
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Bringing Liveness to Design Patterns

Filipe Oliveira e Sousa Ferreira de Lemos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Filipe Alexandre Pais de Figueiredo Correia

Co-Supervisor: Prof. Ademar Manuel Teixeira de Aguiar

July 24, 2020

Bringing Liveness to Design Patterns

Filipe Oliveira e Sousa Ferreira de Lemos

Mestrado Integrado em Engenharia Informática e Computação

July 24, 2020

Abstract

During the development of the software and, eventually, its maintenance, each element of a soft-
ware team should be able to understand what patterns are being used to design the system, and
why. This highlights the need to adequately document software. In fact, a good documentation
practice is to describe each pattern instance that composes the software. When documenting one,
we should give a quick visual overview of the design context, enhance the reason why it was
instantiated, describe the design context in more detail, outline its role, illustrate the possible in-
teractions between it and the client, provide the benefits and consequences of using it and, finally,
identify special features of its implementation by referencing the source code. Additionally, since
the software is constantly evolving, regular documentation updates are required to keep it consis-
tent since existing instances might be affected by it and should be updated accordingly.

Approaches to software documentation with design patterns can either be based on document-
ing pattern instances or by an automatic extraction of the pattern instances from the code. Code
annotations, pattern instance validators and external documentation, such as hypertext or graph-
ical representations, are some examples for the first category. However, none of these solutions
encompass all the aspects that we consider important to tackle this problem. Some do not maintain
close proximity between code and documentation, others do not update the documentation after
changes in the code are introduced and, all present a very low liveness level.

The goal of this work is to address the challenge of understanding software in terms of its
design patterns, by streamlining the creation and documentation of software, making it easier to
switch between these phases. This was achieved by increasing the amount of feedback about
the pattern instances presented in the code, while the developers are editing it, granting a higher
degree of liveness. Moreover, our approach maintains close proximity between the artifacts and
provides means to visualize the pattern instances under the same environment. A prototype — the
Design-Pattern-Doc — was designed, as a plugin for Intellij, that identifies pattern instances in the
source code, live-suggests and generates pattern instance documentation, and provides live editing
and visualization of the pattern instances.

To validate this approach, we carried out a controlled experiment with Informatics master
students, where they had to complete several tasks, for which they had to understand and evolve
a software system. The participants were divided in two groups, where one of the groups had
access to the developed prototype. During these experimental sessions, different sorts of data
were collected, such as task duration, number of context switches, among others, which were
subject to a statistical analysis. The results support answering this thesis’ research questions. In
fact, they helped confirming that, with our approach, developers spend less time understanding and
documenting a software system, based on design patterns. Additionally, the context switching, due
to the transition between the programming and documenting phases, is reduced by embedding the
latter in the IDE and by maintaining it close to the source code. Our approach does not solve the
inconsistency problem, but we provide the means to reduce their occurrence.

Keywords: liveness, design patterns, documentation, consistency

i

ii

Resumo

Durante o desenvolvimento do software (e eventualmente na sua manutenção), cada elemento
duma equipa de software deve ser capaz de entender que padrões estão inseridos no sistema e
por quê. Isso demonstra a necessidade de documentar adequadamente software. Uma boa prática
na documentação de software é a descrição de cada instância de padrão que compoe o sistema.
Quando se documenta uma, devemos fornecer uma rápida referência visual do contexto do de-
sign, especificar o motivo pelo qual foi instanciado, descrever o contexto do design com mais
detalhes, explicar o seu papel, ilustrar as possíveis interacções entre o cliente e o padrão, fornecer
os benefícios e as consequências do seu uso e, finalmente, identificar características especiais da
sua implementação, fazendo referência ao código-fonte. Além disso, como o software está em
constante evolução, é necessário recorrer a actualizações regulares da documentação de modo a
mantê-la consistente, pois instâncias de padrões que já existam, poderão ser afectadas e devem ser
actualizadas de acordo.

A documentação de software, com base em padrões de design, pode ser baseada na documen-
tação das instâncias de padrões ou através da extracção automática de instâncias de padrões do
código. Anotações no código, validadores de instâncias de padrões e documentação externa, são
alguns exemplos da primeira categoria. No entanto, não se conhece nenhuma solução que con-
temple todos os aspectos que consideramos importantes para resolver este problema. Alguns não
mantêm proximidade entre o código e a documentação, outros não actualizam a documentação
após introdução de alterações no código e, todos apresentam um nível de liveness muito baixo.

O objectivo deste trabalho é endereçar o desafio da compreensão de software em termos dos
seus padrões de design, através da simplificação da criação e documentação de software, facili-
tando a transição entre estas fases. Isto foi atingido através do aumento da quantidade de feed-
back sobre as instancias de padrões inseridas no código, enquanto os programadores o editam,
garantindo um maior nivel de liveness. Para além disso, a nossa abordagem mantém proximidade
entre os artefactos e promove os meios para visualizar as instâncias de padrões dentro do mesmo
ambiente. Um protótipo — Design-Pattern-Doc — foi desenvolvido, como um plugin para o In-
tellij, capaz de identificar instâncias de padrões no código, sugerir e gerar documentação para
as instâncias de uma forma live e, permite a edição e visualização das instâncias de padrão em
real-time.

Para validar esta abordagem, foi realizada uma experiência controlado com alunos do mestrado
integrado em informática, onde tiveram de concluir diversas tarefas, para as quais foi necessário
que percebessem e evoluíssem sistemas de software. Os participantes foram divididos em dois
grupos, sendo que um deles tinha acesso ao protótipo desenvolvido. Durante as sessões exper-
imentais, diferentes tipos de dados foram recolhidos, como a duração das tarefas, o número de
trocas de contexto, entre outros, os quais foram submetidos a uma análise estatística. Os resul-
tados permitem responder as perguntas de investigação desta tese. Na verdade, estes ajudaram
a confirmar que, com a nossa abordagem, os programadores gastam menos tempo a perceber e
documentar sistemas de software, baseados em padrões. Adicionalmente, reduz-se a necessidade

iii

iv

de troca de contexto, entre as fases de programação e documentação, através da inclusão da doc-
umentação e sua edição no próprio IDE e por estar próxima do código. A nossa abordagem não
resolve o problema de inconsistências mas fornece os meios para reduzir a sua ocorrência.

Keywords: liveness, design patterns, documentação, consistência

Acknowledgements

First I’d like to thank my supervisors Professor Filipe Alexandre Pais de Figueiredo Correia and
Professor Ademar Manuel Teixeira de Aguiar for all their help, availability and enthusiasm. I could
always count on them whenever I ran into a trouble spot or had a question about my research or
writing.

Thanks to all my friends and colleagues that helped and encouraged me along the way. Special
thanks to my friend Diogo Torres for his help during the debugging sessions. I’d also like to
express my sincere gratitude to all the wonderful faculty at FEUP that have helped me learn and
advance my education over the years.

Finally, I must express my very profound gratitude to my parents and my other family members
for providing me with unfailing support throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have been possible without
them. Thank you all.

Filipe Lemos

v

vi

“Success is the sum of small efforts,
repeated day in and day out.”

Robert Collier

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Thesis Overview . 3

2 Background 5
2.1 Documentation Good Practices . 5

2.1.1 Information Proximity . 5
2.1.2 Co-Evolution . 6
2.1.3 Domain-Structured Information . 6
2.1.4 Integrated Environments . 6

2.2 Literate Programming . 6
2.3 Integrated Development Environment . 7
2.4 Liveness . 11

3 State of the Art 13
3.1 Documenting pattern instances . 13

3.1.1 Text-based . 13
3.1.2 Graphical representation . 15
3.1.3 Pattern instance validators . 18
3.1.4 Discussion . 20

3.2 Extracting patterns from code . 21
3.2.1 Static Analysis . 22
3.2.2 Dynamic Analysis . 28
3.2.3 Discussion . 33

4 Problem Statement 35
4.1 Scope . 35
4.2 Hypothesis . 36
4.3 Research Questions . 37
4.4 Methodology . 37

5 Approach and Design of the Design-Pattern-Doc Plugin 39
5.1 Approach . 39
5.2 Prototype . 40

5.2.1 Architecture . 41

ix

x CONTENTS

5.2.2 Design decisions . 42
5.2.3 Domain Model . 44

5.3 Source Code Repository . 44
5.4 Plugin Features . 44

5.4.1 Pattern Instance Detector . 44
5.4.2 Accepted Pattern Instances Storage . 45
5.4.3 Inspections . 45
5.4.4 Manual Pattern Instance Documentation 46
5.4.5 Pattern Instance Live Editor . 47
5.4.6 Design Patterns Definition . 48
5.4.7 Pattern Instance Viewer . 48

6 Empirical Study 51
6.1 Goals . 51
6.2 Design . 52
6.3 Data Analysis . 54

6.3.1 Background . 54
6.3.2 Task’s Duration . 55
6.3.3 Context Switching . 57
6.3.4 Assessment Questionnaire . 59

6.4 Threats to Validity . 61
6.5 Discussion . 62

7 Conclusions 65
7.1 Summary . 65
7.2 Main Contributions . 66
7.3 Future Work . 67

A Shapiro-Wilk Test 69

B Levene Test 71

C Experimental Guide 73
C.1 Control Group Questionnaire . 73
C.2 Experimental Group Questionnaire . 80

References 95

List of Figures

2.1 Intellij editor . 8
2.2 Intellij UML class diagrams . 8
2.3 Using code inspections to fix spelling mistake 9
2.4 Visual Studio Code editor . 9
2.5 Documentation pop up with code completion 10
2.6 Visual Studio Code refactoring suggestion . 10
2.7 Visual Studio Code Peek . 10

3.1 Text-based documentation approach . 14
3.2 Consequences of a high number of classes on UML diagrams 15
3.3 Lexi tool with extra functionalities . 16
3.4 Collapsed design pattern UML notation . 16
3.5 Layout of class design pattern information . 17
3.6 UML with attached tagged values . 18
3.7 Example of a PEC pattern template . 19
3.8 Fragment browser window . 20
3.9 Reclassification of the 23 GoF Patterns . 22
3.10 SPOOL’s user interface . 23
3.11 Detected design patterns in the Maisa tool . 24
3.12 Maisa tool’s architecture . 25
3.13 FUJABA tool’s process statechart . 25
3.14 Example of FUJABA results view . 26
3.15 Diagram of the design pattern "Composite" and its generated PROLOG rules . . 26
3.16 SPQR Outline . 27
3.17 Example of the SPQR tool’s output . 28
3.18 Use of the Ptidej tool suite . 29
3.19 Part of Ptidej interface . 29
3.20 The recovery process of ePAD . 30
3.21 Visualization of a detected design pattern . 31
3.22 Example of detected design patterns by DPVK 32
3.23 Pattern Taxonomy for Reverse Engineering . 32

5.1 Prototype’s conceptual overall architecture . 41
5.2 Prototype’s overall architecture . 43
5.3 Class diagram of the Domain Model . 44
5.4 Example of a pattern instance suggestion . 45
5.5 Example of an incomplete documentation warning 46
5.6 Example of manual documentation . 46

xi

xii LIST OF FIGURES

5.7 Example of the live pattern instance editor . 47
5.8 Example of a real sized UML . 47
5.9 Example of documentation when hovering on top of a pattern participant 48
5.10 Example of pattern hints . 49

6.1 Box plot of the total time spent by the participants, in the execution of the tasks . 55
6.2 Box plot of the task’s duration variable in both treatments 56
6.3 Number of access to documentation during comprehension tasks 58
6.4 Number of access to documentation during documenting tasks 59
6.5 Box plot of the Q1 and Q2 in both treatments 60
6.6 Bar chart representing how participants felt towards a remote experiment 61

List of Tables

3.1 Pattern instance structure by Odenthal et al. 14
3.2 Overview of the approaches for documenting pattern instances 20
3.3 Overview of the approaches for extracting design patterns from the source code . 33

6.1 Summary of the answers to the background questionnaire 55
6.2 Summary of the statistical tests’ results for the tasks duration variable. The Levene

test used to select the correct t-test values can be seen in Appendix B. 56
6.3 Summary of the MW-U statistic results for the context switching variable 57
6.4 Summary of the MW-U statistic results for the final questionnaire 60

A.1 Shapiro-Wilk Test results . 69

B.1 Summary of the standard t-test statistic results for the tasks duration variable . . . 71

xiii

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
ARG Attributed Relational Graph
ASG Abstract Syntax Graph
AST Abstract Syntax Tree
BDD Binary Decision Diagram
CG Control Group
ED External Documentation
EDP Elemental Design Patterns
EG Experimental Group
FAMIX Famoos Information Exchange
FEUP Faculty of Engineering of the University of Porto
GoF Gang of Four
HTML HyperText Markup Language
ID Internal Documentation
IDE Integrated Development Environment
LP Literate Programming
MESW Master in Software Engineering
MIEIC Master in Informatics and Computing Engineering
MSc Master of Science
UML Unified Modeling Language
XML Extensible Markup Language

xv

Chapter 1

Introduction

1.1 Context

Throughout the entire life cycle of a software project, developers store knowledge in software

artifacts. These artifacts, which are often part of the system itself, help them or other developers

understand what has been done, how does it work and why it was made that way. Note that, this is

not only important for new developers that have never interacted with the project before. Even the

original developers, after some time without tackling a certain design detail (e.g. class, method,

module, among others), tend to lose some of the knowledge they once had, making these artifacts

particularly useful when they are trying to reconnect with it.

However, software is constantly evolving. As a result, these artifacts must be updated when

new knowledge is acquired. This may not be a trivial task due to the structure of these artifacts.

Some can have a richer and predefined structure, whose form must be respected, making the

update of its contents harder due to their strict nature. Others may be free of structure, like free-

text documents, which provide flexibility for evolving their contents but, due to their abstract

structure nature, knowledge may be harder to retrieve [10, 9]. Moreover, the latest are harder to

keep consistency among the rest of the artifacts, in other words, to make sure that two related

artifacts do not express contradictory ideas.

Actually, there are several types of documentation artifacts. Use cases, sequence diagrams,

class diagrams and other Unified Modeling Language (UML) diagrams help describing the func-

tionality, architectural and design details of software products. Project work plans, risk manage-

ment reports, among others, focus on the actual development process of the project. User manuals

and API documentation provide guidance for new users to use the software. Even source code can

be seen as a documentation artifact. In fact, all these artifacts have one thing in common: they are

all affected by the constant evolution of software.

Aguiar stated that "Before reusing a piece of software, one first has to invest time on under-

standing and learning how to use it. The more complex a reusable piece of software is, the more

difficult and time consuming will probably be these tasks" [1]. This denotes the importance of

documenting software. Without having a clear notion of what it does and how to use it, we may

1

2 Introduction

end up breaking its original design purpose and benefits, when trying to increment functionalities

or modify existing ones. This outcome is not that uncommon due to the lack of good practices and

documentation standards, used by most developers, when documenting software design.

Design patterns offer reusable solutions to recurrent design problems, being particularly use-

ful when designing and describing complex object-oriented software systems. In fact, a good way

to document software is by describing the patterns instances that compose it. Pattern instances

provide a detailed description of the design context and state the reason why those design patterns

were instantiated, in the first place. Due to the patterns globally known vocabulary, sharing knowl-

edge and design experience with other developers, becomes an easier task. Together with some

good documentation practices, to enforce consistency during software evolution and maintenance,

documentation using design patterns could lead to a standard for software documentation.

1.2 Motivation

During the process of software development, the developer switches, essentially, between two

phases: programming and documenting. Since the output of one phase serves as input for the

other, we have a mutual feedback loop. This loop enforces a constant swap of context, which

may lead to the loss of important knowledge. In fact, the human brain has a limited capacity of

working memory resources, also known as cognitive load. Thus, when heavily loaded, it may

produce negative effects on task completion, such as the one mentioned above.

Another common consequence is the constant postponing of one of those two phases, usually

the documentation phase, in order to remain longer in the same context. This may lead to incon-

sistencies since one of the artifacts is not evolving with the other. We may try to sync them back

together later but, the more we increase the volume of changes before updating them, the harder it

gets. This will have a critical impact in the reuse and the ability to understand the software, since

we will be dealing with outdated or inconsistent documents.

1.3 Objectives

The purpose of this thesis is to streamline the creation and documentation of software, making it

easier to switch between:

• The design of software with design patterns

• The documentation of software through design patterns

Achieving this requires tackling some concerns, such as finding out how to maintain consis-

tency between code and its documentation, how to display the pattern instances to the developer

and how to support the identification of design patterns in the source code. Perhaps, increasing

the liveness level would help solving these concerns, since we would have a more clear perception

of the information that transits between those phases. Here, by liveness we refer to the feedback

1.4 Contributions 3

provided to the developer when the software system is being designed or executed. In this partic-

ular case, the feedback could be about the pattern instances that should be documented, while the

system is being designed.

For that reason, the research questions explore whether it is possible to reduce the inconsis-

tencies between code and documentation and to improve the overall perception of the system’s

design by reducing the mutual feedback loop.

