
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Eye Tracking User Interface

Luís Tiago Galvão Ferreira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. António Miguel Pontes Pimenta Monteiro

July 25, 2020

Eye Tracking User Interface

Luís Tiago Galvão Ferreira

Mestrado Integrado em Engenharia Informática e Computação

July 25, 2020

Abstract

The Industry 4.0 paradigm demands a constant improvement of manufacturing processes. We can
quickly imagine artificial intelligence putting machines doing things to help the daily human tasks.

Thinking on the shop-floor, it’s common to see operators wearing gloves, maneuvering heavy
or sensitive material, having their hands occupied. Sometimes, these operators need to interact
with the software systems used in manufacturing, to track and document the transformation of raw
materials to finished goods, without using their hands.

The ideal solution is the use of a strategy that integrates specialized hardware to track the
human gaze in real-time with manufacturing systems.

Tracking eyes has been a subject of research and development in many fields. There are many
hardware devices for Eye Tracking, some of them are used over the head and have a high degree of
accuracy, while others use structured infrared lighting and pré-calibration to track where the user
is looking on the screen.

In this project, it will be explored not only the different Eye Tracking algorithms and hardware
devices but also alternatives for GUI interactions, like Hand Tracking and Voice Recognition, to
provide operators with tools that can help them in their work.

Using Machine Learning algorithms, proved to be an important resource for prediction and
detection of the eye or hand movements, triggering a respective action in the GUI.

The movements with the eyes, using Linear SVM algorithm for prediction, was proved to be
a great feature, not only for the quick response of 3,37 seconds on average and for their accuracy,
but also for being an asset when it comes to using extra validations to perform an action in the
manufacturing software systems.

Regarding the movements with the hands, we conclude that the time of model training is
not the factor that will increase the accuracy, but the size of the training dataset. The Averaged
Perceptron algorithm, associated with the hand movements, takes 14,48 seconds since the user
performs the action until the algorithm returns the result, with 92,86 % of accuracy.

Finally, it was concluded that the user can interact with manufacturing software systems with-
out using a mouse or keyboard, and customize this interaction in any way he wants, making the
work more efficient.

Keywords: Software, Computer Vision, Eye Tracking, Hand Tracking, Machine Learning, Man-
ufacturing, Industry 4.0

i

ii

Resumo

O paradigma da Indústria 4.0 exige uma melhoria constante dos processos industriais. Rapida-
mente imaginamos a inteligência artificial a colocar máquinas a realizar operações com o intuito
de facilitar as tarefas dos humanos no seu dia-a-dia.

Pensando no chão de fábrica, é comum os operadores utilizarem luvas para pegar em material
pesado ou sensível, com as mãos ocupadas. Às vezes, esses operadores precisam de interagir
com sistemas de software industriais sem mãos, de modo a documentarem e validarem o processo
associado à transformação de matérias-primas em produtos acabados.

A solução ideal para este problema, consiste na utilização de uma estratégia que interligue
um hardware com múltiplas câmaras, de modo a monitorizar o olhar humano, em tempo real, de
forma a ser possível executar operações em sistemas de software industriais.

Monitorizar os olhos tem sido objeto de pesquisa e desenvolvimento em muitos campos. Exis-
tem muitos dispositivos de hardware para monitorização ocular. Alguns são montados diretamente
na cabeça e têm um alto nível de precisão, enquanto outros utilizam iluminação infravermelha es-
truturada e pré-calibração, para calcularem para onde o utilizador está a olhar.

Neste projeto serão investigados não só os vários algoritmos e hardware associado à monitor-
ização ocular, mas também outras alternativas para a interação com a GUI. Como por exemplo a
deteção de mãos e respetivos movimentos, e reconhecimento de voz. De maneira a fornecer aos
operadores ferramentas que os possam ajudar no seu trabalho.

O uso de algoritmos de Machine Learning, provou ser um importante recurso no que diz
respeito a previsão e deteção de movimentos com os olhos ou mãos, desencadeando uma ação na
GUI.

Os movimentos com os olhos, utilizando o algoritmo Linear SVM , provou ser uma grande
funcionalidade não só pela resposta rápida de 3,37 segundos em média e pela sua precisão, mas
também por ser uma mais valia no que diz respeito ao uso de validações extras para executar uma
ação nos sistemas de software industriais.

Em relação aos movimentos com as mãos, concluímos que o tempo de treino do modelo não
é o fator que aumenta a precisão, mas sim o tamanho do conjunto de dados de treino. O algoritmo
Averaged Perceptron, associado aos movimentos das mãos, demora cerca de 14,48 segundos desde
que o utilizador executa a ação até que o algoritmo devolve o resultado, com 92,86 % de precisão.

Para finalzar, foi concluido que o utilizador pode interagir com sistemas de software industriais
sem o auxílio de rato ou teclado, e personalizar essa interação da maneira que desejar, tornando
assim o trabalho mais eficiente.

Keywords: Software, Visão por Computador, Monitorização ocular, Monitorização gestual, In-
dústria 4.0

iii

iv

Acknowledgements

I would like to thank everyone involved in this project, it was a period of hard work.

To Prof. Miguel Pimenta Monteiro, for the support and guidance provided.

To José Pedro Silva, for the opportunity he gave me to contribute with this project to Critical
Manufacturing Product and for sharing his knowledge and his ideas.

To João Gonçalves for sharing his knowledge and giving me good advices. Finally, I thank to my
family, girlfriend, and friends who never stopped believing in my capabilities, and for uncondi-
tional emotional support.

Tiago Galvão

v

vi

“Innovation distinguishes between a leader and a follower.”

Steve Jobs

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Document Structure . 2

2 Eye Tracking Techniques 3
2.1 Manufacturing Execution Systems . 3
2.2 Eye Tracking History . 4
2.3 Eye Tracking Algorithms . 5

2.3.1 Eye aspect ratio (EAR) . 6
2.3.2 Circular Hough Transform (CHT) . 6
2.3.3 Starburst algorithm . 7
2.3.4 Sinusoidal Eye-Tracker (SET) . 8
2.3.5 Swirski . 8
2.3.6 Exclusive Curve Selector (ExCuSe) . 8
2.3.7 Ellipse Selection (ElSe) . 9
2.3.8 Adaptive and Precise Pupil Boundary Detection(APPD) 10

2.4 Machine Learning Applied to Computer Vision 10
2.5 Previous Work . 11

3 Requirements and Functionalities 15
3.1 Proposed Solution . 15
3.2 Use Cases . 16

3.2.1 Package: Eye . 17
3.2.2 Package: Hand . 19
3.2.3 Package: Speech . 20

3.3 Functional Requirements . 21
3.4 Non Functional Requirements . 22

4 Architecture 25
4.1 MES GUI . 27
4.2 Eye Tracking Middleware . 28
4.3 Hand Tracking Middleware . 29
4.4 Message Bus . 30

ix

x CONTENTS

5 Implementation 33
5.1 Overlap Detection . 33
5.2 Eye Coordinates . 34
5.3 Machine Learning Pipelines . 35
5.4 Binary Classification With Linear SVM for Eye Actions 36
5.5 Multi Classification With Average Perceptron for Hand Actions 38
5.6 Haar Cascade for Hand Detection . 39
5.7 Speech Recognition . 40

6 Results Analysis 43
6.1 Trends . 43
6.2 Actions Evaluation . 44

6.2.1 Hand Actions Evaluation . 44
6.2.2 Eye Actions Evaluation . 49

6.3 MES Scenarios . 52

7 Conclusions and Future Work 57
7.1 Main Contributions . 57
7.2 Future Work . 58

A Evaluation 59
A.1 Hand Actions Evaluation . 59
A.2 Eye Actions Evaluation . 61
A.3 MES scenarios Evaluation . 62

References 65

List of Figures

2.1 EAR . 6
2.2 The principle of the CHT . 6
2.3 ExCuSe workflow . 9
2.4 ElSe - algorithm steps . 9
2.5 APPD Workflow . 10
2.6 APP1 - Open Eyes (bad light conditions) . 12
2.7 APP1 - Open/Close Eyes (with good artificial light) 12
2.8 APP2 - Highway Code Game . 12
2.9 Tobii Eye Tracker 4C vs Mouse :: UX and Learning Curves 13
2.10 Survey . 13

3.1 Package diagram . 16
3.2 Package diagram . 17

4.1 Product Architecture . 25
4.2 Detailed Eye Tracking Components Diagram 27
4.3 High-level abstraction layers . 27
4.4 Eye Tracking Components Diagram . 29
4.5 Hand Tracking Components Diagram . 30

5.1 Coordinates Mapping and Collision between two objects 34
5.2 Get Eye Tracking Coordinate . 35
5.3 Machine Learning Pipeline . 35
5.4 Eye Action Prediction . 37
5.5 Eye Actions . 37
5.6 Binary linear classifier example . 39
5.7 Hand Actions . 39
5.8 Wizard fields . 40
5.9 Searching in Tiles Grid . 41
5.10 Mozilla Speech-To-Text Cloud Architecture [29] 41

6.1 Eye Tracking Trends [38] . 43
6.2 Eye Tracking Trends - World Map . 44
6.3 Hand Actions (version 1) . 45
6.4 Hand Actions (version 2) . 45
6.5 Hand Actions in real MES context . 47
6.6 Hand Actions in real MES context - Time Comparison 48
6.7 Eye Actions . 49
6.8 Eye Actions in real MES context . 51

xi

xii LIST OF FIGURES

6.9 Eye Actions in real MES context - Time Comparison 51
6.10 MES Scenarios - Comparison . 55
6.11 Standard Tables and Tiles Grid . 55

List of Tables

3.1 Actors of the system . 17
3.2 Packages of the system . 17
3.3 UC.001 - Detect the eyes position inside MES 18
3.4 UC.002 - Eye click for any MES button and input text 18
3.5 UC.003 :: Eye patterns for confirmation in Wizards and Execution Views 18
3.6 UC.004 :: Hand gestures for Next/Cancel/Back/Finish in Wizards and Execution

Views . 19
3.7 UC.005 :: Detect the open/close hand . 19
3.8 UC.006 :: Speech detection . 20
3.9 UC.007 :: Convert speech in to text when the input text is focused 20
3.10 REQ.001 :: Using MES with eyes . 21
3.11 REQ.002 :: Patterns with eyes . 21
3.12 REQ.003 :: Eye patterns customization . 21
3.13 REQ.004 :: Perform operations using hand gestures 22
3.14 REQ.005 :: Eye patterns customization . 22
3.15 REQ.006 :: GUI according to MES . 22
3.16 REQ.007 :: Fast performance and optimization 23
3.17 REQ.008 :: System error log . 23
3.18 REQ.009 :: Avoiding additional dependencies 23
3.19 REQ.010 :: Using CMF Message Bus for multicast communication 23
3.20 REQ.011 :: Code clean and maintainable . 24

4.1 Hand Tracking Middleware - Messages Send/Receive 30
4.2 Eye Tracking Middleware - Messages Sent . 31
4.3 Eye Tracking Middleware - Messages Received 31
4.4 MES - Messages Sent . 31
4.5 MES - Messages Received . 32

6.1 Models explored (10 seconds & 120 gestures) 46
6.2 Top 5 models explored (200 seconds & 120 gestures) 46
6.3 Top 5 models explored (200 seconds & 80 gestures) 47
6.4 Hand Actions in real MES context . 47
6.5 Hand Actions in real MES context - Time Comparison 48
6.6 Eye Actions Evaluation . 50
6.7 Eye Actions in real MES context . 50
6.8 Eye Actions in real MES context - Time Comparison 51
6.9 Scenarios Comparison . 54

A.1 Detailed Hand Actions Evaluation . 59

xiii

xiv LIST OF TABLES

A.2 Detailed Hand Actions Evaluation (cont.) . 60
A.3 Detailed Eye Actions Evaluation . 61
A.4 Scenario 1: One arm from screen . 62
A.5 Scenario 2: One arm from screen . 63
A.6 Scenario 2: One arm from screen (with tracking solution) 64

Abbreviations

APPD Adaptive and Precise Pupil Boundary Detection
CHT Circular Hough Transform
CIM Computer Integrated Manufacturing
CMF Critical Manufacturing
CNN Convolutional Neural Networks
EAR Eye aspect ratio
ElSe Ellipse Selection
ExCuSe Exclusive Curve Selector
GUI Graphical User Interface
IIS Internet Information Services
MES Manufacturing Execution System
MESA Manufacturing Enterprise Solutions Association
ML Machine learning
MRP Material Requirements Planning
MRP II Manufacturing Resources Planning
PCCR Pupil centre corneal reflection
SET Sinusoidal Eye-Tracker
STT Speech-To-Text
UX User Experience

xv

Chapter 1

Introduction

1.1 Context

Manufacturing execution systems (MES) are computerized systems used in manufacturing, to track

and document the transformation of raw materials to finished goods. These systems provides

information that helps manufacturing decision makers understand how current conditions on the

plant floor can be optimized to improve production output.

