
3 16.6
4 15.8
5 21
6 19
7 16.95
8 18.6
9 19.6
10 18.6

Average transfer time between nodes A and B was 18.4 s with standard deviation of 1.53 s and

transfer time between nodes B and C was 16.71 s with standard deviation of 7.6 s. The file transfer
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Table 6.4: Time required for transfer of 49.7 Mbytes file between nodes B and C

Experiment Time (seconds)
1 13
2 14.1
3 12.7
4 11.6
5 37.9
6 16.8
7 16
8 15
9 15

10 15

mechanism with DTN deamon was verified in underwater medium, as well as store and forward,

by node B. This element carried data between nodes A and C, assuming the function of data mule,

as tested in previous experimentations. For trip time of 3 minutes for data mule between nodes A

and C, total bit rate associated with this transmission can be determined in following calculation:

Rb =
Total size o f f ile trans f ered

2×Ttrip+2×Ttrans f er
= 49.7

2×180+18.4+16.71 ×8 = 1.006 Mbit/s

Estimated value in this transfer is clearly superior to bit rates available when using acoustic

communication, 32 times greater than maximum value presented for bit rate in acoustic modem

(31.2 kbit/s). For a velocity of 0.5 and 1 m/s, communication at corresponding distances of 90 and

180 m respectively can present these gains.

Extrapolation bit rates for different values of distances is represented in plots of figure 6.4.

Assuming a velocity value v=1 m/s Ttrip = d/v leads to:

Figure 6.4: Bit rate extrapolation for different distances with store and forward experimentation
results
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Rb =
Total size o f f ile trans f ered

2×Ttrip +2×Ttrans f er
=

49.7
2×d +35.11

×8 (6.2)

Estimation of bit rate, considering movement of data mule between sender and receiver with

velocity 1 m/s, can be estimated using these results for different travel distances. Result obtained

for distances 1000, 3000, 4000 and 5000 m are:

Rb =
Total size o f f ile trans f ered

2×Ttrip +2×Ttrans f er
=

49.7
2×1000+18.4+16.71

×8 = 195.37 kbit/s (6.3)

This value reveals throughput 6 times higher then the fastest acoustic modem considered, in

longest available range.

Rb =
Total size o f f ile trans f ered

2×Ttrip +2×Ttrans f er
=

49.7
2×3000+18.4+16.71

×8 = 65.9 kbit/s (6.4)

Rb =
Total size o f f ile trans f ered

2×Ttrip +2×Ttrans f er
=

49.7
2×4000+18.4+16.71

×8 = 49.5 kbit/s (6.5)

Rb =
Total size o f f ile trans f ered

2×Ttrip +2×Ttrans f er
=

49.7
2×5000+18.4+16.71

×8 = 39.6 kbit/s (6.6)

Results in equation 6.6 show bit rate eight times higher then modem with highest range (5

kbit/s).

6.3 Unidirectional synchronization with proposed application

This experiment was preformed in order to obtain the confirmation of file sharing capability with

the proposed application. The test also allowed to determine transfer time of four files with sharing

folder application.

Procedure was started by creating two folders: in node A, folder TesteA, and in node C folder

TesteC. Files of 4.8, 9.6, 19.3 and 49.7 Mbytes were placed in folder TesteA. The application

developed was applied in both folder, together with dtninbox. Cylinders were placed apart in

the tank, and Node B was brought close to node A. After about 40 s, node B was again placed

apart from both nodes, during about 3 minutes, and then, it was brought close to node C. This

experiment was repeated ten times. Results obtained in this experiment are presented in tables 6.5

and 6.6.

Average transfer time between these two nodes is 37.51 s, with standard deviation of 11.1 s.

For transfer of files between these two nodes, average time is 30.5 s with standard deviation of

9.5 s. Considering trip time of 3 minutes, bit rate associated to this transmission can be determined
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Table 6.5: Time required for transfer of bundles between nodes A and B

Experiment Time (seconds)
1 48.1
2 44.8
3 55.3
4 52
5 29.2
6 34
7 33.7
8 22
9 31

10 25

Table 6.6: Time required for transfer of bundles between nodes B and C

Experiment Time (seconds)
1 30
2 39.95
3 38.5
4 39.4
5 30.2
6 29.8
7 23
8 27
9 21.15

10 26

in the following calculation:

Rb =
Total f ile size
Total trip time

=
83.4

2×180+37.51+30.5
×8 = 1.56 Mbit/s (6.7)

Also, this experiment shows the possibility of obtaining high gains, relative to acoustic transmis-

sion, up to 50 times greater than maximum value presented for bit rate in acoustic modem (31.12

kbit/s) This experiment demonstrated file sharing with created application, without repetition of

file delivery, after the same content is present in both folders. The file identity was verified with

md5 checksum value in all experiments.

Bit rate extrapolation for different values of distances is represented in plots of figure 6.5.

Graphical plot was created, assuming a velocity of 1 m/s corresponding to a trip time Ttrip = d/v

Rb =
Total f ile size
Total trip time

=
83.4

2×d +68.01
×8 (6.8)
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Figure 6.5: Bit rate extrapolation for different distances with unidirectional synchronization results

6.4 Bidirectional synchronization of folders with proposed applica-
tion

The following experimental procedure was conducted to confirm archives sharing with developed

application, starting with different contents in selected folders. This experiment was started with

creation of two folders: TesteA, with file of 15 Mbytes in node A and TesteC with files of 19.3

in node C. The three nodes were placed apart in FEUP INESC TEC tank, and then node B was

brought close to node A for about 20 s. Node B was again brought apart from both nodes for about

3 minutes. Finally node B was brought close to node C. Procedure was repeated until both folders

TesteA and TesteC presented equal content. The experiment was repeated ten times.

Time requiered in each experiment for synchronization of folders is presented in table 6.7.

Table 6.7: Time required for both folders present the same content

Experiment Time (minutes)
1 12.05
2 11.85
3 7.45
4 8.88
5 8.38
6 9.28
8 8.75
9 8.18

10 8.68

Average time for this file transfer is 8 and 49 s, with standard deviation of 90 s. Bit rate can be
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estimated for this transmission with the following calculation:

Rb =
15.0+19.3
60×8.82

×8 = 519 kbit/s (6.9)

Global bit rate in this situation can be approximated by the following expression:

Rb =
f ile size

4×docking time+3× trip time
(6.10)

In this case, bit rate can also be plotted against trip time, assuming a velocity of 1 m/s. Trip time

is again given by d/v, leading to a global expression of:

Rb =
34.4×8

80+3×d
(6.11)

Figure 6.6: Bit rate extrapolation for different distances with unidirectional synchronization results

Graphical representation in figure 6.6 was created with equation 6.11. Comparing with

acoustic transmission, this result still presents superior bit rate, in spite of longer time needed

for bidirectional synchronization. Estimated bit rate is 17 times greater than maximum value

presented for bit rate in acoustic modem (31.2 kbit/s) The results obtained in this experiment

allowed to acknowledge that until both folders presented equal content, files detected missing

in nodes were periodically sent, in a way to guarantee archive delivery, prevent bundle loss or

avoid missed reception due to lifetime expiration. Also, files were confirmed with md5 checksum

verification after each experiment.
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6.5 Update of files in remote host when file is changed in local host

This experiment intended to determine if the application allowed file update in a remote folder,

when changes in local node are made in that archive. First step in this experiment consisted in

the creation of folders TesteA in node A, and TesteC in node C. Next, in node A, a cron job was

created in order to copy the file syslog to folder TesteA every 10 minutes. Then, daemon was

started in three nodes, with node B next to node A for about 20 s. Node B would then be brought

far from both nodes for about 3 minutes. Finally, node B was brought close to node C for about

20 s and md5 checksum of files in folder TesteC whas observed. This experiment showed, from

changes in md5 checksum value of file syslog, possibility of updating files in remote host, from

changes in archives made in local node.
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Conclusions and future work

Underwater communications depends on technologies based on optical, acoustic and radiofre-

quency signals. Optical transmission relies on the alignment between source and receiver and

clear optical path between communicating nodes, as for acoustic modems present high transmis-

sion range, but low bit rates of data transfer. Radiofrequency allows high throughput in underwater

medium, although transmission range is small. Dealing with underwater periods of loss of con-

nectivity brought interest to include a Delay Tolerant Network solution, with suitable applications

for file transfer and allow store and forward of information by the data mule between sender and

receiver nodes.

