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Abstract

In recent years, deep learning has become more and more useful, solving increasingly complicated
applications with greater accuracy over time, particularly in computer vision and natural language
processing. However, important technical questions are raised such as high computational costs
and their proneness to overfit. The latter is defined as an indicator of a network’s generalization
capabilities, i.e., its ability to perform well on previously unobserved inputs.

As an attempt to minimize overfitting, several regularization techniques – which are usually
explicitly designed to reduce the test error at the expense of increased training error – are widely
available, such as early stopping, weight decay and layer dropout. Despite their widespread use
and known capabilities, literature provides very little insight on how to apply said strategies or
guidelines on how much they positively (or negatively) impact a network’s overfitting issue. The
idea of experimenting to see what works and the inability to identify just why it does further
solidifies the black-box design neural networks are known for and that has slowed implementation
of deep systems on industries that need explainable networks.

This dissertation is a first attempt at modeling dropout – a highly performant and immensely
popular regularization technique – with meta-learning. Essentially summarized as “learning to
learn”, meta-learning is the use of ML techniques to infer their own behaviour. It is typically used
for hyperparameter tuning and algorithm selection but its capability of generalizing to environ-
ments never encountered before also unlocks considerable insight towards a network’s thought
process, per se. Meta-learning requires the extraction of dataset characteristics – dubbed “meta-
features” – which can be extracted in many ways.

The approach dives into the domain of image classification and, therefore, makes use of Con-
volutional Neural Networks (CNN). This architectural choice raises the challenge of developing
appropriate data characteristics as existing ones are for tabular data, given that meta-learning has
yet to be applied to a field like computer vision. We extensively analyse a proposal for meta-
features in recent work and propose a new approach to data characterization and empirically eval-
uate it.

Results confirm that designing suitable meta-features for image classification is an intricate
process with numerous interesting challenges in that area.

Keywords: deep learning, convolutional neural networks, meta-learning, regularization, dropout
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Resumo

Recentemente, deep learning tem-se tornado mais e mais útil, resolvendo aplicações incremen-
talmente complicadas com alta eficácia, particularmente nos campos de visão de computador e
processamento de linguagem natural. Porém, o crescimento progressivo em tamanho e complex-
idade de modelos deep learning terá sido acompanhado de questões técnicas importantes como
custos computacionais elevados e a tendência ao overfit. Overfit é definido como um indicador
das capacidades de generalização de uma rede, isto é, a sua aptidão para ser eficaz em inputs
previamente inobservados.

Numa tentativa de minimizar overfitting, várias técnicas de regularização – usualmente ex-
plicitamente constituídas para reduzir o erro de testes à custa de um erro de treino maior – estão
disponíveis, como early stopping, weight decay e dropout de camadas. Ainda assim, apesar da sua
popularidade e conhecida eficácia, a literatura fornece pouco conhecimento em como aplicar as
estratégias para solucionar o overfitting ou guias sobre os seus impactos (positivos ou negativos).
A ideia de experimentar para ver o que funciona e a inaptidão de identificar precisamente o porquê
que funciona solidifica ainda mais o design de caixa-negra inerente a redes neuronais que tem sido
o entrave à implementação de sistemas deep em indústrias que necessitam de redes explicáveis.

Esta dissertação tenta expandir em explanabilidade de regularização, utilizando uma abor-
dagem de metalearning. Essencialmente sumarizado como "aprender a aprender", metalearning
consiste no uso de técnicas de machine learning para inferir o seu próprio comportamento. É
típicamente utilizado para ajustes de hiperparâmetros e seleção de algoritmos, mas é a sua ca-
pacidade de generalização para ambientes nunca antes explorados que desbloqueia conhecimento
considerável sobre a forma de pensar de uma rede, por assim dizer.

A abordagem planeada contém experimentação com dropout – uma técnica de regularização
popular e altamente eficaz – para prevenir overfitting e subsequentemente impulsionar a eficácia
de redes neuronais convolucionais e inferir meta-modelos que representam conhecimento sobre
a sua eficiência. Esta escolha arquitetural levanta o desafio de desenvolver caraterísticas de data
apropriadas, visto que as existentes são para informação tabelar, dado que metalearning ainda não
terá sido aplicado em larga escala a um campo como visão por computador.

Keywords: metalearning, regularização, deep learning, redes neuronais convolucionais
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“In an interstellar burst,
I am back to save the universe.”
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Introduction2

4
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
8

10

The biggest evolutionary step for deep learning happened in 1999, where computers started

becoming faster at processing data and GPUs (graphics processing units) were introduced, end-12

ing the AI winter the field had had from 1985 to the 1990s. This made way for an increase in

computational speeds by 1000 times over a 10 year span that allowed neural networks to compete14

with SVMs (support vector machines), one of the most popular predictors at the time [17]. The

expression deep learning gained popularity to illustrate how researchers were now able to train16

deeper neural networks than even before [43].

Due to the vast array of network types that specialize in specific tasks, deep learning is capable18

of being a viable and excellent solution for a myriad of problems. For instance, Recurrent Neural

Networks (RNNs) – networks where data can flow in any direction – have been proven highly20

competent on large scale language modeling, fundamental for language understanding [27]. Gen-

erative Adversarial Networks’ (GANs) ability to generate new data given a training set has been22

useful to recover features in astrophysical images of galaxies [42], up-scaling low-resolution video

games [51] and generating or swapping human faces to an almost lifelike degree. Convolutional24

Neural Networks (CNNs) and their effectiveness in image recognition and classification have been

indispensable for automatically generating image descriptions [28], performing style transfer [19],26

facial recognition and many more. Figure 1.1 shows a chart containing the most popular existing

neural network architectures right now.28

1.1 Context and motivation

Deep neural networks are artificial neural networks with more complex architectures. They are dis-30

tinguished from basic artificial neural networks by their depth and the inclusion of multiple “hid-

den” layers between the input and output layers. These networks learn by adjusting the weights of32

1



2 Introduction

Figure 1.1: Examples of the most popular existing neural network architectures [5]

connections between neurons, across multiple layers. Activation functions attach to each neuron

and determine whether its input is generally useful for the prediction. It is this adjustment mech- 2

anism that guides networks towards converging on an output. However, in some circumstances,

models are unable to generalize beyond training data. This is known as overfitting. 4

Nowadays, the explosion of the big data field means data scientists handle an increasingly

higher amount of data. This abundance comes with a curse and makes feature selection, dimen- 6

sion reduction and regularization steps become more and more necessary to avoid the bane of

overfitting [15]. As an example, the ImageNet dataset has over 15 million labeled high-resolution 8

images, spread across about 22,000 categories. One of the largest convolutional neural networks

to date was trained to attempt it and the network’s size was reported as the source of a significant 10

overfitting issue [31].

To better understand overfitting, we introduce the concept of capacity: a model’s ability to 12

fit a wide variety of functions. Any model should have an appropriate level of capacity for the

complexity of the task at hand and the amount of training data they are provided with [24]. When 14
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a network’s capacity happens to be higher than needed, it overfits because it is training on it too

much. If a model is said to have low capacity, then it is failing to find meaningful patterns on the2

data and is not training well enough.

While overfitting is an integral part of the deep learning process, there is a wide range of4

regularization techniques to eliminate it or potentially mitigate their overall impact. The most

popular techniques are:6

• L1 regularization – also known as Lasso Regression – reduces less important variables

to zero by adding the summation of the weights of the variables to the cost function. L28

regularization – also known as Ridge Regression – reduces them to values close but not

zero by adding the summation of squared weights of the variables to the cost function.10

Overall, these techniques limit the capacity of models by adding a parameter norm penalty

to the objective function;12

• Dropout lets a model train and evaluate an ensemble of networks by removing non-output

units. Simply put, a set of neurons are deactivated at random during the training phase with14

set probability, removing all incoming and outgoing edges to the units in the set. While

training, neurons naturally develop co-dependency that hinders their individual power. The16

theory behind it is that powering down neurons at random ensures outputs are not as depen-

dent on eachother, preventing overfitting;18

• Early stopping halts all training as soon as validation error increases. In other words, it

only trains up until the point where the model starts overfitting.20

These strategies are valid for various contexts and useful in specific situations. However, a big

portion of development time still boils down to experimenting with which technique yields the best22

results on any given situation. Nowadays, data scientists that perform any type of machine learning

eventually adopt a trial-and-error methodology at some stage of development. There is a vast set of24

algorithms and network architectures available for usage on many different contexts and literature

is at times unclear as to when to use said technique and its expected outcomes. Additionally,26

artificial neural networks expose an overwhelming number of hyperparameters to tune a model.

Significant strides towards solving the hyperparameter optimization problem have been made, like28

more sophisticated implementations of grid searching – in its core, a bruteforce way of testing and

evaluating a set of hyperparameter combinations. Nonetheless, the performance of many machine30

learning methods still depend on manually engineered features and hyperparameter settings and

are the cause of either mediocre or state-of-the-art results [23].32

This is partially why, as of late, the scientific community’s efforts have turned towards the

explainability of neural networks. A disadvantage of deep neural networks is their internal logic34

of abstract nature and of difficult interpretation, a characteristic known as a “black box" design

[22]. Breaking deep learning’s black box is an asset to both saving development time and reassur-36

ing industries where artificial intelligence choices are critical and must be made clear for human

validation, such as the medical or the banking industries.38
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When presented with an overfitting scenario, the very same trail-and-error approach reoccurs.

Although the literature is rich in regularization technique variety, it does not specifically explain 2

when to pick one over another and its expected effects. At the very least, data scientists should

have a rough guideline on which techniques are fit for any given context, in an attempt to reduce 4

development time.

1.2 Objectives 6

The dissertation’s goal is to study relationships between a network’s input, the selected regu-

larization technique and the model’s performance. We aim to advance the literature regarding 8

the explanability of regularization techniques and their optimal use cases on convolutional neural

networks. During this path, it is expected to achieve advancements as to which approaches for 10

extracting metafeatures from images are proven effective. This is a surprisingly challenging task

due to the lack of literature on the subject. For this purpose, a list of tasks was established. 12

The reasoning for the usage of convolutional neural networks is twofold. On one hand, the

architecture is extremely popular and its reputation keeps expanding, so aiding researchers on an 14

already established, widely used algorithm seems appropriate. On the other hand, recent work has

proven that extracting features from image data is not only possible, but can be achieved in many 16

different ways [46]. Additionally, there is known synergy between this network type and dropout.

All these factors guided us towards selecting CNNs as our primary model. 18

Metalearning’s goal is to assist a user to identify the most suitable algorithm(s), given a certain

context. It searches for correlations between dataset attributes and the performance of networks 20

[38], enabling a general idea of which approach(es) perform best. It is metalearning’s ability to

explain that is promising when thinking of regularization technique selection. 22

In the context of this dissertation, we will be using dropout as our main regularization tech-

nique. This choice boils down to its widespread use, popularity, ease of implementation and 24

straight-forward interpretation.

