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ABSTRACT 

Alternative polyadenylation (APA) is a mechanism that contributes to the complexity of the 

transcriptome by generating mRNA isoforms that differ in their coding sequence and/or in 

the 3’ untranslated region (UTR) by the selection of different polyadenylation signals. APA 

occurs co-transcriptionally, therefore, we sought to understand the molecular mechanisms 

behind the influence of RNA polymerase II (RNAPII) transcription elongation rate on 

polyadenylation site selection at a genome-wide scale in Drosophila melanogaster. Using 

3’READS, we analysed APA mRNA isoforms in fly bodies and heads. We showed that 

APA differences observed between bodies and heads may be due to the distance between 

proximal and distal polyadenylation sites and also due to differential gene expression of 

important elongation and mRNA 3’end formation factors. Several genes coding for proteins 

with functions in cleavage, polyadenylation, elongation and termination, including Ssu72, 

Cdk9, CsfF64 and Pcf1, are upregulated in Drosophila melanogaster heads, which 

indicates that there is an environment-specific regulation of this class of proteins. Using 

the Drosophila melanogaster mutant strain RpII215C4, which possesses a point mutation in 

RNAPII largest subunit causing a 50% slower transcription elongation rate, we showed 

that APA is affected by a slower RNAPII elongation rate in a context-dependent manner. 

For a significant number of genes in the fly mutant body, there is an increase in the 

expression of mRNAs containing 3’UTRs produced by proximal and generally weaker 

polyadenylation sites. We also showed that Ssu72, which is a phosphatase that acts on 

the carboxy-terminal domain (CTD) of RNAPII, is upregulated in the fly mutant bodies. 

Taken together, these results highlight the genome-wide and tissue-specific impact of 

RNAPII elongation rate in Drosophila melanogaster APA. To dissect the molecular 

mechanisms underlying these observations, we focused on the polo gene, the Polo Like 

Kinase-1 orthologue. polo encodes the conserved cell cycle regulator Polo and has two 

polyadenylation signals in the 3’UTR, producing two distinct mRNAs. Previous work from 

our group showed that transgenic flies without the distal polyadenylation signal of polo die 

during metamorphosis. This occurs because the longer polo mRNA is the main 

responsible for Polo protein production necessary for the correct proliferation of abdominal 

histoblasts during metamorphosis and viability of the fly. Using bioinformatic tools, we 

searched for potential auxiliary cis elements in polo 3’UTR and we found a conserved 

pyrimidine-rich sequence upstream of the proximal polyadenylation signal of polo that we 

named Upstream Sequence Element (USE) as it is similar to the previously described 
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human and viral USEs. We observed that the USE is present in approximately 5% of the 

3’UTRs of all Drosophila melanogaster genes and that it is more prevalent when located 

upstream of weak polyadenylation signals. We also showed that the USE has an in vivo 

effect on polo expression. Transgenic flies without this element in polo 3’UTR present an 

abdominal phenotype, show impaired polo APA, and low Polo protein levels and activity at 

the kinetochores. This results in mitotic aberrations and aneuploidies due to the lower 

activity of the mitotic kinases Aurora B and Mps1, two known Polo targets. These findings 

highlight an in vivo role for this conserved USE in the regulation of polo mRNA 3’end 

processing and expression. We identified that Hephaestus (Heph) RNA binding protein 

binds to polo USE and showed that Heph depletion causes a decrease in the levels of the 

longest polo mRNA and Polo protein. Accordingly, fly mutants with low Heph levels (heph2 

hypomorph) show altered polo mRNA 3’end formation and significantly reduced Polo, 

Aurora B and Mps1 levels at the kinetochores of proliferating cells, which also present a 

higher tendency to become aneuploid. This is the first finding of a cis regulatory sequence 

in Drosophila melanogaster capable of regulating polo APA by binding of Heph, thus 

affecting Polo activity and mitosis. It had been previously shown by our group that Polo 

protein levels control polo APA in an auto-regulatory feedback loop mechanism, 

suggesting a yet unknown function for Polo. To investigate the hypothesis of Polo being 

involved in polyadenylation site selection, we used two polo mutant fly strains: polo1, a 

kinase dead mutant and polo9, a null hypomorph. We unveiled that impaired Polo activity 

lowers the expression levels of CG6024, abd-b, rp49 and U6, either directly or indirectly, 

and that low Polo levels lead to a predominantly hypophosphorylated RNAPII CTD profile 

in comparison to wild type, indicating that this cell cycle kinase might have a novel role in 

RNAPII-mediated transcription or co-transcriptional mechanisms in Drosophila 

melanogaster. In summary, we showed that RNAPII transcription elongation rate 

modulates APA at the genome-wide level in Drosophila melanogaster in a context-

dependent mode. We also dissected the molecular mechanisms involved in polo APA, 

characterizing a novel USE that binds Heph and controls Polo activity at the kinetochores 

and cell cycle progression. Additionally, we described a possible new function for Polo in 

RNAPII CTD phosphorylation. The work described in this thesis thus provides new insight 

into the basic molecular mechanisms that occur during transcription and APA in vivo and 

how they act synergistically with RNAPII to efficiently coordinate mRNA 3’end processing, 

gene expression as well as cell cycle progression in Drosophila melanogaster. 
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SUMÁRIO 

A poliadenilação alternativa (APA) é um mecanismo que contribui para a complexidade do 

transcriptoma ao gerar isoformas de mRNA que diferem na sua sequência codificante e/ou 

região 3’ não traduzida (UTR) via a selecção de differentes sinais de poliadenilação. A APA 

ocorre co-transcricionalmente, logo, tentamos compreender os mecanismos moleculares 

resultantes da influência da velocidade de elongação da transcrição da RNA polimerase II 

(RNAPII) na selecção do local de poliadenilação genome-wide em Drosophila melanogaster. 

Usando a técnica 3’READS, analisamos isoformas de mRNA produzidas por APA em corpos 

e cabeças de moscas. Nós mostramos que as diferenças de eventos de APA observadas 

entre os corpos e as cabeças podem dever-se à distância entre os locais de poliadenilação 

proximal e distal e também à expressão diferencial de importantes factores de elongação e 

proteínas envolvidas na formação da extremidade 3’ do mRNA. Vários genes que codificam 

para proteínas com funções na clivagem, poliadenilação, elongação e terminação, incluindo 

Ssu72, Cdk9, CsfF64 e Pcf1, estão upregulated nas cabeças de Drosophila melanogaster, o 

que indica uma regulação desta classe de proteínas dependente do contexto. Utilizando a 

estirpe mutante de Drosophila melanogaster RpII215C4, que tem uma mutação pontual na 

subunidade maior da RNAPII que causa uma velocidade de elongação da transcrição 50% 

mais lenta, nós mostramos que a APA é afectada por uma velocidade de elongação da 

RNAPII mais lenta dependendo do contexto. Para um número significativo de genes no 

corpo da mosca mutante, há um aumento na expressão de mRNAs com 3'UTRs produzidos 

por locais de poliadenilação proximais que são geralmente mais fracos. Também mostramos 

que Ssu72, uma fosfatase que actua no domínio carboxi-terminal (CTD) da RNAPII, está 

upregulated nos corpos da mosca mutante. Estes resultados enfatizam o impacto genome-

wide e dependente do contexto celular da velocidade de elongação da RNAPII na APA de 

Drosophila melanogaster. De forma a dissecar os mecanismos moleculares subjacentes, nós 

concentramo-nos no gene polo, o ortólogo da Polo Like Kinase-1. O gene polo codifica a 

cinase Polo, um regulador do ciclo celular altamente conservado, e tem dois sinais de 

poliadenilação no 3’UTR, produzindo assim dois mRNAs distintos. Trabalhos anteriores do 

nosso grupo mostraram que moscas transgénicas sem o sinal de poliadenilação distal de 

polo morrem durante a metamorfose. Isto deve-se ao facto do mRNA mais longo de polo ser 

o principal responsável pela produção da proteína Polo necessária para a correcta 

proliferação dos histoblastos abdominais durante a metamorfose e para a viabilidade da 

mosca. Usando metodologias bioinformáticas, procuramos por potenciais elementos cis 
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auxiliares no 3’UTR do polo e encontramos uma sequência conservada rica em pirimidinas a 

montante do sinal de poliadenilação proximal do polo que denominamos de Upstream 

Sequence Element (USE) devido às semelhanças com USEs descritos anteriormente em 

humanos e vírus. Nós observamos que o USE existe em aproximadamente 5% dos 3’UTRs 

de todos os genes de Drosophila melanogaster e que é mais prevalente a montante de sinais 

de poliadenilação fracos. Também mostramos que o USE tem um efeito in vivo na expressão 

do polo. Moscas transgénicas sem este elemento no 3’UTR do polo demonstram um fenótipo 

abdominal, apresentam APA alterada do polo, e níveis baixos de proteína Polo e sua 

respectiva actividade nos cinetocoros. Por consequência, isto causa aberrações mitóticas e 

aneuploidias devido à baixa atividade das cinases mitóticas Aurora B e Mps1, dois dos alvos 

de Polo. Estes resultados enfatizam uma função in vivo na regulação da expressão e 

processamento das extremidades 3’ dos mRNAs do polo para este USE conservado. 

Demonstramos que a proteína Hephaestus (Heph) é capaz de se ligar ao USE do polo e 

mostramos que a depleção de Heph causa uma diminuição nos níveis da isoforma mais 

longa do polo e da proteína Polo. Mutantes de mosca com baixos níveis de Heph (hipomorfo 

heph2) demonstram alterações na formação das extremidades 3’ dos mRNAs de polo e uma 

redução significativa dos níveis de Polo, Aurora B e Mps1 nos cinetocoros de células em 

divisão, que também apresentam uma maior tendência para se tornarem aneuploides. Esta é 

a primeira descoberta de uma sequência reguladora cis em Drosophila melanogaster capaz 

de regular a APA do polo via a ligação de Heph, afectando assim a actividade do Polo e a 

mitose. Anteriormente, o nosso grupo demonstrou que os níveis de proteína Polo controlam 

a APA do polo via um mecanismo de auto-regulação, o que sugeria uma função ainda 

desconhecida para Polo. De forma a investigar a hipótese de Polo estar envolvido na 

selecção de locais de poliadenilação, foram utilizadas duas estirpes de mosca mutantes para 

polo: polo1, um mutante kinase dead e polo9, um hipomorfo nulo. Nós revelamos que Polo 

com uma baixa actividade reduz os níveis de expressão de CG6024, abd-b, rp49 e U6, 

directa ou indirectamente, e que baixos níveis de Polo causam um perfil predominantemente 

hipofosforilado da CTD da RNAPII em comparação com o controlo, o que indica que esta 

cinase do ciclo celular pode ter uma nova função na transcrição mediada pela RNAPII ou nos 

mecanismos co-transcripcionais em Drosophila melanogaster. Em suma, nós mostramos que 

a velocidade de elongação da transcrição da RNAPII modula a APA ao nível genome-wide 

em Drosophila melanogaster dependendo do contexto. Nós também dissecamos os 

mecanismos moleculares envolvidos na APA do polo ao caracterizar um USE ao qual se liga 

Heph e que assim controla a actividade de Polo nos cinetocoros e a progressão do ciclo 
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celular. Finalmente, descrevemos uma potencial nova função para o Polo na fosfosrilação da 

CTD da RNAPII. O trabalho descrito nesta tese fornece assim uma nova percepção sobre os 

mecanismos moleculares básicos que ocorrem durante a transcrição e APA in vivo e como 

estes actuam sinergisticamente com a RNAPII de forma a coordenar eficientemente o 

processamento das extremidades 3’ dos mRNAs, a expressão genética e a progressão do 

ciclo celular em Drosophila melanogaster.  
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INTRODUCTION 

Three functionally and structurally related [1] DNA-dependent RNA polymerases (RNAPs) 

generate the entire transcriptome of all eukaryotes. Ribosomal RNA (rRNA) genes are by 

far the most transcribed genes, a function performed by RNA polymerase I (RNAPI). RNA 

polymerase II (RNAPII) is responsible for the transcription of protein coding genes and 

some non-coding RNAs, such as long non-coding RNAs and micro-RNA precursors. 5S 

rRNA, transfer RNAs (tRNAs) and some non-coding RNAs (like 7SK RNA and U6 snRNA) 

are transcribed by RNA polymerase III (RNAPIII). 90% of all transcription in a cell is 

performed by RNAPI and RNAPIII while RNAPII is responsible for the remaining 

transcriptional output [2]. 

1. RNA Polymerase II 

RNAPII is the smallest of eukaryotic RNAPs and comprises 12 subunits (RPB1-12) [3]. 

Ten of them form a highly conserved structure around the catalytic site [4], which is 

surrounded on opposite sides by subunits RPB1 and RPB2. These two, together with 

RPB3 and RPB11 are similar in sequence and structure to other RNAPs [5, 6] and RPB5, 

RPB6, RPB8, RPB10 and RPB12 subunits are shared by all RNAPs [1]. A peripheral 

heterodimer around RNAPII made by RPB4 and RPB7 forms a stalk structure during the 

transcription cycle that binds to RPB1, RPB2 and RPB6 [7] and has regulatory potential 

[8]. 

1.1. The RNA Polymerase II Carboxy Terminal Domain code 

Different from any other RNAP [9], the largest subunit of RNAPII, RPB1, has a long, 

disordered and mobile Carboxy Terminal domain (CTD) consisting of a simple 

heptapeptide repeat or heptarepeat with the following amino acid consensus sequence: 

Tyr-Ser-Pro-Thr-Ser-Pro-Ser [10]. This CTD is unique to higher eukaryotes [11, 12], 

evolutionarily conserved [13] and many deletions and/or mutations to this domain are 

incompatible with life [14-16]. 

Mammals have a highly conserved RNAPII CTD consisting of 52 tandem heptarepeats 

while Drosophila melanogaster has 45 repeats [10], the latter of which are significantly 

divergent in sequence from its mammalian counterpart ([13, 17] and see FIGURE 1). 

RNAPII requires a CTD with a minimal number of repeats for normal function, viability and 

development in both mammalian cells and Drosophila melanogaster [13, 14, 16, 18, 19]. 

Expansion of CTD repeats is associated with an increase in organism complexity [12, 20] 

and evolutionary optimization for functional efficiency [10, 18]. 
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Consensus 
sequence 
 

 
Homo sapiens 
 
 

Mus musculus 
D. melanogaster   

FIGURE 1 | Partial sequence (from the 40th to the 94th amino acid) of the CTD tail of 

the RPB1 subunit in Homo sapiens, Mus musculus and Drosophila melanogaster. 

The key function of the RNAPII CTD tail is to serve as a signalling platform where several 

proteins with a myriad of roles in chromatin remodelling, mRNA processing, transcription 

initiation, elongation and termination dynamically and co-transcriptionally assemble by 

recognizing one or more specific RNAPII CTD modifications and/or conformations in a 

timely and sequential manner [21-23]. Also, the pattern of RNAPII CTD modifications 

created by various enzymes (mostly kinases and phosphatases, which will be explored in 

the next section) in an orderly fashion is associated to specific steps of the transcriptional 

cycle, thus creating the CTD code [24, 25]. 

Every residue of the heptarepeat may undergo reversible post-translational modifications 

during the transcription cycle. These modifications include phosphorylation [26-31], 

glycosylation, isomerisation [32], O-GlcNAcylation [33], methylation [34, 35], ubiquitination 

[36] and acetylation [35, 37]. An unmodified RNAPII CTD is flexible, unstructured and 

condensed, allowing it to evade certain modifications that would recruit specific proteins in 

an untimely fashion [38]. A modified CTD is longer and more rigid in structure [26, 39] and 

by avoiding certain conformations incompatible with the binding of certain proteins [40], 

this form of CTD may be a more competent signalling platform than the unmodified 

version of CTD. 

Interestingly, it has been reported that on average, RNAPII CTD heptarepeats usually 

tend to be single phosphorylated instead of undergoing many potential post transcriptional 

modifications, indicating that the CTD does not tend to be heavily 

phosphorylated/modified at any potential site [41]. This also suggests that the potential 

combinations of RNAPII CTD modification patterns, i.e., the complexity of the CTD code, 

are not as intricate as first expected. This is in line with the fact that it would be 

challenging for a kinase to add a second phosphate to an already negatively charged 

heptarepeat and as such, it is more likely that two modifications reside in two 

neighbouring repeats [29]. Nevertheless, considering the wide combination of potential 

modifications, the number of heptarepeats, their occasional deviation from the canonical 
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sequence and the dynamic signalling, activity and interaction of the many CTD-binding 

proteins, the RNAPII CTD is a hotspot for gene expression control and coordination of the 

transcriptional machinery throughout the entire transcription cycle. 

1.2. Transcription cycle 

To express or not to express a protein-coding gene relies on several variables: the 

corresponding DNA sequence must be accessible, RNAPII-mediated transcription 

together with excision of introns and exon ligation by splicing must proceed without 

mishaps and the resulting precursor mRNA (pre-mRNA) must be properly processed, 

cleaved and polyadenylated in order to become stable and mature before being 

transported to the cytoplasm. The careful regulation, control checkpoints and co-

transcriptional coupling of all these steps governs cellular identity by accurately and 

efficiently determining which, when, where and how much each gene is expressed. In the 

next few sections, transcription initiation, elongation and termination will be summarily 

described. 

1.2.1. Initiation 

By itself, RNAPII cannot initiate transcription. Instead, RNAPII with an unmodified CTD 

assembles upon promoters (see FIGURE 2, panel 1) in response to activation signals and 

basal transcription factors (reviewed in [42]), which can in turn recruit chromatin 

remodelers to facilitate promoter access [43] and recognize specific promoter regions that 

aid its identification and the assembly of a stable pre-initiation complex [22, 44]. Recruited 

by the Mediator complex [45], the helicase TFIIH then separates the template DNA 

strands and RNA synthesis of the first 20 nucleotides (nt) begins. As soon as this nascent 

pre-mRNA transcript emerges from RNAPII, it is immediately decorated with different 

proteins [46]. 

TFIIH includes CDK7, which phosphorylates RNAPII CTD Ser-5 and then Ser-7 close to 

the transcription start site [45, 47-52]. In turn, this releases the stabilizing Mediator 

complex [53] and contributes to the co-transcriptional recruitment and activation of the 

capping machinery [52, 54, 55] to immediately modify the nascent 5’end of the pre-mRNA 

and protect it from degradation [56, 57]. Phosphorylated by the ABL1/2 kinase [58], 

RNAPII CTD Tyr-1-P also interacts with the capping enzyme [59]. This stage is known as 

promoter clearance (see FIGURE 2, panel 2) and many interactions between RNAPII and 

basal transcription factors are lost [60]. Once one RNAPII escapes the promoter and frees 

it, another pre-initiation complex may now form. 
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However, after promoter clearance, most Ser-5-P RNAPIIs generate short transcripts, 

pause and terminate [61]. In fact, a significant percentage of promoter proximal regions of 

several mammalian and Drosophila melanogaster genes are occupied by these paused 

RNAPII [62-65] after transcribing approximately 20-60 nt past the transcription start site 

whether the gene is being actively transcribed or not [57, 62, 64, 66-68]. At this stage, 

there is a tightly controlled [69] checkpoint between initiation and productive elongation: 

promoter proximal pausing [66].  

There are two main factors responsible for the promoter proximal pausing. DRB sensitivity 

inducing factor (DSIF), which includes the SPT4 and SPT5 subunits [70], binds to the 

RNAPII in regions previously covered by basal transcription factors [71]. The negative 

elongation factor complex (NELF, comprised of NELF-A, B, D and E) sequentially binds to 

DSIF [72-75]. Both complexes stabilize the paused RNAPII in an inactive state [76], cause 

its enrichment near promoters [62, 74, 77] and inhibit transcription elongation [70, 73, 78, 

79] by distorting the catalytic site and hindering polymerization of the nascent strand [76].  

Several attempts to transcribe-pause-and-backtrack are made by RNAPII before this rate-

limiting step is successful, implying that this transition is a central step of gene expression 

control. Firstly, Positive-Transcription Elongation Factor β (P-TEFβ) [61, 80-82], which 

comprises cyclin dependent kinase (CDK) 9 and cyclin T, is recruited to promoter-paused 

RNAPIIs via several transcription factors [26, 83]. P-TEFβ phosphorylates RNAPII CTD 

Ser-2, DSIF and NELF [26, 28, 84], which promotes the release of RNAPII from its 

paused status [26] and transition into productive elongation. RNAPII CTD Ser-7-P also 

promotes efficient RNAPII CTD Ser-2-P by P-TEFβ [29]. A phosphorylated NELF no 

longer associates with DSIF while phosphorylated SPT5 becomes a positive regulator of 

elongation throughout the remainder of the transcription cycle [72, 77, 85]. Like RNAPII 

CTD Ser-5-P, phosphorylated SPT5 co-transcriptionally recruits and activates the capping 

machinery as well [86].  

Secondly, TFIIS also efficiently promotes the escape and elongation of promoter-paused 

RNAPII caused by DSIF/NELF inhibition [57, 81, 87] as there is evidence that both this 

transcription factor and NELF use mutually exclusive RNAPII sites [76]. If NELF is bound 

to RNAPII, TFIIS is unable to realign the RNAPII active site to promote elongation [57, 81, 

87]. Once NELF is phosphorylated by CDK9, it is released from RNAPII and TFIIS is now 

able to bind. 

In turn, RNAPII CTD Ser-2-P recruits other proteins with various functions in chromatin 

remodelling and mRNA processing [22, 88-93] and will subsequently cause the release of 

most of the proteins that comprised the pre-initiation complex to give rise to new binding 
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sites for different proteins [26]. RNAPII CTD Ser-2-P is prevalent throughout gene bodies 

and their 3’ends [49]. 

Promoter proximal pausing may thus serve to ensure 5’end capping is complete and 

RNAPII is properly modified and decorated with the proper mRNA processing proteins 

before proceeding into productive elongation ([72, 94-96] and see FIGURE 2, panel 3) 

while concomitantly bypassing the rate-limiting RNAPII recruitment to the pre-initiation 

complex and facilitating a quick transcription. This way, RNAPII CTD Ser-5 and Ser-7 are 

modified after successful transcription initiation and only then can RNAPII CTD Ser-2 be 

phosphorylated at the correct stage [22]. Additionally, promoter proximal RNAPII pausing 

and the proteins present in the pre-initiation complex that remain after RNAPII promoter 

clearance aid in maintaining the promoter accessible [43, 97] and may ensure a quicker 

formation of new pre-initiation complexes [95]. When the promoter proximal pausing 

control checkpoint is surpassed, RNAPII is now primed for productive elongation [89, 98]. 

1.2.2. Elongation 

Throughout the transcriptional cycle, some phosphorylation marks are dynamically 

modulated and removed. During the transition to productive elongation, RNAPII CTD Ser-

5-P and Ser-7-P are gradually dephosphorylated by the suppressor of sua7 gene 2 

(Ssu72) phosphatase [23, 99-101] while RNAPII CTD Ser-2-P is increasingly 

phosphorylated by CDK9 (see FIGURE 2, panel 4). Small CTD phosphatase 1 and RNAPII-

associated protein 2 can also dephosphorylate RNAPII CTD Ser-5-P [102, 103]. 

During elongation, CDK12 and CDK13 also phosphorylate RNAPII CTD Ser-2-P [69, 84, 

104-106]. In Drosophila melanogaster, Cdk9 is found enriched at the 5’ends of genes 

whereas Cdk12 can be detected along the gene bodies and at their 3’ends, suggesting 

that they preferentially phosphorylate RNAPII CTD Ser-2 at different stages [105, 106]. In 

humans, this distinction is not as clear as both CDK12 and CDK13 are orthologs of the 

fruit fly Cdk12 [106, 107] while BRD4 is also a RNAPII CTD Ser-2 kinase able to stimulate 

CDK9 activity [108-110]. CDK12 activity is also spurred by the presence of RNAPII CTD 

Ser-7-P [111]. 

RNAPII CTD phosphorylation does not overall interfere with the transcription elongation 

rate [22]. However, the rate of transcription elongation affects gene expression. The 

Drosophila melanogaster mutant RpII215C4 has a 50% slower transcription elongation rate 

in comparison to wild type due to a point mutation in the Rpb1 subunit of RNAPII where 

an arginine was replaced by a histidine (R741H) [112-114]. It has been shown that a 

slower transcription elongation rate deregulates mRNA 3’end processing of polo, abd-b, 
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lace, stlk, CG6024, cyclin D and histones [115, 116] and can cause premature 

transcription termination [117]. Splicing in numerous genes is also altered by a slower 

RNAPII [118, 119], including splicing of the ultrabithorax Hox gene in the fly [120]. 

RNAPII usually moves forward as it polymerizes RNA, but it can also move backwards at 

certain DNA sequences: this is called backtracking. A higher frequency of backtracking 

has been attributed to the slower fly mutant RNAPII [121]. Certain pause sites along the 

DNA template exist where RNAPII backtracks, which may result in transcription arrest 

[122-125]. As mentioned, TFIIS can reactivate RNAPII elongation by realigning the 

RNAPII active site and promote elongation [57, 87]. RNAPII tends to backtrack often 

[126], which highlights the relevance of the role of TFIIS in enhancing transcriptional 

elongation and maintaining paused RNAPIIs in a ready-to-elongate state [76, 126]. 

Concomitant with the observation that RNAPII CTD Thr-4-P is associated with the 

hyperphosphorylated isoform of RNAPII, this mark appears in gene bodies (see FIGURE 2, 

panel 4) and is enriched at the 3’ends of genes [30]. Indeed, all genes being transcribed 

contain this CTD modification [127]. Curiously, in mitotic cells, a hyperphosphorylated 

RNAPII only phosphorylated upon CTD Thr-4 has been found tethered to centrosomes 

and midbodies with the responsible kinases being PLK-1 [128], PLK-3 and CDK9 [30]. 

While the function of this modification in this context is still unclear, RNAPII CTD Thr-4 

mutants show mitotic abnormalities [128], elongation anomalies or even lethality, with 

RNAPII enrichment past the transcription start site and overall low levels across gene 

bodies and their respective 3’ends [30]. The TFIIF-associated phosphatase F-Cell 

Production 1 can dephosphorylate RNAPII CTD Ser-2-P, Ser-5-P and Thr-4-P [129, 130]. 
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FIGURE 2 | The hyper- and hypophosphorylated RNAPII CTD tail along the 

transcription cycle of a protein-coding gene. A hypophosphorylated RNAPII CTD is 

recruited to the promoter of the gene to be transcribed (panel 1). Once stable as part of a 

pre-initiation complex, RNAPII CTD Tyr-1, Ser-5 and Ser-7 are phosphorylated and RNA 

polymerization begins (panel 2), but RNAPII is quickly paused while still close to the 

promoter by the DSIF/NELF complex to allow extra CTD modifications and the 5’end 

capping of the nascent pre-mRNA (panel 3). As RNAPII starts to elongate productively, 

CTD Ser-2 and Thr-4 are also phosphorylated (panel 4). RNAPII CTD is then targeted by 

phosphatases, which returns it to its original hypophosphorylated state so it can start a 

new transcription cycle (panel 1). Adapted from [131]. 