The final product should allow analyzing design patterns by verifying if they respect their

rules, generating the required documentation and, alerting the developer every time an inconsis-

tency is found between the documentation and its code (e.g. missing the implementation of a

pattern participant). Thus, we expect that developers that use the tool respond faster to errors

or inconsistencies, the total number of inconsistencies decreases, and the identification of pattern

instances and the update of their documentation is made easier to perform.

1.4 Contributions

The outputs of this thesis are:

• State of the art Review — During which we compare the approaches and/or tools that try to

solve the challenge of understanding and documenting a software system, based on design

patterns.

• Approach — Our solution covers some of the flaws from the explored approaches, by

maintaining proximity between the code and its documentation, proving the means required

to ease the update of the documentation, and by increasing the liveness level.

• Design-Pattern-Doc — A prototype was developed, in the form of a plugin, to provide a

concrete implementation of our approach to the participants of the controlled experiment.

• Controlled User Experiment — A controlled experiment with MSc students was per-

formed to validate our approach.

1.5 Thesis Overview

In the following chapter, background regarding documentation good practices, visualisation and

user interaction in development environments and, the concept of liveness will be given. In Chap-

ter 3, current approaches on documentation with design patterns will be analysed to the very detail,

exploring how they document pattern instances and how they they extract design patterns from ap-

plication’ source code.

Chapter 4 briefly describes the scope of the problem and the validation methodology used.

Additionally, it presents the hypothesis and research questions that support this thesis.

4 Introduction

Chapter 5 presents our approach to the challenge of understanding software in term of its

design patterns. The developed prototype — Design-Pattern-Doc — is also presented, more

specifically its architectural design and its main features.

In Chapter-6 we explore the controlled user experiment used to validate our approach, by

presenting its goals, design and results. At the end of this chapter, the research questions presented

in Chapter 4 are answered.

Chapter 7 provides a quick overview of this thesis and explores possible future steps.

Chapter 2

Background

In this chapter, we describe and contextualize the topics required to fully comprehend this docu-

ment. We begin by exploring a set of best practices for documenting software. These will be an

important criteria for comparing the different approaches and tools, in the State of the Art (Chap-

ter 3). Then we will examine how development environments display information and interact

with the user in a non-intrusive way. This will be followed by a brief analyze of the definition of

Liveness and Literate Programming.

2.1 Documentation Good Practices

Software documentation is the collection of knowledge, captured in several artifacts, that may

evolve throughout the entire software life cycle. Some of these artifacts may address related

information, meaning that when updating one, the related artifacts should also be updated to avoid

inconsistencies.

On the following subsections, we will be examining some good practices, that have been

presented in the literature, to consistently document software [11]. Note that, there are several

other documentation good practices. However, we will only be covering those that are required to

understand the following chapters.

2.1.1 Information Proximity

The Information Proximity is a pattern that tries to solve the problem of preserving documentation

consistency when related information is scattered across documents/artifacts. Easing the access to

artifacts that contain related information, by using links, a single source, transclusion or views, is

their solution to this problem.

Links should be used when related contents are not meant to be in the same document. On

the other hand, single source is meant to capture related contents on the same document, making

them easier to maintain. Transclusions are used when we want to import information that exists on

5

6 Background

other artifacts to another document. This is done by referring them. Finally, views are documents

that only contain information presented on other artifacts.

2.1.2 Co-Evolution

The Co-Evolution is a pattern that tries to solve the problem of updating related information scat-

tered across artifacts, more precisely, when should it be updated. Based on their experience and

existing literature, they’ve realized that every time a change is introduced, all the related pieces of

information should be updated.

The more we increase the number and volume of changes, before updating the corresponding

artifacts, the harder it gets to sync them. If the cost for recovering consistency later is high or

when documentation must always be consistent, we should use synchronous co-evolution (update

immediately after changes occur). When this is not the case, we may use the time-shifted co-

evolution. Here, pending related changes are tracked and they are only updated when needed.

2.1.3 Domain-Structured Information

The Domain-Structured Information is a pattern that tries to solve the problem of structuring the

information in documentation, in order to automatically assess consistency among the related

artifacts. This is achieved by formalizing contents according to their domain concepts, which

avoids multiple interpretations of the same information.

2.1.4 Integrated Environments

Integrated Environments is a pattern that tries to solve the problem of maintaining consistency

among independent but content related artifacts. These environments do not only allow handling

several types of artifacts but, also provide a structure for them to inter operate with each other.

During Section 2.3, we will be analyzing two of the most popular integrated development envi-

ronments.

2.2 Literate Programming

Literate programming (LP), which is an example of the documentation good practices discussed

above, was invented by Knuth [30] to help humans comprehend software programs. LP achieves

this by switching the focus from instructing the computer what to do, to explain to humans what

the computer is designed to do. It has three main features:

• Verisimilitude - Source code and documentation are written and placed together in the same

source document (Information proximity). This technique helps preserving consistency be-

tween the source code and its documentation.

2.3 Integrated Development Environment 7

• Psychological arrangement - Unlike traditional approaches, a literate program is orga-

nized in the most appropriate way to enhance human comprehension, not being restricted to

respect the structure accepted by the compiler.

• Good readability - Programs are considered to be works of literature. Therefore, they

should be easy to read and comprehend.

Literate programs are unified source-documents composed by interleaves of chunks of source

code and explanatory text, with a psychological arrangement, to help describing the program to

human beings. Since these programs are not source code nor documentation, they are commonly

known as web documents. This term was derived from the notion of web of information.

Unfortunately, there are some problems that make LP not widely used by programmers. Firstly,

it provides too much overhead for small programs (programming language, formatting language,

language for relating the previous two languages). Secondly, most tools do not support the doc-

umentation of existing software, only new. Finally, their program arrangement makes it hard for

the source code to be manipulated by some tools, such as refactoring tools or debuggers.

2.3 Integrated Development Environment

Integrated Development Environments (IDE) are software products designed to maximize devel-

opers productivity, during the software development process. Their offer a set of functions and

tools such as debuggers, refactors, code inspectors, different perspectives to view the source code,

among others, that help manipulating the source code. In this section, we will be analysing how

two of the most popular IDEs, Intellij1 and Visual Studio Code2, provide software visualization

and user interaction.

Intellij was created by JetBrains3 to maximize productivity when programming in Java. They

have developed several interesting user interaction features, such as smart code completion, frame-

work specific assistance (understands and provides intelligent coding for several other languages,

even if they are injected in a string literal in the Java code), and productivity boosters (predicts

needs and automates repetitive tasks). Unlike many IDEs, Intellij is context aware and, automati-

cally, displays the tools that make sense in the current context.

Intellij’s editor is represented in Figure 2.1. On top of the active file, there is a tab layout

with all the previously opened files. To its left, there is a gutter that displays the line numbers,

annotations and breakpoints. Breadcrumbs, which help the user navigate inside the code, are

displayed at the bottom of the file. Finally, the file scrollbar, also known as error stripe, highlights

the errors and warning, which can be differentiated through their colour.

1More information on https://www.jetbrains.com/help/idea
2More information on https://code.visualstudio.com/docs/
3More information on https://www.jetbrains.com/

https://www.jetbrains.com/help/idea
https://code.visualstudio.com/docs/
https://www.jetbrains.com/

8 Background

Figure 2.1: Intellij editor

Furthermore, by right clicking on variables, expressions, methods and so on, the user is pre-

sented with a list of possible refactoring processes. Live templates can also be used to insert com-

mon code structures like loops, conditions. These contain only plain text that when expanded insert

the entire block of code. For example, sout is a live template for "System.out.println();".

Another relevant feature, particularly when dealing with design patterns, is their UML class

diagram generation, which allows reflecting the structure of the actual source code classes (Fig-

ure 2.2).

Figure 2.2: Intellij UML class diagrams

Regarding liveness, their most interesting feature is the code inspection, which detects, sug-

gests and corrects wrongly written code, before the source code is compiled. These allow detecting

unreachable code, spelling problems and bugs, by highlighting the respective blocks of code. For

example, unreachable code is normally greyed out, while spelling mistakes are underlined. When

hovering on top of these pieces of code, a yellow light bulb pops up, which by clicking on it, offers

a set of suggestions to fix those problems. Figure 2.3 represents this process for a spelling mistake.

2.3 Integrated Development Environment 9

Figure 2.3: Using code inspections to fix spelling mistake

Visual Studio Code was created by Microsoft4 as a lightweight multi platform source code

editor. Intelligence code completion and powerful editing like linting, multi-cursor editing or

parameter hints, are some of the features that can be found within this IDE.

Visual Studio Code editor can be seen in Figure 2.4. On its left side we have a sidebar with

six icons: 1) File explorer, 2) Search across files, 3) Source code management, 4) Program launch

or debug, 5) Marketplace and extensions manager and 6) Settings. On the bottom of the window,

we can find the status bar, where, among other details, the errors and warnings are displayed. Just

like Intellij, on the top of the active source file, there is also a tab layout with all the previously

opened files.

Figure 2.4: Visual Studio Code editor

IntelliSense is the name they give to their code completion features. Through source code

analysis and language semantics, they are able to suggest possible completions while the user is

typing. As the user types, the hint list gets filtered. By pressing the info icon or selecting "quick

info" in any of those list elements, its documentation gets expanded (Figure 2.5). Moreover, after

choosing a method, the user is provided with the parameter info. Another thing that appears when

using IntelliSense are code snippets. These are the equivalent to the live templates discussed in

Intellij.

4More information on https://www.microsoft.com

https://www.microsoft.com

10 Background

Figure 2.5: Documentation pop up with code completion

Visual Studio Code, through code inspection, can detect and highlight issues for quick fixes

or refactoring purposes. Just like Intellij, a light bulb pops up when the cursor is on top of these

highlighted issues (Figure 2.6).

Figure 2.6: Visual Studio Code refactoring suggestion

Additionally, it has two particularly interesting features. The first one is the integrated termi-

nal, which allows performing a quick command-line task (like starting a pattern detection tool)

without having to switch windows. The second one is their code navigation feature peek. This

feature allows embedding the search result inline, avoiding having to change context (Figure 2.7).

Figure 2.7: Visual Studio Code Peek

2.4 Liveness 11

2.4 Liveness

Live programming is a way to support technical agility — it is the application of the inspect

and adapt principle used in agile methods to programming activities. This constant awareness of

the program state helps reducing the edit-compile-run cycle and, therefore, reduces the the total

time required to build the system. Note that, it can also be particularly useful during program

maintenance or for debugging purposes.

Tanimoto [47] proposes a hierarchy of six levels to define liveness:

1. Informative

2. Directly requested feedback

3. Delayed non requested feedback

4. Instantaneous feedback

5. Predictive and suggestive feedback

6. Strategically predictive

Level one is merely informative, like providing which design patterns were detected, in text

format or in a UML diagram. Level two provides feedback when the user asks for it (e.g. user

requests feedback by pressing a button designed for that purpose and, an informative box is dis-

played on the screen) . In level three, the feedback is provided some time after an event (delayed

automatic response). Warning the developer that some method is missing, a small number of

seconds after saving the program, without direct request by the user, is an example for this level.

Level four provides feedback in real-time. The feedback is not requested by the user but can

be linked to an event (e.g. running the program in background to search for design patterns and,

after a small number of seconds without typing, results are displayed on the screen). In level five,

while running the program in background, the system predicts future actions and suggests them to

the developer. Finally, level six system’s automatically foresee the future actions and implement

them, without asking the user for permission.

12 Background

Chapter 3

State of the Art

Information about the pattern instances of a code base can be made available by either creating

documentation that describes such instances, or by extracting patterns from the source code. In this

chapter, we will explore the approaches and/or tools, developed so far, to tackle these problems.

3.1 Documenting pattern instances

Pattern instances have been documented through text-based approaches, such as code annota-

tions or HTML pages, graphical representations like UML diagrams or by filling out pattern code

templates. In the following sections, approaches related to each one of these categories will be

analyzed.

3.1.1 Text-based

This is the most commonly used approach. It can be achieved by annotating the source code with

comments or by providing external documentation pages [41, 49, 27, 37, 26]. A good example

of a tool that belongs to this category is the Javadoc [32]. Javadoc is a tool designed for the

automatic generation of documentation, from Java source code, with the goal of displaying and

distributing on the Web. Through a documentation syntax for comments, which are embedded

in the source code, and the help of the Java compiler, it produces web pages describing classes,

interfaces, methods, etc. for an online, hypertext-based documentation.

Even though most of these approaches assure information proximity, co-evolution is hardly

supported. For instance, Sametinger et al. [41] uses links to automatically update the documents

when the code annotations change. However, these annotations are not updated when the source

code is modified, which may lead to inconsistencies.

These approaches normally start by defining new tags for documenting patterns and a doclet,

that processes these tags, producing the corresponding documentation output. A doclet is a pro-

gram created with the doclet API, which specifies the format and content of the data to be provided.

An example of these source code tags and documentation output are shown in Figure 3.1.

13

14 State of the Art

Figure 3.1: A class with patterns documented (Left) and an external documentation example of
the same class (Right) as presented by Norges et al. [26]

What usually differentiates these approaches is how they describe their pattern instances.

Odenthal et al. [37] presents the pattern instance structure shown in Table 3.1.

Table 3.1: Pattern instance structure by Odenthal et al. [37]

Label Description

Overview
Reference to a class diagram or other visualization mechanism to

give a first glimpse of the design context

Intent Reason for instantiating the pattern

Motivation
Describe the context and the design actions that led to this pattern

instantiation

Roles
Label pattern instance classes with "Pattern:Role". Briefly explain

how each role contribute to the pattern

Collaborations
Interaction between the client and the pattern instance. Here, the

developer may provide the methods that allow interaction among

the different pattern participants

Consequences Pros and Cons

Implementation
Special features of the implementation with references to the

source code

Hot spots vs

Frozen Spots*

Detailed description of the parts not to be changed and the parts

to be extended by the user

Recipe* A ready-to-use example

Integration* Which assumptions the environment of the framework has to fulfill

Known uses* Reference all sucessufull uses and common misuses

Structural extensions* Aspects that are limiting the framework design and implementation

3.1 Documenting pattern instances 15

The labels marked with an asterisk are a later extension of their pattern instance descrip-

tion to contemplate flexibility aspects of patterns. Unfortunately, the cost/benefit ratio associated

with pattern instances captured with such an extensive structure would not be positive. In fact,

Hallum [26] uses only three labels to describe each pattern: 1) name, 2) task and 3) use. Torchi-

ano [49] adds one more tag to those defined by Hallum which is the role of the class on that pattern

instance. Finally, Sametinger [41] also uses three labels (pattern name, instance name and role)

plus an optional text tag. The instance name tag allows multiple uses of the same pattern on the

same source code.

3.1.2 Graphical representation

Design patterns are usually represented by standard notation UML diagrams, making this sort

of representation familiar to developers. As a result, some approaches believe that the ability

to visualize the system’s design patterns in a graphical way, such as UML diagrams, can ease the

comprehension of the software [48, 42, 19]. However, if the system is composed by a high number

of classes, this sort of representation can get very hard to understand (Figure 3.2).

Figure 3.2: A simple design pattern instance diagram using the standard UML notation (Left) and
a more complex diagram using the same notation (Right) as presented by Schauer et al. [42]

Schauer et al. [42] has implemented a few functionalities to the Lexi tool [23], which eases

the comprehension of these type of complex system diagrams:

1. The ability to distinguish different patterns by applying a colorful border around each pat-

tern;

2. The ability to zoom in/out in a pattern by highlighting the classes that play a role in that

pattern, while opening a new window with more detailed information about it (Figure 3.3);

3. The system’s pattern collaboration diagram which allows users to collapse some patterns

in order to focus their attention on others, being the dominant class (normally the abstract

class) the only one visible (Figure 3.4).

16 State of the Art

Figure 3.3: Overall system’s design, with design patterns highlighted with different coloured bor-
ders (upper window), individual view of specific design pattern (lower, left window), design pat-
tern instance (lower, right window) as presented by Schauer et al. [42]

Figure 3.4: Collapsed design pattern UML notation as presented by Schauer et al. [42]

Trese et al. [48] describe a way to display design patterns implementation, with the partic-

ipating classes in the same structure as they appear in their UML canonical form. Moreover,

they suggest that "showing only selected information specified by the canonical representation,

leverages parallelism and established visual convention, thereby facilitating more rapid program

3.1 Documenting pattern instances 17

understanding". Their technique tries to solve of the challenges regarding graphical representation

of design patterns, such as dealing with multiple patterns in the same visualization and, using the

design patterns standard representation.

The authors start by dividing the patterns into the Gang of Four (GoF) categories — creational,

structural, behavioral, among others — and each group is placed in a different row on the patterns

layout document (Figure 3.5). Each row is delimited by a thick black line to visually separate the

different groups and, the thickness makes it distinguishable from relation arcs or class rectangle

borders. Close space proximity of patterns is achieved by placing them on the same row with

a small margin between them. Note that, these pattern instances are associated to their code

implementation through their class name.

