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Abstract

When developing a software project, it’s recognisable that accurate estimations of development
effort or duration play an important part in the successful management of the project. Although
this process is so important, developers and experts can’t usually estimate accurately the effort,
time and cost of a project to be developed, due to the uncertainty that underlies their activity.

Even if the estimate is accurate enough so that delivery dates are respected, methods that rely
on human estimation are, often, time consuming, what can represent a problem when teams waste
precious time in making estimations.

In order to mitigate these problems, this dissertation aims to analyse and discuss the benefits
of using data-driven methods to achieve a high degree of leanity while still achieving accurate
forecasts. After analyse some of the existing methods for estimation and forecast, we chose the
Monte Carlo method, a forecasting method that provides a set of positive points. We focus on
this lean forecast method because of its automation capacity, that will help reduce the time teams
waste on estimations, still delivering accurate results. This method is also easy to understand,
implement and use, since the number of inputs required and the difficulty to collect these inputs
are low. In order to better represent the problem, the output of the method contains a certain
level of uncertainty represented by a confidence interval. In order to validate this method, a tool
was implemented and some experiments were built in order to evaluate it in terms of error, when
comparing to real values registered. Some comparisons with other methods were also made using
for both this comparison and the evaluation a dataset provided by Fraunhofer. After this we con-
clude that the Monte Carlo method provides forecasts with a high degree of leanity and accuracy,
verifying this way the accuracy and leanity of data-driven methods.
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Resumo

Quando se desenvolve um projeto de software, é reconhecível que estimativas precisas do esforço
envolvido no desenvolvimento são uma parte importante na gestão bem-sucedida do projeto. Em-
bora este processo seja tão importante, desenvolvedores e especialistas não conseguem normal-
mente estimar precisamente o esforço, tempo e custo que o projeto a ser desenvolvido terá. Isto é
inerente à incerteza subjacente à sua atividade.

Mesmo que a estimativa seja precisa o suficiente para que as datas de entrega sejam re-
speitadas, métodos que dependem das estimativas de humanos consomem, normalmente, muito
tempo, o que pode representar um problema quando equipas gastam tempo precioso a fazer esti-
mativas.

De forma a mitigar estes problemas, esta dissertação analisa e discute os benefícios de usar
métodos orientados por dados para atingir um nível alto de facilidade de utilização do método,
enquanto se mantém a precisão da previsão. Depois de analisar alguns dos métodos existentes
para estimação e previsão, foi escolhido o método de Monte Carlo, um método de previsão que
proporciona um conjunto de pontos positivos. Escolhemos este método devido à capacidade de
automação, que vai ajudar a reduzir os desperdícios de tempo da equipa em estimações, contin-
uando a produzir previsões precisas. Este método é também fácil de entender, implementar e usar,
visto que o número de dados de entrada e a sua dificuldade de recolha são reduzidas. De maneira
a representar melhor o problema, os dados de saída do método contém algum nível de incerteza
representada pelo uso de um intervalo de confiança. De maneira a validar este método, uma ferra-
menta foi implementada e alguns experimentos foram feitos de forma a avaliar as suas previsões
em termos de erros, quando comparadas com os valores reais registados. Também foram feitas
comparações com outros métodos, usando para estas comparações, bem como para a avaliação,
um conjunto de dados fornecido pela Fraunhofer. Após isto, concluímos que o método de Monte
Carlo proporciona previsões com níveis altos de facilidade de utilização e precisão, verificando
assim a precisão e facilidade de utilização de métodos orientados a dados.

Keywords: Estimar, Prever, Desenvolvimento de Software, Simulação Monte Carlo
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Chapter 1

Introduction

Software developers can’t usually estimate accurately the effort, time and cost of a project to be

developed. This is inherit to the uncertainty that underlies their activity, since after the first estima-

tion of the effort, the project may, with some likelihood, need to adapt to evolving circumstances,

which may lead to changes in its scope, and consequently in delivery dates. These new circum-

stances may be impossible to predict in any estimation effort taken when the project started. These

delays not only affect the development team but also other parts of the company, such as staffing or

marketing. This could, in some situations, lead to the company losing time and in many situations

the trust of stakeholders. A snowball effect that had its beginning in that poor estimation.

Methods that rely on human estimation are, often, time consuming, what can represent a prob-

lem when teams waste time in making estimations that will, often, underestimate the effort and

duration. From this problem rises the lean forecasting techniques, which aim for accurate forecasts

with less effort and time spent estimating for the team or developer.

1.1 Motivation

The motivations of this dissertation project are: the fact that effort predictions in the industry, most

of the times, are done using expert-opinion methods that could be time consuming and subject to

human bias [42], and when these type of methods are not used, reports are that other types of

methods don’t perform as well as they are described in the literature and have a certain degree of

difficulty to be applied to agile context projects [23], being the expert-opinion solutions much more

apt to this task. Most researchers, in the other hand, keep focusing on data-driven methods instead,

believing this type of methods are the future due to their automation, increased efficacy and degree

of leanity, and due to their capacity of providing good accuracy. The degree of difficulty to apply

this data-driven methods is, this way, the greatest obstacle for the industry still not use this type of

forecast.
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2 Introduction

1.2 Objectives

This dissertation is inserted in the context of the PROMESSA project, being developed in FEUP.

The objectives of the dissertation are, this way, similar to the objectives of the project, namely:

• Identify the motivations and forces at play when making forecasts and what are the main

reasons that could make a forecast fail in delivering a good accuracy.

• Determinate what methods and approaches may work better in achieving more accurate

forecasts and that include the lean factor, that is, that are effortless for the user, in agile

context.

• Implement a method that takes into account the findings.

• Put the methods and strategy to test using real-world data from different real projects and

prove this way their efficacy and accuracy.

• Develop a plugin based on that implementation to integrate with a software project manage-

ment in order to test the model accuracy and efficacy and provide it as a contribution.

1.3 Contributions

In terms of contributions, this dissertation helps in:

• Through the revision of the state of the art, highlight some of the existing methods for

forecast or estimation and discuss some comparisons between those methods, drawing con-

clusions on which provides better accuracy and leanity.

• Providing a working implementation using different delivery forecasting approaches, that

can be integrated with software development management tools.

• Through the evaluation of the model, show its positive and negative points, also validating

the results obtained with other methods, achieving some conclusion on how to proceed when

trying to achieve more lean and accurate forecasts.

• Setting the ground for future work and possible new implementation based on this one,

through the conclusion achieved.

1.4 Hypothesis and Research Questions

This dissertation is based on a hypothesis that serves as a basis for its development and implemen-

tation. This hypothesis is:

"Data-driven methods for software project forecasting can accurately be applied in agile

projects, bringing benefits in terms of reduced forecasting errors and user’s effort"

This hypothesis is sub constructed in the following research questions:
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• RQ1: Is the chosen method more efficient than the others?

• RQ2: Which type of data will this method work with as input?

• RQ3: What metric would be more useful for better forecasts?

1.5 Methodology

In this dissertation, after revising important notions and the state of the art, highlighting some of

the existing methods for forecast and discuss some comparisons between those methods, arriving

to some conclusions on which method is better suited to be used in order to provide better accuracy

and leanity, we validated if this data-driven method proves itself and this type of methods to be

lean, that is, requiring less effort for the developers and teams in terms of inputs needed and time

cost, and still providing good accuracy, in comparison with expert-opinion methods. We validate

it by building a model based on that method and three different delivery forecasting approaches

and then putting this model and each of the approaches to evaluation, building some experiences

that help validate it. We also test the model against other existing models.

1.6 Structure

The document has 4 more chapters. In Chapter 2, some background analysis is made of what ear-

lier methods made the foundations of software development estimation and forecasting, providing

a complete analysis of the most relevant methods found, structuring a more in-depth research

about these methods, what benefits and limitation they present and a brief comparison between

some of them. Is also goes through important movements and premises that this dissertation will

take as bases for its development and what metrics of both measurement, for input and output, and

validation will be mentioned and used during the dissertation.

In Chapter 3, three different delivery forecasting approaches are discussed, implemented, as

well as the Monte Carlo method, and their outputs are described and examples of each shown.

In Chapter 4, several experiments for each delivery forecasting approach are implemented and

their results are discussed and some conclusions about their effectiveness and accuracy are drawn.

The validation of the hypothesis is also done and the research question who deconstructed it were

answered.

In Chapter 5, the conclusions of this dissertation are drawn, some problems that arise during

its development are mentioned and possible future work is discussed.
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Chapter 2

Forecast and Estimate Methods

In this chapter we present an overview of concepts that provide the basis for the rest of the docu-

ment. We will look into important notions for the better understanding of software development

effort forecasting/estimation , look into methods that establish themselves as pioneers on this field,

provide an overview of relevant breakthroughs and the overall state of the art in software develop-

ment forecasting. We also take important conclusions for the next steps to take on this dissertation

and look into important metrics both for input/output and validation that will be mentioned during

the rest of the dissertation.

2.1 Mythical Man-Month

When talking about software development management and effort forecasting or estimation, we

need to mention the Mythical Man-month phenomenon, elicited by Brooks [7]. In his book,

F.Brooks mainly explains that adding more manpower during the development of the project will

probably end up delaying even more the project. When bad predictions are made and deadlines

are built on them and then the project starts to show signs of being delayed, a common response is

to add more manpower to fulfill the deadline. This is a bad response, since the time to integrate the

new developers into the project and the increased communication overhead will cause even more

delays.

2.2 Estimates vs Forecasts

We will now look into the #NoEstimates movement [21], a movement that defends that maybe

estimations are not the best way to predict, since often they are not accurate and are wrongly

used to put pressure into teams to deliver. S.McConnell recommend some tips for making good

predictions [28], one of them being "Distinguish between estimates, targets, and commitments."

reveling that these terms are many times compressed in the estimate definition, that in case of an

5



6 Forecast and Estimate Methods

underrated estimation, will lead to teams not being able to correspond to the commitments and

targets defined. That’s why is important to look at estimates and see them for what they really are,

and don’t overuse them.

R.Jeffries also mentions that estimates are almost impossible to do in a way that they will be

accurate when there’s missing data or when requirements are vague, a characteristic they often

present [21].

L.Keogh goes a bit further and presents another idea, a separation and definition of two differ-

ent terms for effort prediction[25]. These definitions are:

• Estimate, a single value prediction of what will be the real effort.

• Forecast, a probabilistic prediction of a range of values or a exact value with confidence

levels associated.

L.Keogh defends that forecasting, due to its probabilistic characteristics, will often provide

more accurate predictions and more reliable ones that estimates.

2.3 Metrics

In software development effort forecasting and estimation, there are several metrics available to

classify both inputs and outputs. Some of these metrics are better understandable, represent better

the variable associated and are easier to obtained than others. In this section we will look into

some of the most used metrics. We will also look into some of the most used validation metrics,

metrics useful to test and compare different methods.

2.3.1 Takt Time

Takt is a German word for a rhythm or beat. Takt Time describes the regularity of that beat. In

production line manufacturing, Takt Time is the rate at which each manufactured item is finished.

Using Takt Time, a manufacturer is able to run the line at a pace that is in correspondence with

demand. It also provides an easy way to work out how long it would take to produce large batches

of items [12].

2.3.2 Story Points and Velocity

A story point is a metric used in agile project development management to estimate the difficulty

of implementing a user story, which is an abstract measure of effort required to implement it.

It’s a number that tells the team about the difficulty level of the story, that could be related to

complexities or risks. The story points can then be used to then calculate the velocity of the team.

The velocity is the amount of stories a team completes in a determined time window, like a sprint.
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2.3.3 Throughput

Throughput is the number of items completed in a given time window or iteration. It is a measure

of output - how much is getting done. Measuring daily throughput as well as trends over time

provides insight into both the rate and rhythm of delivery [6].

2.3.4 Cycle Time and WIP

Cycle time is the time that elapsed from the start of work on a given feature till it was finished.

The Work in Progress (WIP) is the number of items that the team already started to work on but

haven’t finished them till the moment [6], that is, the amount of stories which cycle time hasn’t

end yet.

2.3.5 Error metrics

As validations metrics, the main used metrics are the Relative Error (RE) or Percentage Error (PE)

with the Equation (2.1), the Magnitude of Relative Error(MRE) with the Equation (2.2), the Mean

Magnitude of Relative Error (MMRE) with the Equation (2.3) and the Root Mean Square Relative

Error with the Equation (2.4)

RE =
Actual value - Estimated value

Actual value
(2.1)

MRE = |RE| (2.2)

MMRE =
n

∑
i=1

MREi (2.3)

RMSRE =

√
1
n
∗

n

∑
i=1

MREi
2 (2.4)

These metrics will be used in the validation phase of the method implemented and developed

and also to compare the state of the art methods.

2.3.6 Other metrics

Besides the metrics presented earlier, there are other highly used metrics. Lines of Code, number

of features, number of interfaces, use cases are some examples of this other metrics used for inputs.

For outputs we can have duration metrics like days, weeks, months or effort metrics like man-day

or man-month.
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2.4 Types of Methods

After this more in depth contextualization, we will start to analyse the exiting methods and models.

The methods are divided into 4 main types [37]:

• Empirical Methods, methods that gather information by means of direct observation and

experience.

• Theory-Based Methods, methods based on an explicit theory or logic model.

• Regression Methods, statistical methods for calculating the relationships between a depen-

dent variable and one or many independent variables.

• Machine Learning Methods, methods that work with machine learning and focus on the

learning ability inherent.

2.5 Empirical methods

In this section, we will look into some of the existing empirical methods, methods that gather

information by means of direct observation and experience.

2.5.1 Expert-Opinion

Firstly, let’s begin with the most used set of methods in the industry for agile context projects,

expert-opinion methods, also known as expert-judgement methods.

The main advantage of this method is that the expert can analyse the differences between

past project experiences and requirements of the new project to better estimate, also analysing the

impact of new technologies, applications and programming languages.

Muhammad Usman et al. showed that this type of techniques are the most commonly used

for estimate effort and duration of software projects when agile software development (ASD)

methodologies like Scrum or Extreme Programming(XP) are being used [41].

Magne Jørgensen reported that 10 out of 16 studies reviewed showed that using expert-opinion

based effort estimation methods led to more accurate effort estimates than using sophisticated

formal forecasting models [22]. The main reasons appointed for this conclusions are:

• The large number of input variables that many methods require can lead to overfitting and

lower accuracy when we’re using small data sets to learn from.