The challenges created by globalized manufacturing business used MES as pivotal in the per-

formance, quality and agility. However, a completely new generation is required to the new chal-

lenges created by Industry 4.0. [3]

1.2 Motivation

The Industry 4.0 paradigm demands a constantly improvement of manufacturing processes. We

see more and more tasks becoming automated, an increase in online interaction with the process

and an overall shift towards cyber physical systems.

Thinking on the shop-floor, it’s common to see operators wearing gloves, maneuvering heavy

or sensitive material, performing complex manufacturing processes while interacting with com-

puter systems, having their hands occupied.

Performing several tasks at the same time it’s not easy, and often leads to unwanted failures.

If we are working with expensive and fragile components it’s recommended that we have a lot of

attention, an example is the Wafers manufacturing case, characterized next.

In electronics, a wafer is a thin slice of semiconductor used for the production of integrated

circuits or to manufacture solar cells in case of equipments. The production process for this

component involves many micro fabrication processes, such as doping, ion implantation, etch-

ing, thin-film deposition of various materials, and photolithographic patterning. The individual

microcircuits are separated by wafer dicing and packaged as an integrated circuit [19].

1

2 Introduction

So it’s very useful that manufacturing operators can interact with software manufacturing sys-

tems without using their hands in a quick and simple way. Simple tasks like assemble and disas-

semble components while seeing information about the next steps of this process in a computer,

access the statics of the some process, or even documenting something, becomes easier.

1.3 Objectives

The main goal addressed in this work is to integrate the MES Critical Manufacturing System with

an Eye Tracking platform so the operators can interact with the MES without the need to use their

hands.

The usage of an Eye Tracking solution has several benefits towards Industry 4.0. It can be used

to help with skills transfer and training, or to streamline processes and identify waste or roadblocks

in a system, and it can also be used to improve safety and increase situational awareness.[4]

Eye Tracking allows you to see roles and tasks from the perspective of the worker. It gives clear

and accurate data on where they are looking and how they perform tasks, and this information

reveals a lot about subconscious processes and behaviors which workers may be unaware of or

unable to articulate.[4]

1.4 Document Structure

This document is divided into a set of chapters that aims to investigate and propose a solution for

interaction with MES systems totally hands-free.

Starting with chapter 1, it will be presented a brief description of MES systems, followed by

Eye Tracking historical position, as well as main algorithms used nowadays. Machine Learning

applied to Computer Vision will also be a point that will be discussed. Chapter 2 will be concluded

with related work, the applications and the experiences made in Intelligent Systems, Interaction

and Multimedia Seminar on 2019.

In chapter 3, the proposed solution is presented and also a set of use cases associated with

functional and non-functional requirements.

Chapter 4 contains the description of the solution architecture, as well as a brief description of

the architecture of the Critical Manufacturing product, where this project will be applied.

In chapter 5, some important details of the implementation are presented and the found solu-

tions analysed.

This document concludes with chapter 6, describes some analysis, testing and experiments

related with this project, and chapter 7 where main contributions and future work are presented.

Chapter 2

Eye Tracking Techniques

In this chapter a brief description of MES systems is presented, followed by Eye Tracking historical

position, as well as main algorithms used nowadays. Machine Learning applied to Computer

Vision is also a point mentioned and discussed. It concludes with related work, the applications

and the experiences made in Intelligent Systems, Interaction and Multimedia Seminar on 2019.

2.1 Manufacturing Execution Systems

Competition has grown exponentially in recent decades, leading companies to take several mea-

sures to increase productivity and reduce costs. This combination has been implemented in several

ways, ranging from the transfer of production units to countries with low labor costs, to the use

of industrial management software and other computerized tools to plan, control and increase the

productive performance of human resources and materials [36].

The use of software systems to support production activities began with the rise of large com-

puters, created in the 1940s, being only incorporated in conventional companies in the 1950s and

1960s. They were implemented to support the financial departments, later applied to production

departments, taking in first place analysis of costs and inventory, then the planning and control

[36].

The support to the industry has evolved and caused the arising of several types of systems,

such as MRP - Material Requirements Planning, in the 60s, which converts a production plan into

a list of the quantities of materials needed for its execution, and MRP II - Manufacturing Resources

Planning, in the 1980s, which expands the range of analysis of the previous tool, incorporating

needs for human resources, equipment, energy, financial resources. In this period these solutions

were generically treated as CIM - Computer Integrated Manufacturing [36].

As an evolution of the MRP II concept, the integrated Enterprise Resource Planning solutions

emerged, which end up being an eminently administrative-financial tool, giving a little support to

production, especially through the logistics and production sectors [36].

3

4 Eye Tracking Techniques

One of the most recent elements of this set is the MES - Manufacturing Execution System,

which allows the planning, control and monitoring in real time of the various processes and pro-

duction stages, both in terms of physical quantities of raw materials, intermediate and finished

products, as well as in terms of financial costs of any kind - personnel, energy, raw materials,

intermediate products. MES performs all the functions of MRP and MRP II and makes a bridge

between planning and production control, directly from equipment such as scales and barcodes,

or manually, but always in real time [36].

The name MES was created by the company AMR Research in 1990 and in 1992 a group

of software development consultants and solution integrators created the MESA - Manufacturing

Enterprise Solutions Association, which defined a set of eleven features that would be mandatory

for any application proposed to obtain this classification and that is known as MESA model [36].

In 2000, the International Society of Automation developed the first part of the ANSI-ISA-95

standard and three more until the year 2010. This standard establishes a set of terminologies,

activities and functions, as well as the hierarchy of these functions, and a standardization between

the interfaces of MES system [36].

Critical Manufacturing MES provides manufacturers in demanding discrete industries a plat-

form for Industry 4.0 success. It delivers reliable access to detailed and timely operational infor-

mation with full context and intelligence for fast, confident decisions and profitable action [23].

Whether plants use traditional technologies or Industry 4.0 distributed intelligence, the Critical

Manufacturing MES is ready to foster progress and improvement. Users can readily configure,

distribute and use workflows and screens [23].

Inherently designed to accommodate the Industrial Internet of Things (IIoT), mobile devices,

automation, sensors, Critical Manufacturing MES is truly an Industry 4.0 hub. This Augmented

MES offers not only includes advanced analytics and continuous improvement tools, but also a

manufacturing digital twin, and quick, intuitive looks at performance [23].

2.2 Eye Tracking History

The first who noticed that we have something special in our eyes was Louis Emile Javal, french

ophthalmology investigator. In 1879 he said that our eyes don’t move continuously along a line of

text, but make short rapid movements intermingled with short stops.[21]

Later, Charles H. Judd developed the eye movement camera, a non-intrusive Eye Tracking

device that recorded motions of eyes on film allowing detailed study of eye motion.[21]

In 1931, Earl James and Carl Taylor, created the Ophthalmograph and Metronoscope, devices

used to record the movement of eyes while reading and tools that trained people to read more

effectively. They understood, as Louis Javal said, that reading was not simply a smooth motion

over words. Instead, a reader scans several words, pauses a moment to comprehend them, and

then scans again. The Ophthalmograph was used to measure readers hops and fixation.[21]

In the late 1990s, EURO RSCG began using Eye Tracking technology to measure and study

reactions to information on the internet.[21]

2.3 Eye Tracking Algorithms 5

In 2006, Bunnyfoot company, using Eye Tracking and physiological data, build a study that

examined how effective advertising was in video games in virtual worlds with digital billboards.

[21]

However the study of Eye Tracking wasn’t accessible to everyone, because the hardware with

a significant precision was very expensive. For many years Eye Tracking was used as a tool in

education research and by medical researchers and physicians.

Nowadays we have the example of Tobii Eye Tracker 4C hardware (that I will use as a case of

study in the next sections) which is more focused on the gaming world and simultaneously tracks

the eyes and head.

2.3 Eye Tracking Algorithms

I will start with the question: Why do we move our eyes?

Eye movements have 3 main functions which are considered important when we process visual

information:

• Place the information that interests us on the fovea (saccades, vestibular ocular reflex and

smooth pursuit);

• Help bring objects into focus (vergence);

• Prevent stationary objects from fading perceptually (microsaccades, tremor and drift)

The human visual field is about 134 x 220 degrees and is divided into three main regions : foveal,

parafoveal and peripheral.

Our visual data is primarily registed in the foveal region, that represents less than 1% of the

visual field. Even though this represents only a small part of our field of vision, the information

registered through the foveal region constitutes about 10% of what is sent to the brain through our

optic nerve [12].

The peripheral vision has very poor acuity, and main capabilities are for detecting contrasts

and movements. So when we move our eyes to focus on a specific region of an object, we are

placing the foveal region of the eye on top of the area that is currently within the main focus of

the lens in our eye. This means that we are maximizing our visual processing resources on the

particular area of the visual field that also has the best image due to the optic characteristics of

the eye. By letting the foveal region register the image, the brain gets the highest possible image

resolution of the interesting area to process as well as the most amount of data registered by the

eye about that area [32].

Throughout the evolution of eye branch research, new ideas and discoveries emerged that led

to the creation of universal eye detection algorithms. In the following subsections, some of the

most relevant algorithms for Eye Tracking are examined.

6 Eye Tracking Techniques

2.3.1 Eye aspect ratio (EAR)

The concept of eye aspect ration (EAR) was introduced by Tereza Soukupová and Jan Cech in their

2016 paper, Real-Time Eye Blink Detection Using Facial Landmarks [37]. The EAR (Fig. 2.1.)

involves a very simple calculation based on the ratio of distances between facial landmarks of the

eyes. The EAR is mostly constant when the eye is open and is getting close to zero while it closes.

EAR =
||p2− p6||+ ||p3− p5||

2||p1− p4||

Figure 2.1: EAR

2.3.2 Circular Hough Transform (CHT)

Hough transform is one of basic methods which distinguish geometry from the image in an image

processing. The circle candidates are produced by voting in the Hough parameter space and then

selecting local maxima in an accumulator matrix.

Figure 2.2: The principle of the CHT

This algorithm can be used to detect the pupil center. It uses xc, xy as coordinates of center and

r as the radius of a circle:

x = xc + r ∗ cos(θ)

y = yc + r ∗ sin(θ)
(2.1)

This method relies on the property of the edge points to describe circles with optimal radius r

that intersect in the same point that is the center of the circle we want to detect [1].

2.3 Eye Tracking Algorithms 7

2.3.3 Starburst algorithm

The Starburst algorithm was introduced by Dongheng Li, Jason S Babcock, Derrick J. Parkhurst,

combining feature-based and model-based image processing approaches. The goal of the algo-

rithm is to extract the locations of the pupil center and the corneal reflection so as to relate the

vector difference between these location to coordinates in the scene image.[11]

Starburst uses the following steps:

1. Noise reduction

Reducing the shot noise and line noise in the eye image applying a 5x5 Gaussian filter with

a standard deviation of 2 pixels.

2. Corneal reflection detection, localization and removal

When infrared light is projected in the eye, the corneal reflection corresponds to one of the

brightest regions in the eye image. It can be used an adaptive thresholding technique in

each frame to localize the corneal reflection. The corneal reflection is removed by radial

intensity interpolation, meaning that for each pixel between the center and the contour, the

pixel intensity is determined via linear interpolation.

3. Pupil contour detection

We start to detect edges along a limited number of rays that extend from a central best guess

of the pupil center. For robustness to inaccuracy of the starting point, edges are also detected

along a limited number of rays extending from the initial set of detected features returning

in the direction of the starting point.

For each frame, a location is chosen that represents the best guess of the pupil center in the

frame.

Next, the derivatives ∆ along N, extending radially away from this starting point, are inde-

pendently evaluated pixel by pixel until a threshold is exceeded.

When this threshold is exceeded, a feature point is defined at that location and the processing

along the ray is halted.

The two-stage feature-detection process improves the robustness of the method to poor ini-

tial guesses for the starting point.

At this point, an ellipse could be fitted to the candidate points, however, the bias would

induce a significant error into the fit. To eliminate this bias, the two-stage feature-detection

process is iterated [10].

4. Ellipse fitting

Given a set of candidate feature points, we find the best fitting ellipse, using the Random

Sample Consensus (RANSAC), witch is an iterative procedure that selects many small but

random subsets of the feature points, and uses each subset to fit an ellipse, in order to find

the ellipse that has the largest agreement with the entire set of candidate feature points.

8 Eye Tracking Techniques

5. Calibration

This step is related to the calculation of user’s gaze point in the image scene, using a map-

ping between locations in the image scene and an eye position. During calibration, the user

must look to a set of scene points for which the positions in the scene image are known.