Additionally, it has been reported that across the entire CTD, the Ser-2-P and Ser-5-P 

marks are present in identical amounts whereas Tyr-1-P and Thr-4-P are more seldom to 

find [41]. 

1.2.3. Termination 

The release of the newly transcribed transcript and disengaging of RNAPII from the DNA 

– transcription termination – is a phenomenon intertwined with mRNA 3’end formation. 

There are currently three models that attempt to explain transcription termination: the 

allosteric model [132, 133], the torpedo model [134-136] or a combination of the two [137-

142]. 
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The allosteric/anti-terminator model postulates that after RNAPII transcribes past the 

cleavage and polyadenylation (pA) site, the lack of interaction of several elongation and/or 

termination factors (such as Pcf11 [139, 143]) or the pA site itself may be destabilizing 

and lead to conformational changes that cause RNAPII to disengage [132, 144], 

consequently leading to transcription termination. 

The torpedo model [145] suggests that once the pre-mRNA is cleaved, the elongating 

RNAPII continues to transcribe past the pA signal in the presence of CDK9 and 

phosphorylated SPT5 [146], now connected to a new transcript whose uncapped 5’end 

matches the 3’end of the previously cleaved pre-mRNA [147]. Such an uncapped 

transcript can be targeted by Xrn2 [137], an exonuclease recruited close to the 

transcription start site [148] which rapidly degrades RNA [135, 144] and competes with the 

elongating RNAPII. Hypothetically, if Xrn2 catches up with RNAPII, the removal of the 

nascent RNA from the catalytic site of RNAPII will cause a conformational change that 

dissociates it from the DNA and induces transcription termination [134, 147]. A dominant-

negative mutation of Xrn2 delays transcription termination genome-wide [117]. Curiously, 

a slower RNAPII produces shorter transcripts while a fast RNAPII originated longer 

transcripts [117], which supports the premises of this model: Xrn2 can more easily catch 

up with a slower RNAPII and induce termination than with a faster RNAPII. 

Several reports show that RNAPII occupancy is not only high at promoter regions, but 

also downstream of functional pA signals [77, 149-153], which correlates with higher 

levels of gene expression [154, 155] and depends on the interaction of termination factors 

(such as CSTF77 [156]) and capping enzymes [151]. As mentioned, transcription 

termination involves mRNA 3’end processing factors [101, 157-160] whose occupancy 

also peaks at these sites (such as PCF11, CSTF and the CPSF complexes [151, 153, 

160]) and they also contribute to the accumulation of RNAPII downstream of the pA signal 

[161]. Regions downstream of functional pA signals are considered to be RNAPII pause 

sites and enhance transcription termination [162-164] mediated by Xrn2 degradation [137, 

149]. Stimulated by this RNAPII pausing past the pA signal, phosphorylation of RNAPII 

CTD Ser-2 by CDK12 also peaks at the 3’ends of genes. RNAPII pausing by the pA signal 

and increased levels of RNAPII CTD Ser-2-P may coordinate to ensure proper recruitment 

of the mRNA 3’end processing machinery [156] and/or termination [151, 156]. 

Downstream of the pA signals, RNAPII also backtracks, which is thought to promote 

premature termination via Xrn2 degradation. As expected, TFIIS is present in these 

regions [126]. Interestingly, inhibiting TFIIS caused a 50% decrease in elongation rate 

[126] and the slower RNAPII caused by the RpII215C4 mutation, which also possesses a 
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50% decrease in transcriptional rate [112-114], is thought to backtrack more slowly than 

its wild type counterpart [121]. 

At the 3’end of genes, as each transcription round finishes, the hyperphosphorylated CTD 

of RNAPII must be dephosphorylated to return it to an initiation-competent 

hypophosphorylated state (see FIGURE 2, panel 1). This allows RNAPII recycling [96] so 

that a new transcription cycle may begin. As such, it is of the utmost importance that the 

phosphorylation/dephosphorylation events are sequential and abide by this specific order 

for proper gene expression control. 

1.3. Transcription and pre-mRNA 3’end processing - co-transcriptional 

coupling 

Transcription can, in part, be described as a streamlined “RNA factory” in which every co-

transcriptional step is elaborately interdependent and coupled to each other seamlessly 

[165]. Initiation is coupled to 5’end capping, elongation is intertwined with splicing and 

termination is tethered to mRNA 3’end formation [166], but virtually every step of mRNA 

processing is interwoven, thus bestowing both feed forward and feedback coordination 

and including numerous checkpoints in between to ultimately maximize RNA production 

efficiency [167].  

The dynamic and transient interactions of CTD-binding proteins also clearly emphasizes 

the co-transcriptional coupling of the different stages of the transcription cycle [22]. As the 

enzymes responsible for the numerous steps in mRNA processing are recruited to RNAPII 

CTD together with their substrates and co-localize, this not only increases the local 

concentration of these factors nearby the nascent RNA, but also enhances the efficiency 

and yield of their respective enzymatic reactions [167]. One of the most important 

functions of RNAPII CTD tail is precisely this co-localization [168], which is thought to 

ensure that RNAPII is competent to engage in the various mRNA processes as soon as 

they occur. 

Transcription initiation and termination are linked through phosphorylation of TFIIB, which 

takes place after phosphorylation of RNAPII CTD Ser-5 [169]. TFIIB binds to mRNA 3’end 

processing proteins and the 3’ends of genes [89, 166, 168, 170]. Its mutation abrogates 

the assembly of a productive transcription complex and proper recruitment of mRNA 3’end 

processing proteins [169]. TFIID can also recruit mRNA 3’end processing proteins to the 

CTD tail [151, 171]. Additionally, transcription initiation is hindered through mutation of a 

pA signal [172]. 
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mRNA 3’end processing proteins have been identified in promoters and the transcription 

initiation complex [151, 170, 171, 173, 174] as well as the RNAPII CTD tail [89, 151, 171, 

175, 176]. mRNA 3’end formation is stimulated by RNAPII [91], affected by transcription 

initiation and elongation rates [120, 177, 178] and regulated by a plethora of proteins: the 

basal pre-mRNA 3’end machinery, but also by transcription and splicing factors [179, 

180]. Phosphorylation of RNAPII CTD Ser-2 also promotes mRNA 3’end formation by 

early recruitment of termination factors [89, 93, 160] and mRNA 3’end processing proteins 

affect this mark at the transcription start site [161], hence linking mRNA 3’end formation to 

other transcription steps [181]. 

As previously mentioned, transcription termination promotes efficient mRNA 3’end 

processing [182], both coupled by the cleavage and polyadenylation events [183]. 

Cleavage also requires the RNAPII CTD [88]. Consequently, RNAPII disengagement from 

DNA together with its recycling, and that of other proteins (such as CDK9) from the 3’end 

regions and return to the promoter, is also dependent on proper mRNA 3’end formation 

[158], which consequently promotes the initiation of new rounds of transcription and 

enhances optimal gene expression [172].  
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2. Pre-mRNA 3’end processing 

pre-mRNA 3’end processing and formation is viewed as a highly regulated step in 

transcription involved in gene expression and maintenance of important biological 

pathways [180, 184]. This process may also have a deleterious impact on human 

diseases if misregulated, such as cancer, thrombophilia, thalassemias, occulopharyngeal 

muscle dystrophy and neurodegenerative diseases [180, 185]. 

The core and auxiliary mRNA 3’end processing machinery is quite numerous and includes 

proteins of the transcription, splicing and translation machinery [181, 184, 186-189]. It is 

also well conserved between mammals and Drosophila melanogaster [190-192], with 

several paralogues of cleavage and pA factors found and characterized [193-199]. The 

molecular mechanisms behind the cleavage and pA events are reviewed in detail in [184, 

187, 188, 200, 201]. Briefly, these two co-transcriptional processes begin with 

transcription termination by RNAPII and the binding of the Cleavage and Polyadenylation 

Specificity Factor (CPSF), the Cleavage Stimulation Factor (CSTF) and Cleavage Factor I 

(CFIm) to the newly transcribed pre-mRNA, which will sequentially recruit Cleavage 

Factor II (CFIIm), Symplekin and pA polymerase (PAP). This basal multi-protein complex 

will then enable efficient cleavage and pA of the newly transcribed pre-mRNA [144, 173, 

184, 186, 202-207].  

Once properly capped at the 5’end and spliced out of introns [158], two co-transcriptional 

processes, the now stable and mature mRNA is exported to the cytoplasm and finally 

translated into a functional protein, which can undergo post-translational processing 

(reviewed in [208]).  

2.1. Auxiliary regulatory sequences 

A combination of both trans-acting proteins (such as CSTF, CFIm, CFIIm, Symplekin and 

PAP for example) and cis auxiliary elements present in the pre-mRNA 3’ untranslated 

region (UTR) operate synergistically to generate a ready-to-export mature mRNA [188, 

209]. 

2.1.1. cis-acting elements 

The hexameric sequence that comprises the pA signal is necessary for cleavage and pA 

of the pre-mRNA [210-212] that occurs 10-30 nt downstream at the cleavage site (CS, 

FIGURE 3), making it the most relevant cis-acting element in pre-mRNA 3’end processing. 

The most efficient pA [213] consists of the highly conserved [200] sequence AAUAAA for 

48% of Drosophila melanogaster genes [214] and 53% of human genes [215] (FIGURE 3). 
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Computational analyses have shown that the most frequent variation of this canonical 

signal is the AUUAAA sequence, the second most efficient pA signal [213] present in 10% 

of fly genes [214] and 17% of human genes [215] (FIGURE 3). A particularly interesting pA 

signal is AAUAUA, which occurs in only 2% of mammalian genes [215], but it is as 

common as AUUAAA in Drosophila melanogaster [214, 216] (FIGURE 3), which indicates 

that it must be biologically relevant for this species. As different pA signal sequences have 

different efficiencies [213], this suggests that each may have different impacts on mRNA 

3’end formation, mRNA and protein levels of the respective transcribed gene. Additionally, 

genes may or may not possess more than one functional pA signal, potentially generating 

several transcripts according to the usage of each pA signal [217], a mechanism 

denominated alternative polyadenylation (APA, further detailed in section 2.2). 

Other cis regulatory sequences are found both up- and downstream of each pA signal 

(FIGURE 3). They can also affect the pA signal efficiency and overall mRNA 3’end 

processing [184, 188, 218-222]. These sequences have been consistently predicted by 

bioinformatic studies [223-226]; of note, cis elements are mostly absent near silent pA 

signals, indicating that they may assist in defining and regulating nearby pA signals [227]. 

These cis regulatory sequences often contain accessible binding sites for mRNA 3’end 

processing factors, RNA Binding Proteins (RBPs) and micro-RNAs [188, 228-231] 

(FIGURE 4). These sequences, together with the mRNA 3’end processing machinery and 

regulatory proteins, cooperate synergistically to define the efficiency of a particular pA 

signal [188, 232, 233], its usage [234] and enhance its recognition [173, 235]. 

 

FIGURE 3 | cis acting elements that have key roles in pre-mRNA 3’end processing 

and formation. There are clear similarities in the machinery between mammals and 
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Drosophila melanogaster, such as the same canonical pA signal (AAUAAA) and common 

variations (AUUAAA and AAUAUA) and GU/U-rich downstream sequence elements 

(DSEs) 10-30 nt downstream of the cleavage site (CS) [214-216]. Upstream Sequence 

Elements (USEs) have often been reported in viral and human genes, but not in the fruit 

fly.  

USEs are predicted to be widespread [223, 227, 236] and have been found in several viral 

and human genes: late pA signal of simian virus 40 [237, 238], adenovirus major late 

transcription units L1, L3 and L4 pA signals [239-242], ground squirrel hepatitis virus [243, 

244], Human Immunodeficiency Virus Type 1 Long Terminal Repeat [245-248], C2 

complement [249, 250], lamin B2 [251], collagen type I Alpha 1 [252], collagen type I 

Alpha 2 [252, 253], collagen type II Alpha 1 [252], cyclo-oxygenase-2 (COX-2) [254-256], 

prothrombin F2 [236, 257], MECP2 [258], ADD1 [259], immunoglobulin M (IgM) [260], 

OAS1 [261], β-globin [262] and JunB Proto-Oncogene [263]. USEs are known to be 

generally U-rich [184], but without a consensus motif [219], poorly conserved and capable 

of regulating mRNA 3’end efficiency in a structure-, orientation- and position-dependent 

manner [184, 219, 264, 265] by serving as an extra platform for core mRNA 3’end 

processing factors [236, 256] or by recruiting more trans-acting elements [249, 250]. For 

example, the expression of the Ser protease thrombin encoded by the prothrombin F2 

gene is stimulated by a protein complex comprised of U2AF35, U2AF65 and PTBP1 

bound to its USE in response to inflammation and stress [236] while its mRNA levels 

remain unchanged [266]. Moreover, the U2AF35 and U2AF65 proteins are involved in 

splicing, a process often linked with mRNA 3’end formation [267-270]. As such, the USE-

dependent assembly of this class of proteins also suggests that these cis elements 

promote crosstalk between different mRNA processing steps [158]. 

Downstream sequence elements (DSE) also tend to be poorly conserved; nonetheless, 

they are present in approximately 80% of genes containing the AAUAAA or AUUAAA pA 

signals [271] and are normally U- or GU-rich [184, 205, 207, 227]. Additionally, they help 

define the cleavage and pA site [205, 263, 272] and influence pA signal efficiency [200, 

263, 273] in a position- and distance-dependent manner [272, 274, 275]. DSE functionality 

also seems to depend on the nt composition and not its particular sequence [207]. In 

contrast to USEs, DSEs appear to associate more frequently with more efficient pA 

signals [227] and less efficient DSEs seem to be associated with proximal and suboptimal 

pA signals [216, 227]. Some examples include the adenovirus L3 and adeno-associated 

virus [273], rabbit angiotension converting enzyme [276], simian virus 40 late pA signal 

[275, 276], MC1R [277], IgM [260], MC4R and JunB Proto-Oncogene [263]. 
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To our knowledge, there were no studies reporting the presence of USEs in Drosophila 

melanogaster until the work described in this thesis [278], but poorly conserved GU-rich 

DSEs exist [214, 216, 232, 279, 280]. The predicted distal DSE in the CG11699 gene 

significantly promotes the usage of the canonical distal pA signal and controls CG11699 

expression [281]. Disruption of this DSE by a transposable element ablates the production 

of the CG11699 long mRNA isoform, which in turn increases the expression of this gene 

by promoting the usage of the inefficient proximal pA signal. 

Curiously, a recent study has revealed that only a small percentage of mRNA cis 

elements are occupied by RBPs in vivo [282], suggesting that there is a higher regulatory 

potential inherent to a large amount of transcripts that may be further explored by trans-

acting proteins. 

2.1.2. trans-acting elements 

Correct mRNA 3’end processing requires the well-orchestrated participation of trans-

acting multi-protein complexes [181, 184, 186-189] (many of them RBPs) whose 

components act cooperatively/competitively ([231, 283] and reviewed in [144, 221, 284-

286]). 

The core cleavage and pA factors are prime examples of trans-acting elements. As soon 

as RNAPII transcribes the pA signal, CFIm binds to UGUA sequences upstream of the 

cleavage site, promoting PAP and CPSF binding [173, 206, 287]. CFIIm, which also 

contains PCF11, mediates the interaction between CFIm and CPSF [288]. The CPSF 

complex is comprised by six subunits of 30, 73, 100 and 160 kDa (CPSF30, CPSF73, 

CPSF100 and CPSF160, respectively) [203, 289], FIP1L1 [264] and WDR33 [181] and 

binds to the pA signal via CPSF30 and WDR33 [290, 291] and to PAP through CPSF160 

 [292]. PAP adenylation activity [289, 293-295], which adds approximately 200-300 

adenines to the pre-mRNA 3’end, is stimulated by FIP1L1 [264]. CSPF73, CFIm and 

CFIIm are responsible for cleaving the pre-mRNA preferentially 3’ of a CA dinucleotide 

[202, 288, 296-298]. The CSTF complex contains the 50, 64 and 77 kDa subunits 

(CSTF50, CSTF64 and CSTF77, respectively). CSTF64 binds to DSEs [205] and the 

CSTF77 subunit cooperatively interacts with CPSF160 to promote cleavage between the 

pA signal and this cis element [220, 292]. CSTF50 and CSTF77 interact directly with 

RNAPII CTD [176], which together with Symplekin, are thought to be scaffold proteins. 

Symplekin is also able to interact with CSTF64 [299]. Interestingly, the individual binding 

of these proteins and their interactions are generally stabilized and complemented by their 

combined assembly [273, 275], thus highlighting the plasticity and coupling of each step of 
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mRNA 3’end formation. The detailed molecular mechanisms of the process are reviewed 

in [184, 187, 188, 200, 201]. 

Other trans-acting proteins have regulatory roles over the mRNA 3’end processing 

mechanism while also participating in other cellular pathways, which may or may not be 

transcription-related. Embryonic Lethal Abnormal Vision (ELAVL1/Elav) is a well-studied 

RBP with functions in APA, mRNA stability and location, translation and splicing [300-

304]. In Drosophila melanogaster, Elav modulates hox APA and splicing [305] and 

promotes 3’UTR extension [305-308]. Elav is also involved in the alternative splicing of 

erect wing, armadillo [309] and neuroglian [310] and mRNA 3’end formation of rbp9 and 

fne [306]. The human polypyrimidine tract binding protein (PTBP1) is known to be 

involved in mRNA 3’end processing, alternative splicing, APA and translation of several 

genes [250, 256, 262, 266, 311-318]. Interestingly, PTBP1 competes with CSTF64 in the 

C2 complement DSE binding site to promote preferential choice of the distal pA signal 

[313], but PTBP1 can also recruit the heterogeneous nuclear ribonucleoprotein H [319] to 

the C2 complement DSE, which will in turn promote CSTF64 recruitment [273, 275, 320]. 

This indicates that PTBP1 is capable of both enhancing and inhibiting APA by interfering 

with the assembly of the mRNA 3’end machinery [250, 313]. Hephaestus (Heph, the 

Drosophila melanogaster PTBP1 paralogue) regulates embryo dorso-ventral patterning 

and germline-soma signalling [321-324], spermatid individualization [325, 326], the 

splicing and expression of transcripts encoding for proteins involved in spermatogenesis, 

such as Mlc1 [326], oskar alternative splicing, mRNA levels and translation [327] and 

Gurken protein location [322], but there is no known function in APA for this species.  

The consensus binding motifs of RBPs are small and have a notoriously low complexity 

and limited diversity [328], i.e., they are generally GU- or U-rich, but with no defined 

sequence with the exception of the pA signal hexamer already mentioned. This suggests 

that the same or overlapping cis sequences are often targeted by different competing 

RBPs [226] that can interact with other trans-acting proteins either positively or negatively, 

leading to a dynamic and complex post-transcriptional regulation ([313, 329, 330] and 

reviewed in [331]). This indicates that each network of trans elements that transiently 

assemble and re-assemble on the cis-acting elements of each transcript is probably 

unique and highly plastic, depending on different stimuli or cellular context [329, 332-334], 

3’UTR secondary/tertiary structure [282, 335-337] and expression [287, 338, 339] and/or 

post-translational modifications of RBPs and/or basal mRNA 3’end processing proteins 

[340, 341].  



 
24 

Together with their complementing trans-acting elements, the joint and highly ordered 

regulation of all cis sequences (efficient, inefficient or a mixture of both [232]) of a 

particular 3’UTR will consequently confer different properties and functions to the mRNA 

molecule [342], thus modulating its expression [335], decay [343, 344], stability [345-348], 

translation [330, 349-351], protein-protein-mRNA interactions [304, 352, 353] and cellular 

localization [304, 354-360] and will ultimately determine the fate of any given transcript 

(FIGURE 4). 

 

FIGURE 4 | Regulation of mRNA metabolism via the various cis- and trans-acting 

elements present in two 3’UTRs. Core and auxiliary proteins act cooperatively or 

competitively for cis element binding to aid in the efficient cleavage, pA and processing of 

the new pre-mRNA. An RBP that enhances transcript stability (in blue) increases its half-

life, which in turn promotes its translation into protein. Other RBPs may lead the mRNA to 

specific subcellular locations (in purple) via protein-protein interactions (in grey). 

microRNAs (represented in black) may induce mRNA degradation via exonucleases. 

Adapted from [361]. 

For instance, during embryonic development, 71% of Drosophila melanogaster transcripts 

present spatially distinct patterns which correlate with the subcellular localization and 
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function of their respective proteins [362], indicating that mRNA-dependent localization is 

crucial from early developmental stages. oskar mRNA local translation at the posterior 

pole in Drosophila melanogaster oocytes promotes the posterior patterning of the embryo 

[363-365] and involves two independent cis-acting elements with different functions and 

different trans-acting proteins. This transcript is first transported from nurse cells to the 

oocyte by the interaction between the microtubule motor protein Dynein and a stem loop 

located in the oskar 3’UTR [366]. Once located in the oocyte, another interaction between 

a localization element in oskar 3’UTR allows its binding to another microtubule motor 

protein, Kinesin-1, which then transports oskar to the posterior pole where it will be locally 

translated [367, 368]. 

2.2. Alternative Polyadenylation 

As previously mentioned, APA occurs when there is more than one functional pA signal 

along the gene, thus potentially producing several mRNAs according to the usage of each 

pA signal and contributing to the fine-tuning of gene expression control [217]. Contrary to 

alternative splicing, which is ubiquitous in humans, but atypical in Saccharomyces 

cerevisiae [369], APA is an evolutionarily conserved phenomenon across all eukaryotes 

[370], occurring in over 70% of human genes [215, 371, 372] and 78% of Drosophila 

melanogaster genes [280].  

APA may take place in the coding region of a gene if pA signals are located along this 

sequence (coding region-APA). In coding region-APA, both the coding and non-coding 

sequences of the transcripts are different and they will likely synthesize different proteins 

that contribute to proteome diversity from a single gene (FIGURE 5, top panel) as already 

reported for alternative splicing [373, 374]. 

APA can also occur in the 3’UTR if there are pA signals located at this region (3’UTR-

APA), which leads to the generation of mRNA isoforms with different 3’UTR lengths. In 

3’UTR-APA, the various transcripts will produce the same protein as their coding capacity 

is unaffected (FIGURE 5, bottom panel), but they may have different mRNA metabolisms 

and regulate gene expression through the presence and/or absence of different cis 

regulatory elements (and respective trans-acting elements) in their different 3’UTRs [342], 

which may influence protein levels. Thus, transcripts with longer 3’UTRs have more cis 

regulatory sequences and are more likely to be post-transcriptionally regulated. The 

generation of diverse mRNAs with the same coding region but different 3’UTR lengths 

through APA could therefore result in extensive post-transcriptional mRNA 3’end 

regulation [201, 234, 285, 342, 361, 370, 375]. 
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FIGURE 5 | Coding region-APA and 3’UTR-APA. Different proteins are produced when 

APA affects the coding region of the gene (coding region-APA, top panel). If the pA 

signals are in the 3’UTR, APA generates various mRNA isoforms that differ in the length 

of their 3’UTR, but the same protein is produced (3’UTR-APA, bottom panel). Adapted 

from [234]. 

Although the mechanism behind the usage of one pA signal over another is still unclear, 

the ‘first come, first served’ model is generally applied: proximal pA signals are chosen in 

detriment of distal ones because RNAPII and the mRNA 3’end processing machinery 

recognize them first and will assemble and cleave the transcript near the proximal pA 

signal instead of at distal pA signals [165, 220]. Curiously, distal pA signals are more 

prone to have canonical and therefore more efficient sequences than proximal pA signals, 

which tend to have variants of the AAUAAA hexamer [215, 263, 376] and a higher 

frequency of nearby DSEs [263]. Hypothetically, the less efficient proximal pA signals 

allow more flexibility for regulation and the influence of more cis- and trans-acting 

elements [207, 232] whilst distal pA signals ensure correct termination of the transcript 

[285]. Indeed, the lack of efficiency of a pA signal can be surpassed by the presence of cis 

elements [234, 263]. Additionally, this level of regulatory fine-tuning not only confers 

different means to control gene expression, but it also minimizes the chances of mRNA 

3’end processing defects and/or overcomes the potentially fatal flaw of having one unique 

sequence for mRNA 3’end processing, pA and cleavage governed by a single enzyme as 

both could be more or less easily eliminated by mutation overtime [232]. 
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As such, not only is APA deterministic, but it is linked to many important physiological 

events as reported by several genome-wide studies. Preferential choice of proximal pA 

signals is commonly associated with a proliferative cellular state [377, 378], including 

cancer [348]. In contrast, differentiated cells have the opposite trend, preferentially using 

more distal pA signals and producing transcripts with longer 3’UTRs [369, 372, 379-382]. 

APA is also known to be development- [371, 383, 384] and cell-type specific [261, 385, 

386] and, similar to alternative splicing [387], it is also tissue-specific [255, 280, 324, 329, 

369, 382, 388], a characteristic shown to be conserved within the same tissues from 

different species [279, 372].  

While APA is widespread across eukaryotes, its genome-wide impact is still ambiguous, 

but it is a clearly important mechanism of gene regulation for many genes. 

An example of coding region-APA in cellular differentiation is the immunoglobulin heavy 

chain class shift [389-391]. Plasma cells secrete IgM by selecting a proximal pA signal 

and immature B cells express choose a more distal pA signal that encodes the IgM form 

with a transmembranar domain [332]. This pA switch is also splicing dependent [392] and 

modulated by CSTF64 levels. CSTF64 levels are low in immature B cells, allowing the 

recognition of the more efficient distal pA. In contrast, plasma cells express high levels of 

CSTF64, promoting the usage of the proximal, but less efficient pA signal via the influence 

of the IgM DSE [338, 393]. 

COX-2 regulation by 3’UTR-APA depends of a tripartite USE upstream of its proximal pA 

signal and is tissue specific [255]. PTBP1, p54(nrb), PSF and U1A are trans-acting 

proteins that recognize the COX-2 USE and modulate the mRNA 3’end formation and pA 

signal usage of this gene by promoting the production of the shorter COX-2 transcript 

[256] despite COX-2 pA1 (AUUAAA) presenting lower pA efficiency [213] than the 

canonical COX-2 pA2. 

In Drosophila melanogaster, the trans-acting RBPs CSTF64 and Sex-lethal share similar 

consensus binding sequences [207, 394] and compete to modulate enhancer of 

rudimentary 3’UTR-APA [395]. In somatic cells, CSTF64 promotes preferential choice of 

the inefficient proximal pA signal and protein production by binding to three GU-rich DSEs 

[329]. In the female germline, the female-specific Sex-lethal competes with CSTF64 for 

the three DSEs downstream of the proximal pA signal, promoting distal AAUAAA [395] 

signal usage and resulting in repression of protein translation of the transcript [329]. 

