
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Payment Terminal Emulator

Liudmila Kisialiova

Mestrado em Engenharia de Software

Supervisor: António Miguel Pontes Pimenta Monteiro

June 24, 2020

Payment Terminal Emulator

Liudmila Kisialiova

Mestrado em Engenharia de Software

June 24, 2020

Abstract

Nowadays, cash payments are becoming less popular [28]. The majority prefers to use a payment
card everywhere instead of carrying large quantities of coins and banknotes, which can be insecure.
However, few understand the complicated process that stands behind the habitual inserting that
card into the PoS (Point-of-Sale) terminal, entering the PIN, and taking the receipt.

Inside the PoS terminal take place the steps of Card Application, Reading Card Settings, Card-
holder Verification, Risk Management, Action Analysis, Online or Offline Authentication, Pin
Verification and other steps. To reduce skimming fraud and to unite all payment processes across
the world for different terminal and card types, the EMV specifications were written for Europe,
and later for USA and other regions [19].

The initiative for EMV was taken by three companies – Europay, Mastercard an Visa – in the
1990s with the view to replace magnetic stripe cards with smart cards [7]. The first specifica-
tion was released in 1996. Now the EMV standards are maintained by EMVCo company, which
includes six companies – American Express, Discover, JCB, Mastercard, UnionPay, and Visa [20].

FinTech organizations (later in this paper also called Payment Systems) develop full payment
solutions for the acquirer banks and merchants, so that they can introduce PoS terminal payments
in their businesses.

In order to facilitate development and testing of the terminal software and reduce the cost of
buying expensive hardware for development environment, the FinTech companies aim to develop
terminal emulator applications. The payment terminal emulator is an application to emulate the
full payment transaction process. The emulator helps to test integration of new acquirer’s inter-
faces into the payment system based on EMV protocol.

Many FinTech companies already have their own terminal emulators, however, existing solu-
tions are proprietary and its implementation is not described widely in research papers. One of
the Portuguese FinTech companies needs a standalone application to cover most popular terminal
payment flows to get advantage over rivals in the competitive FinTech market. The 3C Emula-
tor application for smart card transactions is under development and its implementation solutions
are described in this paper. The emulator application should satisfy the EMV ICC specifications
[13, 14, 15, 16].

To achieve the objective, a standalone software application was developed. 3C Emulator in-
cludes emulation of the main payment transactions, e.g. Sale, Reverse, Pre-authorisation, Top-up
and other transactions. The transaction then is processed in the company’s servers, which, in
their term, contact the real merchants networks to process the transaction online. The application
process the steps in accordance with EMV specifications.

The application was written in Java language, and uses a SQLite database [47] to store tempo-
rary application data, e.g. list of default cards. The graphical interface is written with Java AWT
technology. Since 3C Emulator is a standalone application, no server is needed. However, the
application communicates with the Payment System and merchants’ servers to process the pay-
ments. The communication uses HTTPS and TLS protocols. For message encryption the RSA

i

ii

algorithm is used.
The application was tested with unit testing (using JUnit library [26]) and integration testing.

It was used by a few developers in 3C TechLab to verify the application workflow. Unfortunately,
due to the COVID-19 situation in 2020 and the lack of support time in the company, the full
integration of the solution into the certification process put on hold without a scheduled time
frame.

In this work we consider communication protocol between a smart card and a PoS terminal
based on EMV international standard, together with its known vulnerabilities. Also we provide
the development and test details, together with the application architecture. Finally, we consider
the work limitations and possible future work.

Keywords: EMV, PoS terminal, Smart Card, Emulator, Bank payment

Resumo

Atualmente, os pagamentos em dinheiro estão a tornar-se menos populares [28]. A maioria das
pessoas prefere usar o cartão de débito ou crédito em qualquer lugar, em vez de trazer grandes
quantidades de notas e moedas, o que pode ser inseguro. No entanto, poucas pessoas conhecem a
complexidade que se encontra por detrás da inserção do cartão no terminal PoS (ponto de venda),
introdução do PIN e recolha do recibo.

Dentro do terminal PoS, existem as etapas de Card Application, Reading Card Settings, Card-
holder Verification, Risk Management, Action Analysis, Online or Offline Authentication, Pin
Verification, entre outras. Para reduzir a fraude e unir todos os processos de pagamento em todo
o mundo para diferentes tipos de terminais e cartões, criaram-se as especificações EMV para a
Europa e, posteriormente, para os EUA e outras áreas do mundo [19].

A iniciativa de EMV foi tomada por três empresas - Europay, Mastercard e Visa - na década
de 1990, com o objetivo de substituir os cartões de banda magnética por cartões inteligentes [7]. A
primeira especificação foi lançada em 1996. Agora, os padrões EMV são mantidos pela empresa
EMVCo, que inclui as seis empresas - American Express, Discover, JCB, Mastercard, UnionPay
e Visa [20].

As organizações conecidas por FinTech (posteriormente neste documento, também chamadas
de Payment Systems) desenvolvem soluções completas de pagamento para os bancos e comer-
ciantes adquirentes, para que possam introduzir os pagamentos via terminal PoS nos seus negó-
cios.

Para facilitar o desenvolvimento e o teste do software dos terminais e reduzir o custo da compra
de hardware caro para o ambiente de desenvolvimento, as empresas FinTech têm como objetivo
desenvolver apicações que atuem como emuladores de terminal. O emulator de terminal de paga-
mento é uma aplicação para reproduzir o processo completo de uma transação de pagamento. O
emulador ajuda a testar a integração da nova interface do adquirente do sistema de pagamento com
base no protocolo EMV.

Muitas empresas FinTech já possuem os seus próprios emuladores de terminal. No entanto,
as soluções existentes são proprietárias e a sua implementação não é descrita amplamente na lit-
eratura. Este trabalho teve origem na necessidade de uma das empresas portuguesas de FinTech
precisa de uma aplicação independente para cobrir os fluxos mais populares de pagamentos de
terminais e obter vantagem sobre a concorrência no competitivo mercado FinTech. O emulator
de terminal de pagamento para transações com cartão inteligente foi desenvolvido sendo as suas
soluções de implementação descritas neste documento. A aplicação deste emulador deve atender
às especificações EMV ICC [13, 14, 15, 16].

De forma a atingir o objetivo, foi desenvolvida uma aplicação de software independente. A
aplicação 3C Emulator inclui a emulação das transações de pagamento principais, tais como Sale,
Reverse, Pre-authorisation, Top-up e outras transações. Cada transação é processada nos servi-
dores da empresa, que, por seu turno, entram em contato com as redes reais dos comerciantes,

iii

iv

para processarem as transações online. A aplicação processa todas as etapas necessárias de acordo
com as especificações EMV.

A aplicação foi escrita em linguagem Java e usa a base de dados SQLite [47] para armazenar
dados temporários da aplicação, como por exemplo a lista de cartões padrões. A interface gráfica
foi escrita com a tecnologia Java AWT. Como o 3C Emulator é uma aplicação independente,
nenhum servidor é necessário; porém, a aplicação comunica com os servidores do Payment System
e dos comerciantes para processar os pagamentos. A comunicação usa os protocolos HTTPS e
TLS. O algoritmo RSA foi usado para encriptar mensagens.

A aplicação foi testada com unit tests (usando a biblioteca JUnit [26]) e teste de integração (foi
usado por alguns desenvolvedores na 3C TechLab para verificar o fluxo de trabalho da aplicação).
Infelizmente, devido à situação do COVID-19 em 2020 e à falta do tempo de suporte na empresa,
a total integração da solução ao processo de certificação está suspensa indefinidamente.

Nesta pesquisa, consideramos o protocolo de comunicação entre um cartão inteligente e um
terminal PoS baseado no padrão internacional EMV, juntamente com as suas vulnerabilidades
conhecidas. Também fornecemos os detalhes de desenvolvimento e teste, juntamente com a ar-
quitetura da aplicação e do sistema geral. Por último, consideramos as limitações do trabalho e
possíveis melhorias futuras.

Keywords: EMV, PoS terminal, Smart Card, Emulator, Bank payment

Acknowledgements

First of all, I would like to thank António Miguel Monteiro (Professor in Security in Software
Engineering in Engineering Faculty University of Porto and the supervisor of this dissertation
work) for his helpful comments, suggestions and academic guidance.

Secondly, I would like to thank development teams in 3C TechLab for useful ideas and dis-
cussion about essentials in the EMV specifications. And especially thanks to Ricardo Anacleto
(Project Manager of the Terminal Development team), who is the dissertation sub-supervisor.

I would like to say special thanks to Gustavo Camacho and his family for giving me the last
motivational wave to finish the second year of my master degree. Your family always gives me the
best example of motivation, persistence, confidence in own wishes and just being a good person.

Moreover, I would like to thank my ex-husband Ivan Kisialiou and ex-family-in-law for sup-
porting me in my wish to try studying in another country. You always believed in me and gave
valuable advice. Although the studying abroad broke our family, I feel great gratitude for all
previous years we lived together and being supported remotely during my studying.

And I am deeply grateful to my family (parents, my brother Alexey and my sister-in-law) for
always supporting me in the most difficult moments. Thank you for hours and hours of phone
calls. The feeling, that you are still close to me, dramatically helped me in this emigration journey.
From the bottom of my heart, thank you for supporting me unconditionally.

To all these people, staff at FEUP and particularly those involved in my masters degree: my
sincerest thanks.

Liudmila Kisialiova

v

vi

“Pain is inevitable, suffering is optional.”

Haruki Murakami

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Motivation and Objectives . 3
1.4 Work Structure . 3

2 Payment Terminal 5
2.1 Introduction . 5
2.2 Payment Process . 6

2.2.1 From Merchant to Bank . 6
2.2.2 Smart Cards and ICC . 8
2.2.3 PoS Terminals . 12

2.3 EMV Protocol . 17
2.3.1 EMV Data Elements, Files and Commands 18
2.3.2 EMV Transaction Flow . 23
2.3.3 EMV Security Mechanisms . 25
2.3.4 EMV Security Vulnerabilities . 29

2.4 Payment Terminal Emulator Niche . 30
2.5 Emulator Software Application . 31
2.6 Summary . 32

3 Requirements 35
3.1 Introduction . 35
3.2 Expected system behavior . 35
3.3 Requirements . 36
3.4 Use Cases . 38
3.5 System Model . 40
3.6 Project Technology Stack . 41
3.7 Summary . 42

4 Architecture 43
4.1 Introduction . 43
4.2 System Architecture . 43
4.3 Application Architecture . 46
4.4 Summary . 48

ix

x CONTENTS

5 Implementation 49
5.1 Introduction . 49
5.2 Graphical User Interface . 49

5.2.1 Payment Transaction . 52
5.2.2 Application Menu . 55
5.2.3 Execute Operations . 55
5.2.4 Test Card Configuration . 55

5.3 Business Logic Implementation . 58
5.3.1 “T = 1” Protocol . 59
5.3.2 CDA Algorithm . 59
5.3.3 Cardholder Verification . 59
5.3.4 External Service Evidence . 62
5.3.5 Certification Authority . 64
5.3.6 Receipt Printing . 64
5.3.7 Multi-language Support . 64

5.4 Database . 69
5.5 Design Solutions . 70
5.6 Test Report . 74
5.7 Summary . 74

6 Results 75
6.1 Results . 75
6.2 Summary . 78

7 Conclusions and Future Work 79
7.1 Conclusion . 79
7.2 Further Work . 80

References 81

A Static values of the 3C Emulator application 85
A.1 3C Emulator Currency codes . 85
A.2 3C Emulator Operations . 88
A.3 3C Emulator Events . 90

List of Figures

2.1 Payment algorithm with PoS terminal in respect of the EMV specification 6
2.2 Physical appearance of the payment card . 9
2.3 Contacts on ICC chip . 10
2.4 Smart card architecture . 11
2.5 Terminal supply sequences . 18
2.6 Commands structure . 21
2.7 Common transaction flow . 25
2.8 Diagram of signing static application data . 27
2.9 Diagram of offline dynamic data authentication 28

3.1 One of the Worldline YOMANI terminals . 37
3.2 The use case diagram of the 3C Emulator application 39
3.3 Proposed Application Architecture . 40