• The effort and complexity of building a proper model.

• The difficulty of understanding what input variables are really important and those that are

not.

This allied to the fact that expert-opinion methods are more easily explained and understood

that other complex methods, shows that expert-opinion based methods are commonly better ac-

cepted by companies and their staff.
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2.5.1.1 Wideband Delphi

Wideband delphi, developed by Barry Boehm and John Farquhar, is an estimation method by

expert-opinion where the project manager selects the estimation team and a moderator [39].

The team should consist of 3 to 7 project team members. Also, the moderator should be

familiar with the Delphi process, but should not have a stake in the outcome of the session if

possible, to try to avoid human bias. If possible, the project manager should not be the moderator

because he should ideally be part of the estimation team. Every member should understand the

Delphi process, read the vision and scope document and any other documentation, and be familiar

with the project background and needs. The team should agree on a unit of estimation and after

some brainstorm, write down the assumptions made.

Individually, each member should right down his estimates and assumptions that lead him to

that estimation. The estimations are collected and a plot is made with every estimate and the team

resolves any issues or disagreements. However, no individual estimations are discussed and the

team tries, based on that discussion, to arrive at a consensus. In the end the project manager and

the team review the final results to check if everything is in order.

The main downsides of Wideband delphi are the great amount of time spent in estimation

that could be used in other tasks and the subjectivity to human bias, because even though the

method recommends that the moderator doesn’t have a stake in the outcome of the meeting, this is

not always ensured and other members in the meeting could make estimations to favor their own

stakes.

2.5.1.2 Planning Poker

Planning poker, developed by J. Greening [14] and based on the Wideband delphi method, is an

estimation method used during the release planning phase, when every story is getting a effort

value and when the team makes the first draw of how the sprint will be organized. Basically, when

using planning poker, a story is read and a brief explanation of the story is made so that every

team member participating understands it. After that, every team member has to write down on

a card their effort estimation for that particular story. Instead of writing down on a paper a value

for every estimation, there are decks of cards available, like the classical deck in which the cards

are numbered with the Fibonacci series in order to reflect the inherent uncertainty in estimating

larger items [38]. Then, when every member has already his estimation made, the cards are shown.

Based on the estimations of each member of the team, a discussion starts, to analyse the highest

and lowest estimations and to try to understand their perspective and then try to achieve common

ground among the team to proceed. If this common ground is not achieved, the team should just

stop and defer the story, split it, or take the lowest estimation. Also if a story is getting consensus

from the participants in attributing it a high value, the story should be split, since it probably

represents a super story and can, probably, be divided in smaller ones.
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In summary, this method aims to involve all the team members in the estimation process and

make it more quick. Although being presented as a great technique, it presents some problems and

issues that may rise:

• Teams could just ignore the discussion phase, a big feature of the method, and just take the

most consensual value.

• Being a manual process and more time consuming than computational methods, what trans-

late in more time spent in estimation.

• Subject to human bias, personal agendas of the participants who may influence the estima-

tion in order to achieve personal goals.

Even though planning poker present some problems, is noted to be one of the most known and

used methods in the industry. This could be explained by its simplicity and satisfactory accuracy.

This method is revealed to be easy to understand, not only by members of the team, but also by

stakeholders and upper management.

2.5.2 Analogy

Analogy methods are based in the analogical reasoning inherent to the human cognition. Analog-

ical reasoning takes a fundamental part in recognition, classification, learning and in the process

of creativity. Whenever we are about to make a decision, we use analogical reasoning by recalling

related past experiences.

The use of analogy for software effort estimation is the process of forecast the effort and

duration of a project, based on previous relevant analogous projects. Its main advantage is the fact

that forecasts are based upon experiences that can be analysed to determine the specific similarities

and their possible impacts on the new project.

According to Ali Idri et al. [17], analogy processes are, when automated, generally composed

of three steps:

• Characterizing: Feature and project selection, feature weighting, and the selection of other

dataset properties, such as dataset size, outliers, feature type, and missing values.

• Similarity evaluation: Retrieval of the cases that are the most similar to the project under

development using similarity measures, in particular the Euclidean distance.

• Adaptation: Prediction of the effort of the target project based on the effort values of its

closest analogs. This requires choosing the number of analogs and the adaptation strategy.

The number of analogs refers to the number of similar projects to consider for generating

the estimates. Based on the closest analogs, the effort of the new project is derived using an

adaptation strategy.

The main advantages of Analogy based methods are:
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• Can achieve good levels of accuracy.

• Simple if the organization repeats similar work.

• Estimates are immediately available.

Although presenting some advantages, when using this type of methods it is extremely tough

to evaluate the dissimilarity among the environments and therefore assess the correctness of the

data [38].

2.5.2.1 ANGEL

Chistopher Schofield’s ANaloGy Estimation tooL (ANGEL) [34] is one of the most used analogy

estimation tools. In this approach, for the characterization phase we must characterise a project

with one or more descriptor features. These can be represented as quantifiable (interval, ratio

or absolute) or categorical (nominal or ordinal) variables. These must be available at the point

when an estimate of the goal feature (effort) is required. It is recommended that features that have

a direct impact on effort are used. Collecting features that have no perceived relationship to the

project effort is likely to result in the selection of poor analogies, what will lead to wrong forecasts.

However, no expert is required to decide what features will be selected, since the ANGEL tool

incorporates a mechanism for finding the best combination of features presented to it, based upon

the historical data it is presented with.

For the similarity measurement phase, the measures that have found practical use are predom-

inantly the nearest neighbour algorithms. The nearest neighbour algorithm used in forecasting by

analogy involves measuring Euclidean Distance (2.5) in n dimensional space.

ED(x,y) =

√
i=n

∑
i=1

(xi− yi)2 (2.5)

The Euclidean Distance represents the simplest proximity measure and the most commonly

used. To use this measure, ANGEL first needs to standardise the features, dividing them by their

range, so that every feature is one value between 0 and 1. Two different feature types can be incor-

porated into the similarity measure, both quantifiable and categorical features but while the use of

quantifiable data is not problematic, categorical features have no notion of interval and therefore

can only be described as identical, assuming the value of 1 or different, assuming the value of 0.

For measuring the confidence that can be placed in a forecast, each project is successively removed

and its effort estimated using the remaining projects as the analogy source. The estimated effort

for each of the projects is then compared to their actual effort, which yields an indication of how

much reliance can be placed upon new estimates from that project case base.

For the adaptation phase, ANGEL finds the n closest projects and makes an average of their

total effort or alternatively applies a weighting so that the closest projects contribute more to the

eventual estimate. The Angel tool has 4 different strategies: choosing 1 analogy (closest project),

2 analogies (either with the average or weighted average of the 2 closest projects) or 3 analogies
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(average of the 3 closest projects), since more analogies would mean more computational power

required. The main limitation of the ANGEL tool and analogy methods in general are:

• Not applicable in agile context since it takes final efforts of analogous projects and not the

final efforts for each iteration of those projects.

• Is based on a partially wrong premise:”Similar projects have similar costs”.

To dealing with noisy features, features that don’t translate in useful analogies and only add

noise, ANGEL performs an exhaustive comparison of every possible combination of features until

the subset of features that returns the best confidence is found. This could be a problem since

this exhaustive comparison can be computationally expensive. In 1998, Christopher Schofield

estimated that in a set of 20 projects processed by a Pentium 200, ANGEL would take 5 seconds to

process 5 features, 2 minutes and 40 seconds to process 10 and 45 hours to process 20 features [34].

This estimation shows the exponential behavior of this comparison.

The ANGEL tool was used to forecast effort in several databases to check which of the strate-

gies (1, 2, 2 (weighted) or 3 analogies) was performing better. The Table 2.1 presents those results.

Data Sets No Project Cases Optimum No of analogies

Albrecht 24 2 (weighted)
Deshamais 77 3

Finnish 38 2 (weighted)
Hughes 33 1
Kemerer 15 2
Mermaid 28 1

RealTime1 21 2
Mermaid 18 1

Table 2.1: Optimum no. of analogies for each dataset, reported by Schofield [34]

Summarizing the table, 1 and 2 analogies work better than 3 and 2 (weighted) in most of the

datasets analysed by Schofield.

2.6 Theory-Based Methods

In this section, we will look into some of the existing theory-based methods, methods based on an

explicit theory or logic model.

2.6.1 COCOMO

COnstructive COst MOdel (COCOMO), a theory-based model, was created by Barry Boehm in

1981 and is one of the first probabilistic methods.

COCOMO is divided in Basic, Intermediate or Detailed type, depending on the processing

power and detail required and these types use one of the following models:
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• Organic, a mode used for small projects developed within stable environments with a relaxed

requirement specification

• Embedded, a mode used in large projects that are operated under tight constraints.

• Semi-detached, a mode used in intermediate projects that lie between the two previous ex-

treme models.

COCOMO takes as main inputs, all subject to scale factors, the LOC (Lines of Code) of the

project and in the intermediate and detailed versions, it implements cost drivers. Cost drivers

are refinements to the estimate to take account of local project characteristics. Cost drivers are

spread across four categories (product, computer, personnel and project) and have ratings (Very

Low, Low, Nominal, High, Very High) assigned, depending on the extent to which they affect the

project in question.

The 17 available cost drivers are [29]:

• Product

– Required system reliability

– Complexity of system modules

– Extent of documentation required

– Size of database used

– Required percentage of reusable components

• Computer

– Execution time constraint

– Volatility of development platform

– Memory constraints

• Personnel

– Capability of project analysts

– Personnel continuity

– Programmer capability

– Programmer experience in project domain

– Analyst experience in project domain

– Language and tool experience

• Project

– Use of software tools
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– Development schedule compression

– Extent of multi-site working and quality of inter-site communications

The output effort is given in Man-month, with pessimist and optimist deviation forecasts.

2.6.2 Monte Carlo

Monte Carlo techniques are used to forecast the results of problems that can’t be classified by a

single exact value, or that are too difficult to solve in order to arrive to a single forecast value.

Monte Carlo methods uses random sampling techniques, where the inputs are chosen randomly

from a subset, and analysing the results over many computational cycles. Instead of a single value,

a range of values is returned, forecasting the most probable result in that range of values. Random

sampling techniques were first applied in the decade of 1930 to estimate the value of π , being

later used, in 1946, by Stanislaw Ulam and Enrico Fermi to formalize the Monte Carlo method in

the Los Alamos Laboratory, USA [27]. They used Monte Carlo methods to solve problems in the

radiation shielding and neutron diffusion. The method only gained the name Monte Carlo after

John von Neumann coined it, in memory of his uncle’s favorite casino.

Nowadays, Monte Carlo methods are mainly used to manage risk in the financial field, oil and

gas exploration and project management.

When applying the Monte Carlo method to software projects effort forecast, the simplest

model would include the amount of work in the initial backlog, the columns where the work flow

through (like Design, Develop, Test) and a cycle-time forecast for each of those columns. This

model would allow simple forecasts, but it is not good enough to give a clear idea of the impact

of events that occur during development that delay the goal date. Defects and bugs are found and

added to the backlog of work, questions arise about the project and features and modifications in

the project scope and design are made. Although these examples of variables are not essential to

a project, when happening, they cause delays, many times doubling the duration of the project.

So when implementing a Monte Carlo method we should pay attention to what variables are more

important and which ones will impact the most the project’s duration. This is the reason why a

more granular model is so important.

In the end, the method returns a diagram representing the probabilities of ending the project

by a given date, for example "there is 70% chance that we will be done by the end of June, 80%

chance it will be half of July" [6].

We can use Monte Carlo method to forecast the defects costs, making two simulations, one

taking in account defects defined previously and another one without these definitions. Subtracting

the two simulations will give us the forecast for the amount of days that the team will spend fixing

bugs and defects.

Another possibility is to forecast what staff skills are in demand, taking advantage of the

description of the input columns. Columns are, usually, associated with specific staff skills. For

example, the testing column is associated with testing skills, the development column is associated
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with developing skills, etc. This way we can analyse what staff skills will impact the most the

project duration and tackle this problem, arranging the team to achieve better forecasts.

Another advantage is that Monte Carlo methods can be integrated with Agile methods, work-

ing with iterations and, this way, improving the final forecast every sprint that has passed, since

the model will before each sprint make readjustments in the final forecast with the information

available from past sprint of the same project. Although it seems good, as stated by D.North in his

blog [30], this can also lead to wrongest forecast, and so to make more accurate forecasts, some

cautions must be taken:

• "The past work should be representative of the future work". If the past work was about

adding new features and the next work will be about integrating the system with other sys-

tems, the past work is unlikely to be representative, since the team will have different paces

in the task ahead.

• "The future delivery context will not change significantly compared to the recent context".

If the team is changing or a reorganization has happened, this is likely to affect the delivery

diagram and also change the parameters from that point on.

• "The Monte Carlo function should be a reasonable indicator of the past work". Identifying

the parameters that genuinely capture the behaviour, and using them to define a function

that reasonably represents the historical and future data, is hard.

In terms of practical experimentation of the method, J. Zang shows that when implementing

a Monte Carlo model in a real project, the acceptance of business users, stakeholders and upper

management was great [42]. Since the method returns a highly graphic diagram, as shown in

Figure 2.1, it was easy for people with no knowledge in software development to better understand

the premises of the forecast achieved. This shows another feature of Monte Carlo models. Since

these models are easy to understand, in part due to its easy implementation, people outside of

the area can deeply recognise the main factors playing during a software project development and

more intrinsically understand the final forecast of the model.

There is an online tool implementing the Monte Carlo Model, developed by Sevawise1. This

tools takes as inputs the historical data type (velocity or story count), the number of sprints per

program increment(sum of the time windows of every sprints to analyse), historical data input

(previous sprints in excel) and number of sprints of historical data(previous sprints). As output

it returns a data grid which displays the level of confidence that a specific velocity or story count

will be achieved for the program increment timebox selected. A useful feature implemented by

Sevawise was the export to excel feature. This is highly advantageous because allows for better

share of information between departments and better storage of past forecasts.

1More information about Sevawise tool can be found at https://sevawise.com/tools/monte-carlo

https://sevawise.com/tools/monte-carlo
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Figure 2.1: Example of a Monte Carlo diagram, represented by J. Zang [42]

Table 2.2 shows an example of an output grid from this model showing the percent chance

some program increment velocity and sprint velocity will be achieved. Also classifies each fore-

casts for its bet, namely: Very conservative bet, Conservative bet, Realistic bet, Optimistic bet or

Very Optimistic bet.