In this thesis, we propose the use of small drone acting as data mules for increasing the com-

munication range between sender producing a message and receiver of the message combined

with high bit rates available in radiofrequency transmission, in order to obtain higher efficiency

compared to acoustic modems.

In order to address the limitations of the IBR-DTN applications set, developed for DTN net-

works, we propose a syncronization application that is able to perform a bidirectional synchro-

nization between an AUV and an underwater access point using a data mule to transport the data.

Results obtained in this thesis allowed to show possibility of improving bit rate transmission

gain with the use of drones as data mules in underwater communications. Also, experimentation

showed higher gains with respect to acoustic transmission when data mule movement was used

for file delivery. For this effect, IBR-DTN was used as the DTN software platform, and made

possible to obtain results for transmission in underwater communication, in situations with loss

of connectivity. We also demonstrated achievement of longer distance in transmission with use

of data mule movement, and developed a new application for synchronization of files with DTN

platform, assuring delivery to receiver.

The study of IBR-DTN applications brought interest in improving functionality with file shar-

ing purpose, and so an application was developed for sharing folders with DTN deamon synchro-

nization. The proposed code also guarantees file delivery with verification in equality inside a list

of files with data concerning all archives inside target folders, avoids unnecessary file exchange,

and allows file update when archives are changed.
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Results obtained outside water, allow to estimate a global bit rate of 2.78 Mbit/s for a simulated

distance of 20 m. In the following tests, in underwater medium, bit rates of 1.006 Mbit/s were

estimated for distances of 180 m, and global bit rate of 1.56 Mbit/s and 519 kbits/s were obtained

in synchronization with the developed application. Obtained values are respectively 32, 50 and 17

times higher than acoustic modem transmission. For higher distances, such as 4000 m, bit rate 49.5

kbit/s was also estimated with proposed results, suggesting interesting gains of communication

even at these distances.

The hardware chosen also was proved to be adequate in achieving the proposed objectives:

alix3d3 and Routerboard R52n-M showed good performance in testbed conditions. Also, includ-

ing hardware in acrylic cylinders presented excellent solution for drone movement emulation,

avoiding water incomes and eventual mechanical collision effects on hardware - it was possible,

with these elements, to obtain results without use of actual AUV.

IBR-DTN showed good performance in transferring files, and we verified previous conclusions

regarding the use of this implementation in low capacity elements. The code could be easily

compiled in Debian 8.0 for development. Research showed this platform can benefit with some

code improvements for extended purpose. Development of original application for DTN might

be useful for understanding IBR-DTN deamon source code, and also motivate development of

new and versatile software for different scenarios. However, due to the limited RAM available on

alix3d3 and the way IBR-DTN creates the bundles, the maximum file size to be transferred was

limited to about 50 Mbytes. If suitable conditions are established and extensive files are transfered,

bit rates can be even more expanded and gains even more attractive can be achieved for using data

mules in combination with RF communications to transport large amounts of data underwater.

Future work
The proposed solution has brought interesting results in underwater communication, although

improvements can be made with DTN implementations for these transmissions on future investi-

gation.

• Transferring large archives with IBR-DTN and the use of data mule: by changing the way

the bundles are created at IBR-DTN implementation, we could overcome the limitation of the file

transfer to the available RAM on the system, improving the overall bitrate when using data mule.

• Compatibility of IBR-DTN with other DTN platforms: The effect of combining IBR-DTN

with another software, as DTN2 or ION in underwater communications can be further studied,

and performance can be evaluated. Functional characteristics of simultaneous operation with IBR-

DTN and other DTN deamon can be interesting for evaluating performance and correct eventual

disadvantages for better knowledge of DTN implementation.

• Using extensive number of data mules for transferring bundles The effect of using higher

number of data mules in tests similar to those presented in these thesis can be interesting for

obtaining higher efficiency of data exchange.
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• Effect of routing schemes on DTN underwater communication, with use of data mules
Configuration of DTN routing patterns can also be investigated, with intervention of data mule for

store and forward bundles. Bit rate obtained in similar transmissions with different routing options

can be compared, and results may be improved with corrections in IBR-DTN core code.

• Development of new DTN applications DTN platforms still require new applications, with

improved usability and interface. New solutions may be applied not only in underwater transmis-

sion, but also in regions of low connectivity, or even between moving vehicles and individuals.

Smartphones, tablets and other communicating devices may benefit from the development of in-

teresting applications,that still require more compatibility regarding different operating systems.
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Appendix A

Code used for file syncronization

/∗
∗ d t n o u t b o x . cpp

∗
∗ C o p y r i g h t (C) 2013 IBR , TU Braunschweig

∗
∗ W r i t t e n−by : Johannes Morgenroth <morgenroth@ibr . c s . tu−bs . de>

∗ David G o l t z s c h e <g o l t z s c h @ i b r . c s . tu−
bs . de>

∗
∗ L i c e n s e d under t h e Apache L i c e n s e , V e r s i o n 2 . 0 ( t h e " L i c e n s e

" ) ;

∗ you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e w i t h t h e

L i c e n s e .

∗ You may o b t a i n a copy o f t h e L i c e n s e a t

∗
∗ h t t p : / / www. apache . org / l i c e n s e s / LICENSE−2.0

∗
∗ Un le s s r e q u i r e d by a p p l i c a b l e law or agreed t o i n w r i t i n g ,

s o f t w a r e

∗ d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS "

BASIS ,

∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s

or i m p l i e d .

∗ See t h e L i c e n s e f o r t h e s p e c i f i c language g o v e r n i n g

p e r m i s s i o n s and

∗ l i m i t a t i o n s under t h e L i c e n s e .