Additionally, this dissertation attempts to verify and build upon the way extracted dataset 26

features are structured in Sonsbeek, 2019. In that work, we believe the statistical meta-features

were calculated in a way that induces variance and that may cause significant accuracy drops. To 28

attempt to answer that, we came up with four distinct sampling approaches that should reduce

variance and make features more reliable. 30

In conclusion, this dissertation aims to provide rough guidelines as to how to regularize net-

works with dropout by obtaining a meta-model that represents knowledge about its effect. It also 32

tries to optimize the process of meta-feature calculation by implementing sampling approaches

that boost feature reliability. This helps better predict how relevant said features are to the prob- 34

lem at hand.
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1.3 Document overview

The remainder of this dissertation contains the following chapters:2

• Chapter 2, Background introduces to the reader brief explanations for concepts utilized

throughout this work, in an effort to provide the required knowledge to understand the prob-4

lem at hand. It covers the topics of deep learning, ConvNets, network regularization, meta-

learning and its meta-features, gradient boosting and evaluation metrics.6

• Chapter 3, Literature Review presents related work’s progress already made in the area,

namely in the fields of meta-learning applied to image data, regularizing with dropout and8

prior efforts towards neural network explainability.

• Chapter 4, Approach proposes a solution to the challenges established before, in terms10

of applying meta-learning to model dropout. Firstly, we present a general approach for the

issue and then focus on how the approach is tweaked in order to fit image data. Research12

questions for both sections are presented.

• Chapter 5, Experimental Setup describes the concrete implementation of the defined ap-14

proach, explaining the data preparation process, the selected convolutional network and

meta-model’s architecture.16

• Chapter 6, Results answers previously defined research questions by critical evaluation of

the experiment results.18

• Chapter 7, Conclusions provides a discussion point for design choices and limitations that

overall affect the dissertation, as well as guiding any future work on this work’s topics.20
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Chapter 2

Background2

4
2.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . 86

2.1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Meta-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.2.1 Meta-features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210

2.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Accuracy, precision and recall . . . . . . . . . . . . . . . . . . . . . . 1312

2.3.2 F1 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Binary crossentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

2.3.4 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
16
18

In this chapter, we introduce this dissertation’s most relevant topics so the reader may better

understand the described work. This includes an introduction to the field of deep learning and its20

overarching uses, the inner-workings of convolutional neural networks, regularization with special

reference to dropout, meta-learning, and more.22

2.1 Deep learning

Computers have come a long way to outperform humans in numeric and symbol computation,24

but have always struggled with more abstract, complex and inherently human tasks like pattern

and facial recognition. So, as an attempt to mimic biological neural networks, artificial neural26

networks were created.

ANNs can be thought of as weighted directed graphs where neurons are the nodes and the28

edges are the connections between them. There are two main architectural types of ANNs, ac-

cording to the information’s flow: in feed-forward networks, information flows from left to right30

without loops; whereas in recurrent networks, feedback connections exist.

7
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Figure 2.1: An example Multilayer Perceptron model [4]

The multilayer perceptron is the prevalent architecture for feed-forward networks, where neu-

rons are grouped into 3 or more interconnected layers: an input layer, one or more hidden layers 2

and an output layer. MLPs are memory-less, in that computing for a new set of inputs is indepen-

dent from previous network states. Conversely, recurrent networks are dynamic [26]. Figure 2.1 4

illustrates an example MLP network diagram.

A neural network learns by updating connection weights according to rules and patterns in- 6

ferred during training from provided examples – the training set. After a model is designed and

hyperparameters are fixed (either manually or by exploring an hyperparameter tuning approach), 8

the network automatically learns patterns on the data. Their ability to automatically establish a

ruleset is why artificial neural networks are so appealing for software developers. Because there is 10

no need to hardcode any guidelines or procedures the system should follow, it learns them on its

own. 12

Infering complex concepts out of simpler ones is the basis of deep learning and the reason why

even when variance alters data in unexpected ways, networks can still make accurate predictions. 14

For instance, correctly classifying an image of an object even when its shape varies depending on

the viewing angle. [24] 16

2.1.1 Convolutional neural networks

The go-to architecture for image recognition and classification are convolutional neural networks. 18

CNNs have fewer connections and parameters when compared to standard feedforward neural

networks, making them easier to train with very little impact on performance [30]. Their ability to 20

make strong and correct assumptions about the nature of images has been proven multiple times

across several fields, e.g. detecting and labeling objects and people in images, transcribing images, 22

tracking roads to guide autonomous vehicles, etc.

Convolutional neural networks operate in four different stages: convolution, non-linearity 24

(ReLU), pooling or subsampling and classification (through fully connected layers). Figure 2.2

illustrates an example ConvNet model. 26
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Figure 2.2: An example ConvNet model

As an input, ConvNets use images which have been converted to matrixes of pixel values.

Then, a series of convolutions are performed which have the model learning patterns in the data2

by sliding a smaller matrix – named "filter" – across the input image, computing a feature map.

CNNs automatically tweak the filters’ values during training although the network’s architecture4

and parameters like number of filters and size have to be explicitly declared. Changing the latter

directly influences how many features the network derives and, generally, may result on more6

accurate predictions. [7] The size of a feature map is managed by three parameters: depth – the

number of features used for convolution –, stride – number of pixels by which the filter matrix8

slides over the image –, and zero-padding – the act of padding the input matrix with zeros around

the border.10

ReLU (Rectified Linear Unit) is a type of activation function that is linear for all positive

values and zero for all negative values. After applying ReLU to an input feature map, the output12

is a rectified feature map where all negative pixel values have been replaced by zero.

The pooling step downsamples rectified feature maps by compressing the most important fea-14

tures onto a smaller matrix. The two most common functions used in this operation are average

pooling – calculating the average for each patch on the feature map – and max pooling – calculat-16

ing the maximum. Pooling not only reduces the size of the input to a manageable degree, but also

controls overfitting [2].18

After chaining convolutions and pooling, fully connected layers are attached to the end of the

network. Every neuron on a layer is connected to every neuron on the next layer, as traditional on20

multilayer perceptrons. The high-level features extracted by the previous layers are the now basis

for prediction by this smaller MLP. Softmax is the standardized activation function for this step,22

flattening the classification probability vector to an [0,1] interval and selecting the maximum.

2.1.2 Regularization24

In order to better explain the concept of regularization, one must firstly address the fundamentals

of overfitting in deep neural networks, as both ideas are closely tied. Overfitting occurs as an26

indicator of a DNN’s lack of generalization capabilities, i.e. a model is overfit when it performs

well on training data but fails to make accurate predictions on new data. Thankfully there are well28

established techniques which aim to constrict these behaviours.

These regularization techniques aim to limit the test error, often sacrificing training accuracy,30

and come in many forms. The success of each strategy is commonly related to the nature of

the machine learning problem and its dataset. Therefore, in practical deep learning scenarios, after32
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(a) Standard neural network (b) Standard neural network with dropout

Figure 2.3: Neural network diagram with and without dropout applied

appropriate network tuning, it is no surprise the best performant models usually have been suitably

regularized. [24] 2

Perhaps one of the most widely known, powerful and least computationally expensive regular-

ization techniques is dropout [47]. At its simplest form, dropout has the training phase randomly 4

deactivating hidden nodes with a set probability. This mechanism is aimed at removing connec-

tions between neurons that depend on eachother. Neuron co-dependency curbs the individual 6

power of each unit and leads to overfitting. [9] As altering nodes and weights during training ef-

fectively generates multiple sub-networks, dropout is frequently thought of as training in parallel 8

various neural networks with distinct architectures. Naturally, the base algorithm can be tweaked

so it may fit specific scenarios, e.g. using different probabilities for each layer. 10

Another approach could be decaying parameters that do not contribute significantly towards

reducing the objective function to make room for relevant ones to grow. This is the intent of L2
12

Regularization, as it is with weight decay. Intuitively, their purpose is to scale weights down in

proportion to their current size. The idea behind this strategy is based on large weights introducing 14

instability on the model while, conversely, smaller weights produce subtle, more desirable shifts

on it. [45] 16

2.2 Meta-learning

Metalearning in itself can be defined as learning the learning process, hence the self-referencing 18

portion of its name. A metalearning system assumes that extra knowledge may be extracted by

reckoning previous experience [12]. Depending on the problem at hand, data scientists may strug- 20

gle to determine a network’s most optimal hyperparameters, often engaging on a trial-and-error

methodology, as these choices are analogous to the nature of the data itself. This would mean a 22

certain set of parameters which happen to perform well on a dataset would have to be manually

recalculated for a new one. Metalearning aims to overcome this by adapting the algorithms to the 24

problem at hand, by searching for patterns across tasks.
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2.2.1 Meta-features

The first step towards effective metalearning is the extraction of dataset characteristics – dubbed2

"metafeatures" – which hope to correlate with a model’s efficacy. It is metalearning’s belief that a

dataset’s morphological characteristics hint towards the task at hand.4

In theory, all metafeatures extracted should follow two basic conditions: they should be helpful

metrics for algorithm performance evaluation; and they should not be too slow to compute [14].6

There are several viable ways to perform dataset characterization:

• General metafeatures consist of general dataset information that measure the complexity8

of the problem.

E.g. number of observations, attributes, output values, dataset dimensionality.10

• Statistical metafeatures are derived by performing statistical calculations on the dataset.

Mainly appropriated for continuous attributes.12

E.g. standard deviation, coefficient of variation, covariance, linear correlation coefficient,

skewness, kurtosis.14

• Information-theoretic metafeatures are most suitable to characterize discrete attributes,

where entropy expresses the dependency of a dataset’s attributes and the label. [44]16

E.g. normalized class/attribute entropy, equivalent number of attributes, mutual information

of class and attribute, noise-signal ratio, proportion of missing values.18

• Decision tree model-based metafeatures refer to inducing a decision tree model from a

dataset and extracting its characteristics. [3]20

E.g. maximal tree depth, number of leaves, number of nodes, leaf correlation.

• PCA metafeatures are gathered by performing principle component analysis and comput-22

ing principal component statistics.

E.g. PCA skewness, first PC, PCA kurtosis.24

• Landmarking metafeatures are computed by extracting the performance of applying sim-

ple learners to the dataset. [11]26

E.g. one nearest learner, decision node, naïve bayes.

When deriving metafeatures from image datasets, there are a few tactics which have been28

proven useful. Naturally, statistical features can and have been used with great success [48].

Yet there are a myriad of possibilities open for exploration. For example, features have been30

derived from a pre-trained convolutional neural network by extracting the neuron’s activity at the

penultimate layer [35]. These datapoints are then subsequently applied to other datasets. When32

tasks for distinct datasets greatly diverge (e.g. mixing banking and health data), adding task-

specific metafeatures to the process could be contemplated. [46]34



12 Background

2.2.2 Gradient boosting

Due to the lack of datapoints for the meta-learner (an issue that is addressed later in this document), 2

gradient boosting revealed itself as a viable option.