2.3.4 Sinusoidal Eye-Tracker (SET)

The sinusoidal Eye Tracker is based on the deconstruction of contours in black and white images

into sinusoidal components. The key feature of SET is the proper combination of manual and

automatic steps that achieves high precision with a reasonable speed. Before applying the pupil

detection we adjust the following parameters:

• The threshold for conversion of the eye image to a black and white image;

• The size of the segments considered for pupil detection.

This method is designed for Eye Tracking in a sequence of images. It uses the detected pupil po-

sition in the previous frame as the starting point of the search in the current frame. In cases where

there is no prior pupil position, the center of the image is considered as the starting point.[17]

2.3.5 Swirski

Swirski is a real-time dark-pupil tracking algorithm designed for low-cost head-mounted active-IR

hardware. This algorithm is robust to highly eccentric pupil ellipses and partial obstructions from

eyelashes, making it suitable for use with cameras mounted close to the eye.

Swirski approach works in three stages:

• Approximate the pupil region using a fast, simple feature detection, to reduce the search

space in the following stages;

• Use a k-means histogram segmentation to refine the approximation of the pupil region, and

find an initial approximation to the pupil centre;

• Refine the pupil centre and find its elliptical outline, using a novel ellipse fitting algorithm

[20].

2.3.6 Exclusive Curve Selector (ExCuSe)

ExCuSe is based on oriented histograms calculated via Angular Integral Projection Function and

as input uses 8-bit gray-scale images. The coarse pupil center estimation is then refined by ellipse

estimation similar to Starburst. This algorithm is evaluated on the Swirski dataset as well as

nine other datasets that were collected during an on-road driving experiment and eight datasets

that were collected during a supermarket study. The evaluation dataset consists of overall 38,401

images, where the pupil position was labeled manually on each image [39].

The workflow of the algorithm is shown in figure 2.3.

2.3 Eye Tracking Algorithms 9

Figure 2.3: ExCuSe workflow

2.3.7 Ellipse Selection (ElSe)

ElSe proved high detection rates, robustness, and a faster runtime in comparison to ExCuSe, SET,

Starburst, and Swirski.

ElSe operates on gray scale images, starting by calculate the edge image. Then we remove the

edge connections that could impair the surrounding edge of the pupil.

Afterwards, the connected edges are collected and evaluated based on straightness, inner in-

tensity value, elliptic properties, the possibility to fit an ellipse to it, and a pupil plausibility check.

If a valid ellipse describing the pupil is found, it is returned as the result. In case no ellipse is

found, a second analysis is conducted. To speed up the convolution with the surface difference

and mean filter, the image is downscaled.

After applying the surface difference and mean filter to the rescaled image, the best position is

selected by multiplying the result of both filters and selecting the maximum position. Choosing a

pixel position in the downscaled image leads to a distance error of the pupil center in the full scale

image. Therefore, the position has to be optimized on the full scale image based on an analysis of

the surrounding pixels of the chosen position.[40]

Figure 2.4: ElSe - algorithm steps

10 Eye Tracking Techniques

2.3.8 Adaptive and Precise Pupil Boundary Detection(APPD)

APPD follows a simple workflow and consists of the steps shown in figure 2.5, culminating in the

contour detection of the pupil.

This adaptive method for pupil boundary infers if the pupil is severely occluded and spends

more effort to detect the pupil without compromising real-time applicability.

The main strategy which improves the algorithm against occlusions is extracting the elliptical

arcs from input image and finding one arc or a group of arcs representing the pupil contour. In

this way, relevant features from a partially visible pupil can be extracted and detection can be per-

formed by fusion of separate features. Besides detecting the pupil boundary and center precisely,

the algorithm can also identify if there is no pupil in the image.[8]

Figure 2.5: APPD Workflow

2.4 Machine Learning Applied to Computer Vision

Machine Learning (ML) is an important subset of artificial intelligence, for the scientific study of

statistical models and algorithms which focuses on making predictions, without human explicit

instructions.

ML algorithms build a mathematical model based on sample data, known as training data, in

order to make predictions or decisions without being explicitly programmed to perform the task

[18][6]. Those algorithms can be used in the computer vision field, for detecting eyes or hands

movements, more easily than conventional algorithms.

There are some variations of how to define the types of ML algorithms but commonly they can

be divided into categories according to their purpose where the main categories are the following

[13]:

• Unsupervised Learning

Unsupervised Learning describes a class of problems that involves using a model to describe

or extract relationships in data.

In Unsupervised Learning, there is no instructor or teacher, and the algorithm must learn to

make sense of the data without this guide [15].

2.5 Previous Work 11

The goal in such Unsupervised Learning problems may be to discover groups of similar

examples within the data, where it is called clustering, or to determine the distribution of

data within the input space, known as density estimation, or to project the data from a high-

dimensional space down to two or three dimensions for the purpose of visualization [35].

• Reinforcement Learning

Reinforcement Learning describes a class of problems where an agent operates in an envi-

ronment and must learn to operate using feedback.

Reinforcement Learning is learning what to do — how to map situations to actions—so as

to maximize a numerical reward signal. The learner is not told which actions to take, but

instead must discover which actions yield the most reward by trying them [33].

• Supervised Learning

The primary purpose of Supervised Learning is to scale the scope of data and to make

predictions of unavailable, future or unseen data based on labeled sample data.

It infers a function from labeled training data consisting of a set of training examples [28].

The function tries to model relationships and dependencies between the target prediction

output and the input features, such that we can predict the output values for new data, based

on those relationships which it learned from the previous datasets [14].

2.5 Previous Work

In the Intelligent Systems, Interaction and Multimedia Seminar on 2019, it was decided to explore

the Eye Tracking world, developing two applications. This section will talk about some of this

experiences.

The first application (APP1), made in python, used the traditional webcam associated to

OpenCV, dlib and imutils libraries to detect the position of the eyes, and used the EAR algorithm

to detect the eye blinking.

The second application (APP2), is a game about Highway Code, that can be played using Tobii

Eye Tracker 4C hardware or a mouse, developed in C# and using the Tobii Core SDK.

Tracking the human eyes is a bit tricky, especially if it’s done with a traditional webcam. The

quality of light and image, are variables with a lot of weight. If we are in a dimly lit environment or

too far from the camera or we rotate our head, it is practically impossible to detect the eyes (figure

2.6). Another limitation of the EAR algorithm is when we look down, confusing the resulting

image to a closing eye.

12 Eye Tracking Techniques

Figure 2.6: APP1 - Open Eyes (bad light conditions)

If we are in an environment with moderate light, the EAR algorithm is applied correctly, and

we have the eye blink detection for right, left and both eyes (figure 2.7).

Figure 2.7: APP1 - Open/Close Eyes (with good artificial light)

The APP2 (figure 2.8) using Tobii Eye Tracker 4C or mouse was tested in 10 females and

males from 15-75 years.

Figure 2.8: APP2 - Highway Code Game

2.5 Previous Work 13

For all individuals that don’t know of the existence of this Eye Tracking platform, there are

an initial adaptation phase. In the figure 2.9 we see that the Eye Tracking device can improve not

only the user experience but the learning of the game itself, as the number of usage of the APP2

increases.

Figure 2.9: Tobii Eye Tracker 4C vs Mouse :: UX and Learning Curves

For a better understating a survey to the 10 individuals was performed, including 4 questions

(figure 2.10). In general the use of Tobii Eye Tracker 4C wins in all questions. However we didn’t

reach the 10 "YES" in some questions. Maybe the game could be improved or the calibration of

the Eye Tracker wasn’t correctly done.

Figure 2.10: Survey

What’s so special about Tobii Eye Tracker?

This platform improved the traditional PCCR (pupil centre corneal reflection), using an infrared

light to illuminate the eye, and causing highly visible reflections. Then the cameras of this platform

take high-resolution images of the user’s eyes to be used in an image processing algorithms and in

physiological 3D models so we can estimate the position of the eye in space and the point of gaze

with high accuracy.

14 Eye Tracking Techniques

Chapter 3

Requirements and Functionalities

After we described the more technical concepts about the theme of this project in previous chap-

ters, it’s time to propose a solution, and translate functionalities in a set of use cases associated

with functional and non-functional requirements.

3.1 Proposed Solution

Performing complex manufacturing processes while interacting with computer systems having

hands occupied it’s not easy, and often leads to unwanted failures (chapter 1).

The baseline solution should be the combination of movement, fixation and blinking of the

user eyes with hand gestures to do simple operations in Critical Manufacturing system (MES).

Since in the top of our metrics is the involvement of components with a very high trust rating,

the solution should promote the integration of a specialized hardware for eye tracking. In this case

the chosen hardware was the Tobii Eye Tracker 4C, based on the good characteristics described

before, and an HD 1080p Webcam incorporated with the MES user interface that allows to extract

the user hands with good quality.

15

16 Requirements and Functionalities

Figure 3.1: Package diagram

Another important point of this project was also the development of machine learning engines

that predict eye movements and detect hand gestures, enabling the management and maintenance

of multiple dynamic actions inherent to these eye/hand movements.

Also should be possible to record the eye movements associated to some daily operation tasks

in order to be able to find possible faults associated with MES, as well as check which Wizards/Ex-

ecution Views users spend most time.

3.2 Use Cases

The general requirement of allowing users to interact with the MES user forms without using

the traditional keyboard and mouse leads to the use of other modalities envolving the eyes, hand

gestures, and possibly speech.

These three modalities conducted to the grouping of use cases in these three modalities.

The package diagram of figure 3.2 represents the described generic model of use cases for

the system developed. Each package, groups one or more parts of the system that are intended to

support the organization’s processes and/or to gather a set of features. Each package includes the

actors and use cases developed for the system.

3.2 Use Cases 17

Figure 3.2: Package diagram

In table 3.1 the actors of the system are presented, and specifies table 3.2 each of the packages.

Table 3.1: Actors of the system

Actor Description

User All individuals that uses the system. Usually, they should be operators that
are doing some processes that required the usage of several tasks at the
same time, like mounting an hardware component while they are checking
the steps presented in MES.

Table 3.2: Packages of the system

Package Description

Eye Involves all processes associated to the eye detection and interaction.
Hand Hand detection/interaction and all processes associated.
Speech Package for speech detection.

The following subsections 3.2.1, 3.2.2 and 3.2.3 describe the use cases for the corresponding

package.

The use cases are a list of actions or event steps typically defining the interactions between an

actor and a system, to achieve a goal [16]. The actor can be a human or other external system.

Each use case is composed with an ID, Name, Objective, Description, Pre-conditions and Normal

Flow.

3.2.1 Package: Eye

Package: Eye includes use cases for detect the eyes position inside MES, eye click for any MES

button and input text, and eye patterns for confirmation in Wizards and Execution Views.

Tables 3.3, 3.4 and 3.5, represent in detail the use cases associated to Package: Eye.

18 Requirements and Functionalities

Table 3.3: UC.001 - Detect the eyes position inside MES

UC.001 Detect the eyes position inside MES

Objective Use of an Eye Tracker inside MES.
Description When User is inside MES, he can see to what his eyes are looking at.
Pre-conditions Every User should have an Eye Tracker hardware like Tobii Eye Tracker

4C.
Normal Flow 1. The User accesses to the system.

2. The system starts with a login page.
3. The User logs in.
4. The User selects the option Administration in left panel.
5. The User selects the option Movement Tracking in central panel.
6. The User clicks in button Movement Tracking Deactivated in central
panel.

Table 3.4: UC.002 - Eye click for any MES button and input text

UC.002 Eye click for any MES button and input text

Objective Clicks in button/input text, using Eye Tracker.
Description When User looks to a button/input text, the inner action, after a little delay,

is triggered.
Pre-conditions Every User should have an Eye Tracker hardware like Tobii Eye Tracker

4C.
Normal Flow 1. Follow the steps of use case UC.001 (table 3.3).

2. The User looks to a button or input text.
3. After a while the border of button or input text changes to yellow then to
red.
4. The button or input text is pressed and the inner action is triggered.

Table 3.5: UC.003 :: Eye patterns for confirmation in Wizards and Execution Views

UC.003 Eye patterns for confirmation in Wizards and Execution Views

Objective Adds an extra validation layer when user finishes a Wizard/Execution View.
Description When User finishes a Wizard/Execution View, he must do an eye pattern for

confirm/cancel his action.
Pre-conditions Every User should have an Eye Tracker hardware like Tobii Eye Tracker

4C.
Normal Flow 1. Follow the steps of use case UC.001 (table 3.3).

2. The User go to a Wizard or Execution View.
3. The User looks to finish button.
4. After a while, the border of button changes to yellow then to red.
5. An eye confirmation modal should open for user performs an eye pattern.
6. The User looks to a central point until is red.
7. The User performs an eye pattern and finish with eyes blinking.