∗
∗ /

67
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# i n c l u d e "md5 . h " /∗ C a l c u l a r md5 ∗ /

# i n c l u d e " c o n f i g . h "

# i n c l u d e < i b r d t n / a p i / C l i e n t . h>

# i n c l u d e <ibrcommon / n e t / s o c k e t . h>

# i n c l u d e <ibrcommon / t h r e a d / Mutex . h>

# i n c l u d e <ibrcommon / t h r e a d / MutexLock . h>

# i n c l u d e <ibrcommon / t h r e a d / S i g n a l H a n d l e r . h>

# i n c l u d e < i b r d t n / d a t a / Pay loadBlock . h>

# i n c l u d e <ibrcommon / d a t a /BLOB. h>

# i n c l u d e <ibrcommon / d a t a / F i l e . h>

# i n c l u d e <ibrcommon / a p p s t r e a m b u f . h>

# i n c l u d e <ibrcommon / Logger . h>

# i n c l u d e " i o / T a r U t i l s . h "

# i n c l u d e " i o / O b s e r v e d F i l e . h "

# i f d e f HAVE_LIBTFFS

# i n c l u d e " i o / Fa t ImageReade r . h "

# e n d i f

# i n c l u d e < s t d l i b . h>

# i n c l u d e < i o s t r e a m >

# i n c l u d e <map>

# i n c l u d e < v e c t o r >

# i n c l u d e < s y s / t y p e s . h>

# i n c l u d e < u n i s t d . h>

# i n c l u d e < r e g e x . h>

# i n c l u d e < g e t o p t . h>

# i n c l u d e < v e c t o r > /∗ I n c l u i a b i b l i o t e c a para u t i l i z a r v e t o r e s de

s t r i n g s ∗ /

# i n c l u d e <ct ime >

# i n c l u d e < c s t d i o >

# i n c l u d e < c t y p e . h> /∗ B i b l i o t e c a para c a l c u l a r md5 ∗ /

t y p e d e f s t d : : l i s t < i o : : O b s e r v e d F i l e > f i l e l i s t ;

t y p e d e f s t d : : s e t < i o : : O b s e r v e d F i l e > f i l e s e t ;

t y p e d e f s t d : : s e t < i o : : F i l eHash > h a s h l i s t ;
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/ / s e t t h i s v a r i a b l e t o f a l s e t o s t o p t h e app

bool _ r u n n i n g = t rue ;

/ / g l o b a l w a i t c o n d i t i o n a l

ibrcommon : : C o n d i t i o n a l _wa i t_cond ;

bool _ w a i t _ a b o r t = f a l s e ;

c o n s t s t d : : s t r i n g TAG = " d t n o u t b o x " ;

c l a s s c o n f i g {

p u b l i c :

c o n f i g ( )

: i n t e r v a l ( 5 0 0 0 ) , r ou nd s ( 3 ) , p a t h ( " / " ) , r e g e x _ s t r ( " ^ \ \ .

" ) ,

b u n d l e _ g r o u p ( f a l s e ) , i n v e r t ( f a l s e ) , q u i e t ( f a l s e )

, v e r b o s e ( f a l s e ) , f a t ( f a l s e ) , e n a b l e d ( t rue )

{}

/ / g l o b a l c o n f v a l u e s

s t r i n g name ;

s t r i n g ou tbox ;

s t r i n g d e s t i n a t i o n ;

/ / o p t i o n a l p a r a m t e r s

s t d : : s t r i n g w o r k d i r ;

s t d : : s i z e _ t i n t e r v a l ;

s t d : : s i z e _ t r ou nds ;

s t d : : s t r i n g p a t h ;

s t d : : s t r i n g r e g e x _ s t r ;

r e g e x _ t r e g e x ;

i n t b u n d l e _ g r o u p ;

i n t i n v e r t ;

i n t q u i e t ;

i n t v e r b o s e ;

i n t f a t ;

i n t e n a b l e d ;

} ;

t y p e d e f s t r u c t c o n f i g c o n f i g _ t ;
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s t r u c t o p t i o n l o n g _ o p t i o n s [ ] =

{

{ " d e s t i n a t i o n " , r e q u i r e d _ a r g u m e n t , 0 , ’ d ’ } ,

{ " h e l p " , no_argument , 0 , ’ h ’ } ,

{ " group " , no_argument , 0 , ’ g ’ } ,

{ " w o r k d i r " , r e q u i r e d _ a r g u m e n t , 0 , ’w’ } ,

{ " i n t e r v a l " , r e q u i r e d _ a r g u m e n t , 0 , ’ i ’ } ,

{ " r ou nd s " , r e q u i r e d _ a r g u m e n t , 0 , ’ r ’ } ,

{ " p a t h " , r e q u i r e d _ a r g u m e n t , 0 , ’ p ’ } ,

{ " r e g e x " , r e q u i r e d _ a r g u m e n t , 0 , ’R ’ } ,

{ " q u i e t " , no_argument , 0 , ’ q ’ } ,

{ " v e r b o s e " , no_argument , 0 , ’ v ’ } ,

{0 , 0 , 0 , 0}

} ;

void i n i t _ l o g g e r ( c o n f i g _ t &conf )

{

/ / l o g g i n g o p t i o n s

c o n s t unsigned char l o g o p t s = 0 ;

/ / e r r o r f i l t e r

c o n s t unsigned char l o g e r r = ibrcommon : : Logger : :

LOGGER_ERR | ibrcommon : : Logger : : LOGGER_CRIT ;

/ / l o g g i n g f i l t e r , e v e r y t h i n g b u t debug , e r r and c r i t

c o n s t unsigned char l o g s t d = ibrcommon : : Logger : :

LOGGER_ALL ^ ( ibrcommon : : Logger : : LOGGER_DEBUG |

l o g e r r ) ;

/ / s y s l o g f i l t e r , e v e r y t h i n g b u t DEBUG and NOTICE

c o n s t unsigned char l o g s y s = ibrcommon : : Logger : :

LOGGER_ALL ^ ( ibrcommon : : Logger : : LOGGER_DEBUG |

ibrcommon : : Logger : : LOGGER_NOTICE) ;

c o n s t unsigned char l o g a l l = ibrcommon : : Logger : :

LOGGER_ALL;

/ / l o g n o t i c e messages t o cout , i f q u i e t n o t c o n f i g u r e d

i f ( ! con f . q u i e t )
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{

ibrcommon : : Logger : : addSt ream ( s t d : : cou t , l o g s y s ,

l o g o p t s ) ;

i f ( con f . v e r b o s e )

{

ibrcommon : : Logger : : addSt ream ( s t d : : cou t ,

l o g a l l , l o g o p t s ) ;

}

}

/ / add l o g g i n g t o t h e c e r r

ibrcommon : : Logger : : addSt ream ( s t d : : c e r r , l o g e r r , l o g o p t s )

;

}

void p r i n t _ h e l p ( )

{

s t d : : c o u t << "−− d t n o u t b o x ( IBR−DTN) −−" << s t d : : e n d l ;

s t d : : c o u t << " Syn tax : d t n o u t b o x [ o p t i o n s ] <name> <outbox

> < d e s t i n a t i o n >" << s t d : : e n d l ;

s t d : : c o u t << " <name> The a p p l i c a t i o n name " <<

s t d : : e n d l ;

# i f d e f HAVE_LIBTFFS

s t d : : c o u t << " <outbox > L o c a t i o n o f o u t g o i n g

f i l e s , d i r e c t o r y o r v f a t−image " << s t d : : e n d l ;

# e l s e
s t d : : c o u t << " <outbox > D i r e c t o r y o f o u t g o i n g

f i l e s " << s t d : : e n d l ;