Boosting is a method of transforming weak learners into strong learners. Michael Kearns 4

describes it as an efficient algorithm for converting relatively poor hypotheses into very good

hypotheses. It trains a decision tree where each observation is assigned a weight proportional 6

to the difficulty for classification. Larger weights for difficult observations and smaller weights

for easy ones. A second tree grows on this weighted data, and the process repeats for a fixed 8

number of iterations. The goal is to improve upon the predictions of previous trees, fixating on

the toughest examples with highest errors. Specifically, the Gradient Boosting algorithm uses 10

gradients identify these shortcomings whereas in AdaBoost they are identified by high-weight

datapoints. This concept of creating a final model based on the performance of individual models 12

makes gradient boosting an ensemble learner.

Figure 2.4: Gradient boosting process

XGBoost is an implementation of gradient boosted decision trees focused on performance and 14

flexibility. Its creator, Tianqi Chen, describes it as a self-contained derivation of general gradient

boosting algorithm. It allows for model inspection, feature importance analysis and automatic 16

sparse data optimization. XGBoost is also widely regarded as being the fastest open source ap-

proach to gradient boosted trees (competing against R packages, scikit-learn, H20, Spark and 18

more) [37]. Because of these benchmarks, it is the go-to framework for winners of data science

competitions like Kaggle [8]. 20
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2.3 Evaluation metrics

Every machine learning model must be subject to multiple evaluation metrics as benchmarks can2

widely vary based on the selected metric.

2.3.1 Accuracy, precision and recall4

Perhaps the simplest classification measures are accuracy, precision and recall. They all have their

use cases but each carries its own caveats.6

Accuracy = (T P+T N)/(T P+FP+FN +T N) (2.1)

Accuracy is the proportion of true predictions among all cases. It is suitable for well balanced

and unskewed problems. When it is inbalanced, it provides highly accurate but purposeless results.8

Precision = (T P)/(T P+FP) (2.2)

Precision is the proportion of true positives among all positive cases. Useful when prediction

has to be highly rigorous, i.e. it’s preferable to miss a few landslide cases instead of triggering10

false-positives.

Recall = (T P)/(T P+FN) (2.3)

Recall is the proportion of correctly classified actual positives. Useful when capturing as many12

positives as possible is a priority. False-positives are welcome here.

2.3.2 F1 score14

Accuracy, precision and recall can all be exploited (e.g. recall is 1 if we predict 1 for all examples).

F1 score (also known as F-measure) is the harmonic mean of precision – the proportion of predicted16

positives which are true – and recall – the proportion of positives which were correctly predicted.

It seeks balance between precision and recall while taking into account uneven class distributions.18

F1 can also be extended to support different weights and multiclass problems. [1]

F1 = 2∗ precision∗ recall
precision+ recall

(2.4)

2.3.3 Binary crossentropy20

Also known as log loss, binary crossentropy is a metric effective for binary classifiers. The uncer-

tainty of a forecast is weighted against the actual label. Like accuracy, it is also sensitive to class22

inbalances. It’s defined by equation 2.5, where p is the probability of predicting 1.

−(y log(p)+(1− y) log(1− p)) (2.5)
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2.3.4 ROC curve

The ROC (Receiver Operating Characteristic) curve plots the true positive rate (sensitivity, recall) 2

against the false positive rate (1− sensitivity). The area under the ROC curve (AUC) separates the

positive from the negative classes. When a model has an AUC close to 1, its separability measure 4

is nearly perfect and can safely distinguish between classes. When AUC is 0.5, the network is as

good as picking randomly. 6
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This chapter presents preliminary literature review on two main fronts, which are considered

the main focus of this work. Research was made resorting to the keywords metalearning, regular-12

ization, dropout, l1-regularization, image segmentation and metafeatures. All papers were found

by inserting the keywords into Google Scholar and Semantic Scholar.14

3.1 Regularizing with dropout

The literature provides benchmarks available across many regularization techniques. In our dis-16

sertation work, we are mostly concerned about the inner-workings of dropout.

Slatton, 2014 has attempted to compare weight decay to dropout in terms of efficiency and18

most optimal context by training on a smaller subset of the MNIST database. Its main findings

were that in situations where dropout performs well, adding weight decay can improve accuracy20

slightly; and that dropout appears to be most helpful on denser networks, with significant negative

results on smaller ones. Conversely, weight decay appears to aid models which are less propense22

to overfit. These conclusions do not explicitely explain why this is so and the literature urges

future work on this area to consider variations to the dropout algorithm and more complex weight24

decay models.

Srivastava, 2013 set to understand the effects of applying dropout to several datasets with26

different data sources: image data (MNIST, TIMIT), microphone speech (SVHM), text (Reuters-

RCV1) and more. In spite of its notable results, little is known about dropout’s averaging, reg-28

ularization and convergence properties. For instance, the usage of probability q = 1− p = 0.5

for feature detection deletion remains unexplained as to why this specific value is the norm [39].30

However, its success in combination with weight decay [45] and max-norm constraints – enforcing

an absolute upper bound at each hidden unit by a fixed constant c (with values typically ranging32

15
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from 3 to 4) – is well documented. As expected, dropout leads to improvements across all datasets.

It is hypothesized that this efficiency comes from preventing intra-layer dependency, as each unit 2

is made unreliable. This idea is further supported by inspecting hidden layers’ understanding of

the data. In networks without dropout, patterns individually do not seem to hold intelligible in- 4

formation whereas, conversely, networks with dropout detect edges and spots. Sparsity is also

affected when dropout is applied, as a substantially lower number of neurons fire at the presence 6

of a stimuli when compared with vanilla networks.

Wu and Gu, 2015 set to demonstrate the effects of applying dropout to different layers of a 8

ConvNet – fully-connected, convolutional, max-pooling layers and permutations of these. On the

MNIST dataset, a combination of max-pooling and fully-connected layer dropout yielded the least 10

test error, while a non-regularized network performed the worst. Their findings are shown in Table

3.1. 12

Method Error %
No dropout 0.81
Fully-connected dropout 0.56
Convolutional dropout 0.60
Max-pooling dropout 0.47
Convolutional and fully-connected dropout 0.50
Convolutional and max-pooling dropout 0.61
Max-pooling and fully-connected dropout 0.39

Table 3.1: MNIST test errors for 1x28x28-20C5-2P2-40C5-2P2-1000N-10N trained with dropout
in various types of layers [52]

For the CIFAR-10 and CIFAR-100 datasets, results are somewhat identical, showing a clear

advantage to using max-pooling dropout allied with FC dropout. Max-pooling only captures 14

the strongest activation in the pooling region, disregarding all other activations, while average-

pooling downplays high activations because of it assigns equal contributions to all units. Dropout 16

in max-pooling layers is set to avoid these disadvantages because it introduces stochasticity. Fully-

connected layers are always a promising target for regularization because of their big number of 18

units.

The dropout method has inspired multiple authors to tweak and create new models that can 20

outperform dropout. For instance, DropConnect (Wan et al., 2013) regularizes large feed-forward

nets by, instead of randomly setting activations to zero, setting a random subset of weights to zero. 22

This makes the fully-connected layers sparsely connected in which its connections are decided in

training time. Each hidden unit receives a subset of connections from the previous layer. Its exper- 24

iments ran on popular image recognition datasets (MNIST, CIFAR-10, SVHN, NORB), achieving

state-of-the-art results in most tests. Another example is the stochastic pooling explored by Zeiler 26

and Fergus, 2013. Zeiler and Fergus saw the limitations of dropout on convolutional layers and

attempted to adapt the dropout mechanism to them by making the their pooling a stochastic pro- 28

cess, instead of deterministic, like the usual average and max-pooling operations. It defends that

instead of throwing information away, networks should select from what it is already providing. 30
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Based on a multinomial distribution of activations within a pooling region, a single pooled map

response is selected. The model shows state-of-the-art performance when applied to multiple2

common datasets: MNIST, CIFAR-10, CIFAR-100 and SVHN.

Ba and Frey, 2013 takes inspiration from the concept of dropout by creating a binary belief4

network that stochastically adapts its architecture based on input. The result is a network that,

instead of randomly switching neurons off and on, does so depending on input activities. This6

approach comes from the authors’ concern that dropout turns off highly confident hidden units

half of the time. Overall, this standout network appears to noticeably outperform standard dropout8

networks on the MNIST and NORB datasets, and even deeper and more complex models. These

results seem very relevant in the context of this dissertation, given the fact that both projects limit10

themselves to convolutional neural networks.

Zhang et al., 2018 aims to detect multiple sclerosis by developing a ConvNet model that could12

train on a balanced dataset of images of healthy and unhealthy brain slices. Applying dropout to

the network yielded an accuracy boost of 0.88% compared to a network without any regulariza-14

tion. Their approach follows the common practices for regularizing convolutional networks with

dropout: it is used before fully-connected layers (rather than on convolution layers) and with an16

average retention probability of 0.5. In fact, their model includes 7 convolution and 3 FC lay-

ers and dropout is applied to each of the latter (with retention probabilities of 0.4, 0.5 and 0.5,18

respectively). Remember that retention rate is the reverse of dropout rate, so in fact the first fully-

connected layer is dropping over half of its hidden units during training.20

Figure 3.1: Model training and test accuracies for networks with and without dropout
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Figure 3.1 illustrates the prevention of fully-connected layers’ weight co-adaptation by em-

ploying dropout. In conjunction with parametric ReLU, an activation function that improves model 2

fitting with low overfitting risk, Zhang accomplished state-of-the-art results in comparison to other

multiple sclerosis detection systems. 4

Study Dropout type Dropout rate(s)
Slatton, 2014 All layers p = 0.5
Srivastava, 2013 Only in FC + all layers p = 0.8 (1st FC), p = 0.5 (rest)
Wu and Gu, 2015 Mixed p = 0.8 (1st FC), p = 0.5 (rest)
Wan et al., 2013 Custom n/a
Zeiler and Fergus, 2013 Custom n/a
Ba and Frey, 2013 Custom n/a
Zhang et al., 2018 Only in FC p = [0.6,0.5,0.5]

Table 3.2: Study comparison regarding dropout’s experimental setup

In conclusion, through analysis of the study comparison Table 3.2 regarding the studies’

dropout experimental setup, we may recognize a few patterns and establish some ground rules: 6

• Dropout is capable of being applied to both/either convolutional and/or fully-connected lay-

ers and both are able to produce positive results. However, there are still a few caveats for 8

applying dropout to convolutional layers and is still sought to be unsuitable by a few authors

[21]. Based on this reasoning, we resorted to strictly applying it to FC layers; 10

• Regardless of selected layer, dropout rates tend to hover around value p= 0.5. This prompted

us to also use this value in this dissertation; 12

• Dropout does not need to be strictly followed, as multiple researchers have borrowed from

dropout’s base idea and implemented their own regularization approaches with success. 14

3.2 Extracting metafeatures from images

The process of extracting metafeatures from images is challenging due to the lack of literature on 16

the matter. Most techniques are aimed at tabular data and not image data specifically.