Percent Chance Bet PI Velocity Sprint Velocity

99% Very Conservative 93 31
80% Conservative 124 41
50% Realistic 142 47
20% Optimistic 158 53
1% Very Optimistic 181 60

Table 2.2: Example of a Output from Sevawise model, observed by Betts [4]

2.6.3 SLIM

The Software LIfecycle Management(SLIM) method, created by L. Putnam, is a theory-based

technique to forecast software development effort.

This method is based on Putman’s lifecycle analysis of the Rayleigh distribution. The Rayleigh

distribution is used to forecast the number of developers that should be allocated to the develop-

ment and maintenance during the lifecycle of a software project.

The SLIM model uses two main equations: the software productivity level equation and the

manpower equation [11]. The software productivity level equation expresses the project size and

development time, while the manpower equation expresses the buildup of manpower as a function

of time.

This method was already very criticized by many researchers and Putnam himself found from

implementing the method in 750 projects that the model worked properly for only 251. This

method was also criticized by its underlying assumptions, including the fact that it disregards the

initial stages (exploratory design /specification) of a project.
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2.7 Regression Methods

In the present section, we will look deeper into a type of regression methods, methods that based

themselves in statistical models for calculating the relationships between a dependent variable and

one or many independent variables. One type of regression methods are the parametric models.

Parametric models are useful for subjecting uncertain situations to the rigors of a mathemati-

cal model. They usefully embody a great deal of prior experience and are less biased than human

thought processes alone, what reduces the uncertainties of personal agendas and motivations of the

forecast process. Parametric models provide forecast techniques based on facts, including math-

ematical equations as well as interpretation of historical data. Projects are break down into sub-

components, like stages for deliveries and match each stage with appropriate equation to obtain

the forecasts. Although a main advantage of parametric models is the simplicity of implementa-

tion, unfortunately, this isn’t always translated into simplification in terms of understanding of the

methods by the team members or even the stakeholders and upper management.

2.7.1 SEER-SEM

The System Evaluation and Estimation of Resources-Software Estimation Model (SEER-SEM)

is a parametric regression model developed by Galorath Inc., based on the Jensen model devel-

oped during the decade of 1970 by the Hughes Aircraft Company’s Space and Communications

Division.

SEER-SEM forecasts are based on knowledge bases, parametric algorithms and historical

precedents. It makes forecasts of effort, duration, staffing, and defects.

SEER-SEM implements over 50 inputs that will influence directly the output of the method.

Among them, 34 parameters are used by the SEER-SEM effort estimation model [20]. In SEER-

SEM effort estimation, each input has sensitivity levels, with the ratings ranging from Very Low(negative)

(VLo-) to Extra High(positive) (EHi+). Each main rating level is divided into three sub-ratings,

such as VLo-, VLo, VLo+. These ratings are then translated to the corresponding quantitative

value used to calculate the effort.

SEER-SEM takes as input the project scope, mainly size measurements (lines of code, function

points, use cases), historic data, staffing levels and capabilities, requirements specification and

volatility, development and target environment and economic factors. As outputs the SEER-SEM

model has a variety of grids, diagrams and reports, as Figure 2.2 shows.

Initially, SEER-SEM generates a global effort and schedule forecast based on project size,

complexity and productivity factors. Initial forecasts are generated in minutes. The problem with

these simple forecasts is that they are not very accurate because they are based in little information

about the project. To achieve better results the forecast must be refined increasing the number of

inputs and the forecast complexity. Figure 2.3 shows the functioning of the SEER-SEM method

through a software project effort forecast.
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Figure 2.2: Example of the SEER-SEM output reports as presented in SEER-SEM product
brief [20]

The main advantages of SEER-SEM is that produces an effort forecast with a good level of

accuracy, the multi-platform integration ability, being able to be integrated with Microsoft Project,

Microsoft Office, IBM Rational, and other 3rd-party applications [20] and its ability to be imple-

mented in software projects using agile methodologies, what helps in maintaining the model apt

nowadays, since Agile methodologies are the most used methods for software development man-

agement at the moment. Despite these two advantages, SEER-SEM present two main limitations

that affect greatly its usage in the industry [38]:

• Over 50 input parameters related to the various factors of a project, which increases its

complexity.

• The specific details of SEER-SEM make much harder to understand the relationship be-

tween the parameter inputs and the corresponding outputs.
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Figure 2.3: SEER-SEM functioning Diagram, reported in SEER-SEM product brief [20]

2.8 Machine Learning Methods

In this section, we will look into some of the existing machine learning methods, methods that

work with learning types and focus on this machine learning ability.

2.8.1 Neural Network Model

Even if Neural Networks or Artificial Neural Networks (ANN) is regression based method, we will

consider it as a Machine Learning method due to its learning particularities. Artificial Neural Net-

works are able to, in a more efficient and accurate way, establish complex relationships between

the dependent (effort) and independent variables (inputs). It also has the ability to generalize from

the training set of data. Most methods based on ANN use either feed-forward networks where no

loops in the network path occur or feedback networks that have recursive loops. Limitations for

ANN are:

• The difficulty of understanding why an ANN makes a particular decision [5], reason why

this methods are many times called “black boxes”, since it’s really difficult to understand

what is happening inside the model.

• Two forecasts from the same ANN will hardly be equal, due to the arbitrariness of the

random weights.

• There are no guidelines for the construction of the neural networks (number of layers, num-

ber of units per layer, initial weights) [18]

• The amount of data required to usefully train a network since it’s difficult to collect a con-

siderable amount of data to train and test the model so it becomes viable.

Even with these limitations, there is a lot of interest in these models because of their ability

of forecasting with good accuracy levels. S. Hydarali has conducted a survey where he asked
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some questions about ANN to 33 developers [16]. Among other questions, when asked which

method had better performance in software development effort forecasting, 60% of the developers

replayed ANN, what translates this interest in ANN.

In the Figure 2.4 is represented an example of a simple neural network architecture with one

input layer (having 3 neurons for each input), one hidden layer (with 3 neurons) and an one output

layer.

Figure 2.4: ANN Architecture example, explained by Bhatnagar [5]

A neuron computes a weighted sum of received inputs and generates an output if the sum

exceeds a certain threshold. This output then acts as an excitatory or inhibitory input to other

neurons in the network and the process continues until an output is generated. Artificial neurons

are intended to be similar to biological ones, for example, the weighted inputs represent biologi-

cal synapses, the interconnections between neurons represent the dendrites and axons, while the

threshold function represents the activity in the biological neurocyton.

2.8.1.1 Support Vector Machine

Support Vector Machine (SVM) is a machine learning technique and classified by some researchers

as a neural network method [9] used in various areas both for forecasting and classification. In a

linearly separable case, the SVM classifier separates the instances from two different classes by

using a hyper-plane that tries to maximize the margin, increasing the capacity of generalization of

the classifier. The instances closer to the borders (or on the borders) are the support vectors. The

number of support vectors represents the complexity of a model. In the Figure 2.5 is a representa-

tion of the SVM algorithm.

For applying SVMs in project forecasting, first, we must proceed to the calculation of the total

number of story points and project velocity, that will be our inputs. This inputs are scaled using a

nonlinear function, so that they are be within the range [0,1].

S.Satapathy et al. suggest the Function 2.6 [33], with X representing the values of the dataset,

x the values of a project of the dataset and x’ the scaled value.

x′ =
x−min(X)

max(X)−min(X)
(2.6)

After achieving the scaled inputs, the projects are separated in the hyper-plane in order of

those scaled inputs. If the dataset is not linearly separable we can either use soft margin, where
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Figure 2.5: SVM Algorithm Representation, reported by Hidmi [15]

the separation is made as in linear mode but there’s a tolerance for one or few misclassified dots,

or use a kernel trick, that applies some transformations to the existing features and creates new

features. These new features are the key for SVM to find the nonlinear decision boundary. Kernel

trick uses one of the following non-linear kernel methods:

• SVM Polynomial Kernel, a classifier that generates new values by applying the polynomial

combination of all the existing ones.

• SVM RBF Kernel, a classifier that generates new values by measuring the distance between

all other dots to a specific dot.

S.Satapathy et al. compared the different kernel methods accuracy when applying them to real

project datasets [33]. The Table 2.3 illustrates the results obtained.

Actual Effort SVM Linear Effort SVM Polynomial Effort SVM RBF Effort

0.4615 0.3436 0.2332 0.4194
0.7692 0.7698 1.1027 0.7865
0.2637 0.2295 0.2059 0.2325
1.0000 0.7030 1.9282 0.8908
0.1538 0.1635 0.1691 0.1489

Table 2.3: Comparison between different kernel methods, reported by Satapathy et al. [33]

This results show that the RBF kernel method achieves a better accuracy than the rest of the

methods.

E. Kocaguneli et al. implemented a SVM model and used it to forecast the effort of various

datasets of software projects available in the database PROMISE2 [26]. They concluded that the

SVM model was the one that achieved better results among the models they tested.

2More information about the Promise dataset in http://promise.site.uottawa.ca/SERepository/datasets-page.html

http://promise.site.uottawa.ca/SERepository/datasets-page.html
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Finally, this method can also be applied in forecasts of software projects effort when using

agile methodologies and since has a increased capability of generalization, it’s not confined to

a specific type of project, which is very helpful for companies that work with different types of

projects, like consulting companies. The main problem with SVM is the difficulty to implement

and for non-experts to understand it.

2.8.2 Bayesian Network Model

Bayesian networks (BN) are graphical models that describe probabilistic relationships between

related variables. BNs have been used for decision-making in problems that involve uncertainty

and probabilistic reasoning. The first applications of BNs focused on classical diagnostic problems

in medicine (during the 80s and 90s) [1]. The medical and biological decision-support domain was

and continues to be the area in which more BN applications are published. However, companies

like Microsoft have also used BNs for fault diagnosis and software companies have started to look

into this method’s benefits.

A BN is represented by a pair BN = (G,P), where G is a directed acyclic graph, and P is a set of

local probability distributions for all the variables in the network. The directed acyclic graph (G =

[V (G),E(G)]) is composed of a finite, non empty set of tuples V (G) = {(sn,Vn),(sn+1,Vn+1), ...}
and a finite set of directed edges E(G)⊆V (G)×V (G).

Each node V takes on a certain set of variables s. Each node also contanins the associated prob-

ability table, called the Node Probability Table, with the probability distribution of the variables

of s.

The edges E(G) = {i, j} represent dependencies among variables. A directed edge (i, j) from

Vi to Vj shows that Vi(parentnode) is a direct cause of Vj(childnode).

If V has no parents, its probability distribution is unconditional. The probability distribution

of variables must satisfy the Markov condition, which states that each variable of a node V is

independent of non-descendants Nodes [8].

The 4 main advantages of Bayesian Networks are mentioned by Roger [31]:

• capability of handling missing data.

• capability of learning causal relationships.

• capability of combining prior knowledge and data.

• capability of avoiding overfitting the data.

The method takes as inputs mainly the project scope (user stories, features or lines of code),

but can also implement other metrics in order to improve its accuracy. This other metrics could be

staff factors (developer skills, experience and motivation) or process characteristics( organization

and maturity of the development process).

The output of this method is a single point forecast with probability bounds, providing some

essential uncertainty to the forecast value.
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M. Perkusich et al. made a survey and an analysis of the applicability of Bayesian Networks in

agile context software projects, more specifically, projects using scrum as its software development

management methodology [32]. With the results of the survey and the opinion of some experts,

they build the model, which directed acyclic graph for the key elements identified by them is

partially represented in Figure 2.6.

Figure 2.6: Partial directed acyclic graph for the BN, defined by M. Perkusich et al. [32]

2.9 Fuzzy Logic

Fuzzy logic was founded and first applied by Lotfi Zadeh in 1965. Fuzzy logic is a mathematical

tool for dealing with uncertainty and also it provides a technique to deal with imprecision and

information granularity. Fuzzy reasoning is divided in 3 main components [3]:

• Fuzzification process, where the objective term is transformed into a fuzzy concept. Mem-

bership functions are applied to the actual values of variables to determine the confidence

factor. This allows for inputs and outputs to be expressed in linguistic terms.

• Inference, a defuzzification of the conditions of the rules and propagation of the confidence

factors of the conditions to the conclusion of the rules. A number of rules will be fired and

the inference engine assigned the particular outcome with the maximum membership value

from all the fired rules.

• Defuzzification process, where the translation of fuzzy output into objectives is made.

A membership function, used in the fuzzification process, is a curve that defines how each

point in the input space (also referred to as the universe of discourse) is mapped to a degree of

membership between 0 and 1 [2]. The main types of membership functions used are the Triangular

Function (TMF), Trapezoidal Function and the Gaussian Function (GMF).
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D. Ahlawat and R. Chawla tested these 3 meambership functions to observe which one pre-

sented better results [2]. Table 2.4 shows the results obtained.

Actual Effort E.E with Trap E.E with TMF E.E with GMF

2040 2089 2075 1945
321 201.6 200.4 187.8
79 102 101.15 94.35

6600 7373 7329.2 6854.7
724 690.9 687.14 643.9
83 95.71 95.14 89.2

156 159.12 158.04 148.32
15 16.3 16.22 15.17

Table 2.4: Comparison between different Membership Functions, reported by D. Ahlawat and R.
Chawla [2]

As we can conclude, the Gaussian membership function is the one that achieves better accu-

racy, according to this study.

During the inference process, fuzzy sets and fuzzy operators are used. Fuzzy sets are the sub-

jects while fuzzy operators are the verbs of fuzzy logic. Fuzzy logic is comprised by conditional

statements formulated as the rule statements "if-then". A single fuzzy if-then rule takes the form

if x is A then y is B where A and B are linguistic values defined by fuzzy sets on the ranges of X

and Y. The if-part of the rule “x is A” is called the premise or antecedent, while the then-part “y is

B” is called the conclusion or consequent [2].

One major problem of software development effort forecasting is that data available in the

initial stages of a project is often unclear, inconsistent, incomplete and uncertain. A fuzzy model

is more appropriate when the systems are not suitable for analysis by conventional approaches

or when the available data is uncertain, inaccurate or vague. Some of the difficulties of other

methods, as described by Gray and MacDonell [13], are :

• Providing exact values for inputs, with methods often using values that they anticipate will

occur, since for many metrics the actual value is never known with certainty until the project

is completed.