Another example of 3’UTR-APA and its biological consequences in Drosophila 

melanogaster is the polo gene, which encodes a key mitotic kinase [396, 397]. This gene 
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produces two mRNA isoforms through a tightly regulated differential usage of two pA 

signals [397]. Although the two mRNAs differ in their 3’UTR lengths despite producing the 

same protein, the longest polo isoform is more physiologically relevant as it is both 

necessary and sufficient for fly viability and known to produce the majority of Polo protein 

in the cell ([115] and FIGURE 6). Flies without this isoform die at the pupae stage due to a 

lethal failure in abdominal morphogenesis and flies with a mutated polo pA1, hence 

sustaining deficient polo APA, present an abdominal phenotype consistent with low levels 

of Polo protein. 

polo APA regulators are still mostly unknown, but RNAPII elongation rate is one of them: 

there is a preferential shift to the proximal pA signal [115] in the slower RNAPII mutant fly, 

RpII215C4 [113, 398]. Polo protein levels alone also regulate polo APA. Overexpression of 

Polo in third instar larvae leads to a preferential usage of polo pA1 signal, producing the 

short polo mRNA isoform that produces low amounts of Polo ([115] and FIGURE 6). These 

data indicate that Polo protein levels regulate polo expression via an autogenous 

feedback loop by promoting polo pA1 choice when too much Polo protein is present in the 

cell. This type of auto-regulation is also a characteristic reported for several mammalian 

and fruit fly RBPs and their respective post-transcriptional mRNA regulation [399, 400]. 

 

FIGURE 6 | Drosophila melanogaster polo APA regulation. The short polo isoform does 

not generate enough Polo protein to be compatible with life. Instead, most Polo protein is 

produced from the translation of the longest polo mRNA, but when Polo is overexpressed, 

the cell preferentially generates the shorter polo mRNA to compensate. 
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3. A Story about Polo 

Polo is a cell cycle protein kinase involved in the regulation of cell division. Polo is 

conserved in all eukaryotes and its amino-terminal domain is most closely related to the 

catalytic domain of a Ser/Thr kinase [397, 401], but it also contains two Polo-Boxes at the 

carboxy terminal half which determine subcellular localization and regulate the catalytic 

kinase domain via auto-inhibition [402-406]. In addition, their unique sequence motif is 

responsible for recognizing phosphopeptides [407-409]. 

Polo was initially identified by screening of female sterile mutations along the polo locus 

that showed aberrant mitoses during embryonic [396] and larvae development [397]. 

Homozygous polo1 females, a kinase dead mutant originated by a single point mutation 

[396], are capable of laying eggs when crossed with homozygous males, however the 

embryos never cellularize. They are thought to be blocked during the syncytial mitotic 

cycles, which ultimately leads to their death [396]. It was therefore postulated that polo1 

homozygous larvae reach adulthood because their heterozygous mother provided enough 

Polo protein for its development that even while it is gradually replaced by the mutant 

protein, it is sufficient for the organism to survive until later stages [396]. This indicates 

that this protein kinase is crucial at all stages of development in Drosophila melanogaster 

[397]. 

The null mutants polo9 and polo10 were characterized as the two strongest hypomorphic 

alleles for Polo [410]. Polo protein is barely detectable in either mutants’ neuroblasts while 

the polo1 variant Polo levels are similar to those of wild type [411], and this depletion 

culminates in lethality at the third instar larval stage. 

3.1.  Phosphorylating: What, When and Where? 

Expression of polo is abundant in tissues and developmental stages in which there is 

extensive proliferation [115, 412] and is especially high in syncytial embryos and adult 

females (as seen by the orange bars in FIGURE 7). This is a pattern that has been 

previously observed for other cell cycle-specific proteins [413-420]. However, during 

mitosis in the syncytial Drosophila melanogaster embryos, a cyclical activity increment far 

surpasses the amount of protein that can be accounted by de novo synthesis, implying 

that post-translational modifications most likely have an important role in regulating Polo 

activity [411, 421]. Accordingly, Polo protein does not appear to significantly decrease 

between cell cycles [422]. 
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FIGURE 7 | modENCODE developmental expression data for polo by RNA-Seq [412]. 

Polo kinase is most expressed in early embryonic stages and adult females (orange 

coloured bars depict very high expression levels). 

Polo has multiple roles during mitosis [423] and displays a highly dynamic localization 

pattern regulated in a cell cycle-dependent manner. Polo remains mostly in the cytoplasm 

during interphase and associates with condensing chromosomes and centrosomes at the 

onset of prophase, which is suggestive of a role in both the formation and maintenance of 

the bipolar spindle [397, 424]. As prometaphase begins, Polo plays an important role by 

accumulating at the kinetochores and assisting in kinetochore-microtubule attachments 

[425, 426]. During anaphase, it localizes to the spindle midzone [424, 427-429] in 

agreement with a specific association between Polo and microtubules [411]. Finally, 

during telophase, Polo remains concentrated along the post-mitotic bridge and midbody 

[427, 428]. 

Lack of Polo leads to a spindle assembly checkpoint (SAC)-independent mitotic arrest in 

the Drosophila S2 cell line [430] as co-depletion of Bub1-related kinase (BubR1) and 

Mad2 (both of which are part of the SAC complex [431-435]) did not release cells from 

their arrested state. In fact, inhibition of Polo led to a failure in Mad2 recruitment and 

assembly of the mitotic checkpoint complex, which are known to be Monopolar spindle 1 

(Mps1) dependent [430, 436, 437]. This suggests that Polo is necessary for the SAC 

signalling pathway, but not for its activation. To further test this hypothesis, the authors 

observed a failure in Mps1 recruitment at unattached kinetochores after depleting Polo. 

The Mps1 kinase accumulates at kinetochores to reach its full activation state via trans-

phosphorylation [438, 439], which in turn culminates in an efficient onset of SAC [432-



 
31 

434]. In contrast, Polo localization and activation were unaffected after depletion of Mps1 

or other components of the mitotic checkpoint complex [430].  

A similar effect was shown upon Aurora B inhibition. Aurora B is necessary for effective 

activation of Polo by phosphorylation on its activation T-loop (Thr182) at the onset of 

mitosis at centromeres [440] and by promoting its dissociation from its inhibitor, Map205 

[422, 441], among other roles [442-444]. In the absence of Aurora B, a constitutively 

active Polo mutant alone was able to correctly recruit key components of the mitotic 

checkpoint complex, such as Mps1, to kinetochores. This suggests that active Polo is 

responsible for this role in SAC signalling and that it does not need further action from 

Aurora B to perform its downstream functions. It is plausible that Polo and Aurora B are 

part of a positive feedback loop so as to ensure a correct mitotic checkpoint complex 

recruitment, which then leads to a full SAC activation due to the presence of Mps1 at 

unattached kinetochores [430]. 

Polo also co-localizes and co-immunoprecipitates with Hsp90, which increases protein 

stability and interactions by modulating its physiological conformation [445, 446]. 

Furthermore, Polo is destabilized by loss of Hsp90, decreasing by 90% in 48h [447]. The 

Hsp90 co-chaperone, Sgt1, also seems to be essential to this stabilization as lack of this 

protein derived the same effects as the loss of Hsp90 function, which suggests that Hsp90 

probably requires Sgt1 to properly stabilize Polo [448]. 

3.2. Polo versus Polo-like kinases 

Polo-like kinases (PLKs) are part of a highly conserved family of enzymes with a large 

variety of roles during the entire the cell cycle, most particularly during mitosis [397, 449-

453]. Many paralogues in several eukaryotes have been described, with varying degrees 

of similarities to polo (FIGURE 8): the Cdc5 protein in Saccharomyces cerevisiae [454], 

Plo-1 in Schizosaccharomyces pombe [455], Plx-1 in Xenopus [456] and several mouse 

and human PLKs [449, 457-460]. 
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FIGURE 8 | Schematic representation of Polo-like kinases from several different 

eukaryotic species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, 

Drosophila melanogaster, Xenopus laevis and mammals. PBD1 (in turquoise) and 

PBD2 (in light blue) refer to Polo-box domain 1 and Polo-box domain 2, respectively. PLK-

5 is not included as it lacks a kinase domain [461]. PLK-1 (in bold) is the most similar 

paralogue to the original Polo kinase (also in bold). Adapted from [462]. 

PLKs undergo several dynamic changes regarding their abundance, activity and 

localization during cell cycle progression, most likely reflecting their different roles at 

different timings (FIGURE 9 and [450, 463]). PLK activity increases during G2 phase and 

peaks at the onset of mitosis [427, 428, 459, 464] where they act upon centrosomes, 

spindle formation and contribute to both the activation and inactivation of the cyclin-

dependent kinase 1 (CDK1)-cyclin B complex [421, 452, 465-469]. 

During interphase and early prophase, Polo-like kinase 1 (PLK-1) is involved in 

centrosome maturation and during prophase and metaphase, it also promotes microtubule 

nucleation at the spindle poles (FIGURE 9 and [427, 470-472]). At this stage, the kinase co-

localizes at kinetochores and appears to be a regulator of SAC components and the 

metaphase-anaphase transition (FIGURE 9 and [473, 474]). At the onset of anaphase, 

PLK-1 is found within post-mitotic bridges (FIGURE 9), suggesting a role in cytokinesis 

[427, 428, 449, 475-480] and a substantial fraction of PLK-1 remains in the new G1 phase 

[481]. PLK-1 expression correlates with its activity levels and is equally cell cycle-

dependent: cells in interphase show basal expression which then starts to increase at the 



 
33 

end of the S phase and throughout the G2 phase, with a peak in mitosis [428, 458, 482, 

483], suggesting that one of the key aspects of PLK-1 regulation is at the transcriptional 

level. 

Recently, it has been shown that PLK-1 expression is upregulated by heterogeneous 

nuclear ribonucleoprotein K (hnRNPK) and downregulated by two microRNAs (miR-149-

3p and miR-193b-5p) via competitive binding to the same C-rich sequence in the PLK-1 

mRNA 3’UTR [484]. This dynamic post-transcriptional regulatory mechanism is also 

dependent on the levels of hnRNPK and each of the two microRNAs. 

 

FIGURE 9 | The various functions of PLK-1 during mitosis. Adapted from [463]. 

Interfering with these kinases using antibodies or Polo paralogue mutations led to 

abnormal spindles in Xenopus [485], Schizosaccharomyces pombe [455] and 

Saccharomyces cerevisiae [454, 486], as well as with HeLa (immortalized) and Hs68 

(non-immortalized) human cells [470], highly similar to the effect of the polo1 mutation in 

Drosophila melanogaster [396]. In the absence of PLKs, mitotic cyclins fail to be 

destroyed, indicating that they are important regulators of the anaphase-promoting 

complex/cyclosome (APC/C) [451, 465-468, 487, 488]. Nevertheless, it appears that even 
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in the absence of PLK-1, APC/C is still activated [426, 489]. As such, a backup 

mechanism must be present to compensate for the lack of phosphorylation by this kinase. 

Interestingly, Polo kinase has a peak in enzymatic activity only during late mitosis [421], 

an observation that questions Polo requirement in the maintenance and/or formation of a 

functional bipolar spindle [397, 424]. However, this difference may not be incongruous: in 

Drosophila melanogaster, centrosome separation begins during telophase of the previous 

cell cycle, corresponding to the peak of Polo activity. This process occurs during prophase 

in mammalian cells, which also coincides with the peak of the PLK-1 enzymatic activity, 

the most similar PLK of the family in relation to Polo as shown in FIGURE 8 [475]. 

In contrast with Polo, the role of PLK-1 in SAC signalling is not yet fully understood. Some 

authors [473, 490] state that PLK-1 is a SAC regulator as its downregulation significantly 

diminished the levels of kinetochore-associated proteins (such as Mad2), while others 

showed that inhibition or depletion of PLK-1 led to Mad2 and BubR1 accumulation as well 

as a SAC-dependent prometaphase arrest. This suggests that PLK-1 might be required at 

the onset of anaphase, but it does not seem to be essential for SAC [425, 426, 480, 491-

495]. With the checkpoint silenced, PLK-1-depleted cells do exit mitosis, bypassing 

anaphase and cytokinesis [426, 480, 491].  

Human PLK-1 is ubiquitinated in late mitosis [481, 496, 497]. In Drosophila melanogaster 

however, Polo kinase levels do not fluctuate significantly during cell division in the early 

embryo, although this difference might be due to the absence of the G1 phase in syncytial 

mitotic cycles [498]. Similarly to Drosophila melanogaster embryos, cyclical increase in 

PLK-1 protein activity during mitosis in cultured human cells also exceeds the amount of 

protein able to be produced de novo, implying that post-translational modifications have a 

focal role in regulating its activity [411, 421, 428]. Indeed, while PLK-1 protein levels 

increased four-fold after a G1/S phase arrest, its enzymatic activity increased about 26-

fold [428].  

The enzymatic activity of PLKs can be regulated by auto-inhibition via their Polo-box and 

kinase domains [408, 476, 499], SUMOylation [500], phosphorylation, either through other 

protein kinases [409, 428, 476, 501-508] or even auto-phosphorylation [427] or an 

antagonistic phosphatase [501, 506].  

For optimal activation, PLK-1 requires the highly conserved Thr210 residue [498] to be 

phosphorylated [409, 509-512] which will induce a conformational change [502]: hindering 

this process results in the abrogation of PLK-1 activity [503]. Lee and collaborators [513] 

showed that by mimicking a constitutive phosphorylation on Thr210 in S. cerevisiae 



 
35 

increased the activity of the Cdc5 (the paralogue of PLK-1) protein by four-fold. Moreover, 

co-depletion of a phosphatase adaptor in PLK-1-depleted cells minimized the mitotic 

aberrations and resulted in the increase of Thr210 phosphorylation [506]. 

Two separate studies [503, 505] in mammalian cells unveiled that Aurora A, necessary for 

the G2/M transition [514], as well as an auxiliary protein, Bora, are both responsible for 

Thr210 phosphorylation. Mitotic entry was delayed and Thr210 phosphorylation was 

suppressed [503, 505] by depleting or inhibiting Aurora A alone. Bora knockdown delayed 

mitotic entry as well as Thr210 phosphorylation, but contrary to Aurora A, it failed to 

activate PLK-1 [505]. This implies that Bora is only responsible for promoting 

phosphorylation at this site, which then leads to the activation of the enzyme. 

Nevertheless, combining both Bora and Aurora A increased PLK-1 activity synergistically 

by seven-to-nine-fold, suggesting that binding of Bora controls the accessibility to PLK-1 

Thr210 by Aurora A [503, 505] via a change in the conformation of PLK-1 where the Polo-

box domain is inhibiting the catalytic domain [499, 513]. Although Drosophila 

melanogaster Bora has been described as required for proper Aurora A activation and 

performance [515], PLK-1 appears to be the single target of Bora in mammalian cells 

[503, 505]. Further analysis showed that both the kinase and Polo-box domains of Polo 

can interact directly with Bora. Interestingly, PLK-1 is also capable of regulating Aurora A 

by promoting Bora degradation [516, 517]. In the absence of Bora or Aurora A, PLK-1 is 

still activated in late mitosis [503]. As PLK-1 is necessary for cytokinesis following Bora 

degradation, it is plausible that Thr210 should be targeted once again by another kinase 

[498]. 

In Drosophila melanogaster, Polo is phosphorylated in Thr182 at its activation loop during 

early mitosis, which allows optimal activation and normal Polo functions at kinetochores. 

This action is catalysed by both Aurora B and Inner centromere protein (INCENP) at the 

centromere [440], where both of these proteins accumulate [518, 519] and control crucial 

cell cycle processes [520-524]. After Polo is recruited to the centromeres of chromosomes 

whose kinetochores are not under tension, it binds to INCENP and promotes its 

phosphorylation by Aurora B. Once fully activated, Polo locates at the outer kinetochores 

in prophase and prometaphase. Thus, INCENP may serve as a platform to link the roles 

of both Aurora B and Polo at the kinetochores [440]. Interestingly, the levels of Thr182-

phosphorylated Polo are not affected at the centrosomes [440], suggesting that another 

kinase may be responsible for the activation of Polo at this location similar to what has 

been proposed for the Aurora A-independent phosphorylation PLK-1 requires during 

cytokinesis [498]. 
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3.3. Polo-like kinases: more than just cell cycle regulators 

Fairley and colleagues [525] demonstrated that overexpressing PLK-1 led to an increase 

of RNAPIII-transcribed tRNA and 5S rRNA levels. Considering the difference in the overall 

enzymatic activity during cell cycle progression, PLK-1 was added to extracts of cells 

arrested either in the S phase or mitosis. tRNA gene levels increased in the S-arrested 

cells, but not in mitotic cellular extracts. These results suggest that PLK-1 is involved in 

the transcription of these genes, hence RNAPIII regulation, in a cell cycle-dependent 

manner. Overexpression of a subunit of the Transcription Factor for RNAPIII B (TFIIIB), 

Brf1, also resulted in an increase in tRNA and 5S rRNA levels in interphase cells caused 

by PLK-1-dependent phosphorylation, which enhances Brf1 transcriptional activity. In 

mitotic cells, PLK-1 phosphorylates another site on Brf1, repressing this effect. These 

results suggest that, according to the level of PLK-1 activation, this kinase has different 

effects upon RNAPIII regulation.  

It has also been demonstrated that RNAPII CTD Thr-4 is phosphorylated by PLK-1 

specifically during mitosis and that this hyperphosphorylated exclusively binds to 

centrosomes and the midbody [128], known locations of PLK-1 in metaphase and 

anaphase [427, 428, 470-472, 475, 480]. Cell cycle progression in RNAPII CTD Thr-4 

mutants is compromised, suggesting that the PLK-1-dependent phosphorylation of 

RNAPII CTD Thr-4 and its tethering to centrosomes are a requirement for normal mitosis 

[128]. However, even though Thr-4-P is a modification mark associated with an 

elongation-committed RNAPII common at the 3’end of genes and proven to be essential 

for cell survival [30] and mitotic progression [128], the mechanism behind this recruitment 

to the centrosome and its physiological role is still unclear.  

More functions for PLK-1 outside of mitosis have emerged. Plo-1, the Polo paralogue of 

fission, yeast can control its own expression, along with other cell cycle genes [526]. PLK-

1 directly activates the transcription factor Forkhead Box M1 (FoxM1) needed for the 

correct expression of several cell cycle regulators such as PLK-1 itself [527-529]. It also 

inhibits the anti-proliferative transcription factor Forkhead Box O1 (FOXO1) and the 

respective transcription of its pro-apoptotic target genes [530]. Inhibiting PLK-1 enhances 

non-viral transgene expression in cancer cell lines [531]. PLK-1 phosphorylates the 

CCCTC-Binding Factor, consequently affecting the expression of many genes [532]. 

Interestingly, it has also been reported that PLK-1 binds to the same binding region in 

RNAPII CTD tail as cyclin T [533], a subunit of the P-TEFβ, thus possibly affecting RNAPII 

transcription elongation. CDK9 can also be separated from its cyclin by PLK-1-mediated 
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phosphorylation of the latter [533], suggesting a link between cell cycle-dependent 

transcriptional silencing control and promoter proximal pausing. 

With growing evidence that PLK-1 directly phosphorylates the RNAPII CTD tail [128], 

regulates RNAPIII activity [525] and modulates the activity of some genes [526-532], it is 

plausible that Drosophila melanogaster Polo may also phosphorylate RNAPII, thus 

affecting its activity, APA and/or transcription in general (FIGURE 10), especially 

considering that Polo levels alone regulate polo APA [115], a co-transcriptional event in 

which RNAPII plays a part [115, 153, 280, 534, 535]. 

 

FIGURE 10 | A possible role of Polo in post-translational modifications on the 

heptapeptide repeat of RNAPII CTD tail. We hypothesise that like PLK-1, Polo may 

phosphorylate one or more amino acids of RNAPII CTD tail, in particular Ser and/or Thr. 

  

Polo 
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4. Aims 

To our knowledge, the genome-wide effect of a slower elongation transcription rate in 

Drosophila melanogaster mRNA 3’end processing has not been yet investigated. In 

addition, mRNA 3’end processing of the fundamental Polo kinase has been poorly 

described and its role upon transcription and beyond mitosis has rarely been the focus of 

the latest research. This project aims to study APA in Drosophila melanogaster at the 

genome-wide level, to unveil the molecular mechanisms behind the regulation of polo 

APA and gene expression, and to investigate a possible new function for Polo. 

Specifically: 

1. To describe the genome-wide impact of a slower RNAPII transcription elongation rate 

on APA; 

2. To disclose putative cis regulatory elements and trans acting factors involved in polo 

APA; 

3. To investigate if Polo has a function in RNAPII CTD phosphorylation, transcription and 

APA. 
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MATERIALS AND METHODS 

1. Drosophila melanogaster animal model 

1.1. Stocks and maintenance 

The RpII215C4, carrying the RNAPII C4 allele [114], and the heph2 hypomorph mutant flies 

were obtained from the Bloomington Drosophila Stock Center (Indiana University). The 

heph2 mutant was balanced with TM6B. polo9/TM6C flies were kindly provided by David 

Glover (Department of Genetics, University of Cambridge). Wild type w1118, and polo 

kinase dead mutant w1118;If/CyO; polo1 eB/TM6B flies were kindly provided by Claudio 

Sunkel. The transgenic Mz1061-Gal4;gfp-polo;polo9/TSTL (also referred to as gfp-

polo;polo9/TSTL) as well as w1118;gfp-poloΔpA1;polo9/TM6B (referred to as gfp-

poloΔpA1;polo9/TM6B) flies were previously described [115, 448]. All stocks were grown 

at either 18 or 25°C using standard culture conditions and media, with or without 

antibiotics. 

1.2. Generation of gfp-poloΔUSE;polo9-/- flies 

The transgenic strain w1118;gfp-poloΔUSE1;polo9/TM6B was created by Pedro Pinto and 

obtained by injecting w1118 embryos with the respective transgene according to [536] and 

selected by mating the transgenic flies with a strain carrying a balancer chromosome and 

dominant markers, w1118;Sco/SM6. These were then mated with w1118;If/CyO;MKRS/TM6B 

and w1118;If/CyO;polo9/TM6C to generate the w1118;gfp-poloΔUSE;polo9/TM6B (also 

referred to as gfp-poloΔUSE;polo9/TM6B) strain. Two viable and fertile homozygous lines 

were obtained with the transgene inserted on the second chromosome. 

1.2.1. gfp-poloΔUSE;polo9-/- abdomen phenotype analysis 

gfp-poloΔUSE;polo9-/- individuals were identified by the Hu marker and every abdominal 

defect in comparison to heterozygous individuals was considered as an abnormality. 

These defects included fewer or missing bristles and missing, malformed or nicked 

tergites in both males and females. 

1.2.2. gfp-poloΔUSE;polo9-/- abdomen preparation 

Flies were dissected between the thorax and the abdomen, carefully removing all 

appendages. Abdomens were then incubated in a lactic acid:ddH2O (3:1) solution 

and incubated overnight at 60ºC, mounted in fresh lactic acid:ddH2O (3:1) solution 

and incubated overnight in a 60ºC oven. 
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1.3. Drosophila melanogaster embryo collection 

Adults were placed in a collection cage with apple juice-agar plates supplemented with 

yeast. They were incubated for 24 h at 25°C, then the 0-24 h embryos were washed with 

deionized water and exposed to 50% bleach with rotation for no more than 5 minutes to 

remove the chorion. Dechorionized embryos were then washed with Phosphate Buffer 

Saline (PBS) and transferred to an eppendorf to be further processed or stored at -20°C. 

1.4. Drosophila melanogaster third instar larvae brain collection 

Wandering third instar transgenic or mutant larvae were collected and compared to w1118 

larvae to ensure homozygous individuals were obtained. After 4-60 individuals were 

selected from each strain, brains were dissected using tweezers and transferred to an 

eppendorf with either PBS or TRIzol (Ambion) to be processed immediately after or stored 

at -20°C. 

2. Protein Analyses 

2.1. Western blotting 

Drosophila melanogaster embryos or 20 third instar larvae brains were homogenized in 50 

mM trishydroxymethylaminomethane (Tris)-HCl pH 7.5, 1 mM ethylenediaminetetraacetic 

acid (EDTA), 10 glycerol, 50 mM NaF, 5 mM sodium pyrophosphate, 1 Triton-X 100, 1 

mM 1,4-dithiothreitol (DTT, Thermo Fisher Scientific), 0.1 mM phenylmethylsulfonyl 

fluoride (PMSF, Sigma-Aldrich), 1:100 Na3VO4 (Merck) and protease inhibitor cocktail 

(Roche or Sigma-Aldrich). The extracts were incubated for 20-30 minutes at 4˚C with 

rotation and centrifuged at 8000 rotations per minute (rpm) for 5 minutes to remove 

debris. Total protein concentration was assessed by the Bradford protein assay (Bio-Rad 

Protein Assay Dye Reagent Concentrate). All gels were loaded with 30-50 µg of protein 

extract per well. 

Western blots for Polo detection were separated in 7.5% (resolving) and 5% (stacking) 

Tris-glycine sodium dodecyl sulfate (SDS)-polyacrylamide (Bio-Rad) gels at 120 V for 

1h30 and transferred to a nitrocellulose membrane (Novex, ThermoFisher Scientific) with 

the iBlot Gel Transfer Device (Invitrogen) using the P3 parameters for 7 minutes. After 1h 

blocking in 5% non-fat dried milk in Tris-Buffered Saline (TBS, Merck) and 0.01% 

Tween20 (VWR), membranes were incubated overnight at 4ºC with mouse anti-Polo 

antibody (MA294, 1:40, kind gift from Claudio Sunkel) and mouse anti-α-tubulin DM1A 

(1:20000, Sigma-Aldrich) and then incubated with goat anti-mouse immunoglobulin G-

horseradish peroxidase (IgG-HRP) (1:20000, Santa Cruz Biotechnology) in 5% non-fat 
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dried milk in TBS and 0.01% Tween20 for 1h. Signal was detected with the Amersham 

enhanced chemiluminescence (ECL) Prime Western Blotting Detection Reagent (GE 

Healthcare), the Amersham Hyperfilm ECL (GE Healthcare) and the Fuji Medical Film 

Processor FPM-100A together with the Anatomix developer and X-Fix fixer (Fujifilm 

Europe GmbH). Protein semi-quantification was performed using the Molecular Imager 

GS-800 Calibrated Densitometer (Bio-Rad) and analysed in the Quantity One software 

(Bio-Rad). 