Sonsbeek, 2019 advances medical image segmentation state-of-the-art through a metalearning 18

approach. It proposes a system that automatically selects a deep learning model fit to solve a spe-

cific problem, illustrating how past performance of algorithms combined with meta-information 20

of a new dataset yield valuable predictions. It trained and validated on medical datasets pulled

from the Medical Segmentation Decathlon (MSD) challenge. All datasets include imagery of 22

different human body regions captured through a pair of modalities (either magnetic ressonance

scans or computed tomography) and vary from dozens to a few hundred instances on each train 24

and test sets. When deriving features from the datasets, the authors underlined three different

approaches. Firstly, statistical metafeatures describe the numerical properties of a distribution of 26
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data. A few examples are a dataset’s number of instances or other measures used to describe dis-

tribution, like skewness, correlation, sparsity or kurtosis. Secondly, convolutional neural networks2

operate by performing automatic feature extraction on data to make predictions. So deep learn-

ing metafeatures are automatically fetched by any CNN architecture albeit at the cost of holding4

unclear meaning. One dataset’s features are then correlated with others’ in an attempt to emulate

how, in statistical datasets, two datasets can be compared through their data distribution. Finally,6

sometimes datasets’ particularities hinder feature extraction due to how widely different the nature

of the data is. Task-specific metafeatures identify these divergence aspects. In the medical image8

segmentation scenario, that would mean introducing metrics like whether data is captured through

CT or MR scans.10

Naseer and Zafar, 2018 successfully used both convolutional and long short-term memory

networks to train on a dataset consisting of a cursive script language called Urdu in hopes of12

recognizing characters within ligatures of distinct font sizes. Metafeatures are extracted from lig-

ature thickness graphs, models inferred from the dataset, effectively categorising the metafeatures14

as model-based. It achieved a network performance ranging between 90% and 99.8% and the

average performance when using meta-features surpassed the usage of raw images by 1.01%.16

Lorentzon, 2017 investigates features used for selecting images which are worthy of further

analysis, according to three different measures: having good quality, salient content and being18

unique. The work makes use of the Common Objects in Context (COCO) dataset, which contains

over 200k labeled images across 91 categories such as food, vehicles, furniture, domestic appli-20

ances and cutlery. The paper makes the distinction between iconic images – the subject is centered

and in canonical perspective – and non-iconic images – contain contextual information and subject22

is in non-canonical perspective. Three methods for feature extraction are considered. Histogram

of oriented gradients (HOG) is a feature descriptor used for the purpose of object detection where24

an image is divided into small connected regions and, for all pixels in each, a histogram of gradi-

ent directions is computed. Representing an image in the discrete cosine transformation domain26

(DCT) is concentrating most of the visually meaningful information in a set of coeficients. A con-

volutional neural networks’ (CNN) convolutional layers automatically perform feature extraction28

via filters which detect patterns in the data and interpret it in a unique way. Their output is then

sent to the fully connected layers where prediction happens. This work’s selected predictor is a30

support vector machine (SVM) which functions by laying down an hyper-plane that isolates one

class from the other, maximizing the margin between the center-most points on both classes. In32

the end, DCT alongside the SVM classifier was helpful is distinguishing between good and bad

quality images, while CNN performed well when separating salient from non-salient images.34

Campos et al., 2016 extracts a set of 44 features from images of four different meta-databases

to create a meta-recommending system for image segmentation algorithms. This set of features is36

based on histograms, contrast and quality, gray-level co-occurrence matrixes, Fast Fourier Trans-

forms and the statistical information of color from RGB (red, green and blue) channels as well38

as HSV (hue, saturation and value) channels. Through analysis of attribute importance, although

color features from both color spaces appear very meaningful, no feature outperformed through40
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all meta-databases, suggesting that meta-feature selection may not be fitting for this image seg-

mentation problem. 2

Davis et al., 2012 applied feature extraction to hand radiograph images to generate a predictive

model of bone age. Size descriptors like height and width of hand bone portions are naturally good 4

indicatives of age, so after computing region-of-interest boxes, the dimension and shapes for bones

like the phalanx and the epiphysis are extracted. Although extracting task-specific representations 6

like these is optimal for a focused problem like predicting age from radiograph images, the general

nature of our meta-database constrains us to use more broad features. 8

Study Meta-feature type
Sonsbeek, 2019 Statistical, information-theoretic, model-based, task-specific
Naseer and Zafar, 2018 Model-based
Lorentzon, 2018 Model-based
Campos et al., 2018 Statistical, information-theoretic
Davis et al., 2018 Task-specific

Table 3.3: Study comparison regarding the type of extracted meta-features

Overall, existing literature proves that extracting meta-features from images is not only possi-

ble but can be accomplished in many ways – as seen in Table 3.3 – with solid results. However, 10

it has to be noted that deriving task-specific features – features conceptualized manually that are

unique to one or a set of datasets, e.g. information as to how an image was captured – are in- 12

feasible because of the goal of generalizing the model as much as possible. The rules set by the

meta-model may not be applicable to new datasets. For instance, a feature that identifies interest 14

zones in medical imagery is not compatible with datasets from other fields.

3.3 Deep networks explainability 16

Models can be ante-hoc when they are designed to be inherently explainable (e.g. logistic regres-

sion, decision trees), or post-hoc where the explainability objective is added after training. Schaaf 18

and Huber, 2019 focuses on optimizing deep MLPs towards post-hoc decision tree extraction. The

work makes use of L1−O regularization to improve the extraction of decision trees from deep 20

neural networks and reduce model complexity. Pruning the decision trees just enough appears to

provide information in a more meaningful and concise way instead of condensing all information 22

to a single node. It alerts to the need of establishing a trade-off between model complexity and

comprehensibility. 24

Lee et al., 2018 set to create a deep-learning algorithm capable of detecting acute intracranial

haemorrhage from small datasets. The authors were aware of the legal requirements for clinical 26

decision support software to explain the reasoning for their decisions and that the medical field

remains uneasy with deep learning’s opaque design, one of its biggest hurdles preventing it from 28

widespread adoption. With this in mind, aggregated with their model, a visualization tool was
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developed which displays the basis of the predictions. It sorts the feature maps from all convolu-

tional layers by their maximum activation values and overlays a heatmap that highlights the most2

important regions for the algorithm.

Finally, Liu et al., 2018 aims to achieve interpretable CNNs through a meta-learning approach4

by taking a single hidden layer – the first fully-connected layer – and learning about the patterns

it holds. Similarly to Schaaf and Huber, 2019, the methodology follows a post-hoc approach. Its6

meta-learning approach is somewhat similar to the route taken in this dissertation: although its

final purpose is different, we also feed the meta-level training data based on a type of landmarking8

into a tree-based algorithm (random forest in their case, gradient boosting in ours). It displays a

visual result to indicate whether a test instance was correctly classified by checking whether there10

are any overlaps in corresponding activations. The similarity of this work’s architectural choices

motivates us to be confident in our meta-learning with landmarking approach.12
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This chapter introduces the concept of modeling dropout with meta-learning with a general16

and an image-specific approach, regarding meta-feature selection, the process of performance

estimation and creating a meta-model.18

4.1 Modeling dropout with meta-learning

The general method for modeling dropout with meta-learning involves (1) generating meta-data by20

characterizing datasets through a certain representation (meta-features); (2) executing performance

estimation on the datasets across networks with variable dropout rates; and (3) using both the22

extracted meta-data and performance to create a recommendation system for which dropout rate

should work best on a provided new dataset (a meta-model). An example diagram for this system24

architecture was made available in Figure 4.1.

23
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Figure 4.1: System architecture for modeling dropout with meta-learning

4.1.1 Statistical meta-feature selection

In meta-learning, datasets must have their characteristics extracted in some way. This follows the 2

foundation on which machine learning algorithms operate: isolate the most meaningful patterns

and make predictions according to them. 4

Characterizing a dataset can be done in numerous ways, as described in section 2.2.1. In this

dissertation, we have decided on two approaches: statistical and deep meta-feature extraction. 6

Table 4.1 presents the set of 29 statistical measures used to describe a dataset. The list is a

result of literature review of commonly used meta-features in meta-learning [13, 38, 46]. Each 8

feature underwent explorative analysis to prevent redundant elements.

4.1.2 Deep learning meta-feature selection 10

An upside of performing deep feature extraction is doing so automatically where, in contrast, sta-

tistical features must be individually thought of. While the latter generally holds a clear meaning 12

because they are the result of calculating simple and well-known features, deep learning features

naturally dwell in the black-box space. Nevertheless, even if these features are of puzzling inter- 14

pretation for any human, as proven by ConvNets’ effectiveness, they can be useful, provided that

learned representations can be transferred between datasets. Even if statistical analysis of a dataset 16

is very surface level, a deeper analysis at the cost of explanability is sometimes preferred.

In this dissertation, we have made use of well known ConvNet classification models. All these 18

canned architectures were imported from Keras and are loaded with weights pre-trained on the
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Statistical meta-features
1 Mean pixel value
2 Standard deviation of pixel value
3 Coefficient of variation of mean pixel value
4 Mean skew value
5 Standard deviation of skew
6 Coefficient of variation of skew
7 Mean kurtosis value
8 Standard deviation of kurtosis
9 Coefficient of variation of kurtosis
10 Mean entropy value
11 Standard deviation of entropy
12 Coefficient of variation of entropy
13 Mean median value
14 Standard deviation of median
15 Mean mutual information value
16 Standard deviation of mutual information
17 Coefficient of variation of mutual information
18 Max mutual information
19 Mean correlation value
20 Standard deviation of correlation
21 Coefficient of variation of correlation
22 Mean sparsity value
23 Standard deviation of sparsity
24 Coefficient of variation of sparsity
25 Mean XY axis value
26 Standard deviation of XY axis
27 Coefficient of variation of XY axis
28 Equivalent number of features
29 Noise signal ratio

Table 4.1: List of statistical meta-features used

ImageNet database. Networks pre-trained on ImageNet are capable of classifying images into

1000 object categories. Below follows a list of models used in this dissertation, alongside a quick2

overview:

• VGG16 consists of 16 weight layers, including 13 convolutional and 3 fully-connected lay-4

ers, uses (2x2 and 3x3) filters, totalling to approximately 138 million parameters;

• VGG19 is slightly deeper than its previous iteration, consisting of 19 weight layers, includ-6

ing 16 convolutional layers and 3 fully-connected layers;

• ResNet-50 is 50 layers deep and innovates the field with the introduction of the skip con-8

nection – a way to feed primary layers’ information directly to the later layers without it

turning too abstract for further interpretation;10
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• MobileNetV1 is 53 layers deep and provides state-of-the-art accuracy while requiring as

little memory and computing power as possible. It makes use of inverted residuals and 2

linear bottlenecks.

Similarly to statistical meta-features, we sample multiple times from a single dataset and ex- 4

tract features from each. In some datasets there might not be enough images to completely fill a

stipulated sample size. In those cases, the data is padded with zeros until it matches the expected 6

size. Due to the small sample size for statistical features, this issue should not happen for the

statistical extractor unless the provided dataset has less than 16 total images for training. 8

4.1.3 Performance estimation

Performance estimation can be defined as a meta-feature extraction technique that tries to deter- 10

mine position of training data in the areas of problem learning by directly measuring the perfor-

mance of learning algorithms themselves [11]. 12

In the context of this dissertation, performance estimation is used to feed our meta-model with

the target labels of our meta-database. If our overall goal is to predict which retention factor 14

works best on a network that would train on a new dataset, it is evident that we should actually be

calculating, for our meta-database, which rates work best and feed that knowledge to the model. 16

However, doing the step of performance estimation on regularization is subject to some de-

cisions that may very well influence the final model’s predictive power. Note that regularization 18

affects data differently and non-linearly, meaning that applying dropout to some dataset can change

the result slightly, greatly or by nothing at all. Additionally, these outcomes are variably depen- 20

dent on the contents of the training split, so there is a need to legitimize the performance data by

training and predicting on the model multiple times to infer exactly how dropout affects the dataset 22

in question.