# e n d i f
s t d : : c o u t << " < d e s t i n a t i o n > The d e s t i n a t i o n EID f o r

a l l o u t g o i n g f i l e s " << s t d : : e n d l << s t d : : e n d l ;

s t d : : c o u t << "∗ o p t i o n a l p a r a m e t e r s ∗ " << s t d : : e n d l ;

s t d : : c o u t << " −h|−−h e l p D i s p l a y t h i s t e x t " <<

s t d : : e n d l ;

s t d : : c o u t << " −g|−−group R e c e i v e r i s a

d e s t i n a t i o n group " << s t d : : e n d l ;

s t d : : c o u t << " −w|−−w o r k d i r < d i r >" << s t d : : e n d l ;

s t d : : c o u t << " Temporary work d i r e c t o r y

" << s t d : : e n d l ;
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s t d : : c o u t << " − i |−− i n t e r v a l < m i l l i s e c o n d s >" << s t d : :

e n d l ;

s t d : : c o u t << " I n t e r v a l i n m i l l i s e c o n d s

, i n which <outbox > i s scanned " << s t d : : e n d l ;

s t d : : c o u t << " f o r new / changed f i l e s .

d e f a u l t : 5000 " << s t d : : e n d l ;

s t d : : c o u t << " −r |−− r o un ds <n> Number o f ro un ds o f

i n t e r v a l s , a f t e r which a unchanged " << s t d : : e n d l ;

s t d : : c o u t << " f i l e i s c o n s i d e r e d as

w r i t t e n . d e f a u l t : 3 " << s t d : : e n d l ;

# i f d e f HAVE_LIBTFFS

s t d : : c o u t << " −p|−−p a t h <pa th > Pa th o f ou tbox w i t h i n

v f a t−image . d e f a u l t : / " << s t d : : e n d l ;

# e n d i f
s t d : : c o u t << " −R|−− r e g e x <regex >" << s t d : : e n d l ;

s t d : : c o u t << " A l l f i l e s i n <outbox >

match ing t h i s r e g u l a r e x p r e s s i o n " << s t d : : e n d l ;

s t d : : c o u t << " w i l l be i g n o r e d . d e f a u l t

: ^ \ \ . " << s t d : : e n d l ;

s t d : : c o u t << " −I |−− i n v e r t I n v e r t t h e r e g u l a r

e x p r e s s i o n d e f i n e d wi th −R"<< s t d : : e n d l ;

s t d : : c o u t << " −q|−− q u i e t Only p r i n t e r r o r

messages " << s t d : : e n d l ;

s t d : : c o u t << " −v|−−v e r b o s e p r i n t more v e r b o s e i n f o

messages , on ly works w i t h o u t −q " << s t d : : e n d l ;

_ r u n n i n g = f a l s e ; / / s t o p t h i s app , a f t e r p r i n t i n g h e l p

}

void r e a d _ c o n f i g u r a t i o n ( i n t argc , char ∗∗ argv , c o n f i g _ t &conf )

{

whi le ( 1 )

{

/∗ g e t o p t _ l o n g s t o r e s t h e o p t i o n i n d e x here . ∗ /

i n t o p t i o n _ i n d e x = 0 ;

i n t c = g e t o p t _ l o n g ( argc , argv , "hw : i : r : p : R :

qvIg " ,

l o n g _ o p t i o n s , &o p t i o n _ i n d e x ) ;

/∗ D e t e c t t h e end o f t h e o p t i o n s . ∗ /
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i f ( c == −1)

break ;

sw i t ch ( c )

{

case 0 :

/∗ I f t h i s o p t i o n s e t a f l a g , do n o t h i n g

e l s e now . ∗ /

i f ( l o n g _ o p t i o n s [ o p t i o n _ i n d e x ] . f l a g !=

0)

break ;

p r i n t f ( " o p t i o n %s " , l o n g _ o p t i o n s [

o p t i o n _ i n d e x ] . name ) ;

i f ( o p t a r g )

p r i n t f ( " w i th a r g %s " , o p t a r g ) ;

p r i n t f ( " \ n " ) ;

break ;

case ’ h ’ :

p r i n t _ h e l p ( ) ;

e x i t ( EXIT_SUCCESS ) ;

break ;

case ’ g ’ :

con f . b u n d l e _ g r o u p = t rue ;

break ;

case ’w’ :

con f . w o r k d i r = s t d : : s t r i n g ( o p t a r g ) ;

break ;

case ’ i ’ :

con f . i n t e r v a l = a t o i ( o p t a r g ) ;

break ;

case ’ r ’ :

con f . r o un ds = a t o i ( o p t a r g ) ;

break ;

case ’ p ’ :

con f . p a t h = s t d : : s t r i n g ( o p t a r g ) ;

break ;

case ’R ’ :

con f . r e g e x _ s t r = s t d : : s t r i n g ( o p t a r g ) ;

break ;
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case ’ q ’ :

con f . q u i e t = t rue ;

break ;

case ’ v ’ :

con f . v e r b o s e = t rue ;

break ;

case ’ I ’ :

con f . i n v e r t = t rue ;

break ;

case ’ ? ’ :

break ;

d e f a u l t :

a b o r t ( ) ;

break ;

}

}

/ / p r i n t h e l p i f n o t enough p a r a m e t e r s are s e t

i f ( ( a r g c − o p t i n d ) < 3)

{

p r i n t _ h e l p ( ) ;

e x i t ( EXIT_FAILURE ) ;

}

con f . name = s t d : : s t r i n g ( a rgv [ o p t i n d ] ) ;

con f . d e s t i n a t i o n = s t d : : s t r i n g ( a rgv [ o p t i n d + 2 ] ) ;

con f . ou tbox = s t d : : s t r i n g ( a rgv [ o p t i n d + 1 ] ) ;

/ / c o m p i l e regex , i f s e t

i f ( con f . r e g e x _ s t r . l e n g t h ( ) > 0 && regcomp(& conf . regex ,

con f . r e g e x _ s t r . c _ s t r ( ) , 0 ) )

{

IBRCOMMON_LOGGER_TAG(TAG, e r r o r ) << "ERROR:

i n v a l i d r e g e x : " << o p t a r g <<

IBRCOMMON_LOGGER_ENDL;

e x i t (−1) ;

}

/ / check ou tb ox pa th f o r t r a i l i n g s l a s h
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i f ( con f . ou tbox . a t ( con f . ou tbox . l e n g t h ( ) −1) == ’ / ’ )

con f . ou tbox = con f . ou tbox . s u b s t r ( 0 , con f . ou tbox .

l e n g t h ( ) −1) ;

}

void s i g h a n d l e r _ f u n c ( i n t s i g n a l )

{

IBRCOMMON_LOGGER_TAG(TAG, n o t i c e ) << " g o t s i g n a l " <<

s i g n a l << IBRCOMMON_LOGGER_ENDL;

sw i t ch ( s i g n a l )

{

case SIGTERM :

case SIGINT :

{

/ / s t o p w a i t i n g and s t o p running , on SIGINT or

SIGTERM

ibrcommon : : MutexLock l ( _wa i t_cond ) ;

_ r u n n i n g = f a l s e ;

_wa i t_cond . s i g n a l ( t rue ) ;

break ;

}

# i f n d e f __WIN32__

case SIGUSR1 :

{

/ / s t o p w a i t i n g on SIGUSR1 −> " q u i c k s c a n "

ibrcommon : : MutexLock l ( _wa i t_cond ) ;

_ w a i t _ a b o r t = t rue ;

_wa i t_cond . s i g n a l ( t rue ) ;

break ;

}

# e n d i f
d e f a u l t :

break ;