4.1 3C Payment system architecture . 44
4.2 Package Diagram of the 3C Emulator application 46
4.3 The screenshot of configuration file cccterminalinal-3cixml-default.xml in par-

tially collapsed form . 47

5.1 The screen of the initial state of 3C Emulator 50
5.2 The screen for selecting the payment transaction type 50
5.3 The screen for the input the transaction amount 51
5.4 The screen for selecting the card and the method of the payment 51
5.5 The screen of the payment process . 53
5.6 The screen of the payment result with success 53
5.7 The screen of the payment result with a card error 54
5.8 The screen of the Execute Operation window 56
5.9 The screen of test cards data configuration . 56
5.10 The screen of the parameters of one test card . 57
5.11 The menu of selecting Active Listener . 57
5.12 The screenshot of transaction request message in ISO8583 format 67
5.13 The screenshot of transaction response message in ISO8583 format 67
5.14 The example of the receipt after Sale transaction (with sensitive data masked) . . 68
5.15 The screenshot of language resources files in the IDE 69
5.16 Class Diagram of database structure . 70
5.17 Class Diagram of the example of the Abstract Factory pattern 71
5.18 Class Diagram of the example of the Observer pattern 71
5.19 Class Diagram of the example of the Façade pattern 72
5.20 Class Diagram of the example of the Singleton pattern 72

xi

xii LIST OF FIGURES

5.21 Screenshot of the Test Report after running Unit Tests 73

List of Tables

2.1 Standard terminal messages . 15
2.2 Most popular transaction types . 15
2.4 Example of Commands . 21
2.3 Possible statuses of the command processing 24
2.5 Analogs of payment terminal emulator applications 32

A.1 Currency codes used in 3C Emulator . 85
A.2 Operations supported by 3C Emulator . 88
A.3 Events supported by 3C Emulator . 90

xiii

xiv LIST OF TABLES

Abbreviations

AAC Application Authentication Cryptogram
ADF Application Definition File
AEF Application Elementary File
AID Application Identifier
APDU Application Protocol Data Unit
ARQC Authorisation Request Cryptogram
ATM Automated teller machines
ATR Answer To Reset
AWT Abstract Window Toolkit
BNKSM Bank Simulator service
C-ADPU Command APDU
CDA Combined DDA/Application Cryptogram Generation
CDOL Card Risk Management Data Object List
CLA Class Byte of the Command Message
CLK Clock
CNP Card Not Presented
CPU Central Processing Unit
CTP Collection Tree Protocol
CVV Card Verification Value
DB Database
DCC Dynamic Currency Conversion
DDA Dynamic Data Authentication
DDOL Dynamic Data Authentication Data Object List
DOL Data Object List
DOM Document Object Model
EEPROM Electrically Erasable Programmable Read Only Memory
EMV EuropayMastercard Visa
IntegraFE Itegra Front End
FinTech Financial Technology
Gnd Ground
H Maximum Voltage Value
HSM Hardware Security Module
HTTPS Hypertext Transfer Protocol Secure
I/O Input/Output
ICC Integrated Circuit Card
IFSI Information Field Size Integer
INS Instruction Byte of Command Message
Java AWT Java Abstract Window Toolkit

xv

xvi ABBREVIATIONS

L Minimum Voltage Value
Lc Exact Length of Data Sent by the TAL in a Case 3 or 4 Command
Le Maximum Length of Data Expected by the TAL in Response to a Case 2 or 4

Command
MF Master File
MID Merchant Identifier
MTI Message Type Indicator
NAS New Authorisation Service
NFC Near-field Communication
NFC SWP Near Field Communication Single-Wire Protocol
NPU Network Processing Unit
P1 Parameter 1
P2 Parameter 2
P3 Parameter 3
PAN Primary Account Number
PC Personal Computer
PDOL Processing Options Data Object List
PLA Poly Lactic Acid
PoS Point-of-Sale
PVC Poly Vinyl Chloride
QA Quality Assurance
R-ADPU Response APDU
RAM Random Access Memory
RFU Reserved for Future Use
ROM Read Only Memory
RRN Retrieval Reference Number
RSA Rivest–Shamir–Adleman
RST Reset
SDA Static Data Authentication
SFI Short File Identifier
SSAD Signed Static Application Data
SSL Secure Sockets Layer
STAN System Trace Audit Number
SW1 Status Byte One
SW2 Status Byte Two
T = 0 Character-oriented asynchronous half duplex transmission protocol
T = 1 Block-oriented asynchronous half duplex transmission protocol
TC Transaction Certificate
TDOL Transaction Certificate Data Object List
TID Terminal Identifier
TLS Transport Layer Security
TLV Tag Length Value
TPDU Transport Protocol Data Unit
UAT User Acceptance Testing
VPP Programming Voltage
WI Waiting Time Integer
XML Extensible Markup Language

Chapter 1

Introduction

Point of Sale terminal (PoS terminal) is an electronic device used to process payment with credit

or debits cards. The newest terminal supports different payment protocols, contactless or not, with

or without physical presence of the card. In the majority of cases, payment terminals are used in

retail locations, such as shops, hotels or restaurants. And the usage of non-cash payment helps

merchants to facilitate accounting process, reduce money change inconvenience, and attract the

clients who prefer non-cash payments.

1.1 Context

The main operation of the payment terminal is transferring of the funds from the customer bank

account to the seller’s one by network, along with other operations, such as checking the funds

amount of the card, changing PIN code, printing a receipt, collecting payment reports and so on.

Since the transferring of the funds directly deals with real money, the terminals usually become

the attack goal of fraud and hacking. The PoS terminals combine hardware and software, and it is

extremely important that produced device and developed software solution to be as much secure

and safe as possible to prevent money crime.

There are some security specifications and guidance, that explain how to develop terminal

hardware and software. These documents aim not only guide developers, but also establish se-

curity minimum for terminals to be safe, unite the terminal all over the word to use the same

communication protocols, and so on. One of the most used in Payment Systems specification

belongs to EMVCo company [20]. It became that much popular, that in some literature the smart

(ICC) cards are called EMV cards, the terminals that support these cards - EMV terminals. This

dissertation work only considers EMV specifications.

The development of full terminal solution, that is ready to be introduced into retail business, is

complicated, multistage and time-consuming process. Small business, like shops, hotels, restau-

rants, are not capable to develop the solution from the scratch. Even sound banks with strong IT

1

2 Introduction

department are not able to produce terminals with their own software installed. Therefore, in the

FinTech market the Payment Systems exist. In Portugal, 3C TechLab [49] is one of the examples

of such companies. The main target of the company is to develop ready-to-use solution: PoS ter-

minals, Apple Pay, Google Pay, PayPal, online payments with 3-D Secure technology and other

products.

“3C TechLab is a newly created FinTech organization initiated by 3C Payment to act

as an innovation incubator for both payment and non-payment solutions. Based in the

vibrant city of Porto and with strategic investment from 3C Payment, 3C TechLab pro-

vides technical nearshore services, complimentary value add products and increases

the development capacity and speed to market for 3C Payment products. With spe-

cialist skills in both Apple and Android applications together with expert knowledge

in EFTPOS EMV software, 3C TechLab is able to ensure quality assurance whilst

maintaining an agile start up mentality within its workforce.” [49]

3C TechLab together with 3C Payment [39] provide the solutions to great number of banks

and retail companies all over the world. The banks and retail companies have their own payment

networks, so the terminals should be integrated properly into existing clients’ networks. And

usually this is not a trivial process due to the different format of messages and network connection,

the ways of processing currency exchange, the variety of card the terminal should support, and etc..

The final solution should be thoroughly checked against satisfaction of the client requirements and

tested well in accordance with EMV specification.

1.2 Problem

As was mentioned above, one of the goals of Payment Systems, like 3C TechLab, is to provide

the clients with terminal solutions, that are stable, secure and comprehensive in term of possible

operations.

The best way for the company to reduce the cost of development of such a solution is invest

in testing and software certification procedures. All company’s software is thoroughly verified

before shipping to the clients. After the software is developed and installed into terminal device,

the certification team checks following requirements:

1. The terminal supports all card type that the clients requested (e.g. Visa, Mastercard, Diners,

American Express);

2. The terminal process the complex payment flow with all mandatory and optional payment

steps (e.g. Data Authentication, Cardholder Verification, Online or Offline Issuer Authenti-

cation);

3. The software supports different models of terminals that the client requested. This include

the cost of purchase and shipping of terminals for development and testing.

1.3 Motivation and Objectives 3

Besides the certification of new developed software, 3C TechLab has to ensure in stability of

existing terminal solutions. It is extremely difficult to avoid introducing of error while making

changes in existing terminal software.

Finally, so far the certification process are not able to cover all possible flows and sometimes

the certification team resorts to manual testing. This work requires much time and, moreover, can

be error-prone.

3C TechLab needs a standalone software of terminal emulator to reduce the cost of develop-

ment and to improve certification process. The software emulates the payment flow faster and with

more accuracy, it can be applied to the number of the clients, support different types of cards and

terminals.

1.3 Motivation and Objectives

The main benefit of introduction the payment terminal emulator into the 3C TechLab development

process is the reduction of the cost of the development and certification. The standalone appli-

cation can be used in different phases of development independently by the variety of developers

and QA engineers. The improvement of the quality of terminal software can lead the company to

get higher position in the highly competitive FinTech market.

There are existing terminal emulator solutions, but most of them are proprietary and can not

be applicable in all payment flow that the 3C TechLab software provides. Therefore, the company

has an objective to create their own emulator software.

1.4 Work Structure

This document begins by presenting a literature review and comprehensive research on EMV

specification in Chapter 2. Then, in Chapter 3 a detailed list of requirements and expected system

behavior are presented. In Chapters 4 and 5 we uncover the architectural and development

details of the implemented solution, where the work unfolds. Chapter 6 provides the application

verification result using requirements list as an acceptance test. Finally, Chapter 7 presents the

conclusions of the developed work as well as the identification of possible future work.

4 Introduction

Chapter 2

Payment Terminal

This chapter presents a review on the State-of-the-Art of the Payment Terminal Emulator. We

explain the process of the production of smart cards, business communication between anchor

institutions and main payment flows, focusing on the variety of the smart cards, terminal models,

several security mechanisms, including their advantages and disadvantages. Finally, the chapter

provides known security vulnerabilities in EMV terminal usage.

2.1 Introduction

Nowadays, card payments become more popular [28]. However, few understand the complicated

process that stands behind the habitual inserting that card into the payment terminal.

If one opens his pocket and looks at the card they have, probably they can find cards with

magnetic stripe only, or blank cards without any signs, but which are the electronic keys with the

NFC chip inside, or the cards that have the silver or gold chips. Moreover, the card can be stored

in virtual way in smart-phones, that process the transactions in contactless way. We provide the

review of possible payment means and its production.

Then, several institutions are involved in the process of the fund transfer from one bank ac-

count to another. For instance, there are (1)(2) two banks, (3) the company that produce smart

cards, (4) the company that provides payment scheme, (5) the payment system company and etc.

If the PoS terminal is used in retail location, (6) merchant is also involved. The payment algorithm

with all possible anchors is described 2.1.

Finally, EMV specification, that is represented in a set of books, is used to guide development

of PoS terminals and smart cards. The specification has become widely known among payment

systems, it spread from Europe continent to the whole world. And nowadays it became that much

popular, that in some literature the smart (ICC) cards are called EMV cards, the terminals that sup-

port these cards - EMV terminals. Following EMV specification, the payment terminal emulator

was developed.

5

6 Payment Terminal

Figure 2.1: Payment algorithm with PoS terminal in respect of the EMV specification

2.2 Payment Process

2.2.1 From Merchant to Bank

Speaking about payment, one can consider different payment schemes and means:

• Paper instruments, e.g. cash (banknotes and coins) and cheques;

• Payment cards, e.g. debit, credit, pre-paid and e-purses (electronic money);

• Mobile devices working in remote schemes and contactless schemes and representing some

smart card.

• CNP (Card Not Present) payment data for online transactions.

In this research we focus on payment mechanisms based on payment cards. The payment card

can have different communication features, such as:

• Magnetic stripe (supports only online transactions);

• ICC (Integrated Circuit Card) chip (supports both online and offline transactions, for in-

stance, payments in planes during flight or in trains in tunnels);

• NFC antenna (provides additional interface to ICC chip).

Figure 2.1 illustrates the actors that participate in executing a secure purchase transaction and

clarifies the business algorithm of the PoS terminal transaction using a smart card.