Figure 3.5: Layout of class design pattern information as presented by Trese et al. [48]

Dong et al. [19] used a technique to represent the roles that a class, method or attribute play

in a design pattern, by attaching tagged values to the UML diagrams (Figure 3.6). This approach

allows dealing with multiple instance of design patterns but introduces too much text, making it

harder to read and increasing, significantly, the size of the diagrams.

18 State of the Art

Figure 3.6: UML with attached tagged values by Dong et al. [19]

3.1.3 Pattern instance validators

Some approaches require the developer to write design patterns instances by filling out their pat-

tern’ code templates. These approaches use code checkers, similar to compilers, which allow

validating the design pattern described by a specific pattern instance (if it respects its specifica-

tion, such as intent, rules, participants, among others).

Cornils et al. [8] implemented the DPDOC tool to help documenting systems with design

patterns. The tool’s work space is separated in two: the program editor and the pattern applicator

(special-purpose language to document patterns instances used in the program). The latter has a

list of supported design patterns templates, which are meant to be filled by the developer, every

time a design pattern is introduced in the system. The template’s placeholders are class names,

methods or variables that play specific pattern roles. After filling out these placeholders, the roles

are tied to the program elements, allowing the developer to receive feedback via error boxes, when

some method is missing or is not correctly implemented. This feedback is provided without an

explicit request by the developer. Unfortunately, there isn’t enough information to conclude when

is the feedback displayed, whether it is when the user saves the project, compiles it or if it is linked

to other sort of event.

Lovatt et al. [33] extended the Java conventional compiler, creating the Pattern Enforcing

Compiler (PEC), to include the extra checks need to enforce design patterns. Each pattern has

to follow a specific template structure, in order for the compilation using PEC to verify if the

class is following the constraints and rules of the specified pattern. A list of interfaces for several

design patterns has been developed. By making a certain class implement one of those interfaces

(follow a specific pattern), the developer is letting PEC know that this class should be validated,

3.1 Documenting pattern instances 19

during compilation time (Figure 3.7). This may be limiting, since developers may have reasons

for naming their methods with different names, from those expected by the interface.

Figure 3.7: Template for the Singleton pattern (Left) and the Singleton interface for the PEC
(Right) as presented by Lovatt et al. [33]

Florijn et al. [22] implemented an object-oriented design environment prototype for design

patterns, in Smalltalk. It uses fragments, which are design elements of different types such as

classes, methods, associations, among others. These are used to represent pattern data (smalltalk

objects, references to other fragments) and a template of patterns to generate program elements

for a new pattern instance. These pattern instances are integrated into the program by binding the

program elements to a role in the pattern. Like the other approaches, it checks if modified occur-

rences of patters still meet the patterns rules/constraints. Regarding visualization, the environment

provides: a fragment browser with a global view on the fragment structure (Figure 3.8), display-

ing the relationship between fragments; the ability to collapse/expand nodes; the ability to mark

nodes with different colors and an inspector window that allows focusing on a specific fragment,

providing its details.

20 State of the Art

Figure 3.8: Fragment browser window as presented by Florijn et al. [22]

3.1.4 Discussion

The approaches for documenting pattern instances were categorized according to the good docu-

mentation practices introduced in Chapter 2 (information proximity and co-evolution), their live-

ness level, how they present the pattern instances descriptions and, whether they can validate the

implemented patterns or not. Table 3.2 provides an overview of the analyzed approaches.

Table 3.2: Overview of the approaches for documenting pattern instances

Strategy Approach

Information

Proximity Co-Evolution

Validates

Patterns

Domain-

Structured

Information Liveness Visualization

Text-based Sametinger et al. [41] Yes Yes No Yes 1 Code annotations, html pages

Torchiano [49] Yes Yes No Yes 1 Code annotations, html pages

Hallum [26] Yes Yes No Yes 1 Code annotations, html pages

Odenthal et al. [37] Yes Yes No No 1 Code annotations

Graphical Trese et al. [48] No No No No 1 UML

Schauer et al. [42] No No No No 1 UML

Dong et al. [19] No No No No 1 Javadoc html pages

Template Florijn et al. [22] No No Yes No N/a1 UML

Lovatt et al. [33] No No Yes No 3 N/a

Cornils et al. [8] Yes Yes Yes No 3 Boxes next to editor

1Not available.

3.2 Extracting patterns from code 21

As we can see from Table 3.2 none of the presented approaches will simultaneously 1) main-

tains proximity between documentation and source code, 2) updates this documentation when

changes to the source code are introduced and 3) provides a liveness level above 3:

• Every text-based strategy assures information proximity. Due to this fact, they also support

co-evolution, since information proximity helps to quickly notice when two pieces of re-

lated content stop being consistent with each other. Moreover, the approaches that extend

Javadoc also support domain-structured information, since they introduce an increased level

of structure to the source code annotations;

• Graphical representation strategies are merely informative and do not support any of the

three features described above;

• The pattern instance validators strategies are the only ones that verify if the code is following

the specified pattern structure and its roles. However, the information that describes the

pattern instance is not easily consumed in this format;

• Regarding liveness, text-based or graphical approaches belong to level one since their doc-

umentation is only informative. On the other hand, Lovatt et al. [33] and Cornils et al. [8],

since their approaches provide feedback after compiling the source code (after an event),

without direct request from the developer, they belong to level three of the liveness hierar-

chy, discussed in Chapter 2;

• The integrated environment pattern was also explored but, due to the lack of information on

the analyzed approaches, we could not conclude anything.

The closest approach, to fulfill the three features mentioned above, that we found was Cornils’

approach but, it only warns developers that the code is no longer respecting the specified design

pattern, it does not support any type of automatic co-evolution. Moreover, after contacting the

authors, we have found out that the tool is no longer available.

3.2 Extracting patterns from code

Recovering design patterns from the source code has been a topic of interest for the last two

decades. This has led to the development of several approaches and tools to detect and visualize

design patterns. Some require the source code to be compilable, while others also need it to be

executable. Known as design pattern detection tools, they can be categorized in several ways,

depending on the level of automation, the level of liveness, the supported language, the way they

display the discovered patterns, their type of analysis, among others.

Even though they can effectively recognize several patterns, they still have some flaws. Firstly,

many do not scale when analyzing large systems, becoming significantly slower while processing.

Secondly, those that require the source code to be compiled force the developer to solve the de-

pendencies, required to use the tool, before being able to use them. Thirdly, since many are black

22 State of the Art

boxes, it is hard for the developer to control the pattern detection process, being compelled to only

interpret the final output. Additionally, several are not up-to-date regarding the current program-

ming language’ versions because, their creators stopped developing or maintaining them. Finally,

the results found contain a large set of false positive pattern instances, requiring a manual check

by the developer. This last one can be particularly tricky since not all developers are experts in

design patterns and, may be induced in error by the tool.

In this section, we will explore some of the most prominent tools and approaches that have

been developed so far. Since there is a clear distinction on the type of analysis approach, we will

use that to catalogue them. In Section 3.2.1 , we will analyze those that only focus on the structural

characteristics of the system, and in Section 3.2.2, we will examine those that contemplate some

sort of dynamic analysis.

3.2.1 Static Analysis

PINOT (Pattern INference recOvery Tool) [43] is a fully automated tool, designed by Shin and

Olsson, that performs structural and behaviour analysis of the source code. Being a modification

of IBMs Java compiler, Jikes, embedded with pattern analysis code, it takes advantage of symbol

tables and semantic checks to detect patterns in systems written in Java. Their approach starts

by reclassifying the GoF design patterns into five new categories, based on the patterns intent:

1) provided by the programming language, 2) structure driven, 3) behaviour driven, 4) domain

specific and 5) generic concepts. Figure 3.9 shows which patterns belong to each category. They

claim to recognize all the GoF structure or behaviour driven design patterns.

Figure 3.9: Reclassification of the 23 GoF Patterns as presented by Shi et al. [43]

The tool extracts inter-class relationships, such as abstract delegations, aggregations, associa-

tions, among others, from the source code generated AST, allowing them to identify the structural

aspect of a pattern. When dealing with behaviour driven patterns, this last step helps narrowing

down the search space of specific methods required for data flow analysis. Through this anal-

ysis, methods are represented as control flow graphs and used to determine the pattern instance

behaviour.

3.2 Extracting patterns from code 23

Unfortunately, it does not provide any sort of visualization technique for displaying the de-

tected patterns. The output is given by the command line as plain text.

The SPOOL (Spreading desirable Properties into the design of Object-Oriented, Large-
scale software systems) environment was conceived in a collaborative work between the Univer-

sity of Montreal and Bell Canada "to help structure parts of class diagrams to resemble pattern

diagrams" [29]. It supports several functionalities for design pattern engineering, being the most

important for this thesis, its design pattern recovery approach for systems written in C++.

This approach envisions three operation modes being them manual, semi-automated and fully

automated pattern recovery. Manual recovery operation allows developers to express their pat-

terns instances or pattern variants by grouping design elements such as classes, attributes, meth-

ods, among others. The automatic recovery mode extracts pattern instances through queries to

the source code models. Initially, they generated a repository to store design pattern’s template

descriptions which has, for each pattern instance variant, a query that is used to search the source

code models for that pattern’ structure. Therefore, each pattern instance variant has to be firstly

stored in the repository before being able to be detected by the tool. Unfortunately, the semi-

automated mode, whose goal is to mix both modes, hasn’t yet been implemented. Nevertheless,

the authors have envision it as a multi-phase recovery process, where during the first phase the

general core of pattern descriptions is automatically detected and, during the subsequent phases

these instances are matched against more specific implementation details, which may be provided

manually by the developer.

The environment also provides interactive visual representations of the source code models as

can be seen in Figure 3.10.

Figure 3.10: SPOOL’s user interface with detected design patterns (window 5) and pattern instance
documentation (window 6) as presented by Keller et al. [29]

24 State of the Art

MAISA [34] is a dedicated metric tool intended to analyze the quality of system’ software

architecture. Apart from providing metric results, it is able to identify and display the pattern

instances used in the system (Figure 3.11). The pattern detection is achieved by solving a con-

straint satisfaction problem, where sets of variables representing roles, methods, constrains and

other structural pattern details, are used. These variables are stored in a library of patterns. Pattern

variants can be detected by relaxing or even removing some constraints.

The system source code is converted into UML descriptions, in Prolog and FAMIX files, which

are the actual input of the tool. Since the MAISA tool doesn’t perform this last step, the creators of

the tool have extended the MetaEdit CASE tool [45] in order to achieve that type of input format.

A complete overview of the tool is shown by Figure 3.12.

Ferenc et al. [21] have developed an exporter plug-in for Columbus [20], which transforms

the Abstract Semantic Graph (ASG) into Prolog facts, the input format of MAISA tool. Since the

Columbus’ ASG is generated from C/C++ systems, this allows detecting C/C++ design patterns

with the MAISA tool.

Figure 3.11: Detected design patterns in the Maisa tool as presented by Nenonen et al. [35]

FUJABA (From UML to Java And Back Again) [36] is a tool suite, developed by the Uni-

versity of Paderborn, that supports semi-automatic design pattern detection. It uses an incremental

algorithm that combines Abstract Syntax Graphs (ASG) parsing techniques with fuzzy logic. The

use of fuzzy set rules allows handling implementation variations of the same pattern, by providing

a degree of uncertainty associated to a certain fuzzy value.

The tool’s process overview can be seen in Figure 3.13. FUJABA starts by generating an ASG

from the system source code and loading the pattern description catalogue, which can be modified

3.2 Extracting patterns from code 25

Figure 3.12: Maisa tool’s architecture as presented by Nenonen et al. [35]

Figure 3.13: FUJABA tool’s process statechart as presented by Niere et al. [36]

by the developer. Then, the developer has to give order to start the recognition algorithm. This

algorithm applies a bottom-up-top-down searching approach to speed up the detection. How? Ev-

ery time a pattern instance is identified (or partially identified, sub-pattern) through the bottom-up

search, it annotates that knowledge on the graph and, switches to the top-down search, to finish

the rest of the search and confirm the existence of such a pattern. This methodology also helps

reducing the number of false positive detection. An instance is identified by applying transfor-

mation rules to the generated graph. Once the algorithm finishes, it displays the detected pattern

instances in UML format (Figure 3.14). Since it is an iterative tool, it takes advantage of the newly

created annotations on the graph to reduce the top-down graph search, on the following iterations.

At the end of each iteration, if the developer isn’t satisfied with the results, he can request the tool

for another iteration. This can be particularly useful when the algorithm is not detecting the pat-

terns or is providing too many false positives, allowing the developer to vary the fuzzy set values

accordingly, and redo the search with the new fuzzy rules.

26 State of the Art

Figure 3.14: Example of FUJABA results view as presented by Niere et al. [36]

PAT [38] is an automatic design pattern recovery tool for C++ software systems. It requires

two inputs: 1) a library with the pattern UML diagrams and 2) the system source code. Through

a structural analysis on the source code, the tool converts it into PROLOG facts. Simultaneously,

the pattern diagrams are transformed into PROLOG rules (Figure 3.15). The pattern instances are,

therefore, identified through queries on the PROLOG engine. Once the tool finishes, it provides a

textual output with the detected patterns.

Figure 3.15: Diagram of the design pattern "Composite" and its generated PROLOG rules as
presented by Prechelt et al. [38]

Unfortunately, since only the class header files are examined, behavioral data is not available,

3.2 Extracting patterns from code 27

making it only useful to detect structural design patterns. Moreover, false positives have to be

manually removed by the developer.

MARPLE (Metrics and Architecture Reconstruction PLug-in for Eclipse) [2] was de-

signed as a software architecture reconstruction tool that also provides design pattern detection

functionalities. Unlike other tools, MARPLE requires knowing which pattern should it be search-

ing for.

The tool starts by extracting elemental design patterns or micro patterns and collecting metric

details, from the source code AST. This data is stored in XML files, which are transferred along

each tool phase. During the second phase, instead of dealing directly with the results from the

AST, it generates an Attributed Relational Graph (ARG) from it, where vertexes correspond to

the classes, interfaces and other types and, the edges are the basic elements that connect those

types to each other. Through a graph matching algorithm, potential design pattern candidates are

recovered. These candidates are submitted to a machine learning approach, composed by neural

networks and WEKA data mining algorithms, in order to classify their degree of similarity with

the design pattern to be detected. This phase also helps eliminating false positives. Finally, on a

view provided by the tool, the design pattern diagrams are presented to the user.

They claim to detect any kind of old and new partners. However, it requires a lot of test data

to train the machine learning algorithm.

SPQR (System for Pattern Query and Recognition) [44] is a fully automated tool for detect-

ing elemental design patterns in C++ systems. They use elemental design patterns (EDP) because

being smaller makes them easier to identify. These EDP are used to define the GoF design patterns.

Additionally, it makes the tool language independent since the design patterns are represented by

these abstractions (EDP).

Figure 3.16: SPQR Outline as presented by Smith et al. [44]

The system’s abstract syntax tree is generated with the help of the gcc compiler, which is sub-

sequently parsed in order to build a XML description of the object structure features. This output

28 State of the Art

is used to create the system’s feature-rule input file for the logical inference engine, based on Rho-

calculus, OTTER. The engine uses reliance operators to combine the feature-rules, forming the

design patterns, and the Rho-calculus to encode the relationships between classes. Finally, OT-

TER proofs are analyzed in order to generate a XML file with the identified pattern descriptions.

Figures 3.16 and 3.17 represent the tool’s architecture and an example of output, respectively.

Figure 3.17: Example of the SPQR tool’s output as presented by Smith et al. [44]

CrocoPat [5] is an automatic tool, developed by the Technical University of Cottbus, to detect

design patterns in Java systems. It uses an analysis tool named Sotograph to represent the system

source code in terms of relations, which are stored in a file. In addition, design patterns definitions,

which are represented using relational algebra expressions, are created using pattern specification

language and, used as the tool’s second input. Then, it transforms the relations, in the relation

file, into binary decision diagrams (BDD), applies all the expressions on the pattern definitions file

and, proceeds to a sub-graph search in order to obtain the pattern instances. Note that, the tool

uses BDD because they help improving performance, which is the authors main motivation.

3.2.2 Dynamic Analysis

PTIDEJ (Pattern Trace Identification, Detection and Enhancement in Java) [24] is a complete

reverse engineering tool for Java, C++ and AOL software systems. Developed by the University

of Montreal, they formulate the detection of design patterns as a constraint satisfaction problem,

more specifically, explanation-based constraint. Instead of dealing directly with design patterns,

they extract micro patterns (patters at a lower level of abstraction), which are then used to define

the design patterns.

Initially, the source code is parsed into PADL (Pattern and Abstract level Description Lan-

guage) meta-model to describe the structure of the system parts in pattern definitions. In parallel,

the source code is also compiled and injected into Caffeine, a dynamic analyser for Java, which

is used to identify class inter-relationships while the system is running. By combining this output

with the system model, they retrieve an enhanced program model, which is then used to identify

the design patterns. For this last step, they use their explanation constraint solver that tries to find

pattern instances by matching design pattern definitions and, if they do not match, constraints get

relaxed in order to find variants of those patterns. This process is shown by Figure 3.18.