• Over commitment, with most of methods committing to a value and not even providing

confidence intervals.

• The size of data sets, since most of the times the datasets used to forecast the effort of the

project are too small, not contributing with significant values to generate a good forecast.

• Interpretability of models, with some models being too hard to understand or giving outputs

that are too hard to interpret.
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These are problems that fuzzy models focus on solving, with easy interpretation of the model

and output, handle of missing data, handle of non exact linguistic values and reducing the com-

mitment through fuzzy outputs.

Based on these benefits of Fuzzy Logic, implementations of Fuzzy Systems combined with

other existing methods have also appear.

V.Sharma and H.Verma proposed a Fuzzy system implemented on the Cocomo model, using

the Gaussian Membership Function, since on their study they also reported the best accuracy of this

membership function [36]. After establishing the fuzzy rules for the nominal effort components

of Cocomo, they also proceeded to the fuzzification of the cost drivers available in Cocomo and

subsequent establishment of fuzzy rules for these components.

W.Du et al. developed a fuzzy system implemented with the SEER-SEM model [10]. With

this combination of processes, they helped to mitigate some of the problems and limitations of

SEER-SEM model. After the development of the model, they putted it to test against the SEER-

SEM model alone and were able to achieve good conclusions. In summary, the combination of

methods proved in every experiment to be more accurate than SEER-SEM alone, also mitigating

some of its limitations, already described.

A.Idri et al. proposed a fuzzy analogy system, a combination of the fuzzy logic method and

analogy method [19]. Like a normal analogy method, the identification of cases, retrieval of similar

cases and cases adaptation steps are still present in this model, but here these are fuzzification of its

equivalent in the classical analogy procedure. With the implementation of fuzzy logic, they were

able to introduce some machine learning abilities like the three criteria part of human nature that

machine learning systems implement: tolerance of imprecision, learning and uncertainty. This

method also help updating the false premise of analogy methods "similar projects have similar

costs." to a premise with some uncertanty added "‘similar projects have possibly similar costs’."

2.10 Final Discussion

After a more in depth analysis of each method, this section will summarize the methods seen and

compare their benefits, limitations and accuracy. In this section we also highlight some researches

who made comparisions between methods.

COCOMO, in synthesis, takes too much inputs when using the intermediate or Detailed types,

because when using the Basic type, the accuracy is lower. Most of these inputs are expert-based,

meaning that a expert must estimate some inputs in order to make the forecast. This could lead

to subjectivity to human bias. Some benefits are the fact that it is simple to implement and is also

relatively simple to understand. A possible implementation that mitigates some of the problems

of COCOMO and increases its accuracy is combining it with fuzzy logic. The isn’t easily applied

in agile contexts, since it doesn’t analyse past iterations of a project. In terms of accuracy, based

on the findings, we can say that the results produced are not very accurate.

SLIM’s major limitation is the fact that the method in a experience of 750 projects only worked

properly in 251, what represent a high number of projects where the model didn’t make any sence.
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Also it is a target of criticism because of its assumptions, like the disregard of initial stages of

a project. Compared to the other methods presented, SLIM doesn’t add anything that could be

considered as a benefit in relation to the others. The method is difficult to apply in agile contexts

since it doesn’t analyse past sprints of a given project. However, it provides a satisfactory accuracy

and is relatively easy to understand.

Both Wideband Delphi and Planning Poker have proven to achieve a satisfactory accuracy and

because of their simplicity, don’t increase the difficulty of understanding the results. Their main

liabilities are the fact that more time is necessary to make the meetings for making the estimation

and is also subject to human bias. A great benefit both Planning Poker and Wideband delphi

have, in relation to the others, is the fact that development teams are more comfortable using this

expert-opinion methods because of the discussion between different perspectives and the great

communication it provides. Among the expert-opinion methods, planning poker is simpler and

with a more focus discussion achieves better results than wideband delphi. Both methods can be

used in agile context, since new meetings can be done for estimating at the end of every iteration.

Angel, for being a analogy method, proves itself to be easy to understand and to interpret. The

main limitations are the inability to handle missing data and non exact values and the fact that

the premise of this type of methods is partly wrong. These limitations make it produce not very

accurate estimations. When combining methods like Angel with Fuzzy logic, we saw that these

limitations are mitigated and better accuracy is achieved. The method is not easily implemented

in agile contexts since it doesn’t analyse past iterations of the same project.

Monte-Carlo proves itself to be a method that presents good accuracy and besides that, is easy

to implement and easy to understand, with some literature even giving simple examples of the

process of this method. Another great benefit is the granularity inherent, with a easy interpretation

of the degree each input affects the final forecast. The method is easily implemented in agile

contexts. Based on the findings, we can say that the method produces accurate forecasts.

SEER-SEM, although showing satisfactory accuracy, presents itself as a hard method to un-

derstand and interpret, partially because of its numerous inputs (could go over the 50 inputs) and

because of its specific details that make really hard the interpretation of the relation between inputs

and outputs. When used in combination with Fuzzy logic, this difficult understanding is mitigated

and the accuracy even improves, in relation to SEER-SEM alone. The method can be adopted

when using agile methodologies.

Both SVM and BN are presented as difficult to understand, with some studies even calling

these methods, black boxes. However, these methods show great accuracy, the ability to handle

missing data, the fact of avoiding overfitting to data and the capability of generalization, not being

confined to one type of projects, what translates to these methods producing accurate results. Both

methods can work in agile contexts, since both can analyse past iterations of a project.

Fuzzy Logic also handles missing data, avoids overfitting and has satisfactory accuracy but,

unlike SVM and BN, since it works with linguistic values, is easier to understand and interpret,

what presents a great benefit. This method can also be applied in agile context projects since it

can be implemented to analyse past iterations of the project.
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Table 2.5 synthesises the methods limitations, benefits and their applicability in agile context

projects, based on the findings of the literature revised in this chapter.

Method Understandability Accuracy Overfits to Data Agile

Cocomo Easy Not Good Yes No
SLIM Easy Satisfactory Yes No

Wideband Delphi Easy Satisfactory No Yes
Planning Poker Easy Satisfactory No Yes

Angel Easy Not Good Yes No
Monte-Carlo Easy Good Yes Yes
SEER-SEM Hard Satisfactory Yes Yes

SVM Hard Good No Yes
BN Hard Good No Yes

Fuzzy Logic Easy Satisfactory No Yes

Table 2.5: Synthesis of methods

D. Toka and O.Turetken compared the SEER-SEM method, the SLIM method and the CO-

COMO method when applied to a project effort forecast [40]. Table 2.6 shows the results obtained.

Method MMRE PE

COCOMO 74% -54%
SEER-SEM 36% -10%

SLIM 41% -7%

Table 2.6: Comparison of different methods, reported by Toka and Turetken [40]

This results show that COCOMO provides the least accurate results.

B. Boehm defends [23] that the reason why expert-opinion methods are being more used in

the industry and the reason why they show better results in the industry and then don’t correspond

in the literature, when compared to other types of methods is because these other types are many

times wrongly used in companies. Companies often don’t make good implementations of the

methods to their specificity cases. This will lead to methods not corresponding to what researchers

claim in the literature.

M. Jørgensen defends [24] that most times methods that work with ranges instead of exact

values, have the ranges too narrow. Both the minimum and maximum values of the range are too

close what very often doesn’t translate the uncertainty inherent to the project, making the forecast

more probable to be inaccurate.

In conclusion, the most promising methods are the machine learning methods and the Monte

Carlo method due to their multiple advantages, described above. In the next chapters we opt

to implement the Monte Carlo method for validate the hypothesis, due to its greater ease to be

implemented and understood.
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Chapter 3

Implementation

In this chapter we analyse and discuss the various delivery forecasting approaches followed under

the Monte-Carlo method in this dissertation, as well as the metrics used in these approaches. We

briefly describe the dataset provided by Fraunhofer. After that, we describe and discuss the im-

plementations of the Monte-Carlo method core algorithm and each one of the delivery forecasting

approaches mentioned and analysed in this chapter.

3.1 Goals

To help proving that data-driven methods can help in providing lean and accurate forecasts, we

chose the Monte-Carlo method, as there are already some people using it [12][42], but there’s

still a lack of clear evidences of its efficacy and under which conditions it’s most effective. The

Monte-Carlo method main benefits are: the applicability in agile context, its output, being easy to

understand and implement, its granularity and the good accuracy it provides. One of the goals is to,

using the Monte Carlo Method, explore which forecasting approaches provides the better results.

With this data-driven method and approach selected, we set to achieve the goal of proving the

hypothesis of this dissertation, building a method that obtains a smaller error and greater accuracy

than expert-opinion methods, always with condition of keeping the method simple and as lean as

possible.

3.2 Dataset Schema Assumptions

In this section we describe the structure of the dataset available during this project, so that the

algorithms shown next are easier to understand. The dataset was extracted from Jira, so the ap-

proaches were developed with the jira structure in mind, what means that they have the potential to

be applied in other contexts where Jira is used. This dataset was store on a PostgreSQL database.

29
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The dataset contains several projects, of which we gave preference to the projects developed in

the later years (2018, 2019, 2020), since those are better representative of the present days. Each

project has an id, name and type of project. The projects are divided in sprints. Each sprint has an

id, state referring to the status of the sprint, start date, end date and the goal, that has additional

information about the sprint. Each project also has its many stories. Each story has an id, summary

of the story, a type of story, the created date, the developer assigned, the creator of the story, the

reporter, an project id referring to the project where the story is inserted, a status of the story, the

priority, a list of sprints where the story was developed, the resolution date, a effort estimate for

the story(some stories don’t have information on this field) and a list of change log items. The

change log items work as a registration of changes that were made to a story. Each change log

item has a id, a summary reveling which part of the story was updated, the author of the change,

the From field representing the value originally, the To field, representing the value updated and

the date of this change. The users who create stories, report, are assigned to stories and make

changes to stories are registered having information about their id and name. Figure 3.1 represents

the diagram of the dataset structure.
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Figure 3.1: Dataset Structure Diagram

3.3 Delivery Forecasting Approaches

First we will introduce the 3 delivery forecasting approaches implemented, based on duration, takt

time and effort. Duration measures the time between the beginning and end of a story develop-

ment. Takt time measures the times between completion dates of consecutive stories. Effort mea-

sures the amount of time spent on developing a story. All these provide different ways to achieve a

delivery date forecast. These 3 approaches were selected since these are all very common metrics

in the field and after the state of the art analysis, our confidence was that these approaches could

deliver good results in terms of accuracy and leanity.
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3.3.1 Duration

When forecasting based on duration, the goal is to forecast how long will a story or a set of

stories take to be completed and ready to be delivered. In this approach, we take as input N

stories as historical data to output the forecast of M stories in the future. The duration di, with

i = 1,2,3, ...,N, of past stories is calculated as the difference between the date the story was put

in the state "In Progress" (si) and the date the story was put in the state "Done" ( fi). We do this

instead of calculating di as the difference between the beginning and end of a story to achieve

more accurate results. The final forecast outputted D is calculated as the sum of the M forecasts,

that can be used as a delivery forecast if the user stories are implemented sequentially.

3.3.2 Takt Time

Takt time is an another approach when trying to forecast a delivery date. When using this mea-

surement of throughput, the date of the final delivery D outputted is calculated through the sum

of the M forecasts, using as input the N takt times ti, with i = 1,2,3, ...,N, calculated through the

difference between the completion dates of the historical stories cn, with n = 1,2,3, ...,N+1. This

way we extract the amount of time between the finishing dates of a set of tasks, that is, the amount

of time no story was completed, achieving development rates. With takt times, we can forecast

how long will a story or a set of stories take to be completed.

3.3.3 Effort

Effort is another way to go when trying to make forecast for a story or a set of stories. While the

previous two approaches used simply the time to forecast how long would it take to complete some

stories, with effort we can do something else besides that, since we can also bring into the forecast

the discussion about working rates of a certain developer. This method works by calculating the

amount of time the developer assigned to the story was really working on that story, analysing the

amount of other stories that were also assigned to him at the time that specific story was put in

the state "In Progress" till the time the story was put in the state "Done". In short this approach

analyses the time a developer spent really working on a specific story. We assume that, when a

developer is assigned to multiple stories, he splits his time equally to those stories. Due to lack of

further information, we didn’t take into account non-working days(holidays, etc.)

This approach takes as input the amount of time the developer assigned to the story was really

working on that story, counting the amount of other stories that were also assigned to him at the

time that specific story was put in the state "In Progress" till the time the story was put in the state

"Done", that is, for a set of N historical stories, the effort of each story f e j, with j = 1,2,3, ...,N

is calculated as the sum of ephi, with i = 1,2,3, ...,h j, and h j being the number of hours between

the date the story was put in the state "In Progress" si and the date the story was put in the state

"Done" fi. At each hour i of this duration, the number of stories st j in the state "In Progress" and

assigned to the developer responsible for the story u j is calculated and the effort ephi is calculated
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dividing st j per 1, representing the effort per hour spent on a story. In short this approach analyses

the time a developer spent really working on a specific story.

The approach outputs a W working effort for a number M of stories, taking into account the

N historical efforts. Based on such forecast, and knowledge about the availability of the develop-

ers(full time, part time, etc.) for the project, the users may easily arrive at a delivery date forecast.

3.4 Forecasting Algorithms

In this section the algorithms created to implement the Monte Carlo method and the approaches

are presented and explained. The language used is Python3, due to its ease to write and read, its

improved productivity, being dynamically typed and being free and open-source.

3.4.1 Monte Carlo method

In order to implement the core algorithm of the Monte Carlo method we defined a function that

receives the historical data and the number of tasks/stories to forecast and returns the median,

mean, optimist and pessimist forecast, that work as the confidence interval of the forecast.

The Monte Carlo method was then implemented as follows.

1 def monteCarlo(historical, tasks, confidence):

2 num_reps = 200 # number of repetitions

3 target = []

4 r = 0

5 while r < num_reps:

6 b = 0

7 obj = 0

8 while b < tasks:

9 obj = obj + np.random.choice(historical)

10 b = b + 1

11 target.append(obj)

12 r = r + 1

13 target.sort()

14 rem = int(confidence * len(target))

15 if rem > 0:

16 target = target[rem:-rem]

17 mean = statistics.mean(target)

18 median = statistics.median(target)

19 lower = min(target)

20 upper = max(target)

21

22 return [median, mean, lower, upper]
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Given a set of historical values (for effort, duration or takt time), the algorithm selects a ran-

dom value from that historical data, adding them together to get the value for all the stories. We

then have a set of values for the specific number of stories and after sorting this set, we exclude a

percentage of confidence on each side, getting this way a certain confidence interval. We then re-

turn the mean, median, optimist (lower) and pessimist (upper) forecasts for that number of stories.