3.2 Use Cases 19

3.2.2 Package: Hand

Package: Hand includes use cases for the hand gestures for Next/Cancel/Back/Finish in Wizard-

s/Execution Views, and the detection of open/close hand.

We can see in Tables 3.6 and 3.7, the use cases details associated to Package: Hand.

Table 3.6: UC.004 :: Hand gestures for Next/Cancel/Back/Finish in Wizards and Execution Views

UC.004 Hand gestures for Next/Cancel/Back/Finish in Wizards/Execution Views

Objective Performing the Next/Cancel/Back/Finish easily, with a single hand gesture.
Description The User shows his hand to the webcam, performing a specific hand gesture

that represents an operation in Wizard/Execution View.
Pre-conditions Every User should have a webcam correctly connected.
Normal Flow 1. Follow the steps of use case UC.001 (table 3.3).

2. The User go to a Wizard/Execution View.
3. The User blinks his eyes for starting hands gesture detection.
4. The User should close his hand to tell the system that an hand gesture is
starting.
5. The User opens his hand and make an hand gesture.
6. The User finishes the hand gesture when he closes his hand.
7. The system will triggered an event of Next/Cancel/Back/Finish depend-
ing on the hand gesture performed by the User.

Table 3.7: UC.005 :: Detect the open/close hand

UC.005 Detect the open/close hand

Objective User hands detection can be used to do operations in MES.
Description Detects the User hand, when shown on the webcam.
Pre-conditions Every User should have a webcam correctly connected.
Normal Flow 1. The User should run the application for hand detection.

2. The User sees that his hand is detected when he shows it to the webcam.

20 Requirements and Functionalities

3.2.3 Package: Speech

Package: Speech includes use cases for speech detection.

Tables 3.8 and 3.9, describe the use cases details associated to Package: Speech.

Table 3.8: UC.006 :: Speech detection

UC.006 Speech detection

Objective Detects the User speech.
Description Speech detection is very important when we want to set text in the input

components without typing.
Pre-conditions The User should have a microphone.
Normal Flow 1. The User accesses to the system.

2. The system starts with a login page.
3. The User logs in.
4. The User selects the option Administration in left panel.
5. The User selects the option Movement Tracking in central panel.
6. An browser pop-up should automatically open, requesting the User to
add permission to his microphone.

Table 3.9: UC.007 :: Convert speech in to text when the input text is focused

UC.007 Convert speech in to text when the input text is focused

Objective Writes input text of the speech that User is speaking
Description Converts speech into text and add value to input text.
Pre-conditions The User should have a microphone.
Normal Flow 1. Follow the steps of use case UC.006 (table 3.8).

2. The User must be focused in an input text.
3. The User should speak to microphone.
4. The speaking is converted to text and added into the current focused
input text.

3.3 Functional Requirements 21

3.3 Functional Requirements

The functional requirements define the basic system behaviour, they contain what the system does

or must not do. Each functional requirements is composed with an ID, Name, Priority, Description

and Motivation.

For this project, the functional requirements specify the use of MES with eyes, patterns with

eyes, eye patterns customization, perform operations using hand gestures, and hand gestures cus-

tomization.

Tables 3.10 to 3.14 describe in more detail each of these requirements.

Table 3.10: REQ.001 :: Using MES with eyes

REQ.001 Using MES with eyes

Priority Essential.
Description Possibility to control MES using an Eye Tracking solution.
Motivation It’s common to see operators wearing gloves, maneuvering heavy or sen-

sitive material, performing complex assembly processes while interacting
with computer systems, having their hands occupied. Using an Eye Track-
ing solution will improve this interaction with MES

Table 3.11: REQ.002 :: Patterns with eyes

REQ.002 Patterns with eyes

Priority Essential.
Description Using extra pattern validation to confirm operations.
Motivation Important finishing operations in Wizards and Execution Views, like track-

in/track-out a material, must require an extra validation, using an eye pat-
tern to confirm/cancel.

Table 3.12: REQ.003 :: Eye patterns customization

REQ.003 Eye patterns customization

Priority Essential.
Description The solution must have the possibility to create/update eye patterns.
Motivation Eye patterns, by default should have a specific pattern, that eventually can

be customized by CMF clients.

22 Requirements and Functionalities

Table 3.13: REQ.004 :: Perform operations using hand gestures

REQ.004 Perform operations using hand gestures

Priority Essential.
Description Possibility to use hand gestures in Wizards and Execution Views.
Motivation This functionally can be described as a set of shortcuts using hand gestures,

that corresponds to inner operations in Wizards and Execution Views, like
Next/Back/Finish/Cancel.

Table 3.14: REQ.005 :: Eye patterns customization

REQ.005 Hand gestures customization

Priority Essential.
Description The solution must have the possibility to create/update hand gestures.
Motivation Hand gestures, by default should have a specific pattern, that eventually can

be customized by CMF clients.

3.4 Non Functional Requirements

The non functional requirements specifies criteria that can be used to judge the operation of a sys-

tem, rather than specific behaviours, they are constraints on development that limit some degree of

design freedom for those building the system. Each non functional requirements is also composed

with an ID, Name, Priority, Description and Motivation.

In our case the solution should contemplate GUI according to MES, fast performance and

optimization, system error log, avoiding additional dependencies, using CMF Message Bus for

multicast communication and code clean and maintainable.

Tables 3.15 to 3.20 show all the details contemplated on these kind of requirements.

Table 3.15: REQ.006 :: GUI according to MES

REQ.006 GUI according to MES

Priority Essential.
Description CMF has his own image, is essential that guidelines are followed.
Motivation CMF have his specific GUI components, it should be avoided the creation

of visual components that uses different style.

3.4 Non Functional Requirements 23

Table 3.16: REQ.007 :: Fast performance and optimization

REQ.007 Fast performance and optimization

Priority Essential.
Description Build modules with fast performance and optimization.
Motivation Since CMF operates in critical systems, it should be paid attention to de-

tail, taking care about the performance using guidelines to get the best
functionality.

Table 3.17: REQ.008 :: System error log

REQ.008 System error log

Priority Essential.
Description When something goes wrong, the system should save a log file with errors.
Motivation For a good traceability, when system has some error, the client can send the

log file to CMF support team to care of the problems.

Table 3.18: REQ.009 :: Avoiding additional dependencies

REQ.009 Avoiding additional dependencies

Priority Essential.
Description Third-party dependencies should be avoided.
Motivation CMF as a set of solutions for the majority of the problems, an additional

dependency should be avoided and if it’s really needed we should think in
these questions:
How popular is the library ?
How reliable is the author ?
How well-written is the library ?
Does the library meet your specific requirements ?
Does the library have the correct license ?
Is the library open source ?
Is the library recommended ?
Is this library going to be used for core features ?

Table 3.19: REQ.010 :: Using CMF Message Bus for multicast communication

REQ.010 Using CMF Message Bus for multicast communication

Priority Essential.
Description The communication between Eye Tracker, webcam and MES should use

CMF Message Bus.
Motivation CMF has is own Message Bus to communicate multicast messages between

systems, this project should use the same guidelines.

24 Requirements and Functionalities

Table 3.20: REQ.011 :: Code clean and maintainable

REQ.011 Code clean and maintainable

Priority Essential.
Description The development must be commented and perfectly understandable for a

better maintenance.
Motivation This project should be extensible for another requirements or enhancement,

it’s very important that code is commented and perfectly understandable .

Chapter 4

Architecture

The requirements listed in the previous chapter are mostly related to the user interface as presented

by the MES software.

For the correct adding and implementation of those requirements it is necessary not only to

study the architecture of the MES product from Critical Manufacturing, but also understanding

some important business key factors.

The CMF Product is designed for scalability and high-availability and is able to run in a single

computer or in a very distributed server farm as illustrated in figure 4.1.

Figure 4.1: Product Architecture

In general, the three most important layers are:

• Presentation Services
The GUI runs in the client, although the HTML must be served by a Web Server such as IIS.

Regarding high availability, a failure in a single client does not compromise the availability

of other clients or of any other component of the system.

• Business Services
Using the CMF Load Balancing module, application server nodes can be added (scale

25

26 Architecture

out) and removed dynamically without system downtime. It also provides high availabil-

ity. Adding more powerful hardware resources (scale up), such as adding more memory is

also possible and beneficial for the application performance.

• Persistence and Analytics Services
SQL Server Always On with Read-Only Replica – allows read-only statements to hit the

secondary database server. CMF Database Distribution uses three databases : Online, Op-

erational Data Store (ODS) and a Data Warehouse (DWH). The databases can be placed in

three different SQL Server instances running in different servers.

One of the biggest concerns of Critical Manufacturing is the need of fast solutions, avoiding

the usage of additional dependencies, like new external npm1 modules or another stack, different

from the MES product stack. Considering these prerequisites, it was decided to use the Message

Bus already developed by CMF, instead of a queue solution, such as rabbitMQ, for communica-

tion between modules. The programming languages used for the project architecture are Type-

script (using Angular as front-end framework), LESS, HTML for front-end tier and C# using .NET

Framework and .NET Core 2.0 for back-end tier.

This architecture has 3 important modules shown on figure 4.2. The first module, represents

all GUI tier (MES). The second module handles the problems of Eye Tracking itself, analyse the

eye coordinates and predict actions with help of a machine learning engine (EyeTracking Middle-

ware). The third module handles hand gestures and also has a machine learning engine to predict

the User actions (HandTracking Middleware). The EyeTracking Middleware and HandTracking

Middleware modules can run independently, we can use both or one, depending on customer

needs.

The EyeTracking Middleware and HandTracking Middleware are directly related to the use

of specific hardware. In case of EyeTracking Middleware we only can use Tobii Eye Tracker 4C

device, to collect all the user’s eyes data, while in the case of HandTracking Middleware we can

use any kind of webcam.

1https://www.npmjs.com/

https://www.npmjs.com/

4.1 MES GUI 27

Figure 4.2: Detailed Eye Tracking Components Diagram

4.1 MES GUI

This module represents the front-end tier, that evolves the MES and CORE components already de-

veloped and in operation for Critical Manufacturing with a new customization sub-module named

cmf.core.eyetracking, that corresponds to the work of this project, Eye/Hand Tracking and Speech

Recognition.

The cmf.core.eyetracking sub-module, was developed based on the Angular Architecture Pat-

terns and Best Practices [31]. As we can see in figure 4.3 we have the Presentation Layer when all

Angular Components lives, that represents the UI and delegates user’s actions to the Core Layer,

through the Abstraction Layer. The Abstraction Layer decouples the Presentation Layer from the

Core Layer. In the Core Layer we have all data manipulation and outside world communication.

Figure 4.3: High-level abstraction layers

In object-oriented development it’s also important to have strategies for flexibility and main-

tainability of the solution, so it was decided to apply the SOLID software designs pattern, an-

nounced by Robert C. Martin [24] that having 5 principles:

28 Architecture

• SRP - Single Responsibility Principle
An active corollary of Conway’s law, that says the best structure for a software must be

highly influenced by the social structure of the organization that uses it, so that each software

module has one, and only one, reason to change [9].

• OCP - Open-Closed Principle
Software systems to be easy to change, must be designed to allow their behaviour to change

by adding new code, instead of changing existing code. Bertrand Meyer popularized this

principle in the 80s [25].

• LSP - Liskov Substitution Principle
The concept of this principle was introduced by Barbara Liskov in a 1987 saying that child

classes should never break the parent class type definitions [22].

• ISP - Interface Segregation Principle
This principle is very related to each interface and mandates that each one should provide a

single behaviour. The result should be smaller and more specific interfaces.

• DIP - Dependency Inversion Principle
The code that implements an high-level policy shouldn’t depend on the code that implements

lower-level details, but instead depend on an abstraction.

Following the previous principles we have added for the Presentation Layer the Angular Com-

ponents pageMovementTracking, movementSettings and eyeAction that represents the UI associ-

ated to Eye/Hand Tracking and Speech Recognition. Then for Abstraction Layer, it was used

Dependency Inversion to separate the Angular services (EyeTrackerEventsService, HandTrack-

erEventsService, SpeechRecognitionEventsService) by abstraction and Dependency Injection to

eliminate the manual instantiation as Inversion of Control (IoC) abstract programming principles

says. At last, the Core Layer contains the observers and async events related to Message Bus

activities and DOM events.

4.2 Eye Tracking Middleware

Eye Tracking Middleware is the core module for the eyes detection, which has two solutions. One

directly related to the connection to the Eye Tracker hardware, and another that predicts the Eye

Actions with the help of a Machine Learning engine.

As we can see in figure 4.4, each client has one Tobii Eye Tracker 4C that communicates

directly to the Eye Tracking Middleware. In this last module, the gaze points that came from the

tracker hardware are processed, analyzed and sent by the Message Bus, together with the Eye

Actions predicted by the ML Eyes Engine.