3.2 Extracting patterns from code 29

Figure 3.18: Use of the Ptidej tool suite as presented by Gueheneuc et al. [24]

Regarding visualization, the tool provides a user interface that displays the system model and

the identified design patterns (Figure 3.19). The tool suite has a library containing design pattern

models for this exact functionality.

Figure 3.19: Part of Ptidej interface as presented by Gueheneuc et al. [24]

30 State of the Art

ePAD (eclipse plug-in for design Pattern Analysis and Detection) [14] detects design pat-

tern instances from Java source code by performing static and dynamic analysis, being the last one

used to validate the detected pattern instances (Figure 3.20). This is achieved by exploring their

run-time behaviour.

Figure 3.20: The recovery process of ePAD as presented by De Lucia et al. [14]

The tool extracts the source code structural information in order to build the class diagram’s

UML model. Through comparison between design pattern UML models, stored in a previously

created library, and the generate source code UML model, they identify the pattern instances.

Since this leads to a coarse-grained solution, the tool subsequently filters the false positives can-

didates by verifying their classes declarations and invocation methods. These candidates are an-

alyzed during program execution to make sure that they are behaving according to that specific

design pattern behaviour. The inputs for this phase are the set of candidates, the design patterns

behaviour descriptions and, a list of test cases for monitoring and guiding the program execution.

Recovered design patterns are displayed as UML models, in an appropriate view (Figure 3.21).

Unfortunately, the tool does not provide a way to execute all the steps, in their respective order,

automatically, forcing the user to manually select each and every step.

The same authors have added EVOsuite to ePAD [16] in order to refine the initial set of test

cases according to the detected candidate’ instances, avoiding having to run unnecessary tests.

3.2 Extracting patterns from code 31

Figure 3.21: Visualization of a detected design pattern as presented by De Lucia et al. [14]

Li et al. [32] presented an approach to retrieve pattern instance behavioral data by analyzing

its UML sequence diagram. The tool starts by parsing a C++ system source code into an Abstract

Syntax Graph (ASG) with the help of an open compiler tool, OpenC++. Their static analysis

algorithm retrieves pattern instances candidates (classes and sub classes), which are mapped to

their suspected pattern through a name binding process. Binding accuracy is increased by taking

into account the method body analysis as well as a naming convention.

When the system is running, they collect run-time data by tracing pattern instances classes

behaviour in a XML file. This file is used to recreate a UML sequence diagram, which is compared

to the sequence diagram of the mapped suspected pattern. Lothar Wendehals [52], also compares

sequence diagrams to remove false positives.

DPVK (Design Pattern Verification toolKit) [51] is a semi-automatic tool for detecting pat-

tern instances in Eiffel systems. They use a repository with two definitions for each design pattern,

one based on their static structure and the other on their dynamic behaviour. Thus, the system’s

design patterns are found by comparing its static and dynamic fact files with those definitions.

Their approach has four stages: 1) Static fact extraction, 2) Candidate instance discovery, 3)

False positive elimination and 4) Manual evaluation. Ignoring the last stage makes the tool fully

automatic. The tool starts by generating the classes file descriptions, with the help of the Eiffel

compiler, which are used to retrieve static information (relationships between classes). Then, with

that data, they are able to extract the pattern instance candidates.

The third stage requires running the actual program. During this stage, calls to the classes that

represent the pattern candidates are observed and their dynamic behaviour is collected to form the

dynamic facts. These facts are used to compare with the respective pattern behaviour description

32 State of the Art

in order to remove false positives. An example of a final output is shown in Figure 3.22. The final

step is a manual validation by developers.

Figure 3.22: Example of detected design patterns by DPVK tool as presented by Wang et al. [51]

Lee et al. [31] developed a design pattern detection technique based on their taxonomy: 1)

Static Structural Pattern such as Bridge or Composite, 2) Dynamic Behavioral Pattern such as

Decorator or Observer and 3) Implementation-Specific Pattern such as Singleton or Iterator. The

taxonomy used for the GoF patterns is represented in Figure 3.23.

Figure 3.23: Pattern Taxonomy for Reverse Engineering as presented by Lee et al. [31]

Initially, they start by representing the system’s source code as an AST or ASG. Then, the

high-level parts of the code are analyzed with a static algorithm, for each pattern, to identify

pattern instance candidates. These candidates are retrieved by successfully matching the pattern

definitions, on their pattern catalogue, with the high-level code parts. If the pattern candidates

belong to the Dynamic taxonomy class, their method call tracing have to be monitored, while

the program is running. During this step, candidate’s methods are checked against their suspected

pattern behaviour rules, being discarded those who do not. Finally, they use information of specific

keywords and coding styles, of each pattern, to identify implementation-specific patterns.

3.2 Extracting patterns from code 33

3.2.3 Discussion

The design pattern extraction tools were categorized according to the level of automation, the tar-

get’s system language, how they display the detected patterns, if they are restricted to an Integrated

Development Environment (IDE) and their liveness level. Just to clarify, by automation level we

refer to how independent, from developer’s interaction, they are, which can range from manual to

automatic. Table 3.3 provides an overview of the 33 analyzed tools.

Table 3.3: Overview of the approaches/tools for extracting design patterns from the source code

Technique Tool Authors
Level of
Automation

Target Language Visualization IDE Restricted

Static SPOOL Keller et al. [29] Automatic C++ UML No
SPQR Smith et al. [44] Automatic C++ XML No
Columbus Ferenc et al. [20] Automatic C++ N/a2 No
PAT Prechelt et al. [38] Automatic C++ Text No
HEDGEHOG Blewitt et al. [6] Automatic Java Text No
DP-CORE Diamantopoulos et al. [17] Automatic Java Text No
PINOT Shi et al. [43] Automatic Java Text No
N/a Rasool et al. [39] Automatic Java, C# Text, UML No
CrocoPat Beyer et al. [5] Automatic Java N/a No
N/a Chihada et al. [7] Automatic N/a N/a No
DPF Bernardi et al. [4] Automatic N/a N/a Eclipse
FUJABA Niere et al. [36] Semi-automatic Java UML N/a
DeMIMA Guéhéneuc et al. [25] Semi-automatic Java, C++ Text, UML No
N/a Tsantalis et al. [50] Semi-automatic Java Text No
WoP Dietrich et al. [18] N/a Java XML Eclipse
N/a De Lucia et al. [12] N/a Java HTML No
D^3 Stencel et al. [46] N/a Java N/a No
N/a Rasool et al. [40] N/a Any EA sup. lang. N/a Visual Studio.NET
N/a Ferenc et al. [21] N/a C++ UML, Text No
MAISA Nenonen et al. [34] N/a Prolog UML, Text No
MARPLE Fontana et al. [2] N/a Independent UML Eclipse
N/a Mayvan et al. [3] N/a Independent UML Eclipse

Dynamic ePAD De Lucia et al. [14] Manual Java UML Eclipse
ePADevo De Lucia et al. [16] Manual Java UML Eclipse
N/a De Lucia et al. [13] Automatic Java UML Eclipse
N/a De Lucia et al. [15] Automatic Java N/a N/a
DPAD Zhang et al. [53] Automatic Java Text Eclipse
N/a Heuzeroth et al. [28] Automatic Java N/a No
N/a Wendehals [52] Semi-automatic Independent N/a No
DPVK Wang et al. [51] Semi-automatic Eiffel Text Eclipse
PTIDEJ Guéhéneuc [24] N/a AOL, Java, C++ UML No
N/a Li et al. [32] N/a C++ UML No
N/a Lee et al. [31] N/a Java N/a N/a

Through the analysis of the previous table, it is possible to see that two thirds of the tools use

a static analysis strategy. In other words, most of the tools do not need to run the target systems to

detect design patterns. Nevertheless, there are some patterns that they can’t differentiate, since they

focus only on the static structure of the classes, ignoring their run-time behaviour. An example of

this, is how most of these tools can not differentiate the State from the Strategy patterns, which are

structurally identical. Still, there are a few number of tools that by searching for specific methods,

required during data flow analysis, manage to represent these methods as control flow graphs and

determine their behaviour, such as PINOT [43].

2Not available.

34 State of the Art

Regarding their automation level, we can not draw many conclusions due to the large amount

of not-available (N/a) results. There are quite a few tools that require constant user interaction,

throughout the detection process like ePAD [14, 16] or FUJABA [36], and several that are com-

pletely autonomous such as PAT, DPAD, Columbus [38, 53, 21]. Note that, by completely au-

tonomous we mean maximum one click, which is the execution of the tool on a given source

code.

The majority of these tools were designed to identify design patterns in C++ or Java. The

reason why this occurs might be because the design patterns they are trying to detect are the ones

specified by the Gang of Four (GoF), who wrote the design patterns book in a C++ context [23].

Moreover, several of these design patterns described in GoF are not useful or are defined in a

significantly different way, when outside of this context.

In terms of visualization, detected design patterns are displayed in several formats, being them

textual (plain or structured), Hypertext Markup Language (HTML), Extensible Markup Language

(XML) or even in a graphical representation format like UML. One thing we have noticed is that,

most of the Eclipse plugins use UML representation, which might be explained by its ability to

display design patterns in that format. Moreover, the tools that provide a graphic user interface

like SPOOL, MAISA, FUJABA [29, 34, 36], among others, also use UML representation for the

detected patterns. As we have seen in Section 3.1.2, the ability to visualize design patterns in a

graphical way can ease the comprehension of the software, which might be the reason why these

approaches tend to use this type of representation. Textual representations were mostly associated

to command-line like tools [17, 43].

Regarding IDEs, we have often encountered Eclipse. However, the amount of tools that are

not restricted on any IDE is higher. Also, there are some tools that can be used in different ways.

For example, PTIDEJ [24] can be imported as a library for a Java, C++ or AOL project or used as

a plugin for the Eclipse.

Considering that feedback is only provided through a direct request by the user, these tools

belong to the second liveness level. In fact, design patterns are only displayed after we execute the

tools on a certain software system.

Finally, we would like to point out one interesting feature that is not directly contemplated in

the above Table 3.3. Not all tools search the software systems for each and every design pattern

they may find. As a matter of fact, there are some tools, such as PAT or DP-CORE [38, 17], which

allow checking the source code for a specific design pattern. This could be interesting if, after

the developer specified the design pattern he was implementing, the tool could constantly check if

that design pattern was found. For this purpose, the pattern detection tool would be running in the

background. A negative result by the tool could be used to inform the developer that the design

pattern was not correctly implemented.

Chapter 4

Problem Statement

In this chapter we start by describing, with more detail, the problem that exists within the current

solutions related to documentation with design patterns to promote consistency between code and

its documentation. Then, we introduce the thesis hypothesis and its research questions. Finally,

we will analyze our validation methodology.

4.1 Scope

Design patterns are commonly defined as reusable solutions to recurrent design problems. They

help designing complex object-oriented software systems, by capturing design experience from

their original designers and, by providing a common vocabulary that facilitates interaction with

other designers.

Software systems are often designed by different software development teams, composed by

people with different cultures and skills, where knowledge is not evenly distributed among the

team members. Good communication is important to make sure everyone understands what the

developed software does and how to manipulate it. New developers may join the team and, in

order to maximize the team productivity, the effort these newcomers have to apply, to quickly

absorb everything that has be done, should be minimum. This highlights the need to adequately

document software.

A good way to document software is by describing the design pattern instances that compose

it. According to Odenthal and Quibeldey-Cirkel [37], a good practice when documenting a pattern

instance is to give a quick visual reference (overview) of the design context, enhance the reason

why it was instantiated, describe the design context in more detail, outline its role, illustrate the

possible interactions between it and the client, provide the benefits and consequences of using it

and, finally, identify special features of its implementation by referencing the source code. This

makes understanding each pattern instance and its reuse a trivial task.

35

36 Problem Statement

However, this does not solve everything. Since software is constantly evolving, regular doc-

umentation updates are required to keep it consistent since existing instances might be affected,

by this evolution, and should be updated accordingly. Not performing this task while changes in

the software keep being introduced, may lead to inconsistencies between the software and its doc-

umentation. By inconsistencies we mean conflicting ideas in related artifacts. In fact, during the

process of software development, the developers are constantly switching between the program-

ming and the documentation phase. These phases are firmly related to each other, since the output

of one phase serves as input to the other, creating a mutual feedback loop. Considering that the

act of programming and documenting are firmly different, usually even involve different types of

artifacts, the loop enforces a constant swap of context. As a result, there are several negative con-

sequences that may occur, including the loss of important knowledge and the constant postponing

of one of those two phases, usually the documenting one, in order to remain longer within the

same context. Once again, these problems lead to inconsistencies among the artifacts and, make

the learning and reuse process of the software, a hard and troublesome task.

Throughout the previous chapter, we have explored several solutions that are intended to fa-

cilitate documentation with design patterns. However, none of the solutions found encompass

all the aspects mentioned in Section 3.1.4, which we consider important to tackle this problem.

Some do not maintain close proximity between code and documentation, others do not update the

documentation after changes in the code are introduced and, all present a very low liveness level.

4.2 Hypothesis

This thesis is based on the following hypothesis:

"By increasing the level of liveness of documentation based on pattern instances, we will

streamline the process of switching between creating and using documentation, promoting updated

and consistent documentation, and improving the overall understanding of the system’s design."

Since this hypothesis has some terms that can be ambiguous, we will try to clarify them:

Liveness - The feedback provided to the developer while the software system is being de-

signed or executed (Section 2.4).

Documentation - As Correia stated "Any form of captured information about [a] system

that may help its developers and users understand it." [9]. We are particularly interested in

documentation based on pattern instances.

Consistency - When two pieces of related information do not express contradictory ideas.

4.3 Research Questions 37

4.3 Research Questions

We aim to tackle this problem by reducing the feedback loop between programming and docu-

menting. Given that, this thesis addresses the following research questions:

RQ1 "Can we reduce the inconsistencies between code and documentation?" We aim to

evaluate how liveness can help reducing conflicting ideas in related artifacts, while develop-

ing and maintaining the software system.

RQ2 "Can we improve the comprehension of the software’s design?" We aim to evaluate

how liveness can help converging faster to the solution.

RQ3 "Can documentation be kept updated more easily?" We aim to evaluate how liveness

can help to reduce the effort (and, therefore, time) required to keep documentation up to

date.

4.4 Methodology

With this work we aim to improve the understanding of software, in terms of its design patterns, by

reducing the feedback loop between the programming and documenting phases. For that reason,

we start with a state of the art review in order to understand the problems that exist with the act

of documenting the pattern instances found in software systems. During this review, we compare

the different approaches and highlight their major problems, since these would help us decide

which problems we would like to solve. From this analysis, an hypothesis is created, which

helps designing an approach to tackle those problems. Since our approach is mostly focused on

providing benefits to the user and not to the actual program itself, even though it does indirectly,

we carry out a controlled experiment with user to validate it.

In this study, the participants are master students in Informatics and Computing engineering,

who are familiar with design patterns. The exposure of these subjects to our approach is achieved

by creating a prototype, in the form of a plugin, that identifies pattern instances in the source

code and live-suggests them to the developer, automatic generation of accepted pattern instance

suggestions, and live editing and visualization of those pattern instances.

For the controlled user experiment, the test subjects are divided in two groups: 1) the control

group and 2) the experimental group with access to our tool. While both groups complete sev-

eral tasks, for which they needed to understand and evolve a software system, we evaluate some

metrics, such as task completion speed and number of accesses to external documentation. These

metrics and the qualitative data, collected via a Google form during the experiment, help answer-

ing the research questions selected for this work and support the discussion of the validity of the

hypothesis.

38 Problem Statement

Chapter 5

Approach and Design of the
Design-Pattern-Doc Plugin

As we have previously covered, the goal of this thesis is to streamline the creation and documen-

tation of software, making it easier to switch between these two software development phases.

Nevertheless, there are a few concerns that must be dealt with to achieve this goal, such as how

to maintain consistency between code and documentation, how to present the pattern instances to

the developer and how to support the identification of design patterns in the source code.

Our approach uses liveness to tackle these problems. We believe that by increasing the amount

of feedback about the pattern instances represented in the source code, anytime a pattern partici-

pant reference is being inspected, while the developers are editing the source code, we will achieve

a higher degree of liveness. This will not only allow close proximity between the artifacts, it will

make some of the tasks, like editing/creating documentation or comprehending the design of the

software systems, easier to perform. Ultimately, since the increase in the liveness level makes it

easier to maintain and consume documentation, it should also reduce inconsistencies between the

artifacts.

During the rest of the chapter, we will explore the principles used as guidelines for the de-

sign of the approach, the prototype’s implementation/architecture and the features that cover that

architecture.