The median is classified as our forecast, being our confidence interval defined by the optimist and

pessimist values.

In our implementation we use 200 repetitions, due the results obtained. For all the projects in

the dataset, with the takt time approach, using half of the project as historical data points(stories)

and the other half to validate the forecasts, we analyse the values of MMRE produced with dif-

ferent numbers of repetitions, in relation to the processing time it took to calculate these MMRE.

Table 3.1 presents these results. We assume that the other approaches would lead to similar results

and conclusions.

Number of Repetitions MMRE Processing Time

100 32.4% 4 seconds
150 32.3% 6 seconds
200 31.4% 8 seconds
250 32.2% 10 seconds
300 32.3% 12 seconds

Table 3.1: Ideal Number of Repetitions

In all the following experiences, the confidence parameter was set to 2.5%, getting this way a

95% confidence interval on the forecast.

3.4.2 Duration

When using the duration approach, we select the date a story was put in the state "In Progress"

and the date the same story was put in the state "Done", this way outlining the time a story was

being worked on. We use the time difference between those dates as historical data and then run

the Monte Carlo method with it and get the forecast.

The code snippet of the first part of this approach is as represented below.

1 def duration(idProject):

2 cursor.execute("SELECT a.date, c.date FROM changelog a INNER JOIN output b ON a

.id = ANY(b.changelog) AND a.toString = ’In Progress’ INNER JOIN changelog

c ON c.id = ANY(b.changelog) AND c.toString = ’Done’ AND b.project=" + str(

idProject))

3 extract = cursor.fetchall()

4 start = [i[0] for i in extract]

5 finish = [n[1] for n in extract]
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6 diff = [x2 - x1 for (x1, x2) in zip(start, finish)]

7 historical = []

8 minLimit = 300

9 maxLimit = 4320000

10 for x in enumerate(diff):

11 if(x.total_seconds() > minLimit and x.total_seconds() < maxLimit):

12 historical.append(x.total_seconds())

13 return historical

We extract from the dataset the values of the moment the story was put in the state "In

Progress" and then the moment the story was put in the state "Done". The duration is calculated

for each element and then values outside the limits are removed.

Limits were defined after the analysis of the first and third quartiles of the data extracted in

order to define outliers and remove unrealistic values. After creating a boxplot with the duration of

all the stories of all projects available in the Fraunhofer dataset, we identified that values smaller

than 300 seconds (5 minutes) and bigger than 4320000 (50 days), respectively the first (25%) and

third (75%) quartile of the entire dataset, should be considered unrealistic, that is, values that don’t

correspond to realistic situations. With this in mind, we only select for historical data, values that

are within the range defined by this two values. The Figure 3.2 represent the boxplot, referred

above, in days for better perception.

Since every project has its own particularities, when selecting the start and finish dates of the

stories, we restrict the historical data to only include data about past stories of the specific project

we are forecasting for. This way we exclude possible errors that could raise from picking data

about stories that represent projects with very different goals.
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Figure 3.2: Boxplot of the time for completion of a story in days in the dataset used

3.4.3 Takt Time

In the Takt Time approach, we select the completion date of each of the stories. With the comple-

tion dates ordered, we calculate the difference between one date and the next, getting this way the

time between the completion of two stories. Using these takt times as historical data, we run the

Monte Carlo method to obtain the forecast. Below is represented a code snippet for extracting the

relevant historical data from the database.

1 def taktTime(idProject):

2

3 cursor.execute("SELECT resolutionDate FROM output WHERE resolutionDate IS NOT

NULL AND project =" + str(idProject))

4 resolution = cursor.fetchall()

5 resolution= [i[0] for i in resolution]

6 resolution.sort()

7 historical = []

8 maxLimit = 259200

9 l = 0

10 while l < len(resolution)-1:

11 timeInt = resolution[l + 1] - resolution[l]

12 if(timeInt.total_seconds() < maxLimit):

13 historical.append(timeInt.total_seconds())

14 l += 1
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15

16 return historical

We extract from the dataset the resolution dates of the stories of the project. After sorting

them, to make sure they are ordered by date, we calculate the takt times between the dates and

check if these takt time are within the limits defined.

A boxplot was generated with all the takt times of the Fraunhofer dataset, allowing for the

identification of values bigger than 259200 seconds (3 days) as outliers of the dataset. This way,

as done in the duration approach, the range of acceptable values is defined as values below the

dataset third quartile. This boxplot is represented in Figure 3.3. Due to the great amount of

outliers above 3 days, the boxplot was zoomed to allow a better perception of where the third

quartile ends. The median is the golden line, being set really close to zero. This happens due to

the fact that a lot of small values are present in the dataset. The removal of values outside the

dataset is done in this approach to ensure that breaks on productivity don’t affect the accuracy of

the model.

As explained above, since every project has its own particularities, and since many projects are

developed at the same time in a company, what would lead to the comparison of stories of different

projects, leading to wrong values, we only select the stories of the project we are forecasting for.

Figure 3.3: Boxplot of takt Time between completion of stories in days in the dataset used
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3.4.4 Effort

In the effort approach, for each story of a project, since every project has its own particularities, we

calculate, hour by hour of the time the story was in the state "In Progress", how many stories was

the developer assigned to this story, also assigned to and working on. This way we can assume

a effort per hour on each past story of a project we are forecasting. We then use these efforts

as historical data to run the Monte Carlo method and forecast the effort for future stories. The

implementation is as follows.

1 def effort(idProject):

2 cursor.execute("SELECT a.date, c.date, b.id FROM changelog a INNER JOIN output b

ON a.id = ANY(b.changelog) AND a.toString = ’In Progress’ INNER JOIN

changelog c ON c.id = ANY(b.changelog) AND c.toString = ’Done’ AND b.project

=" + str(idProject))

3 extraction = cursor.fetchall()

4 start= [i[0] for i in extraction]

5 finish = [n[1] for n in extraction]

6 tasksIds = [ti[2] for ti in tasksIds]

7 diff = [x2 - x1 for (x1, x2) in zip(start, finish)]

8 validation = []

9 startDates = []

10 idTasks = []

11 resolutionDates = []

12 minLimit = 300

13 maxLimit = 4320000

14 for index, x in enumerate(diff):

15 if(x.total_seconds() > minLimit and x.total_seconds() < maxLimit):

16 validation.append(x.total_seconds())

17 idTasks.append(tasksIds[index])

18 startDates.append(start[index])

19 resolutionDates.append(finish[index])

20 task = 0

21 historical = []

22 while task < len(idTasks):

23 cursor.execute("SELECT u.id FROM users u INNER JOIN output o ON u.id = o.

assignee AND o.assignee IS NOT NULL AND o.id =" + str(idTasks[task]))

24 userID = cursor.fetchall()

25 if(len(userID) == 0):

26 task += 1

27 continue

28 cursor.execute("SELECT a.date, c.date FROM changelog a INNER JOIN output b ON

a.id = ANY(b.changelog) AND a.toString = ’In Progress’ INNER JOIN

changelog c ON c.id = ANY(b.changelog) AND c.toString = ’Done’ AND b.

assignee=" + str(userID))

29 extractionT = cursor.fetchall()

30 startT= [i[0] for i in extractionT]
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31 finishT = [n[1] for n in extractionT]

32 effortTask = 0

33 hour = startDates[task]

34 nhours = 0

35 while hour <= resolutionDates[task]:

36 tk = 0

37 counterTasks = 0

38 while tk < len(finishT):

39 if(hour <= finishT[tk] and hour >= startT[tk]):

40 counterTasks += 1

41 tk += 1

42 if(counterTasks > 0):

43 effortTask += 1/counterTasks

44 hour += datetime.timedelta(seconds=3600)

45 nhours += 1

46 hoursPerDay = 8 # 8 hours per day of work

47 totalEffort = (effortTask/nhours)*hoursPerDay #Total effort per story when

working 8h per day

48 historical.append(totalEffort)

49 task += 1

50

51 return historical

In this implementation, after extracting the start date, as the moment the story was put in the

state "In Progress" and the finish date as the moment that story was put in the state "Done", we

calculate the duration between these two moments for all the stories of one specific project. We

also extract the ids of each of those stories. Since this first part is an integration of the initial part

of the duration approach, we have the same limits for the difference between the start and finish of

the story (Range between the dataset first quartile and the dataset third quartile). After having the

stories who fit inside these limits, we iterate over all the stories. At each story, we extract the id of

the user assigned to the story and then extract the start date, moment the story was put on the state

"In Progress", and finish date, moment the story was put on the state "Done", of all the stories who

have this user as its assigned developer. We then check hour by hour of the duration of the story we

are analysing and count how many of the these stories with the same assigned developer were also

on the state "In Progress". After having the number of stories per hour, we divide this number per

1 hour, getting the effort per hour of the story we are analysing for all the hours of its duration. We

then divide this total effort for the number of hours and multiply by 8, the assumed hours per day

of work, this way, restricting the effort to only 8 hours per day. If one developer is only assigned

to one story, the effort will be 8 hours per day, as expected. After having these efforts calculated to

all the stories of the project selected, we return them as historical. For achieving the final delivery

forecast, we need to simply use the assumption we made of having 8 hours of work per day and

see how many days will it take to cover the effort forecast, divided by the number of developers

available to work on the project. As explained above, due to the lack of information, non working

days are not taken into account.
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3.5 Forecasting Outputs and Charts

In this section we discuss the type of outputs and charts produced to show the results of the

forecast. There are two types of outputs, the output of a forecast of a single story and the output

of a the forecast of a set of stories, in this case, represented by charts.

3.5.1 Single Story Forecast

When forecasting for a single story, the output produced is a simple print of the values forecast.

The model prints the id of the project, the point forecast (median) and the confidence interval fore-

cast. Figure 3.4 shows the single story forecast output of an example using the duration approach.

Figure 3.5 shows the output of the forecast of an example of one single story when using takt time

to forecast. On Figure 3.6 is outputted the effort forecast for an example of one single story.

Figure 3.4: Example of an output of the duration approach for a single story

Figure 3.5: Example of an output of the takt time approach for a single story

Figure 3.6: Example of an output of the effort approach for a single story

As can be seen these outputs are very simple and due to being used on single story forecasts,

don’t have a lot of information for the user.

3.5.2 Set of Stories Forecast

When forecasting for a set of stories, the amount of information given to the user about the forecast

can be more specific and allow the user to have a better perspective of the forecast for isolated

stories in the middle of the set of stories. In order to produce an output with those characteristics,

instead of simply printing the forecast of the full amount of stories, a chart is built where the

forecast of each number of stories is represented, that is, for each number of stories till the final
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forecast for M stories, a forecast is produced and represented in this chart output. Since when

using duration for forecasting we get very high forecasts for just one single story, the utilization

of this delivery forecasting approach to forecast for sets of stories was not pursued, due to the

forecast of unrealistic high values. In the takt time approach, the model produces a chart where

the historical data is represented and the forecast for the M number of stories to forecasts, starting

after the last historical story, is also drawn. The forecast includes the median forecast and the

confidence interval forecast. We consider pessimist forecast, the forecast made using the highest

values inside the 95% confidence interval. Optimist is the forecast made using the lowest values

inside the same 95% confidence interval. In this chart are also represented the completion date of

the first story of the historical data and the completion date of the last story pessimist forecast. In

between these extremes, the project finishing dates of the sprints that occurred and the ones that

are planned to occur are also represented to give a better perspective of the number of stories that

were and the ones the model forecast to be completed in each sprint.

In Figure 3.7 is represented an example of the output produced when using the takt time

approach to forecast for a set of stories.

Figure 3.7: Example of an output of the takt time approach for a set of stories

When using the effort approach to forecast for a set of stories the model also produces a

chart where the number M of stories to forecast are represented with the number of hours for

completing that M stories. The chart includes the median forecast and the confidence interval

forecast. Figure 3.8 represents an example of the chart produced when using effort to forecast to a

set of stories. In this chart the historic data is not represented, contrary to what happens in the takt

time chart, since in effort we don’t consider the concept of continuity, that is, this chart represents

the effort per number of stories, while in the takt time the chart, besides showing us the takt time

between stories, also presents us the dates of sprints and delivery of the number of stories, using

the concept of continuity to represent this dates.



42 Implementation

Figure 3.8: Example of an output of the effort approach for a set of stories



Chapter 4

Evaluation

In this chapter, we evaluate the delivery forecasting approaches mentioned in the implementation

chapter. For each one of the approaches, we discuss positive and negative points, evaluate which

approach provides better results in different situations and problems, and analyse comparisons

with other existing models, this way proving the efficiency of the model and method.

We also validate the hypothesis proposed before, check and answer, based on the findings,

each one of the research questions that help deconstruct the hypothesis.

4.1 Methodology

We evaluate the implementation described above by putting the model and each of the delivery

forecasting approaches to test, against other tools and methods, revised in the previous chapters,

using some of the most used evaluation metrics, already presented above. These metrics are the

Magnitude of Relative Error (MRE), the Mean Magnitude of Relative Error (MMRE) , the Mean

Root Square Relative Error (MRSRE) and the Percentage Error (PE).

For validating the hypothesis, we use the implementation and the Fraunhofer’s Jira dataset.

Using this dataset, and after having the model implemented, the method and its different
delivery forecasting approaches are compared with other methods to this way draw some
conclusions about which provides better accuracy, being this one of the main contributions of

this dissertation. We then validate the research questions, who serve as guidelines for the main

hypothesis. To answer RQ1, we make a comparison between the method and other, in order to

show its efficacy, in particularly its efficiency against expert opinion methods. To answer RQ2,

we discuss the type of input all three approaches revised follow and analyse the specificities of

each one. To answer RQ3, we validate the results of the experiences made and base ourselves in

this findings to take some conclusions on which approach works better in which situation. With

this three questions answered, we take some conclusions about the main hypothesis and show its

validity.