2.2 Payment Process 7

Smart Card Vendor – is a manufacturer of smart cards. When a client requests a new payment

card, the Issuer Bank sends a request to the Smart Card Vendor to produce both card hardware and

install software, namely setting card data, card key pair, issuer data, issuer public keys, expiration

date, and so on.

Issuer Bank – is the bank that provides the client with a card (the client obtains the status of a

cardholder), contracts with the clients, collects client’s personal data to satisfy security purposes,

and so on [30].

Acquirer Bank – is the bank that contracts with the merchants, collect personal and business

data, provides the merchants with a terminal.

Payment Scheme (e.g. Visa, Mastercard, American Express, etc.) – is a network guaranteeing

the transfer of money. Moreover, it sets specific rules over manufacturing process, collecting

private data of clients, and so on [44]. During the payment process, the Payment Scheme does not

play any role, however, it sets regulations for ICC data elements, the terminal messages format,

and other static rules.

Payment System (e.g. 3C Payment, Amazon Pay, Atom, PayPal Braintree, PayPal Venmo,

PayPal Xoom, SIX Payment, Qiwi, WebMoney, Yandex.Money, etc.) – is a complete payment

solution provided by FinTech company. In PoS payments scheme, the Acquirer Bank contracts

the Payment System to provide terminals ready to install in merchants sell points. The major-

ity of Payment Systems uses external companies, that produce terminal hardware, for example

Worldline, Verifone, Ingenico, PAX Technology, CyberNet, etc. [42]. Then the PoS terminal is

configured by the Payment System provider in accordance with the Acquirer Bank environment.

Merchant – the person or a group of people willing to integrate terminal payment in their

business. The most popular example is when merchants are represented by medium size selling

businesses, that trade in goods produced by other people.

Cardholder – the client of the bank, who the bank produces and supplies a payment card to.

PoS Terminal – is a device which interacts with payment cards to make electronic funds trans-

fers. While installing software, the Payment System configures the address of a Certification

Authority, so that the terminal can upload a signed issuer public keys from it. Since upload is done

automatically online, there is no need to physically visit merchant points to re-install terminal

software.

Smart Card – a payment mean. In this dissertation work we consider ICC cards, however it

can be an NFC analog of the card, for example, smartphone with card data attached.

The common terminal-card communication includes the following steps [48] (more details

can be found in subsection B. EMV Transaction Flow):

1. An attended inputs transaction amount, specifies currency if needed, and set other transac-

tion settings;

2. When the card is applied, Data Authentication is processed (online or offline) to check the

card genuineness;

8 Payment Terminal

3. The cardholder verifies identity with PIN (online or offline PIN verification), signature or

other verification method;

4. The processing of the transaction can be online (the terminal sends requests to Acquirer and

if needed to Issuer) or offline;

5. If the transaction is approved, the terminal shows an “Approved” message. Otherwise, the

terminal displays an error message;

6. The card should be deactivated.

Although the introduction of a PoS terminal into the merchant business has a distinct advan-

tage, not all merchants are eager to start acceptance of non-cash payments [33]. The reasons

are:

1. The more card types to support – the more expensive the terminal. For small businesses, the

cost of supporting rare card types can exceed the possible income.

2. Network cost. Once the merchant decides to extend their payment methods with PoS ter-

minals, they should provide a stable and reliable Internet connection, so that terminals can

process transactions online or partially online.

3. Installation effort. Sometimes the benefit of introducing terminals for small businesses is

too small comparing to the effort of its configuration. Namely, reaching agreement with

an Acquirer bank, sharing business details with third parties, additional security risks, and

other actions, can be not worthwhile.

However, for the medium size businesses the benefits of non-cash payments are difficult to

underestimate.

2.2.2 Smart Cards and ICC

The smart card – is a plastic card with chip integrated. Also a smart card is called an Integrated

Circuit Card (ICC). A smart card:

1. has a unique identifier (smart token);

2. has a microprocessor, that provides business logic to support electronic transaction;

3. has a strong security mechanism;

4. has no internal power supply;

5. is extremely difficult to forge or duplicate;

6. can be run only using external energy resource (card reader with power source);

2.2 Payment Process 9

Figure 2.2: Physical appearance of the payment card: a) magnetic stripe (back of the card); b)
contacts of chip; c) NFC antenna; d) embossing area

7. has three types of semiconductor memory: Read Only Memory (ROM), Random Access

Memory (RAM) and Electrically Erasable Programmable Read Only Memory (EEPROM).

A smart card can be used as not only a payment mean, but also as a mobile telecommunications

instrument (SIM cards), identity cards or passports, transport cards (e-tickets), IT access control

(e-key), timing control cards (SPORTident cards), and other means. Basically, the smart card can

provide such functions as:

• Identification (smart card identifies person, for example ID card)

• Authentication (for instance, smart card allows access only to particular person and acts as

a key)

• Storing data with possibility to modify it (for instance, timekeeping system)

• Authorisation (the usage of smart card by a defined person to access the system or process

a transaction).

Most popular payment cards, that nowadays issuer banks produce, have several interfaces to

operate in a payment (Figure 2.2):

• Embossed card number and CVV (card verification value) are used for online payments;

• Signature of cardholder on the back side of the card is used for the authentication. For

risk management sometimes the issuer or the acquirer requires signature verification in the

moment of a transaction.

• Magnetic Stripe is used in swipe communication. The usage of magnetic stripe is consid-

ered less secure in comparison with ICC and NFC communications [34]. Some cases of

vulnerabilities are described in subsection D. Fraud examples.

10 Payment Terminal

(a) Scheme of ICC chip contacts

(b) Six-contact chip (c) Eight-contact chip

Figure 2.3: Contacts on ICC chip

• NFC microchip and several loops of wire installed inside the plastic part of the card. Some

card readers support contactless communication. The communication and message ex-

change is almost the same as for the ICC communication. NFC interface replaces physi-

cal contact between card and card reader, but remote reader interacts with the same chip

memory.

• ICC chip is used by inserting the card into card reader and establishing physical connection

with its contacts. The chip is hidden behind the contacts and has a surface less than 50% of

the contacts surface.

Chip manufactures and banks agreed to keep the size of chip surface relatively small, due to

several reasons:

• cheaper to produce, because consumption of material is smaller;

• physically more solid, and the chip suffers less from bending pressure;

• card reader has to provide less power to activate the chip;

• more secure, since small dimension complicates re-engineering of the chip

Since the plastic base of the card has no style restriction, manufactures provide unusual fea-

tures: Translucent, Perspective, Coloured Edge, Tactile, Nacre, Fragrance, Metal Effect, Durocore,

Poly Vinyl Chloride (PVC) recycled, Poly Lactic Acid (PLA)—a PVC-free card, Shapes, CDplus

2.2 Payment Process 11

Figure 2.4: Smart card architecture

Connectcard [34]. However, the chip structure shall strictly follow international requirements.

ICC can have a maximum o eight contacts (Figure 2.3) and all surface of the chip is gold or silver

coloured. The minimum number of chip contacts is five:

• Vcc is supply voltage

• RST is a reset line

• CLK provides clock pulse

• Gnd is level of minimum voltage

• I/O line is used for communication and to pass messages between ICC and reader

Additional contacts are:

• Vpp is programming voltage. The contact is used in old-style EEPROM memories (electri-

cally erasable programmable read-only memory) with possibility to re-program the chip.

• two RFU (Reserved for Future Use) contacts can be used in special cases. Nowadays, most

cards and readers already support the usage of this contacts, for example, high-speed USB

interface, and NFC SWP (Near Field Communication Single-Wire Protocol), and others.

As illustrated in Figure 2.4, the chip consists of the following components:

1. I/O system – chip interface comprising contacts on the surface of the card.

2. Central Processing Unit (CPU) and Network Processing Unit (NPU). Due to presence of

CPU the card was named smart [34].

12 Payment Terminal

3. Three types of memory:

(a) ROM (Read Only Memory) – this semiconductor memory is typically used for storing

the operating system programs, such as the program needed to start the smart card

when its power is turned on. ROM is also known as operating system memory.

(b) RAM (Random Access Memory) – the fastest type of memory, used only for tempo-

rary storage. The information in RAM is accessed only in a certain (relatively small)

amount of time. RAM is also known as working memory.

(c) EEPROM (Electrically Erasable Programmable Read Only Memory) – electrically

erasable and modifiable memory. It is used for storing programs and data that pe-

riodically needs modification. Due to security reasons, modern smart cards usually do

not have EEPROM, but can replace it by other kind of non-volatile flash memory.

Card and card reader communicate with character-oriented (called “T = 0”) or block-oriented

(called “T = 1”) asynchronous half duplex transmission protocol. The protocol “T = 0” is mostly

used in telecommunications (SIM cards), and supports sending one byte at a time. However, the

protocol “T = 1” sends data in blocks of characters. This protocol is used in payment cards.

2.2.3 PoS Terminals

First of all, there are the variety of electronic devices that used to process payments [34], for

instance:

• Automated teller machines (ATMs)

• Branch terminals

• Cardholder-activated terminals

• Electronic cash registers

• Personal computers

• and other devices

However, in this dissertation work, we focus on PoS terminal payments.

A Point-of-Sale terminal is an electronic device used to process card payments at a merchant

points. The PoS terminal functionality includes [34]:

1. Reading data from credit or debit card

2. Checking an account balance

3. Transfer the funds to another account

4. Process payment by bank or by merchant point

2.2 Payment Process 13

5. Recording the transaction and printing a receipt

Book 4 of EMV ICC specification [16] describes all terminal types. A terminal that follows

the specification can have attended or unattended environment. In case of an attended terminal, the

transaction is processed with the presence of both a cardholder and an attended (merchant agent or

acquirer agent). And in contrast, unattended environment does not have “face-to-face” presence.

Some terminals support Voice Referrals. In case of an attended terminal the issuer can wish to

verify the cardholder, then the terminal displays a “Call your bank” message, so that the cardholder

has to confirm his transaction intention.

The terminals can use different type of communication:

• Offline-only. In this case there is no Internet connection, and there is no random transaction

selection to process it online, since all transactions are processed offline. Once the terminal

is connected to the Internet, all transactions are sent with the batch of data. The upload of

transactions is called reconciliation.

• Online-only. In online-only terminal no Risk Management analysis and random transaction

selection are used, since all transactions are verified and processed online. Such terminals

require an Internet connection, and all Risk Management procedures are performed on the

acquirer side.

• Offline with online capability. This type of communication is the most popular nowadays

and join benefits from both online-only and offline-only. This type of terminals supports

Risk Management and sends transactions data to Acquirer in bunches of packages to reduce

processing time.

If the terminal has online capability, then several transaction steps can be processed online or

offline:

• Data Authentication

• PIN Verification

• Transaction processing

Not all terminals have all hardware in one physical box. Card reader, magnetic stripe reader,

ICC reader, and keyboard can be connected to the PoS terminal remotely. In this case it is impor-

tant to provide stable communication, proper plug in and plug off actions to maintain integrity of

the operation.

As it was described earlier, smart cards can have more then one communication interface (ICC

chip, NFC antenna, magnetic stripe). The terminals should support different input capabilities in

order to process transactions via the interface that the selected card has.

PoS terminals have the following input capabilities [16]: inserting ICC chip, swiping magnetic

stripe, placing NFC antenna close, and manual entry of card data. In case of failed read of ICC

14 Payment Terminal

and presence of magnetic stripe, the terminal can display a message with advice to proceed the

operation via magnetic stripe.

The terminal hardware can include:

• keypad (numbers (0 - 9), alphabetic (A - Z) and special (’*’, ’.’, ’#’) keys, commands (’Can-

cel’, ’Enter’, ’Clear’), functions (’F1’, ’F2’, ’Backspace’, ’Escape’) and others)

• PIN pad (’0’ - ’9’, ’Cancel’ and ’Enter’ keys, key ’5’ in the center of the pad should have

tactile identifier, usually represented with raised dot)

• Display (minimum 2 lines of 16 characters)

• Memory with erase-protection. Some data is static (terminal manufacturer data, acquirer

and merchant data, terminal capability data), some is dynamic (system trace audit number

STAN counter, date counter). Moreover, all sensitive data should be protected properly

(card PANs (Primary Account Numbers) applied in the terminal, black lists, etc.)

• Independent clock mechanism – to verify certificate expiration dates.