5.1 Approach

The goal of this thesis is to address the challenge of understanding software in terms of its design

patterns, by reducing the mutual feedback loop between programming and documenting, easing

the transition between these phases. By doing this, we will also ease the creation, consistency
maintenance and use of pattern-based software documentation. We believe that, the most likely

outcome, will be an increase in the liveness level and a design based on some documentation

good practices, such as information proximity, co-evolution, domain-structured information and

integrated environment. In other words, by maintaining close proximity between the code and its

39

40 Approach and Design of the Design-Pattern-Doc Plugin

documentation and, by constantly providing visual awareness of the pattern instance descriptions

and the program state to the developer (like displaying missing pattern participants for that specific

pattern instance).

For the design of our approach, we followed some of the good practices mentioned in Chap-

ter 2. These good practices form the list of principles in which our solution is based on:

1. Information Proximity - Using links and transclusion to ease the access to the pattern

instances documentation, directly from the source code.

2. Co-Evolution - Updating all the related artifacts, every time a change is introduced. For

example, after renaming a class that plays a role in a pattern instance, the documentation for

that pattern instance must be updated. This also helps avoiding obsolete documentation.

3. Domain-Structured Information - Structuring the pattern instances according to a data

model, capable of representing them in a rich format, instead of using plain text to represent

them.

4. Integrated Environments - Maintaining all the related artifacts (eg. source code and its

documentation) under the same environment, reducing the need to constantly switch con-

text, when alternating between the software development phases.

5. Liveness - Increasing the liveness level to provide almost instantaneous awareness of the

program’s state. Instantaneous access to pattern instances documentation when editing the

source code, alerting the developer when the documentation is incomplete, easier awareness

of the effects of editing the documentation are some of its benefits.

With this approach we expect to decrease the response time of developers when the code and

documentation of its patterns diverges or is not complete, mitigating these inconsistencies and

reducing the overall required time to develop and document the system.

A prototype for our approach was developed, in the form of a plugin for an Integrated Devel-

opment Environment such as Visual Studio Code or IntelliJ IDEA, able to analyze source code,

live-suggest and generate corresponding pattern-based documentation for that specific pattern in-

stance, and display inconsistencies.

5.2 Prototype

Based on the principles presented in the previous section, we have created some more concrete

desideratum for the design of the prototype. They are the following:

1. Identifying pattern instances in the source code. At least liveness level three should be

achieved here. For example, running a detection tool, few seconds after the developer stops

typing.

5.2 Prototype 41

2. Suggest detected pattern instances to the developer. The developer should be able to decide

whether to accept or reject those suggestions. This is important since we do not want to be

too intrusive. The liveness level here should be level four. If there are any pattern instance

suggestions, they should be instantaneously displayed to the user.

3. Create and display documentation in the IDE. This should reduce the context switching be-

tween software creation and documentation, since both artifacts will be created and viewed

on the same environment. Here, the visualization of documentation should correspond to,

at least, a liveness level three. Nevertheless, we aim for level four.

This desiderata was used as aid to the design of the prototype’s architecture, which will be

explored next.

5.2.1 Architecture

Our prototype’s conceptual overall architecture is depicted by Figure 5.1. Achieving our solution’s

guidelines can be done by linking the five design components and the two data storage represented

in the figure.

Figure 5.1: Prototype’s conceptual overall architecture

Let’s discuss these components’ main responsibilities. There are two types of data storage: 1)

the Accepted Pattern Instances Storage and 2) the Detected Pattern Instances Storage. The first

one is responsible for persisting the pattern instance’s documentation that were either manually

created or the outcome of accepting a pattern instance suggestion. The second one is responsible

for managing a collection of all the pattern instances detected by the selected tool (view the first

desideratum in Section 5.2). The latter is also used as input for the component described in the

second desideratum — the Pattern Instance Suggester. Note that, it would be possible to merge

the two data storage. Nevertheless, having them separated, does not only provide separation of

responsibilities, it also allows one type of data to be persisted (to the disk), while the other one

remains volatile. There is no need to persist the pattern instances detected by the detection com-

ponent if it will be scanning the source code every few seconds. Since there will be multiple

42 Approach and Design of the Design-Pattern-Doc Plugin

read/write requests to the Accepted Pattern Instances Storage, from several different components,

we have defined an interface, that implements concurrency, to interact with it — the DB Manager.

This component is the only entry to the persisted documentation.

Shifting the focus to the other four components, the Pattern Instance Detector component runs

in the background, every few seconds or a couple of seconds after the developer stops modifying

the source code. As we have explained before, its output is stored in volatile memory. The selected

detection algorithm/tool was designed to be easily replaced, as long as the output matches the same

format — Factory Design Pattern. For our prototype, we used one of the tools explored during the

literature review. This will be discussed in the following section.

Related to the pattern instance detector component, the Pattern Instance Suggester component

informs the developer every time a pattern instance is detected. The feedback provided by it

is instantaneous and the least intrusive as possible. Moreover, it doesn’t modify the persisted

documentation without a direct command, given by the developer. For that reason, there is the

possibility to ignore the suggestions. On the other hand, accepting the suggestion, automatically

generates the pattern instance documentation for that detected design pattern.

Regarding the last desideratum, we may find the Pattern Instance Viewer and the Pattern In-

stance Editor. Recall that the goal of this thesis is to reduce the feedback loop between program-

ming and documenting. This means that the documentation should be kept with close proximity to

the source code, avoiding too many changes in the context when consuming it. Given this, we have

designed a component responsible for providing the persisted documentation, in the IDE, where

the source code is being edited. By inspecting the class references from the pattern participants of

the persisted documentation, we allow the developer to view the pattern instances where they play

at least one role. This is the role of the Pattern Instance Viewer. Additionally, the representation

of these pattern instances was decided based on the literature review, presented in Chapter 3. We

will focus this design detail in the following section.

Directly dependent of the Pattern Instance Viewer, the Pattern Instance Editor component

does not only allow the editing of a persisted pattern instance or the manual creation of the docu-

mentation for one, it does it in a lively manner. The developer is able to (almost instantaneously)

see the changes in the pattern instances when editing them. This is the reason why it is dependent

on the Pattern Instance Viewer component. Pattern instances edited or created by it are persisted

via the DB Manager component.

Finally, since we want all these components to co-exist on the same context, they should all

belong to the same environment. Given that nowadays, source code is largely created in IDE’s, and

we want the documentation to be created and consumed in the same environment, our approach

implements all these components in an IDE.

5.2.2 Design decisions

As we concluded from the Chapter 3, most of the design pattern detection approaches found, were

designed to deal with Java systems. Additionally, a large part of these approaches were theoretical

or their implementation wasn’t public. This conclusion came from the fact that those papers do

5.2 Prototype 43

not reference the tool, nor were we able to find them by searching on the internet. We also filtered

out the tools that were made for a specific IDE since reusing these wouldn’t be an easy task.

Another important decision that had to be done, was regarding the type of source code analysis

technique, used by the detection tool. We decided to go for a static analysis tool. The reason for

this was that, since these tools do not require to run the code being developed, they grant less

computational effort for providing live feedback. Certainly there are some drawbacks, as we have

previously discussed in Section 3.2.3, but their overall performance is very satisfactory.

We tried a couple of the tools from the remaining set, which provided public access to their

source code. Unfortunately, we only managed to successfully run one of them — the DP-CORE

tool. This tool does not support the detection of many design patterns but, for the sake of this

thesis, its performance was good enough to test our hypothesis. Moreover, having access to its

source code, allows extending the number of supported design patterns. This tool will play the

Pattern Instance Detector component role in our architecture.

Also, given that we chose Java as our target system language, we chose Intellij IDE for the

plugin environment.

Regarding the pattern instance visualization, we have seen in Section 3.1 that there are two

different approaches: 1) text based and 2) graphical representation. Since pattern instances are

usually represented by UML diagrams, the second one would be the most appropriate approach.

However, we have seen that most of the graphical approaches require external documentation to

display the UML diagrams. Nevertheless, after exploring some of the existing tools for Intellij,

we found Plantuml. This tool allows visual representation of UML diagrams directly in the IDE

environment. Given that it covers the mentioned disadvantage of using graphical representations,

we have decided to append this library as a dependency for the Pattern Instance Viewer component,

in our approach.

Finally, by combining all these design decisions, we turn our prototype’s conceptual architec-

ture into a concrete architecture. This is represented by Figure 5.2.

Figure 5.2: Prototype’s overall architecture

44 Approach and Design of the Design-Pattern-Doc Plugin

5.2.3 Domain Model

Our prototype resides on the domain model represented in Figure 5.3 to describe its sphere of

knowledge. The main concept of our approach is the documentation of the pattern instances

that compose the software systems. Apart from a field where the intention of the developer for

instantiating a design pattern should be stored, each pattern instance is composed by one or more

pattern participants. These pattern participants are the objects that play at least one role of the

design pattern associated to that specific pattern instance.

Figure 5.3: Class diagram of the Domain Model

5.3 Source Code Repository

The prototype was published to Intellij’s marketplace with the MIT License. Currently, it is still

pending JetBrains approval. Nevertheless, the source code can be accessed via the author’s Github

public repository 1.

5.4 Plugin Features

Throughout this section, we will introduce the main features of our tool. It is composed by ten

major services who run in separate threads.

5.4.1 Pattern Instance Detector

The pattern instance detection service uses DP-CORE as a library to scan the project folder, for

the design patterns supported by it. This service is executed periodically and, in each execution,

exports a set with all the design patterns (name, roles, participants) found. The output may be an

empty set. The contents of this set are used to suggest pattern instance documentation to the user.

1https://github.com/FilipeFLemos/Design-Pattern-Doc

5.4 Plugin Features 45

5.4.2 Accepted Pattern Instances Storage

Intellij supports an application service for persisting the plugin state. In our case, we use it to

store a map with all the pattern instances documented. Accepted suggestions or manual creation

of pattern instances are persisted into this map.

Another data structure that is stored here is a set with all the supported design patterns. Each set

element contains a design pattern model composed by a name, a set of roles and a list representing

how the roles relate with each other.

The class PluginState is responsible for saving and loading the plugin state data from a xml

file.

5.4.3 Inspections

Our plugin contains three different types of code inspections. One is responsible for highlighting

the objects that we believe to play a role in a pattern instance. The second one is responsible

for updating the persisted pattern instances data after renaming an object. The third and last one

is responsible for alerting the user when the source code is incomplete/inconsistent regarding its

documentation (eg. missing some role).

Pattern Instance Suggester Information regarding pattern participants, collected by the design

pattern detection service, is used to highlight those objects on the source code. If an object plays a

role in a design pattern that hasn’t yet been documented, a yellow light bulb (quick fix suggestion)

will appear next to it, indicating a pattern instance suggestion. Figure 5.4 illustrates this highlight-

ing mechanism. It provides two types of quick fixes: 1) accept the documentation suggestion or 2)

ignore it. By accepting the suggestion, the pattern instance is automatically persisted to the local

storage, making it accessible by the visualization features (which will be discussed later on). By

ignoring it, the object stops being highlighted by the tool.

Figure 5.4: Example of a pattern instance suggestion

46 Approach and Design of the Design-Pattern-Doc Plugin

Renaming Inspection The renaming code inspection is self explanatory. Instead of turning the

documentation obsolete after renaming a certain object, it makes sure the documentation is kept

updated. This code inspection supports the undo operation after renaming an object.

Incomplete Documentation Inspection The incomplete documentation inspection highlights

all the pattern participants from a pattern instance, where at least one role is not played by any

object. Figure 5.5 illustrates this situation. This helps the user spotting which objects should be

created to complete the design pattern. If the missing pattern participants were already imple-

mented, it warns the developer that the documentation hasn’t been updated yet. This highlighting

provides two types of quick fix: 1) Edit the documentation or 2) Delete the pattern instance.

Choosing the first option opens the live pattern instance editor for that specific instance.

Figure 5.5: Example of an incomplete documentation warning

5.4.4 Manual Pattern Instance Documentation

As we have explained before, pattern instances can be persisted by accepting the tool’s pattern

instance suggestion. However, manual documentation of a pattern instance is also possible. By

right clicking on a class name, the developer will be presented with that option (view Figure 5.6

for more details). This will automatically place that class as one of the pattern participants of

a default design pattern. At the same time, the pattern instance live editor will display the new

pattern instance for further editing.

Figure 5.6: Example of manual documentation

5.4 Plugin Features 47

5.4.5 Pattern Instance Live Editor

Persisted pattern instances can be edited via the pattern instance live editor, located on the right

side of the Intellij’s file editor. The content on this window is displayed if the mouse’s cursor is

on top of a class, that plays a role in at least one persisted pattern instance. Changing the cursor’s

position among the different class names, contained in each file, updates the window’s content,

accordingly.

Figure 5.7: Example of the live pattern instance editor

This editor uses the plantuml tool to display a live representation of the current pattern in-

stance. Any change to a pattern participant (name, role), will update the UML preview after a

small amount of seconds. Since large images have to be resized to fit the dialog, we provide a

"Zoom UML" button, which can be accessed to display the real sized UML in a new window.

Figure 5.8: Example of a real sized UML

48 Approach and Design of the Design-Pattern-Doc Plugin

5.4.6 Design Patterns Definition

The plugin offers a couple of supported design patterns, which are the ones supported by the

detection tool. Nevertheless, it is also possible to define new design patterns. This feature can

be accessed by right clicking on the file’s editor. It is a two step dialog, where on the first screen

the developer must specify the pattern name and roles and, on the second screen, the relationship

between the specified roles.

Note that, these new design patterns will not be used by the detection tool. However, all the

other visualization techniques (pattern hints, documentation hover) and the incomplete documen-

tation feature, will still work accordingly.

5.4.7 Pattern Instance Viewer

Apart from the live pattern instance editor, there are a two features, whose purpose is merely visual,

that also provide details regarding persisted pattern instances. These details can be observed by

hovering on top of the pattern participants or by reading the pattern hint text in front of them.

Pattern Instance documentation When hovering on top of the class name of pattern partici-

pants, that have played at least one role in a persisted pattern instance, a window appears below

it. This window contains all the pattern instances played by that object in a UML representation

(also created by plantuml tool). Just like in the pattern instance live editor, the class which was

hovered, is highlighted in a different colour from the rest of the pattern participants.

In order to take full advantage of the UML class diagram (eg. inheritance links), Graphviz

should be installed in the client’s machine. To ease the readability of the diagrams, we decided to

use UML stereotypes to represent the pattern roles, played by the objects.

Figure 5.9: Example of documentation when hovering on top of a pattern participant

5.4 Plugin Features 49

Pattern hints Pattern hints are text extensions, which are appended in front of the lines, where

the class name of pattern participants are found. These extensions provide details on the roles

played by that object in each pattern instance. The style and colour were selected to mimic the

text extensions displayed by Intellij debugging mode.

Figure 5.10: Example of pattern hints

50 Approach and Design of the Design-Pattern-Doc Plugin

Chapter 6

Empirical Study

Throughout this chapter, we will describe the controlled experiment used to validate our approach,

introduced in the previous chapter, whose goal is to reduce the feedback loop between program-

ming and documenting. This controlled experiment consisted in the execution of a few program-

ming tasks by MSc informatics engineering students. It was designed with two different treatments

— the experimental treatment, where participants use the Intellij IDE with the solution’s prototype

detailed in Chapter 5, and the control treatment, where participants do not have access to the de-

veloped prototype. The data collected during the experiment was subject to a statistical analysis,

whose results were important to answer the research questions introduced in Chapter 4.

All the documents mentioned throughout this chapter are available in a GitHub repository1.

6.1 Goals

The goal of this experiment is to validate our approach regarding the three research questions

presented in Chapter 4. These research questions were answered with the help of some metrics, as

denoted below:

RQ1 "Can we reduce the inconsistencies between code and documentation?" — This re-

search question might be the hardest to answer since it is hard to measure it quantitatively.

Nevertheless, we investigated if 1) by reducing context switching, between writing code

and creating the documentation for it, and 2) spending less time documenting a software

system, we reduce the probability of the developer to postpone the documenting phase and,

consequently, avoid losing information between those two phases.

RQ2 "Can we improve the comprehension of the software’s design?" — We aim to inves-

tigate whether liveness would help improving the comprehension of the software’s design.

Exploring if the participants spend less time understanding and documenting a software

system, should help answering this research question.

1https://github.com/FilipeFLemos/Design-Pattern-DocUserStudy

51

52 Empirical Study

RQ3 "Can documentation be kept updated more easily?" — We want to find out if we can

reduce the effort (time) to keep documentation updated by increasing the level of liveness.

For this particular research question, analysing if the participants spend less time docu-
menting a software system should be enough to present some conclusions.

6.2 Design

Throughout this section, we will be introducing several aspects that helped designing a fine-tuned

experimental design. Questions such as "How were the participants recruited?", "What data source

was collected?", "How was data analysed?" and some others, should be answered during the fol-

lowing subsections.