}

}

/∗
∗ main a p p l i c a t i o n method

∗ /

i n t main ( i n t argc , char ∗∗ a rgv )
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{

i n t c o n t a d o r =0;

i n t l i s t H o s t B P r e s e n t =0;

s t r i n g l i s t L o c a l H o s t , l i s t H o s t B ;

s t r i n g f i l e D a t a ;

s t r i n g f i l e D a t a V e c t o r ;

s t r i n g f i l e D a t a T i m e ;

char md5 [MD5_LEN + 1 ] ;

s t d : : v e c t o r < s t d : : s t r i n g > e l e m e n t o s L i s t a ;

s t d : : v e c t o r < s t d : : s t r i n g > elementosComuns ;

s t d : : v e c t o r < s t d : : s t r i n g > e l eme n tosApa ga r ;

s t d : : v e c t o r < s t d : : s t r i n g > f o r e i g n F i l e D a t a ;

s t d : : v e c t o r < s t d : : s t r i n g > e l e m e n t o s A c t L i s t ;

s t d : : v e c t o r < s t d : : s t r i n g > e l e m e n t o s A c t L i s t B ;

s t d : : v e c t o r < s t d : : s t r i n g > e l e m e n t o s E n v i a d o s ;

/ / c a t c h p r o c e s s s i g n a l s

ibrcommon : : S i g n a l H a n d l e r s i g h a n d l e r ( s i g h a n d l e r _ f u n c ) ;

s i g h a n d l e r . h a n d l e ( SIGINT ) ;

s i g h a n d l e r . h a n d l e (SIGTERM) ;

# i f n d e f __WIN32__

s i g h a n d l e r . h a n d l e ( SIGUSR1 ) ;

# e n d i f

/ / c o n f i g r a t i o n o b j e c t

c o n f i g _ t con f ;

/ / read t h e c o n f i g u r a t i o n

r e a d _ c o n f i g u r a t i o n ( a rgc , argv , con f ) ;

i n i t _ l o g g e r ( con f ) ;
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/ / i n i t i a l i z e s i g h a n d l e r a f t e r p o s s i b l e e x i t c a l l

s i g h a n d l e r . i n i t i a l i z e ( ) ;

/ / i n i t work ing d i r e c t o r y

i f ( con f . w o r k d i r . l e n g t h ( ) > 0)

{

ibrcommon : : F i l e b l o b _ p a t h ( con f . w o r k d i r ) ;

i f ( b l o b _ p a t h . e x i s t s ( ) )

{

ibrcommon : : BLOB : : c h a n g e P r o v i d e r ( new
ibrcommon : : F i leBLOBProvider ( b l o b _ p a t h

) , t rue ) ;

}

}

s t d : : s t r i n g s t r ;

s t r = con f . d e s t i n a t i o n ;

char s e p s [ ] = " / " ; /

c o n s t char ∗ i n d i c a t e L i s t =" L i s t _ t o _ " ;

char ∗ n a m e l i s t A ;

c o n s t char ∗ n a m e l i s t B ;

s t r i n g p a t h L i s t B ;

n a m e l i s t A = s t r t o k ( &s t r [ 0 ] , s e p s ) ;

whi le ( n a m e l i s t A != NULL )

{

/∗ Do your t h i n g ∗ /

n a m e l i s t A = s t r t o k ( NULL, s e p s ) ;

break ;

}

l i s t L o c a l H o s t = n a m e l i s t A ;

c o n s t char ∗ r a i z = " . / " ;

s t r i n g p a t h L i s t = r a i z + con f . ou tbox + s e p s + n a m e l i s t A ;
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t i m e _ t d a t e ;

/ / b a c k o f f f o r r e c o n n e c t

unsigned i n t b a c k o f f = 2 ;

ibrcommon : : F i l e o u t b o x _ f i l e ( con f . ou tbox ) ;

/ / c r e a t e new f i l e l i s t s

f i l e s e t n e w _ f i l e s , p r e v _ f i l e s , d e l e t e d _ f i l e s ,

f i l e s _ t o _ s e n d , f i c h e i r o s _ e n v i a r ;

f i l e l i s t o b s e r v e d _ f i l e s ;

h a s h l i s t s e n t _ h a s h e s ;

/ / o b s e r v e d r o o t f i l e

i o : : O b s e r v e d F i l e r o o t ( ibrcommon : : F i l e ( " / " ) ) ;

# i f d e f HAVE_LIBTFFS

i o : : Fa t ImageReader ∗ i m a g e r e a d e r = NULL;

# e n d i f

i f ( o u t b o x _ f i l e . e x i s t s ( ) && ! o u t b o x _ f i l e . i s D i r e c t o r y ( ) )

{

# i f d e f HAVE_LIBTFFS

conf . f a t = t rue ;

i m a g e r e a d e r = new i o : : Fa t ImageReader ( con f . ou tbox

) ;

c o n s t i o : : FATFile f a t _ r o o t (∗ i m a g e r e a d e r , con f .

p a t h ) ;

r o o t = i o : : O b s e r v e d F i l e ( f a t _ r o o t ) ;

# e l s e
IBRCOMMON_LOGGER_TAG(TAG, e r r o r ) << "ERROR: image

− f i l e p rov ided , b u t t h i s t o o l has been

compi l ed w i t h o u t l i b t f f s s u p p o r t ! " <<

IBRCOMMON_LOGGER_ENDL;

re turn −1;

# e n d i f
}

e l s e
{

i f ( ! o u t b o x _ f i l e . e x i s t s ( ) ) {
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ibrcommon : : F i l e : : c r e a t e D i r e c t o r y (

o u t b o x _ f i l e ) ;

}

r o o t = i o : : O b s e r v e d F i l e ( o u t b o x _ f i l e ) ;

}

IBRCOMMON_LOGGER_TAG(TAG, i n f o ) << "−− d t n o u t b o x −−" <<

IBRCOMMON_LOGGER_ENDL;

/ / loop , i f no s t o p i f r e q u e s t e d

whi le ( _ r u n n i n g )

{

t r y
{

/ / Cr ea t e a s t r e am t o t h e s e r v e r u s i n g

TCP .

ibrcommon : : v a d d r e s s add r ( " l o c a l h o s t " ,

4550) ;

ibrcommon : : s o c k e t s t r e a m conn ( new
ibrcommon : : t c p s o c k e t ( add r ) ) ;

/ / I n i t i a t e a c l i e n t f o r s y n c h r o n o u s

r e c e i v i n g

d t n : : a p i : : C l i e n t c l i e n t ( con f . name , conn ,

d t n : : a p i : : C l i e n t : : MODE_SENDONLY) ;

/ / Connect t o t h e s e r v e r . A c t u a l l y , t h i s

f u n c t i o n i n i t i a t e t h e

/ / s t r ea m p r o t o c o l by s t a r t i n g t h e

t h r e a d and s e n d i n g t h e c o n t a c t header

.

c l i e n t . c o n n e c t ( ) ;

/ / r e s e t b a c k o f f i f c o n n e c t e d

b a c k o f f = 2 ;

/ / check t h e c o n n e c t i o n

whi le ( _ r u n n i n g )

{
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/ / g e t a l l f i l e s

f i l e s e t c u r r e n t _ f i l e s ;

r o o t . f i n d F i l e s ( c u r r e n t _ f i l e s ) ;

e l em en tosApa ga r . c l e a r ( ) ;