Western blots for detecting RNAPII modifications were performed pre-cast using NuPAG 

3-8% Tris-Acetate SDS-polyacrylamide gel electrophoresis (PAGE) Gels (Life 

Technologies) at 150 V for 1h30 and transferred to a nitrocellulose membrane (Bio-Rad) 

overnight at 4ºC at 250 V and 350 mA. The membrane was then blocked for 1 h in 5% 

non-fat dried milk in blocking buffer (10 mM Tris HCl pH 8, 150 mM NaCl and 0.1% 

Tween20) and incubated with mouse RNAPII CTD Ser-5-P (4H8 clone, 1:200000, 

BioLegend) and rat RNAPII CTD Ser-7-P (1:10, kind gift from Dirk Eick, German 

Research Center for Environmental Health, Munich) and mouse anti-α-tubulin DM1A 

(1:20000) for at least 2h. After 1 h washing in blocking buffer, membranes were incubated 

with goat anti-mouse or anti-rat IgG-HRP (1:2500 and 1:10000, respectively, Jackson 

ImmunoResearch) for 1 h. Signal was detected with Amersham ECL Western Blotting 

Detection Reagent (GE Healthcare). 

2.2. Immunofluorescence assays in third Instar Larvae Brain Squashes 

Immunofluorescence assays were prepared with the help of João Barbosa (Cell Division & 

Genomic Stability, i3S, University of Porto). Briefly, dissected larvae brains from each 

strain (see section 1.4) were placed in fresh 50 μM colchicine in PBS for 1h30 at 25ºC and 

then fixated for 5 minutes with 1.8% formaldehyde and 45% acetic acid. Each fixated 

brain was squashed three times onto a slide, then frozen in liquid nitrogen. Brain 

squashes were incubated with absolute ethanol for 10 min, then 10 min with PBS 0.1% 

Triton X-100 and a 10 minute wash with PBS. Fixated brains were blocked with 10% fetal 

bovine serum (FBS) in PBS-T 0.05% for 1h at room temperature and then incubated 

overnight at 4ºC in the same solution with the following antibodies: rat anti-Spc105 

(1:150), mouse anti-Polo (1:10), rabbit anti-P-Aurora (1:500, Rockland, Limerik, PA), 

rabbit anti-Thr676-P-Mps1 (1:10000) and ginea pig anti-total Mps1 (1:250, Gp15 

RRID:AB_2567774). This was followed by three 5 minute washes in PBS 0.05% Tween20 

with gentle agitation. Slides were then incubated with the following secondary antibodies 

(Thermo Fischer) diluted 1:250 in PBS 0.05% Tween20 for 2h at room temperature: goat 

anti-rat AlexaFluor© 647, goat anti-mouse AlexaFluor© 488, goat anti-rabbit AlexaFluor© 
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568 and goat anti-ginea pig AlexaFluor© 568 and washed three times in PBS 0.05% 

Tween20 with gentle agitation for 5 minutes. Vectashield with DAPI was then added.  

Image acquisition was performed using a Laser Scanning confocal microscope Leica TCS 

SP5 II and the LAS 2.6 software (Leica Microsystems, Germany). Image analyses were 

performed using Fiji [537]. Neuroblasts were identified as the larger cells based on the 

background signal from the different antibodies used that made the cell shape visible. For 

immunofluorescence quantification, each individual kinetochore was detected by their 

Spc105 mean fluorescence intensity and a region of interest (ROI) that befitted every 

kinetochore in each cell was defined using the maximum projection fluorescence intensity 

images. The same ROIs per cell were then used to detect the mean fluorescence intensity 

for Polo, P-Aurora and P-Mps1 and these values were then normalized to Spc105. 

Background was defined by the average of the mean fluorescence intensity of several 

other regions inside the cell free of kinetochores and subtracted to each mean 

fluorescence intensity. Control values were averaged and used for normalization of values 

determined in the different biological conditions tested. Quantifications were done using 

GraphPad Prism 7.0c (La Jolla California USA, www.graphpad.com). 

2.3. Aneuploidy immunofluorescence in third Instar Larvae Brain 

Squashes 

Dissected third instar larvae brains with the gfp-polo;polo9-/-, gfp-poloΔUSE;polo9-/-, w1118 

and heph2/TM6B genotypes were squashed and incubated with colchicine as previously 

described to obtain chromosome spreads that facilitate the visualization of chromosome 

content. Spc105 was used as a kinetochore reference. 

2.4. Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) assays were performed as previously described 

[538], with a few adaptations. Homogenized and dechorionated 0-24h Drosophila 

melanogaster embryos were cross-linked for 30 minutes with rotation using 1% 

formaldehyde (Panreac or Sigma-Aldrich). The reaction was quenched using 1 M glycine 

(Merck or Fisher BioRegeants) for 5 minutes with rotation and the cells were washed 

twice using cold PBS to remove all traces of formaldehyde, glycine and media.  

After the last wash, cells were resuspended in lysis buffer (1% SDS, 50 mM Tris-HCl pH 

8.1, 10 mM EDTA pH 8) with EDTA-free protease inhibitor (Roche) and phosphatase 

inhibitor (Sigma-Aldrich) cocktails and incubated for 20 minutes at 4°C with rotation. Cell 

lysates were then sonicated 20 times at 4°C (Bioruptor, Diagenode, 30/30 cycles) and 

http://www.graphpad.com/
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centrifuged at 13200 rpm for 1 minute at 4°C to remove cellular debris. An input aliquot 

was taken at this stage. 

Input samples were diluted with 337 mM NaCl, 14.5 mM Tris pH 8.1, 0.9% Triton X-100, 

1.0 mM EDTA pH 8 and 0.01% SDS and heated overnight at 65°C to revert the cross-

linking, then incubated for 1 h with 9 mM EDTA pH 8, 3.6 mM Tris-HCl pH 6.8 and 36 

µg/mL proteinase K (NZYTech) at 45°C. Input DNA purification was performed using 

phenol-chloroform (Sigma-Aldrich) at 4°C, then two 5 minutes centrifugations at 16100 x g 

and the chromatin was precipitated for 4 h with absolute ethanol, 150 mM NaCH₃CO2 pH 

5.2 (Merck) as well as 1 μL glycogen (Ambion) at -80°C. Samples were further centrifuged 

at 4°C for 20 minutes at 16100 x g, washed with 70% ethanol and resuspended in 

DNase/RNase-free HyClone water (GE Healthcare). To test for chromatin fragmentation 

and quality, inputs from each sample were separated in 1.5% SeaKem LE agarose 

(Lonza) gel electrophoresis and the ones with a chromatin smear between 200 and 500 

base pairs (bp) were considered. 

Samples were then diluted two fold with ChIP dilution buffer (167 mM NaCl, 16.7 mM Tris 

pH 8.1, 1.1% Triton X-100, 1.2 mM EDTA pH 8 and 0.01% SDS) and pre-cleared for 1 h 

at 4°C with rotation using previously washed protein A sepharose beads 4B Fast Flow 

from S. aureus (P9424, Sigma-Aldrich). These beads were discarded after a 1 minute 

long centrifugation at 1200 x g and the RNAPII IP (4 µL of Rpb3, a kind gift from John Lis, 

Cornell University, US) was performed overnight.  

Washed protein A sepharose beads were then added to each IP for at least 4 h at 4°C 

with rotation before being washed with low salt buffer (150 mM NaCl, 2 mM Tris pH 8.1, 

0.1% SDS, 1% Triton X-100 and 2 mM EDTA pH 8), high salt buffer (500 mM NaCl, 20 

mM Tris pH 8.1, 0.1% SDS, 1% Triton X-100 and 2 mM EDTA pH 8), LiCl salt buffer (0.25 

mM LiCl (Sigma-Aldrich), 10 mM Tris pH 8.1, 1% NP-40, 1% sodium deoxycholate and 1 

mM EDTA pH 8) and finally Tris-EDTA buffer (10 mM Tris pH 8.1 and 1 mM EDTA pH 8). 

Chelex-100 (Sigma-Aldrich) was added to the immune complex, which was then boiled 

and incubated for 45 minutes at 55°C with 36 µg/mL proteinase K and boiled once again. 

Samples were centrifuged at 13400 x g for 1 minute and the beads washed one last time 

with DNase/RNase-free water (HyClone) to collect any remaining chromatin. 

2.5. Chromatin Immunoprecipitation-sequencing analyses on Upstream 

Sequence Element-N-containing genes 

RNAPII ChIP-seq was previously published in [539] and accessible through GEO 

(GSE20000). Datasets were mapped as described in the original work against the dm6 
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version of the Drosophila melanogaster genome. The genomic location of mapped reads 

was compiled using custom scripts and visually examined using the UCSC Genome 

Browser in bedGraph format. ChIP-seq hit locations were filtered based on fragment 

length. The ChIP-seq datasets were binned in 25 bp windows for visualization in 

bedGraph files. 

2.6. RNA-protein pull-down assay 

1 µg of oligonucleotides containing a T7 anchor (GTAATACGACTCACTATAGGG) 

followed by the wild type or mutated USE (USE RNA or USEmt RNA, NZyTech) were 

used as DNA templates for in vitro transcription using the MEGAScript T7 transcription kit 

(Thermo Fisher Scientific) and the Magnetic RNA-Protein Pull-Down Kit (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. Briefly, 50 pmol of the in vitro 

transcribed RNAs were biotinylated and bound to streptavidin magnetic beads for 30 

minutes with agitation. The complex was incubated with 200 µg of Drosophila 

melanogaster 0-24h embryo protein extract for 45 minutes at 4˚C with agitation (RNA-

protein binding buffer included 20 mM Tris pH 7.5, 300 mM NaCl, 2 mM MgCl2 and 0.1% 

Tween20), then washed before the bound proteins were eluted from the RNAs with 

agitation. Half of the eluate was separated in 12% (resolving) and 5% (stacking) Tris-

glycine SDS-polyacrylamide gel at 120 V for 1h30 and stained with BlueSafe (NZyTech) 

for 1h to determine protein recovery. The other half was processed for identification by 

mass spectrometry. 

2.7. Mass Spectrometry and Gene Ontology analyses of Upstream 

Sequence Element RNA Binding Proteins 

Protein eluates were first reduced, alkylated and digested with trypsin and then separated 

by a 15 cm liquid chromatography (LC) C18 column with a 2h run and eluted into 

electrospray ionization high-resolution accurate-mass Orbitrap mass spectrometer (MS, Q 

Exactive, Thermo Fisher Scientific). Results were acquired in data-dependent positive 

acquisition mode alternating between a full scan and subsequent HCD MS/MS of the 10 

most intense peaks from full scan. Protein identification was performed based on the 8634 

Drosophila melanogaster proteins classified as mRNA binding in UniProt database [540] 

using the Proteome Discoverer 2.2 software (Thermo Fisher Scientific). The Precursor 

Ions Quantifier node of Proteome Discoverer software calculated the protein abundances 

of the samples, normalized the peptide groups and scaled them. Normalization was based 

on total peptide amount by summing the peptide group abundances for each sample and 

determining the maximum sum within a sample. The sample with the highest abundance 
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is taken as a reference and the abundance values of the other samples are corrected by a 

constant factor per sample so that at the end the total abundance is the same for all 

samples. Proteins identified by five or more unique peptides according to Proteome 

Discoverer were considered reliable hits and their accession codes were uploaded onto 

the PANTHER platform [541, 542] (Version 13.1, released on February 3rd 2018) to 

analyse their GO molecular functions. 

3. mRNA Analyses 

3.1. RNA extraction 

0-24h embryos, third instar larvae brains or whole adult fly RNA extractions were 

performed using the same protocol. For each strain, total RNA of 20 third instar larvae 

brains was extracted with Trizol (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. RNA integrity was analyzed either using an Experion RNA 

StdSens Analysis Kit (Bio-Rad) with an Experion Automated Electrophoresis System or in 

a 1-1.5% agarose gel electrophoresis. 

3.2. cDNA synthesis 

Complementary DNA (cDNA) was synthesised according to the manufacturer’s 

instructions, using 100 U of SuperScript III or SuperScript VI reverse transcriptase 

(Thermo Fisher Scientific), 0.5 mM denucleotide mix (dNTPs, Thermo Fisher Scientific), 

2.5 µM random hexamers (5’-OH dN6, Sigma-Aldrich), First-Strand Buffer/SSIV Buffer 

(Thermo Fisher Scientific), 5 mM DTT and 20 U of RiboLock. 0.5-1 µg of total RNA was 

used and each reaction was complemented with a negative control, RT-, to which no 

reverse transcriptase was added.  

The SuperScript III synthesis program using a Biometra thermocycler went as follows: 

65°C for 5 minutes, 4°C for 5 minutes, 25°C for 5 minutes, 50°C for 1 h and 70°C for 15 

minutes. The SuperScript IV synthesis program went as follows: 65°C for 5 minutes, 4°C 

for 5 minutes, 23°C for 10 minutes, 50°C for 10 minutes and 80°C for 10 minutes. 

Samples were then stored at -20°C. 

When deemed necessary, DNAse treatment was also performed. 0.5-1 µg of total RNA 

was treated with 2.4 U of DNase I recombinant and DNase I Incubation Buffer (Roche) for 

30 minutes at 37°C. Enzyme inactivation was achieved by adding EDTA pH 8 up to 8 mM 

and heating samples up to 75°C for 10 minutes. 
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3.3. 3’Rapid Amplification of cDNA Ends 

cDNAs for 3’Rapid Amplification of cDNA Ends (3’RACE) were synthesized using 

SuperScript IV Reverse Transcriptase (Invitrogen) according to the manufacturer’s 

instructions, with 2.5 µM 3’RACE adapter primer 

(GCGAGCACAGAATTAATACGACTCACTATAGGT15VN) and 0.5-1 µg of total RNA from 

w1118 and heph2/TM6B mutant embryos and gfp-polo;polo9/TSTL and w1118;gfp-

poloΔUSE;polo9-/- female adult abdomens. The 3’RACE polymerase chain reaction (PCR) 

was performed using GoTaq DNA Polymerase (Promega) according to the manufacturer’s 

instructions, an anchor primer (which annealed to the 3’RACE adapter primer, 

GCGAGCACAGAATTAATACGACT) and a specific primer on the coding sequence of 

polo (CCGTACAACATGTGCCGTAG). Reactions were performed in a Biometra 48-well 

Personal Thermocycler with the following program: 5 minutes at 95ºC, 35 cycles of 30 

seconds at 95ºC, 90 seconds at 52°C, 1 minute at 72ºC and a final elongation step for 10 

minutes at 72ºC. The PCR products were then separated on a 0.8-2% agarose gel, the 

bands cut and kept at -80ºC overnight. The bands were then incubated at 42ºC for 4 

minutes and the products were purified using sephadex columns. 

3.4. Northern blotting 

The DNA probes were generated from w1118 or w1118;gfp-poloΔUSE;polo9/TM6B larvae 

brain cDNA, producing two fragments with 543 and 176 bp for polo and another one with 

550 bp for gfp (the oligonucleotides used are depicted below). The 176 bp and 550 probes 

were labelled with α-32P dCTP (10 mCi/mL, PELSBLU013H250UC, PerkinElmer) in a RT-

PCR performed using GoTaq DNA Polymerase according to the manufacturer’s 

instructions in a Biometra 48-well Personal Thermocycler. The RT-PCR program for the 

176 bp probe was: 5 minutes at 95ºC, 35 cycles of 30 seconds at 95ºC, 30 seconds at 

58°C, 30 seconds at 72ºC and a final elongation step at 72ºC for 10 minutes. The RT-

PCR program for the 550 bp probe was: 5 minutes at 95ºC, 35 cycles of 30 seconds at 

95ºC, 30 seconds at 60°C, 45 seconds at 72ºC and a final elongation step at 72ºC for 7 

minutes. The probe corresponding to the 543 fragment was double digested with SalI and 

BglII to create 5’ overhangs at both ends, which were then separated on a 0.8-2% 

agarose gel, the bands cut and kept at -80ºC overnight. The bands were then incubated at 

42ºC for 4 minutes and the products were purified using sephadex columns. 3’end 

labelling with α-32P dCTP (10 mCi/mL) of these fragments was achieved using the Klenow 

fragment (Thermo Fisher) according to the manufacturer’s instructions. 20 µg of total RNA 

from w1118, heph2/TM6B, gfp-poloΔUSE;polo9/TM6B and gfp-poloΔpA1;polo9/TM6B larvae 

brains were loaded onto a 1% agarose gel with 3-(N-morpholino)propanesulfonic acid 
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(MOPS) and separated by electrophoresis for 6-7h at 75 V. The gel was washed for 10 

minutes in 10x standard saline citrate (SSC) and the mRNA was transferred to an 

Hybond-N+ nylon membrane (Amersham Biosciences) overnight, which was then cross-

linked in a Hoefer UVC 500 ultra-violet crosslinker (700 J/cm2), washed and pre-

hybridized for 2h. After denaturation, each labelled probe was then added and incubated 

overnight to allow hybridization (the hybridization temperature for the polo probe was 

46.6ºC and 51.5ºC for the gfp probe). The membrane was washed with 2x SSC and 0.1% 

SDS at room temperature, twice with 1x SSC and 0.1% SDS at the respective 

hybridization temperatures and several times for 15 minutes with 0.5x SSC and 0.1% SDS 

at 65ºC. The northern blot was developed using a Fuji Medical X-Ray film Super RX-N 

(Fujifilm) after exposure to the membrane for 4h at -80ºC. 

3.5. Real Time-quantitative Polymerase Chain Reaction 

For Real Time-quantitative Polymerase Chain Reaction (RT-qPCR) experiments using 

cDNA, 1 µL of cDNA was used in a final volume of 10 µL per well, as well as 5 µL SYBR 

Select Master Mix (Applied Biosystems) and variable concentrations of each forward and 

reverse primer pair according to their respective efficiencies (see section 3.7). For 

experiments using sheared chromatin from ChIP, 4 µL of sample were used per well.  

Each experiment condition was made at least in duplicate to ensure reproducibility. The 

annealing temperature corresponded to the one chosen during each primer pair 

optimization and efficiency testing (section 3.7). 

Reactions were run using the StepOne Real-time PCR System or the 7500 Fast Real-

Time PCR System (Applied Biosystems) and collected data were analysed using the 

StepOne or 7500 v2.0.6 software (Applied Biosystems). Ct values between replicates 

were considered if variation was less than 0.5 and the threshold was manually adjusted 

when necessary. 

The program used for the experiments in the StepOne Real-time PCR System was the 

following: 50°C for 2 minutes, 95°C for 2 minutes, 40 cycles of 95°C for 15 seconds, 

optimal annealing temperature for 15 seconds and 72°C for 1 minute, 95°C for 15 

seconds and 55.5°C for 10 seconds. The program used in the 7500 Fast Real-Time PCR 

System was the following: 50°C for 2 minutes, 95°C for 10 minutes and 40 cycles of 95°C 

for 15 seconds, optimal annealing temperature for 1 minute and 72°C for 1 minute. 
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3.6. Primer optimization and efficiency 

Several annealing temperatures for each primer pair were tested using a gradient thermal 

cycler (Veriti 96 Well Thermal Cycler, Applied Biosystems) using the program described in 

section 3.4. The annealing temperature that was used for the PCR product showing the 

most intense band after 1.5% agarose gel electrophoresis separation was chosen as the 

optimal annealing temperature under these conditions.  

After this optimization, primer efficiency for RT-qPCR was performed using serial dilutions 

(1, 10, 100, 1000 and 10000) of the cDNA or chromatin samples. These dilutions were 

plotted against the obtained Ct values to create a linear trend line. If the slope of this trend 

line was approximately -3.33, the primer pair was considered efficient. Some exceptions 

for a few primer pairs previously used in the laboratory were, however, used even if they 

showed lower efficiencies. The RT-qPCR program used to test primer efficiency was the 

same as depicted in section 3.5. All primers used in this work showed no significant 

dimerization issues. 

For ChIP analysis, the optimization trend lines for each sample and for each primer pair 

were used to determine an approximate chromatin occupancy percentage for each IP 

using linear regression, with the input chromatin occupancy set to 100% in each condition. 

For the remaining experiments using cDNA, a relative gene expression data analysis was 

performed by applying the ΔΔCt method [543, 544]. rp49 or 7SL were used as 

housekeeping genes.  

3.7. Oligonucleotide sequences 

3.7.1. Chromatin Immunoprecipitation 

TABLE 1 | Primer pair sequences used in the ChIP experiments. Primer pairs 1 

through 5 were designed to anneal along each locus as depicted by FIGURE 7. 

Primer name Primer sequence 

polo 1F 

polo 1R 

GCTTTGTGCTTGGTTTTCGT 

TTTACTACGGACTGCCCCTTT 

polo 2F 

polo 2R 

GTTCTTGCCCAGCTCTTGTC 

AGATTGGCCTTGAGGAAGGT 

polo 3F 

polo 3R 

CCGTACAACATGTGCCGTAG 

CCAGATGTACATGATGCCGA 
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3.7.2. mRNA expression levels 

TABLE 2 | Primer pair sequences used for the mRNA level measurements. Total 

primer pairs were designed to anneal to and amplify the coding sequence of the 

respective gene, therefore both isoforms when applicable, and the pA2 primer pairs were 

designed to anneal at the 3’UTR of the longest isoform of the respective genes.  

polo 4F 

polo 4R 

AAGGCCGAATGTTAGTTTAACG 

TTTCGATATGAAGGGGAAGG 

polo 5F 

polo 5R 

ACGTGTTTCGAAATGCCTAT 

ACACTTAAACACTTTGCAGCAG 

Primer name Primer sequence 

polo total F 

polo total R 

polo pA2 F 

polo pA2 R 

CCGTACAACATGTGCCGTAG 

CTTTAGACACGCCGTTCTCC 

TACTGCTGCAAAGTGTTTAAGTG 

CGCTTTTAGTCAAAAGCATTTAC 

lace total F 

lace total R 

lace pA2 F 

lace pA2 R 

GCTGGTGTACCTGTTTTCCAA 

TCCTTCCATGATGGGTGTG 

GCGGGCAGATGAATCTTAAA 

GCGTCGAGTATCCAACTTCTG 

abd-b total F 

abd-b total R 

abd-b pA2 F 

abd-b pA2 R 

GCTAGTCCAGCGATTGGAAG 

GTCGGTTGGTCACACATCAG 

TCCGTACAACACCATTTTCG 

AGTGGCGATTACGAGCTGAT 

CG6034 total F 

CG6034 total R 

CG6034 pA2 F 

CG6034 pA2 R 

CACCGCACTCCACACAACTA 

ATTGGGATGTCCGGTTCC 

CAGTAACGGAAGACCCGAAA 

GGTCCAAAGGAGGGTGAAAT 

rp49 F 

rp49 R 

ATCGGTTACGGATCGAACAA 

GACAATCTCCTTGCGCTTCT 

18s F 

18s R 

TGGTCTTGTACCGACGACAG 

GCTGCCTTCCTTAGATGTGG 

U6 F 

U6 R 

TTGGAACGATACAGAGAAGATTAGC 

TCACGATTTTGCGTGTCATC 

Ssu72 F 

Ssu72 R 

GGCACCAAATACGAGGACA 

CAGGCCGTTCTGTGTGTAGA 
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3.7.3. Northern blot DNA probes 

TABLE 3 | Primer pair sequences used for the generation of the northern probes.  

 
 

 

 

 

 

 

 

4. In silico Studies 

4.1. Assessment of the RpII215C4 R741H mutation 

After downloading the Saccharomyces cerevisiae RNAPII structure from the Protein Data 

Bank (PDB ID 4A3F [87]), Arg726 (which corresponds to Arg741 in Drosophila 

melanogaster) was manually mutated to His726 (R726H) using the Visual Molecular 

Dynamics (http://www.ks.uiuc.edu/Research/vmd/) software [545], thus mimicking the 

elav F 

elav R 

GGCTTTGTTGGTCTTGAAGC 

AGGATCCCACAACGAATCAG 

heph F 

heph R 

ATCACACGTATCGGCTTTCC 

CACAGCCATGTCTCACTT 

Pcf11 F 

Pcf11 R 

TGCCATGGACACACTAATCAA 

CGTCATCGTCGTCTTCAAAA 

fne F 

fne R 

CGTGACCATGACCAACTACG 

GCCCAGGGTATAACCATTCA 

Nelf-E F 

Nelf-E R 

CATTTTCCCAACATGGTTTACA 

GCTTGCAGTGCCTTTTTCTT 

Rrp6 F 

Rrp6 R 

AAGAGGAATCGGCCCAAG 

ATTGCATTCTTGAACCCTTTG 

Spt6 F 

Spt6 R 

GGCCGTCTCCGATAGTAGC 

TCGATCAGATCTTTGAGCTCTTC 

7SL F 

7SL R 

TTGGCTAAGGAGGGATGAAC 

CTACTGCCTACCACGGGAAC 

Primer name Primer sequence 

polo northern probe small F CCGTACAACATGTGCCGTAG 

polo northern probe small R CTTTAGACACGCCGTTCTCC 

polo northern probe large F CGGGTTTGCAAAATGTTACG 

polo northern probe large R AGATTGGCCTTGAGGAAGGT 

gfp northern probe F GGAGAGGGTGAAGGTGATGC 

gfp northern probe F TCGAAAGGGCAGATTGTGTG 

http://www.ks.uiuc.edu/Research/vmd/
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RNAPII point mutation of the C4 fly mutants [112, 113, 398]. Distance between the 

mutated residue and the nearest nucleotide was also measured using VMD. 

4.2. 3’ Region Extraction And Deep Sequencing and polyadenylation site 

identification 

Heads and bodies were dissected from w1118 and RpII215C4 1-5 days old adult male flies 

using standard procedures. Total RNA was extracted and purified as described in section 

3.1. The 3’ region extraction and deep sequencing (3’READS) and 3’READS+ methods 

were previously described in [546] and in [547], respectively. Data processing was based 

on the methods previously described [547]. Briefly, reads from 3ʹREADS were mapped to 

the fly genome (BDGP5, Ensembl v70) using Bowtie2 [548]. Uniquely mapped reads (with 

MAPQ score > 10) that had at least two non-genomic Ts at the 5’ end were considered as 

pA site containing reads. pA sites located within 24 nt from each other were clustered 

together as previously described. pA sites mapped to the genome were further assigned 

to genes using gene models defined by the Ensembl database. The 3′ ends of the gene 

models were extended by 2 kilobases (kb) to include downstream pA sites, but the 

extension did not go beyond the transcription start site of the downstream gene. To 

eliminate spurious pA sites, we further required that the number of pA sites reads for a pA 

site was ≥ 5% of all pA site reads for the gene in at least two samples. 