Participants Participants were recruited via a dynamic e-mail to MSc students in FEUP, more

specifically, to MIEIC (2nd to 5th year) and MESW students. From the entire community of

students in FEUP, we decided to filter those that had background on Design Patterns, since it was

a requirement for performing the experiment.

After recruiting the participants, we randomly distributed them among the control and the

experimental group. However, to ensure that both groups had the same set of skills and that this

random attribution wouldn’t be the cause for statistical deviation in the results, we provided a

background assessment questionnaire, which was used to evaluate their skills.

Data Sources For the purpose of the experiment, we collected five difference sources of data:

1) the questionnaires answered before and after the tasks execution, 2) the source code that was

modified, 3) the produced pattern instances documentation (.png), 4) the tasks’ completion times,

and 5) the number of times that the participant switched context (between the Intellij and external

documentation).

Environment Due to the world’s pandemic circumstances, the experiment could not be ran in

one of the faculty’s laboratories. For that reason, and given that we required a controlled envi-

ronment, we have decided to perform the experiment through a remote computer control. Each

participant would have access to the Intellij IDE, with or without the developed plugin, depend-

ing on the treatment group. For some of the tasks, the plugin would already have some pattern

instances documentation pre-configured, where for the control group, a pdf with the same docu-

mentation was provided.

Procedure The participants were randomly assigned to two groups, corresponding to the two

different treatments —- the control group (CG) used a regular Intellij IDE, and the experimental

group (EG) used the Intellij IDE with the developed Design-Pattern-Doc Plugin. Additionally,

each participant had also access to a GoF design pattern cheat sheet, available during the entire

experiment. Throughout the rest of this chapter, this cheat sheet will be referred as the external

6.2 Design 53

documentation. The session took around 50 min for each group and was structured the following

way:

• Background Questionnaire (1 min) — Before starting the tasks, the participants were sub-

mitted to a small questionnaire, with the aim of determining how comfortable they were with

the tools, technologies and concepts, required for the experiment. This was used to confirm

that any statistical deviation in the results wasn’t cause by skill dissimilarities between the

two groups.

• Plugin Walkthrough - EG only (2 min) — The experimental group is also submitted to a

quick overview of the developed tool to make them slightly familiar with it. Each tool’s fea-

ture is presented with a screenshot and a small description. We didn’t want the time required

to learn the main plugin’s features to somehow affect the performance of the experimental

group, during their tasks. This was the main reason for providing the experimental group’

participants with a quick overview of the developed tool.

• Tasks (45 min) — Identifying the pattern instances presented in a software system (compre-

hension tasks), documenting a software system in terms of its pattern instances, completing

a system’s implementation by exploring the provided documentation and, finally, the com-

plete cycle — understanding, expanding and documenting a system, are the four tasks that

should be completed by each participant.

• Final Assessment (2 min) — The participants had to answer a couple of questions designed

to assess some effects that cannot be measured objectively by the environment, such as tool

features’ usefulness.

Data Collection The majority of the data was collected via a google form provided during the

experiment: task’s total duration, modified source code, produced pattern instance documentation

and the answers to the questionnaires. Regarding these questionnaires, we used Likert items with

the format: 1) strongly disagree, 2) disagree, 3) neutral, 4) agree and 5) strongly agree.

Some data was collected manually during the experiment by a spectator, who had access to

the screen sharing process. This spectator measured the time of each individual task (including

sub-tasks), using a stopwatch. Simultaneously, during the execution of each sub task, he counted

the number of context switches, in other words, every time a participant left the IDE to access

the external documentation (or the other way around). Specifically during EG treatments, he also

counted the times that a participant used the documentation features, such as viewing the gen-

erated pattern instances when hovering or via the live editor. Even though the participants were

asked to submit their answers every time they complete each sub task, we have also asked them to

"think aloud" to help predicting and comprehending the participants’ intentions, while perform-

ing their tasks. This helped the spectator to follow changes in context, like moving to the next

question or accessing the external documentation. Additionally, note that some tasks consisted in

providing UML class diagrams for representing the pattern instances. Since these diagrams were

54 Empirical Study

submitted as images, making the automatic validation of these diagrams too hard to even consider,

the spectator would also warn the participant, when they want to move to the next task, if the task

was not correct. This ensured that the total time spent during a task was the required to achieve

the solution, reducing quick yet wrong answers, that could affect the experiment results.

Data Analysis The data analysis was performed with the help of IBM SPSS Statistics software.

All the collected data — task’s duration, number of accesses to internal or external documentation,

questionnaire answers — where all aggregated in a single SAV file. Running the created syntax

SPS file with that data file, results in some descriptive statistics and test results for the t-tests and

Mann-Whitney U tests. Additionally, some box plots for the collected data are also generated.

Pilot Experiments The experimental design was validated after recurring to three pilots. In

each pilot we tested the procedure and tried to identify unsuspected issues in the developed tool,

experiment instructions or in the sort of data that we would like to collect. Given that these

pilots followed the same protocol and environment that would be used during the actual controlled

experiment, the early detection of problems and post solution, helped achieving a polished design.

6.3 Data Analysis

The focus of the statistical analysis resided on the quantitative data, collected during the experi-

mental sessions, such as tasks duration and number of times the developer switched between the

IDE and the external documentation (context switching). The majority of the conclusions came

from the use of significance tests, more specifically, Mann-Whitney U tests and standard T-Tests.

We tried to use T-Tests by default, but since it assumes normal distribution of the variables being

evaluated, we had to resort to Mann-Whitney U test for those variables that did not respect that

assumption.

Throughout this section, the used notation denotes CG and EG as the control and experimental

groups, u as the u-statistic of Mann-Whitney U tests, and t as the t-statistic of the T-Tests. Addi-

tionally, a 95% confidence level was used when interpreting the significance of all statistical test

results.

6.3.1 Background

The participants’ background was evaluated on the basis of their responses to a form, composed

by questions regarding how comfortable the participants were with the concepts and technologies

used in the experiment. This would ensure that the two groups were similar and that the possible

differences, in the performance of each group, would be a direct consequence of the tools provided

during the experiment.

Let us assume the following Hypothesis (H1): CG 6= EG. Then, we run an independent-samples

Mann-Whitney U test to compare the set of skills between the two groups. The results from this

test can be seen in Table 6.1.

6.3 Data Analysis 55

Table 6.1: Summary of the answers to the background questionnaire

CG EG MW-U

x̄ σ x̄ σ H1 u ρ

BG1 3.5 0.401 3.64 0.411 6= 49.5 0.714

BG2 3.7 0.335 3.64 0.364 6= 53.5 0.950

BG3 2.6 0.400 2.82 0.325 6= 50.5 0.743

BG4 2.7 0.423 2.82 0.325 6= 54.5 1

BG5 2.6 0.400 2.91 0.343 6= 47.5 0.656

As seen in Table 6.1, there was no significant difference between the scores of the control and

experimental groups (ρ > 0.05 for every question). This allows us to reject the hypothesis H1, in

other words, the existence of differences between the two groups.

6.3.2 Task’s Duration

We would like to investigate if the time spent, during the execution of the tasks, by the control

group was significantly greater than the time spent by the experimental group. This can be repre-

sented by the following hypothesis:

H2 : CG > EG (6.1)

We started by inspecting the total time spent by the participants, during the execution of the

programming tasks. The box plot presented in Figure 6.1 shows that the control group spent more

time than the experimental group. However, this analysis is not enough for the evaluation of the

metrics required to answer the research questions presented in Section 6.1. Our experiment was

designed to help evaluating those metrics, meaning that some tasks were more focused on the doc-

umenting act, while others were more focused on understanding the software systems provided.

For this reason, we wanted to confirm the Hypothesis H2 for every task.

Figure 6.1: Box plot of the total time spent by the participants, in the execution of the tasks

56 Empirical Study

After taking a good look at the task’s individual collected data, by observing the box plot pre-

sented in Figure 6.2, it is possible to see a clear difference on the task’s completion speed between

the two treatments, confirming our hypothesis. Nevertheless, we have decided to submit the data

to a few of statistical tests, in order to statistically confirm that, with our approach, developers do

actually spend less time understanding and documenting a software system.

Figure 6.2: Box plot of the task’s duration variable in both treatments

The time spent during tasks T11, T22 and T32 does not follow a normal distribution (See

Appendix A). Since normality is a requirement for applying t-tests, for these tasks we have opted

to perform MW-U tests. The test results can be seen in Table 6.2.

Table 6.2: Summary of the statistical tests’ results for the tasks duration variable. The Levene test
used to select the correct t-test values can be seen in Appendix B.

CG EG MW-U T-Test

x̄ σ x̄ σ H2 u ρ t ρ

T11 585.8 104.662 117.3 26.799 3 6 < 0.001 - -

T12 325.5 52.102 54.6 7.895 3 0 < 0.001 - -

T21 211.8 18.700 114.9 17.237 3 - - 3.816 < 0.001

T22 475.3 80.407 483.9 70.574 7 - - -0.081 0.468

T31 468.5 51.428 243.1 26.636 3 - - 4 < 0.001

T32 462.2 52.405 163.3 12.929 3 0 < 0.001 - -

According to these results, all tasks except T22 have confirmed the hypothesis H2 (since ρ <

0.05). On the other hand, task T22 rejected the hypothesis, meaning that for that specific task

the control group was not significantly slower than the experimental group, while solving this

task. This could come from the fact that it was a code completion task only, which couldn’t be

measured as expected since the plugin was not designed to support, directly, code completion

6.3 Data Analysis 57

tasks. Regarding this type of tasks, the only thing the plugin could do to provide assistance to the

developer, would be informing him of which pattern participants were missing to complete the

design pattern. For this reason, we ended up measuring something to which it wasn’t expected any

difference between the control and the experimental groups.

To sum up, we managed to conclude that for those tasks whose purpose was not only to

complete code, but also to understand which patterns instances were being implemented by the

system or, even the act of documenting the system using pattern instances, the time spent by the

control group was significantly greater than the time spent by the experimental group.

6.3.3 Context Switching

As presented in Section 6.1, one of the goals of this experiment was to analyze if by embedding

documentation in the IDE, we could reduce the context switching between programming and

documenting. We can evaluate this goal by comparing the access to external documentation by the

control group versus the experimental group. We believe that the context switching will be higher

in the control group. For that reason, let’s assume the following Hypothesis H3:

H3 : CG > EG (6.2)

We investigated this hypothesis by running an independent-samples Mann-Whitney U test.

The results from this test can be seen in Table 6.3.

Table 6.3: Summary of the MW-U statistic results for the context switching variable

CG EG MW-U

x̄ σ x̄ σ H3 u ρ

T11 4.6 0.792 0.45 0.207 3 1.5 < 0.001

T12 4.9 1.016 0.18 0.122 3 2 < 0.001

T21 3.3 0.367 1.09 0.251 3 6 < 0.001

T22 1.5 0.563 1.91 0.530 7 46.5 0.289

T31 4.3 0.895 0.91 0.285 3 11 < 0.001

T32 5.5 0.543 0 0 3 0 < 0.001

As seen in Table 6.3, the hypothesis was confirmed (ρ < 0.05) for every task except task T22.

Note that, during task T21 and T22, we provide an incomplete pattern instance documentation of

the source code and ask the participants to find which pattern participants are missing (T21) and

to complete the implementation (T22). During T21, the participants discover the design pattern

that is being partly implemented. Since the external documentation had a complete UML diagram

of that design pattern (unlike the one that was given at the beginning of the task T21, which was

incomplete), we found out that participants tend to lean on that UML diagram to complete task

T22. This also happened with the participants from the experimental group, since the pattern in-

stance documentation displayed by the tool is incomplete and most of them jump to the second

58 Empirical Study

sub task without completing it. This is probably the reason why task T22 rejected the hypothesis.

In fact, we believe this could have been an issue with the experimental design given that, with

our approach, we are trying to reduce the mutual feedback loop between programming and docu-

menting, and in this particular task we are only evaluating the programming outcome. Probably,

if we had asked the participants to document the software system, at the end of the task T22, the

results would have been different. Actually, task T32, which consisted exactly in this correction

proposal — implementation and post documentation of the implemented system — confirmed the

hypothesis.

Nevertheless, it was possible to confirm that, for the majority of the tasks, participants that

used embedded documentation in the IDE, switched context significantly less times than those

that only had access to the external documentation.

During the experiments, the spectator collected data regarding the internal documentation (pro-

vided by the plugin) consumption. This was done by counting the access to the documentation

displayed when hovering on top of the class name of pattern participants, the pattern instance live

editor and the plugin’ suggestions. Figure 6.3 illustrates the number of access to internal (ID) and

external (ED) documentation, during each software comprehension task. We have seen, with the

statistical tests, that the participants from the control group switched context significantly more

times. This figure does not only confirm this, it also shows that a possible cause for it was the

availability of internal documentation. This embedded documentation allowed the participants to

rely on it, decreasing the need for moving out of the IDE.

Figure 6.3: Box plot of the number of access to the internal and external documentation, related
to the software comprehension activity

6.3 Data Analysis 59

Regarding the documenting tasks, which required the participants to represent the pattern in-

stances found in the software systems, in a UML class diagram format, we found out that the

participants did not need the help of the external documentation to aid them. This is represented in

Figure 6.4. The participants found out that the developed tool provided all the required information

and means to perform this type of tasks.

Figure 6.4: Box plot of the number of access to the internal and external documentation, related
to documenting tasks

6.3.4 Assessment Questionnaire

In order to understand the participants’ perception on the difficulty of solving the requested tasks,

we have asked them to answer a final questionnaire. This questionnaire was composed by three

questions, more specifically, 1) if the participants found it easy to identify design patterns on the

source code, 2) if it was easy to document the code using pattern instances in UML format, and 3)

if the communication environment (remote computer) had a negative impact in their performance.

We expect that, for the first two questions, the tasks were harder for the CG than they were for

the EG. Additionally, we believe that the last question should provide similar responses in both

groups.

60 Empirical Study

Figure 6.5: Box plot of the Q1 and Q2 in both treatments

We have started by plotting the data collected for the first two questions in order to retrieve

some descriptive statistics. Just by looking at the box plot in Figure 6.5, we can see that the

experimental group found the identification and documentation tasks easier than the control group

did. Nevertheless, we want to investigate if this difference is statistically significant or not. Thus,

similarly to the previous analysis, let’s assume the following hypothesis:

H4 : CG > EG (6.3)

H5 : CG 6= EG (6.4)

The mathematical expression denoted by the hypothesis H4 was used to investigate the first two

questions and H5 for the last one. Just like we did for the background questionnaire, we also run a

Mann-Whitney U test to validate these hypothesis. The results can be seen in Table 6.4.

Table 6.4: Summary of the MW-U statistic results for the final questionnaire

CG EG MW-U

x̄ σ x̄ σ H4 H5 u ρ

Q1 3.500 0.373 4.640 0.203 3 - 19.500 0.003

Q2 3.400 0.371 4.910 0.091 3 - 8.500 0.000

Q3 1.300 0.213 1.820 0.325 - 7 40.000 0.268

By looking at the results from the statistical test (Table 6.4), we can confirm the hypothesis

H4 (ρ < 0.05). This means that our participants also agree that our approach does indeed help

improving software comprehension and eases the documenting process. Moreover, the hypothesis

H5 was rejected by the last question, confirming that there wasn’t a group that was more affected

6.4 Threats to Validity 61

by the communication environment than the other. Actually, the participants do not believe that

their performance was negatively affected by the remote environment. The bar chart presented by

Figure 6.6 shows that the majority of the participants (14 out of 21) chose the lowest Likert scale

value, which helps corroborating that conclusion.

Figure 6.6: Bar chart representing how participants felt for doing the experiment on a remote
environment

6.4 Threats to Validity

During the design of the experiment, we thought about the experimental conditions that could

cause deviations in the results and, therefore, compromise the validity of our approach. Since we

want to obtain sound answers to our research questions, some precautions were taken to discard

these threats.

1. Different Skills — The design of the experiment assumes that the participants in the con-

trol and the experimental group have similar skills and knowledge. Otherwise, we couldn’t

be certain that the differences in the results, between the two groups, were entirely due to

the different treatments used, and not because there could be dissimilarities in the groups.

Therefore, we decided to select participants with the same background (all MSc students

from MIEIC and MESW), who had the same level of contact with the thematic explored

during the experiment. Additionally, we have asked all the participants to answer a back-

ground questionnaire, which was used to statistically prove that there were no significant

differences between the two groups.

2. External Factors — Due to the world’s pandemic circumstances in which we were living,

when this experiment was conducted, the experiment could not be performed physically in

62 Empirical Study

a university’s laboratory, as we had planned. That left us with a remote experiment, which

could be a threat to our validity since the results could be affected by the communication en-

vironment, such as latency or network breakdowns. Moreover, being remote makes it harder

to observe the subject being tested, which may be crucial to understand the entire process

towards the task’s solution. The first issue was discarded by submitting the participants to a

final questionnaire, where they were asked if the communication environment affected their

performance. For the second one, we have decided to place a spectator that would watch the

entire experiment, by having access (via share screen) to the computer where the experiment

was taking place.