• Printer

• Card readers (ICC reader, magnetic stripe reader, NFC reader)

The terminal should support at least one language – the local language of the terminal usage

region. However, the characters, that the display should be able to show, are from the Latin

alphabet plus common special characters (in accordance with ISO/IEC 8859 encoding standard).

In the case of supporting several languages, the terminal reads the language preference, that is set

by the issuer, from the smart card, and display messages to the user using this language. If the

preferred language is not supported by the terminal, options are shown to the user for selecting

another language from the list.

A terminal has a list of mandatory messages, each one with a hexadecimal identifier. In Ta-

ble 2.1, one can find the list of 19 standard messages that can be displayed in the terminals.

In the higher level, there is a list of possible business transactions that the acquirer interface

processes [37]. The terminal is configured in accordance to the transaction types that the acquirer

expects. The list of all transaction types is described in ISO technical documentation [25], and

most popular transaction types are presented in Table 2.2. This standard defines a message format

and a communication flow so that different systems can exchange these transaction requests and

responses.

Following ISO8583 standard, the message type indicator (MTI) is a four-digit numeric field

which indicates the overall function of the message.

The first digit of the MTI indicates the ISO 8583 version in which the message is encoded:

• 0xxx – ISO8583:1987

• 1xxx – ISO8583:1993

2.2 Payment Process 15

Table 2.1: Standard terminal messages

Identifier Message
’01’ (AMOUNT)
’02’ (AMOUNT) OK?
’03’ APPROVED
’04’ CALL YOUR BANK
’05’ CANCEL OR ENTER
’06’ CARD ERROR
’07’ DECLINED
’08’ ENTER AMOUNT
’09’ ENTER PIN
’0A’ INCORRECT PIN
’0B’ INSERT CARD
’0C’ NOT ACCEPTED
’0D’ PIN OK
’0E’ PLEASE WAIT
’0F’ PROCESSING ERROR
’10’ REMOVE CARD
’11’ USE CHIP READER
’12’ USE MAG STRIPE
’13’ TRY AGAIN

• 2xxx – ISO8583:2003

• 3xxx, 4xxx, 5xxx, 6xxx, 7xxx – Reserved by ISO

• 8xxx – National use

• 9xxx – Private use

The second digit specifies the overall purpose of the message:

• x1xx – Authorization message to check availability of funds. Some Acquirer banks process

payment only based on authorisation message.

Table 2.2: Most popular transaction types from [25]

Code of Request Code of Response Transaction type
X100 X101 Authorization
X100 X101 Pre-authorization
X100 X101 Refund authorization
X100 X101 Top-up authorization
X200 X210 Sale
X220 X221 Completion
X420 X430 Reversal
X520 X521 Final reconciliation
X800 X810 Diagnostic message

16 Payment Terminal

• x2xx – Financial messages to process payment transaction and initiate the transferring of

funds.

• x3xx – File actions message to collect statistics and perform audits.

• x4xx – Reversal messages, to return the funds.

– Reversal (x4x0 or x4x1): Reverses previous authorization.

– Chargeback (x4x2 or x4x3): Charges back a previously cleared financial message.

• x5xx – Reconciliation message to transmit settlement message.

• x6xx – Administrative message to transmit administrative advice, for example failure (re-

jection, application error and so on) message.

• x7xx – Fee collection messages

• x8xx – Network management message to maintain network connection, for example, logon,

echo test, logoff, diagnostic message, secure key exchange and other messages.

• x0xx, x9xx – Reserved by ISO

The third digit specifies the message target and its method of sending:

• xx0x – Request from Acquirer to Issuer, can be approved or rejected

• xx1x – Issuer response to xx0x message

• xx2x – Advice that an action has taken place

• xx3x – Advice response to xx2x message

• xx4x – Notification that an event has taken place

• xx5x – Notification acknowledgement is response to xx4x message

• xx6x, xx7x – Instruction of ISO 8583:2003 and its acknowledgement

• xx8x, xx9x – Reserved for ISO use

Finally, the fourth digit specifies the location of the message source:

• xxx0 – Acquirer

• xxx1 – Acquirer repeat

• xxx2 – Issuer

• xxx3 – Issuer repeat

2.3 EMV Protocol 17

• xxx4 – Other

• xxx5 – Other repeat

• xxx6, xxx7, xxx8, xxx9 – Reserved for ISO use

The most frequent messages that Acquirer banks sends and expect in response are 0100 / 0110,

0200 / 0210, 0420, 0421, 0520 and 0800.

2.3 EMV Protocol

The majority of terminals used in Europe satisfies the EMV specifications, that became the pay-

ment systems guide. The EMV requirements are represented in a set of specification documents

[18]. The EMV standards cover such complex protocols as 3D Secure, Payment Tokenisation, QR

Codes, Terminal payment with different communication types, and many others. In this work the

focus is on the EMV ICC specifications for Payment Systems.

Once the card is inserted and the contacts are locked by the terminal, the terminal initiates the

session. As shown in Figure 2.5, firstly the terminal powers VCC, then sets I/O into reception

mode, then provides CLK (periodical high and low voltage values with frequency in the range 1

MHz to 5 MHz). The reception mode of I/O can be set after CLK initiation, but not later then 200

cycles.

Below we describe the activation process in more detail. To activate ICC contacts, the terminal

shall generate a supply voltage (Vcc) to the contact VCC of 5V ±0.4V DC and current drawn in

the range 0 to 55 mA. Different ICC card classes support different maximum voltage, but never

higher then the value 5V ±0.4V DC.

The maximum voltage value (H stands for High or ’1’ stands for “true”) and the minimum

voltage value (L stands for Low or ’0’ stands for “false”) on the other contacts (Ground, Clock,

Reset, I/O) depends on maximum Vcc voltage supported and generated on VCC contact. For

example, the card of class C (accepted from January 2014) uses Vcc values 1.66 V to 1.94 V with

current 35 mA. Clock and Reset, I/O has a value of H 0.8*Vcc to Vcc, Clock and Reset and I/O

have a value of L 0 to 0.15*Vcc. GRD has a value in range of 0 to 0.4V. For I/O voltage value

L is 0 to 0.2V (depends on the reception or transmission mode selected), and voltage value H is

0.7*Vcc to Vcc.

After contacts activation, the terminal processes Cold Reset, which is used to receive card

configuration. The terminal sets RST value H and, after not less than 400 clocks, receives the ATR

(Answer to Reset) message on I/O contact. The maximum delay is 40,000 clocks.

Cold Reset is used to start communication, and in contrast, Warm Reset can be performed

without disconnecting power supply. To perform Warm Reset, the terminal sets value L to RST,

then after 40.000-45.000 cycles – to value H. And then, as in the case of Cold Reset, the terminal

waits for ATR message that contains all card configurations. If Cold Reset leads to a rejected ATR

message, the terminal tries to retrieve configurations with Warm Reset. If ATR message has wrong

format or is not verified by the terminal, the session should be deactivated.

18 Payment Terminal

Figure 2.5: Terminal supply sequences: a) Contact activation sequence; b) Cold Reset sequence;
c) contact deactivation sequence [13]

To deactivate the ICC card (Figure 2.5 c), the terminal sends the following sequence: sets

value L to RST, sets value L to CLK, sets value L to I/O, and, finally, sets value L to VCC.

With ATR message the ICC card provides the terminal with configurations in which the card

can communicate. For example, the logic convention of characters in messages (inverse or direct),

supported asynchronous transmission protocol (character-oriented “T = 0” or block-oriented “T =

1”), value of programming voltage required by ICC and maximum voltage, the work waiting time

(WI), maximum field size (IFSI), error detection code and other values.

When communication is established, the terminal and the card will exchange messages (data

elements, files, commands) via I/O line. The terminal controls in which mode the line works:

reception or transmission. During the communication, the ICC and the terminal exchange issue

information (from ICC files), acquirer or merchant information (from terminal data), transaction

details by the protocol agreed upon by both the card and the terminal.

2.3.1 EMV Data Elements, Files and Commands

ICC card is developed to store information. All information in the memory is divided into log-

ical data elements. The minimum set of data elements is described in EMV specification [15],

however, it can be extended for proprietary purposes.

Data elements
All data elements are represented in TLV format (Tag, Length, Value), for example, to pass

language preference with a length of 2 characters in the tag “5F2D”, the card stores the data

sequence “5F2D02EN”.

2.3 EMV Protocol 19

There is a mapping of the values and tags in Annex A in [15]. The definitions of the tags satisfy

ISO/IEC 8825 and ISO/IEC 7816. Bellow there is an example of some EMV data elements:

• Amount data (’81’, ’9F02’ – Authorised amount, ’9F04’, ’9F03’ – Secondary amount,

’9F3A’ – Amount in reference currency)

• Currency data (’9F42’, ’9F3B’, ’9F43’ – Application currency, ’9F44’, ’9F3D’ – Currency

minor, ’5F2A’, ’5F36’, ’9F3C’ – Transaction currency)

• Security data (’9F26’ – Application cryptogram, ’9F27’ – Cryptogram date, ’8F’, ’9F22’

– Certification Authority public key, ’9F49’ – DDOL, ’9F2D’, ’9F2E’, ’9F2F’ – PIN enci-

pherment public key certificate, ’9F46’, ’9F47’, ’9F48’ – ICC public key certificate, ’90’,

’9F32’, ’92’ – Issuer public key certificate, ’9F4B’ – Signed Dynamic Application Data,

’93’, ’9F4A’ – Signed Static Application Data, ’97’ – TDOL, ’98’ – hash of transaction

certificate, ’9F37’ – Unpredictable Number)

• Dates (’5F24’, ’5F25’ – Application expiration and effective dates, ’9A’, ’9F21’ – Transac-

tion date and time)

• Card data (’5A’ – Application PAN, ’5F34’ – PAN sequence number, ’5F20’, ’9F0B’ –

Cardholder name, ‘5F57’ – Account type, ’5F53’ - International Bank Account Number

IBAN, ’5F28’, ’5F55’, ’5F56’ – Country code, ’9F11’, ’91’, ’9F0D’, ’9F0E’, ’9F0F’,

’9F10’ – Issuer data, ’5F2D’ – Language preference, ’9F13’ – Transaction counter, ’9F17’

– PIN counter, ’99’ – PIN data)

• Identificators (’9F01’, ’9F06’ – Acquirer Identifier, ’5F54’ – Bank Identification code BIC,

’9F45’ – Authentication code, ’9F4C’ – ICC dynamic number, ’9F1E’ – Device serial num-

ber, ’42’ – Issuer identification number, ’9F16’ – Merchant Identifier, ’9F1C’ – Terminal

Identification)

• File names (’94’ – AFL, ’4F’ - ADF name, ’84’ – DF name, ’9D’ – DDF name, ’BF0C’,

’A5’, ’6F’ – FCI data, ’88’ – SFI)

• Script commands (’86’, ’9F18’, ’71’, ’72’ – Issuer script data, ’9F38’ – PDOL)

• Merchant data (’9F15’ - Category code, ’9F4E’ – Location and name)

• Version numbers (’9F08’, ’9F09’ – Application version data)

• Risk Management data (9F07’ – Application usage control, ’8C’ – CDOL1, ’8D’ – CDOL2,

’8E’, ’9F34’ – CVM lists and results, ’9F4D’, ’9F4F’ – Logs, ’9F1D’ – Terminal Risk

Management data)

• Capabilities (’9F40’ – Terminal capabilities, ’82’ – Card capabilities, ’9F39’ – Terminal

entry mode, ’9F33’ – Template capabilities)

20 Payment Terminal

• Other data elements.

Besides application data elements, smart cards can store extended data, for instance files and

commands. According to the EMV specification, this data is represented in Application Protocol

Data Unit (APDU) and Transport Protocol Data Unit (TPDU), respectively.

Files
The files in a smart card are organized in a tree structure. The topmost file is the Master

File (MF). The MF has one or more Application Definition Files (ADF). Inside of an ADF are

Application Elementary Files (AEF) that contain data. An ADF can be selected by Application

Identifier (AID) or by Short File Identifier (SFI).

There is an agreement on SFI values: 1-10 governed by the specification, 11-20 Payment

Systems specific, 21-30 Issuer-specific, so that there is no conflict in the file identification.