4.3. Alternative polyadenylation analysis  

APA analysis was carried out following largely the methods previously described [371, 

549, 550]. Briefly, relative expression (RE) of two pA site isoforms in the 3’-most exon, 

e.g., proximal pA site (pPAS) and distal pA site (dPAS), was calculated by log2(RPM) of 

dPAS vs. pPAS, where RPM was reads per million pA site-containing reads. Relative 

expression difference (RED) of two isoforms in two comparing samples was based on 

difference in RE of the two isoforms between two samples. DEXSeq was used to derive 

statistically significant APA events (false discovery rate (FDR) < 0.05) [551] . 

4.4. Compilation of RNA binding proteins, cleavage/polyadenylation, 

elongation and termination factors 

For all known cleavage/polyadenylation, elongation and termination factors across several 

species [180, 181, 188, 220, 234, 285, 375, 552, 553], Drosophila melanogaster orthologs 

were found using FlyBase QuickSearch tool [554] when possible. The expression of the 

genes that encoded these proteins was then assessed based on the 3’READS data in 

wild type heads and bodies [280]. 
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4.5. USE conservation analysis 

The polo 3’UTR sequences of 18 Drosophila species were obtained from FlyBase [554] 

and aligned using the SnapGene software (from GSL Biotech, Chicago, Illinois, USA; 

available at snapgene.com). The coloured sequences above the alignments represent the 

consensus sequence. 

4.6. Sequence motif search and Gene Ontology enrichment of Upstream 

Sequence Element-containing genes 

NCBI RefSeq transcripts of Drosophila melanogaster (assembly dm6) and Homo sapiens 

(assembly hg38) were retrieved from UCSC Table Browser as .bed files. Using a R-based 

script [555], we queried the 3’UTR of the Drosophila melanogaster and human genomes 

for the presence of the conserved TTGTTTTT sequence. The search was first restricted to 

450 nt upstream of three different pA signals: AATAAA, ATTAAA or AATATA 

(Supplementary Tables 5 and 6, [278]). The query was also performed with a single nt 

substitution (G>N), TTNTTTTT (USE-N) for Drosophila melanogaster, restricted to 90 nt 

upstream of the three same pA signals. Gene ontology enrichment analysis of the USE-

containing genes was performed using the PANTHER platform [541, 542] (Version 13.0, 

released on November 12th 2017). 

4.7. Frequency, distance to polyadenylation signals and expression 

analyses of Upstream Sequence Element-containing genes 

The 3’UTRs of USE-containing genes were evenly divided in 90 nt slots up to 450 nt and 

the genes were sorted according to distance between the USE and each pA signal. The 

percentage of the USE and USE-N-containing genes was calculated using the frequency 

of each pA (AATAAA, ATTAAA or AATATA) in the Drosophila melanogaster [214] and 

human [215] genomes. We used the Drosophila Gene Expression Tool (DGET [556, 557], 

https://www.flyrnai.org/tools/dget/web/) to determine the expression levels of USE-N- 

containing genes in different tissues and developmental stages. As control, we used 

genes with AATAAA, ATTAAA or AATATA that did not have USE-N in their 3’UTR. In the 

control subset of genes with ATTAAA, genes with the canonical AATAAA signal were 

excluded. In the control subset of genes with AATATA, genes with a higher pA efficiency 

(AATAAA, ATTAAA, AGTAAA, CATAAA, TATAAA, GATAAA, ACTAAA and AATACA 

[213]) were also excluded. 
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5. Statistical Analysis 

For each assay, at least three independent experiments were performed. Results were 

expressed as mean values ± standard deviation error (SDE) determined by GraphPad 

Prism 7.0c (La Jolla California USA, www.graphpad.com). Differences in p values below 

0.05 calculated via a two-tailed paired Student’s t-test were considered statistically 

significant. Statistical significance in the immunofluorescence assays was assessed by 

the Mann-Whitney test in GraphPad Prism 7.0c.  
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RESULTS 

1. Transcription elongation rate has a tissue-specific impact on alternative 

cleavage and polyadenylation in Drosophila melanogaster 

Some of the results presented in this chapter were published in [280]. 

RNAPII elongation rate is known to have an impact on 3’UTR-APA and pA signal 

selection in six genes in Drosophila melanogaster [115]. To investigate this effect on a 

genome-wide scale, we mapped all mRNA 3’ends using the 3’ Region Extraction and 

Deep Sequencing (3’READS) methodology [546, 547] in the head and body of Drosophila 

melanogaster wild type and the mutant RpII215C4 strain, which possesses a slower 

RNAPII elongation rate [113]. 

1.1. 3’UTR-Alternative polyadenylation pattern varies between the head 

and body in Drosophila melanogaster 

It has been reported in several organisms that terminally differentiated cells tend to 

produce mRNA isoforms with longer 3’UTRs than proliferative cells in several organisms 

[369, 372, 379, 380, 382], including Drosophila melanogaster [279]. Using 3’READS and 

wild type flies, we found approximately 17000 novel pA sites in the downstream region of 

annotated 3’ends [280], which suggests poor annotation of mRNA 3’ends using less 

adequate sequencing methods [279]. We therefore re-annotated these pA sites and were 

able to extend the 3’ends of 10112 genes using our data [280]. We have also found that 

there is a significant abundance of distal pA sites (dPASs) that are selected in wild type fly 

heads (FIGURE 11, red dots) whereas proximal pA sites (pPASs) are preferentially chosen 

in fly bodies (FIGURE 11, blue dots). 

 

 

 

 

 

 

 

 

 

 

FIGURE 11 | 3’UTR-APA differences between Drosophila melanogaster body and 

head in the 3’UTR. On the left, schematic representation of two mRNA isoforms 

CDS 3’UTR

CDS 3’UTR

AAA(A)n

AAA(A)n

pPAS

dPAS
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produced by selecting a pPAS or a dPAS: pPAS choice leads to a short 3’UTR and dPAS 

choice leads to a long 3’UTR. On the right, scatter plot showing pPAS and dPAS isoform 

abundance differences between fly head and body (two biological replicates used). Genes 

with significantly (FDR < 0.05, DEXseq analysis) higher abundance of pPAS isoforms in 

the body vs. head are shown in blue (1609 genes), and those with higher abundance of 

dPAS isoforms are in red (234 genes). 

It remains unclear why body tissues tend to select pPASs and head tissues predominantly 

choose dPASs. One of the potential factors we investigated was the distance between the 

pPAS and dPAS and how it relates to 3’UTR shortening versus lengthening in each 

compartment.  

First, we sorted expressed genes that undergo APA into five bins according to the 

distance between their pPAS and dPAS (FIGURE 12, table). Then, we plotted the five 

different categories against the relative expression difference (RED) found by 3’READS 

between the head and the body, i.e., the difference in pPAS vs. dPAS usage between 

both compartments. As it can be observed in the graph of FIGURE 12, there is a clear 

correlation between the pPAS-dPAS distance and the RED values between the head and 

body: the longer the distance between pPAS and dPAS, the higher the difference between 

pPAS vs. dPAS usage in each compartment. As APA occurs co-transcriptionally, the 

distance between pPAS and dPAS is a direct reflection of the time period between the 

selection and processing of the pPAS or the dPAS. Thus, these results suggest that 

differences in the kinetic competition between pPAS vs. dPAS selection may ultimately 

lead to APA event changes observed between the fly head and body. 

 
FIGURE 12 | Correlation between pPAS vs. dPAS usage in body and head and 

distance between pA sites. Expressed genes that undergo APA were evenly divided into 

five bins according to their distance between pPAS and dPAS, resulting in ~1300 genes in 

each bin. pPAS-dPAS distance is displayed in the table. pPAS vs. dPAS usage between 

body and head is represented by relative expression difference (RED) values, which 

corresponds to the difference in log2(ratio) of dPAS isoform abundance to pPAS isoform 
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abundance between body and head. Error bars are standard error of mean. Values for 

genes in bin #1 were compared with those in bin #5 by the Wilcoxon rank sum test and 

the p-value is shown. Only pA sites with ≥ 5 reads were used for analysis. 

1.2. RNA processing genes are upregulated in Drosophila melanogaster 

heads 

To understand the mechanistic differences involved in the APA changes found between 

wild type fly head and body, we compiled a list of all known mRNA 3’end processing 

proteins, elongation and termination factors [180, 181, 188, 220, 234, 285, 375, 552, 553] 

and asked how they were expressed using the 3’READS data obtained from wild type 

heads and bodies. 

Most of these genes are intriguingly upregulated in wild type head in comparison to the 

body as shown in TABLE 4, namely genes encoding for proteins that are directly involved 

in transcription and mRNA 3’end processing as well as elongation and termination 

(highlighted in bold). As with the previously reported prevalence of longer mRNA isoforms 

in the brain [379, 380, 382], these results may imply that a distinct level of regulation of 

these factors is necessary in such a highly differentiated tissue that may ultimately result 

in the production of mRNA isoforms with long 3’UTRs. 
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TABLE 4 | Differential expression of genes coding for cleavage and pA, elongation 

and termination factors between w1118 head and body by 3’READS analysis. Gene 

expression in the head was used as reference, meaning that genes upregulated in the 

head are termed ‘Upregulated’ and are downregulated in the body and genes 

downregulated in the head are termed ‘Downregulated’ and are upregulated in the body.  
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hfp 
nonA 

PNUTS 
mle 

CG10077 
eIF4A 

CG3689 
Pcf11 

CG11454 
snRNP-U1-70K 

Pp1-87B 
ku80 

CstF64 
sf3a1 
fip1 
mtr4 
eIF3a 
hel25e 
eIF3b 

eIF4G1 
elav 

UPREGULATED  

gem3 
bel 

pabp2 
rhau 
rin 

rbfox1 

DOWNREGULATED 
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NELF-B 
SC35 

NELF-A 
fs(1)h 
Cdk9 
TH1 
ctr9 
hay 

Ssu72 
Chd1 
CycK 

MED26 
snf 

hpr1 
eaf 

TfIIFalpha 
EloB 
EloC 
SF1 
kto 

UPREGULATED 

LARP7 
EloA 

Spn42Dd 
HEXIM 

rtf1 

DOWNREGULATED 

T
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fa
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pasha 
Trf4-1 
csul 

RpII140 
MED16 

CG34183 

UPREGULATED 

MED20 DOWNREGULATED 

 

1.3. In silico analysis of the RpII215C4 R741H mutation suggests 

stereochemical hindrance between RNA Polymerase II and the DNA 

Within the scope of further understanding the impact of RNAPII elongation rate in APA and 

pA site usage [115], we were interested in studying why the RNAPII of the RpII215C4 fly 

mutant is 50% slower than their wild type counterpart [113, 398]. Early studies of the 

original RpII215C4 RNAPII suggested an alteration in structure due to the arginine-to-

histidine (R741H) point mutation [112], but the cause for the slower transcription 

elongation rate remained elusive. We first sought to answer this question with an in silico 

study using the crystallized structure of RNAPII from Saccharomyces cerevisiae [558] (the 

structure for the Drosophila melanogaster RNAPII is not yet available). 

Using the VMD software [545], we mimicked the R741H point mutation found in the Rpb1 

subunit of RNAPII of the C4 flies (see section 4.1 of Materials and Methods), which 
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corresponds to R726H in the Saccharomyces cerevisiae RNAPII, and then measured the 

distance between both amino acid residues and the DNA strand (FIGURE 13). 

 

FIGURE 13 | Visual representation of the wild type RNAPII and a variant with a R726H 

point mutation from Saccharomyces cerevisiae [87]. This image was made with the 

VMD software [545] support (http://www.ks.uiuc.edu/Research/vmd/). VMD is developed 

with NIH support by the Theoretical and Computational Biophysics group at the Beckman 

Institute, University of Illinois at Urbana-Champaign. 

In the presence of a histidine instead of the arginine, the distance between the catalytic 

centre of the protein complex and the DNA strand to be transcribed increased 2-3 Å (from 

34.5 Å to 37.5 Å, see FIGURE 13).  

We thus hypothesize that the positively charged arginine (centre, side-chain coloured in 

green and orange, FIGURE 13) is more prone to attract the negatively charged DNA and 

RNA strands and allow them an easier and faster passage through the RNAPII catalytic 

centre when compared to the neutral histidine (centre, side-chain coloured in green and 

blue, FIGURE 13) due to possible stereochemical hindrance. As the efficiency of the 

enzymatic reaction is dependent on the optimal distance between the catalytic site and 

the substrate, the increase in the distance introduced by the histidine may cause the 

slower transcription elongation rate described for this mutant strain [113]. 

Productively elongating RNAPIIs must be phosphorylated at the CTD Ser-2 residue [89, 

98]. Although the general structure of the transcriptionally active RNAPII CTD is probably 

http://www.ks.uiuc.edu/Research/vmd/
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unaffected by the Arg-to-His replacement, CTD Ser-2 sites may not be available for 

phosphorylation and the RNAPII activity may be compromised in the RpII215C4 strain. 

1.4. A slower transcription elongation rate affects alternative 

polyadenylation in a tissue-specific manner 

The Drosophila melanogaster mutant strain RpII215C4 had shown a preferential usage of 

proximal pA signals in six genes [115]. We now examined genome-wide pA site usage 

and APA profiles by 3’READS in RpII215C4 flies and compared them to our observations 

for the wild type strain. 

The slower RpII215C4 mutant strain shows a mild preference for expressing mRNAs with 

shorter 3’UTRs in the adult male body (360 genes with upregulated pPASs against 301 

genes with upregulated dPASs, as seen in FIGURE 14), but not in the head (FIGURE 14, 

567 genes with upregulated pPASs against 541 genes with upregulated dPASs). This 

indicates that the effect on APA caused by a slower transcription elongation rate is 

possibly context- or tissue-specific. 

 

FIGURE 14 | APA regulation in the 3’UTR of the slower RpII215C4 fly mutant. (A) 

Scatter plots comparing APA isoform abundance between wild type w1118 (WT) and the 

slower RpII215C4 mutant (MT) in the body (left) versus the head (right). (B) Venn diagram 

comparing APA event changes between WT and MT in the body and head compartments. 

The fact that we do not observe differences in APA events in the head in the presence of 

a slower transcription elongation rate in comparison to wild type heads also suggests that 

APA regulation in the more differentiated fly head tissues, namely the preferential dPAS 

selection, is robust and more impervious than tissues in the fly bodies when dealing with a 

slower transcription elongation rate. 
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1.5. Gene expression of RNA Binding Proteins, elongation and 

termination factors is altered by a slower transcription elongation rate 

One potential explanation for the context-specific effect of a slower transcriptional 

elongation rate on APA events may be the differential expression of genes coding for 

proteins with functions in pre-mRNA cleavage and pA, such as the core trans-acting 

factors, elongation and termination factors and/or RBPs between the wild type and the 

slower fly strains. 

Using the list of genes encoding for known mRNA 3’end processing proteins, elongation 

and termination factors [180, 181, 188, 220, 234, 285, 375, 552, 553] (see section 1.2) 

and our 3’READS data, we asked how these genes were expressed in wild type heads 

and bodies in comparison the slower RpII215C4 mutant heads and bodies. 

As seen in TABLE 5, we did not observe a clear difference in the expression of these 

genes between wild type and mutant bodies (left-side table) or wild type and mutant 

heads (right-side table): there are approximately as many genes up- or downregulated in 

the mutant body/head in comparison to the wild type counterpart in contrast to the general 

upregulation of these proteins seen in wild type heads versus bodies (TABLE 4). There is a 

higher number of genes encoding for mRNA 3’end processing proteins (approximately 

77%) upregulated in the slower mutant heads when compared to wild type heads, but we 

did not observe differences in APA events between wild type and mutant heads by 

3’READS (FIGURE 14). This suggests that the upregulation of these genes does not have 

an effect on APA in head tissues with a slower transcription elongation rate. 

TABLE 5 | Differential expression of genes coding for cleavage and pA, elongation 

and termination factors between wild type (WT) head and body versus RpII215C4 

(MUT) head and body by 3’READS analysis. Gene expression in the mutant was used 

as reference, meaning that in both the body (left-side table) and head (right-side table) 

compartments, genes upregulated in the mutant strain are termed ‘Upregulated’ and are 

downregulated in wild type and genes downregulated in the mutant are termed 

‘Downregulated’ and are upregulated in wild type. 

 
MUT body versus WT body MUT head versus WT head 
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CG11454 CG10077 

CG3689 CG11454 

Cstf64 CG3689 

Fip1 Cstf64 

Gem3 eIF4A  
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hfp eIF4G1  

nonA Fip1 

Pabp2 Gem3 

Pcf11 Hel25E 

PNUTS hfp 

Pp1-87B Ku80 

rin mle 

Sf3a1 nonA 

snRNP-U1-70K Pabp2 

CG10077 

DOWNREGULATED 

Pp1-87B 

eIF3a Rbfox1 

eIF3b rin 

eIF4A  Sf3a1 

eIF4G1  snRNP-U1-70K 

Hel25E eIF3a 

DOWNREGULATED 

Ku80 eIF3b 

mle Mtr4 

Mtr4 Pcf11 
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Rhau Rhau 

E
lo

n
g

a
ti

o
n

 f
a

c
to

rs
 

Cdk9 
Chd1 
EloC 
hay 
HEXIM 

UPREGULATED 

Chd1 

UPREGULATED 

eaf 

EloA 

EloC 

hay 

Hpr1 HEXIM 

Kto Hpr1 

LARP7 LARP7 

Ssu72 MED26 

TfIIFalpha NELF-A 

TH1 Rtf1 

Ctr9 

DOWNREGULATED 

SC35 

CycK snf 

eaf Spn42Dd 

EloA Ssu72 

EloB Cdk9 

DOWNREGULATED 

fs(1)h Ctr9 

MED26 CycK 

NELF-A EloB 

NELF-B fs(1)h 

Rtf1 kto 

SC35 NELF-B 

SF1 SF1 

snf TfIIFalpha 

Spn42Dd TH1 
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UPREGULATED 

csul 

UPREGULATED 
csul pasha 

pasha RpII140 

RpII140 snRNP-U1-70K 

snRNP-U1-70K CG34183 

DOWNREGULATED 
Med16 

DOWNREGULATED 

Med16 

Med20 Med20 

Trf4-1 Trf4-1 

 

To complement this analysis, we quantified by RT-qPCR the expression levels of some 

genes encoding proteins with a well-established role in mRNA processing in the heads 

and bodies of adult RpII215C4 male flies in comparison to wild type w1118. We focused on 

the 3’-5’ exonuclease Rrp6 [559], the RNAPII CTD Ser-5-P and Ser-7-P phosphatase 

Ssu72 [560], the termination factor Pcf11 [143], the RBPs fne and elav [305, 307, 561, 

562], the elongation factor Spt6 [72, 563] and the negative elongation factor Nelf-E [72-

75]. 
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FIGURE 15 | Relative mRNA expression levels of mRNA 3’end processing factors in 

wild type (w1118) and RpII215C4 male bodies and heads. Expression was quantified by 

RT-qPCR. rp49 was used as a housekeeping gene. Error bars show SEM from three 

independent experiments.  

Interestingly, Nelf-E expression is drastically reduced in RpII215C4 (FIGURE 15). Mutant 

flies also show a marked increase in the expression of Rrp6 and Ssu72 in the body, but 

not in the head, in comparison to wild type, while Pcf11 shows no statistical difference 

between both strains. elav and fne, which have been shown to be highly expressed in the 

head [305, 307, 561, 562], present a small decrease in their expression in the head of 

mutant flies. The expression levels of Spt6 are not statistically different between both 

strains, but nonetheless, its expression tends to be higher in the mutant bodies. 

The differential expression of Nelf-E, Rrp6 and Ssu72 in RpII215C4 flies may explain the 

changes in APA observed between wild type and mutant bodies (FIGURE 14). Together 

with the data showing that there is a differential regulation of mRNA 3’end processing 

factors in the wild type Drosophila melanogaster head versus body (TABLE 4), these 

results further suggest that these regulatory genes are either upregulated or 

downregulated according to cellular context (head or body compartments) and/or an 

altered transcriptional elongation rate (FIGURE 15).  
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2. The cell cycle kinase Polo is controlled by a conserved 3’ untranslated 

region regulatory sequence in Drosophila melanogaster 

Most of the results presented in this chapter were published in [278]. 

The polo gene produces two mRNAs depending on the selection of two pA signals in polo 

3’UTR ([397] and FIGURE 16). The distal pA signal produces the longest polo isoform, 

which is both necessary and sufficient to ensure correct development and viability in flies 

as it is the main responsible for Polo protein production. The proximal polo pA signal 

generates the shortest polo mRNA and modulates Polo protein levels by an 

autoregulatory feedback mechanism [115]. 

2.1. Drosophila melanogaster polo 3’ untranslated region has a conserved 

U-rich regulatory Upstream Sequence Element 

Conserved non-coding regions between different species may predict putative regulatory 

elements [236, 564, 565] while functionally irrelevant sequences are less conserved. To 

identify potential cis regulatory elements in polo APA, we aligned the polo 3’UTR of 18 

different Drosophila species. We found a 28-nt-long U-rich sequence (over 53% of U 

content) 127 nt upstream of polo pA1 (FIGURE 16 and FIGURE 17) similar to USEs, a class 

of cis elements that regulate mRNA 3’end formation that have been previously described 

in human [236, 249-257, 263] and viral [237-245, 247, 248] genomes and thus, we named 

this sequence USE. We found that the TTGTTTTT in the USE is a consistently conserved 

region between Drosophila melanogaster and the 50 million year apart Drosophila 

albomicans (FIGURE 17), which hints at a potentially regulatory role for this small 

sequence. Supporting this hypothesis, Drosophila simulans and Drosophila sechellia are 

the closest related species to Drosophila melanogaster and their 28-nt-long USE only 

differs in one single nt from the latter. This conservation is closely followed by the 11 

million years-distant Drosophila yakuba, whose USE differs from the one in Drosophila 

melanogaster by two nt. 
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FIGURE 16 | polo 3’UTR mRNA sequence. The USE is highlighted within a black box and 

depicted in blue. The two mapped pA signals are highlighted by black boxes and depicted 

in red. The pre-mRNA cleavage sites (CS) are demarked by the grey arrows.  

 

FIGURE 17 | polo USE 

conservation and 

alignment in 18 

Drosophila species. 

Nucleotides are 

coloured in yellow if 

they match the 

corresponding 

Drosophila 

melanogaster polo 

USE nucleotides. The 

coloured sequence 

above the alignment 

represents the 

consensus sequence, 

with the conservation 

level defined by letter 

size. 
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Interestingly, seven Drosophila species also show conservation of polo pA1 and the 

region directly upstream (FIGURE 18). In Drosophila pseudoobscura and Drosophila 

persimilis, both 37 million years apart from Drosophila melanogaster, we also observed 

that the polo pA1 sequence corresponds to the canonical pA signal, AATAAA (FIGURE 18) 

instead of the less efficient ATTAAA variation [213]. 

 
FIGURE 18 | UCSC browser snapshot of polo pA1 conservation and alignment in 

seven Drosophila species. polo USE is highlighted in yellow across the species in 

display. The sequence above the alignment represents the consensus Drosophila 

melanogaster polo sequence. 

Apart from the USE, we were unable to find an overall conservation of the entirety of polo 

3’UTR across these 18 fly species and curiously, no conservation of polo pA2 or the 

surrounding region despite the fact that this pA signal is the main responsible for Polo 

protein production and vital for Drosophila melanogaster development [115]. 

2.2. The Upstream Sequence Element is more prevalent near 

polyadenylation signals and upstream of non-canonical signals 

To study the genome-wide prevalence of the USE across the Drosophila melanogaster as 

well as the human genomes, we developed a bioinformatic script that allowed us to 

question whether the eight most conserved nt of the USE, TTGTTTTT, are associated 

with pA signals in 3’UTRs. Considering that polo pA2 is found 380 nt downstream of the 

USE, we chose a range of 0-450 nt between the TTGTTTTT and the pA signal. 

We have selected three different pA signals with different pA signal efficiencies for this 

study: AATAAA, ATTAAA or AATATA. AATAAA is the canonical pA signal in both humans 

[215] and flies [214] while the ATTAAA signal is the second most efficient signal [213] in 

both species and also corresponds to polo pA1. AATATA, polo pA2, shows poor pA signal 

efficiency in human cells [213], but is known to be physiologically relevant in insects [214, 



 
68 

216]. The polo mRNA produced by polo pA2 signal is also the longest isoform which is 

responsible for producing most of Polo protein and is vital for fly viability [115]. 

After excluding repeated hits corresponding to USE-containing genes with more than one 

pA signal (AATAAA and ATTAAA or AATAAA and AATATA or ATTAAA and AATATA), we 

found that the USE is present in the 3’UTRs of 889 and 1140 genes in Drosophila 

melanogaster and humans, respectively. This corresponds to 5.2% of Drosophila 

melanogaster genes and 2.7% of human genes (TABLE 6). 

TABLE 6 | Number of Drosophila melanogaster and human genes containing the 

conserved USE upstream of AATAAA, ATTAAA or AATATA, which corresponds to 

approximately 5.2% and 2.7% of the fly and human genomes, respectively.  

Gene ontology analyses show that many of these USE-containing genes in Drosophila 

melanogaster are involved in fundamental physiological processes, such as nervous 

system development, morphogenesis, tissue development and, interestingly, mRNA 

3’UTR binding and RNA metabolic processes (TABLE 7). Curiously, nine out of 10 terms 

are related to nucleic acid metabolism in genes containing both the conserved USE and 

the AATATA pA signal (TABLE 7). 

TABLE 7 | Top 10 molecular function GO terms enriched in the Drosophila 

melanogaster USE-containing genes upstream of AATAAA, ATTAAA or AATATA pA 

signals.  