/ / d e t e r m i n e d e l e t e d f i l e s

f i l e s e t d e l e t e d _ f i l e s ;

s t d : : s e t _ d i f f e r e n c e ( p r e v _ f i l e s .

b e g i n ( ) , p r e v _ f i l e s . end ( ) ,

c u r r e n t _ f i l e s . b e g i n ( ) ,

c u r r e n t _ f i l e s . end ( ) ,

s t d : : i n s e r t e r (

d e l e t e d _ f i l e s , d e l e t e d _ f i l e s .

b e g i n ( ) ) ) ;

/ / f o r ( f i l e s e t : : c o n s t _ i t e r a t o r

i t e r = d e l e t e d _ f i l e s . b e g i n ( ) ; i t e r != d e l e t e d _ f i l e s . end ( ) ; ++

i t e r ) {

/ / c o n s t i o : : O b s e r v e d F i l e &

o f = (∗ i t e r ) ;

/ / e l emen to sApaga r . push_back ( o f .

g e t F i l e ( ) . ge tBasename ( ) . c _ s t r ( ) ) ;

/ / }

e l e m e n t o s A c t L i s t . c l e a r ( ) ;

e lementosComuns . c l e a r ( ) ;

e l e m e n t o s A c t L i s t B . c l e a r ( ) ;

s t d : : o f s t r e a m o u t f i l e ( p a t h L i s t .

c _ s t r ( ) , s t d : : i o s : : o u t | s t d : :

i o s : : t r u n c ) ;

f o r ( f i l e s e t : : c o n s t _ i t e r a t o r

i t e r = c u r r e n t _ f i l e s . b e g i n ( ) ;

i t e r != c u r r e n t _ f i l e s . end ( ) ;

++ i t e r )

{
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c o n s t i o : : O b s e r v e d F i l e &

of = (∗ i t e r ) ;

s t d : : s i z e _ t found ;

found = of . g e t F i l e ( ) .

ge tBasename ( ) . f i n d ( " .

d t n " ) ;

i f ( found != s t d : : s t r i n g : :

npos&&(s t r cmp (

l i s t L o c a l H o s t . c _ s t r ( )

, o f . g e t F i l e ( ) .

ge tBasename ( ) . c _ s t r ( )

) ) )

{

n a m e l i s t B = of .

g e t F i l e ( ) .

ge tBasename ( )

. c _ s t r ( ) ;

l i s t H o s t B = of .

g e t F i l e ( ) .

ge tBasename ( )

;

p a t h L i s t B = r a i z +

con f . ou tbox +

s e p s +

n a m e l i s t B ;

l i s t H o s t B P r e s e n t

=1;

}

found = of . g e t F i l e ( ) .

ge tBasename ( ) . f i n d ( " .

d t n " ) ;

i f ( found == s t d : : s t r i n g : :

npos )
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{

f i l e D a t a . c l e a r ( ) ;

f i l e D a t a V e c t o r . c l e a r ( ) ;

s t r i n g s t r e a m s s ;

s s << of . g e t F i l e ( ) .

l a s t m o d i f y ( ) ;

s t r i n g t imes t amp = s s .

s t r ( ) ;

f i l e D a t a . append (

t imes t amp ) ;

f i l e D a t a . append ( " " ) ;

f i l e D a t a . append ( o f .

g e t F i l e ( ) . ge tBasename

( ) . c _ s t r ( ) ) ;

f i l e D a t a V e c t o r . append ( o f

. g e t F i l e ( ) .

ge tBasename ( ) . c _ s t r ( )

) ;

char b u f f [ 2 0 ] ;

char ∗ f i l e P a t h = new
char [ o f . g e t F i l e ( ) .

g e t P a t h ( ) . l e n g t h ( ) +

1 ] ;

s t r c p y ( f i l e P a t h , o f .

g e t F i l e ( ) . g e t P a t h ( ) .

c _ s t r ( ) ) ;

/ / do s t u f f

i f ( ! CalcFileMD5 (

f i l e P a t h , md5 ) )

p u t s ( " E r r o r o c c u r e d ! " ) ;

f i l e D a t a . append ( " " ) ;

f i l e D a t a V e c t o r . append ( "

" ) ;

f i l e D a t a . append ( md5 ) ;
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f i l e D a t a V e c t o r . append (

md5 ) ;

i f ( s t d : : f i n d (

e l e m e n t o s A c t L i s t .

b e g i n ( ) ,

e l e m e n t o s A c t L i s t . end

( ) , f i l e D a t a V e c t o r )

== e l e m e n t o s A c t L i s t .

end ( ) )

e l e m e n t o s A c t L i s t .

push_back (

f i l e D a t a V e c t o r ) ;

o u t f i l e << f i l e D a t a << e n d l ;

}

}

i f ( ! d e l e t e d _ f i l e s . empty ( ) ) {

f o r ( s t d : : v e c t o r < s t r i n g > : : c o n s t _ i t e r a t o r i = e l emen tosApag a r .

b e g i n ( ) ; i != e l emen to sApaga r . end ( ) ; ++ i )

o u t f i l e <<" D e l e t e : "<< ∗ i << e n d l ;

}

o u t f i l e . c l o s e ( ) ;

o u t f i l e << s t d : : f l u s h ;

s t d : : i f s t r e a m i n f i l e ;

s t r i n g f i l eOnHos tB ;

i f ( l i s t H o s t B P r e s e n t ) {

i n f i l e . open ( p a t h L i s t B . c _ s t r ( ) ) ;

whi le ( ! i n f i l e . e o f ( ) )

{

g e t l i n e ( i n f i l e , f i l eOnHos tB ) ;

e l e m e n t o s A c t L i s t B . push_back (

f i l eOnHos tB ) ;
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s t d : : s i z e _ t found ;

found = f i l eOnHos tB . f i n d ( " D e l e t e " )

;

i f ( found != s t d : : s t r i n g : : npos )

{

s t r i n g e l e m e n t o _ d e l e t e =

f i l eOnHos tB . s u b s t r ( 0 ,

f i l eOnHos tB . f i n d ( ’ ’

) ) ;

s t r i n g

p a t h E l e m e n t o E l e m i n a r =

r a i z + con f . ou tbox +

s e p s + e l e m e n t o _ d e l e t e ;

remove (

p a t h E l e m e n t o E l e m i n a r .

c _ s t r ( ) ) ;

}

i f ( ! f i l eOnHos tB . empty ( ) ) {

f i l e D a t a V e c t o r = f i l eOnHos tB .

s u b s t r ( 1 1 , f i l eOnHos tB . f i n d ( "

\ n " , 0 ) ) ;

i f ( s t d : : f i n d ( e l e m e n t o s A c t L i s t .

b e g i n ( ) , e l e m e n t o s A c t L i s t . end

( ) , f i l e D a t a V e c t o r ) !=

e l e m e n t o s A c t L i s t . end ( ) )

{

elementosComuns .

push_back (

f i l e D a t a V e c t o r ) ;

}

}

}

}

/ / remove d e l e t e d f i l e s from

o b s e r v a t i o n
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f o r ( f i l e s e t : : c o n s t _ i t e r a t o r

i t e r = d e l e t e d _ f i l e s . b e g i n ( ) ;

i t e r != d e l e t e d _ f i l e s . end ( ) ;

++ i t e r )

{

c o n s t i o : : O b s e r v e d F i l e &

d e l e t e d F i l e = (∗ i t e r )

;