In some cases, the ICC can build the list of data elements, and the terminal receives the data

in more handful format. Depending on the type of data, there are four types of Data Object Lists

(DOL):

• Processing Options DOL (PDOL)

• Card Risk Management DOLs (CDOLs)

• Transaction Certificate DOL (TDOL) – data for generation of certificate hash value

• Dynamic Data Authentication DOL (DDOL)

Commands
After receiving the ATR message with ICC card configuration, the terminal starts sending

the commands, so that the card and the terminal communicate. As mentioned, applications use

APDUs to support communication. These data units provide a command-response mechanism, so

that the terminal retrieves and passes needed information.

The command (C-ADPU) consists of Header and Body (Figure 2.6). The Header is mandatory

for all commands, and the Body is conditional. The structure of the command Header is fixed:

class (CL), instruction (INS), the first parameter (P1), and the second parameter (P2). Some

commands do not use parameters, in that case the parameter bytes have value ’00’ in hexadecimal

format.

If the Body of the message exists, the structure is: the length of data sent (Lc), Data and the

maximum length of data expected in response (Le). The response (R-ADPU) to the command

consists of three elements: Data, status byte one (SW1), status byte two (SW2).

The Header in the command has 4 bytes, one for each of its fields.

The status bytes in the response represent the result of the processing state of the command.

Possible statuses are shown in Table 2.3.

When Le is present and contains the value “00”, the terminal expects a return value with a

length up to 256.

Example of READ RECORD command:

2.3 EMV Protocol 21

Figure 2.6: Commands structure: a) C-ADPU structure; b) R-ADPU structure

1. the terminal sends command “00B2A10A00”, where “A1” is the record number, “0A” is file

identifier. The command does not have Body and expects data with any allowed length in

response.

2. in the case of success the card sends back the record data in hex format plus value “9000”,

where SW1 = “90” and SW2 = “00”.

More examples of commands can be found in Table 2.4.

Table 2.4: Example of Commands

Command Name CLAINS P1 P2 Lc Data Le Description

APPLICATION

BLOCK

8x 1E 00 00 Lc MAC – Makes the current applica-

tion invalid

APPLICATION

UNBLOCK

8x 18 00 00 Lc MAC – Rehabilitates the current ap-

plication

CARD BLOCK 8x 16 00 00 Lc MAC – Permanently disables all ICC

applications

EXTERNAL

AUTHENTICATE

00 82 00 00 8-16 Cryptogram – Requests ICC verification of

the cryptogram of Issuer Au-

thentication Data

22 Payment Terminal

GENERATE AC 80 AE xx 00 Lc Transaction

data

00 Requests ICC to generate

application cryptogram. P1

specifies what data ICC

should return (AAC, TC,

ARQC, as described in EVM

security subsection), also it

specifies if CDA algoritm

should use signature or not.

Expects CDOL1 and CDOL2

GET

CHALLENGE

00 84 00 00 – – 00 Requests ICC to generate un-

predictable number

GET DATA 80 CA xx xx – – 00 Retrieves ICC data. Param-

eters specify which of four

data objects is requested:

9F36 (Transaction counter),

9F13 (Online transaction

counter), 9F17 (PIN counter)

or 9F4F (Log format)

GET

PROCESSING

OPTIONS

80 A8 00 00 Lc PDOL 00 Requests initialisation the

transaction using PDOL,

that was obtained from ICC

earlier (from tag 83)

INTERNAL

AUTHENTICATE

00 88 00 00 Lc DDOL 00 Requests ICC to generate

Signed Dynamic Application

Data using provided DDOL

(authentication data)

PIN CHANGE /

UNBLOCK

8x 24 00 00 Lc PIN+MAC – Requests ICC to change PIN

or unblock card. The termi-

nal sends PIN enciphered

READ RECORD 00 B2 xx xx – – 00 Requests a file record in a lin-

ear file in ICC. P1 specifies

record number. P2 specifies

short file identificatior (SFI)

VERIFY 00 20 00 xx Lc Encrypted

PIN

– Requests offline PIN verifi-

cation by ICC. P2 specifies

PIN format (Plaintext, Enci-

phered or proprietary way)

(RFU) 8x
Dx

xx xx xx any data xx
Reserved for use for the

Payment SystemsEx

2.3 EMV Protocol 23

(RFU) 9x xx xx xx xx any data xx Reserved for use for manu-

factures

(RFU) Ex xx xx xx xx any data xx Reserved for issuers

2.3.2 EMV Transaction Flow

After establishing a connection between the card and the terminal, reading ATR message by the

terminal and setting I/O line to proper mode, the application session is started. The transaction

flow can differ for different card types and terminal types, however some flow stages are the same.

Figure 2.7 illustrates the most common transaction flow.

1. Application initialisation – exchange with transaction-related data, sending PDOL to ICC

with GET PROCESSING OPTIONS command, receiving Application Interchange Profile,

check the need of CDA authentication, requesting Application File Locator, language pref-

erence, and other data.

2. Reading application data – the terminal requests data needed for application with READ

RECORD commands, including the need of online or offline authentication

3. Terminal Risk Management – protection from fraud. If the terminal processes offline, it pe-

riodically performs Data Authentication online (namely sends to issuer for authentication).

The authentication to go online is selected based on different characteristics: high amount

value (the terminal has a floor value to recognise the transaction as an high-value transac-

tion), frequent card usage (or velocity checking, GET DATA command is used to get the

last online authentication), suspicious issuer country, random selection, and so on. The risk

management happens before the first GENERATE AC command call. Based on Terminal

Risk management the application authentication validation is online or offline.

Moreover, some terminals have a black list of PANs (Primary Account Numbers), namely

card numbers. Suspicious cards can be placed in the list and any transaction with such a

card is rejected before the processing of the transaction.

4. Offline data authentication – verify ICC data with SDA, DDA or CDA mechanism as de-

scribed in subsection EMV Security Mechanisms. The first GENERATE AC command is

sent. When ICC extra data is needed, the terminal sends READ RECORD commands. In

the end of the stage the terminal has verified authentication data.

5. Processing restrictions – checking the compatibility of the terminal application and the card

application. The application data retrieved on stage 2 compared with application data of the

terminal. Comparison includes checking of application version numbers, application expi-

ration dates, domestic or international transaction, support of purchase indicators (goods,

services), supports cashback and so on.

24 Payment Terminal

Table 2.3: Possible statuses of the command processing

SW1 SW2 Meaning Process result
90xx Normal

Completed
62xx or 63xx Warning
64xx or 65xx Execution

Aborted
67xx – 6Fxx Checking

6. Cardholder verification – verification of the person who uses the card. On stage 2 the ter-

minal finds out what verification method is required (online or offline PIN, signature, no

verification required). In case of offline PIN verification, the terminal sends GET DATA

(to get Try Counter to enter PIN correctly), GET CHALLENGE (get unpredictable number

generated by ICC), VERIFY (to verify entered PIN) commands. The cardholder verifies

ownership in accordance with what is required by the terminal method.

7. Terminal Action Analysis – checking if transaction should be completed offline (request of

ARQC, terminal action – Default), rejected offline (request of AAC, terminal action – De-

nial) or completed online (request of TC, terminal action – Online). The Offline transaction

processing is described in C. EMV Security Mechanism. However, the decision to go offline

can be changed on the next stage. To request any of the certificates the terminal sends the

GENERATE AC command.

8. Card Action Analysis – the card can have its own mechanism of risk management (issuer

adds its own protection from fraud to any card). As in the case of Terminal Risk Manage-

ment and Action Analysis, the ICC can force the terminal to process the transaction offline

(sends ARQC in the response to the first GENERATE AC command), online (sends TC)

or reject transaction offline (sends ACC). The ICC can allow transaction offline approving

only if the terminal decision is also to approve offline.

9. Issuer authentication together with online processing – verifies transaction by the issuer

bank. The terminal sends an online request with transaction data to issuer bank. Then

the terminal sends an issuer response to ICC card using EXTERNAL AUTHENTICATE

command.

10. Script processing – the terminal runs issuer script over ICC. Issuer script can be preloaded in

ICC for offline processing, or can be added during online processing. In the case of online

processing, the issuer adds a script that ICC should perform after the transaction. In the

offline transaction case, the terminal runs only the preloaded in the ICC scripts. The script

can contain commands, data, files.

11. Transaction completion – closure of processing of a transaction. This step is processed even

if the transaction terminated with an error.

2.3 EMV Protocol 25

Figure 2.7: Common transaction flow

2.3.3 EMV Security Mechanisms

Not all transactions are processed online, and that is why some operations appear in bank account

statements with delay. Sometimes it needs three days to finalise a payment made with the card.

Moreover, there are cases of offline payments by terminal, for instance in plane during a flight

or in trains in tunnels. Such operations are processed offline and then all transactions from the

terminal are processed, causing the acquirer and issuer banks to receive payment transaction in-

formation when the terminal reaches the Internet. Being online, the terminal sends then the batch

of transactions to process.

In the case of an offline transaction, the terminal shall process card authentication offline as

well.

26 Payment Terminal

Each ICC card stores as minimum one public key, and as maximum two public keys and

a private key. And it’s one of the reasons why banking cards have expiration dates. Due to

security reasons the keys should be periodically updated. At the same time, the terminals shall

store corresponding public key to verify the signature produced by the card or the issuer.

Before sending the terminal to merchant, the terminal is configured with acquirer or merchant

information, also the terminal shall store the certificate authority public key. Moreover, since the

terminals should accept different card types, the terminal shall be able to store a minimum of

six certification authority public keys. At the same time, before usage, the card is configured by

Issuer. Since the transactions run offline, the application data should be able to be verified without

intervention of Issuer and Acquirer Banks.

The command GENERATE AC can be processed twice: the first command is for offline data

authentication, and in case of needing an online authentication (due to Risk Management, for

instance), the terminal sends the second GENERATE AC command.

Certification authorities provide the Issuer and Acquirer with the same public key. Issuer uses

it to sign its own public key to produce the Issuer public key certificate. The acquirer stores

the certification authority public key. Once a compatible ICC card is inserted in the terminal,

the terminal uses the public key to verify the Issuer public key certificate. This key is used for

authentication, as well as for PIN enchipherment.

Depending on the terminal type and the card type, authentication can be executed with one of

three offline authentication mechanisms [14]:

1. SDA – Static Data Authentication, protects against unauthorised data alteration

2. DDA – Dynamic Data Authentication, protects against counterfeiting of the card. The ICC

card stores it’s own unique key pair

3. CDA – Combined DDA and Application Cryptogram Authentication. Only CDA requires

running GENERATE AC command twice.

All three mechanisms require the participation of a Certificate Authority, that signs the issuer

public keys (provides public key certificates).

Static Data Authentication
SDA uses a static signature generated by the Issuer. Figure 2.8 illustrates the SDA algorithm

(two-layer certification scheme):

1. Configuration of the card before usage:

(a) Sign Issuer public key with Certification Authority private key. Store the Issuer public

key certificate in the card

(b) Sign ICC application data with Issuer private key and store Signed Static Application

Data (SSAD)

2.3 EMV Protocol 27

Figure 2.8: Diagram of signing static application data

2. Configuration of the terminal before usage:

(a) Store Certification Authority public key in the terminal

3. Sending the data:

(a) The card sends SSAD (signed with Issuer private key) and Issuer public key certificate

to the terminal

(b) The terminal verifies, that Issuer public key certificate is signed by Certification Au-

thority using Authority public key, and obtains Issuer public key.

(c) The terminal verifies, that the SSAD was signed by Issuer, using Issuer public key

Dynamic Data Authentication
DDA generates dynamic signature using its own private key. Also includes SDA steps, and

extends it with dynamic data signature. Figure 2.9 illustrates the DDA algorithm (three-layer

certification scheme):

1. Configuration the card before usage:

(a) Sign Issuer public key with Certification Authority private key. Store the Issuer public

key certificate in the card

(b) Sign ICC public key and Application data with Issuer private key and store together

ICC public key certificate and SSAD

(c) Sign dynamic data with ICC private key when dynamic data needs to be sent

2. Configuration of the terminal before usage:

(a) Store Certification Authority public key in the terminal

28 Payment Terminal

Figure 2.9: Diagram of offline dynamic data authentication

3. Sending the data:

(a) The card signs dynamic data with ICC private key.

(b) The card sends ICC public key certificate (together with SSAD), Issuer public key

certificate and signed dynamic data to the terminal

(c) The terminal verifies, that Issuer public key certificate is signed by Certification Au-

thority using Authority public key, and obtains Issuer public key.