43
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At the end, with the hypothesis validated, we prove that data-driven methods, in this case the

Monte-Carlo method, are well fit for being applied in agile projects development forecast, bringing

benefits in terms of reduced forecasting errors and user’s effort, in comparison with other existing

methods. This is important because it draws conclusion who set the ground for future work,

another of the contributions of this dissertation.

4.2 Dataset

The dataset, whose structure was presented above, was provided by Fraunhofer, since Fraunhofer

is also contributing to the PROMESSA project, which context this dissertation falls in.

This dataset contains 71 projects, each one with several stories, having the biggest project in

the dataset around 2000 stories, what will be helpful to develop some experiments. It has 121

users who take actions on the projects, 12435 stories divided by the 71 projects, 136555 changes

made to stories and 148 sprints. The dataset contains data about stories and projects from 2013 till

2020.

In order to check if the duration and takt time metrics follow a normal distribution, normality

tests were made to these two metrics used.

The results of the normality test of the duration metric, by the Shapiro-Wilk algorithm [35],

are presented in Table 4.1.

W ρ alpha level

0.897 4.77e-24 > 0.05

Table 4.1: Duration Shapiro-Wilk Normality Test

Since the ρ value is smaller than the alpha level of 0.05 chosen for the test, the hypothesis

of the duration population being normally distributed is rejected, that is, the population doesn’t

follow a normal distribution.

The results of the normality test of the takt time metric, also by the Shapiro-Wilk algo-

rithm [35], are presented in Table 4.2.

W ρ alpha level

0.041 0.0 > 0.05

Table 4.2: Takt Time Shapiro-Wilk Normality Test

Since the ρ value is also smaller than the alpha level of 0.05 chosen for the test, the hypothesis

of the takt time population being normally distributed is also rejected.

In relation to the outliers identified, as shown by the boxplots represented in the previous

chapter, the dataset has some data quality issues, as several unrealistic values are present. As

shown in boxplot 3.2, stories with duration of 175 days don’t represent realistic what happens in a

project, and should be classified as data quality issues to resolve and, this way, removed from the
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historical data. This is the main function of the limits, based on the first and third quartiles of the

dataset, implemented in the previous chapter.

4.3 Evaluation Experiments

In this section we set up the experiences for the each one of the delivery forecasting approaches,

implemented in the previous chapter, also presenting their results.

4.3.1 Duration Forecast For One Story

The duration approach to forecast delivery is the approach to forecast the time a story or a set

of stories will take to be completed. As referred above, the duration is a forecast based on the

time interval between the moment the story was put in the state "In Progress" till the moment the

story is put in the state "Done", since these are more accurate time windows than the one between

the moment the story is created and the moment the story is completed. This happens because

many time a story is created but only on later sprints is really worked on, leading to a time where

the duration was already counting but in a reality the story was not being developed. Below is

represented the setup of one experience made with the duration approach, that uses all the past

stories of the project and that compares the forecasts with the real value of that story, that is, the

real duration of the story to forecast.

1 def durationForecast(historical, realValue):

2 durationMC = monteCarlo(historical, 1)

3 median = durationMC[0]

4 lower = durationMC[2]

5 upper = durationMC[3]

6 real = realValue

7 upperEstimation = datetime.timedelta(seconds=upper)

8 upperEstimation = upperEstimation - datetime.timedelta(microseconds=

upperEstimation.microseconds)

9 bottomEstimation = datetime.timedelta(seconds=lower)

10 bottomEstimation = bottomEstimation - datetime.timedelta(microseconds=

bottomEstimation.microseconds)

11 rangeEstimation = "[" + str(bottomEstimation) + " -- " + str(upperEstimation) +

"]"

12

13 actualValue = datetime.timedelta(seconds=real)

14 actualValue = actualValue - datetime.timedelta(microseconds=actualValue.

microseconds)

In this experience we receive the historical data of the project where the story is inserted that

was collected in the implementation shown on the previous chapter, and the real duration of the

story for validating the accuracy of the model.
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We call the Monte Carlo model, passing the historical data and the number of stories to forecast

for, in this experiment set to 1 story. The model returns the median forecast and the upper and

lower confidence limits. The range and median forecast are then printed.

Below are represented the results of some experiences of this experiment, using the duration

to forecast delivery. The projects used one the experiences were selected randomly.

Proj Hist Forecast 95% Confidence Interval Real Duration RE

732 77 10 d, 20:28:22 [1d, 03:08:49 - 45 d, 04:06:59] 14 d, 08:47:48 24%
961 129 7 d, 00:59:36 [00:57:42 - 40 d, 02:39:17] 6 d, 23:59:54 1%
961 117 7 d, 00:44:05 [00:24:43 - 42 d, 01:16:55] 4 d, 02:26:35 71%
718 95 3 d, 21:51:30 [18:27:40 - 9 d, 00:14:48] 05:44:52 1536%
588 143 4 d, 19:31:49 [00:13:17 - 27 d, 18:34:29] 23:10:54 398%
688 35 10 d, 19:21:10 [01:17:54 - 29 d, 18:09:47] 17 d, 21:09:29 40%
652 81 6 d, 08:34:23 [00:09:04 - 39 d, 01:04:06] 6 d, 03:46:53 4%
887 17 05:51:38 [01:36:32 - 18 d, 03:37:13] 2 d, 04:58:56 88%

1090 29 20:54:46 [00:06:52 - 28 d, 00:05:51] 6 d, 03:17:25 86%
809 45 1 d, 03:49:10 [00:14:19 - 36 d, 07:05:47] 00:19:05 8646%

Table 4.3: Duration experiences

As can be seen, the duration approach produces confidence intervals too wide and most times

not so accurate forecasts, as can be seen by the errors. This is due to the fact that even when the

story is "In Progress", the developing team is also working on other stories that may have higher

priority what will lead to a extended duration when in reality the story was not being worked on.

This will produce outputs as the ones seen in the Table 4.3 which are not very helpful for a team

or developer trying to forecast how long will take the story to be completed.

Based on those outputs, we can take some considerations about the duration approach. Firstly

this approach is very susceptible to errors, since we are using time intervals with a wide range of

possible values. The duration of a story doesn’t take into account the weekends, when nobody

is working, and the amount of other stories open at the same time, that will make the story be

"In Progress" longer that would be normal. Even though some degree of uncertainty is good

for a forecast, since it will give the prediction some space for errors and delays, the uncertainty

presented in this approach is too big, leading to a useless forecast.

In fact, this helps show why duration is not a good metric to use in forecasts, since it produces

many times high values that will increase the noise inserted in the model, even if we remove

outliers, as we did. We could say that this approach is also affected by the fact that is being used

to forecast for a single story what will produce a bigger error than if used to forecast for a set of

stories, but due to its wide confidence interval, when producing to a set of stories, the relative error

would, probably, increase even more instead of compensate and get smaller.
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4.3.2 Takt Time Forecast For A Set of Stories

Takt Time is a approach based on the time between completion dates of past stories. This approach

is suitable to forecast the completion date for a set of stories since it analyses the time it passes

between stories being completed.

The first experiment made with takt time was to forecast the delivery date for a set of stories

and compare it with the values that occurred in real life. Below is represented the setup of this

experiment.

1 def taktTimeForecast(historical, realValues, sprints, firstElement):

2 y_axis_historical = []

3 y_axis_forecast = []

4 y = 1

5 while y <= len(historical):

6 y_axis_historical.append(y)

7 y = y + 1

8 while y <= len(realValues):

9 y_axis_forecast.append(y)

10 y = y + 1

11 sum_historical = firstelement

12 historical_sum = []

13 t = 0

14 while t < len(historical):

15 sum_historical = sum_historical + datetime.timedelta(seconds = historical[t])

16 historical_sum.append(sum_historical)

17 t = t + 1

18 medianForecast, lowerForecast, upperForecast = 0, 0, 0

19 upper_sum, med_sum, val_sum, lower_sum = [], [], [], []

20 sum_val = sum_historical

21 f = 0

22 while f < len(realValues):

23 taktTimeMC = monteCarlo(historical, (f+1))

24 medianForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC[0])

25 lowerForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC[2])

26 upperForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC[3])

27 sum_val = sum_val + datetime.timedelta(seconds = realValues[f])

28 med_sum.append(medianForecast)

29 upper_sum.append(upperForecast)

30 lower_sum.append(lowerForecast)

31 val_sum.append(sum_val)

32 f = f + 1

33

34 eL = 0

35 error_median = []

36 error_confidence = []

37 outsideCounter = 0
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38 while eL < len(realValues):

39 medianValue = med_sum[eL] - sum_historical

40 optimistValue = lower_sum[eL] - sum_historical

41 pessimistValue = upper_sum[eL] - sum_historical

42 pe_median = ((abs(realValues[eL] - medianValue))/realValues[eL]) * 100

43 error_median.append(pe_median)

44 if(realValues[eL] > pessimistValue):

45 error_confidence.append(((abs(realValues[eL].total_seconds() -

pessimistValue.total_seconds()))/realValues[eL].total_seconds()) *

100)

46 outsideCounter += 1

47 elif(realValues[eL] < optimistValue):

48 error_confidence.append(((abs(realValues[eL].total_seconds() -

optimistValue.total_seconds()))/realValues[eL].total_seconds()) * 100)

49 outsideCounter += 1

50 else:

51 error_confidence.append(0)

52 eL = eL + 1

53

54 percentageOutside = (outsideCounter/len(error_confidence)) * 100

55 print("Stories outside Confidence Interval: " + str(outsideCounter) + "/" + str(

len(error_condidence)) + "(" + str(round(percentageOutside, 2)) + "%)")

56

57

58

59 sprints = [spr for spr in sprints if spr <= max(max(upper_sum),max(val_sum))]

60 sprints = [spt for spt in sprints if spt >= firstElement]

61 sprints = list(dict.fromkeys(sprints))

This experiment receives the historical data, the real values of the tasks to forecast, the finish-

ing dates of the sprints and the date of the first element of the project. The function first creates the

y axis for the historical data and then for the stories to forecast. Then the function sets the x axis of

the historical values. Since these values are takt times, we use a auxiliary variable sum_historical

to starting from the date of the first element get the dates where each historical story was com-

pleted. The function then calls the Monte Carlo model and retrieves from it the median, upper

and lower forecasts for the specific amount of tasks. This process is done for every number of

tasks. Since the model returns takt times, the sum_historical is used to calculate the completion

dates of the stories. The same thing is done to the set of real values, getting the real completion

dates by using the adding the real takt times to a date auxiliary variable sum_val, that work as

the sum_historical. After having all the forecasts and real values ready to be represented on a

chart, we calculate the errors for each forecast, extracting first the date, in order to compare takt

times and not dates. After this, we prepare the sprints by removing sprint dates that are beyond

the first date and after the last real date or pessimist date. We then generate the charts with all this

information.

In Figure 4.1 is presented and example of this experiment.
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In this experiment, we take the takt time historical data and predict for the following stories.

The number of stories and the finishing dates of sprints are also represented. The errors are repre-

sented on the second chart.

Figure 4.1: Takt Time Approach Output Example

The model presents to the user the chart forecast. The green line represents the previous

stories takt times since the completion date of the first one of those elements. These stories will

be used by the Monte Carlo method to forecast the following stories. The blue line represents the

model forecast. The brown and yellow lines represent, respectively, the Optimist and Pessimist

forecasts for each story. The sprints of the project are represented by the red lines, being the black

lines the completion date of the first story and the pessimist forecast of the last story. The purple

line represents the real takt times and completion dates of the stories to forecast. In the second

chart outputted, we can analyse the percentage error of the forecast for each story predicted and

the confidence error, that is, the percentage error of the real values in relation to the confidence

interval.

We made 10 different experiences similar to the described, presented in Table 4.4, represented

in days to the final delivery date.

The final MMRE for this 10 experiments was 32%, suggesting, this way, that this approach

can be applied in the industry to forecast for the following sprints of a project, taking into account

the past sprints of that project.



50 Evaluation

Proj Hist Forecast 95% Confidence Interval Real Delivery MRE

454 116 48.8 [39.4 - 56.4] 57.4 39%
961 49 27.5 [22.8 - 38.4] 22.4 29%
459 221 213.5 [193.7 - 230.1] 204.4 20%
578 86 35.4 [27.8 - 42.5] 33.1 27%
113 129 43.5 [33.1 - 51.1] 48.9 37%
798 101 34.5 [26.5 - 43.5] 37.9 26%
688 141 96.8 [82.4 - 110.4] 89.5 43%
934 8 7.2 [3.5 - 10.4] 6.5 21%
590 77 32.5 [25.1 - 39.8] 29.6 35%
725 114 88.1 [76.7 - 99.2] 92.4 38%

Table 4.4: Takt Time Experiences represented in days

4.3.3 Takt Time Historical/Forecast

The second experiment made with the takt time was in order to know, in this context, what were

the best numbers of stories to use as historical data and as forecast. In this experiment we want to

know the percentage error of the forecasts in relation to the number of stories to use as historical

data and the number of stories to forecast. To aggregate the projects per historical and future

number of stories is used the median of relative error or percentage error. Below is represented the

setup of this experiment.