Fortunately, the Tobii Eye Tracker 4C hardware has an API named Tobii.Interaction, that treats

the integration of the hardware with our middleware, and has some events associated to the eyes

detection and gaze points collection.

4.3 Hand Tracking Middleware 29

Figure 4.4: Eye Tracking Components Diagram

Tobii’s eye detection follows a set of steps, but unfortunately the actual technique explored by

the device is not by the manufacturer. However it was assumed that the image processing required

for gaze data calculations is performed by the Tobii EyeChip, located on the Eye Tracker, that

contains all Tobii algorithms necessary for Eye Tracking computation. The Tobii EyeChip reduces

power consumption, CPU load, and data transfer between the Eye Tracker and its host computer.

The Tobii Eye Tracker 4C is connected via a USB 2.0 port, working at a distance of 0.5 m to

0.95 m, and has an incredible data rate of 90 Hz, which means the Tobii Eye Tracker 4C tracks

where we are looking 90 times per second. The maximum recommended screen size is 0.69 m

with 16:9 aspect ratio or 0.76 m with 21:9 aspect ratio.

Considering an user positioned at the far limit of the operating distance (800 mm), the working

range of the device in degrees of visual angle is [- 18º, 18º] on the x-axis, and [- 10.5º, 10.5º

] on the y-axis. For instance, at a distance of 700 mm, the users may move their head 240 mm

leftwards or rightwards and 195 mm upwards or downwards [2].

4.3 Hand Tracking Middleware

Similar to the Eye Tracking Middleware, this module is composed by two solutions. One that is

responsible for getting, processing and analysing the images of the hands that comes from the

webcam, and another that predicts the hand actions with the help of a machine learning engine.

In figure 4.5, as we can see, each client has one webcam that communicates directly to the

Hand Tracking Middleware. There the Cascade Classifiers with Multi Scale Detection are enabled

to know the central point of the hand and sends that coordinates to Message Bus. Also, the Hand

Actions predicted by the ML Hands Engine are sent to the Message Bus.

The ML Hands Engine is responsible to detect gestures that corresponds to the Next / Cancel /

Back / Finish buttons in Wizards and Execution Views, which will be described in the next chapter.

30 Architecture

Figure 4.5: Hand Tracking Components Diagram

4.4 Message Bus

For sending broadcast messages the MES has a specific component with a high-performance pub-

lish/subscribe message bus that implements a subject-based address system.

The Message Bus is a combination of a common data model, a common command set, and a

messaging infrastructure that allows different systems to communicate through a shared set of in-

terfaces. There may be no guarantee of first-in-first-out ordering, and the Message Bus subscribers

can come and go without the knowledge of message senders. Unlike queues, where the sending

application explicitly adds messages to every queue, Message Bus uses a publish/subscribe model.

Messages are published to the Message Bus, and any application that has subscribed to that kind

of message will receive it. This approach allows applications to follow the open/closed principle

[24], since they become open to future changes while remaining closed to additional modification.

In order to use Message Bus features, first we must set the transport configuration, like ports

and addresses of Gateway and Load Balancer components, then a channel for our specific context.

The Connected, Disconnected, Exception, InformationMessage events must be implemented, since

they give us important information regarding the state of the Message Bus.

After starting the Message Bus client, we have the option to publish or subscribe new mes-

sages, depending the operation that we want to do. In the tables 4.1, 4.2, 4.3, 4.4 and 4.5 the

defined and implemented types of messages and it usage are shown.

Table 4.1: Hand Tracking Middleware - Messages Send/Receive

Subject Message Type Description

HAND_ACTION "Action: {0}" Send Hand action.
EYES_BLINKING "Blinking: true" Receive When user blink his eyes.

4.4 Message Bus 31

Table 4.2: Eye Tracking Middleware - Messages Sent

Subject Message Description

EYE_MESSAGE "X: {0}, Y: {1}" Sends coordinates [X,Y] of
the eyes in screen.

EYE_TRACKER_CONF "TrackerConfig: {0}" Sends Eye Tracker
configuration.

EYE_ACTION_RESPONSE "Action: {0}" Sends Eye Action.
EYES_BLINKING "Blinking: true" Sends user blinking.

Table 4.3: Eye Tracking Middleware - Messages Received

Subject Message Description

EYE_REQUEST_TRACKER_CONF "TrackerId: {0}" Event receive for Eye Track-
ing configuration.

EYE_UPDATE_TRACKER_CONF "TrackerConfig: {0}" Event receive for updating
Eye Tracking configuration.

EYE_TRACKING_START "TrackerId: {0}" Event receive for starting the
Eye Tracker.

EYE_TRACKING_STOP "TrackerId: {0}" Event receive for stopping
the Eye Tracker.

EYE_ACTION_REQUEST "Xf_Xi: {0},
Yf_Yi: {1}"

Event receive for predict the
Eye Action.

Table 4.4: MES - Messages Sent

Subject Message Description

EYE_REQUEST_TRACKER_CONF "TrackerId: {0}" Request Eye Tracking
configuration.

EYE_UPDATE_TRACKER_CONF "TrackerConfig: {0}" Sends Eye Tracking configu-
ration for updated.

EYE_TRACKING_START "TrackerId: {0}" Sends message for starting
the Eye Tracker.

EYE_TRACKING_STOP "TrackerId: {0}" Sends message for stopping
the Eye Tracker.

EYE_ACTION_REQUEST "Xf_Xi: {0},
Yf_Yi: {1}"

Sends message for predict
the Eye Action.

32 Architecture

Table 4.5: MES - Messages Received

Subject Message Description

EYE_TRACKER_CONF "TrackerConfig: {0}" Receives Eye Tracker
configuration.

EYE_ACTION_RESPONSE "Action: {0}" Receives Eye Action.
EYES_BLINKING "Blinking: true" Triggered when user blinking

his eyes.

Chapter 5

Implementation

After describing the main features of the software architecture for incorporating the new func-

tionality to be available in the MES application, we now focus in some important details of their

implementation.

5.1 Overlap Detection

When the eye point coordinates [X,Y] is transmitted to the MES GUI, through Message Bus, we

must know what object we are looking at on the screen. We consider that a user is looking not for

a specific point, but for a set of points centered in those coordinates and with a threshold radius.

By default that radius has a customizable value of 30 pixels, so we can improve the accuracy and

reduce the Eye Tracker error.

In MES GUI, for reducing the DOM search, we consider only the components that make sense

to be tracked, which are: BUTTON, INPUT, CMF-CORE-CONTROLS-ACTIONBUTTON, CMF-

CORE-CONTROLS-CONTEXT-MENU, CMF-CORE-CONTROLS-PANELBAR, and menu-toggle.

Lets imagine that object A is a trackable DOM element, and object B is the point (with a

tolerance radius and a circumscribed square) that we are looking at the moment (see figure 5.1).

How can we know that these objects are overlapping ? We know by Morgan’s law that:

The negation of a disjunction is the conjunction of the negations;

The negation of a conjunction is the disjunction of the negations;

Or

The complement of the union of two sets is the same as the intersection of their comple-

ments;

The complement of the intersection of two sets is the same as the union of their comple-

ments;

Or

33

34 Implementation

A∪B = A∩B;

A∩B = A∪B;

Where A and B are sets:

A is the complement of A;

∩ is the intersection;

∪ is the union.

Figure 5.1: Coordinates Mapping and Collision between two objects

Cond.1: If A’s left edge is to the right of the B’s right edge - Then A is Totally to right Of B;

Cond.2: If A’s right edge is to the left of the B’s left edge, - Then A is Totally to left Of B;

Cond.3: If A’s top edge is below B’s bottom edge - Then A is Totally below B;

Cond.4: If A’s bottom edge is above B’s top edge - Then A is Totally above B.

So condition for Non-Overlap is Cond.1 Or Cond.2 Or Cond.3 Or Cond.4

Therefore, a sufficient condition for Overlap is the opposite (De Morgan).

We prove by contradiction of Morgan’s law that overlap can exist if the opposite of all these

conditions are satisfied.

5.2 Eye Coordinates

As shown in the figure 5.2, the process of getting the coordinates that correspond to where the user

is looking, is associated with a set of events.

We start to select, in the front-end tier, what Eye Tracker Hardware we want to use (that event

is associated to a Message Bus message named EYE_TRACKING_START.

When EyeTracking Middleware is on the start state, it sends a Message Bus message named

EYE_TRACKER_CONF, with the Eye Tracker Configuration. Then, 90 times per second, the Eye-

Tracking Middleware sends the [X,Y] coordinates, previously filtered, that corresponds to where

the user is looking at.

5.3 Machine Learning Pipelines 35

Now that we have the coordinates relative to the screen, we must translate that coordinates

relatively to the browser window, and for that we must know the window.ScreenX and the win-

dow.ScreenY. After, a customizable radius around the point of should be set, instead of [X,Y]

coordinates.

Figure 5.2: Get Eye Tracking Coordinate

5.3 Machine Learning Pipelines

Three ML different pipelines, but in general the steps are similar. We have one ML pipeline to

detect the human hand, other to detect the eyes movement that will represent Eye Actions, and a

third for hand gestures that will represent hand actions.

The ML pipelines follow the steps: Build Model, Train Model, Evaluate Model, Consume

Model as shown on figure 5.3 [27].

Figure 5.3: Machine Learning Pipeline

In the Build Model step, we begin to setup common data loading configuration and process

configuration with pipeline data transformations. In the case of eyes movement and hand gestures,

the data source is a text file with multiple columns, that have [X,Y] coordinate points and one

column for the associated action. For hand detection, the data source is a set of negative and

positive hand images.

The first step finishes, by defining a data training algorithm, that in case of the eyes movement

is Linear SVM, of hand gestures is Average Perceptron and hand for detection is Haar Cascade.

36 Implementation

In Machine Learning, training data is the key factor to make the machines recognize the objects

or certain patterns and make the right prediction when used in real-life.

The Train model step is a process of running the chosen algorithm on a training data to tune

the parameters of the model. This step can take a while depending of the data complexity and the

number of iterations.

After the model is trained, we need to conclude how accurate our model operates on new data

(Evaluate Model step). For doing this, the model from the previous step runs against another

dataset that was not used in training. In case of eyes movement and hand gestures the dataset for

evaluation is a set of lines with multiple columns, that have [X,Y] coordinate points. In case of

hand detection, an hand image that was not used for training was used. Evaluate Model calculates

the difference between known types and values predicted by the model in various metrics.

We end the ML Pipeline generating an ML model that can be used for this implementation (the

Consume Model).

5.4 Binary Classification With Linear SVM for Eye Actions

Since we are clicking in the CMF MES DOM components with our eyes, a new requirement has

emerged, which is the fact that we must have an extra validation to all finishing operations in

Wizards and Execution Views.

The user must be aware that he wants to do the operation because we don’t want a material to

be finished by mistake or a resource to be placed in a state that is not supposed to.

One of the possible solutions for this extra validation could be putting the user to make a

pattern with his eyes in case he wants to cancel, or continue, the action (Eye Action). First, the

user looks during 1s to a central point (telling the system that he’s starting the pattern), and when

he finishes the action, he must blink his eyes twice (telling the system that no more points should

be analyzed and the pattern was finished).

So, it was decided to develop a generic behavior to all finishing operations in Wizards and

Execution Views, asking the user to make a pattern with his eyes, in case he wants to cancel, or

continue, the action (Eye Action).

To perform this action, a ML engine was developed, detecting a pattern to decide what action

the user wants to do. For acquiring the needed data a sequence of steps should be performed, as

we can see in figure 5.4.

5.4 Binary Classification With Linear SVM for Eye Actions 37

Figure 5.4: Eye Action Prediction

The Machine Learning engine for Eye Actions is based on Linear SVM (this decision will be

discussed in the chapter 6, subsection 6.2.2).

The algorithm finds a hyperplane in the feature space for binary classification, by solving a

SVM problem. For instance, with feature values f0, f1, ..., fD−1, the prediction is analysing what

side of the hyperplane the point falls into [26].

The ML Pipeline for training and predicting Eye Actions (section 5.3) has the input formula :

−→v = [a,b,action]

a = Yf inal−Yinitial ∧b = X f inal−Xinitial ∧action = 0∨1

Yf inal,Yinitial,X f inal,Xinitial ∈ R

(5.1)

We start with a pre-processing of an array with multiple points of [X,Y] coordinates, that

represents the movement that user made with his eyes. Then the values a, b and action can be

calculated, and added at −→v .

The output data has two properties, the action (boolean) and the score (float). If the action is

false, we want to proceed the operation, if is true we want to cancel (in the figure 5.5 we can see

the configurable Eye Actions by default). The score property shows us the certainty value with

which the prediction was made.

Eye Actions are totally full customizable by the user, as long as follow a set of ML rules.