(d) The terminal verifies, that ICC public key certificate is signed by Issuer using Issuer

public key, and obtains ICC public key.

(e) The terminal verifies, that the dynamic data was signed by ICC using ICC public key

To sign dynamic data, the terminal sends the GENERATE AC command, then the card sign

dynamic data using ICC private key.

Combined DDA and Application Cryptogram Authentication
CDA generates dynamic signature using ICC private key, but signature includes generated

Application Cryptogram. The terminal calls GENERATE AC command twice.

The pre-usage configuration of the card and the terminal is the same as for DDA. However,

the process flow differs.

As described earlier in DDA algorithm, in the CDA algorithm the terminal retrieves public

keys from the card (ICC public key, Issuer public key).

The first Application cryptogram is taken offline. The card, together with cryptogram, can

respond with Signed Dynamic Application Data, that is signed with transaction certificate(TC) or

Application Authentication Cryptogram (AAC) or Authorisation Request Cryptogram (ARQC).

To process TC the terminal shall use CDA signature, to process AAQC the terminal can use CDA

2.3 EMV Protocol 29

signature, and for AAC the terminal shall not request CDA signature. From the cryptogram, the

terminal recovers Signed Dynamic Application Data.

And to verify this data from the ICC card, the terminal should process second GENERATE

AC.

In the case of when the ICC, or the terminal, does not support CDA, then the DDA mechanism

is used. If the ICC, or the terminal, does not support DDA as well, then SDA mechanism is used.

One more security mechanism that ICC card can have is PIN encipherment. Some types

of cards sends PIN via plain text (section 6.5 in [15]), some - enciphered. To perform PIN

encipherment, the card stores one more key pair. The terminal retrieve ICC PIN public key with

DDA mechanism. Moreover, the PIN value is extended with unpredictable number (the challenge

is generated by ICC) that could be mere random number, or random number extended with other

transaction data. The encipherment is done with RSA (Rivest–Shamir–Adleman) algorithm.

Message exchange is protected with message signature and encipherment. Data integrity and

issuer authentication are achieved using a MAC. Data confidentiality is achieved using encipher-

ment of the data field. Separate MAC Master key and Encipherment Master key are used to

produce unique MAC Session key and Encipherment Session key respectively. For message enci-

pherment DES, Tripple DES or AES algorithm is used.

2.3.4 EMV Security Vulnerabilities

The appearance of international standards, that guide payment systems and banks and bring best

practices into the area, significantly improved security in payment processing. One could fall into

the trap of assuming that all smart cards are more secure than magnetic stripe cards and that the

presence of the gold contacts implies that this is a smart card. These assumptions are incorrect

and dangerous [34]. Although the EMV specifications are developed to reach as secure payment

processing as possible, a number of vulnerabilities still exists [2].

In the paper [30] the authors made an overview of EMV vulnerabilities. The most relevant

from them are listed bellow:

1. Acquirer banks and their clients (merchants) try to make the terminal support many pay-

ment schemes (Visa, Mastercard, Diners Club, and so on). Since the schemes have different

communication requirements, provide different sets of data, use different verification mech-

anisms, it is possible to introduce vulnerabilities [4, 12] by switching some card detail, or

alternatively terminal data. Then the connection becomes vulnerable to a downgrade attack.

Bypass the usage of card private key. As was described in EMV Security Mechanisms

subsection, the card has non-copyable private key. In fact, the card with private key can be

copied, but the terminal rejects the verification of that card. However there is a possibility

to make a copy of NFC card without the card key and then reconfigure the capabilities of

the copy to force the terminal request processing transaction using magnetic stripe, which

is less secure [12].

30 Payment Terminal

2. One vulnerability in EMV protocol was found in PIN verification stage [36]. When using

PoS terminal offline, an attacker could force the terminal to show the message “No PIN

required” to the cardholder, while sending to the Acquirer Bank status of successful pin

verification. So that the transaction could be processed without PIN verification [12].

3. The weakest data authentication method in smart cards is SDA. It is also known to be even

less secure than magnetic stripe communication [34]. Data from smart cards with SDA

method can be easily copied and the cloned card can be used in offline transactions. And

on top of that this case of fraud can be detected only by the issuer and not by PoS terminal,

which gives to the attacker more time to act [6].

4. Sensitive data is easy to access in the PoS terminal. Following the EMV specification, the

acquirer bank sends PAN and card expiry date in clear plain text just after the card applica-

tion [31, 11]. It means, the terminal stores sensitive card data even before the cardholder

verification (for example PIN entering). Recently this vulnerability was eliminated by using

Tokenisation [17]. Moreover, some payment system companies introduce encryption of

sensitive data received from the acquirer [32].

5. Sensitive card data can be accessed not only from the terminal memory [45]. After trans-

action processing, the terminal prints two receipts: the first is for the client, the second -

for the merchant. The cardholder’s receipt contains PAN in masked format, nevertheless the

merchant’s one has PAN and expiry date in clear text [23].

To sum up, the goal of EMV specifications is to increase security of payment transaction and

to provide international guidelines for the payment systems. However, several research works

describe possible security vulnerabilities of the EMV protocol.

2.4 Payment Terminal Emulator Niche

After implementation of terminal software, its interface and acquirer host communication, it is

necessary to ensure these are tested and certified according to acquirer requirements and EMVCo

specifications. Moreover, security vulnerabilities should be taken into account. And this can often

be a complex process.

The payment terminal emulator has to be developed to provide complete, automated validation

of the terminal payment with a smart card.

The benefits of having such an payment terminal emulator developed for the Payment System

companies are:

1. Facilitated and accelerated integration into acquirer system. Since the longest phase of intro-

duction of a PoS solution into business is formal certification, Payment System companies,

acquirers and sometimes merchants are interested in accelerating testing and certification.

2.5 Emulator Software Application 31

2. Making the development cheaper. The payment terminal emulator leads to discovering

failures and business mistakes earlier, therefore the total cost of development decreases.

3. Providing safer final solution.

So, the reasons why the development of the new payment terminal emulator is needed com-

prise:

1. Solution uniqueness. Every acquirer has its own transaction flow implementation, this in-

cludes different sets of issuer and merchant data to be stored, host interface characteristics,

and so on. Moreover, acquirer specifies types of terminals to be used in the business, there-

fore PoS interface obtains unique requirements. All this together leads to the need of unique

use cases that have to be covered with the payment terminal emulator.

2. Publishing implementation details. All existing payment terminal emulators are proprietary,

and few reports were done in this area. The detailed report on implementation of the em-

ulator for specific Payment System can give understanding to others who are interested in

EMV certification process.

3. Getting business advantage in the FinTech market, which is highly competitive. Since Pay-

ment system companies aim to make PoS terminals integration faster, cheaper and safer to

make them more attractive for the clients, the companies are interested in improving certifi-

cation process, that can be done using an payment terminal emulator.

The payment terminal emulator can be used by:

1. Payment System employees (developers, QA engineers, certification experts)

2. Acquirer integration experts

3. EMV certification experts

As was mentioned, many Payment System companies developed their own emulators and

the majority of them is hidden from public and has proprietary goal. However, the companies

give brief emulators description in advertisement purposes. Table 2.5 illustrates eight similar

verification tools that can serve for terminal emulation purpose.

2.5 Emulator Software Application

When developing new PoS terminal solution for new acquirer, the verification process of the new

acquirer interface integration can be divided into the phases:

1. During development process: the verification is done by developers using test host, any test

card, any test terminal, to check acquirer host connection, and message format. This phase

closes the development stage.

32 Payment Terminal

Table 2.5: Analogs of payment terminal emulator applications

PS Company Application Name Functional notes
FIME EMVeriPOS [21] Complete, automated validation of your payment

terminal’s protocol components against EMV Level
1, enhancing global interoperability

WeChip WeChip
Simulator [52]

All Payment Schemes, Authorization and Scripting,
Acquirer Key and Parameter, Card Profile Compari-
son

SmartOI SmartOI Terminal
Simulator [46]

Any kind of terminal type, all CVM, all ODA meth-
ods (SDA, DDA, CDA), configurable AIDs list for
application selection, configurable CAPKs, RID and
CAPK Index, Revocation List, and Default DDOL
for ODA

EFTLab BP-SIM [10] Test all elements of the entire payment infrastructure
(POS, Switch, Acquirer, Issuer, etc.)

IMS UL UL Brand Test
Tool [51]

Verification for PoS terminals, Mobile POS (MPOS)
devices, Automated Teller Machines (ATM), Vend-
ing machines and other payment devices

Abe-Tech EMV L1 PCD
Test Solutions [1]

Covers the variety of standards such as ISO10373-
6, NFC Forum, ICAO, EMVCo, EAC, ISO18013,
CIPURSE, etc.

KaSYS Canada KaNest R©-ICC Card
Simulator [27]

Provides solutions for verification over NFC,
ISO14443, FeliCa, ISO15693, SWP and ISO7816
technologies

FIS EMV Test Tools [22] Both the pre-certification and brand certification
processes

2. Pre-acquirer testing: the verification is done by the quality assurance team using a test host,

a set of acquirer test cards, and a set of payment system terminals, to check if special smart

cards are read properly and the transaction data transferred to the acquirer.

3. Formal certification: the verification is done by the certification experts using an acquirer

host, acquirer test cards, a set of payment system terminals, to check full transaction flow in

close to production environment.

The payment terminal emulator application should support test activities in all three verifica-

tion phases.

2.6 Summary

After a comprehensive review of the current state-of-the-art in Payment Terminals, one can con-

clude that payment process includes a lot of complicated phases. The EMV specification became

the international standard. It not only covers requirements for certification, but also provides a

2.6 Summary 33

guidance to developers and certification experts in payment area all over the world. In this disser-

tation work, the small part of the EMV specifications was considered, namely Books 1-4 of EMV

ICC Specifications for Payment Systems [13, 14, 15, 16].

Nowadays, the payment process, starting from the production of the payment mean with is-

suer bank data, and until the phases of PoS terminal software updates, and funds transfers between

acquirer and issuer banks, is under continuous improvement due to the emergence of new tech-

nologies. After the smart card has been presented and current time, the payment process has been

dramatically improved. That is why there many FinTech companies, that provide partial solution,

that can be integrated with each other.

One of such companies suggested the project of development a standalone application to fa-

cilitate development and testing of the terminals software and reduce the cost of buying expensive

hardware for development environment. The payment terminal emulator is an application to repro-

duce the full payment transaction process. The emulator helps to test integration of new acquirer

interface into the payment system based on EMV protocol. Some existing analogs and possible

solution niche were studied.

34 Payment Terminal

Chapter 3

Requirements

In this chapter we provide the detailed view on requirements of the requested application. We start

with general overview of the application in Section 3.2, than in Section 3.3 we list all requirements

that were agreed with the company in the beginning of the project development. Moreover, the

same requirements are used in project acceptance test (the results are provided in Chapter 6). The

Use Case diagram in Section 3.4 illustrates the main scenarios that the user can perform with the

application. Section 3.5 provides the initial scheme of the planned architecture of the application.

Finally, the list of technologies to be used during development was defined, and we include it in

Section 3.6.

3.1 Introduction

Besides the study of the existing EMV specifications and the general payment process in the

bank and payment system network, the dissertation work includes development of a standalone

application, that emulates the behaviour of the real terminal. The payment terminal emulator

application should have the GUI, that looks like the real terminal and should be easy to understand

by 3C TechLab developers and certification experts. Based on gained knowledge and existing

GUI of the application, the project work was planned. The application name “3C Emulator” was

proposed.

3.2 Expected system behavior

The main objective for the project is to process payment, e.g. the first general requirement was

that the application should process the payment in the test environment. It is important that the

payment is processed following the EMV specification, as discussed in Chapter 2. However, some

EMV requirements can be omitted in the application due to the unfeasibility of implementation

of hardware-specific algorithms, such as low level processing of the card data (reading card data

35

36 Requirements

by its ICC contacts). In this solution it is supposed that the card data is read and provided to the

payment terminal emulator application as a list of parameters.

The application should implement different payment types, such as Sale, Refund, and Rever-

sal. The corresponding message should be sent to the 3C TechLab UAT server, where the request

should be mapped in the message format that selected acquirer expect, and the message is send to

the acquirer. The application should write all passed steps into a log file or/and to a database to

clarify the flow and to provide payment processing evidence. The processing steps should follow

the EMV specification and include the steps from Figure 2.7.