/ / remove r e f e r e n c e s i n

t h e s e n t _ h a s h e s

f o r ( h a s h l i s t : : i t e r a t o r

h a s h _ i t = s e n t _ h a s h e s

. b e g i n ( ) ; h a s h _ i t !=

s e n t _ h a s h e s . end ( ) ; /∗
b l a n k ∗ / ) {

i f ( ( ∗ h a s h _ i t ) .

g e t P a t h ( ) ==

d e l e t e d F i l e .

g e t F i l e ( ) .

g e t P a t h ( ) ) {

s e n t _ h a s h e s

.

e r a s e

(

h a s h _ i t

++) ;

} e l s e {

++

h a s h _ i t

;

}

}

/ / remove from o b s e r v e d

f i l e s

o b s e r v e d _ f i l e s . remove (

d e l e t e d F i l e ) ;

/ / o u t p u t
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IBRCOMMON_LOGGER_TAG(TAG

, i n f o ) << " f i l e

removed : " <<

d e l e t e d F i l e . g e t F i l e ( )

. ge tBasename ( ) <<

IBRCOMMON_LOGGER_ENDL

;

}

/ / d e t e r m i n e new f i l e s

f i l e s e t n e w _ f i l e s ;

s t d : : s e t _ d i f f e r e n c e (

c u r r e n t _ f i l e s . b e g i n ( ) ,

c u r r e n t _ f i l e s . end ( ) ,

p r e v _ f i l e s . b e g i n ( ) ,

p r e v _ f i l e s . end ( ) , s t d : :

i n s e r t e r ( n e w _ f i l e s , n e w _ f i l e s

. b e g i n ( ) ) ) ;

/ / add new f i l e s t o o b s e r v a t i o n

f o r ( f i l e s e t : : c o n s t _ i t e r a t o r

i t e r = n e w _ f i l e s . b e g i n ( ) ;

i t e r != n e w _ f i l e s . end ( ) ; ++

i t e r )

{

c o n s t i o : : O b s e r v e d F i l e &

of = (∗ i t e r ) ;

i n t r e g _ r e t = r e g e x e c (&

conf . regex , o f .

g e t F i l e ( ) . ge tBasename

( ) . c _ s t r ( ) , 0 , NULL,

0 ) ;

i f ( ! r e g _ r e t && ! con f .

i n v e r t )
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c o n t i nu e ;

i f ( r e g _ r e t && conf .

i n v e r t )

c o n t i nu e ;

/ / p r i n t e r r o r message ,

i f r e g e x e r r o r o c c u r s

i f ( r e g _ r e t && r e g _ r e t

!= REG_NOMATCH)

{

char
msgbuf

[ 1 0 0 ] ;

r e g e r r o r

(

r e g _ r e t

,&

con f .

regex

,

msgbuf

,

s i z e o f
(

msgbuf

) ) ;

IBRCOMMON_LOGGER_TAG

(TAG,

i n f o )

<< "

ERROR

:

r e g e x

match

f a i l e d

: "

<<



88 Code used for file syncronization

s t d : :

s t r i n g

(

msgbuf

) <<

IBRCOMMON_LOGGER_ENDL

;

}

/ / add new f i l e t o t h e

o b s e r v e d s e t

o b s e r v e d _ f i l e s . push_back

( o f ) ;

/ / l o g o u t p u t

IBRCOMMON_LOGGER_TAG(TAG

, i n f o ) << " f i l e

found : " << of .

g e t F i l e ( ) . ge tBasename

( ) <<

IBRCOMMON_LOGGER_ENDL

;

}

/ / s t o r e c u r r e n t f i l e s f o r t h e

n e x t round

p r e v _ f i l e s . c l e a r ( ) ;

p r e v _ f i l e s . i n s e r t ( c u r r e n t _ f i l e s .

b e g i n ( ) , c u r r e n t _ f i l e s . end ( ) )

;

IBRCOMMON_LOGGER_TAG(TAG, n o t i c e

)

<< " f i l e

s t a t i s t i c s : "
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<<

o b s e r v e d _ f i l e s

. s i z e ( ) << "

obse rved , "

<< d e l e t e d _ f i l e s

. s i z e ( ) << "

d e l e t e d , "

<< n e w _ f i l e s .

s i z e ( ) << "

new "

<<

IBRCOMMON_LOGGER_ENDL

;

/ / f i n d f i l e s t o send , c r e a t e

s t d : : l i s t

f i l e s _ t o _ s e n d . c l e a r ( ) ;

f i c h e i r o s _ e n v i a r . c l e a r ( ) ;

IBRCOMMON_LOGGER_TAG(TAG, n o t i c e

) << " u p d a t i n g o b s e r v e d f i l e s

: " << IBRCOMMON_LOGGER_ENDL;

f o r ( f i l e l i s t : : i t e r a t o r i t e r =

o b s e r v e d _ f i l e s . b e g i n ( ) ; i t e r

!= o b s e r v e d _ f i l e s . end ( ) ; ++

i t e r )

{

i o : : O b s e r v e d F i l e &of =

(∗ i t e r ) ;

/ / t i c k and up da t e a l l

f i l e s

of . u p d a t e ( ) ;

f i l e D a t a . c l e a r ( ) ;

f i l e D a t a . append ( o f .

g e t F i l e ( ) . ge tBasename

( ) . c _ s t r ( ) ) ;

char b u f f [ 2 0 ] ;
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char ∗ f i l e P a t h = new
char [ o f . g e t F i l e ( ) .

g e t P a t h ( ) . l e n g t h ( ) +

1 ] ;

s t r c p y ( f i l e P a t h , o f .

g e t F i l e ( ) . g e t P a t h ( ) .

c _ s t r ( ) ) ;

/ / do s t u f f

i f ( ! CalcFileMD5 (

f i l e P a t h , md5 ) )

p u t s ( " E r r o r o c c u r e d ! " ) ;

p r i n t f ( " t imes t amp : %d " ,

o f . g e t F i l e ( ) .

l a s t m o d i f y ( ) ) ;

s t r i n g s t r e a m s s ;

s s << of . g e t F i l e ( ) .

l a s t m o d i f y ( ) ;

s t r i n g t imes t amp = s s .

s t r ( ) ;

f i l e D a t a . append ( " " ) ;

f i l e D a t a . append ( md5 ) ;

i n t comun =0;

i f ( s t d : : f i n d ( elementosComuns . b e g i n ( ) ,

e lementosComuns . end ( ) , f i l e D a t a . c _ s t r

( ) ) != elementosComuns . end ( ) )

{

comun =1;

}

e l s e {

comun =0;
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}

i f (

l i s t H o s t B P r e s e n t

) {

i f ( o f .

g e t S t a b l e C o u n t e r

( ) > con f .

r o un ds | | !

s t r c mp ( o f .

g e t F i l e ( ) .

ge tBasename ( )

. c _ s t r ( ) ,

l i s t L o c a l H o s t

. c _ s t r ( ) ) )

{

i f ( s t r c mp ( o f . g e t F i l e ( ) .

ge tBasename ( ) . c _ s t r ( )

, l i s t H o s t B . c _ s t r ( ) ) )

{

i f ( ( ! comun ) ) {

s e n t _ h a s h e s

.

i n s e r t

( o f .

ge tHash

( ) ) ;

f i l e s _ t o _ s e n d

.

i n s e r t

(∗
i t e r )

;