GO term 
USE-450 nt-

AATAAA 
(fold Enrichment) 

Peripheral nervous system development (GO:0007422) 3.69 

Motor neuron axon guidance (GO:0008045) 3.65 

Neuronal system (R-DME-112316) 3.45 

Dendrite development (GO:0016358) 3.15 

 Drosophila melanogaster  Human 

AATAAA 625 663 

ATTAAA 397 446 

AATATA 396 322 

Total # 889 1140 

Total% 5.2% 2.7% 
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Axonogenesis (GO:0007409) 3.14 

Neuron recognition (GO:0008038) 3.13 

Dendrite morphogenesis (GO:0048813) 3.11 

Regulation of embryonic development (GO:0045995) 3.03 

Regulation of protein kinase activity (GO:0045859) 3.03 

Regulation of cell development (GO:0060284) 2.62 

GO term 
USE-450 nt-

ATTAAA 
(fold Enrichment) 

Regulation of axon extension involved in axon guidance (GO:0048841) 16.2 

Regulation of neuron maturation (GO:0014041) 13.74 

Regulation of neuron remodeling (GO:1904799) 13.74 

Presynaptic active zone (GO:0048786) 8.59 

Regulation of extent of cell growth (GO:0061387) 8.59 

Striated muscle tissue development (GO:0014706) 8.59 

Developmental growth involved in morphogenesis (GO:0060560) 6.61 

Alzheimer disease-amyloid secretase pathway (P00003) 6.52 

Apical cortex (GO:0045179) 6.45 

Developmental cell growth (GO:0048588) 5.86 

GO term 
USE-450 nt-

AATATA 
(fold Enrichment) 

Messenger ribonucleoprotein complex (GO:1990124) 37.79 

mRNA 3’UTR binding (GO:0003730) 7.56 

Transcription regulatory region sequence-specific DNA binding 

(GO:0000976) 
3.17 

mRNA binding (GO:0003729) 3.03 

Sequence-specific double-stranded DNA binding (GO:1990837) 2.98 

Regulatory region nucleic acid binding (GO:0001067) 2.94 

Double-stranded DNA binding (GO:0003690) 2.81 

Positive regulation of RNA metabolic process (GO:0051254) 2.78 

Positive regulation of transcription by RNAPII (GO:0045944) 2.75 

Instar larval or pupal development (GO:0002165) 2.57 

However, it is important to note that the genome-wide prevalence of each of the pA 

signals analyzed is rather different. In humans and Drosophila melanogaster, about half of 

the genes contain the AATAAA canonical signal (48% in flies and 53% in humans, see 

FIGURES 19 and 20 [214, 215]). Predictably, we found a higher number of genes 
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containing the canonical pA signal associated with the USE across the human and fly 

genomes (625 genes in Drosophila melanogaster and 663 in Homo sapiens, see TABLE 

6). 

In contrast, both ATTAAA and AATATA are found in a more modest percentage of genes 

(10% for both ATTAAA and AATATA in flies [214, 216] versus 17% for ATTAAA and 2% 

for AATATA in humans [215], see FIGURES 19 and 20). 

 
FIGURE 19 | Percentage of AATAAA, ATTAAA or AATATA-containing genes depicted 

for Drosophila melanogaster [214, 216], which approximately corresponds to 68% 

of the fly genome. 

 
FIGURE 20 | Percentage of AATAAA, ATTAAA or AATATA-containing genes depicted 

for humans [215], which approximately covers 72% of our genome. 
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When we used the different genome-wide frequencies for each pA signal (FIGURES 19 and 

20) and the absolute numbers of genes found with the script (TABLE 6) to normalize the 

different frequencies of USE-containing genes accordingly, we observe that it is more 

likely to find an USE associated with a non-canonical pA signal (ATTAAA or AATATA) 

than with the canonical signal in humans and flies (FIGURE 21). As less efficient pA signals 

are more prone to be regulated by cis regulatory elements [285], our findings that USEs 

are more prevalent upstream of these signals argues that they may act as regulatory cis 

elements of weak pA signals. 

 

 

 

 

 

 

 

FIGURE 21 | Genome-wide percentage of Drosophila and human USE-containing 

genes normalized to each pA signal frequency. The TTGTTTTT sequence is more 

common upstream of weaker pA signals in the 3’UTR (ATTAAA and AATATA in 

comparison to AATAAA) both in Drosophila melanogaster and human genomes. 

Auxiliary elements with a function in APA tend to be near the pA signal they regulate [227, 

274, 275] and USE function upon pA signals is known to be distance-dependent [236, 

255]. To investigate if the position of the TTGTTTTT sequence is dependent on the 

distance to the pA signal in flies and humans, we next studied the distribution of the USE 

in relation to the pA signal across the 450 nt we delimited in the script. We observed that 

regardless of the pA signal efficiency, the USE is indeed more often found in the vicinity of 

a pA signal both in flies and humans, preferably within 90 nt (FIGURE 22). This is indicative 

that the USE might have a function in pA signal recognition in both species. 

 

 

pA 

signal 

% Drosophila melanogaster  

USE-containing genes 

% human  

USE-containing genes 

AATAAA 7.5 2.9 

ATTAAA 22.8 6.1 

AATATA 22.7 37.7 
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FIGURE 22 | The USE is located near pA signals both in human and fly genes. Genes 

were sorted according to distance (in nt) between the USE and each pA signals 

(AATAAA, ATTAAA or AATATA, distance divided in 90 nt slots: 0-90, 91-180, 181-270, 

271-360 and 361-450, depicted right to left). 

As the TTGTTTTT sequence is conserved across the Drosophila genus (FIGURE 17) and 

3’UTRs tend to be AT-rich, we investigated the relevance of the G nt by performing a new 
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bioinformatic query to search for the TTNTTTTT sequence (USE-N) in the 3’UTRs of 

Drosophila melanogaster upstream of AATAAA, ATTAAA or AATATA. Within a distance 

of 90 nt, which corresponds to the distance range in which the USE is more often 

observed (FIGURE 22), we found that the USE-N is present in 7.1% of all the 3’UTRs 

across the fly genome (TABLE 8). Performing a similar analysis as in FIGURE 21, we 

normalized the USE-N-containing gene frequencies according to the respective genome-

wide frequencies for each pA signal (FIGURE 19) and the absolute numbers of genes 

found with the new script (TABLE 8). We noted that the USE-N is equally more prevalent 

upstream of non-canonical pA signals (ATTAAA or AATATA) in Drosophila melanogaster 

(TABLE 8). 

TABLE 8 | Number of Drosophila melanogaster USE-N-containing genes upstream of 

AATAAA, ATTAAA or AATATA and respective percentage normalized to each pA 

signal frequency. The TTNTTTTT sequence is more common upstream of weaker pA 

signals in the 3’UTR (ATTAAA and AATATA in comparison to AATAAA).  

 # USE-N-containing genes % USE-N-containing genes 

AATAAA 738 9.0 

ATTAAA 422 24.8 

AATATA 454 26.7 

Total 1616 7.1 

To explore whether the presence of the USE influences gene expression, we used the 

Drosophila Gene Expression Tool (DGET, [557]). We analysed the expression of USE-N-

containing genes in different developmental stages of the fruit fly (embryos, third instar 

larvae central nervous system and females, see FIGURE 23) and found that regardless of 

pA signal efficiency, there is an increase in the number of actively expressed genes with 

the USE-N than without the USE-N (compare the bars with and without the USE-N for 

each pA signal, FIGURE 23) in all developmental stages. Interestingly, we always observe 

a more obvious trend in females, followed by third instar larvae central nervous system 

and then in 06-08h embryos (FIGURE 23). These results suggest that the USE may 

enhance gene expression in a sex- and tissue-dependent manner in Drosophila 

melanogaster. 
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FIGURE 23 | Percentage of active Drosophila melanogaster genes with and without 

the USE-N up to 90 nt upstream of each of the three pA signals in the 3’UTR 

(AATAAA, ATTAAA or AATATA). Histograms show sorted data from DGET [556, 557] 

for 06-08 h embryos, third instar larvae CNS and one day old adult females. 

2.3. The polo Upstream Sequence Element affects RNA Polymerase II 

occupancy along the polo gene 

mRNA 3’end formation occurs co-transcriptionally [151, 170, 179, 566] and RNAPII 

transcriptional state has also been shown to have a role in APA [115, 153, 280, 534, 535]. 

We thus investigated the chromatin occupancy profiles of RNAPII along the polo locus by 

Chromatin Immunoprecipitation (ChIP) [538] in Drosophila melanogaster wild type 

embryos using a specific antibody against the RNAPII Rpb3 subunit (Rpb3 antibody). 

We observe that RNAPII occupancy is highest in the region of primer pair 1. This 

suggests an accumulation of RNAPII which is characteristic of promoter proximal RNAPII 

pausing [57, 62, 64, 66-68]. Indeed, publically available ChIP-seq data [539] from 20-24h 

embryos using a specific antibody against the unmodified isoform of RNAPII (8WG16 

antibody) confirms that polo contains promoter proximal paused RNAPII. Additionally, we 

noted that RNAPII occupancy is lowest along the 3’UTR of polo (FIGURE 24, primer pairs 

4-5). This result is expected considering that polo transcription is terminating in this region 
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and we also corroborated this abrupt drop of the RNAPII signal in the polo 3’UTR by 

comparing the same RNAPII ChIP-seq data [539]. 

 

 

FIGURE 24 | RNAPII occupancy along the polo gene. ChIP analysis along the polo locus 

in Drosophila melanogaster 0-24h embryos using the Rpb3 antibody. Numbers below 

each bar set represent the respective primer pair as depicted in the schematic 

representation of the polo locus above (adapted from [567]). Results are the means ± 

SDE of three independent experiments. 

Interestingly, polo USE is located within the region where the loss of RNAPII signal is 

more evident, defined by primer pair 4 (FIGURE 24). We hypothesized whether the 

reduction in RNAPII occupancy in this region was associated to the presence of polo 

USE. To study this at a genome-wide scale, we compared RNAPII chromatin occupancy 

profile in genes with and without the USE-N in the previously analysed dataset [539] 

(FIGURE 25). Remarkably, we found that the same abrupt decrease in the RNAPII signal in 

the 3’UTR is characteristic of USE-N-containing genes in comparison to genes without 

this sequence, regardless of pA signal strength (FIGURE 25, compare the RNAPII signal 

between the solid lines with the dashed lines of each colour). These genes contain the 

USE-N up to a distance of 90 nt upstream of the AATAAA, ATTAAA or AATATA pA 

signals, which approximately corresponds to the region where the loss of RNAPII signal is 

detected (FIGURE 25). These results suggest that the USE-N may not only be an APA 

regulatory sequence, but it may also aid in the disengaging of RNAPII from the chromatin, 

thus revealing a potential novel role for USEs in promoting RNAPII transcription 

termination in Drosophila melanogaster. 
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FIGURE 25 | Meta gene analysis of RNAPII ChIP-seq signal [539] surrounding the 

stop codon in USE-N-containing genes drops dramatically in comparison to genes 

without this element with AATAAA (orange lines), ATTAAA (blue lines) or AATATA 

(red lines) pA signals. 588, 297 and 319 USE-N-containing genes upstream of AATAAA, 

ATTAAA or AATATA (TABLE 8) and 4114, 1206 and 410 genes without this element 

upstream of AATAAA, ATTAAA or AATATA were used, respectively. 

2.4. Deletion of polo Upstream Sequence Element causes a prevalent 

abdominal phenotype and impairs Polo activity and polo pA signal 

selection in vivo 

Genome-wide analyses suggest that the USE may be a regulator of gene expression, 

APA and transcription termination in Drosophila melanogaster (see sections 2.2 and 2.3). 

To understand the role of the USE in polo gene regulation and mRNA 3’end formation, we 

created a transgenic fly strain in which the USE is deleted in a polo null background 

(polo9, [410]). These transgenic flies contain the polo gene tagged with the gfp reporter 

(see FIGURE 26), they are viable and the gfp-poloΔUSE transgene can rescue the lethality 

induced by the polo9 background. 
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gfp-polo;polo9-/-  

 

 

gfp-poloΔUSE;polo9-/-  

FIGURE 26 | Schematic representation of the transgene constructed to generate gfp-

poloΔUSE transgenic flies in a polo9 background (gfp-polo∆USE;polo9-/-). The 1-5 

grey boxes represent the five polo exons with the black boxes representing the 5’ and 

3’UTRs. ATG refers to the translation start site and TAA to the stop codon. The gfp box 

represents the gfp coding sequence inserted in frame with the polo initiation codon. The 

textured box in the 3’UTR represents the USE, which was deleted in gfp-polo∆USE;polo9-/- 

flies. The ATTAAA and AATATA depict the proximal (pA1) and distal (pA2) pA signals, 

respectively. 

As previously shown, adult homozygous transgenic flies with a mutated and non-

functional polo pA1 (ATTAAA > GTTAAC, gfp-poloΔpA1;polo9-/- flies) present abdominal 

defects [115]. Interestingly, gfp-poloΔUSE;polo9-/- homozygous transgenic flies show a 

remarkably identical phenotype to that of gfp-poloΔpA1;polo9-/- flies (FIGURES 27 and 28, 

as denoted by the black arrowheads). As seen in FIGURES 27 and 28, this phenotype is 

restricted to the abdomen and includes abnormalities in the bristles and tergites in both 

males and females. In contrast, the heterozygous individuals from both strains (gfp-

poloΔUSE;polo9/TM6B and gfp-poloΔpA1;polo9/TM6B) display no phenotypic differences 

from the gfp-polo;polo9-/- control. 

A B 
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C D 

  

 

FIGURE 27 | Representative images of female (A and C) and male (B and D) gfp-

poloΔUSE;polo9-/- adult abdomens. gfp-poloΔUSE;polo9-/- flies display an abdominal 

phenotype characterized by tergite malformation with pigmentation nicks and loss of 

bristles (indicated by the black arrow heads). Females (A, C) display a stronger phenotype 

than males (B, D). 

 

FIGURE 28 | Dorsal view of abdomen preparations from gfp-polo;polo9-/- (panel 1), 

gfp-poloΔUSE;polo9/TM6B (panel 2) and gfp-poloΔUSE;polo9-/- (panel 3) adult 

females. Anterior side is up. 

We quantified these defects in the gfp-poloΔpA1;polo9-/- and gfp-poloΔUSE;polo9-/- strains 

in both males and females. We found that 86% of gfp-poloΔUSE;polo9-/- adults present an 

abdominal phenotype (TABLE 9). Interestingly, this is a sex-specific effect as 100% of gfp-

poloΔUSE;polo9-/- females display phenotypic defects, in particular heavily malformed 

tergites (see FIGURES 27 and 28) against only 82% of gfp-poloΔUSE;polo9-/- males, which 

tend to present more moderate defects (TABLE 9 and FIGURE 28). The phenotype in the 

gfp-poloΔpA1;polo9-/- flies is milder, with only 47% of adults displaying abdominal 

malformations (TABLE 9) and suggesting that the USE is more relevant for the phenotype 

presented than pA1; 66% of females display phenotypic abnormalities versus only 30% of 

males, with both sexes being fertile. In contrast to the males and the gfp-poloΔpA1;polo9-/- 
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strain, gfp-poloΔUSE;polo9-/- females represent only 20% of the homozygous population 

and are sterile, which is in agreement with a polo loss of function such as the polo1 kinase 

dead condition [396] and polo3, polo4, polo5, polo7 and polo8 mutants. Of note, polo7 and 

polo8 strains were also reported to present abdominal defects [568]. These results 

suggest that the USE has a function in polo gene expression and that deletion of polo 

USE in vivo (gfp-poloΔUSE;polo9-/- strain) has similar physiological repercussions as 

incorrect polo pA1 signal selection (gfp-poloΔpA1;polo9-/- strain). 

TABLE 9 | Prevalence of the abdominal phenotype found in gfp-poloΔUSE;polo9-/- 

and gfp-poloΔpA1;polo9-/- adult flies compared to heterozygous individuals. 

 gfp-poloΔUSE;polo9-/- gfp-poloΔpA1;polo9-/- 

Adult females with phenotype 25 59 

Adult males with phenotype 84 29 

Flies with phenotype 109 88 

Total 127 186 

% Adult females with phenotype 100% 65.6% 

% Adult males with phenotype 82.4% 30.2% 

% phenotype 85.8% 47.3% 

We then asked if the absence of polo USE affects the biological pathways controlled by 

Polo. We focused on two well-characterized mitotic kinases, Aurora B and Mps1, which 

are Polo targets at the kinetochores of dividing neuroblasts that allow for correct cell cycle 

progression [430, 569-572]. In gfp-poloΔUSE;polo9-/- kinetochores, we observed that GFP-

Polo levels decreased two-fold in comparison to the gfp-polo;polo9-/- control (FIGURE 29, 

left graph). Consequently, T-loop phosphorylation of Aurora B and Mps1 shows a similar 

reduction (FIGURE 29, middle and right graphs), indicating that kinetochore activation of 

these kinases is compromised upon deletion of polo USE. 



 
80 

 

FIGURE 29 | Representative immunofluorescence images and respective 

quantifications of GFP-Polo, Aurora BT232Ph and Mps1T490Ph levels at kinetochores of 

dividing third instar larvae neuroblasts expressing gfp-polo;polo9-/- and gfp-

poloΔUSE;polo9-/-. GFP-Polo, Aurora BT232Ph and Mps1T490Ph fluorescence intensities were 

determined relative to Spc105 signal, which was used as a kinetochore marker. All values 

were normalized to the control (gfp-polo;polo9-/- neuroblasts) mean fluorescence intensity, 

which was set to 100% (n≥7 kinetochores from at least 10 neuroblasts for each condition). 

Results are expressed as mean values ± SDE and statistical significance was assessed 

by the Mann-Whitney test. 

These results clearly show that in vivo deletion of polo USE has an impact in the 

expression and activity of the cell cycle kinases Polo, Aurora B and Mps1 at the 

kinetochores. 

Although gfp-poloΔUSE;polo9-/- individuals are viable, it is interesting to note that they 

present a stronger mitotic phenotype (more cells in mitotic arrest and fewer cells) than 

gfp-poloΔpA2;polo9-/- or polo9-/-, which are lethal at the pupae stage [115] and late third 

instar stage [410], respectively. These observations further reveal that polo USE has a 

relevant in vivo function in the normal development of the larvae brain by controlling polo 

expression.  
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Reduced activity of Mps1 and Aurora B in mitosis often leads to chromosome segregation 

errors. Accordingly, we detected gfp-poloΔUSE;polo9-/- (FIGURE 30) neuroblasts containing 

an abnormal number of chromosomes as opposed to the regular karyotype observed in 

every control neuroblast analysed (8 chromosomes, gfp-polo;polo9-/-, FIGURE 30), 

indicating that USE-less neuroblasts are more prone to mitotic errors than control cells. 

 

FIGURE 30 | Representative immunofluorescence images of mitotic neuroblasts from 

squashed gfp-polo;polo9-/- and gfp-poloΔUSE;polo9-/- larvae brains. Brains were 

incubated with colchicine to obtain chromosome spreads that facilitate the visualization of 

chromosome content. Spc105 was used as a kinetochore reference. Chromosome 

content is shown for each representative neuroblast. The graph represents the 

quantification of chromosome numbers in gfp-polo;polo9-/- and gfp-poloΔUSE;polo9-/- 

mitotic neuroblasts. 

Taken together, our results indicate that the decreased activity of Polo caused by the in 

vivo deletion of the USE (FIGURE 29) leads to abnormal cell cycles and chromosome 

instability, which ultimately culminates in mitotic arrests, errors and aneuploidies (FIGURE 

30). While these abnormalities are not enough to be lethal, they clearly have an effect in 

dividing cells (neuroblasts), and are likely the cause of the abdominal phenotype seen in 

gfp-poloΔUSE;polo9-/- adults. This is perhaps a milder failure of incorrect proliferation of 

the abdominal histoblasts which was observed in gfp-poloΔpA2;polo9-/- individuals [115]. 

To investigate the function of the USE in polo mRNAs expression, we quantified the levels 

of both polo mRNA isoforms in gfp-poloΔUSE;polo9-/- by RT-qPCR using two different 

primer pairs as depicted by the schematics in FIGURE 31: one that amplifies both mRNAs 

and another one able to specifically amplify only the longest polo isoform. FIGURE 31 
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shows that there is a reduction of both polo mRNA isoforms in gfp-poloΔUSE;polo9-/- 

neuroblasts when compared to the gfp-polo;polo9-/- control. 

 

FIGURE 31 | Expression levels of polo mRNA isoforms of gfp-poloΔUSE;polo9-/- 

(USE-/-) third instar larvae brains compared to the gfp-polo;polo9-/- control (gfp-

polo-/-). Expression was quantified by RT-qPCR using two distinct primer pairs: the total 

primer pair amplifies both mRNA isoforms and the long primer pair amplifies only the 

longest isoform. rp49 was used as a housekeeping gene. Error bars show SEM from three 

independent experiments. 

Additionally, the expression of the longest polo mRNA, which corresponds to the essential 

isoform responsible for producing most of Polo protein [115], is more compromised. This 

further indicates that deleting a potentially regulatory element from the 3’UTR of polo 

deregulates its mRNAs expression, hinders Polo kinase activity and consequently leads to 

mitotic delay, aneuploidies and abnormal defects. 

Knowing that polo expression is altered in the gfp-poloΔUSE;polo9-/- strain, we then 

investigated whether the in vivo deletion of the USE influenced polo mRNA 3’end 

formation. For this purpose, we mapped polo mRNA 3’ends by 3’RACE in gfp-

poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- females, the developmental stage in which we 

observed the predominant abdominal phenotype (FIGURES 27 and 28 and TABLE 9). gfp-

polo;polo9/TSTL females were used as a control and produce the two polo mRNA 

isoforms that have been previously described [397]. In contrast, flies without the USE (gfp-

poloΔUSE;polo9-/-) and with a mutated polo pA1 (gfp-poloΔpA1;polo9-/-) both show 

impaired pA signal selection, using two cryptic pA signals in addition to polo pA1 and pA2 

to produce two new polo mRNA isoforms (# and * bands in FIGURE 32). This indicates that 
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the USE has a function in polo pA signal selection, contributing to proper polo mRNA 

3’end formation and the recognition of bona fide polo pA signals in vivo. 

 

 

FIGURE 32 | mRNA 3’end mapping of polo in the abdomen of gfp-poloΔUSE;polo9-/- 

and gfp-poloΔpA1;polo9-/- female adults by 3’RACE. gfp-poloΔUSE;polo9-/- and gfp-

poloΔpA1;polo9-/- flies produce two additional polo mRNA (depicted by * and #) isoforms 

other than the expected short (630 bp) and long (890 bp) mRNAs seen in the control (gfp-

polo;polo9/TM6B). NTC is a no template control and RT- are the negative controls. In the 

3’UTR sequence of polo, we highlighted the position of the USE, both pA signals (pA1 and 

pA2), the cryptic pA1 (AAUAUA) 57 bp upstream of pA1 and the cryptic pA2 (AAUAAU) 

113 bp upstream of pA2. 

2.5. Hephaestus is an RNA Binding Protein that binds to polo Upstream 

Sequence Element 

Our previous results clearly show that the USE has a physiological role in correct polo 

expression. We next focused on identifying the RBPs that specifically bind to the USE 

RNA as they are the true effectors of USE-dependent polo regulation. For this purpose, 



 
84 

we performed an RNA-protein pull-down assay associated to liquid chromatography-

tandem mass spectrometry (LC-MS/MS) analysis (FIGURE 33) using as templates an in 

vitro transcribed 28-nt long USE RNA and a mutated USE (USEmt) in which 17 nt were 

specifically mutated to disrupt the most conserved nucleotides of the sequence, including 

TTGTTTTT (FIGURE 34). 

 

FIGURE 33 | Schematic representation of the RNA-protein pull-down assay protocol. 

Drosophila melanogaster embryo proteins were exposed to biotin-labelled USE or USEmt 

RNAs, purified and later identified by MS analysis. Further detail can be found in sections 

2.6 and 2.7 of Materials and Methods. 

 

 

FIGURE 34 | Sequences of the USE and USEmt RNAs used in the RNA-protein pull-

down assay (5’-3’). * above the USEmt sequence indicate the 17 nt single point 

mutations in relation to the USE RNA. 
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We normalized both the USE and USEmt eluates to the same total amount of protein 

before loading the LC-MS/MS (see section 2.7 of Materials and Methods for further detail) 

and protein profiles from the eluates of USE and USEmt RNAs before LC-MS/MS 

separation show clear differences in the Coomassie-stained gel of FIGURE 35.  

The proteins able to bind to the USE but not to USEmt were considered positive hits if at 

least five unique peptides for the USE RNA (#unique peptidesUSE ≥ 5) and less than five 

unique peptides for the USEmt RNA (#unique peptidesUSEmt < 5) had been identified by 

LC-MS/MS. 

 

FIGURE 35 | Representative Coomassie-stained gel showing the RBPs from 

Drosophila melanogaster embryo extracts pulled down with the USE and USEmt 

RNAs using the Pierce RNA-Protein pull-down assay kit. Samples from both the 

supernatants and eluates and all washing steps (not shown) were run to assess protein 

recovery in each condition. 

GO analyses show an enrichment of functions related to mRNA 3’end processing for 

many of the USE-binding proteins (TABLE 10) such as poly(A)+ mRNA export from 

nucleus, regulation of mRNA processing and mRNA polyadenylation, which is in 

agreement with the expected roles of RBPs. 
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TABLE 10 | Top 10 RNA-related GO terms enriched in the proteins that bind to the 

USE RNA detected by LC-MS/MS. 

Top 10 RNA-related GO terms 
USE-binding proteins  

(fold enrichment) 

RNA cap binding complex 6.60 

poly(A)+ mRNA export from nucleus 5.03 

mRNA binding 3.78 

regulation of mRNA processing 3.77 

mRNA polyadenylation 3.52 

regulation of mRNA metabolic process 3.46 

mRNA export from nucleus 3.42 

mRNA-containing ribonucleoprotein complex export from nucleus 3.42 

mRNA processing 3.38 

RNA export from nucleus 3.32 

 

TABLE 11 displays the top 10 USE-binding proteins involved in RNA metabolism sorted by 

the number of unique peptides identified per protein and the complete list of USE-binding 

proteins can be found in TABLE 12 (see Appendix). Heph is involved in Gurken protein 

location [322] and oskar expression regulation [327]. Its human ortholog, PTBP1, is an 

RBP involved in mRNA 3’end processing, APA, alternative splicing and translation [250, 

256, 262, 266, 311-318], although no role in APA has been described for Heph. Arsenic 

resistance protein 2 (Ars2) is involved in the biogenesis of small RNAs [573] and Tho2 

has a function in exporting mRNAs from the nucleus [574]. Splicing factor 3b subunit 3 

(Sf3b3) is part of the U2 small nuclear ribonucleoprotein particle and also part of a 

transcriptional co-activator complex [575]. There is insufficient information regarding the 

CG7728, Suppressor of white-apricot [Su(wa)] and CG5728 proteins to understand if they 

may have a function related to mRNA metabolism while Embargoed (Emb), Dynactin 1 

p150 subunit (Dctn1-p150) and Spindle E (SpnE) have no reported RNA-related function.  

Heph is the top positive hit, specifically binding to the USE RNA and not to the USEmt 

(#unique peptidesUSE RNA = 15 and #unique peptidesUSEmt RNA = 4), therefore we decided to 

further investigate the in vivo function of Heph in regulation of polo APA and/or 

expression. 
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TABLE 11 | List of the top 10 RNA-related proteins obtained in LC-MS/MS that bind to 

the USE (#unique peptides ≥ 5) and do not bind to USEmt (#unique peptides < 5) 

sorted from largest to smallest #unique peptides identified/protein. The total number 

of positive hits comprises 282 proteins and can be found in TABLE 12 (see Appendix). 