3. Non-Generalizability to Professionals — Given that recruiting students is easier than re-

cruiting professionals software developers, we used the first ones as the subjects for vali-

dating our approach. Additionally, it helps making sure that every participant has a similar

skill level. However, we can’t help but wonder if the conclusions retrieved, by using them

as subjects, can be totally generalized to professionals, due to the lack of experience of the

former. In order to tackle this concern, we would have to replicate the experiment, using

professionals as the subjects.

6.5 Discussion

During this chapter, we evaluated some of the metrics that shall be used to answer the research

questions, presented in Section 6.1. These metrics consisted in 1) the time spent understanding
and 2) documenting a software system, and 3) the number of context switches, between the

IDE and the external documentation, which we expect to be reduced by embedding the latter in

the IDE.

The experiment was designed with the intention of making these metrics easy to evaluate.

During the tasks T11, T21 and T31, the participants were asked which pattern instances were

being represented in the source code. These tasks were used to evaluate the first metric, more

specifically, whether our approach does or not reduce the time required to understand a software

system. In Section 6.3.2, with the help of descriptive statistics and the statistical test’ results, we

found out that the time spent, by participants without the access to the developed tool, completing

these tasks was significantly higher the the time spent by those with access to the tool. Given that

these three tasks were directly related to the first metric, we managed to confirm that, with our

approach we reduce the time required to understand a software system.

Just like the previously mentioned tasks, the tasks T12 and T32, were explicitly designed to

evaluate if the act of documenting a software system, could be done with less effort (time) with the

aid of our approach. In fact, we have discovered, also during Section 6.3.2, that the participants

that used the developed tool were significantly faster than those from the control group. Therefore,

we have confirmed that our approach does also reduce the time required to document a software

system.

6.5 Discussion 63

Finally, we evaluated the last metric — the number of context switches. Instead of using some

specific tasks, which could bias the outcome, for measuring this metric, we have decided to use the

information collected in every task. In Section 6.3.3, we have confirmed that the participants that

used embedded documentation in the IDE (provided by the developed tool), tend to switch context

significantly less times that those that only had access to the external documentation. Additionally,

we have noticed that the participants relied, exclusively, in the developed tool to perform the

documenting tasks. During the software comprehension tasks, the participants have also reduced

their need to use the external documentation, by inspecting the embedded documentation more

often.

Now that we have collected the results for these metrics, we can try to answer the thesis’

research questions.

RQ1 "Can we reduce the inconsistencies between code and documentation?" — As we have

said in the beginning of this chapter, in order to answer this research question, we would

have to use the last two metrics. Usually, inconsistencies occur when the act of documenting

does not follow the evolution of the software. One of the reasons why this happens is

because the programming and development phases aren’t always performed simultaneously,

making it easy for information to get lost in the process. Additionally, since these phases are

firmly related to each other, and involve different types of artifacts, the transition between

these phases enforce a constant swap of context. With our approach, we tried to solve

this by placing these different types of artifact within the same environment, embedding the

documentation artifacts in the same place where the code is edited (IDE), and by simplifying

the act of documenting. We have concluded that we do manage to reduce the time required

to document a software system, which should reduce the need for the developer to postpone

this task, since the effort is much lower. Moreover, given that the creation, edition and

consumption of the documentation is close to the source code, it should be easier for the

developer to notice when the artifacts are no longer consistent, allowing them to act much

quicker. To sum up, we do not solve the inconsistencies problem but we do believe that we

provide the means required to reduce their occurrence.

RQ2 "Can we improve the comprehension of the software’s design?" — This particular

research question can be mapped directly to the first and second metrics. Since those two

metrics were validated by our approach, we can confirm that our approach does indeed

improve the comprehension of the software’s design.

RQ3 "Can documentation be kept updated more easily?" — Reducing the time required

to edit/update the documentation, should reduce the effort for keeping it updated. Since

we managed to confirm that, with our approach, developers require less time to document

a software system, we believe that we do provide the means to keep the documentation

updated more easily.

64 Empirical Study

Chapter 7

Conclusions

This chapter provides a quick overview of this thesis. We start by summarising the conclusions of

this work, then we present its main contributions and, finally, we explore the possible paths that

could be followed as future work.

7.1 Summary

After doing a literature review on the the main concepts of this dissertation (Chapter 3), specif-

ically, how patterns instances are documented and how are design patterns extracted from the

source code, analyzing the several scientific approaches that already exist, it was possible to enu-

merate the common issues (Chapter 4). As a result, we formulated the following hypothesis:

"By increasing the level of liveness of documentation based on pattern instances, we will

streamline the process of switching between creating and using documentation, promoting updated

and consistent documentation, and improving the overall understanding of the system’s design."

Software development and the creation of its documentation are often treated as different

phases, in the overall software development process. Developers had to constantly switch con-

text, which most of the times, led to loss of important knowledge, inconsistencies among artifacts

and, subsequently, had a critical impact in the learning process and reuse of software systems.

This is where our approach comes in. Merging the fundamental ideas of literate and live pro-

gramming, our approach reduces the mutual feedback loop between the programming and docu-

menting phases, helping the overall understanding of the software’s design. This is achieved by

adding live feedback to the documentation based on pattern instances. Our prototype (Chapter 5)

— Design Pattern Doc — provides feedback to the developer, while the system is being imple-

mented, regarding which pattern instances should be documented. Furthermore, it generates the

required documentation for a specific pattern instance, allows live editing of the persisted pattern

instances, and alerts the developer when a pattern instance is incomplete (i.e., when one of the

pattern roles isn’t being played by an object). This identification of pattern instances is performed

with the help of a design pattern detection tool — DPCORE — which searches the source code for

a list of design patterns. Regarding the visualization of the pattern instances, our tool uses UML

65

66 Conclusions

diagrams, generated by PlantUML, to present them when hovering on top of the class’ name of

pattern participants.

During Chapter 4, we have presented the research questions that should be addressed by this

work. These research questions, were answered in Chapter 6, after performing a controlled ex-

periment with MSc students from FEUP, with the goal of validating our approach. With this

experiment we managed to confirm that, with our approach, developers spend less time under-
standing and documenting a software system, and the context switching, between the IDE and

the external documentation, is reduced, when embedding the latter in the IDE. These metrics

helped answering the research questions.

Can we reduce the inconsistencies between code and documentation? — Yes. Even though

we do not solve the inconsistencies problem, we do provide the means required to reduce their

occurrence.

Can we improve the comprehension of the software’s design? — Yes. By reducing the

effort (time) required to understand and document a software system, we improve its comprehen-

sion.

Can documentation be kept updated more easily? — Yes. Similarly to the previous re-

search question, by reducing the time required to edit/update the documentation, we reduce the

effort for keeping it updated.

7.2 Main Contributions

This dissertation had the following main contributions:

State of the art Review — We explored and compared the different tools/approaches for docu-

menting pattern instances and for extracting pattern instances directly from the source code.

Approach — A solution to the challenge of understanding software systems in terms of its

design patterns. We increased the level of liveness of the system’s documentation to reduce

the mutual feedback loop between the programming and documenting phases.

Design-Pattern-Doc — A prototype for our approach was developed, in the form of a plugin

for IntelliJ IDEA, able to analyze source code, live-suggest and generate corresponding

pattern-based documentation for that specific pattern instance, and live editing of the per-

sisted documentation.

Controlled Experiment - A group of 21 MSc students completed a set of tasks, for which they

had to understand and evolve a software system. This controlled experiment helped con-

cluding that, with our approach, we reduce the time required to understand and document

a software system, and we reduce the need for context switching, by embedding the docu-

mentation in the IDE.

7.3 Future Work 67

7.3 Future Work

There are three main aspects that can help discussing this work’s future steps: 1) the approach, 2)

the prototype and 3) the empirical validation.

Approach

• Increase the liveness level — After defining that a class plays a role in a design pattern, the

environment could suggest the implementation of the classes that would play the rest of the

roles from that design pattern. This would allow achieving level 5.

Prototype

• Detection Tool Expansion — DPCORE only detects a few design patterns in Java source

code systems. It would be interesting to expand the set of supported design patterns, which

in the case of the DPCORE, would be easy if the new design patterns were detected by

static analysis. This could also be achieved by replacing the chosen pattern instance detector

(DPCORE).

• Dynamic Analysis — As discussed in Chapter 3, some design patterns can be identified

with just a static analysis tool, while others require exploring their dynamic behaviour. As

a result, it would be interesting to identify what changes would have to be done, in order to

dynamically analyse the source code. Would the liveness level reduce with such changes?

Would it be required to actually run the source code? Or just running the tests would be

enough? With the static analysis detection, we have managed to achieve level 4 of live-

ness. If the tool (DPCORE) were to be replaced by a dynamic analysis tool, it would be

a challenge to maintain the current liveness level. We are assuming that for this new type

of detection tool, we would have to run the system to detect the pattern instances, which

would delay the feedback to the developer. If it was possible to detect the majority of the

behavioral design patterns just by running tests, then it would be possible to remain with

level 4.

• Pattern Instances View — Just like there is a class and package view for the JAVA files in

Intellij, the existence of a pattern instances view would be helpful for the developer to have

quick and easy access to all the persisted documentation. Moreover, it would be interesting

to jump to the corresponding source code by clicking, somewhere in that view, on a pattern

participant.

Empirical Validation

• Controlled Experiment with Professionals — It would be interesting to perform a con-

trolled experiment with professional software developers, in order to discard the threat to

validation, presented in Chapter 6. Note that, the presented experimental package can be,

with minor changes, directly applied to professional developers.

68 Conclusions

• Case Study — Providing the prototype to a team that is in the field developing a software

product, in order to understand, in a more real scenario, the approach’ trade-offs. This

would help investigating how the approach behaves in a real product with multiple classes

and lines of code (eg. if the developers get overwhelmed by the number of pattern instance

suggestions).

Appendix A

Shapiro-Wilk Test

This appendix includes the statistical test — Shapiro-Wilk Test — used to evaluate if the task’s du-

ration variables were normally distributed in the collected data. The results are presented in Table

A.1. As we can see, the tasks T11, T22 and T32 do not follow a normal distribution (ρ<0.05).

Table A.1: Shapiro-Wilk Test results

Statistic df ρ

T11 0.831 21 0.002

T12 0.806 21 0.001

T21 0.984 21 0.966

T22 0.942 21 0.238

T31 0.953 21 0.391

T32 0.829 21 0.002

69

70 Shapiro-Wilk Test

Appendix B

Levene Test

This appendix includes the statistical test — Levene Test — used to verify if the assumption of

equal variances holds for the variables being evaluated with the T-Test.

Table B.1: Summary of the standard t-test statistic results for the tasks duration variable

Levene Test for

equal variances
T-Test

Equal Variances Z ρ ρ

T21 Assumed 0.037 0.850 0.0005

Not Assumed 0.0005

T22 Assumed 0.518 0.481 0.4680

Not Assumed 0.4685

T31 Assumed 1.444 0.244 0.0005

Not Assumed 0.0010

As we can see from the Levene Test column, in Table B.1, all the tasks have ρ > 0.05, which

means that we can conclude that the assumption of equal variances holds. From this conclusion,

we only have to focus on the first row of T-test results for each task.

71

72 Levene Test

Appendix C

Experimental Guide

This appendix includes the questionnaires used during the experimental sessions for the control

and experimental groups.

C.1 Control Group Questionnaire

73

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 1/6

Background
Check

This work is centered around the Design patterns from the "Gang of Four", being them
Factory Method, Builder, Strategy, Observer, Command, and so on.

1.

Marcar apenas uma oval por linha.

2.

Marcar apenas uma oval.

Female

Male

Prefer not to say

Design Pa�ern Doc Questionnaire
*Obrigatório

At this point ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... I'm comfortable working with
Intellij

... I'm comfortable programming
in Java

... I'm comfortable working with
draw.io

... I know well the GoF design
patterns

... I can recognize GoF design
patterns in code

... I can implement GoF design
patterns

... I'm comfortable working with
Intellij

... I'm comfortable programming
in Java

... I'm comfortable working with
draw.io

... I know well the GoF design
patterns

... I can recognize GoF design
patterns in code

... I can implement GoF design
patterns

Gender *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 2/6

3.

Marcar apenas uma oval.

High School

Bachelor's degree

Master's degree

Doctoral degree

4.

Marcar apenas uma oval.

1st

2nd

3rd

4th

5th

Tasks

During this part of the experiment, you will be submitted to a couple of tasks. For
each task, you will be given a different source code folder. Note that, at the end of the
third task, you will be asked to submit your solutions (more details on how to do this
will be discussed later). The experiment will take approximately 40-50 minutes. It is
important to do it in a single run, without interruptions.

What is the highest degree or level of education you have completed? *

If you are a student from MIEIC, what is your current year?

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 3/6

Some tasks involve submitting class diagrams showing the implementation of pattern
instances. An example for this type of task can be seen in the figure below. Note that, we
are using stereotypes (<<Role>>), which are not the standard format, for representing the
pattern roles. For this type of tasks, we would like you to use: https://draw.io

We suggest to take a quick look at the State design pattern, on the cheat sheet
provided, in order to easily comprehend how both diagrams relate to each other. As
part of the experiment, you will be given access to the development environment
Intellij.

Task 1

5.

Exemplo: 08:30

1.1. Before starting this task, please write down the current time: *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 4/6

6.

7.

Ficheiros enviados:

8.

Exemplo: 08:30

Task 2

9.

Exemplo: 08:30

10.

2.3 Create new objects and/or modify those already provided to complete the system.

1.2. This source code contains one or more pattern instances. Which design
pattern(s) are represented in the system? *

1.3. Document the pattern instances that you have found as a UML class diagram. Do
it as was instructed previously, using draw.io, and specifying pattern roles as class
stereotypes

1.4. After you have finished this task, please write down the current time: *

2.1. Before starting this task, please write down the current time: *

2.2. John is trying to implement a simple system for controlling the light of a
lightbulb, in his house. Unfortunatelly, he can't get it to work. Which pattern
participant(s) are missing? *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 5/6

11.

Exemplo: 08:30

Task
3

The zookeepers from Maia’s Zoo have designed a system to easily manage their animal’s diet
and daily feeding times. Upon the arrival of a new specie to the zoo, the system must be
updated accordingly. Today, a specie of Giraffe has arrived to the zoo. Can you help the
zookeepers introducing it to the system?

12.

Exemplo: 08:30

13.

14.

Ficheiros enviados:

15.

Exemplo: 08:30

2.4. After you have finished this task, please write down the current time: *

3.1. Before starting this task, please write down the current time: *

3.2. Identify the main GoF pattern in this code and explain what changes (objects,
pattern roles) would you need to apply to the system to contemplate these
requirements *

3.3. Implement those changes and add the pattern instances documentation
required to understand the extended system. (Here submit only the class
diagrams)

3.4. After you have finished this task, please write down the current time: *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/1hx2CrEQ-8s6xJLKlZtkQnt_U27iBW7pV-nCyQSVdYhg/edit 6/6

16.

Ficheiros enviados:

Final feedback

17.

Marcar apenas uma oval por linha.

Este conteúdo não foi criado nem aprovado pela Google.

Create a folder containing the folders: 1) task2 and 2) task3. Inside those folders
place the respective source code that resulted from your solution to the tasks. Zip
the folder and submit it below:

Select your opinion towards the following sentences: *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

I found it easy to identify design
patterns in the source code

I found it easy to document the
code using pattern instances in
UML format

The communication
environment (remote computer)
had a negative impact in the
experiment

I found it easy to identify design
patterns in the source code

I found it easy to document the
code using pattern instances in
UML format

The communication
environment (remote computer)
had a negative impact in the
experiment

 Formulários

80 Experimental Guide

C.2 Experimental Group Questionnaire

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 1/13

Background
Check

This work is centered around the Design patterns from the "Gang of Four", being them
Factory Method, Builder, Strategy, Observer, Command, and so on.

1.

Marcar apenas uma oval por linha.

2.

Marcar apenas uma oval.

Female

Male

Prefer not to say

Design Pa�ern Doc Questionnaire
*Obrigatório

At this point ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... I'm comfortable working with
Intellij

... I'm comfortable programming
in Java

... I know well the GoF design
patterns

... I can recognize GoF design
patterns in code

... I can implement GoF design
patterns

... I'm comfortable working with
Intellij

... I'm comfortable programming
in Java

... I know well the GoF design
patterns

... I can recognize GoF design
patterns in code

... I can implement GoF design
patterns

Gender *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 2/13

3.

Marcar apenas uma oval.

High School

Bachelor's degree

Master's degree

Doctoral degree

4.

Marcar apenas uma oval.

1st

2nd

3rd

4th

5th

Tasks

During this part of the experiment, you will be submitted to a couple of tasks. For
each task, you will be given a different source code folder. Note that, at the end of the
third task, you will be asked to submit your solutions (more details on how to do this
will be discussed later). The experiment will take approximately 40-50 minutes. It is
important to do it in a single run, without interruptions.