}
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}

}

}

i f ( ! l i s t H o s t B P r e s e n t ) {

i f ( ! s t r cm p ( o f .

g e t F i l e ( ) .

ge tBasename ( )

. c _ s t r ( ) ,

l i s t L o c a l H o s t

. c _ s t r ( ) ) ) {

i f ( ( !

comun

) ) {

s e n t _ h a s h e s

.

i n s e r t

( o f .

ge tHash

( ) ) ;

f i l e s _ t o _ s e n d

.

i n s e r t

(∗
i t e r )

;

}

}

}

IBRCOMMON_LOGGER_TAG(TAG

, n o t i c e )

<< " \ t "

<< of . g e t F i l e ( ) .

ge tBasename ( )

<< " : "

<< of .

g e t S t a b l e C o u n t e r

( )
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<<

IBRCOMMON_LOGGER_ENDL

;

}

i f ( ! f i l e s _ t o _ s e n d . empty ( ) )

{

s t d : : s t r i n g s t r e a m s s ;

f o r ( f i l e s e t : :

c o n s t _ i t e r a t o r i t =

f i l e s _ t o _ s e n d . b e g i n ( )

; i t != f i l e s _ t o _ s e n d

. end ( ) ; ++ i t ) {

s s << (∗ i t ) .

g e t F i l e ( ) .

ge tBasename ( )

<< " " ;

f i c h e i r o s _ e n v i a r

. i n s e r t (∗ i t ) ;

IBRCOMMON_LOGGER_TAG( "

d t n o u t b o x " , i n f o ) << "

f i l e s s e n t : " << s s .

s t r ( ) <<

IBRCOMMON_LOGGER_ENDL

;

t r y {

/ / c r e a t e a b lob

ibrcommon : : BLOB

: : R e f e r e n c e

b lob =

ibrcommon : :

BLOB : : c r e a t e

( ) ;

/ / w r i t e f i l e s

i n t o BLOB

w h i l e i t i s

l o c k e d
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{

ibrcommon

: :

BLOB

: :

i o s t r e a m

s t r e a m

=

b lob .

i o s t r e a m

( ) ;

i o : :

T a r U t i l s

: :

w r i t e

(∗
s t r eam

,

r o o t ,

f i c h e i r o s _ e n v i a r

) ;

}

/ / c r e a t e a new

bu nd le

d t n : : d a t a : : EID

d e s t i n a t i o n =

EID ( con f .

d e s t i n a t i o n ) ;

/ / c r e a t e a new

bu nd le

d t n : : d a t a : :

Bundle b ;

/ / s e t

d e s t i n a t i o n

b . d e s t i n a t i o n =

d e s t i n a t i o n ;
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/ / add pay load

b l o c k u s i n g

t h e b lob

b . push_back ( b lob

) ;

/ / s e t

d e s t i n a t i o n

a d d r e s s t o

non−s i n g l e t o n

, i f

c o n f i g u r e d

i f ( con f .

b u n d l e _ g r o u p )

b . s e t (

d t n : :

d a t a

: :

P r imaryBlock

: :

DESTINATION_IS_SINGLETON

,

f a l s e
) ;

/ / send t h e

bu nd l e

c l i e n t << b ;

c l i e n t . f l u s h ( ) ;

} ca tch ( c o n s t
ibrcommon : :

IOExcep t i on &

e ) {

IBRCOMMON_LOGGER_TAG

(TAG,

e r r o r

) <<
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" send

f a i l e d

: "

<< e .

what

( ) <<

IBRCOMMON_LOGGER_ENDL

;

}

s s . c l e a r ( ) ;

f i c h e i r o s _ e n v i a r . c l e a r ( )

;

}

}

/ / w a i t d e f i n e d s e c o n d s

ibrcommon : : MutexLock l (

_wa i t_cond ) ;

IBRCOMMON_LOGGER_TAG(TAG, n o t i c e

) << con f . i n t e r v a l <<" ms

w a i t " <<

IBRCOMMON_LOGGER_ENDL;

whi le ( ! _ w a i t _ a b o r t && _ r u n n i n g )

{

_wa i t_cond . w a i t ( con f .

i n t e r v a l ) ;

}

_ w a i t _ a b o r t = f a l s e ;

}

/ / c l e a n up r e g e x

r e g f r e e (& conf . r e g e x ) ;

/ / c l o s e t h e c l i e n t c o n n e c t i o n

c l i e n t . c l o s e ( ) ;
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/ / c l o s e t h e c o n n e c t i o n

conn . c l o s e ( ) ;

}

catch ( c o n s t ibrcommon : : s o c k e t _ e x c e p t i o n &)

{

i f ( _ r u n n i n g )

{

IBRCOMMON_LOGGER_TAG(TAG, e r r o r )

<< " C o n n e c t i o n t o bu nd l e

daemon f a i l e d . R e t r y i n " <<

b a c k o f f << " s e c o n d s . " <<

IBRCOMMON_LOGGER_ENDL;

ibrcommon : : Thread : : s l e e p ( b a c k o f f

∗ 1000) ;

/ / i f b a c k o f f < 10 m i n u t e s

i f ( b a c k o f f < 600)

{

/ / s e t a new b a c k o f f

b a c k o f f = b a c k o f f ∗ 2 ;

}

}

}

catch ( c o n s t ibrcommon : : IOExcep t ion &)

{

i f ( _ r u n n i n g )

{

IBRCOMMON_LOGGER_TAG(TAG, e r r o r )

<< " C o n n e c t i o n t o bu nd l e

daemon f a i l e d . R e t r y i n " <<

b a c k o f f << " s e c o n d s . " <<

IBRCOMMON_LOGGER_ENDL;

ibrcommon : : Thread : : s l e e p ( b a c k o f f

∗ 1000) ;

/ / i f b a c k o f f < 10 m i n u t e s

i f ( b a c k o f f < 600)

{

/ / s e t a new b a c k o f f



98 Code used for file syncronization

b a c k o f f = b a c k o f f ∗ 2 ;

}

}

}

ca tch ( c o n s t s t d : : e x c e p t i o n &) { } ;

}

/ / c l e a r o b s e r v e d f i l e s

o b s e r v e d _ f i l e s . c l e a r ( ) ;

# i f d e f HAVE_LIBTFFS

/ / c l ean−up

i f ( i m a g e r e a d e r != NULL) d e l e t e i m a g e r e a d e r ;

# e n d i f

re turn ( EXIT_SUCCESS ) ;

}

i n t CalcFileMD5 ( char ∗ f i l e , char ∗md5_sum )

{

# d e f i n e MD5SUM_CMD_FMT "md5sum %. " STR(PATH_LEN) " s 2 >/ dev /

n u l l "

char aux [PATH_LEN + s i z e o f (MD5SUM_CMD_FMT) ] ;

s p r i n t f ( aux , MD5SUM_CMD_FMT, f i l e ) ;

# unde f MD5SUM_CMD_FMT

FILE ∗ p o i n t e r = popen ( aux , " r " ) ;

i f ( p o i n t e r == NULL) re turn 0 ;

i n t i , ch ;

f o r ( i = 0 ; i < MD5_LEN && i s x d i g i t ( ch = f g e t c ( p o i n t e r ) ) ; i

++) {

∗md5_sum++ = ch ;

}

∗md5_sum = ’ \ 0 ’ ;

p c l o s e ( p o i n t e r ) ;

re turn i == MD5_LEN;
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}
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