Figure 5.5: Eye Actions

38 Implementation

5.5 Multi Classification With Average Perceptron for Hand Actions

Sometimes, in the daily operations it’s helpful to have the possibility to define shortcuts in actions,

using hand gestures and avoiding the usage of mouse or keyboard. The idea was allowing a simple

configurable hand gesture to trigger the button Back or Cancel or Next or Finish (hand action) that

are present in Wizards and Execution Views, since they represent the most part of the operators

day.

Translating this problem into a solution will requires a ML engine specialized in multi classi-

fication problems, predicting actions for the user hand gestures.

The algorithm that most closely matches our structure and had the best results is the Average

Perceptron (the results and the algorithm decision will be discussed in chapter 6, subsection 6.2.1).

The Average Perceptron is an extension of basic Perceptron, introduced by F. Rosenblatt [34]

in 1958, when the formula can be given by [5]:

f (x,θ ,θ0) = sign(θ ∗ x+θ0) (5.2)

In our case the features are 3 [X,Y] coordinates, that represents the starting, middle and finish-

ing points (x1,y1,xmid ,ymid ,x2,y2), where θ is the weight vector, θ0 is the bias and x is the vector

of features.

The sign function is used to distinguish x as either a positive or a negative label, where the

decision boundary to separate the data with different labels, occurs at:

θ ∗ x+θ0 = 0 (5.3)

After decision boundary, the hyperplane separates the space into two regions:

Positive i f θ ∗ x+θ0 > 0

Negative i f θ ∗ x+θ0 < 0
(5.4)

The data are linearly separable if exists a θ and a θ0 that yi(θ ∗ xi + θ0) > 0 for all i points,

where yi is labelled.

The figure 5.6 illustrates an example of the mentioned concepts, where the x = [x1,x2]
T , θ =

[θ1,θ2] and θ0 is a offset scalar.

5.6 Haar Cascade for Hand Detection 39

Figure 5.6: Binary linear classifier example

Hand actions are totally full customizable per user, as long as they follow a set of ML rules. As

we can see in image 5.7, the actions Back, Finish, Next, Cancel, have been defined as the following

patterns:

Figure 5.7: Hand Actions

5.6 Haar Cascade for Hand Detection

Hand detection using a webcam is a process that can be tricky and takes it’s time, but is crucial for

hand actions mentioned in section 5.5.

The chosen approach was the usage of Haar Cascade algorithm, that uses machine learning to

identify objects in image/video, proposed by Paul Viola and Michael Jones in paper Rapid Object

Detection using a Boosted Cascade of Simple Features in 2001 [30].

This algorithm is based on the Haar Wavelet technique to analyse pixels in the image into

squares by function, and also uses Integral Images concepts to compute the objects detected.

However, to have more efficient results, we must use Ada-boost learning algorithm, which selects

a small number of important features from a large set, removing redundant features.

40 Implementation

Given an input hand image and convolution kernel, we place the kernel to a corner and do con-

volution multiplication shifting the kernels. This is like Convolutional Neural Networks (CNN),

except that in a CNN, the values of the kernel are determined by training, while a Haar is manually

selected.

When Haar features are applied to an hand image, each feature results in a single value which

is calculated by subtracting the sum of pixels under a white rectangle from the sum of pixels under

a black rectangle. In this case, the white rectangles (relevant areas) could represent the fingers of

an hand, and the black rectangles could represent the neighbouring of the fingers.

5.7 Speech Recognition

Speech recognition involves receiving speech through a microphone, which is then checked by

a speech recognition service against a list of grammar. When a word or phrase is successfully

recognised, it is returned as text string.

Although the speech recognition is not the core of this project, is useful that we have the

possibility to set text in the input components without typing, like in the images 5.8 and 5.9.

Figure 5.8: Wizard fields

5.7 Speech Recognition 41

Figure 5.9: Searching in Tiles Grid

In this project was used the native Web Speech API developed by Mozilla.

In figure 5.10, we see the Mozilla Speech-To-Text Cloud Architecture, that starts with the

sending of data to Speech-Proxy to strip the information of the user. Then a request is made to the

STT provider set in the proxy configuration file, containing only the audio file.

At last, the STT provider returns the request containing a transcription to the client.

Figure 5.10: Mozilla Speech-To-Text Cloud Architecture [29]

42 Implementation

Chapter 6

Results Analysis

After we described important details of implementation in the previous chapter, we center our

attention in the evaluation and discussion of Hand/Eye Actions, as well as some MES scenarios

where this project will be applied.

6.1 Trends

The trends are an assumed development in the future that will have a long-term and lasting effect

on and change something. They are an important factor that can guide us about what people like or

whether we should invest in any specific technology. If we look for historical data and combining

the knowledge with other environmental factors, we will know what is happening now, and what

is expected to happen tomorrow [7].

Analysing the trend regarding the past year of usage of Eye Tracking (figure 6.1) we see that

in future the Eye Tracking investment could grow, but the certainty level is not very high. The

data points are inconsistent, that means that our average growth rate is high, but the underlying

numbers show alternating months of negative, flat and positive growth.

Figure 6.1: Eye Tracking Trends [38]

As Michael Seibel said, ever-growing numbers of happy, loyal, and ideally paying customers,

is a strong indicator that you’ve found product-market fit. It also suggests that we understand the

inner workings of our business, enough to know what levers to press to grow somewhat predictably

over time.

43

44 Results Analysis

The good news is the fact that the cities that use the most Eye Tracking are also the cities that

produce the most semi-conductors or electronic components in the world (figure 6.2).

Figure 6.2: Eye Tracking Trends - World Map

6.2 Actions Evaluation

Evaluation metrics are a set of formulas that represent something that we want to measure, in order

to evaluate a given process.

Evaluation metrics are specific to the type of machine learning task that a model performs. In

this case the model is evaluated by measuring how well a predicted category matches the actual

category.

The selected metrics for actions evaluation in real MES context are:

• Duration - Measures how long the algorithm takes to process the action;

• Success Rate - Success rate of detected actions;

• Error Rate - Failure rate of detected actions;

• Actions Performed - Total number of actions performed.

6.2.1 Hand Actions Evaluation

The Hand Actions conception was performed as a part of an iterative refinement process. In the

beginning, Hand Actions had the following pattern movements:

6.2 Actions Evaluation 45

Figure 6.3: Hand Actions (version 1)

After testing the movements in a real MES context, it was noticed that sometimes the move-

ment was not perfectly detected, and the complexity in terms of user experience was not the best.

So it was decided to train the machine learning engine with simple and constant movements, as

we can see in figure 6.4.

Figure 6.4: Hand Actions (version 2)

The Hand Action is a Multi Classification problem, and the algorithms associated with this

type of problem that were tested are:

Averaged Perceptron, Fast Forest, Fast Tree, Lbfgs Logistic Regression, Lbfgs Maximum En-

tropy, Light Gbm, Linear Support Vector Machines, Sdca Maximum Entropy, Sgd Calibrated,

Symbolic Sgd Logistic Regression.

46 Results Analysis

The evaluation metrics chosen for the model training were:

• Duration - Measures how long the algorithm takes to run;

• Macro Accuracy - Computes the metric independently for each algorithm and then take the

average;

• Micro Accuracy - Aggregates the contributions of all algorithms to compute the average

metric.

In a multi-class classification task, micro-accuracy is preferable over macro-accuracy if we

suspect there might be class imbalance. So, for choosing the best algorithm, was decided to use

micro-accuracy as metric.

Regarding the training model, in the first scenario a dataset containing 120 gestures was used,

grouped into 4 different actions (Back, Next, Finish, Cancel), where each action corresponds to 30

gestures.

After training the model for 10 seconds, the best results obtained were for the Averaged Per-

ceptron algorithm with a 92,86 % of micro-accuracy (table 6.1).

Table 6.1: Models explored (10 seconds & 120 gestures)

Algorithm Micro Accuracy Macro Accuracy Duration

AveragedPerceptronOva 0,9286 0,9500 1,0
SdcaMaximumEntropyMulti 0,9286 0,9500 2,5
LightGbmMulti 0,9286 0,9375 1,3
SymbolicSgdLogisticRegressionOva 0,2308 0,2500 1,0

Total experiment time 5,8840 s

Changing training time to 200 seconds, the results are similar, with 92,86 % of micro-accuracy

using Stochastic Dual Coordinate Ascent (SDCA) algorithm (table 6.2).

Table 6.2: Top 5 models explored (200 seconds & 120 gestures)

Algorithm Micro Accuracy Macro Accuracy Duration

SdcaMaximumEntropyMulti 0,9286 0,9500 2,5
LightGbmMulti 0,9286 0,9375 1,3
LightGbmMulti 0,9286 0,9500 0,8
LightGbmMulti 0,9286 0,9583 1,4
SdcaMaximumEntropyMulti 0,9286 0,9500 20,0

Total experiment time 199,6917 s
Total number of models explored 54

If we reduce the size of training dataset to 80 gestures, where each action corresponds to 20

gestures, and we train the model for 200 seconds, the micro-accuracy decreases to 88.89 %, where

the best algorithm selected is Light Gradient Boosting Machine (LightGBM) (table 6.3).

6.2 Actions Evaluation 47

Table 6.3: Top 5 models explored (200 seconds & 80 gestures)

Algorithm Micro Accuracy Macro Accuracy Duration

SdcaMaximumEntropyMulti 0,8889 0,9167 3,3
LightGbmMulti 0,8889 0,9167 0,8
FastTreeOva 0,8889 0,9167 7,9
LinearSvmOva 0,8889 0,9167 0,6
FastForestOva 0,8889 0,9167 8,0

Total experiment time 184,3570 s
Total number of models explored 53

The results of testing Hand Actions in real MES context are:

Table 6.4: Hand Actions in real MES context

Action Duration (s) Actions Performed (un) Success Rate (%) Error Rate (%)

Back 126,22 10 90,00 10,00
Next 152,96 10 80,00 20,00
Finish 170,72 10 80,00 20,00
Cancel 129,21 10 100,00 0,00

Image 6.5 shows another view of Hand Actions in real MES context, comparing only the

success and error rates (for more details you can check the appendix A.1).

As we can see, for all actions the success rate is over 80%.

Figure 6.5: Hand Actions in real MES context

48 Results Analysis

Since Hand Actions are part of a critical system, it’s important to validate the time (table 6.5).

Table 6.5: Hand Actions in real MES context - Time Comparison

Action Total Duration (s) Avg. Duration (s) Max. Duration (s) Min. Duration (s)

Back 126,22 12,62 13,83 11,66
Next 152,96 15,30 25,03 12,31
Finish 170,72 17,07 33,12 12,08
Cancel 129,21 12,92 13,67 11,80

Total Duration 579,11 s
Avg. Duration 14,48 s
Max. Duration 33,12 s (Action Finish)
Min. Duration 11,66 s (Action Back)

From the moment we start the action with the movement of the hand until we get the Hand

Action associated with that action triggering an action in the MES, it takes 14,48 seconds on

average. However in some cases, due to external factors such as bad light conditions, it may take

a little while to perform the action, which will not exceed the 33,12 seconds at the most (for more

details, please see the appendix A.1).

Figure 6.6: Hand Actions in real MES context - Time Comparison

Regarding Hand Actions Evaluation, we can conclude that time is not the factor that will

increase the accuracy, but the size of the training dataset. So weighing all factors, the chosen

6.2 Actions Evaluation 49

algorithm was Averaged Perceptron with a 92,86 % of micro-accuracy. An additional important

fact is the time that we take to perform an Hand Action, which will not exceed 33,12 seconds at

the most and on averages it takes 14,48 seconds.

6.2.2 Eye Actions Evaluation

As mentioned in previous chapters, the Eye Actions are only used in finishing operations inside

Wizards and Execution Views, and its correspondent patterns are represented in image 6.7.

Figure 6.7: Eye Actions

The problem of Eye Actions is associated to Binary Classification, because we only have two

possible states, the OK action or the Cancel action.

Binary Classification includes some popular algorithms like Logistic Regression, k-Nearest

Neighbors, Decision Trees, Support Vector Machine (SVM), and Naive Bayes. For this evaluation

we only compare Logistic Regression and SVM, because they are the only algorithms that natively

support two classes.

As an example: n = number of features; m = number of training examples.

• If n is large (1–10.000) and m is small (10–1000), we should use Logistic Regression or

SVM with a linear kernel;

• If n is small (1–1000) and m is intermediate (10–10.000), we should use SVM with (Gaus-

sian, polynomial etc) kernel;

• If n is small (1–1000), m is large (50.000–1.000.000+), first we manually add more features

and then use Logistic Regression or SVM with a linear kernel.

Since we have only two simple actions and a small dataset, the chosen algorithm for Eye

Actions is Linear SVM.