Protein  
#Unique peptides pulled  
down with USE RNA  

#Unique peptides pulled  
down with USEmt RNA  

Heph 15 4 

Emb 15 4 

CG7728 14 0 

Ars2 14 3 

Dctn1-p150 13 4 

Tho2 13 4 

Su(wa) 12 3 

CG5728 12 4 

Sf3b3 12 4 

SpnE 11 3 

 

2.6. Hephaestus modulates efficient polo mRNA 3’end formation and Polo 

protein production 

To study the in vivo function of Heph on polo expression and APA, we used a hypomorph 

fly strain for the respective gene, the heph2/TM6B mutant. These flies do not have 

abdominal abnormalities as the gfp-poloΔUSE;polo9-/- strain, but they have a phenotype in 

testis [325] and display defects in spermatogenesis [324] that lead to male sterility [388]. 

heph2 is mostly lethal for most of the homozygous population, originating few escapers. 

Consequently, we chose to work with heterozygous individuals as this allele had 

previously been reported to produce low levels of heph mRNA and protein [324, 388]. To 

validate the use of this heterozygous model, we measured heph mRNA levels in 

heph2/TM6B larvae brains by RT-qPCR and as seen in FIGURE 36, heph expression is 

reduced by approximately half the amount found in w1118 control individuals. 
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FIGURE 36 | Expression levels of heph mRNA in heph2/TM6B third instar larvae 

brains quantified by RT-qPCR. rp49 was used as a housekeeping gene. Error bars 

show SD from three independent experiments. 

By RT-qPCR and adopting a similar methodology as that described in section 2.4, we 

investigated the levels of polo mRNA isoforms in heph2/TM6B mutant larvae brains and 

observed that the longest polo isoform is significantly reduced in comparison to the wild 

type control (FIGURE 37), similarly to what we had previously observed with the gfp-

poloΔUSE;polo9-/- strain. Using Drosophila S2 cells treated with heph dsRNA, we also 

quantified polo mRNA levels and showed a decrease of the longest polo isoform levels 

when heph is knocked down [278], corroborating our in vivo results. These results show 

that low levels of Heph lead to a decrease in the expression of the longest polo mRNA 

isoform in a similar manner as deleting the USE in vivo, an effect that is possibly due to 

the lack of binding of Heph to polo USE. 



 
89 

 

FIGURE 37 | Expression levels of total polo mRNA in heph2/TM6B third instar larvae 

brains quantified by RT-qPCR. rp49 was used as a housekeeping gene. Error bars 

show SD from three independent experiments. * indicates p value < 0.05. 

To further understand if the absence of Heph has an impact on polo mRNA 3’end 

formation analogous to gfp-poloΔUSE;polo9-/-, we proceeded to map the 3’ends of polo 

mRNAs by 3’RACE in heph2/TM6B flies. While the heph2/TM6B mutant displays a 

different 3’RACE pattern (three bands, FIGURE 38) from gfp-poloΔUSE;polo9-/- transgenic 

flies (four bands, FIGURE 32), this mutant clearly presents abnormal polo mRNA 3’end 

formation as well: heph2/TM6B mutants do not utilize the cryptic pA signal upstream of 

polo pA1 that both gfp-poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- do, but they use the 

cryptic polo pA signal located upstream of polo pA2 (*, FIGURE 38) also used by both the 

gfp-poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- strains (compare the heph2/TM6B lane in 

FIGURE 38 with the gfp-poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- lanes in FIGURE 32). 

This result is in agreement with the reduced levels of the distal polo mRNA isoform in 

heph2/TM6B larvae brains, both in vivo and in vitro (FIGURE 37 and [278]) and 

corroborates our hypothesis that the lack of Heph and polo USE deletion both have a 

deleterious effect on normal polo mRNA 3’end formation. 
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FIGURE 38 | mRNA 3’end mapping of polo in heph2/TM6B 0-24h embryos by 3’RACE. 

polo pA signal usage in the heph2/TM6B mutant shows an additional mRNA isoform (*) 

compared to the w1118 control. NTC is the no template control and RT- are the negative 

controls. 

To complement our analysis of polo mRNA 3’end formation and mRNA production 

regulated by the USE and Heph, we have also performed northern blot in gfp-

poloΔUSE;polo9/TM6B, heph2/TM6B and gfp-poloΔpA1;polo9/TM6B third instar larvae 

brains (FIGURE 39). heph2/TM6B mutants show a decrease of both polo mRNAs in 

comparison to the w1118 control (FIGURE 31, compare lanes 1 and 3), which is in 

agreement with our previous observations.  

gfp-poloΔpA1;polo9/TM6B larvae brains can only generate the gfp-polo pA2 isoform due 

to polo pA1 mutation [115] (FIGURE 39, compare lanes 2 and 4), and gfp-

poloΔUSE;polo9/TM6B individuals present a single band at the same molecular size, 

indicating that in vivo deletion of the USE hinders polo pA1 selection and leads to the 

production of only the gfp-polo pA2 isoform. While the endogenous polo mRNAs are 

visible in all strains, we were not able to detect the bands of weaker intensity detected by 

3’RACE produced by usage of cryptic pA signals by northern blot. 
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FIGURE 39 | Northern blot using total RNA from w1118 (lane 1), gfp-

poloΔUSE;polo9/TM6B (lane 2), heph2/TM6B (lane 3) and gfp-poloΔpA1;polo9/TM6B 

(lane 4) third instar larvae brains. The two endogenous polo mRNAs present in every 

lane (endogenous polo pA1 and pA2 isoforms) are indicated by black arrows. Only the 

gfp-polo pA2 isoform is expressed by the gfp-poloΔUSE;polo9/TM6B and gfp-

poloΔpA1;polo9/TM6B strains as indicated by the black arrowhead. rRNA served as 

loading control. 

We then asked how was GFP-Polo and Polo protein production in the wild type w1118, 

heph2/TM6B, gfp-polo;polo9-/-, gfp-poloΔUSE;polo9-/-, gfp-poloΔpA1;polo9-/- and gfp-

poloΔpA2;polo9-/- strains. A remarkable reduction in total Polo protein levels in the 

heph2/TM6B mutant in comparison to wild type is clearly seen (FIGURE 40), confirming that 

Heph is necessary for Polo protein expression. Curiously, we do not observe a significant 

decrease in total GFP-Polo levels in gfp-poloΔUSE;polo9-/- in comparison to the gfp-

polo;polo9-/- control. This is an unexpected result as we found low levels of GFP-Polo in 

the kinetochores of gfp-poloΔUSE;polo9-/- neuroblasts (FIGURE 29). As gfp-

poloΔUSE;polo9-/- neuroblasts still generate the longer gfp-polo isoform (FIGURE 31 and 

39), which is main responsible for GFP-Polo protein production [115], total GFP-Polo 

levels remain mostly unaltered (FIGURE 40), but GFP-Polo activity and recruitment to the 

kinetochores is affected in gfp-poloΔUSE;polo9-/-  by a still unknown mechanism (FIGURE 

29). Without the distal gfp-polo isoform, total GFP-Polo levels are noticeably diminished 

as seen in gfp-poloΔpA2;polo9-/- neuroblasts when compared to gfp-polo;polo9-/- (FIGURE 

40), corroborating our previous results: the shorter gfp-polo mRNA cannot compensate for 
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the loss of the longer isoform regarding Polo protein production during metamorphosis, 

which eventually culminates in the death of gfp-poloΔpA2;polo9-/- individuals [115]. In 

contrast, loss of Heph compromises polo distal pA signal selection (as seen in FIGURES 37 

and 38), subsequently inducing a more detrimental outcome on Polo protein production 

(FIGURE 40). Taken together, our results reveal a novel role for Heph in polo distal pA 

signal selection and Polo protein expression. 

 

FIGURE 40 | Representative western blot showing the total GFP-Polo and Polo 

protein levels (anti-Polo MA294, 1:40) in w1118, gfp-polo;polo9-/-, gfp-poloΔUSE;polo9-

/-, gfp-poloΔpA1;polo9-/-, gfp-poloΔpA2;polo9-/- and heph2/TM6B mutants. α-tubulin 

(anti-α-tubulin DM1A, 1:20000) was used as loading control. 

To further understand the physiological function of Heph in Polo-dependent pathways, we 

investigated the levels of Polo and two Polo downstream targets, Aurora B and Mps1, in 

dividing heph2/TM6B neuroblasts. Similarly to gfp-poloΔUSE;polo9-/- (FIGURE 29), 

heph2/TM6B cells also display a suboptimal accumulation of Polo at the kinetochores 

(Polo panel, left graph, FIGURE 41) and its kinase activity is also hindered since the 

phosphorylation levels of both Aurora B and Mps1 are equally reduced (AurBT232Ph and 

Mps1T490Ph panels, middle and right graphs, FIGURE 41). These results show that the 

absence of Heph is similar to the in vivo deletion of polo USE and illustrate a new in vivo 

effect of Heph on Polo and downstream Polo targets with a potentially adverse outcome in 

mitotic progression. 
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FIGURE 41 | Representative immunofluorescence images and respective 

quantifications of Polo, Aurora BT232Ph and Mps1T490Ph levels at kinetochores of 

dividing third instar larvae neuroblasts from w1118 (control) and heph2/TM6B 

mutants. Polo, Aurora BT232Ph and Mps1T490Ph fluorescence intensities were determined 

relative to Spc105 signal, which was used as a kinetochore reference. All values were 

normalized to the control (w1118) mean fluorescence intensity, which was set to 100% (n ≥ 

7 kinetochores from at least 10 neuroblasts for each condition). Results are expressed as 

mean values ± SDE and statistical significance was assessed by the Mann-Whitney test. 

Taking this novel cell cycle role of Heph into consideration, we asked if mitotic progression 

proceeded correctly in heph2/TM6B neuroblasts. Most neuroblasts in the heph2/TM6B 

mutant contain a normal chromosome content (8) as in the wild type (w1118), but they do 

present more aneuploidy events (FIGURE 42) as we had previously observed for gfp-

poloΔUSE;polo9-/- neuroblasts. This indicates that the absence of Heph has a 

physiological impact on correct cell cycle progression in a similar manner as the absence 

of polo USE. 
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FIGURE 42 | Representative immunofluorescence images of mitotic neuroblasts from 

squashed Drosophila melanogaster larval brains with the w1118 and heph2/TM6B 

genotypes. Spc105 was used as a kinetochore reference. Chromosome content is shown 

for each representative neuroblast. The graph represents the quantification of 

chromosome numbers in w1118 and heph2/TM6B mitotic neuroblasts. 
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3. The effect of Polo activity on alternative polyadenylation and genome-

wide transcription 

Polo kinase levels can determine polo APA [115]. There is preferential usage of polo pA1 

signal when Polo is overexpressed, which implies that high levels of Polo modulate polo 

expression through an auto-regulatory feedback loop that promotes polo pA1 choice and 

the production of the short polo isoform. We thus asked if Polo could have a new function 

in APA and/or transcription of other genes in vivo. To study this, we used two polo mutant 

fly strains, the kinase dead polo1 mutant that has a single point mutation and normal Polo 

protein levels [396, 411] and the null polo9 [410] mutant, and analysed APA and the 

expression levels of several genes. 

3.1. Gene expression is altered in polo mutants 

Initially, we analysed APA profiles and mRNA expression levels of genes with a similar 

genomic structure of polo: polo, CG6024, lace and abdominal-b (abd-b) all have five 

exons and two pA signals. 

 

 

FIGURE 43 | Expression levels of the mRNA isoforms of polo, CG6024, lace and abd-

b genes in wild type, heterozygous polo9 (null mutant, red bars) and heterozygous 

polo1 (kinase dead mutant, blue bars) male adults measured by RT-qPCR. Results 
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are the means ± SDE of three independent experiments and statistical significance was 

tested with a two-tailed paired Student’s t-test. * indicates p ≤ 0.05. 7SL was used as a 

housekeeping gene. 

Our results suggest that Polo levels and/or activity do not affect APA in most of the genes, 

but have a clear effect in CG6024 and abd-b expression (FIGURE 43). The CG6024 gene 

function is still unknown and its expression is moderate [412, 554, 576]. Curiously, the 

total levels of CG6024 mRNAs are reduced by over 70% in the polo null mutant and over 

60% in the polo kinase dead mutant. However, levels of the CG6024 longest isoform are 

only statistically diminished to approximately half in the kinase dead mutant (FIGURE 43). 

This suggests that the expression of the shorter CG6024 isoform is reduced in the 

absence of Polo while the long isoform levels are reduced only when Polo activity is faulty. 

We observe no differences in the expression between wild type and either polo mutant 

regarding the long isoform of abd-b, but total expression levels are reduced by nearly 70% 

in the polo kinase dead mutant (FIGURE 43), indicating that the production of the shorter 

isoform of this gene is particularly diminished in polo mutants. As one of the three hox 

genes of the bithorax complex, abd-b has functions in adult development, including the 

posterior abdomen and genitalia [577-582]. 

Although the P-element insertion located in the polo promoter in the null mutant (polo9) 

should ablate most of polo mRNA expression [410] in this mutant, we found that polo 

mRNA levels are not statistically different from the wild type control (FIGURE 43). This may 

be explained by the nature of the samples (heterozygous adult males), in which the wild 

type allele may compensate the loss of function of the mutated one. 

Taken together, these results suggest that Polo levels and/or activity do not affect APA in 

general, although a more extensive study involving a larger number of genes should be 

performed. 

All genes analysed so far are transcribed by RNAPII. To further explore a potential 

regulatory role of Polo kinase in transcription, we were also interested in studying the 

expression levels of genes transcribed by other RNAPs and whether they are altered in 

polo mutants. We selected three highly expressed genes to analyse: RNAPI-transcribed 

18s, RNAPII-transcribed rp49 and RNAPIII-transcribed U6 (FIGURE 44). 
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FIGURE 44 | mRNA expression levels of the 18s, rp49 and U6 genes in wild type, 

polo9 (null, red bars) and polo1 (kinase dead, blue bars) mutants measured by RT-

qPCR. Results are the means ± SDE of three independent experiments and statistical 

significance was tested with a two-tailed paired Student’s t-test. ** indicates p ≤ 0.01. 7SL 

was used as a housekeeping gene. 

We observed that rp49 expression is remarkably downregulated by 90% while U6 

expression is diminished by 30% in the kinase dead mutant when compared to the wild 

type control (FIGURE 44). 

Taken together, these results suggest that Polo is not a general regulator of APA or gene 

expression in Drosophila melanogaster, but its activity does affect the expression of 

several RNAPII-transcribed genes. 

3.2. polo null mutant affects RNA Polymerase II Carboxy Terminal Domain 

phosphorylation pattern 

A slower RNAPII transcription elongation rate alters polo APA, promoting the choice of 

polo pA1. Additionally, RNAPII chromatin occupancy profile is altered along the polo gene 

in RpII215C4 mutants [115]. Having shown that polo mutants affect the expression of 

CG6024, abd-b and rp49, we then asked if Polo activity affects that of RNAPII. For that, 

we analysed the RNAPII CTD phosphorylation patterns in polo kinase dead and null 

mutant embryos by western blot using antibodies that specifically detect two RNAPII CTD 
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modifications: Ser-5-P and Ser-7-P. These two CTD modifications are present during 

transcription initiation and the transition to promoter proximal pausing [45, 47-52]. 

As it can be seen, the RNAPII CTD phosphorylation pattern for the heterozygous polo null 

mutant (polo9+/-) is clearly different from the control with the RNAPII hypophosphorylated 

(hypo-P RNAPII, FIGURE 45) isoform bereft of Ser-5-P and Ser-7-P being predominant 

and not primed for elongation. This suggests that transcription initiation/productive 

elongation in the null mutant may be compromised together with the developmental 

abnormalities related to a deficient cell cycle progression inherent to this null mutant [410]. 

These results suggest that the absence of Polo causes a suboptimal phosphorylation of 

the RNAPII CTD tail. Considering that Polo is a Ser/Thr kinase, it is possible that Polo is 

involved in RNAPII CTD phosphorylation. 

 

FIGURE 45 | The null mutant shows more hypophosphorylated RNAPII in comparison 

to wild type. Western blot using 0-24 h Drosophila melanogaster embryo protein extracts 

from w1118, polo1 (kinase dead) and polo9 (null) strains against RNAPII CTD Ser-5-P (4H8, 

left panel) and RNAPII CTD Ser-7-P (right panel). -tubulin served as loading control.  

Taken together, these data show preliminary evidence that Drosophila melanogaster Polo 

kinase may affect RNAPII activity, which may have physiological repercussions at several 

levels during transcription and consequently, in gene expression control. 
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GENERAL DISCUSSION 

In humans, 70% of all genes undergo APA [215, 371, 372]. Through this evolutionarily 

conserved [370] mechanism, the cell can produce mRNA isoforms that have different 

coding sequences and/or 3’UTRs, which not only contributes to transcriptome diversity, 

but also adds another level of gene expression control.  

In the fly genome, we have determined that APA occurs in approximately 78% of genes 

using 3’READS [280]. This observation had been previously noted in fly, but in a less 

broad APA study using polo(A)+ RNA-seq [279] whereas 3’READS is capable of mapping 

the characteristically A-rich pA sites [546, 547] that commonly go undetected using other, 

less specific sequencing methods. Indeed, we were able to properly re-annotate the 

3’ends of over 10000 genes using our new data in comparison to the previous study. We 

have also found that there is a clear preference for Drosophila melanogaster wild type 

heads to choose dPASs in detriment of more pPASs. This finding is in agreement with 

genome-wide studies in other organisms, which have shown that there is a general 

prevalence of terminally differentiated cells to produce mRNA transcripts with long 

3’UTRs, thus indicating that dPASs are preferentially selected in neural tissues [369, 372, 

379, 380, 382]. We have observed these head-body differences in males. It would be 

equally interesting to perform this study in females or use different developmental stages 

since there are known RBPs that have germline-dependent roles such as Sex-lethal [329] 

and Heph [324, 388] that could therefore have a role in APA in highly specialized tissues 

such as ovaries and development-dependent 3’UTRs have been characterized [216]. 

The molecular mechanisms of how or why the cell chooses one pA signal over another 

are still unclear. To investigate the mechanisms behind APA in the fly head and body, we 

analysed the expression levels of genes encoding proteins involved in mRNA processing 

as modulating the levels of these proteins strongly correlates with pA site selection [173, 

287, 313, 329, 338, 339, 393]. We found that many of these genes, such as Pcf11 

(termination factor that is part of the CFIIm complex), CstF64 (part of the CSTF complex 

and a basal mRNA 3’end processing protein), Cdk9 (responsible for priming RNAPII for 

productive elongation [26, 28, 84]) and Ssu72 (RNAPII CTD Ser-5 and Ser-7- 

phosphatase [23, 99-101]), are upregulated in the wild type fly head while a select few 

(the transcription elongation factor elongin A – EloA [583] - and MED20, a subunit of the 

Mediator complex, for example) are downregulated in comparison to the body. Taken 

together, these results suggest that there is a different type of APA regulation in highly 

differentiated cells in the fly head in comparison to more proliferative cells in the fly body. 

Although further experiments must be performed to confirm this, we can hypothesize that 
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a more rigorous transcriptional control via upregulation of certain mRNA processing 

proteins in Drosophila melanogaster head tissues is needed whereas body tissues do not 

appear to present such strict control. This hypothesis is corroborated by several studies 

that show that the expression deregulation of genes encoding mRNA processing proteins 

may lead to further transcriptional deregulation of other genes as well as developmental 

abnormalities. Loss of Heph affects actin [321], Gurken [322] and Oskar [327] regulation, 

the splicing events of several genes [323, 326] and spermatogenesis [324, 388]. 

Deregulation of su(f), which is the fly ortholog of CSTF77 [193], impairs neural 

differentiation and mitosis [196]. In zebrafish, PCF11 attenuates its own expression and 

that of other genes encoding transcription regulators [584]. 

polo APA is deregulated in the slower RpII215C4 mutants, with adult male flies preferably 

using the proximal polo pA1 3.5 times more efficiently than the wild type control 

concomitant with differences in RNAPII chromatin occupancy along polo [115]. APA of a 

small number of genes similarly structured to polo is equally defective in the slower 

RpII215C4 mutant fly strain [115]: abd-b, lace, stlk, CG6024 and cyclin D all have five 

exons and two functional pA signals in their 3’UTRs as does polo and there is a 

preferential choice of their proximal pA signal in the presence of the slower RNAPII of the 

RpII215C4 mutant fly. Beyond APA, it has also been shown that a slower elongation rate 

causes premature transcription termination [117], deregulates mRNA 3’end formation of 

histones [116] and alters numerous splicing events [118, 119], including the resplicing of 

the ultrabithorax Hox gene in RpII215C4 flies [120]. To further understand if a slower 

transcription elongation rate affected APA at a genome-wide scale, we used 3’READS 

and found that while RpII215C4 flies present a higher preference for pPAS selection in the 

body, this trend is not observed in the head. This indicates that the elongation rate-

dependent regulation is markedly distinct and impacts APA differently in heads and 

bodies. Our results indicate that neuronal cells are unresponsive to a 50% slower 

transcription elongation rate and that body tissues are more reactive to a slower 

transcription elongation rate, tending to adhere by the ‘first come, first served’ model of 

APA regulation in Drosophila melanogaster [115]. A recent study has mimicked the 

RpII215C4 R741H mutation using mouse embryonic stem cells [585] and found that a 

slower transcriptional elongation rate hinders neural differentiation via compromised gene 

expression and alternative splicing in long genes involved in synapse signalling and 

causes embryonic lethality in mouse. The authors also observed that undifferentiated 

embryonic cells were more impervious to the change in transcription elongation rate [585]. 

Together with our results, this new data indicates that the impact of a slower elongation 

rate varies according to the developmental stage and species analysed. Thus, this should 
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be considered when analysing different genome-wide datasets obtained from different 

tissues, cells and/or species. 

The distinct head/body response to the slower RNAPII elongation rate may be due to the 

differential expression of genes encoding for RBPs, proteins involved in mRNA 3’end 

formation, and transcription elongation and termination factors in the mutant fly strain. We 

found that there is an increase of over four-fold in the expression of Rrp6 and Ssu72 in the 

RpII215C4 fly bodies and also a remarkable downregulation of over 15-fold of Nelf-E 

expression in the mutant fly. The downregulation of the negative elongation factor Nelf-E 

may be a compensatory mechanism to the inherent slower transcription rate in the mutant 

fly. In the mutant bodies, the marked upregulation of the RNAPII CTD Ser-5 and Ser-7 

phosphatase Ssu72, which is also a component of the yeast mRNA 3’end machinery 

[100], and downregulation of the negative elongation factor Nelf-E, together with the mild 

upregulation of the Spt6 elongation factor, may explain the preferential usage of pPAS 

observed in RpII215C4 bodies. Accordingly, it has been shown that genome-wide 3’UTR 

length inversely correlates with upregulation of mRNA 3’end processing factors in 

mammalian cells [586] and Drosophila melanogaster [192], namely core cleavage and pA 

factors such as CFIm. Our results thus suggest that Ssu72 and Spt6 upregulation and 

downregulation of Nelf-E in RpII215C4 bodies lead to the usage of less efficient pPAS in 

Drosophila melanogaster. 

It has been reported that the slower RpII215C4 mutant flies show altered RNAPII 

chromatin occupancy profile for the polo gene [115]. Although the structural differences in 

the slower RNAPII may explain this observation, it is also possible that an incorrect 

recruitment or function of transcription elongation and/or termination factors such as the 

NELF complex [74, 587] or Ssu72 [23, 588], whose expression is respectively down- and 

upregulated in RpII215C4 mutant bodies, are responsible for the defective RNAPII 

occupancy observed. 

Polo kinase is crucial for correct cell cycle progression [397] and polo expression is known 

to be tightly regulated by APA and essential for correct fly development [115]. Our next 

goal was to identify the regulators of polo APA. Genome-wide studies predict that a 

significant percentage of human pA signals are flanked by U-rich sequence elements both 

upstream (USE) and downstream (DSE) [227]. USEs are known to be U-rich cis auxiliary 

elements localized upstream of pA signals [227] that help to modulate the mRNA 3’end 

formation efficiency of the genes in which they are found [184, 249, 256, 260, 267]. We 

have identified a particularly well-conserved sequence in polo 3’UTR with over 53% of U 

content which we named polo USE due to the similarities of this element to previously 
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described USEs in human [236, 249-257, 263] and viral [237-245, 247, 248] genes. This 

is the first description and characterization of a USE in Drosophila melanogaster, which 

indicates that this class of cis auxiliary sequences is widespread among different species 

and hints at a possible functionality. 

We have also found that approximately 5% of all fly 3’UTRs contain the eight most 

conserved nt of polo USE, TTGTTTTT, upstream of the AATAAA, ATTAAA or AATATA 

pA signals. For comparison, the USE in the human prothrombin F2 gene, TATTTTTGT, is 

present in the 3’UTR of 4% of human transcripts and in close proximity to AATAAA or 

ATTAAA [236], which highlights the relevance of the USE in the Drosophila melanogaster 

genome. 

polo, mirror, still-life and sex-lethal are four examples of USE-containing genes that clearly 

show that this cis regulatory sequence can be found in the 3’UTR of vital genes with 

relevant roles in fly and neural development, gametogenesis and mRNA 3’end 

processing, in agreement with the functions of human USE-containing genes [236, 249, 

255]. polo is an essential gene and contains the USE upstream of an ATTAAA. mirror 

USE is upstream of the AATAAA, and has important functions in eye formation [589], 

oogenesis [590] and peripheral nervous system development [591]. still-life encodes a G 

nt exchange factor for Rho-GTPases that specifically localizes to presynaptic terminals 

[592] and contains the USE upstream of the ATTAAA. sex-lethal, which encodes an RBP 

specific to the female germline involved in enhancer of rudimentary APA [329], contains 

the USE upstream of an AATATA. 

We found that it is three times more likely to find the USE associated to non-canonical pA 

signals (ATTAAA or AATATA) than to the AATAAA pA signal. These signals tend to be 

less efficiently processed than the canonical pA signal [213], thus making them likely to be 

regulated [252, 260, 376] by the USE. Moreover, we revealed that USEs tend to be close 

to pA signals regardless of their efficiency, which is also in agreement with the distance-

dependent effect already reported for USEs [236, 255]. Finally, we also observed that 

genes with the USE-N (TTNTTTTT) in their 3’UTRs tend to be more transcriptionally 

active than genes without this element in a developmental stage-dependent manner. 

Taken together, our results support the hypothesis that the USE is an auxiliary sequence 

of the pA signal, influencing cleavage and pA efficiency and acting as a widespread 

regulator of gene expression in Drosophila melanogaster. 

To study the function of polo USE, we generated transgenic flies without polo USE. gfp-

poloΔUSE;polo9-/- adult flies show a predominant phenotype characterized by the 

malformation of the abdominal epidermis identical to the one found in flies with a mutated 
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and non-functional polo pA1, the gfp-poloΔpA1;polo9-/- strain (ATTAAA > GTTAAC) [115]. 