What is the highest degree or level of education you have completed? *

If you are a student from MIEIC, what is your current year?

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 3/13

Some tasks involve submitting class diagrams showing the implementation of pattern
instances. An example for this type of task can be seen in the figure below. Note that, we
are using stereotypes (<<Role>>), which are not the standard format, for representing the
pattern roles. For this type of tasks, we would like you to use the plugin discussed on the
following section.

We suggest to take a quick look at the State design pattern, on the cheat sheet
provided, in order to easily comprehend how both diagrams relate to each other.

Plugin Walkthrough

As part of the experiment, you will be given access to the development environment
Intellij with a plugin for documenting pattern instances. For that reason, we would like
to highlight its main features and explain how to take advantage of them. We will start
by introducing those that allow creating/updating the documentation:

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 4/13

Feature 1 - Pattern instance documentation suggestion. This plugin uses a design pattern
detection tool to scan the project for design patterns. Those detected by it are
highlighted as can be seen in the figure below (background yellow-brownish color).
Accepting the suggestion will persist the pattern instance documentation for that design
pattern.

Feature 2 - Manually document pattern instance. By right clicking on a object, a default
pattern instance is created for that object.

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 5/13

Feature 3 - Manually edit documentation. When the cursor is on top of an object, its
documentation is displayed on the pattern instance documentation editor (window on
the right side of intellij editor). This is a live editor of the pattern instances played by that
object.

Feature 4 - Incomplete implementation warning. When the code is not consistent with its
pattern instance documentation (eg. pattern instance role is missing), objects that play a
part in that pattern instance are highlighted. Users can decide whether they would like to
edit the documentation or delete it.

The following features are merely visual. Their purpose is to display the persisted
pattern instance documentation:

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 6/13

Feature 5 - Pattern Hints (text at the end of the line where pattern participants are
found). These provide information regarding played roles in persisted pattern instances.

Feature 6 - Pattern documentation. When hovering a pattern participant, a pop up dialog
appears with the UML pattern instances documentation, played by that object.

Task 1

5.

Exemplo: 08:30

1.1. Before starting this task, please write down the current time: *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 7/13

6.

7.

Ficheiros enviados:

8.

Exemplo: 08:30

Task 2

9.

Exemplo: 08:30

10.

2.3 Create new objects and/or modify those already provided to complete the system.

1.2. This source code contains one or more pattern instances. Which design
pattern(s) are represented in the system? *

1.3. Document the pattern instances that you have found as a UML class diagram. Do
it as was instructed previously, using the plugin, and specifying pattern roles as class
stereotypes.

1.4. After you have finished this task, please write down the current time: *

2.1. Before starting this task, please write down the current time: *

2.2. John is trying to implement a simple system for controlling the light of a
lightbulb, in his house. Unfortunatelly, he can't get it to work. Which pattern
participant(s) are missing? *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 8/13

11.

Exemplo: 08:30

Task
3

The zookeepers from Maia’s Zoo have designed a system to easily manage their animal’s diet
and daily feeding times. Upon the arrival of a new specie to the zoo, the system must be
updated accordingly. Today, a specie of Giraffe has arrived to the zoo. Can you help the
zookeepers introducing it to the system?

12.

Exemplo: 08:30

13.

14.

Ficheiros enviados:

15.

Exemplo: 08:30

2.4. After you have finished this task, please write down the current time: *

3.1. Before starting this task, please write down the current time: *

3.2. Identify the main GoF pattern in this code and explain what changes (objects,
pattern roles) would you need to apply to the system to contemplate these
requirements *

3.3. Implement those changes and add the pattern instances documentation
required to understand the extended system. (Here submit only the
documentation)

3.4. After you have finished this task, please write down the current time: *

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 9/13

16.

Ficheiros enviados:

Final feedback

17.

Marcar apenas uma oval por linha.

18.

Marcar apenas uma oval por linha.

Create a folder containing the folders: 1) task2 and 2) task3. Inside those folders
place the respective source code that resulted from your solution to the tasks. Zip
the folder and submit it below:

Select your opinion towards the following sentences: *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

I found it easy to identify design
patterns in the source code

I found it easy to document the
code using pattern instances in
UML format

The communication
environment (remote computer)
had a negative impact in the
experiment

I found it easy to identify design
patterns in the source code

I found it easy to document the
code using pattern instances in
UML format

The communication
environment (remote computer)
had a negative impact in the
experiment

The pattern hints (text in front of each pattern participant line) helped ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 10/13

19.

Marcar apenas uma oval por linha.

The documentation provided when hovering on top of the pattern participants helped
... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 11/13

20.

Marcar apenas uma oval por linha.

The highlighting of pattern participants when suggesting design patterns helped ...
*

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 12/13

21.

Marcar apenas uma oval por linha.

The highlighting of pattern participants, when some roles are missing regarding the
documentation, helped ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

02/07/2020 Design Pattern Doc Questionnaire

https://docs.google.com/forms/d/15tHheKO-bxzIKdWYsRcDJXW9iRudhJHxCgy-xWMJTfE/edit 13/13

22.

Marcar apenas uma oval por linha.

Este conteúdo não foi criado nem aprovado pela Google.

The live update of documentation helped ... *

Strongly
Disagree

Disagree Neutral Agree
Strongly

Agree

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

... understanding the code

... solving the tasks quicker

... registering and keeping the
pattern instance information
updated

 Formulários

94 Experimental Guide

References

[1] Ademar Aguiar. Framework Documentation - A Minimalist Approach. Phd thesis, 2003.

[2] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern detection and soft-
ware architecture reconstruction. Information Sciences, 181(7):1306–1324, apr 2011.

[3] Bahareh Bafandeh Mayvan and Abbas Rasoolzadegan. Design pattern detection based on
the graph theory. Knowledge-Based Systems, 120:211–225, mar 2017.

[4] Mario Luca Bernardi, Marta Cimitile, and Giuseppe Antonio Di Lucca. A model-driven
graph-matching approach for design pattern detection. Proceedings - Working Conference
on Reverse Engineering, WCRE, pages 172–181, 2013.

[5] Dirk Beyer and Claus Lewerentz. CrocoPat: A Tool for Efficient Pattern Recognition in
Large Object-Oriented Programs. (May), 2003.

[6] Alan Bundy and Alex Blewitt. Automatic Verification of Java Design P. pages 324–327.
2001.

[7] Abdullah Chihada, Saeed Jalili, Seyed Mohammad Hossein Hasheminejad, and Moham-
mad Hossein Zangooei. Source code and design conformance, design pattern detection from
source code by classification approach. Applied Soft Computing Journal, 26:357–367, 2015.

[8] Aino Cornils and Gorel Hedin. Statically checked documentation with design patterns. In
Proceedings of the Conference on Technology of Object-Oriented Languages and Systems,
TOOLS, pages 419–430. IEEE Comp Soc, 2000.

[9] Filipe Alexandre Pais de Figueiredo Correia. Documenting Software With Adaptive Software
Artifacts. Phd thesis, Universidade do Porto, 2015.

[10] Filipe Figueiredo Correia. Supporting the evolution of software knowledge with adaptive
software artifacts. In Proceedings of the ACM international conference companion on Ob-
ject oriented programming systems languages and applications companion, pages 231–232,
2010.

[11] Filipe Figueiredo Correia, Hugo Sereno Ferreira, Ademar Aguiar, and Nuno Flores. Patterns
for consistent software documentation. In ACM International Conference Proceeding Series,
2010.

[12] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. A two phase
approach to design pattern recovery. Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR, pages 297–306, 2007.

95

96 REFERENCES

[13] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. Behavioral
pattern identification through visual language parsing and code instrumentation. Proceedings
of the European Conference on Software Maintenance and Reengineering, CSMR, pages 99–
108, 2009.

[14] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. An Eclipse
plug-in for the detection of design pattern instances through static and dynamic analysis.
IEEE International Conference on Software Maintenance, ICSM, pages 1–6, 2010.

[15] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, and Michele Risi. Improving
behavioral design pattern detection through model checking. Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR, pages 176–185, 2010.

[16] Andrea De Lucia, Vincenzo Deufemia, Carmine Gravino, Michele Risi, and Ciro Pirolli.
EPadEvo: A tool for the detection of behavioral design patterns. 2015 IEEE 31st Inter-
national Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings,
pages 327–329, 2015.

[17] Themistoklis Diamantopoulos, Antonis Noutsos, and Andreas Symeonidis. DP-CORE: T
design pattern detection tool for code reuse. In BMSD 2016 - Proceedings of the 6th Inter-
national Symposium on Business Modeling and Software Design, pages 160–169, 2016.

[18] Jens Dietrich and Chris Elgar. Towards a web of patterns. Web Semantics, 5(2):108–116, jun
2007.

[19] Jing Dong, Sheng Yang, and Kang Zhang. Visualizing design patterns in their applications
and compositions. IEEE Transactions on Software Engineering, 33(7):433–453, jul 2007.

[20] Rudolf Ferenc, Árpád Beszédes, Lajos Fülöp, and János Lele. Design pattern mining en-
hanced by machine learning. IEEE International Conference on Software Maintenance,
ICSM, 2005:295–304, 2005.

[21] Rudolf Ferenc, Juha Gustafsson, László Müller, and Jukka Paakki. Recognizing design
patterns in C++ programs with the integration of Columbus and Maisa. Acta Cybernetica,
15(4):669–682, 2002.

[22] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool support for object-oriented pat-
terns. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 1241, pages 472–495. Springer
Verlag, 1997.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. 1995.

[24] Yann-Gaël Guéhéneuc. Ptidej: Promoting patterns with patterns Software Quality and Se-
curity View project Software Processes for Video Games Development View project Ptidej:
Promoting Patterns with Patterns. Technical report, 2015.

[25] Yann Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A multilayered approach for de-
sign pattern identification. IEEE Transactions on Software Engineering, 34(5):667–684,
2008.

REFERENCES 97

[26] Arne Marius Hallum. Documenting Patterns. PhD thesis, Norges Teknisk-
Naturvitenskapelige Universitet Fakultet for Matematikk, Informasjonsteknologi og Elek-
troteknikk, 2002.

[27] Görel Hedin. Language support for design patterns using attribute extension. In Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 1357, pages 137–140. Springer Verlag, 1998.

[28] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Automatic design pattern detection.
Proceedings - IEEE Workshop on Program Comprehension, 2003-May:94–103, 2003.

[29] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick Page. Pattern-based
reverse-engineering of design components. Proceedings - International Conference on Soft-
ware Engineering, pages 226–235, 1999.

[30] Donald E. Knuth. Literate Programming. Computer Journal, 27(2):97–111, feb 1984.

[31] Hakjin Lee, Hyunsang Youn, and Eunseok Lee. A design pattern detection technique that
Aids reverse engineering. International Journal of Security and its Applications, 2(1):1–12,
2008.

[32] Fan Li, Qing-Shan Li, S U Yang, and Ping Chen. Detection of design patterns by combining
static and dynamic analyses. Digital Object Identifier, 11(2):156–162, 2007.

[33] Howard C Lovatt, Anthony M Sloane, and Dominic R Verity. A Pattern Enforcing Compiler
(PEC) for Java: Using the compiler. In Conferences in Research and Practice in Information
Technology Series, volume 43, pages 69–78, 2005.

[34] Lilli Nenonen and Juha Gustafsson. Pattern recognition in the MAISA tool. Science, pages
1–12, 2000.

[35] Lilli Nenonen, Juha Gustafsson, Jukka Paakki, and A. Inkeri Verkamo. Measuring object-
oriented software architectures from UML diagrams. In Proceedings of the Fourth Inter-
national ECOOP Workshop on Quantitative Approaches in Object-oriented Software Engi-
neering, Cannes, France, 2000.

[36] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendenhals, and Jim Welsh. Towards
pattern-based design recovery. Proceedings-International Conference on Software Engineer-
ing, pages 338–348, 2002.

[37] Georg Odenthal and Klaus Quibeldey-Cirkel. Using patterns for design and documentation.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 1241, pages 511–529. Springer Verlag,
1997.

[38] Lutz Prechelt and Christian Krämer. Functionality versus practicality: Employing exist-
ing tools for recovering structural design patterns. Journal of Universal Computer Science,
4(12):866–882, 1998.

[39] Ghulam Rasool and Patrick Mäder. Flexible design pattern detection based on feature types.
In 2011 26th IEEE/ACM International Conference on Automated Software Engineering, ASE
2011, Proceedings, pages 243–252, 2011.

98 REFERENCES

[40] Ghulam Rasool, Ilka Philippow, and Patrick Mäder. Design pattern recovery based on anno-
tations. Advances in Engineering Software, 41(4):519–526, 2010.

[41] J. Sametinger and M. Riebisch. Evolution support by homogeneously documenting patterns,
aspects and traces. In Proceedings of the European Conference on Software Maintenance
and Reengineering, CSMR, pages 134–140, 2002.

[42] Reinhard Schauer and Rudolf K. Keller. Pattern visualization for software comprehension.
Program Comprehension, Workshop Proceedings, pages 4–12, 1998.

[43] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from Java source
code. In Proceedings - 21st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2006, pages 123–132, 2006.

[44] J.M. Smith and D. Stotts. SPQR: flexible automated design pattern extraction from source
code. pages 215–224, 2004.

[45] Kari Smolander, Kalle Lyytinen, Veli-Pekka Tahvanainen, and Pentti Marttiin. MetaEdit—
A flexible graphical environment for methodology modelling. In Rudolf Andersen, Janis A
Bubenko, and Arne Sølvberg, editors, Advanced Information Systems Engineering, pages
168–193, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[46] Krzysztof Stencel and Patrycja Wegrzynowicz. Detection of diverse design pattern variants.
Neonatal, Paediatric and Child Health Nursing, pages 25–32, 2008.

[47] Steven L Tanimoto. A perspective on the evolution of live programming. In 2013 1st Inter-
national Workshop on Live Programming, LIVE 2013 - Proceedings, pages 31–34, 2013.

[48] Tim Tøese and Scott Tilley. Documenting software systems with views V: Towards visual
documentation of design patterns as an aid to program understanding. In SIGDOC’07: Pro-
ceedings of the 25th ACM International Conference on Design of Communication, pages
103–111, 2007.

[49] Marco Torchiano. Documenting pattern use in Java programs. In Conference on Software
Maintenance, pages 230–233, 2002.

[50] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spyros T. Halkidis.
Design pattern detection using similarity scoring. IEEE Transactions on Software Engineer-
ing, 32(11):896–909, 2006.

[51] Wei Wang and Vassilios Tzerpos. Design pattern detection in eiffel systems. Proceedings -
Working Conference on Reverse Engineering, WCRE, 2005:165–174, 2005.

[52] Lothar Wendehals. Specifying patterns for dynamic pattern instance recognition with UML
2.0 sequence diagrams. Proc. of the 6th Workshop Software, pages 0–1, 2004.

[53] Haotian Zhang and Shu Liu. Java source code static check eclipse plug-in based on common
design pattern. In Proceedings - 2013 4th World Congress on Software Engineering, WCSE
2013, pages 165–170. IEEE Computer Society, 2013.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis Overview

	2 Background
	2.1 Documentation Good Practices
	2.1.1 Information Proximity
	2.1.2 Co-Evolution
	2.1.3 Domain-Structured Information
	2.1.4 Integrated Environments

	2.2 Literate Programming
	2.3 Integrated Development Environment
	2.4 Liveness

	3 State of the Art
	3.1 Documenting pattern instances
	3.1.1 Text-based
	3.1.2 Graphical representation
	3.1.3 Pattern instance validators
	3.1.4 Discussion

	3.2 Extracting patterns from code
	3.2.1 Static Analysis
	3.2.2 Dynamic Analysis
	3.2.3 Discussion

	4 Problem Statement
	4.1 Scope
	4.2 Hypothesis
	4.3 Research Questions
	4.4 Methodology

	5 Approach and Design of the Design-Pattern-Doc Plugin
	5.1 Approach
	5.2 Prototype
	5.2.1 Architecture
	5.2.2 Design decisions
	5.2.3 Domain Model

	5.3 Source Code Repository
	5.4 Plugin Features
	5.4.1 Pattern Instance Detector
	5.4.2 Accepted Pattern Instances Storage
	5.4.3 Inspections
	5.4.4 Manual Pattern Instance Documentation
	5.4.5 Pattern Instance Live Editor
	5.4.6 Design Patterns Definition
	5.4.7 Pattern Instance Viewer

	6 Empirical Study
	6.1 Goals
	6.2 Design
	6.3 Data Analysis
	6.3.1 Background
	6.3.2 Task's Duration
	6.3.3 Context Switching
	6.3.4 Assessment Questionnaire

	6.4 Threats to Validity
	6.5 Discussion

	7 Conclusions
	7.1 Summary
	7.2 Main Contributions
	7.3 Future Work

	A Shapiro-Wilk Test
	B Levene Test
	C Experimental Guide
	C.1 Control Group Questionnaire
	C.2 Experimental Group Questionnaire

	References