1 def histVSfor():

2 cursor.execute("SELECT id FROM projects")

3 idProjects = cursor.fetchall()

4 idProjects = [ip[0] for ip in idProjects]

5 pe_n = []

6 n_num = [5,10,15,20,25,30,35,40,45,50,55,60,65,70]

7 m_num = [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]

8 nCount = 0

9 while nCount < len(n_num):

10 pe_mPoints = []

11 mCount = 0

12 while mCount < len(m_num):

13 median_pe = []

14 for project in idProjects:

15 cursor.execute("SELECT resolutionDate FROM output WHERE resolutionDate

IS NOT NULL AND project =" + str(project))

16 taskList = cursor.fetchall()

17 if(len(taskList) < 2):

18 continue

19 taskList = [tl[0] for tl in taskList]

20 taskList.sort()

21 projectTT = taktTime(project)
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22 firstelement = taskList[0]

23 if(len(projectTT) < (n_num[nCount] + m_num[mCount])):

24 continue

25 historical = projectTT[:int(n_num[nCount])] #First Half

26 projectTT = projectTT[int(n_num[nCount]):]

27 validation = projectTT[:int(m_num[mCount])] #Second Half

28 if len(historical) < 1:

29 continue

30 sum_historical = firstelement

31 t = 0

32 while t < len(historical):

33 sum_historical = sum_historical + datetime.timedelta(seconds =

historical[t])

34 t = t + 1

35 medianForecast,lowerForecast, upperForecast = 0,0,0

36 med_sum, val_sum, upper_sum,lower_sum = [], [], [], []

37 f = 0

38 sum_val = sum_historical

39 while f < m_num[mCount]:

40 taktTimeMC = monteCarlo(historical, (f+1))

41 medianForecast = sum_historical + datetime.timedelta(seconds =

taktTimeMC[0])

42 sum_val = sum_val + datetime.timedelta(seconds = validation[f])

43 val_sum.append(sum_val)

44 lowerForecast = sum_historical + datetime.timedelta(seconds =

taktTimeMC[2])

45 upperForecast = sum_historical + datetime.timedelta(seconds =

taktTimeMC[3])

46 med_sum.append(medianForecast)

47 upper_sum.append(upperForecast)

48 lower_sum.append(lowerForecast)

49 f = f + 1

50 eL = 0

51 while eL < m_num[mCount]:

52 realValue = val_sum[eL] - sum_historical

53 medianValue = med_sum[eL] - sum_historical

54 median_pe.append(((abs(realValue.total_seconds() - medianValue.

total_seconds()))/realValue.total_seconds()) * 100)

55 eL = eL + 1

56 pe_median = statistics.median(median_msre)

57 pe_mPoints.append(rmsre_median)

58 mCount += 1

59 pe_n.append(pe_mPoints)

60 nCount += 1

This experiment first extracts all the ids of the all the projects, then by each N number of

historical stories and by each M number of stories to forecast, the function goes project by project

and passes to the model N historical stories and the number of stories to forecast till it reaches M
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stories. The function then calculates the error between these forecasts and the real values. The

median of these errors is made, in order to aggregate all the project’s errors. In the end a chart is

produced showing the error in order of N and M.

In Figure 4.2 are presented the results of this second experiment with takt time. In order to

allow better visibility and to be easier to understand each line relative to the values of historical

data to use, two different charts were produced. For every project of the dataset, the percentage

error of the forecasts in relation to the number of stories to use as historical data and the number

of stories to forecast is shown.

Figure 4.2: Ideal Historical/Forecast

Theses two charts represent, respectively, the number of historical stories from 5 to 50 and
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from 50 to 70. As can be seen, using only 5 or 10 stories as historical data provides bigger errors,

so we can say that in projects with less than 15 stories, the model will not be so accurate as in

the case with more stories as historical. We can also note that when using 60, 65 or 70 stories as

historical will also increase the error of the forecast, probably because of more noise added into

the model. As we can notice, the ideal number of historical stories in this context, is when using 45

stories. The "Hist = 45" line provides better results than the others for most of the number of stories

to forecast, getting to its lowest point in the 60 stories, that is, the lowest value of percentage error

is achieved when forecasting 60 stories. With this in mind the ideal situation for the model would

be when using 45 stories as historical stories to forecast 60 stories into the future. The model, as

stated before, presents better results when using more than 10 stories as historical data. It could

also be said that the model presents better results when forecasting for more than 20 stories, since

after this value the errors start to compensate and balance each other. Is also expected that, when

forecasting too much into the future, the error will start to increase again since the further we look

into the future, more unpredictable that future is.

4.3.4 Takt Time Moving Window

The third and last experiment made with takt time was in order to take advantage of the fact that

the dataset has a project with over 2000 stories, that when taking out the outliers goes to almost

900 stories. We analysed how does this delivery forecasting approach behaves with the evolution

of the project. Below is presented the setup of a moving window that advances 60 stories at each

iteration and uses the previous 45 stories to forecast for that window of 60 stories.

1 def movingWindow():

2 project_PE = []

3 project = 177

4 n = 45

5 m = 60

6 x_axis = []

7 cursor.execute("SELECT resolutionDate FROM output WHERE resolutionDate IS NOT

NULL AND project =" + str(project))

8 taskList = cursor.fetchall()

9 if(len(taskList) < 2):

10 continue

11 taskList = [tl[0] for tl in taskList]

12 taskList.sort()

13 projectTT = taktTime(project)

14 projectLen = len(projectTT)

15 firstelementCounter = n

16 lastElementChecked = n + m

17 pe_window = []

18 projectX_axis = []

19 verical_lines = []
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20 while(lastElementChecked <= projectLen):

21 firstelement = taskList[firstelementCounter]

22 if len(projectTT) < n:

23 break

24 historical = projectTT[:n] #First Half

25 projectWithoutFH = projectTT[n:]

26 if len(projectWithoutFH) < m:

27 break

28 validation = projectWithoutFH[:m] #Second Half

29 if len(historical) < 1:

30 break

31 sum_historical = firstelement

32 t = 0

33 while t < len(historical):

34 sum_historical = sum_historical + datetime.timedelta(seconds = historical[t

])

35 t = t + 1

36 medianForecast,lowerForecast, upperForecast = 0,0,0

37 med_sum, val_sum, upper_sum,lower_sum = [], [], [], []

38 f = 0

39 sum_val = sum_historical

40 while f < m:

41 taktTimeMC = monteCarlo(historical, (f+1))

42 medianForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC

[0])

43 sum_val = sum_val + datetime.timedelta(seconds = validation[f])

44 val_sum.append(sum_val)

45 lowerForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC

[2])

46 upperForecast = sum_historical + datetime.timedelta(seconds = taktTimeMC

[3])

47 med_sum.append(medianForecast)

48 upper_sum.append(upperForecast)

49 lower_sum.append(lowerForecast)

50 f = f + 1

51 eL = 0

52 median_pe = []

53 while eL < m:

54 realValue = val_sum[eL] - sum_historical

55 medianValue = med_sum[eL] - sum_historical

56 median_pe.append(((abs(realValue.total_seconds() - medianValue.

total_seconds()))/realValue.total_seconds()) * 100)

57 projectX_axis.append(firstelementCounter + 1)

58 firstelementCounter += 1

59 eL = eL + 1

60 pe_window += median_pe

61 verical_lines.append(lastElementChecked)

62 lastElementChecked += m

63 projectTT = projectTT[m:]
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64 n += 5

65 project_PE.append(pe_window)

66 x_axis.append(projectX_axis)

In this experiment, we define get the stories of project with id 177 and starting after the first 45

stories, the historical stories of the first window, we forecast for the following 60 and compare the

errors. The function then advances 60 stories, building a new window. This new window uses the

real values of the last 45 stories of the previous window and forecasts the next 60. This procedure

is repeated until the end of the project is reached. A chart with all the errors per window is made.

The results of the this experiment, the chart of a moving window that advances 60 stories

at each iteration and uses the previous 45 stories to forecast for that window of 60 stories, are

presented below. The black lines are limiting the 60 stories forecast. The red line represents the

beginning of the forecast part of the first window, starting after the first 45 stories.

In the Figure 4.3 we can see that a forecast starts with a high error and then gets lower at

almost every window, increasing rapidly to the start of the next window, proving this way what

was stated before, that the percentage error gets lower when forecasting for more stories, even

when forecasting in the middle of a project.

Figure 4.3: Moving Window for Project 177
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4.3.5 Comparison with Sevawise

In the tables below we can check 4 experiences of the Takt Time approach when compared to the

Sevawise’s Monte Carlo model1, mentioned above. The Sevawise model produces 5 outputs, in-

stead of the 3 produced by our model. Sevawise implements the degrees Very Optimist, Optimist,

Forecast, Pessimist and Very Pessimist while our model only implements the Optimist, Forecast

and Pessimist degrees. This tool also sets to accomplish different objectives, using different ap-

proaches.

Since this tool created by Sevawise uses the approaches of velocity and story count, and mea-

sures time with the metrics of sprints and program increment, a time window containing sprints,

we adapted this tool to work with our takt time, since their story count approach provides a final

throughput, a measurement that is the inverse of the final takt time to complete the same number

of stories. With this in mind, our historical stories are the equivalent to their sprints, being the takt

time between stories equivalent to the amount of stories per sprint on their model. Their number of

sprint per program increment will be set to with our number of stories to forecast, that is, the final

result for that program increment, containing n stories, is going to be the inverse of our sum of

takt time of n stories. With this mapping between tools, we can compare our method with theirs.

Table 4.5 presents the 4 experiences made.

In these 4 experiences we can see that our model produces forecasts relatively close to the

real value of time to develop a certain number of stories and also close to the forecasts produced

by the Sevawise model. When evaluating our takt time approach in terms of RMSRE, for these

4 experiences, the values are, respectively, 55.27%, 64.98%, 49.55% and 16.16%. In terms of

values outside the confidence interval in relation to our model’s forecast, the values are, respec-

tively, 4/19(21.05%) ,0/4(0.0%), 1/30(3.33%) and 0/124(0.0%), proving, this way, that even if the

forecast is sometimes a bit far from the real value, the confidence interval forecast includes most

of the real takt times for each story, helping a team or a developer understand better the context of

the project and stories.

1More information about Sevawise tool can be found at https://sevawise.com/tools/monte-carlo

https://sevawise.com/tools/monte-carlo
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Labels Model Developed Sevawise Model Real Value

Very Optimist - 2 days, 00:53:14 7 days, 17:34:50
Optimist 2 days, 04:29:05 4 days, 17:05:30 -
Forecast 6 days, 07:41:25 6 days, 12:09:09 -
Pessimist 10 days, 03:50:10 8 days, 11:37:05 -

Very Pessimist - 12 days, 06:24:10 -

(a) With 45 of historical, Forecast 19

Labels Model Developed Sevawise Model Real Value

Very Optimist - 04:16:16 2 days, 23:45:40
Optimist 02:07:24 1 day, 04:17:44 -
Forecast 1 day, 14:42:16 2 days, 03:40:11 -
Pessimist 3 days, 05:11:34 3 days, 05:54:12 -

Very Pessimist - 5 days, 10:27:31 -

(b) With 45 of historical, Forecast 5

Labels Model Developed Sevawise Model Real Value

Very Optimist - 10 days, 11:27:53 11 days, 19:21:31
Optimist 9 days, 15:36:51 15 days, 14:39:55 -
Forecast 17 days, 14:51:46 18 days, 18:33:06 -
Pessimist 23 days, 04:03:32 22 days, 02:37:49 -

Very Pessimist - 28 days, 04:31:49 -

(c) With 45 of historical, Forecast 30

Labels Model Developed Sevawise Model Real Value

Very Optimist - 41 days, 01:03:22 56 days, 17:53:28
Optimist 41 days, 15:05:07 49 days, 16:55:40 -
Forecast 54 days, 18:53:59 54 days, 21:18:26 -
Pessimist 66 days, 11:30:34 60 days, 06:02:27 -

Very Pessimist - 70 days, 01:19:39 -

(d) With 45 of historical, Forecast 124

Table 4.5: Proposed Model vs Sevawise

4.3.6 Effort Forecast For One Story

The effort approach is an approach that uses the time a developer really spent working on a story

as the base to make the forecast. For all the duration a story was in the state "In Progress",

the method will check how many stories the developer assign to the story was also working on,

making this way an estimation of how much effort the developer put in to finish the story. Since

this approach checks the amount of stories being developed at the same time, unlike the duration

approach where a lot of noise was inserted in the Monte Carlo Method, with effort we can make

more accurate forecasts and reduce the huge uncertainty inherent to the duration approach. Below

is represented the setup of the first experiment using the effort approach.
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1 def effortForecast(historical, realValue, estimation):

2

3 effortMC = monteCarlo(historical, 1)

4 median = effortMC[0]

5 lower = effortMC[2]

6 upper = effortMC[3]

7 real = realValue

8 upperEstimation = datetime.timedelta(seconds=upper)

9 upperEstimation = upperEstimation - datetime.timedelta(microseconds=

upperEstimation.microseconds)

10 bottomEstimation = datetime.timedelta(seconds=lower)

11 bottomEstimation = bottomEstimation - datetime.timedelta(microseconds=

bottomEstimation.microseconds)

12 rangeEstimation = "[" + str(bottomEstimation) + " -- " + str(upperEstimation) +

"]"

13

14 originalEstimation = datetime.timedelta(seconds=estimation)

15 originalEstimation = originalEstimation - datetime.timedelta(microseconds=

originalEstimation.microseconds)

16

17 actualValue = datetime.timedelta(seconds=real)

18 actualValue = actualValue - datetime.timedelta(microseconds=actualValue.

microseconds)

This experiment receives the historical data of the project, the real value of the story to forecast

and the estimation made by Fraunhofer’s developers for that story. We call the Monte Carlo model,

passing the historical data and the number of stories to forecast for, in this experiment set to 1 story.

The model returns the median forecast and the upper and lower confidence limits. The range and

median forecast are then printed, as well as the real value and the estimation.

The results of this first experiment made with effort are represented in the Table 4.6, showing

a set of experiences made with the effort approach, comparing the forecasts outputted to the real

value of effort the story to forecast had and also comparing to the estimations made by Fraun-

hofer’s developers, making this way a comparison of this method against expert opinion methods.

The relative error or percentage error and the number of historical stories used in each forecast is

also presented.

As can be seen in the table the model makes, most of the times, very accurate forecasts in

relation to the real value, and when this doesn’t happen, the confidence interval provides a small

degree of uncertainty that in all this cases include the real value, giving this way a good perspective

of the context of the story. We can also see that in most cases, with a great amount of historical

stories, the model forecasts with greater accuracy. In comparison to the estimations made by

developers, few are the cases where the expert opinion method makes better estimations than the

model forecasts. The effort approach is, this way, a good alternative to the takt time when we want

to forecast for one story. In terms of values inside the confidence interval, all the real values are

within the range forecast.
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Proj. Hist Forecast Confidence Interval User Estimates Real Value RE

798 86 04:00:00 [01:20:00 - 08:00:00] 20:00:00 04:00:00 0%
286 67 01:00:00 [00:54:43 - 01:46:34] 08:00:00 01:46:34 43%
798 34 04:00:00 [01:08:34 - 08:00:00] 01:00:00 08:00:00 50%
688 18 01:07:07 [00:43:38 - 07:59:34] 03:30:00 04:00:00 72%
840 78 08:00:00 [06:00:00 - 09:00:00] 01:00:00 07:49:05 4.5%
688 59 01:08:34 [00:43:44 - 06:46:36] 04:00:00 00:46:54 46%
818 63 04:00:00 [01:55:22 - 08:00:00] 01:00:00 01:57:13 50%
688 96 01:09:37 [00:43:44 - 07:06:10] 04:00:00 00:46:55 32%
688 123 01:05:15 [00:43:40 - 07:59:34] 12:00:00 01:13:56 10%
688 32 01:17:13 [00:43:49 - 08:00:00] 12:00:00 04:59:42 74%

Table 4.6: Effort Experience

4.3.7 Effort Forecast For A Set of Stories

The second experiment to do with the effort approach is to test its efficacy when forecasting for a

set of stories. Below is represented the setup of that experiment.