The evaluation metrics chosen for evaluate the model are:

• Precision - The number of positive/negative class predictions that actually belong to the

positive/negative class;

• Recall - The number of positive/negative class predictions made out of all positive/negative

examples in the dataset;

• F-Measure - Provides a single score that balances both the concerns of precision and recall

in one number;

50 Results Analysis

• AUC - Means area under the curve;

• Accuracy - The percentage of the correct classifications with respect to the all samples.

Testing Eye Actions with different datasets have the results shown in table 6.6.

In terms of accuracy we have approximately 50%:

• If X f −Xi is positive/negative and Yf −Yi is positive/negative for Cancel action;

And

• If X f −Xi is positive/negative points and Yf −Yi is positive/negative for Ok action;

Table 6.6: Eye Actions Evaluation

Metrics 100 Cases 1000 Cases 100 Cases 1000 Cases
(X f −Xi & Y f −Yi correct sign) (X f −Xi & Y f −Yi correct sign)

Accuracy 0,4958 0,4996 1,0000 1,0000
AUC 0,5059 0,4996 1,0000 1,0000
F1 Score 0,3648 0,3597 1,0000 1,0000
Negative
Precision

0,4868 0,4995 1,0000 1,0000

Negative
Recall

0,7227 0,7179 1,0000 1,0000

Positive
Precision

0,5182 0,5000 1,0000 1,0000

Positive
Recall

0,2818 0,2816 1,0000 1,0000

We always have 100% of accuracy independently of dataset:

• If X f −Xi is positive and Yf −Yi is negative for Cancel action;

And

• If X f −Xi is negative and Yf −Yi is positive for Ok action;

The results of testing Eye Actions in real MES context are:

Table 6.7: Eye Actions in real MES context

Action Duration (s) Actions Performed (un) Success Rate (%) Error Rate (%)

Cancel 31,07 10 90,00 10,00
Ok 36,35 10 100,00 0,00

Image 6.8 shows another view of Eye Actions in a real MES context, comparing only the

success and error rates (for more details, please see the appendix A.2).

As we can see, for all actions the success rate is over 90%.

6.2 Actions Evaluation 51

Figure 6.8: Eye Actions in real MES context

Since Eye Actions are part of a critical system, it’s important to validate the time. The mea-

surements are presented on table 6.8.

Table 6.8: Eye Actions in real MES context - Time Comparison

Action Total Duration (s) Avg. Duration (s) Max. Duration (s) Min. Duration (s)

Cancel 31,07 3,11 4,92 2,26
Ok 36,35 3,64 7,69 2,08

Total Duration 67,42 s
Avg. Duration 3,37 s
Max. Duration 7,69 s (Action Ok)
Min. Duration 2,08 s (Action Ok)

From the moment that we start to look for the central point and we perform the eyes movement

until we get the associated Eye Action triggering an action in MES, takes on average 3,37 seconds.

This average time seems very good. However in some cases, due to external factors such as a

high latency of the Message Bus, it may take a little longer to perform the action, but that does not

exceed 7,69 seconds at the most (for more details, please see the appendix A.2).

Figure 6.9: Eye Actions in real MES context - Time Comparison

52 Results Analysis

Using Eye Actions proved to be a great feature, not only for the quick response of 3,37 sec-

onds on average and for their accuracy, but also for being an asset when it comes to using extra

validations to perform an action in the MES and conclude a click or selection event.

6.3 MES Scenarios

For further validation testing on Business Data objects like Multimedia, Document and Site, using

two MES Scenarios with different types of complexity were also performed.

Scenario 1 : View an associated file with a Multimedia object.

Associated Steps:

1. Eye Tracker Click on Business Data sidebar menu item;

2. Eye Tracker Click on Multimedia tile, in the central panel;

3. In the central panel perform an Eye Tracker Click on Multimedia search input field and

speak the name "media";

4. Eye Tracker Click on Multimedia object searched;

5. Eye Tracker Click on View button, inside Multimedia page;

Scenario 2 : Edit one Document field and Create a Site object.

Associated Steps:

Edit Document

1. Eye Tracker Click on Business Data sidebar menu item;

2. Eye Tracker Click on Document tile, in the central panel;

3. In the central panel perform an Eye Tracker Click on Document search input field and speak

the name "document";

4. Eye Tracker Click on Document object searched;

5. Eye Tracker Click on Edit button, inside Document page;

6. Perform the Cancel Hand Gesture;

7. Eye Tracker Click on Edit button, inside Document page;

8. Inside Wizard Edit Document perform an Eye Tracker Click on Description field and speak

the name "example";

9. Inside Wizard Edit Document, perform an Eye Tracker Click on Finishing button and execute

the Eye Action Ok;

6.3 MES Scenarios 53

Create Site

10. Eye Tracker Click on Business Data sidebar menu item;

11. Eye Tracker Click on Site tile, in the central panel;

12. Eye Tracker Click on New button, in the central panel;

13. Inside Wizard Create Site perform an Eye Tracker Click on Name field and speak the name

"porto";

14. Eye Tracker Click on Next button, inside Wizard Create Site;

15. Perform the Back Hand Gesture;

16. Inside Wizard Create Site perform an Eye Tracker Click on Description field and speak the

name "local";

17. Perform the Next Hand Gesture;

18. Perform the Finish Hand Gesture;

For each scenario the Duration and Success Rate were measured. The Success Rate is based

in four factors:

• Duration - The time spent to perform the scenario (accounts for 10% of the weight defining

the Success Rate);

• Scenario Completion - Successful execution of all steps (30% of weight);

• Usability - Refers to the ease of access and/or use of the functionalities (30% of weight);

• Accessibility - Refers to the design of products, devices, services, or environments so as to

be usable by people with disabilities (30% of weight).

All of the factors associated to Success Rate have the same weight except Duration, because

our main goal is to measure a solution that gives to operators a simple way to interact with software

manufacturing systems without using their hands, what is implicitly related to Scenario Comple-

tion, Usability and Accessibility.

54 Results Analysis

In table 6.9 we can see a comparison between scenarios (for more details, please see the

appendix A.3).

The scenario type one arm from screen represents the normal posture that we have when sitting

in front of a computer. The line of sight should be aligned with the top/center of the screen at a

distance of 45 cm to 65 cm (more or less than one arm).

The scenario type put down objects in first step simulates a typical scenario when we put some

object on the table and take off the gloves before we start to do a MES operation.

Table 6.9: Scenarios Comparison

Scenario With
Tracking
Solution

Type Duration (s) Success
Rate (%)

Scenario 1 One arm from screen 8,28 97,40
Scenario 1 Yes One arm from screen 13,05 97,80

Scenario 1 Put down objects in first step 13,57 80,00
Scenario 1 Yes Put down objects in first step 13,05 97,80

Scenario 2 One arm from screen 25,38 96,78
Scenario 2 Yes One arm from screen 95,15 95,11

Scenario 2 Put down objects in first step 30,67 81,78
Scenario 2 Yes Put down objects in first step 95,15 95,11

In general, scenarios 1 and 2 summarize the features associated with this project.

As we can see the usage of tracking solutions had an increase on Success Rate in most scenar-

ios, although in some cases the time spent will be slightly longer. However, 5,29 seconds were not

spent on Put down objects in first step in some scenarios (this time is based on putting objects on

the table and take off the gloves before we start the scenario).

Due to the time that was spent in steps that has Eye/Hand Actions associated, it remains to be

stated that the accuracy is quite good, like it was said in sections before.

Another important conclusion that was discovered is the fact that is not possible to use the

tracking solution if we have more than one arm of distance to the screen and the microphone too

far.

Figure 6.10 shows another summarized view of the scenarios performed.

6.3 MES Scenarios 55

Figure 6.10: MES Scenarios - Comparison

The Success Rate was clearly increased, although it still could be improved, like in voice

recognition that sometimes doesn’t recognize our words. In another cases, GUI should be im-

proved to have a better performance, like the case of multiple render editors, and when we have a

Wizard/Execution View. In this last case the DOM elements that are in back planes of view, and

because of its invisibility, could be destroyed instead of rendered.

Some Standard Tables should be also transformed into Tiles Grid (figure 6.11) so the user can

easily perform an Eye Tracker click, with tracking solution.

Figure 6.11: Standard Tables and Tiles Grid

56 Results Analysis

The most important statement is that user can fully use the MES without using mouse or

keyboard.

Chapter 7

Conclusions and Future Work

7.1 Main Contributions

The usage of traditional webcams for tracking the eyes has its difficulties, like knowing the exact

position where the user is looking at. There are too many variables that can influence the result

of Eye Tracking, like image quality, environment, lighting. If we want to build an efficient Eye

Tracking solution, the better choice is to use a device that embeds an infrared light to illuminate the

eye, causing highly visible reflections like the Tobii Eye Tracker 4C. The cameras of this platform,

take high resolution images of the user eyes to be used in image processing algorithms and in

physiological 3D models so we can estimate the position of the eye in space and the point of gaze,

with high accuracy.

The usage of movements that have a pattern associated like Hand/Eye Actions to perform some

operations has a great impact in user interaction and can be fully customizable. The Eye Actions,

recognizing eye and iris movements, was proved to be a great feature, not only for the quick

response of 3,37 seconds on average and for their accuracy, that is quite good, but also for being

an asset when it comes to using extra validations to perform an action in the MES. If we use Hand

Actions, the associated algorithm takes 14,48 seconds since the user performs the action until the

algorithm returns the result (with 92,86 % of accuracy). However in some cases, due to external

factors such as high Message Bus latency, it may take a little longer to perform the action.

In case of MES scenarios, we can efficiently use the developed tracking solution, since the

Success Rate was increased compared to the current MES solution. The operators can perform

parallel operations, like assemble and disassemble components, while interacting with the MES,

without using mouse or keyboard.

The MES scenarios Success Rate could still be improved, focusing, for instance, on voice

recognition, that sometimes don’t recognize our words. In other cases, the GUI can be improved

to have a better performance, like the case of multiple render editors, and when we have a Wiz-

ard/Execution View. In this last case the DOM elements that are in back planes of view, and

because of its invisibly, could be destroyed instead of rendered.

57

58 Conclusions and Future Work

The most important statement is that the user can fully use the MES without using mouse or

keyboard, and customize the way he does this.

7.2 Future Work

I am sure this concept and project is the beginning of a new MES computer vision module. But

there sill are many enhancements and features that can be added and developed, like:

• Actions complexity could be extended to use fingers and hand movements;

• GUI could be adaptable when we use a tracking solution, for more easily allow the user to

perform the MES operations;

• Some Standard Tables should be also transformed into Tiles Grid allowing the user easily

perform an Eye Tracker click, with the tracking solution;

• The voice recognition could use better algorithms;

• The Eye/Hand Actions could have a friendly way to be customized;

• Recording the images of the user eyes/hands when he use the tracking solution, could lead

to a study in order to improve the MES functionalities.

Appendix A

Evaluation

The complete results for the Hand Actions and Eye Actions and for the two more complex scenarios

described in chapter 6 are displayed in the next tables.

A.1 Hand Actions Evaluation

Tables A.1 and A.2 represents the detailed Hand Actions evaluation in real MES context.

Table A.1: Detailed Hand Actions Evaluation

Action Duration (s) Status Note

Back 13,19 Fail Lighting issues associated with hand detection.
13,83 Success
13,26 Success
11,66 Success
13,09 Success
12,16 Success
11,78 Success
13,06 Success
12,25 Success
11,94 Success

59

60 Evaluation

Table A.2: Detailed Hand Actions Evaluation (cont.)

Action Duration (s) Status Note

Next 13,19 Fail Lighting issues associated with hand detection.
25,03 Success
13,95 Success
14,39 Success
19,34 Fail Lighting issues associated with hand detection.
13,46 Success
13,85 Success
14,51 Success
12,31 Success
12,93 Success

Finish 13,25 Fail Lighting issues associated with hand detection.
33,12 Success
16,60 Fail Hand Action fails.
32,01 Success
12,08 Success
13,43 Success
12,65 Success
12,35 Success
12,64 Success
12,59 Success

Cancel 13,67 Success
13,32 Success
13,14 Success
13,14 Success
13,64 Success
11,80 Success
12,88 Success
11,97 Success
12,43 Success
13,22 Success

A.2 Eye Actions Evaluation 61

A.2 Eye Actions Evaluation

Table A.3 represents the detailed Eye Actions evaluation in real MES context.

Table A.3: Detailed Eye Actions Evaluation

Action Duration (s) Status Note

Cancel 2,49 Success
4,92 Success
2,48 Success
3,29 Success
2,76 Success
2,35 Success
2,26 Success
3,90 Success High latency of Message Bus.
2,90 Success
3,72 Success

Ok 3,15 Success
2,33 Success
2,08 Success
4,63 Success High latency of Message Bus.
3,03 Success
2,86 Success
4,53 Success Too much time spent looking at the central point.
2,65 Success
3,40 Success
7,69 Fail High latency of Message Bus.