To exemplify this issue, take the basic-shapes dataset, which is comprised of 300 28x28 im- 24

ages of three distinct shapes: circles, squares and triangles (100 images for each class). Its balance

and tiny total size allows for speedy training times and quick testing. 26

DR R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 avg
0.0 0.3 0.334 0.567 0.4 0.6 0.5 0.5 0.367 0.467 0.467 0.45
0.25 0.5 0.567 0.433 0.567 0.433 0.567 0.567 0.367 0.567 0.533 0.51
0.5 0.5 0.367 0.533 0.433 0.533 0.6 0.5 0.5 0.367 0.533 0.486

Table 4.2: Predictive performance of 3 networks (with dropout layer set to 0.0, 0.25 and 0.5,
respectively) across 10 repetitions on the basic-shapes dataset

Table 4.2 illustrates the predictive performance of 3 networks whose only architectural differ-

ence is how agressive the second to last fully-connected layer is regularized. The first has zero 28

dropout rate and connections pass-through as it there was no intermediate layer at all; the second

has a dropout rate of 0.25, meaning that 25% of the neurons are shut off; and the last has the com- 30

monly used rate of 0.5, where half of the connections from the first FC layer to the final softmax
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one are lost. Remember that we are not looking as much for impressive accuracy, as this model is

specifically fine-tuned for MNIST and should not behave optimally for our entire set of datasets.2

Instead, we are paying close attention to patterns that signal that one network is performing better

than the others. As we can see, at first glance, no dropout rate appears to be a clear winner. The4

best we can do is average out all accuracy values and name the maximum the preferred rate. The

more times a single network is tested, the more sure we are of our choice. However, even if basic-6

shapes’ small size allows for even a hundred runs for each network, the meta-database contains

datasets surpassing gigabytes of size on disk where even performing three laps across all networks8

is painfully slow. So there is most certainly a compromise of the training labels reliability and

compute time and finding the balance between this trade-off is key.10

It is also important to understand that achieving state-of-the-art results on model accuracy does

not fit the scope of this project. We are only concerned with substantial divergences in accuracy12

and so, within reasonable limits, disregard the actual model score. Even if we actually were

seeking state-of-the-art performance across all datasets, it would be unfeasible in this generalized14

fashion when considering the necessary hyperparameter tuning unique to each dataset. The ‘No

Free Lunch’ theorem confirms this concern: it states that there is no one model that works best for16

every problem. If a learner A performs better than learner B in select circumstances, then learner B

must outperform A on other instances [38]. Additionally, tailoring networks to maximize accuracy18

might place us in a situation where, after running the experiments, it is not evident whether a

dataset benefits from agressive dropout rates because of its characteristics or because its fine-20

tuned model just usually benefits from higher dropout rates. To eliminate this possibility, we have

fixed one standard convolutional neural layout network and applied it to all datasets.22

4.1.4 General meta-model

In its most simple state, a meta-model consists of an objective, a learning algorithm and optimizer,24

and dataset metadata. Let us define what a meta-model should be comprised of when applied to

this context:26

• The model’s objective is to make predictions on which dropout rate is the most desirable

through statistical classification;28

• As long as it allows for converging on the objective, any supervised learning algorithm
could work. Gradient boosting, decision trees, support vector machines (SVM), neural net-30

works (multilayer perceptrons) and more are valid when justified;

• The meta-model must have dataset metadata in the form of features that can identify the32

data. Its target variables should refer to the best or range of best dropout rates that yield the

best performance for a dataset [20].34

Building a meta-example is a two-step procedure where two processes are executed on top

of a dataset in order to refine it into a feature-label tuple (x,y). Feature x is the dataset’s data36
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characterization, its meta-features inferred from either a statistical or deep technique. Label y is

a numerical value corresponding to the dropout rate that, on average, across several executions of 2

classification models that both lightly and heavily employ it, got the best accuracy.

This problem may be either be modeled as a classification problem or as a regression problem. 4

When in the loss function f : x→ y, y is a discrete variable (class labels), it is a classification

problem. If y takes continuous values, it is a regression problem. A dropout layer’s rate value 6

is only valid in the interval [0.0,1.0[ and while it is unusual to apply very specific dropout rates

(floats with more than two decimal places), there is no theoretical reasoning as to why it should 8

not be valid. So while this can be modeled as a regression analysis problem, our version of the

meta-model is performing binary classification – determining whether a dataset belongs to the 0.0 10

or 0.5 class.

This motivates us to formulate our first research question: 12

• RQ1: Can a meta-learning approach be used to predict the effect of dropout?

4.2 Approach for image classification 14

An image classification approach to this meta-learning problem roughly follows the steps above.

However, the type of data lifts a couple of complex issues when compared to tabular data. 16

Firstly, the challenge of meta-feature characterization of image data is evident. Not only the

literature is fairly limited on extracting meta-features from images, but the few documented cases 18

have not been used in such a general context as in here. This corners us into extracting repre-

sentations of images that are applicable to all datasets. The feature extraction step is definitely 20

crucial and motivates our work, however we do not address it in depth, having limited ourselves

to analysing features that were proposed by others. 22

Secondly, it is close to impossible to utilize entire image datasets in our experiments, due to

the volume of data. Therefore, the obvious approach would be to randomly sample from datasets 24

and let meta-features be calculated from a smaller (and hopefully representative) subset of images.

To put this issue of data size into perspective, when we perform automatic feature extraction with 26

the ResNet50 encoder – whose architecture consists of a total of 2048 filters –, performing 16

samples of 16 images resulted on a features file with size over 250 MB for a single dataset. While 28

statistical meta-features do not suffer from heavy memory usage, computation times can reach up

to 1.5 hours for tiny samples that require image correlation calculations. This is a factor that grows 30

exponentially with the number of images added to the mix. Also one must consider how datasets

vary in size, not only in terms of disk space, but also examples and classes. Sampling ensures 32

the data characterization for all datasets is balanced, avoiding having very few features for smaller

datasets. 34
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4.2.1 Statistical meta-feature extractor

In its most basic form, the statistical meta-feature extractor computes an array of 29 meta-features2

for a provided set of images. Both the number of samples and number of images in each sample are

adjustable parameters. This statistical characterization includes values that range from averaging4

pixel values to measuring the difference between image shapes within a subset.

As explained, extracting features from the dataset as a whole is computationally unviable. But6

including more images beyond a certain threshold appears to follow the law of diminishing returns,

where the benefits in accuracy gained are less than the computational time and energy invested.8

We may not need terabytes of data to estimate a parameter or test an hypothesis provided that the

selected arbitrary set of rows preserve the features of the original data [33].10

However, we believe the sampling process has a big say on the overall predictive power of the

algorithm. On Sonsbeek, 2019, the meta-feature output is simply a list of concatenated samples.12

In this dissertation, we performed further data transformations in hopes of reducing training error

and eliminating any positional correlation between features inside samples. The statistical meta-14

feature extractor is described below, alongside the four generated meta-datasets and the steps

required to form them.16

If S is the full image training set from a given dataset, then we denote by [S]k the set of k-

subsets of S that is [S]k := {X |X ⊆ S∧ |X |= k}. In the context of neural networks, this is similar18

to partitioning data into mini-batches of size k but only keeping |[S]k| batches. Applying this

sampling procedure to all image datasets generates a set of 50 [S]k sets.20

Figure 4.2: System architecture for statistical extractor of meta-dataset #1

Then, from each sample in [S]k, an array of 29 meta-features is derived. In brief, each dataset

has samples and each sample has meta-features. An intuitive representation of this data hierarchy22

is a tensor (also referred to as 3D matrix or tridimensional array). Figure 4.2 features a cube

relating these concepts for easier interpretation. Let it be denoted as F .24

In a first approach, F is sliced once for each number of samples determined in the sampling

process. Each slice G is expressed as G = {D0, ...,D49}, where Di is itself a meta-feature set26

Di = {MF0, ...,MF28} and produces a meta-dataset. As such, there are as many meta-datasets as
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the number of samples extracted from each dataset. This is virtually equal to the approach used

by Sonsbeek, 2019 and therefore is our control meta-dataset. The only notable distinction is that 2

here, datasets are concatenated to generate a meta-dataset whereas in their work, each dataset was

saved separately. 4

The second approach – illustrated in Figure 4.3 – makes use of the prior experiment’s 3D

matrix F . Instead of slicing F across the sample Z-axis, let each cut G now be done on the meta- 6

feature X-axis that relates datasets to samples. Thereafter, a fixed number of shuffle operations

are applied to each slice G. Now this transformed cube F ′ constitutes a meta-dataset and all 8

subsequent shuffles are new meta-datasets. So, there are as many meta-datasets as the number

of shuffles performed to each slice. This mechanism of interchanging samples within a dataset’s 10

meta-feature is aimed at eliminating any positional correlation.

Figure 4.3: System architecture for statistical extractor of meta-dataset #2

Analysing the previous work’s approach motivates us to formulate this dissertation’s second 12

research question:

• RQ2: Does the sampling approach proposed by Sonsbeek, 2019 induce variance in the data? 14

4.2.2 An approach to reduce variance

Motivated by our expectations of variance obtained in the first two experiments, we now propose 16

a new approach to reduce variance.

For this third approach – illustrated in Figure 4.4, the collection of transformed matrices F ′ is 18

the baseline. The goal of this procedure is to flatten the sample dimension by averaging out and

computing the standard deviation across all samples. 20

This is accomplished by taking each tensor F ′ and slicing it in the same fashion as to Figure

4.3 – so that each slice G is a shuffled set of samples for a given dataset and meta-feature. Then, 22

sample from that set and compute its average and standard deviation. Finally, replace the original

sample dimension with the results of the calculations. Doing this across all datasets and meta- 24

features effectively flattens the Z-dimension in F ′. Similarly to approach 4.3, there are as many
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meta-datasets as the number of calculations performed. This approach attempts to simplify the

feature set by aggregating all samples into two values and avoid redundancy in the data.2

Figure 4.4: System architecture for statistical extractor of meta-dataset #3

A final 4th approach is based on the 3rd one but instead of sampling from the set, compute the

mean and standard deviation from its entirety. This results on a flattening of the sample dimension.4

There is no need to repeat the process like before because the output would just be the same.

Investigating these approaches to trying to reduce sampling-induced variance allow us to for-6

mulate this work’s last research question:

• RQ3: Does the aggregation of features obtained on samples using average and standard8

deviation reduce the effect of variance?
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This chapter describes the concrete implementation of the defined approach, explaining the14

data preparation process, the selected convolutional network and meta-model’s architecture.