Interestingly and in contrast to gfp-poloΔpA1;polo9-/- flies, gfp-poloΔUSE;polo9-/- females 

are sterile and all of them display the phenotype. These characteristics are reminiscent of 

the female sterility found in several polo mutant strains [396, 568], and the abdominal 

defects found in polo1/polo2, polo7 and polo8. 

The identical phenotype between gfp-poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- adults 

suggests that flies without polo USE also have incorrect polo APA, which we confirmed by 

mapping polo mRNA 3’ends in the two strains. Both gfp-poloΔUSE;polo9-/- and gfp-

poloΔpA1;polo9-/- flies show erroneous polo pA signal choice, opting to select two cryptic 

and particularly inefficient pA signals together with polo pA1 and pA2 and revealing polo 

APA deregulation. This is in agreement with the literature: if a pA signal is mutated or 

deleted, there is an activation of cryptic pA signals located in the vicinity [318]. It has also 

been described that relevant cis regulatory sequences (such as polo USE) retain pA 

activity even in the absence of a functional pA signal [260], which is probably why there is 

still detectable gfp-polo pA1 mRNA in gfp-poloΔpA1;polo9-/- adult flies by 3’RACE. 

Additionally, USEs are known to stabilize the pA machinery on inefficient and non-

canonical pA signals (both polo pA1 and pA2 are non-canonical), which has an impact on 

pA and mRNA 3’end formation efficiency [184, 249, 256, 260, 267]. Interestingly, USE 

mutations result in a significant reduction in cleavage and pA of the COX-2 AUUAAA 

signal [255], which corresponds to the polo pA1 sequence. This may explain the activation 

of cryptic pA signals and low levels of polo after in vivo deletion of polo USE. The low polo 

mRNA levels and abnormal polo mRNA 3’end formation in gfp-poloΔUSE;polo9-/- flies 

clearly show that the USE has a physiological function in polo APA related to fly viability 

and normal development and highlight the importance of selecting the two polo pA signals 

– AUUAAA and AAUAUA – to accurately regulate polo expression. 

Both gfp-poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- flies present an abdominal phenotype 

characterized by tergite malformation and misregulated polo APA while the few gfp-

poloΔpA2;polo9-/- escapers show an aggravated abdominal phenotype. This phenotype is 

due to a deficit in Polo protein, required for the rapid proliferation of the abdominal 

histoblasts that occurs when the organism enters metamorphosis [593-597]. Interestingly, 

the slower RpII215C4 mutant fly strain does not have an abdominal phenotype even 

though the slower RNAPII affects polo APA; instead, they present a much more complex 

phenotype related to the mutation of the ultrabithorax Hox gene [598] in which the 

capitellum of the haltere of heterozygous individuals partially transforms into the wing 

blade [114, 599]. A possible explanation is the wider number of genes affected by a 

slower RNAPII. 
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Polo kinase has several key functions during the different phases of the cell cycle [423]. It 

is needed at various locations throughout the cell as mitosis progresses [397, 411, 424, 

427, 428], particularly at the kinetochores during metaphase [425, 426] where it 

phosphorylates numerous targets that contribute to proper mitotic progress such as 

Aurora B and Mps1 kinases [430, 569, 571, 572]. We discovered that loss of the USE not 

only has a direct impact on polo at the transcriptional level, but this consequently 

compromises Polo levels and kinase activity at the kinetochores during metaphase, as 

well as the activation of the Aurora B and Mps1 kinases. Although gfp-poloΔUSE;polo9-/- 

individuals are capable of producing the longest gfp-polo mRNA, which is the main 

isoform responsible for effective GFP-Polo protein production that allows organism 

viability [115], the suboptimal accumulation of key kinases (GFP-Polo, Aurora B and 

Mps1) at the kinetochores indicates that gfp-poloΔUSE;polo9-/- neuroblasts present a 

deficit in the normal function of GFP-Polo protein that eventually hinders mitotic fidelity 

and leads to aneuploidies, which we also observed in the neuroblasts of these flies. Our 

results are in agreement with the abnormalities in mitosis and meiosis described for 

several polo mutants: polo1/polo2, polo7, polo8 and polo9 [396, 568]. 

It is possible that polo USE is particularly needed to increase Polo kinase levels at the 

kinetochores of dividing cells, namely in highly proliferative developmental stages such as 

the embryo, third instar larvae brains and metamorphosis. The peak of polo mRNA 

detection is during the 0-4h embryonic stage [397], which is in agreement with the need 

for Polo protein during the first rapid cell divisions. At this stage, most of polo mRNAs are 

inherited from ovaries, which are enriched in the maternal longest polo isoform [412], 

before zygotically-dependent transcription begins [600]. In the early pupae stage, 

histoblasts become highly proliferative [593-597] and are particularly sensitive to Polo 

levels, requiring the longest mRNA isoform of polo to form the adult epidermis [115]. If 

gfp-polo pA2 signal is used, but its selection is faulty (as seen for both the gfp-

poloΔUSE;polo9-/- and gfp-poloΔpA1;polo9-/- strains), individuals show abdominal defects. 

It is relevant to highlight the fact that the gfp-poloΔUSE;polo9-/- transgenic strain contains a 

deleted and not mutated USE, two very different modifications to polo 3’UTR that may or 

may not have similar repercussions. This deletion may disrupt possible secondary 

structures present in both polo isoforms that may lead to different mRNA stabilities, 

functions and obstruct potential RBP interactions. This deletion may also hypothetically 

place other putative cis regulatory elements in a different position and/or conformation, 

thus altering their potential influence on polo pA signal selection. Regardless, the USE is 

only comprised by 28 nt, a rather small region considering the 2.3 and 2.5 kbp sizes of the 

shorter and longer polo mRNA isoforms, respectively. As such, it is unlikely that its 
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deletion will have a relevant impact on the overall structure of the two mRNAs, but it could 

be interesting to generate a new Drosophila melanogaster strain with a mutated USE and 

validate our results with the gfp-poloΔUSE;polo9-/- transgenic strain. 

USEs impact pA signal choice and pA efficiency by interacting with and recruiting 

numerous RBPs and core mRNA 3’end processing factors, either directly or indirectly 

[236, 249, 250, 256]. These trans-acting proteins are the true effectors of USE-dependent 

gene regulation. We identified Heph as the top RBP that specifically binds to the USE 

RNA. Heph is involved in oskar expression [327], Gurken protein location [322] and the 

splicing of Mlc1 and several other genes involved in spermatogenesis [326]. While no 

known role for Heph has been described regarding APA in Drosophila melanogaster, its 

human ortholog, PTBP1, affects pA signal efficiency and mRNA 3’end formation by 

recognizing the USEs of COX-2, prothrombin F2 and C2 complement pre-mRNAs [236, 

250, 256] and consequently, we next explored the role of Heph on polo gene expression 

control. 

We showed that hypomorphic heph2/TM6B mutants present abnormal polo mRNA 3’end 

formation and decreased production of the longest polo mRNA isoform. Concomitantly, 

we verified that Polo protein production was remarkably reduced in this mutant. It is 

possible that binding of Heph to the USE blocks the binding of cleavage and pA factors to 

polo pA1 in a similar manner as ELAVL1/Elav [307, 601], thus activating polo pA2 usage. 

Taken together, these results strongly suggest a new in vivo function for Heph in 

Drosophila melanogaster APA by promoting usage of polo distal pA signal, therefore 

enhancing Polo protein production. 

Our data indicate that both the USE and Heph are necessary for correct polo mRNA 3’end 

formation and mRNA levels. However, while we did observe incorrect polo mRNA 3’end 

formation in both the gfp-poloΔUSE;polo9-/- and heph2/TM6B strains, the mRNA species 

produced by these strains are different. The lack of polo USE and polo pA1 mutation lead 

to the production of two new polo mRNAs and the lack of Heph only generates one. This 

suggests that absence of the USE affects correct polo pA1 and pA2 usage in vivo while 

the absence of Heph mostly hinders polo distal pA signal selection. As suggested by our 

list of proteins that specifically bind to the USE RNA and not to the USEmt RNA, it is 

plausible that the USE has more interacting partners than just Heph. These proteins may 

probably contribute to the remaining USE regulatory functions linked to polo expression 

and may compensate for the lack of Heph and its respective roles.  

If there are more RBPs acting upon the USE beyond Heph, and considering that the USE 

is comprised of 28 nt and each RBP can, on average, bind to approximately six nt at a 
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time, there is the possibility of a protein complex assembling on this cis element and 

modulating its function, hence polo expression. This is the case of the COX-2 [256] and 

prothrombin F2 genes [236], for which at least four (COX-2) or three (prothrombin F2) 

different RBPs have been identified to interact with their respective USEs, with PTBP1 

common to both. Taking into consideration the similarities of these two USEs (COX-2 

USE is AUUUCUUA and prothrombin F2 USE is UAUUUUUGU) to polo USE 

(UUGUUUUU), it is plausible that similar RBPs will recognize these similar sequences 

(like Heph/PTBP1, with CUCUCU and UCUU as their consensus binding sequences 

[602]). In the future, it would be interesting to test if the other proteins that specifically bind 

to the USE RNA influence polo expression and characterize this hypothetical protein 

network in search of rate-limiting or synergistically-acting elements as well as 

stoichiometry. For instance, the Tho2 protein (#unique peptidesUSE RNA = 13 and #unique 

peptidesUSEmt RNA = 4) has a crucial function in the nuclear export of some mRNAs, such as 

those encoding for heatshock proteins [574] and it is possible that it has also a role in polo 

mRNA export. The splicing factor Sf3b3 (#unique peptidesUSE RNA = 12 and #unique 

peptidesUSEmt RNA = 4) is part of a transcriptional co-activator complex [575] and is recruited 

to the prespliceosome [603], which may suggest further functions in other mRNA 

processing steps. Rbp9 (#unique peptidesUSE RNA = 11 and #unique peptidesUSEmt RNA = 2) 

is an RBP related to Elav [604] with a function in Drosophila melanogaster oogenesis via 

binding to the 3’UTR mRNA of bag-of-marbles and regulating its translation [604] and 

downregulation of extramacrochaetae mRNA [605] and would also be an interesting USE-

binding protein to study. 

Although we detected a total of 282 RBPs that specifically bind to the USE RNA and do 

not bind to the USEmt RNA, a potential technical drawback to the methodology employed 

is whether the USE needs a specific conformation to allow the binding of its RBPs in vivo. 

This could be circumvented by using the full length polo 3’UTR to allow possible 

secondary structures to form. We must also consider intrinsic versus biological 

specificities for these new potential USE RBPs: a promising positive hit in vitro may not 

specifically bind to the USE in vivo and in vivo USE-binding proteins may act less 

specifically in vitro [606]. Additionally, RBPs have variable expression levels [287, 338, 

339] that may depend on different stimuli or cellular context [329, 332-334], which can 

consequently condition the binding ability of the RBP to the USE. Such is the case of 

CSTF64 levels, which modulate IgM APA differently in immature B cells (low CSTF64 

concentration) and plasma cells (high CSTF64 concentration) [338, 393] and Sex-lethal 

binding to enhancer of rudimentary DSE that specifically occurs in the female germline 

[329]. As such, we might have only identified a fraction of putative polo USE interactors. 
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Some Polo-dependent biological pathways are similarly altered in gfp-poloΔUSE;polo9-/- 

and heph2/TM6B individuals. Similarly to gfp-poloΔUSE;polo9-/-, the heph2/TM6B mutant 

shows reduced accumulation of Polo at the kinetochores of dividing cells. Additionally, the 

low phosphorylation levels of Aurora B and Mps1 kinases corroborate that the activity 

levels of these three key cell cycle kinases are equally hindered at the risk of 

compromising normal mitotic progression. Accordingly, both the gfp-poloΔUSE;polo9-/- and 

heph2/TM6B strains show higher abundance of aneuploidies, with their chromosomes 

more prone to missegregate than expected. These results reveal a novel role for polo 

USE and Heph in the mitotic pathways controlled by Polo and cell cycle regulation at the 

kinetochores while also denoting that the absence of either the USE or Heph has a similar 

effect in these events.  

Surprisingly, we found a reduction in RNAPII chromatin occupancy in the 3’UTR of USE-

containing genes, including polo, that is not nearly as evident in genes without this 

element. It is tempting to speculate that the USE favours displacement of RNAPII from the 

chromatin of actively transcribed genes. We propose that during polo transcription, Heph 

may assemble with RNAPII along the polo gene. When RNAPII reaches the 3’end of the 

gene and disengages from the chromatin, Heph is recruited to the USE on the nascent 

pre-mRNA, modulating polo pA signal usage and promoting distal pA signal selection 

when more Polo protein is required for the cell (FIGURE 46). 

 
FIGURE 46 | Working model for the molecular mechanism of Heph-dependent mRNA 

3’end formation of polo mediated by polo USE. At the 3’end of the polo gene, Heph 

disengages from RNAPII and moves to the polo pre-mRNA, binding to the USE as the 
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pre-mRNA is transcribed. Here, together with the basal cleavage and pA machinery, Heph 

is necessary to correctly select the pA signal. 

Polo protein levels regulate polo APA, which is in turn also regulated by the USE [278] 

and the RNAPII elongation rate [115]. We therefore investigated the genome-wide effect 

of Polo activity on APA and transcription.  

Neither the lack of Polo nor its activity was found to be a general regulator of APA in 

Drosophila melanogaster, but abd-b total expression levels are significantly reduced in the 

polo kinase dead mutant. abd-b is one of the three hox genes of the bithorax complex with 

a vital function in adult development, including the posterior abdomen, genitalia and 

gonads [577-582] despite always having low expression levels [412]. While there is no 

described physical interaction between abd-b and polo, we have shown that abdominal 

defects are present in flies that lack the USE of polo and also that females are sterile 

[278]. Additionally, homozygous polo kinase dead mutant females are also notoriously 

sterile [396], with Polo also being involved in spermatogenesis [607], meiosis and mitosis 

[396, 570, 608, 609]. Considering these similarities, it is tempting to speculate a possible 

interaction between polo and abd-b. 

When the expression of genes transcribed by different RNAPs was analysed, the levels of 

rp49 and U6 were significantly decreased in the polo kinase dead mutant while the 

expression of 18s remained unaffected by the absence of Polo or its activity. Interestingly, 

rp49 is transcribed by RNAPII and U6 by RNAPIII, two RNAPs previously reported to be 

regulated by PLK-1 [30, 525]. These new results seem to suggest that both RNAPII and 

RNAPIII activities may be also regulated by Polo in Drosophila melanogaster. On the 

other hand, RNAPI is not known to be regulated by PLK-1, which may further explain why 

18s expression is not affected by the lack of Polo or its activity. Together with the gene 

expression data obtained with CG6024 and abd-b, this suggests that the expression of 

several RNAPII-transcribed genes is prone to be modulated by Polo activity. 

RNAPII is the only RNAP with a CTD tail that affects its transcriptional activity [21-25]. To 

further explore a potential regulatory function of Polo on RNAPII activity, we analysed 

global RNAPII CTD phosphorylation patterns in the polo null and kinase dead mutant 

embryos. Polo-deficient individuals present an altered RNAPII CTD phosphorylation 

pattern in the form of a largely hypophosphorylated RNAPII bereft of Ser-5-P and Ser-7-P 

in comparison to the more hyperphosphorylated isoform of RNAPII found in the wild type 

strain. 
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There is a technical limitation associated with the signal strength of the RNAPII western 

blots: it is highly dependent on the number of accessible RNAPII CTD marks. This also 

means that the absence of an RNAPII CTD mark or isoform can indicate either its physical 

absence or its masking by other modifications [30]. This may hold true for the mostly 

undetected hyperphosphorylated RNAPII in the polo null extracts, but it is unlikely 

considering that we were able to successfully detect a hyperphosphorylated RNAPII in the 

wild type strain. 

Hypophosphorylated RNAPII is commonly found at the pre-initiation complex during 

transcription initiation [131]. At the promoters, the RNAPII CTD Ser-5 residue is the first to 

be phosphorylated, followed by Ser-7 [45, 47-52]. The lack of these two modifications in 

the polo9+/- mutant suggests that transcription initiation and consequent co-transcriptional 

recruitment of the capping machinery may be hindered [52, 54, 55], which may have 

severe consequences in the transcription cycle of many genes. The developmental stage 

chosen for this experiment is also relevant. During embryonic development, there is a 

great need for a burst of transcription and for correct, reliable cell division as the organism 

grows. If Polo protein is deficient and consequently hinders proper phosphorylation of 

RNAPII, both mitosis and correct transcription are compromised in the polo null mutant.  

Several modifications including Ser-2-P [49, 89, 98] and Thr-4-P [30, 127] occur as 

RNAPII becomes productively elongating, thus generating a hyperphosphorylated isoform. 

RNAPII CTD Thr-4-P is PLK-1-dependent and a hyperphosphorylated RNAPII with this 

modification is found tethered to locations where PLK-1 normally is in mitotic cells, such 

as centrosomes and the midbody [128]. If this is also true in Drosophila melanogaster, the 

hypophosphorylated RNAPII found in Polo-deficient individuals may also be due to low 

levels of Polo-dependent CTD Thr-4-P. The antibodies used in the western blots 

specifically detect RNAPII CTDs with low (hypophosphorylated) or high 

(hyperphosphorylated) levels Ser-5-P and Ser-7-P, but RNAPII CTD may also be 

phosphorylated/unphosphorylated in other residues, such as Thr-4. Taken together, our 

results suggest that polo null mutants present 1) atypical transcription initiation and 

capping due to low levels of RNAPII CTD Ser-5-P and Ser-7-P and 2) anomalous 

productive elongation, also because of low RNAPII CTD Ser-5-P and Ser-7-P and 

possibly from deficient RNAPII CTD Thr-4-P, which in turn also hinders mitosis [128]. 

Although we did not observe a significant reduction of mRNA levels in six out of seven 

genes in the polo9+/- mutant strain, our results suggest a new function for Polo in 

transcription and maintenance of proper RNAPII CTD phosphorylation patterns. It would 

be interesting to investigate how Polo affects gene expression at the genome-wide level. 
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Ssu72 phosphatase activity is downregulated by four-fold in the presence of an RNAPII 

CTD phosphorylated on both Ser-5 and Thr-4 [610]. It is tempting to speculate that, as the 

CTD Ser-5 and/or Thr-4 residues are not properly phosphorylated in the polo mutant, 

Ssu72 activity should be abnormally upregulated. In turn, Ssu72 could promote further 

dephosphorylation of RNAPII, which could ultimately leave RNAPII in a non-productive 

stage in the polo null mutant. 

Throughout this thesis, I have shown that APA in Drosophila melanogaster relies on the 

concerted action of RNAPII kinetics in a tissue-dependent manner [280]. In the particular 

case of polo, it also relies on Heph binding to the USE, which controls Polo function at the 

kinetochores and proper cell cycle progression [278]. I have also shown that Polo alters 

the phosphorylation pattern of RNAPII CTD, suggesting a yet unknown regulatory role for 

Polo in transcription. In short, this work sheds new insight into the molecular mechanisms 

that occur during transcription and APA in vivo, such as the contribution of RNAPII 

kinetics, the first report of a USE in Drosophila melanogaster and a potential novel role for 

an old cell cycle kinase, Polo. 
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APPENDIX 

TABLE 12 | List of the 282 RNA-related proteins obtained in LC-MS/MS that bind to 

the USE (#unique peptides ≥ 5) and do not bind to USEmt (#unique peptides < 5) 

sorted from largest to smallest #unique peptides identified/protein. The top 10 

proteins identified are highlighted and included in TABLE 11. 

Protein 
#Unique peptides pulled 

down with USE RNA 
#Unique peptides pulled 

down with USEmt RNA 

Heph 15 4 

Emb 15 4 

CG7728 14 0 

Ars2 14 3 

DCTN1-P150 13 4 

Tho2 13 4 

Su(wa) 12 3 

CG5728 12 4 

Sf3b3 12 4 

SpnE 11 3 

Nonc 11 0 

Piwi 11 1 

Rangap 11 1 

CG16916 11 2 

Rbp9 11 2 

CG11123 11 4 

Mif2 11 4 

Mle 11 4 

Mrna-Cap 11 4 

Sm 11 4 

Pp2c 10 3 

Asnrs 10 0 

Caper 10 0 

Cpsf160 10 0 

Pea 10 0 

Beta-Phers 10 2 

Upf2 10 2 

Armi 10 3 

CG14230 10 3 

CG9107 10 4 

Mrpl13 10 4 

Nup93-1 10 4 

CG7483 9 0 

Eif2beta 9 0 

Nup98-96 9 0 

Rpt4R 9 1 

Spt5 9 1 
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Asprs-M 9 2 

CG32533 9 2 

CG8915 9 2 

Nup153 9 2 

Psc 9 2 

Sym 9 2 

CG11414 9 3 

CG4901 9 3 

CG6745 9 3 

Nelf-A 9 3 

Eif4g1 9 4 

Eif4h2 9 4 

Nito 9 4 

Ythdc1 9 4 

Dcr-1 8 0 

Nxf2 8 0 

Rae1 8 0 

CG8833 8 1 

Clbn 8 1 

Erf3 8 1 

Hfp 8 1 

CG1582 8 2 

Eip93F 8 2 

Nop5 8 2 

Rnp4F 8 2 

Suv3 8 2 

Waw 8 2 

Apt 8 3 

Asprs 8 3 

CG2875 8 3 

Lwr 8 3 

Mbo 8 3 

Rpi1 8 3 

Scaf6 8 3 

Serrs 8 3 

Smb 8 3 

Snama 8 3 

Tdrd3 8 3 

CG4038 8 4 

CG4896 8 4 

CG7246 8 4 

Dcr-2 8 4 

Eif3e 8 4 

Fib-RA 8 4 

Kra 8 4 

L(2)K09022 8 4 
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Peng 8 4 

Rin 8 4 

Rpi135 8 4 

Spn 8 4 

CG6379 7 0 

Ire1 7 0 

Scm 7 0 

Vav 7 0 

CG1316 7 1 

CG18596 7 1 

Cysrs-M 7 1 

Gtp-Bp 7 1 

Atx2 7 2 

CG10418 7 2 

CG12259 7 2 

CG17540 7 2 

CG31441 7 2 

CG5382 7 2 

CG6712 7 2 

Mrpl1 7 2 

Mura 7 2 

Nlg4 7 2 

Phax 7 2 

Rabex-5 7 2 

Tra2 7 2 

Xpac-RA 7 2 

CG10214 7 3 

CG12942 7 3 

CG14207 7 3 

CG3198 7 3 

Eif5 7 3 

L(1)G0007 7 3 

Mxt 7 3 

Nst 7 3 

Rlua-2 7 3 

Rpl34b 7 3 

Rpt4 7 3 

Bgcn 7 4 

Cap 7 4 

CG31156 7 4 

Cn-IIIB 7 4 

Hisrs 7 4 

Noi 7 4 

Pum 7 4 

Rhogap18b 7 4 

Srl 7 4 
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Tfap-2 7 4 

CG1218 6 0 

CG6951 6 0 

Dhx15 6 0 

Eif3d2 6 0 

Fkbp13 6 0 

Fus-RE 6 0 

Her 6 0 

Nelf-E 6 0 

Nep3 6 0 

Nona-L 6 0 

Or85e 6 0 

Poldip2 6 0 

Sf3a1 6 0 

U4-U6-60k 6 0 

Ublcp1 6 0 

V 6 0 

CG10887 6 1 

CG10909 6 1 

CG2091 6 1 

CG6163-Ra 6 1 

CG7564 6 1 

CG8349 6 1 

Eif6 6 1 

Hsc70-1 6 1 

Ada2a 6 2 

Arfgap1 6 2 

CG1571 6 2 

CG4787 6 2 

CG5116 6 2 

Dscam3 6 2 

Hex-C 6 2 

L(1)G0004 6 2 

Or71a-RB 6 2 

Ran-Like 6 2 

Rnps1 6 2 

Sec6 6 2 

Sodh-1 6 2 

Brv2 6 3 

CG10384 6 3 

CG11147 6 3 

CG30403 6 3 

CG5715 6 3 

CG9518 6 3 

Ct32316 6 3 

Dnd 6 3 
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Gcn2 6 3 

Glob3 6 3 

Hp1b 6 3 

Nop56 6 3 

Rfc38 6 3 

Trprs-M 6 3 

Tsh 6 3 

CG33099 6 4 

Ct13580 6 4 

Gcs2alpha 6 4 

Grsm 6 4 

Pgant35A-RA 6 4 

Wrnexo 6 4 

Yrt 6 4 

Pka-Like 5 3 

Anp32a 5 4 

Ance-3 5 0 

Apc 5 0 

Bap60 5 0 

CG13643 5 0 

CG17493 5 0 

CG18262 5 0 

CG5756 5 0 

Cn 5 0 

Cyp303a1 5 0 

Cyp4d14-RA 5 0 

Cyp4d2 5 0 

Drak 5 0 

Eag 5 0 

Eip78C 5 0 

Gce 5 0 

Gefmeso 5 0 

Gwl 5 0 

Hip1 5 0 

Lar 5 0 

Mrp 5 0 

Mrps9 5 0 

Nude 5 0 

Or49b 5 0 

P 5 0 

Patj 5 0 

Patr-1 5 0 

Phkgamma 5 0 

Rpn13R 5 0 

Sak 5 0 

Sdt 5 0 
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Snrnp-U1-70K 5 0 

Spn88Eb 5 0 

Swim 5 0 

Ttll12 5 0 

Wek 5 0 

Bub3 5 1 

CG10862 5 1 

CG12129 5 1 

CG2921 5 1 

Daw 5 1 

Gstd10 5 1 

Ica69 5 1 

Jhdm2 5 1 

Orc2 5 1 

Pcs 5 1 

Rbp1-Like 5 1 

Rhau 5 1 

Serrs-M 5 1 

Cdk4 5 2 

CG10445 5 2 

CG17309 5 2 

CG44249 5 2 

CG6994 5 2 

CG9727 5 2 

Desat2 5 2 

Fj 5 2 

Gs1l 5 2 

Idgf6 5 2 

Idh 5 2 

Mei-P26 5 2 

Pex12 5 2 

Pnut 5 2 

Rhobtb 5 2 

Sba 5 2 

Sec13 5 2 

Srpk79D 5 2 

Atbp 5 3 

CG10077 5 3 

CG11533 5 3 

CG1814-Ra 5 3 

CG4500 5 3 

Ct31087 5 3 

Eif3d1 5 3 

Gro 5 3 

Mav 5 3 

Nurf-38 5 3 
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Or22b 5 3 

Sk 5 3 

Traf4 5 3 

CG14322 5 4 

Cip4 5 4 

Ets21C 5 4 

Hsc20 5 4 

Kat-60L1 5 4 

Lgs 5 4 

Mttfb1 5 4 

Nd-39 5 4 

Rpd3 5 4 

Spn28F 5 4 

Tio 5 4 

Top1 5 4 
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