Finally, the application should emulate printing a receipt after the processing of the transaction.

Since the software application does not have an active receipt printer, the application should save

the receipt in a text file. The receipt should contain transaction data, as well as the processing

result.

After the implementation, the testing against the list of requirements and EMV specification

should be performed. Then, it is expected that the payment terminal emulator application to be

integrated into the 3C TechLab development and certification process.

Finally, the finished product has to follow company naming policies, namely have the 3C
acronym. Therefore, the name “3C Emulator” was proposed.

3.3 Requirements

In the beginning of this dissertation work, the list of requirements was defined. However, during

the year of the implementation, the list had some alteration. The final list of requirements to the

software project was the following:

1. Project requirements:

1.1. Provide a terminal-like software solution;

1.2. Integrate the application with the existing 3C TechLab system interfaces, such as Inte-

graFE, NAS, DCC service and others;

1.3. Design good software architecture, e.g. use established design patterns to improve the

code structure and application performance;

1.4. Process unit testing and provide final test report;

2. Application requirements:

2.1. The application should have an appearance similar to the terminals of Worldline YOMANI

(Figure 3.1) type.

2.2. The application should have display, digits keyboard, buttons OK, Stop, Correct, and

Menu. The application can optionally have the buttons Standalone, up, down, and

select;

2.3. The application should show what types of readers are activated;

3.3 Requirements 37

Figure 3.1: One of the Worldline YOMANI terminals [53]

2.4. The application should allow the user selection of the cards from the list;

2.5. The application should allow the user to add, edit and delete test cards manually. The

application can optionally support the usage of an external ICC reader to save card

data in the system;

2.6. The application should support showing the messages from the standard EMV terminal

messages list (Table 2.1) in different languages. The terminal can optionally support

other informational messages to facilitate the application usage;

2.7. The application should not use any third party’s libraries, but use the libraries that were

developed inside the 3C Payment company, as well as trusted libraries from Apache,

Java and Google projects;

3. Payment process requirements:

3.1. The application should communicate with the 3C TechLab UAT payment server. The

addresses of the external services should be located in the application configuration

file, so that the user can change the services the application communicates with;

38 Requirements

3.2. The application by default should be configured to process transactions in the fake

acquirer network (BNKSM). However, the application should be able to be configured

to reach real acquirer test networks to process a transaction;

3.3. The application should emulate the processing card data reading only by two card

readers: magnetic stripe and ICC readers. The application can optionally emulate

Bluetooth and NFC readers;

3.4. The application should support the following card types: Visa, Mastercard, Maestro.

The application can optionally support Diners, JCB, American Express and other card

types;

3.5. The application should process the payment transaction following the EMV specifi-

cation. The processing should include Data Authentication, Cardholder Verification,

Terminal Risk Management, Terminal Action Analysis, Offline Authentication. The

application can optionally support Card Action Analysis, Online Issue Authentication,

Script Processing;

3.6. The application should build transaction messages in ISO8583 format [25] and send

it to 3C TechLab server. The payment result from the server, which is also in ISO8583

format, should be parsed and the result should be shown in the application display;

3.7. The application in the case of successful transaction processing, should show the au-

thorisation code from the acquirer as well;

3.8. The application should connect to the Certification Authority storage and process the

key signing algorithm;

3.9. The application should support “T = 1” protocol only. The application can optionally

support “T = 0” protocol;

3.10. The application should process PIN verification offline. The PIN processing can be

omitted if the transaction does not require PIN verification, e.g. small amount transac-

tions with trusted card;

3.11. The application by default should process authentication following the CDA algo-

rithm. The application can optionally support authentication via DDA and SDA algo-

rithms. In this case the switcher between authentication algorithms should be imple-

mented;

3.12. The application should emulate printing a receipt, e.g. provide receipt within a text

file.

3.4 Use Cases

The Use Case diagram in Figure 3.2 was built to summarize the list of requirements and illustrate

the minimum features of the application, that the user can perform.

3.4 Use Cases 39

Figure 3.2: The use case diagram of the 3C Emulator application

In the diagram, the actor User is an user of the 3C Emulator application. Any developer,

certification engineer in 3C TechLab is a potential user of the application.

The application behavior has four main scenarios and the list of sub-scenarios:

1. Configure the application receive/send mode – the user can configure 3C Emulator in receive

events or/and send events (after operations execution) mode;

2. Run application operations separately – the user can run any 3C Emulator operations (make

a beep sound, turn the ICC reader on, process card swipe, and other operations: all possible

operations are presented in Appendix A.2);

3. Configure test card data – the user can add, edit, and delete test card data. 3C Emulator has

a list of pre-configured test cards, however, the user can extend it, if needed;

4. Run transaction – the user can process the payment. This scenario is essential for the ap-

plication. Moreover, the application should provide the options to the user to process the

transaction in different ways, namely:

(a) Run transaction on Bank simulator or Acquirer’s network – the user can configure the

application to make the NAS service use acquirer network interface or use the fake

network to process the payment;

(b) Run Sale, or Refund, or Reversal transaction – during the phase of introducing the

payment data, the user can select which type of transaction should be run (see 2.2.3).

Based on the selected option, 3C Emulator should request corresponding data from the

user (such as amount, card data, RRN of the original Sale transaction, and other data).

The type of the built message should correspond to the selected transaction type;

40 Requirements

Figure 3.3: Proposed Application Architecture

(c) Run transaction using ICC or magnetic stripe reader – the user can select how to use

the test card for the payment. 3C Emulator can use four types of readers, however, for

this work only two reading capabilities should be implemented.

3.5 System Model

In the beginning of this dissertation work, a possible architecture was schematized. The proposed

architecture scheme can be found in Figure 3.3.

The application, as was discussed above, contains a GUI with terminal-like appearance. The

interface should be implemented using java framework in a separate java project, so that it facili-

tates the reading of project code.

Next, the application should include all business logic, including dependencies, in the same

application package, so that the application can be easily installed in any PC of a developer or

certification expert. The same is applicable to the application database. The database should be

light enough to be stored inside the application package. Therefore, the SQLite [47] database was

proposed.

Optionally, the application can use the external ICC reader to facilitate adding new test card

data. If not, the application should provide a way to insert the test card data manually using the

GUI, or in the application configuration file, or directly in the Application DB.

3.6 Project Technology Stack 41

The application should communicate with a number of an external interfaces. In Figure 3.3

three interfaces are presented. The biggest is the Acquirer Host Interface, which include compli-

cated chain of interfaces, namely the 3C TechLab services (IntegraFE, NAS, DCC service) inter-

faces and the Acquirer network interface itself. A more detailed 3C TechLab system architecture

is presented in Chapter 4.

The application also should communicate with the Certification Authority service. This ser-

vice provides the business logic of signing public keys, sharing the keys between the terminals,

issuer banks and Payment System services.

Finally, the application can optionally have interface with Terminal Configuration Storage. If

not, the configuration should be stored locally in the application package.

3.6 Project Technology Stack

During the project development the following technologies were chosen to be used, in concertation

with 3C TechLab:

• Java – is a general-purpose programming language that is class-based, object-oriented, and

designed to have as few implementation dependencies as possible [38]. The application is

written in this language, using version 8;

• Java AWT (Abstract Window Toolkit) – is Java’s original platform-dependent windowing,

graphics, and user-interface widget toolkit, preceding Swing [3]. In the project the toolkit

was used to develop the GUI of the application;

• Eclipse – is an integrated development environment (IDE) [9] that was used to implement

the project in Java. Version 4.11.0 was used;

• Gerrit – is is a free, web-based code review tool based on different Git repositories [43]. In

the project, the tool was used together with GitExtension application [41];

• Trello – is a web-based Kanban-style list-making application which is a subsidiary of Atlas-

sian [50]. In the project the application was used to manage project tasks along the period

of implementation and testing;

• SQLite – SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. [47]. In the project is used to implement

the application database;

• JUnit4 – is a simple framework to write repeatable tests. It is an instance of the xUnit

architecture for unit testing frameworks [26]. In the project the library is used to build and

run unit tests, as well as build test report;

42 Requirements

• Bluecove – is a Java library for Bluetooth that currently interfaces with the Mac OS X,

WIDCOMM, BlueSoleil and Microsoft Bluetooth stack found in Windows XP SP2 or Win-

dows Vista and WIDCOMM and Microsoft Bluetooth stack on Windows Mobile [5]. In the

project the library is used to implement the Bluetooth reader feature;

• Protobuf (Protocol buffers) – are Google’s language-neutral, platform-neutral, extensible

mechanism for serializing structured data – think XML, but smaller, faster, and simpler

[8]. In the project is used to facilitate send/receive operations and events logic between

application components;

• Xerces Parser – is an Apache library, the reference implementation of XNI. Other parser

components, configurations, and parsers can be written using the Xerces Native Interface

[54]. In the project the library is used to parse XML messages using the DOM tree;

• log4j – is a reliable, fast and flexible logging framework (APIs) written in Java, which is

distributed under the Apache Software License [29]. In the project is used to write and save

log files;

• IntegraFE libraries – libraries, developed inside 3C TechLab by he IntegraFE team;

3.7 Summary

The second part of the dissertation work is development of software application. Following the

usual lifecycle of software project, before any work to be started, the project objectives need to be

set. Therefore, we started with establishing the requirements, both functional and non-functional.

The project of development of the payment terminal emulator is not new in the company,

however the existing solution is still missing essential parts, such as payment with ICC card. In

addition, the existing code need to be maintained and improved using the best software design

practices.

The scheme of possible application architecture was proposed by 3C TechLab, moreover, the

company already has many components, which 3C Emulator should communicate with. Together

with architecture scheme, the interfaces of the application were defined. More experienced devel-

opers of 3C TechLab company suggested the technologies that are better to be used in the project.

At the same time, the project planning was done from the point of view of the user, so that several

user scenarios were consider. This facilitate understanding of the application GUI behavior.

Chapter 4

Architecture

This chapter presents the view to the application architecture from two sides – from outside (from

the complete system of 3C TechLab) and inside (the inner components of the 3C Emulator appli-

cation).

4.1 Introduction

The 3C TechLab company is a relatively new company founded in 2016 as a subsidiary of 3C

Payment. The given name can explain the original objective of the creation of the new company.

It was a sort of laboratory to research and realize fresh FinTech ideas into life. At the same time,

3C Payment is well-known payment solution provider in the FinTech market with more than 15

years of experience. During that time the company built their own full business solutions and won

trust of a big number of merchants all over the world.

Since 3C TechLab is a subsidiary company of 3C Payment company, they develop and use a

common system. Therefore, in this chapter we use the 3C Payment company name as an owner

of the system services. However, this dissertation work was accomplished inside the 3C TechLab

company.

4.2 System Architecture

The 3C Payment architecture is represented in a set of components. The components are loosely

coupled, so that the system remains to be easy-scalable. In Figure 4.1 the system components are

represented as standalone servers, meanwhile, a few servers joined with a Load Balancer to spread

the load equally stay behind the image of the one component.

Figure 4.1 illustrates the main components that the company architecture contains:

43

44 Architecture

Figure 4.1: 3C Payment system architecture

• Terminals system (TE) – includes terminal hardware (PoS, mPoS, attended and unattended

locations, and other) and its software. Moreover, the TE components include several periph-

eral servers, such as the Public Key Storage server. The component has three main interfaces

– with DCC and FE servers. TE system uses 3CXml message format and uses the TCP/IP

protocol to pass the messages through the network.

• Integra Front-End (or IntegraFE, or FE) – despite FE does not have any web or graphical

interface, the system was named as Front End. This is because FE represents the commu-

nication interface between the merchant and the 3C Payment system, being the the first

module that the TE system communicates with to execute a transaction. In this case, FE

is a complicated interface of the whole 3C Payment payment system. It uses Oracle Pay-

ment Interface to facilitate structure and provides a more secure interface between TE and

FE. Also it uses Ethernet configuration protocol/loop (CTP). The component communicates

with 3C Payment database using the JDBC API.

• (New) Authorization Service module (NAS) – contains a significant portion of 3C Pay-

ment’s business logic, has the main function of receiving the transaction representative mes-

sage and, through various mechanisms, forwards it to the respective banking interface, either

syntactically or semantically. These messages, which normally occur in a request-response

dialectic, are formatted by the ISO8583 standard. However, some other message formats

were also created, by extending ISO8583, in order to comprise all transaction data, needed

by acquirers and other 3C Payment components.