5.1 Data preparation16

This meta-learning approach involves collecting as many image datasets as possible, characteriz-

ing them and measuring their performance when applied to convolutional neural networks with18

varying dropout rates. But additionally, in image classification, plenty of image data – a data type

that is heavy by design – is needed as well. In non-meta-learning problems, typically a single20

dataset with various features and examples is used. However, in meta-learning, an entire dataset

constitutes a data point.22

5.1.1 Standardizating input

In a single dataset problem, data preparation procedures are selected to fit the nature of the data.24

Conversely, a meta-learning problem expects the datasets to fit a standardized procedure.

The 50 datasets used in this dissertation were mostly downloaded from Kaggle and TensorFlow26

Datasets. But no single platform hosts datasets in a consistent way. Datasets can lack labelling,

making them only feasible for unsupervised learning tasks. Data can be explicitely partitioned28

into train, test and validation splits or can require later manual splitting. The folder organiza-

tion may fluctuate as well, with some datasets arranging the splits in folders while others resort30

33
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to renaming files to illustrate to which split or class the image belonged to. Image file formats

frequently vary, sometimes within datasets, which is troublesome when considering decoding an 2

image in TensorFlow, at the time of writing, is limited to BMP, GIF, JPEG and PNG extensions.

Data can be encoded in non-standard formats such as Numpy arrays, CSV spreadsheets or com- 4

pression archives like TAR packaging or GNU zips. Additionally, usually Kaggle’s user-submitted

datasets frequently have corrupted files or system files (like macOS’ .DS_Store) that can halt any 6

subsequent methods if not manually detected and removed. More often than not, we found that an

otherwise valid dataset could not be selected because of its size (either too large or too small) or 8

subject. All these variables made the data preparation period challenging and lengthy.

The approach was to individually tackle and automate these issues if a large enough number 10

of datasets shared the same problem. Therefore, the resulting preprocessing script automatically

cuts datasets according to missing splits, converts all TIFF images within a dataset to JPEG and 12

inserts classes into folders conforming to regular expressions manually written for each dataset. It

is also possible to download datasets from TensorFlow Datasets from this tool. 14

5.1.2 Data characteristics

A data science platform like Kaggle makes available a handful of image datasets that fit the context 16

of this dissertation. However, a prerequisite for including a dataset in the meta-collection, apart

from being compatible with our setup, is ensuring they all cover the widest range possible of 18

dataset properties. For instance, it is relevant to include datasets with balanced and skewed class

distributions, datasets aimed for binary-class and multi-class classification and datasets with few 20

and plentiful examples.

Figure 5.1: Meta-dataset split distribution

The 50 datasets’ split distribution is plotted on Figure 5.1. Original splits were maintained 22

when available. Otherwise, the data is shuffled and split according to an 80% training, 10% test

and 10% validation distribution. Unavailable splits are always pulled from the training set. By 24

analysing the plot, we consider the range of selected datasets’ split distribution well varied.

Class imbalance plays a huge role on the predictive power of a model because most machine 26

learning algorithms assume an equal number of examples for each class. We denote by C =

{x0, ...,xn} the set of a dataset’s classes. Then ∀x ∈C.Cx =Cx/∑
|C|
i=1 xi transforms C into a list of 28

class proportions. Finally, get the standard deviation of C. This constitutes an imbalance ratio that
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Figure 5.2: Meta-dataset class imbalance

enabled us to evaluate how much our meta-dataset suffers from class imbalance. The imbalance

ratio across all datasets has been plotted on Figure 5.2.2

Below follows a list of dataset morphological characteristics:

• Regarding the number of classes, 10 out of the 50 datasets (20%) are binary (2-class) clas-4

sification datasets, with the remaining 40 (80%) being multi-class classification datasets.

Out of these 40 datasets, 19 have a class count fit inside interval [3,10], 13 are in interval6

]10,100] and the remaining 8 have over 100 classes.

• A significant number of meta-features require datasets with images of varying sizes. 48% of8

the datasets have images with unique dimensions, while the images on the remaining 52%

datasets all have identical proportions.10

• Overall, only 7 out of the 50 datasets have over 5% class imbalance ratio. The worst of-

fenders are the open-sprayer and chest_xray_pneumonia datasets, rounding to 30.5% and12

22.9% class imbalance ratio respectively. This means that, for instance, on the open-sprayer

binary-classification dataset, one class has roughly four times the number of examples of the14

other’s. The rest of the datasets are better distributed, with 32 having less than 1% IR and

15 being perfectly balanced.16

Appendix A lists all datasets used in this dissertation and their full specificities.

5.2 ConvNet architecture18

The chosen convolutional neural network follows the common pattern of stacking 2D convolu-

tional layers and max pooling layers. The convolutional base is the same used by Google’s Con-20

vNet tutorial found on the official TensorFlow documentation [6] and appears to be built specifi-
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Figure 5.3: Base convolutional neural network architecture

cally for the CIFAR-10 dataset. It is comprised of three convolutional layers – one with 32 filters

and two with 64 filters – alternating with two max pooling layers. The network is then flattened and 2

suffixed with a couple of densely-connected layers: the first outputs 64 dimensions while the final

layer has as many outputs as the number of dataset classes. Activation functions are ReLU and 4

softmax respectively. Finally, our change to the model’s overall architecture is an added dropout

layer placed in-between the final dense layers. By applying the same network across all datasets, 6

we hopefully ensure meta-level predictions are unrelated to changes in the network’s architecture.

The placement of the dropout layer was chosen after extensive literature review on the matter. 8

However, applying regularization to other layer types has been proven effective [52]. So when

presented with the choice, we opted for the most popular way of regularizing. 10

During the deep learning process, the model is frequently recompiled because of two changing

variables: each dataset’s class number affects the last layer’s prediction dimensionality (illustrated 12

as N in figure 5.3) and experimenting with dropout rates affects the dropout layer.

5.3 Meta-feature extractors 14

For all meta-feature extractors, either statistical or deep, for each dataset, its features are the result

of calculating features from a set of 16 samples, each comprised of 16 images. Regarding statis- 16

tical extraction, in experiments that require multiple repetitions (demonstrated in Figures 4.3 and

4.4), they are performed 10 times. Training sets are always shuffled before any operation. 18

It is important to verify whether meta-features are meaningful to the model. It is proven that

redundant and correlated features slow the training process, potentially harming the performance 20

of the model and making it harder to interpret.

Figure 5.4 illustrates the dispersion of meta-features across datasets. This is particularly useful 22

for understanding how relevant a given meta-feature appears to be for prediction. In theory, a

higher coefficient of variance should be correlated to a more useful feature. For instance, in one 24

hand, meta-features related to sample skewness (indexes 3-5) and noise signal ratio (index 28)

do not deviate too much, supporting the possibility that image asymmetry is not too useful to 26

the model. On the other hand, mutual information (indexes 14-17), image correlation (indexes

18-20) and mean image dimension (indexes 24-26) meta-features peak higher and appear more 28

promising.
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Figure 5.4: Coefficient of variation of meta-features across all datasets

5.4 Computation time

ConvNet training accounts for a massive portion of overall computation time whereas meta-feature2

extraction and meta-model training take insignificant times when compared. Therefore, two sys-

tems were used for different purposes:4

• The meta-feature extraction and meta-learner processes were ran on a machine with an

AMD Ryzen 5 3600X 6-Core CPU and Nvidia GeForce RTX 2060 SUPER GPU. Due to6

power consumption concerns and it being a personal computer, extensive machine learning

tasks could not be performed.8

• The deep learning part of the project was ran on a HPC 1 provided by Fraunhofer AICOS

Portugal. It runs on a cluster of Tesla V100-PCIE-16GB GPUs.10

The computation times for all these tasks can be further analysed in Appendix A.

1High-performance Computing. Generally referring to the concept of aggregating multiple computers in a way that
delivers high performance for engineering, science or business tasks.
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6.1 Exploratory analysis of metadata

In order to exactly measure how much dropout affects performance, we have plotted the difference14

between the predictive accuracy of a basic network and of a dropout-enabled of this network. A

positive value means that dropout effectively boosted the convolutional network model. Negative16

values illustrate cases where applying dropout is accompanied with a decrease in efficency. These

results can be found in Figure 6.1.18

We can observe a roughly even distribution for some instances where dropout strongly hinders

predictive performance and others where it firmly improves it. Due to using the same base network20

to all datasets, in most cases its size is not entirely appropriate for the dataset in question. When-

ever a network is too large for the dataset, the model learns the detail and noise of the training set,22

causing overfit. In these cases, regularization is welcome and should be illustrated by the positive

values on the plot. However, if the network is too simplistic, it might already be struggling to24

make accurate predictions. Here, inducing dropout will often cause further complications because

it is removing the bare minimum predictive units, causing negative values on the plot.26

The malaria, uc_merced datasets and daimlerpedcls datasets – with respective predictive dif-

ferences of -0.19, -0.15 and -0.09 – stand as the ones most negatively affected by dropout. In an28

effort to understand why this is, let us analyse their specifications to draw possible conclusions:

• The malaria dataset hosts over 27558 images of segmented cells from a thin blood smear30

on a glass slide with equal instances of parasitized and uninfected cells [25]. It is therefore

39
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Figure 6.1: Accuracy distance between p = 0.5 dropout-trained networks and basic networks
across the meta-database.

categorized as a binary classification dataset. Figure 6.2 illustrates a small sample of images

found within the dataset. Interestingly, another study that trains on this exact dataset uses a 2

similar architecture, even also employing dropout p = 0.5 to the outputs of the first fully-

connected layer [40]. Their proposed model on cell level imagery achieved an accuracy 4

value of 0.986 with dropout when ours netted 0.91 without it, which is impressive for a

network that has not been fine-tuned to fit the dataset. When we activated the dropout layer, 6

the score plummeted to an average of 0.72. This divergence is most likely due to the fact

that authors went with a step of hyperparameter optimization that was impossible for us and 8

usage of a different optimizer – SGD while we used Adam on our models. The fact that

the base network did not benefit from dropout appears to be an indicative that it was not 10

overfitting to begin with and its original size fit the dataset well.

• The uc_merced dataset is described as a 21-class land use image dataset extracted from 12

the USGS National Map Urban Area Imagery collection for various urban areas around

the country. Despite featuring only 100 images per class, it still managed to achieve 0.36 14

accuracy.

• The Daimler Pedestrian Segmentation Benchmark dataset (dubbed daimlerpedcls in our 16

meta-database) consists of a collection of pedestrian and non-pedestrian images. It suffered

the third biggest cut in accuracy when dropout was switched on, dropping from 0.96 to 0.87. 18
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Figure 6.2: Sample from the malaria dataset. Images on the top row belong to uninfected class,
while images on the bottom row belong to the parasitized class.

The beans, cassava and tf_flowers datasets were the most positively affected by dropout, with

respective differences of +0.09, +0.07 and +0.06.2

• The beans dataset is comprised of bean images taken in the field using smartphone cameras.