1 def effortSet(historical, realValues, estimations):

2 r = 0

3 sum_real_effort = 0

4 sum_estimation = 0

5 real_val = []

6 med_val = []

7 lower_val = []

8 upper_val = []

9 error_val = []

10 confidence_val = []

11 estimation_val = []

12 y_axis = []

13

14 while r < len(realValues):

15 forecastMC = monteCarlo(historical, (r + 1) )

16 forecastMed = forecastMC[0]

17 lower = forecastMC[2]

18 upper = forecastMC[3]

19 sum_real_effort += realValues[r]

20 sum_estimation += estimations[r]

21

22 real_val.append(sum_real_effort)

23 estimation_val.append((sum_estimation/3600)) # Convert Estimation from hours

to seconds

24 med_val.append(forecastMed)

25 upper_val.append(upper)

26 lower_val.append(lower)
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27 y_axis.append((r+1))

28

29 if(sum_real_effort > upper):

30 confidence_val.append(((abs(sum_real_effort - upper))/sum_real_effort) *

100)

31 elif(sum_real_effort < lower):

32 confidence_val.append(((abs(sum_real_effort - lower))/sum_real_effort) *

100)

33 else:

34 confidence_val.append(0)

35 error_val.append(((abs(sum_real_effort - forecastMed))/sum_real_effort) *

100)

36 r += 1

The experiment receives the historical data of the project, the real values of the stories to

forecast and the estimations of those stories. First, the function calls the Monte Carlo method in

order to get the median, upper and lower forecasts and then it compares the forecasts with the real

values, getting the forecast error and confidence error of the model. A chart with these results is

made in order to facilitate the visualization.

Figure 4.4 represents an example output of the chart produced.

Figure 4.4: Example of the effort of a set of stories, comparing with estimation
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We made 5 experiences that are represented in Table 4.7. We use half of the project as historical

and the other half to validate the forecasts made.

Proj Hist For. 95% Conf. Int. Real Effort User Est. For. MRE Est. MRE

688 101 306h [287h - 369h] 378h 1100h 20% 191%

798 16 75h [55h - 94h] 68h 129h 11% 89%

840 12 95h [83h - 103h] 59h 87h 31% 48%

1090 17 81h [70h - 93h] 87h 237h 12% 172%

997 14 69h [54h - 85h] 65h 177h 27% 172%

Table 4.7: Effort Experiences

The final MMRE for our model on this 5 experiences is 20%, while the final MMRE for the

user’s estimations on this 5 experiences is 134%.

As can be seen in the results of this experiment, the effort approach provides good results when

forecasting for a set of stories.

Is also worth compare the estimations provided by the developers in relation to a set of stories

with our effort approach and with the real value. As we can see, the estimations made by experts

provide bad accuracy when forecasting for a set of stories.

In relation to our model, when we look too much into the future, in this case after around 100

stories, the forecast starts to get less accurate, mainly because of the high degree of uncertainty

inherent to the further way we look into the future, as highlighted in the experience with project

688.

A problem with the effort approach is the fact that it’s based on two assumptions. The first

is saying a developer will work on all its assigned and opened stories during one hour. This will

not be true most of the times, but since at the end the developer will work on all the stories, these

assumptions will balance each other, normalizing again the error. The second assumption is that a

developer works 8 hours per day.

The effort approach can also be used to make some team management in terms of people

working on the project and, this way, make some forecasts about the project costs. In this context,

since the dataset provided by Fraunhofer only has information about the developer assigned to the

story, and not about all the members that, possibly, worked on the story, this team management

and cost forecast could not be included and implemented in this approach.

4.4 Validation Threats

In this section, we identify possible reasons why the results presented could have flaws or might

not be generalizable, and explain how we tried to prevent that.

One of the reasons that could lead to wrong results is the presence of unrealistic duration and

takt times in the dataset which would increase the noise present in the model, leading to inaccurate
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results. This noise is probably due to cases where developers close a lot of stories, that they had

forget to close before, at the same time, cases where developers set a story as "In Progress" and

moments after, they realize that the story was already concluded and close it in a small amount

of time, and cases where developers forget to close the story and thus leading to unrealistic big

amounts of time. We tried to solve this problem using the concept of outliers, values outside the

range between the first and third quartile.

Another issue that could threat the legitimacy of the results is the assumptions made in the

effort approach. Since we assume that the developer works the same amount of time per hour

on all its assigned stories, what doesn’t represent the reality, because what really happens is that

a developer probably works some hours on one story and then shifts to another. Assuming that

only the assigned developer works on a specific story could also be wrong, since sometimes other

developers of the team responsible for the project where the story is inserted in can also work

on the story, increasing the effort that will not be taking into account. We also assume that a

developer only works 8 hours per day, another assumption that don’t necessarily happens all the

times, since sometimes developers do extra hours, increasing the hours per day. Since the real

values of effort are also calculated using these assumptions, since no record of effort is provided

by the dataset, this could explain the overestimates made by the estimation team of Fraunhofer.

All these assumptions are made as a alternative to work with the information in the dataset, due to

the lack of information about real effort and lack of information about which developers worked

in the story, and because of this could represent threats to the legitimacy of the results presented.

4.5 Discussion

In this section, we are going to discuss the main conclusions achieved in the experiences and based

on them validate the hypothesis proposed.

In order to validate the main hypothesis stated before, we should first answer the research

questions that deconstruct this main hypothesis and discuss each one.

4.5.1 RQ1: Is the chosen method more efficient than the others?

Through the revision of the state of the art, we reach to the conclusion that the Monte Carlo

method brings benefits in relation to others. Its applicability in agile context, its output, being easy

to understand and implement, its granularity and the good accuracy it provides are some of those

benefits.

In terms of efficiency when compared to other methods, in particularly when compared with

expert opinion methods, the results achieved with the effort approach and experiments suggest that,

in this context, the Monte Carlo method forecasts may provide better accuracy than the estimations

made by experts, and has the major benefit of providing good forecast without the team or experts

having to lose a lot of time doing the estimations, precious time that could be used in another tasks,

a problem strongly highlighted by the #NoEstimates movement.
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4.5.2 RQ2: Which type of data will this method work with as input?

The Monte Carlo method takes, in this context, time measurements. All the delivery forecasting

approaches followed work with some type of time metric as input. For the duration approach,

the model takes as input the time interval between the moment the story was put in the state

"In Progress" till the moment the story is put in the state "Done". For the Takt Time approach,

the model takes as input the time intervals between conclusion of stories, forecasting this way

the amount of time that will pass between the completion date of a set of stories. For the effort

approach, the model takes as input the time that a developer spent working on a story, working

in a similar way to duration with the exception that only the time that the story was really being

worked on counts for the model.

4.5.3 RQ3: What approach would be more useful for better forecasts?

In the previous chapter, 3 delivery forecasting approaches were explained and implemented. The

first one, duration, was, for us, the worst approach. Since we are looking at past stories and

calculating the entire duration the story was in development, we are counting a number of hours

where the story development was completely stopped. If we take into account that in a company a

story will only be worked on during the week and, probably, 8 hours per day, we are counting a lot

of hours where the story was not worked on. In addiction to that if we consider that other stories

and projects are developed at the same time, even in the hours we could consider as active hours,

a developer will not be working on this one story all the time. The biggest problem with all this

added noise is that forecast will get bigger values and with this errors and accumulative errors will

also increase. The degree of uncertainty implicit in the confidence interval will also be huge, since

the confidence interval has a tremendous range. With a range of values so big and even bigger

confidence interval, we can say that the forecast will have so much noise that it will be useless for

a team or developer.

The second approach is takt time, an approach that instead of using times intervals of particular

stories, uses the time intervals between the conclusion of those stories. This will allow for very

accurate forecast when forecasting for bigger sets of stories since the errors will accumulate and

balance each other, diminishing the error until a certain point in the future where the error will

start to increase again due to the bigger uncertainty of a too far future. This approach is, this way,

a good approach to use when wanting to forecast for an entire project or for a sprint or release,

where we expect a certain number of stories that allow for good accuracy.

The third approach is the effort, an approach that starts from the duration approach and resolves

some of the problems inherent to the former. This approach will hour by hour of the duration of a

story, check how many stories were also opened and assigned to the developer assign to the story

and this way calculate the time per hour a developer spent working on the story. Doing this for

the entire duration of the story will give us the effort the developer assigned put in the story. This

approach eliminates the problems of the duration, providing forecast with much less noise. The

problem with this approach is the assumption it is based on. The big assumption here is saying that
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in a specific hour, the developer worked on all its assigned stories, when in reality this is not true,

but when looking at the final result, these assumptions will balance each other, since a developer

will, in the end, work on all the stories even if not all in the same hour. Another assumption made

is that a developer works 8 hours per day, what could not be true. This approach provides good

results both when forecasting one single story as well as when forecasting a set of stories.

In conclusion, and based on the results achieved, the most useful delivery forecasting ap-

proaches are the takt time and effort. The takt time is the most useful and accurate when fore-

casting for a bigger set of stories and when forecasting delivery dates. The effort approach is the

most useful and accurate, in relation to the other approaches, when forecasting for one story or a

few but also provides accurate results when forecasting for bigger sets of stories, when forecasting

effort.

4.5.4 Hypothesis

After the extensive analysis of all the results obtained and calculated, allow us to discuss the the

validity of the hypothesis, taking into account some observations taken during the experiments.

As verified in the state of the art chapter, there are a lot of data-driven methods who work with

different metrics. We choose the Monte Carlo simulation method, to help prove that this type of

methods can achieve better accuracy and efficiency than expert-opinion based methods.

In terms of cost and time efficiency, data-driven methods achieve forecasts in a much smaller

amount of time and with lesser costs, since this type of forecast only requires computer processing

power, something that nowadays is of easy access, and no team or experts are required to spent

time on this task, time that in a company is also synonym of money, since the developers or experts

are getting paid for that time.

In terms of accuracy, based on some of the findings highlighted in the state of the art chap-

ter and in the findings achieved after implementing the model, that allowed for more practical

tests against expert-opinion methods, we can conclude that data-driven methods, in this case the

Monte Carlo method, can achieve forecasts with better accuracy than expert-opinion estimations.

The approach that better shows this statement is the effort approach, since it allowed for a direct

comparison with the expert-opinion estimations provided by the experts and developers. On that

context, is safe to affirm that this data-driven model provided much more accurate forecasts than

the developers estimations. This is even more clear when comparing the forecasts for various sto-

ries of one project against the estimations for the same amount of stories provided by developers,

as can be seen in Figure 4.4.

Based on this analyses, we verify the veracity of the hypothesis, stating that data-driven meth-

ods for software project forecasting can, as suggested by the results achieved, with a good level of

accuracy, be applied in agile projects, bringing benefits in terms of reduced forecasting errors and

user’s effort, in particularly when comparing with expert-opinion methods.
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Conclusion

The document presented, analyses and reports important notions about this field, presents a de-

tailed report of some of the most used metrics, both for measurement of input/output and for

validation. It analyses some of the most used methods and reports their major benefits, limitations

and make a comparison between them, highlighting the most promising methods.

After selecting the Monte Carlo method, due to its simple applicability in agile context, it’s

understandability and it’s granularity, a forecasting model was implemented. Having 3 different

delivery forecasting approaches implemented, in order to evaluate, we recurred to the Fraunhofer

Jira dataset to build some experiments. With this evaluation of each approach, we discuss some

of the negative and positive points of each one of those approaches and in which context each

one achieves better results. With the results obtained from the experiments made, we were able

to discuss each alternative and finally demonstrate the hypothesis stated in the beginning of the

dissertation.

The tool implemented is ready to be deployed and applied in real life context forecasting. The

tool is working as a shell script, having a basic interface of simple prints and charts. This tool can
be use by developers to forecast for one single story or for a set of stories, being this one of the

contributions of the dissertation. The most recommended approaches to use are the takt time and

effort approaches, each one having its particularities, as discussed above. The tool is implemented

to work with the jira database structure, so in order to use the tool with other structures, some

changes in the tool must be done, something that is facilitated by its modular structure.

Some difficulties were encountered when trying to build the forecasting model to produce ac-

curate forecasts, since the dataset had a lot of unrealistic duration and takt time values, something

that is very representative of what happens in the industry. We had to find techniques, like the

usage of quartiles to assume realistic limits, that would allow us to remove these unrealistic values

in order to have a less noisy dataset, something critical to achieving accurate forecasts.

In the future, an implementation of a machine learning method could also be relevant, since

this type of methods also have a lot of positive points that can help providing more accurate results,

65
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like the possibility of discover existing patterns between projects, the avoidance of overfitting to

data, that is, the ease to adapt to new situations, something that doesn’t happen with the Monte

Carlo method, and the generalization capability. Some of the findings found using the Monte

Carlo method, are also relevant for the Machine Learning implementation, such as the fact that

duration is not a very accurate delivery forecasting data feature due to its accumulation of noise

present in the dataset. Takt Time and Effort are, based on the findings, two good delivery fore-

casting data features to use on this Machine Learning implementation, due to the fact that they

provide less noisy data values to the model, allowing it to achieve accurate forecasts. That imple-

mentation could be used to compare with the results found in this dissertation, in order to show the

benefits of machine learning methods, stated above, in relation to the Monte Carlo method. This

implementation would also help proving the efficacy and accuracy of data-driven methods.

The integration of this model and of the machine learning model with a project development

management tool, like Jira, could also be very helpful since it will allow for a more in depth

empirical study with users and compare the forecast against their estimations. This integration

would also allow for the development of a better interface design. An option for forecasting should

be included in the project dashboard, so that users could use this tool in their projects to forecast

future sprints, team efforts and delivery dates. This plugin would allow for a data collection that

could be use to access the model accuracy and efficiency, also proving the benefits of data-driven

methods forecast. Since the tool was design to work with the jira database structure, the integration

on this project development management tool would be easier to do.
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