62 Evaluation

A.3 MES scenarios Evaluation

Tables A.4, A.5 and A.6 represent the detailed evaluation of MES scenarios 1 and 2. Each table

line is composed by 7 parameters, where some of them have their specific calculation.

Time Rate is 100 % if the step time is less than 2,50 seconds, 90 % between 2,51 seconds and

5,00 seconds, 80 % between 5,01 seconds and 10,00 seconds, 70 % between 10,01 seconds and

20,00 seconds, 60 % between 20,01 seconds and 40,00 seconds and 50 % for more than 40,01

seconds.

Completion is 100 % if we can successfully complete the step and is 0 % if we can not complete

the step.

Usability an Accessibility is 100 % if there is no failures, 90 % for 1 failure, 80 % for 2 failure,

70 % for 3 failure, 60 % for 4 failures and 50 % for more than 4 failures.

Table A.4: Scenario 1: One arm from screen

Step Duration (s) Time Rate
(%)

Completion
(%)

Usability
(%)

Accessibility
(%)

Note

Scenario 1: One arm from screen

1 1,39 100 100 100 100
2 0,99 100 100 100 100
3 3,74 90 100 80 80 GUI rendering could be

better. Input fields could
be larger.

4 1,11 100 100 100 100
5 1,05 100 100 100 100

8,28 98 100 96 96

Scenario 1: One arm from screen (with tracking solution)

1 2,16 100 100 100 100
2 2,03 100 100 100 100
3 5,39 80 100 70 100 Voice Recognition could

be better.
4 1,57 100 100 100 100
5 1,9 100 100 100 100

13,05 96 100 94 100

A.3 MES scenarios Evaluation 63

Table A.5: Scenario 2: One arm from screen

Step Duration (s) Time Rate
(%)

Completion
(%)

Usability
(%)

Accessibility
(%)

Note

1 0,53 100 100 100 100
2 0,59 100 100 100 100
3 2,74 90 100 80 80 Bad GUI performance.
4 0,85 100 100 100 100
5 1,18 100 100 100 100
6 2,88 90 100 100 100
7 1,11 100 100 100 100
8 2,87 90 100 80 80
9 0,85 100 100 100 100
10 0,78 100 100 100 100
11 0,92 100 100 100 100
12 1,38 100 100 100 100
13 2,03 100 100 70 70 Bad GUI performance

with multiple editors.
14 1,44 100 100 100 100
15 0,59 100 100 100 100
16 3,26 90 100 80 80 Bad GUI performance

with multiple editors.
17 1,05 100 100 100 100
18 0,33 100 100 100 100

25,38 97,78 100 95,00 95,00

64 Evaluation

Table A.6: Scenario 2: One arm from screen (with tracking solution)

Step Duration (s) Time Rate
(%)

Completion
(%)

Usability
(%)

Accessibility
(%)

Note

1 2,23 100 100 100 100
2 2,55 90 100 100 100
3 5,83 80 100 70 100 Voice Recognition could

be better.
4 2,75 90 100 100 100
5 2,31 100 100 100 100
6 7,98 80 100 80 100 Hand Action could be

faster.
7 2,69 90 100 100 100
8 6,39 80 100 70 100 Voice Recognition could

be better.
9 5,95 80 100 100 100
10 2,13 100 100 100 100
11 1,9 100 100 100 100
12 2,48 100 100 100 100
13 4,55 90 100 80 70 Bad GUI performance

with multiple editors.
14 3,32 90 100 100 100
15 9,35 80 100 80 100 Hand Action could be

faster.
16 4,72 90 100 70 100 Voice Recognition could

be better.
17 14,13 70 100 80 100 High latency of Message

Bus. Hand Action could
be faster.

18 13,45 70 100 80 100 Hand Action could be
faster.

95,15 87,78 100 89,44 98,33

References

[1] V. Cehan R. G. Lupu A. Păsărică, R. G. Bozomitu. Pupil detection algorithms for eye track-
ing applications. 2015 IEEE 21st International Symposium for Design and Technology in
Electronic Packaging (SIITME), October 2015.

[2] Peter J. Bex. Guido Maiello Agostino Gibaldi, Mauricio Vanegas. Evaluation of the tobii
eyex eye tracking controller and matlab toolkit for research. Behavior Research Methods,
2016.

[3] Francisco Almada-Lobo. The industry 4.0 revolution and the future of manufacturing exe-
cution systems (mes). Journal of Innovation Managements, January 2016.

[4] Martin Arvidsson. Tools to deal with the shift to industry 4.0. https://www.tobiipro.
com/blog/tools-deal-with-shift-to-industry-4-0/, March 2018.

[5] D. Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[6] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[7] Barry Burns. Trend Trading For Dummies. 2014.

[8] Cuneyt Akinlar Cihan Topal, Halil Ibrahim Cakir. Appd: Adaptive and precise pupil bound-
ary detection using entropy of contour gradients. asd, August 2018.

[9] Melvin E. Conway. How do Committes Invent. F. D. Thompson Publications, Inc., apr 1968.

[10] Derrick J. Parkhurst Dongheng Li. Starburst: A robust algorithm for video-based eye track-
ing. Elsevier Science, September 2005.

[11] Jason Babcock Dongheng Li and Derrick J. Parkhurst. Openeyes: A low-cost head-mounted
eye-tracking solution. Proceedings of the Eye Tracking Research & Application Symposium,
ETRA 2006, January 2006.

[12] David C. Van Essen and Charles H. Anderson. Information processing strategies and path-
ways in the primate visual system. An Introduction to Neural and Electronic Networks, 2nd,
pages 45–76, 1995.

[13] David Fumo. Types of machine learning algorithms you
should know. https://towardsdatascience.com/
types-of-machine-learning-algorithms-you-should-know-953a08248861,
June 2017.

[14] P. Gupta. Data Science with Jupyter: Master Data Science skills with easy-to-follow Python
examples. BPB Publications, 2019.

65

https://www.tobiipro.com/blog/tools-deal-with-shift-to-industry-4-0/
https://www.tobiipro.com/blog/tools-deal-with-shift-to-industry-4-0/
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861

66 REFERENCES

[15] Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep Learning (Adaptive Computation
and Machine Learning series). The MIT Press (November 18, 2016), 2016.

[16] Ian Spence Ivar Jacobson and Kurt Bittner. USE-CASE 2.0 - The Guide to Succeeding with
Use Cases. Ivar Jacobson International SA, dec 2011.

[17] Barati Morteza Walsh Vincent Tcheang Lili Javadi Amir-Homayoun, Hakimi Zahra. Set:
a pupil detection method using sinusoidal approximation. Frontiers in Neuroengineering,
April 2015.

[18] John R. Koza, Forrest H. Bennett, David Andre, and Martin A. Keane. Automated Design
of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic Programming.
Artificial Intelligence in Design ’96, 1996.

[19] Philip A. Laplante. Comprehensive Dictionary of Electrical Engineering. CRC Press, 2005.

[20] Neil A. Dodgson Lech Swirski, Andreas Bulling. Robust real-time pupil tracking in highly
off-axis images. ETRA ’12, March 2012.

[21] David Leggett. A brief history of eye-tracking. https://www.uxbooth.com/
articles/a-brief-history-of-eye-tracking/, January 2010.

[22] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans-
actIons on Programmmg Languages and Systems, Vol 16, No 6, nov 1994.

[23] Critical Manufacturing. Mes for industry 4.0. https://www.
criticalmanufacturing.com/en/critical-manufacturing-mes/
complete-modular-solution, 2019.

[24] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software Structure and De-
sign. Prentice Hal, sep 2017.

[25] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[26] Microsoft. Linearsvmtrainer class (microsoft.ml.trainers). https://docs.microsoft.
com/en-us/dotnet/api/microsoft.ml.trainers.linearsvmtrainer?
view=ml-dotnet, 2020.

[27] Microsoft. Ml.net documentation. https://docs.microsoft.com/en-us/dotnet/
machine-learning/, 2020.

[28] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Adaptive
computation and machine learning series. MIT Press, 2012.

[29] Mozilla. Web speech api - speech recognition. https://wiki.mozilla.org/Web_
Speech_API_-_Speech_Recognition/, 2020.

[30] M. Jones P. Viola. Rapid object detection using a boosted cascade of simple features. Pro-
ceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, dec 2001.

[31] Bartosz Pietrucha. Angular architecture patterns and best practices. https://
angular-academy.com/angular-architecture-best-practices/, jul 2019.

https://www.uxbooth.com/articles/a-brief-history-of-eye-tracking/
https://www.uxbooth.com/articles/a-brief-history-of-eye-tracking/
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.linearsvmtrainer?view=ml-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.linearsvmtrainer?view=ml-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.linearsvmtrainer?view=ml-dotnet
https://docs.microsoft.com/en-us/dotnet/machine-learning/
https://docs.microsoft.com/en-us/dotnet/machine-learning/
https://wiki.mozilla.org/Web_Speech_API_-_Speech_Recognition/
https://wiki.mozilla.org/Web_Speech_API_-_Speech_Recognition/
https://angular-academy.com/angular-architecture-best-practices/
https://angular-academy.com/angular-architecture-best-practices/

REFERENCES 67

[32] Tobii Pro. Why do we move our eyes. https://www.tobiipro.
com/learn-and-support/learn/eye-tracking-essentials/
why-do-our-eyes-move/, aug 2020.

[33] Andrew G. Barto Richard S. Sutton. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning series) 2nd Edition. A Bradford Book; second edition
edition (November 13, 2018), 2018.

[34] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 1958.

[35] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach 3rd Edition.
Pearson Education India; 3rd edition (October 14, 2015), 2015.

[36] Humberto Santos. História do mes - manufacturing exe-
cution system | flow. https://flowtech.pt/pt/blog/
historia-mes-manufacturing-execution-system/, aug 2916.

[37] Tereza Soukupová and Jan Cech. Real-time eye blink detection using facial landmarks. 21st
Computer Vision Winter Workshop, February 2016.

[38] Google Trends. Google trends 2019. https://trends.google.pt/, 2019.

[39] Katrin Sippel Wolfgang Rosenstiel Wolfgang Fuhl, Thomas Kübler and Enkelejda Kasneci.
Excuse: Robust pupil detection in real-world scenarios. Springer LNCS 9256. Editor of the
proceedings of the 16th International Conference, September 2016.

[40] Thomas C. Kübler Enkelejda Kasneci Wolfgang Fuhl, Thiago Santini. Else: ellipse selection
for robust pupil detection in real-world environments. Ninth Biennial ACM Symposium,
March 2016.

https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/why-do-our-eyes-move/
https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/why-do-our-eyes-move/
https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/why-do-our-eyes-move/
https://flowtech.pt/pt/blog/historia-mes-manufacturing-execution-system/
https://flowtech.pt/pt/blog/historia-mes-manufacturing-execution-system/
https://trends.google.pt/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Eye Tracking Techniques
	2.1 Manufacturing Execution Systems
	2.2 Eye Tracking History
	2.3 Eye Tracking Algorithms
	2.3.1 Eye aspect ratio (EAR)
	2.3.2 Circular Hough Transform (CHT)
	2.3.3 Starburst algorithm
	2.3.4 Sinusoidal Eye-Tracker (SET)
	2.3.5 Swirski
	2.3.6 Exclusive Curve Selector (ExCuSe)
	2.3.7 Ellipse Selection (ElSe)
	2.3.8 Adaptive and Precise Pupil Boundary Detection(APPD)

	2.4 Machine Learning Applied to Computer Vision
	2.5 Previous Work

	3 Requirements and Functionalities
	3.1 Proposed Solution
	3.2 Use Cases
	3.2.1 Package: Eye
	3.2.2 Package: Hand
	3.2.3 Package: Speech

	3.3 Functional Requirements
	3.4 Non Functional Requirements

	4 Architecture
	4.1 MES GUI
	4.2 Eye Tracking Middleware
	4.3 Hand Tracking Middleware
	4.4 Message Bus

	5 Implementation
	5.1 Overlap Detection
	5.2 Eye Coordinates
	5.3 Machine Learning Pipelines
	5.4 Binary Classification With Linear SVM for Eye Actions
	5.5 Multi Classification With Average Perceptron for Hand Actions
	5.6 Haar Cascade for Hand Detection
	5.7 Speech Recognition

	6 Results Analysis
	6.1 Trends
	6.2 Actions Evaluation
	6.2.1 Hand Actions Evaluation
	6.2.2 Eye Actions Evaluation

	6.3 MES Scenarios

	7 Conclusions and Future Work
	7.1 Main Contributions
	7.2 Future Work

	A Evaluation
	A.1 Hand Actions Evaluation
	A.2 Eye Actions Evaluation
	A.3 MES scenarios Evaluation

	References