It consists of 3 classes: 2 disease classes – Angular Leaf Spot and Bean Rust – and an4

healthy class. A sample from the dataset was made available on Figure 6.3. Applying

dropout boosted its original performance of 0.69 to 0.78, suggesting that the default network6

was too complex for the dataset and simplifying it resulted on significantly better predictive

power.8

• Similarly to beans, cassava also consists of leaf images depicting four disease conditions

and a healthy class, with a total of 9430 labelled images. This dataset is unbalanced with10

two of the classes amounting to 72% of the images.

• Finally, tf_flowers includes flower images from 5 different classes – daisy, dandelion, roses,12

sunflowers and tulips. There is a total of 3670 images distributed unevenly across the

classes.14

Interestingly, the top 3 datasets most positively affected by dropout relate to plants with the

first two being quite similar in premise and image content. Whether this is a coincidence or an16

indication that image content and dataset morphology are directly related to the effects of dropout

we could not determine.18

In many other datasets, regularizing the network yielded practically zero benefits. This is

easily verified on the 10-monkey-species, animals10, four-shapes and lego-brick datasets, where20

accuracy only varied by less than ±0.01.

Through empirical analysis of these datasets, it is difficult to determine the model’s behaviour22

when dropout switches on and off. Naturally, this difficulty should be linked to the near-impossible
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Figure 6.3: Sample from the beans dataset. healthy class on the top row; bean_rust class on the
middle row; and angular_leaf_spot on the bottom row.

human interpretation of deep nets reasoning, so we should not be expecting to draw many conclu-

sions from empirical analysis of the datasets’ performance. 2

6.2 Regarding predicting the effect of dropout (RQ1)

For statistical meta-features, in order to measure the dataset’s predictive power, we have run each 4

through three different classifiers: (1) LogisticRegression from scikit-learn with L2 norm penalty,

c = 0.01 and a maximum of 5000 iterations; (2) a default RandomForestClassifier also from scikit- 6

learn and (3) a default binary logistic regression from XGBoost’s XGBClassifier.

Meta-dataset LogisticRegression RandomForestClassifier XGBClassifier
1 0.48 ± 0.193 0.463 ± 0.206 0.443 ± 0.195
2 0.508 ± 0.202 0.445 ± 0.193 0.449 ± 0.197
3 0.478 ± 0.204 0.446 ± 0.198 0.417 ± 0.183
4 0.507 ± 0.223 0.435 ± 0.22 0.405 ± 0.201

Table 6.1: Predictive power of different classifiers applied to each statistical meta-dataset

The results illustrated on Table 6.1 are the averaged means and standard deviations of apply- 8

ing 10-fold cross-validation 10 times. Based on the results, we may derive two main assumptions:

simpler classifiers generally appear to yield better results than tree-based classifiers. Yet still, 10

predictions seem random. Even if the second meta-dataset consistently averages over 50% accu-

racy, it is probably not statistically significant. This appears to support the idea that the selected 12
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meta-features do not contain information useful enough to predict the effect of dropout in general

classification problems.2

Therefore, we resorted to experimenting with deep features, across three different encoders:

VGG16, VGG19 and MobileNetV1. Due to the features’ massive size (MobileNetV1’s filter count4

of 1024 results on over 16 million features), we trimmed each dataset’s feature array to varying

lengths. The ResNet50 model had to be dropped because its size, which doubled MobileNetV16

and quadrupled VGG16 and VGG19, could not fit in memory. For this experiment, we resorted

to logistic regression only, because of its optimistic results on the statistical features, keeping the8

10-fold cross validation.

Trim length VGG16 VGG19 MobileNetV1
102 0.465 ± 0.174 0.491 ± 0.182 0.387 ± 0.184
103 0.478 ± 0.206 0.547 ± 0.194 0.449 ± 0.194
104 0.461 ± 0.196 0.564 ± 0.214 0.516 ± 0.2

Table 6.2: Predictive power of logistic regression for deep features from distinct models, according
to varying sample sizes

Once again, the shown results in Table 6.2 are averaged from 10 repetitions. For VGG16,10

regardless of trim length, accuracy is certainly low. For the VGG19 variant, accuracy was surpris-

ingly high, reaching an average score of 0.564 for the highest trim length. However, due to its12

also high variance, it probably still equals to random guessing. In MobileNetV1’s case, the model

only broke the 50% threshold for a trim length of 104. Generally, keeping features as opposed14

to dropping them appears to generate better results, with exception to VGG16 where predictions

remained stable.16

Overall, these results appear to support the idea that the interpretation of pre-trained networks

provide more meaningful information compared to the selected statistical ones. Unfortunately,18

because of the networks’ abstract interpretation of the datasets, undergoing any sort of feature

importance step would be pointless. So even if VGG19’s analysis of the meta-dataset does appear20

promising, we are still unable to comprehend as to why it did so well compared to other methods

and which patterns it caught up.22

6.3 Regarding sampling approaches (RQ2, RQ3)

As described in subsection 4.2.1, we generated four meta-datasets, where the last two hoped to24

reduce variation of the results. We registered, across 10 repetitions of the 10-fold cross-validation

step, how many times a dataset had been correctly classified. We then computed the mean and26

standard deviation of correct prediction rates across all samples. Due to the fact that the fourth

meta-dataset is, by design, only comprised of one sample, standard deviation could not be calcu-28

lated.
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Meta-dataset R1 R2 R3 Total
MD1 0.477 ± 0.27 0.474 ± 0.268 0.475 ± 0.271 0.475 ± 0.27
MD2 0.51 ± 0.264 0.512 ± 0.258 0.515 ± 0.264 0.512 ± 0.262
MD3 0.481 ± 0.244 0.476 ± 0.243 0.474 ± 0.243 0.477 ± 0.243
MD4 0.494 ± 0.00 0.496 ± 0.00 0.51 ± 0.00 0.5 ± 0.00

Table 6.3: Mean and standard deviation of correct prediction rates across each dataset’s samples

Table 6.3 clearly illustrates that an increase in the meta-dataset index is proportional to predic-

tion stability. In other words, in the third meta-dataset, across the all samples, predictions tended 2

to be more stable than on other approaches.

(a) Boxplot of the blood-cells dataset (b) Boxplot of the casting_data dataset

(c) Boxplot of the simpsons dataset (d) Boxplot of the walk-or-run dataset

Figure 6.4: Boxplots from datasets that support increasing stability

Performing boxplots on top of this data provided us with a better visual understanding of error 4

and outliers. Figure 6.4 illustrates a set of examples where MD3 shows more consistent values and

should make predictions more dependable than on the other meta-datasets. 6

Although this is the norm (proven by the results on Table 6.3), observations can vary greatly.

For instance, in subplot 6.5a, on MD2, cassava has been correctly predicted 100% of the times 8

with the exception of an outlier. MD3 did slightly help reducing MD1’s variance but is well worse

compared to MD2. For the intel dataset, on subplot 6.5b, all meta-datasets performed equally 10

poorly, showing that the inclusion of intel is hindering the model’s predictive power regardless
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of the data’s structure. On the last two subplots we notice that MD1 for the malaria dataset (in

subplot 6.5c) and MD2 for stanford_online_products (in subplot 6.5d) respectively outperformed2

MD3 in terms of both accuracy and standard deviation.

(a) Boxplot of the cassava dataset (b) Boxplot of the intel dataset

(c) Boxplot of the malaria dataset (d) Boxplot of the stanford_online_products
dataset

Figure 6.5: Boxplots from datasets that do not support increasing stability

Overall, even if this analysis does show a tendency for MD3 structuring to yield more stable4

results, they should be carefully interpreted on a case-to-case basis. A complete list of boxplots

for all datasets was made available on Appendix A.1, A.2 and A.3.6

6.4 Answering research questions

With the context of the results, we now take time to directly answer the research questions estab-8

lished in Chapter 4 that were indirectly answered throughout the document, in a way to summarize

this chapter.10

• RQ1: Can a meta-learning approach be used to predict the effect of dropout?

The meta-model only managed to consistently score above 50% in the case of VGG1912

deep features at 104 trim size and on the 2nd statistical meta-dataset. However, we still

consider these results too variable to extract any meaningful information. Due to the fact that14
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the highest scoring features were the product of a pre-trained VGG19 network, analysing

its interpretation is too ambitious. If advancements want to be accomplished in the area 2

of network explainability, a better set of human-interpretable meta-features that accurately

describe the datasets must first be assessed. 4

• RQ2: Does the sampling approach proposed by Sonsbeek, 2019 induce variance in the

data? 6

We were able to observe that meta-dataset MD1 consistently generates predictions with

high variance while MD3 yielded similar accuracy rates but with noticeably lower variance. 8

Therefore, it does appear that the sampling approach proposed by the previous work is a

source of variance when compared to a more careful approach like ours, even if the model’s 10

predictive power stays the same.

• RQ3: Does the aggregation of features obtained on samples using average and standard 12

deviation reduce the effect of variance?

We were able to find meaningful decreases in variance by computing the mean and standard 14

deviation of samples instead of keeping them as they were. However, the meta-datasets still

experience less than ideal variance. Although it does look like a step forward, future work 16

should further experiment with other sampling calculations.

6.5 Computation time 18

The workflow of gathering and preparing a dataset, extracting its meta-features and measuring its

performance across different dropout rates is very computationally taxing. 20

Regarding statistical meta-feature extraction, the runtime fluctuated depending on whether, in

a dataset, all images have the same dimensions. Not having so prompts the process to extract 22

mutual information meta-features which can take hours to gather. These meta-features analyze

image similarity by zooming and overlaying two data samples and performing calculations on top 24

of a bi-dimensional histogram of ravelled images. The procedure of overlaying multiple samples

through the zooming operation accounts for most of the computation time. 26

Perhaps counter-intuitively, extracting deep learning meta-features for the entire database con-

sistently took only a portion of time used by the statistical approach, across all encoders. This is 28

because all the models utilized were pre-trained and the networks only had to make a prediction.

A full list of recorded computation times for all methods are available in Appendix A. 30

While statistical meta-feature extraction for all datasets took only a few hours and could be

ran locally, training several networks for multiple datasets ended up only being viable in a cluster. 32
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Conclusions and Future Work2

4
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
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7.1 Discussion10

During this dissertation, dropout has been applied only to the fully-connected layers of convolu-

tional neural networks. Yet dropout has also been applied to convolutional layers albeit with mixed12

results. In some cases, it appears applying standard dropout before 1x1 convolutions generally in-

creases training time but does not prevent overfitting [49]. But in others, it actually produces better14

results. For instance, multiplying Bernoulli noise into the feature map has been proven itself as a

solid way to regularize networks [18, 29]. However, these dropout mechanisms are fundamentally16

different. Therefore, this dissertation’s investigation should only be valid in the domain of dropout

applied to fully-connected layers.18

We believe one of the main reasons that directly affected the model’s performance is the fact

that perhaps the selected features do not represent complexity well.20

In our experimental setup we have limited our ConvNet’s architecture to two versions – one

with and other without dropout – and applied it to all datasets. In Figure 7.1a, the ideal case for22

dropout regularization is illustrated: the data is too simple for the network and thus the model

overfits. Employing dropout balances complexities, closing its gap and resulting on better predic-24

tive power. In Figure 7.1b the opposite happens. Regularizing an otherwise already too simple

network could make its accuracy drop further down because now the complexity distance between26

dataset and network is larger than ever.

So our hypothesis is that the distance between dataset and model complexity is directly tied28

to the effects of dropout. Provided that we make the only moving variable the datasets, then it

becomes a matter of extracting features that represent whether a dataset is simple or complex.30

However, exactly gauging what makes a dataset complex for a deep model is by all means not

an easy task. Even if such investigation does not land within reach of this dissertation’s focus,32

47
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(a) Applying dropout to an overfit network (b) Applying dropout to an underfit network

Figure 7.1: Comparison of applying dropout to networks and datasets with different complexities

we do wonder whether our only image-based statistical features are enough and whether adding

morphological characteristics of a dataset – e.g. number of classes, class imbalance, number of 2

examples – would have been more representative of this concept.

This hypothesis is closely tied to the findings of how much the sampling approaches influence 4

data variance. While we were capable to find that, generally, aggregating samples and computing

new features on top of it appears to reduce variance, we were unable to improve accuracy. More 6

adequate features should provide us with a better understanding of the actual implications of the

sampling approach not only for variance but also for a model’s predictive power. 8

7.2 Future work

Due to the fact that the type of selected statistical features were uncapable of providing meaningful 10

results, we urge future work to experiment with other statistical features that are not solely image-

based but also represent the dataset’s morphological characteristics. Regarding deep features, 12

even if the network interpretation of pre-trained models provided the most promising results, its

predictions lack interpretability and do not exactly provide useful insights as to why dropout was 14

powerful or not in different scenarios. So while said features are favorable for understanding

whether dropout can be modeled with meta-learning, the explainability portion would lack. 16

Experimenting with other convolutional neural network architectures instead of only using a

single one is likely to provide a baseline as to how much the density of a network influences the 18

predictive confidence of the meta-model.

Additionally, regarding the variance issue, it is likely that simply computing the average and 20

standard deviation for the aggregated samples is not enough to achieve significantly superior re-

sults. We encourage future work on this feature engineering step to consider other statistical 22

metrics such as kurtosis, skew, coefficient of variance, and others.
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Dataset class_no train_size test_size val_size total_size unique_shapes
10-monkey-species 10 983 115 272 1370 True
aircraft 100 2934 400 3333 6667 True
alien-vs-predator 2 624 70 200 894 True
animals10 10 21197 2623 2359 26179 True
apple2orange 2 1812 514 202 2528 False
basic-shapes 3 243 30 27 300 False
beans 3 1034 128 133 1295 False
blood-cells 4 8960 2487 997 12444 False
boat-types 9 1177 150 135 1462 True
caltech101 102 5784 958 772 7514 True
caltech256 257 19402 3180 2548 25130 True
caltech_birds2011 200 7445 1191 990 9626 True
cassava 5 5656 1885 1889 9430 True
casting_data 2 5969 715 664 7348 False
chest_xray_pneumonia 2 5216 624 16 5856 True
cifar10 10 45000 10000 5000 60000 False
cifar100 100 36000 4000 10000 50000 False
cmaterdb_3.1.2 50 10800 3001 1200 15001 True
coil100 100 4500 800 600 5900 False
daimlerpedcls 2 21168 2352 5880 29400 False
dice 6 12852 1432 2102 16386 False
dogs-cats 2 7200 2000 800 10000 True
dtd 47 1692 188 1880 3760 True
food-101 101 81810 10100 9090 101000 True
four-shapes 4 12124 1498 1348 14970 False
fruits-360 120 54405 20622 6093 81120 False
gemstones 87 2529 363 327 3219 True
gesture-image 37 44955 5550 4995 55500 False
gtsrb 43 28214 3153 7842 39209 True
horse-or-human 2 924 103 256 1283 False
horse2zebra 2 2160 260 241 2661 False
intel 6 12626 3000 1408 17034 False
lego-brick 16 5166 638 575 6379 False
malaria 2 17636 2756 2206 22598 True
mnist 10 26873 4206 3362 34441 False
natural_images 8 5582 693 624 6899 True
omniglot 1623 14607 3246 6492 24345 False
open-sprayer 2 5423 604 670 6697 False
plf50 18 450 72 54 576 False
rockpaperscissors 3 1770 220 198 2188 False
rock_paper_scissors 3 2268 372 252 2892 False
simpsons 42 16918 2113 1902 20933 True
stanford-dogs 120 16567 2110 1903 20580 True
stanford_online_products 12 97144 12000 10800 119944 True
svhn 10 42489 4728 26040 73257 False
tf_flowers 5 2970 369 331 3670 True
ucf101 101 6780 805 1952 9537 False
uc_merced 21 1701 210 189 2100 True
vgg-flowers 102 918 102 1020 2040 True
walk-or-run 2 539 141 61 741 False

Table A.1: Morphological characteristics of the meta-database
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Dataset STAT VGG16 VGG19 MOBILENETV1 RESNET-50
10-monkey-species 3629.19 10.97 7.49 8.18 12.03
aircraft 24.19 5.80 5.35 6.54 10.29
alien-vs-predator 216.30 5.74 4.68 5.14 8.14
animals10 324.22 9.83 10.53 11.55 14.67
apple2orange 9.22 6.26 5.67 6.33 9.91
basic-shapes 1.17 3.48 2.72 4.07 8.14
beans 18.52 6.24 5.49 6.22 9.31
blood-cells 12.77 8.09 7.76 11.22 12.49
boat-types 3064.37 7.55 6.67 7.35 10.69
caltech101 292.00 6.78 7.07 7.77 11.42
caltech256 611.37 8.76 8.73 10.64 13.46
caltech_birds2011 604.18 8.14 7.88 8.70 14.21
cassava 1061.03 7.61 7.74 8.54 12.15
casting_data 12.58 7.91 7.74 8.37 11.93
chest_xray_pneumonia 5757.74 9.29 9.22 9.70 13.57
cifar10 41.75 8.81 9.16 10.33 14.46
cifar100 15.28 9.38 9.57 10.26 14.00
cmaterdb_3.1.2 30.60 7.98 7.93 9.01 12.23
coil100 7.61 6.04 5.96 7.06 10.64
daimlerpedcls 38.13 9.01 8.58 9.60 13.93
dice 21.74 8.92 8.19 9.10 13.04
dogs-cats 637.27 8.41 8.49 9.04 12.96
dtd 29.66 4.96 4.87 6.00 9.02
food-101 390.89 11.55 11.64 13.42 16.63
four-shapes 11.36 10.39 9.82 10.30 15.06
fruits-360 22.75 17.13 10.18 12.03 15.50
gemstones 515.28 10.03 7.97 8.34 11.62
gesture-image 21.63 20.59 11.69 12.55 16.43
gtsrb 36.05 14.51 8.90 10.25 13.91
horse-or-human 10.09 8.03 5.85 6.41 9.70
horse2zebra 9.87 7.59 7.16 7.40 10.67
intel 12.34 10.33 9.53 10.19 14.32
lego-brick 8.84 9.12 8.02 8.97 12.33
malaria 110.11 11.81 8.25 10.03 12.92
mnist 8.12 11.51 6.16 7.96 11.16
natural_images 190.00 9.94 9.18 10.35 13.73
omniglot 14.30 11.51 8.35 9.41 13.09
open-sprayer 13.42 9.91 8.07 8.79 12.67
plf50 3.92 8.95 4.00 4.64 8.56
rockpaperscissors 8.97 6.84 6.24 6.72 10.10
rock_paper_scissors 8.46 6.99 6.75 7.01 10.50
simpsons 732.43 12.84 9.46 10.32 14.33
stanford-dogs 661.70 13.07 9.68 10.81 15.15
stanford_online_products 674.56 50.43 12.22 13.34 17.16
svhn 41.77 18.43 10.43 11.45 15.39
tf_flowers 391.63 8.85 7.65 8.61 12.07
ucf101 11.27 8.95 8.53 10.33 12.62
uc_merced 19.89 8.12 6.63 7.07 10.59
vgg-flowers 31.41 6.94 5.35 5.36 9.40
walk-or-run 9.37 6.28 4.56 5.17 8.30
Total 20431.32 506.60 389.76 437.95 616.60

Table A.2: Machine A’s compute time (in seconds) for meta-feature extraction across various
techniques
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(a) Boxplot of the
10-monkey-species
dataset

(b) Boxplot of the
aircraft dataset

(c) Boxplot of the
alien-vs-predator
dataset

(d) Boxplot of the
animals10 dataset

(e) Boxplot of the ap-
ple2orange dataset

(f) Boxplot of the
basic-shapes dataset

(g) Boxplot of the
beans dataset

(h) Boxplot of the
blood-cells dataset

(i) Boxplot of the
boat-types dataset

(j) Boxplot of the
caltech_birds2011
dataset

(k) Boxplot of the
caltech101 dataset

(l) Boxplot of the
caltech256 dataset

(m) Boxplot of the
cassava dataset

(n) Boxplot of the
casting_data dataset

(o) Boxplot of the
chest_xray_pneumonia
dataset

(p) Boxplot of the ci-
far10 dataset

(q) Boxplot of the ci-
far100 dataset

(r) Boxplot of the
cmaterdb_3.1.2
dataset

(s) Boxplot of the
coil100 dataset

(t) Boxplot of
the daimlerpedcls
dataset

(u) Boxplot of the
dice dataset

(v) Boxplot of the
dogs-cats dataset

(w) Boxplot of the
dtd dataset

(x) Boxplot of the
food-101 dataset

Figure A.1: Set #1 of dataset boxplots regarding prediction stability
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(a) Boxplot of the
four-shapes dataset

(b) Boxplot of the
fruits-360 dataset

(c) Boxplot of the
gemstones dataset

(d) Boxplot of
the gesture-image
dataset

(e) Boxplot of the gt-
srb dataset

(f) Boxplot of the
horse2zebra dataset

(g) Boxplot of the
horse-or-human
dataset

(h) Boxplot of the in-
tel dataset

(i) Boxplot of the
lego-brick dataset

(j) Boxplot of the
malaria dataset

(k) Boxplot of the
mnist dataset

(l) Boxplot of the
natural_images
dataset

(m) Boxplot of the
omniglot dataset

(n) Boxplot of the
open-sprayer dataset

(o) Boxplot of the
plf50 dataset

(p) Boxplot of the
rock_paper_scissors
dataset

(q) Boxplot of the
rockpaperscissors
dataset

(r) Boxplot of the
simpsons dataset

(s) Boxplot
of the stan-
ford_online_products
dataset

(t) Boxplot of the
stanford-dogs dataset

(u) Boxplot of the
svhn dataset

(v) Boxplot of the
tf_flowers dataset

(w) Boxplot of the
uc_merced dataset

(x) Boxplot of the
ucf101 dataset

Figure A.2: Set #2 of dataset boxplots regarding prediction stability
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(a) Boxplot of the
vgg-flowers dataset

(b) Boxplot of the
walk-or-run dataset

Figure A.3: Set #3 of dataset boxplots regarding prediction stability
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