4.2 System Architecture 45

• Transaction server – the component of passing the transaction data to the processor. Some

acquirers use a facilitated scheme of message builders, so that there is no need to include

NAS processing. The component prepares the messages to be sent to the acquirer network.

• Token server – is a service that aims to generate a unique identifier or token to replace

payment card data, thus eliminating confidential payment information on the network. To-

kenisation allows secure cross-channel payment flows for the same transaction, e.g. in

pre-authorizations and reversals data travels through different channels securely, making

external attacks difficult. The communication with Token server is done using a REST API.

• Hardware Security Module (HSM) – is a component that is responsible for managing the

authentication keys and provides the encryption to IntegraFE and also to the NAS. It is a

physical device that provides extra security for sensitive data [40].

• Processors – the number of services-interfaces that represent acquirers or the Bank Simula-

tor interface. The components are responsible for connection timeouts, sending diagnostics

messages (Echo, Sign in, Sign out, and other), as well as caching special acquirer values that

can be used in several transactions, such as STAN, RRN, Pre-authorisation amount value,

and other data. Each processor is configured in correspondence with acquirer network re-

quirements.

• Acquirers and Bank Simulator (BNKSM) systems – although the acquirer systems are

included in the diagram, those systems are located on the acquirer side. Normally, acquirers

also have services-interfaces as a first point of reaching from 3C Payment system. The Bank

Simulator is a fake-acquirer network, that is located in the 3C Payment system, and is used

for testing reasons.

• Issuers systems – these systems are not located in the 3C Payment system. The acquirer

directly communicate with the Issuer to process the transfer of funds to finish the transaction.

• Dynamic Currency Conversion (DCC) service – provides the mechanism of converting

one currency to another. In this way, the payment terminal immediately recognizes foreign

cards and offers the customer the option of paying in their national currency, thus perceiving

the value with the applied exchange rate. Moreover, the service is used by FE and NAS.

Some acquirers prefer to not use on-terminal conversion and process the conversion in the

payment system. All components that use currency conversion communicate with the DCC

service through a SOAP API.

• 3C Emulator application – is an automatic payment terminal emulator with an interface

similar to a payment terminal. This dissertation work mainly contributed to the design and

development of this component.

The communication between 3C Payment components in the majority of cases is done using a

network with the TCP/IP protocol. The messages are built using ISO8583 format and sent to the

46 Architecture

Figure 4.2: Package Diagram of the 3C Emulator application

corresponding interface. Clarifying the format ISO8583 we should mention that it was extended

by the company in order to support all needed fields in the message. As a result, the company uses

its own message formats (3CAS ISO8583 and 3Cxml ISO8583). The same is applicable to the

acquirer network message format. Some acquirers use mere ISO format, however others prefer to

extend it to meet their business needs.

4.3 Application Architecture

The 3C Emulator application is a standalone application and can be packed in a running file.

Despite simplicity of the user cases that the GUI provides, the application has a nested structure

in order to separate application logic into several Java projects. As illustrated on Figure 4.2, the

application consists of 3 main components:

1. IntegraTE_Emulator – contains all GUI implementations. The Java AWT framework is used

to link graphical components, such as dropdown menus, buttons, etc., with the events and

operations, that the application receives and processes. The project has six references: four

4.3 Application Architecture 47

Figure 4.3: The screenshot of configuration file cccterminalinal-3cixml-default.xml in partially
collapsed form

48 Architecture

of them to standalone libraries, as the JSSC (Java Simple Serial Connector) for communica-

tions; and the other two – to the application projects of the repository IntegraTE_Core and

IntegraTE_Core-ssl;

2. IntegraTE_Core – stores all application logic, namely building, sending, receiving and pars-

ing messages, making database updates, configuring the connection with external services,

etc. The java project includes six small projects placed in the same repository, where three

are external libraries;

3. IntegraTE_Core-ssl – is a relatively small project, that implements network connection

logic. For example it has implementations using the SSL or TLS protocols, selection of

network certificates, etc. The project uses only one reference, another small project from

the same repository.

The application stores all configuration values in one place – folder /IntegraTE_Emulator
/IntegraTES/appconfig/cccterminal/3cixml. All configurations files have the .xml extension.

The screenshot of the configuration file is presented on Figure 4.3. In the configuration file the

user can configure the following values:

1. Terminal configurations, such as Instance ID, Deployment ID, location (country, address,

timezone, software version), TID and MID values, extra data for maximum size of log file

and maximum storage capacity, and other configurations. Although the values are manda-

tory for any real terminal software, 3C Emulator uses these values in a way to emulate the

real terminal processing;

2. List of currencies supported by the terminal – each terminal can have several supported

currencies. In 3C Emulator we have 101 currencies supported;

3. List of acquirer locations associated with the terminal – when the real terminal is installed

into the merchant location, the address of the acquirer network should be assigned to the

terminal. In the application by default we use the BNKSM location. The reason is that

during development a huge number of transaction were processed, and this can heavily load

the acquirer network, its interface and 3C Payment processor interface. The location can

also include the address of the 3C Payment system components, such as IntegraFE, however

by default it uses the UAT service address.

4.4 Summary

One of the important phase of a software project development is planning of system and appli-

cation architecture. In this chapter we considered the architecture of the company system and

highlighted the place of the 3C Emulator application. Then we designed the scheme of the appli-

cation itself in order to provide the view from the inside. Moreover, the configuration file of the

application was presented.

Chapter 5

Implementation

This chapter presents in detail all the work developed for this dissertation, as well as the improved

software solution. We provide explanation of GUI behavior, some implementation detail of busi-

ness logic, database structure, the interface with external services, and explain a main design

solutions. Finally, we include the test report of unit tests that were written to verify the software

application quality.

5.1 Introduction

Before the implementation of the payment terminal emulator, the known application analogs were

studied (Table 2.5). Since the applications are proprietary, the detailed description is not provided.

At the beginning of the work, an existing GUI for the emulator, developed by 3C TechLab, was

studied and improved. The application already had some functional features implemented, how-

ever the main EMV payment flow was missing. The main part of the work performed in this

dissertation was the specification and implementation of payment flow and testing.

5.2 Graphical User Interface

The main objective of the application was to provide a terminal-like solution, making usable the

validation and test of payment flow. As a default terminal, we selected the most used in develop-

ment and certification process terminal type, which is Worldline YOMANI [53].

The initial screen of the application, shown on Figure 5.1, represents the terminal physical

appearance, e.g. the digits keys, “Stop”, “Correct” and “OK” keys and the management key “stan-

dalone”. Some terminals of that model have three buttons right on the top of the digit keyboard,

some do not [53]. In the application the buttons are presented. The left button “standalone” is used

to start a payment transaction, then the other two buttons become active to navigate up and down

49

50 Implementation

Figure 5.1: The screen of the initial state of 3C Emulator

Figure 5.2: The screen for selecting the payment transaction type

5.2 Graphical User Interface 51

Figure 5.3: The screen for the input the transaction amount

Figure 5.4: The screen for selecting the card and the method of the payment

52 Implementation

in the standalone menu. Moreover, the same standalone menu can be opened (in 3C Emulator and

real terminals) via the Menu button.

The right panel provides the cardholder interaction actions. In the top panel the user selects

the card from the dropdown menu. Then the user selects the way of terminal and card interaction

(via ICC chip, via magnetic stripe, contactless NFC or Bluetooth ways). In the current state the

application supports two interaction ways – via ICC chip and via magnetic stripe. The text on the

display shows the possible interaction actions, namely “Insert or swipe card”.

The bottom panel shows the company logo and four icons of available readers. Figure 5.1

illustrates all four readers in a disabled state, however in Figure 5.4 two readers are enabled.

When the transaction requires providing the card from the user, the icons become more intense to

inform what terminal features are enabled.

5.2.1 Payment Transaction

To start payment transaction, the user clicks on the standalone button (or opens the standalone list

by clicking on the Menu button, e.g. Menu→ Standalone). Then the user selects the transaction

business type. Currently, 3C Emulator supports only three types, namely Sale, Refund and Rever-

sal, as illustrated on Figure 5.2. More transaction types can be found in Table 2.2 and explanation

in Section 2.2.3.

From that stage on all business types require the same terminal interaction, considered of:

enter the transaction amount, request a card, pack the card data into ISO format message, send

the message to the payment server, show the processing result, and prepare receipt. Depending on

the card data, the terminal can request to enter a PIN code, however, for demonstration we use the

simplest flow without PIN entering.

To illustrate the flow suppose that the user clicks on Sale to process a sale transaction. The

terminal starts by requesting the merchant to enter the transaction amount (Figure 5.3). Currently,

3C Emulator is configured with the default currency EUR, however, the list of currencies is stored

in the application configuration file, so that the default currency can be changed before running

the application. All currencies, supported in 3C Emulator, are listed in the Appendix A.1.

3C Emulator produces a beep sound in the way the real terminal does. Before input of the

amount the application signals the user that an input is required. Then, a second beep is produced

when the cardholder needs to provide the card. The last beep sounds when the transaction is

processed (with an error or with success). The last beep signals the user to take a receipt, however,

in 3C Emulator there is no external device connected, so the beep is used only for a simulation

reason.

After the amount value is entered, 3C Emulator requests cardholder action and the application

is ready to interact with card data (Figure 5.4). As was mentioned above, currently 3C Emula-

tor only supports simulation of two card reader modes – ICC and magnetic stripe readers. The

corresponding text message is shown on the display.

Then the user selects the card form dropdown menu. By default, the application has three

test cards saved, which are Maestro, Mastercard and Visa cards. Each test card has preconfigured

5.2 Graphical User Interface 53

Figure 5.5: The screen of the payment process

Figure 5.6: The screen of the payment result with success

54 Implementation

Figure 5.7: The screen of the payment result with a card error

settings, e.g. Track 2 data, ICC data, public key certificates, etc., so that no real card is needed

to use the application. To extend the list of test cases, one can add any card with the application

menu Card Management → Open Card Management Window. The detailed explanation how to

add a new test card is in Subsection 5.2.4.

When the card is selected from the dropdown menu, the user selects the preferred interaction

way: contactless, insert card or swipe. If the test card is configured properly to use the selected

interaction way, the processing of the transaction is started (Figure 5.5).

To process the transaction, the 3C Emulator application builds the ISO message and passes it

to the payment server using TLS protocol. The server communicates with the acquirer network,

and the acquirer bank processes the transaction (3C Emulator is configured to communicate with

an UAT server, which in turn is connected to the acquirer test network). The payment server replies

with the response message that also has the ISO format. Then the response message is parsed by

the application and the response status is shown to the user in the display. If the transaction has

been processed successfully, the display shows the text “APPROVED” and the authorisation code,

that was returned from the acquirer bank (Figure 5.6). In the case of error during the payment, the

“DECLINED” text is shown. If the card is configured in the wrong way, the display shows the

“Card not accepted” message (Figure 5.7).

5.2 Graphical User Interface 55

5.2.2 Application Menu

In addition to the main terminal interface, the application has the areas for the application config-

uration. The menu bar in the top of the application window contains three options, which in their

turn have also sup-options, as listed next:

→ Operation

→ Execute Operation

→ Card Management

→ Open Card Management Window

→ Active Listener

→ Terminal Simulator

→ Socket

→ to receive Operations

→ to send Operations

→ App

5.2.3 Execute Operations

The application is built in such a way, that all application operations are independent and can

be run separately. This was achieved by using the pattern Observer (Section 5.5). In the window

Execute Operation the user can run any operation from the list, which is contained in the dropdown

menu of the window (Figure 5.8). The full list of operations is presented in Appendix A.2.

The user can select one operation from the list, e.g. OPERATION_BEEP and click on Confirm

button. As the result, the application makes a sound and the window shows the informational

message “Operation Secceeded”. Inactive terminal readers, such as Bluetooth and NFC, can be

activated via the Operation menu.

5.2.4 Test Card Configuration

As was mentioned above, the dropdown menu with test cards is configurable. A test card can

specified in three different ways:

1. in the configuration file before running the application;

2. in the application database;

3. in the application window using the menu.

56 Implementation

Figure 5.8: The screen of the Execute Operation window

Figure 5.9: The screen of test cards data configuration

5.2 Graphical User Interface 57

Figure 5.10: The screen of the parameters of one test card

Figure 5.11: The menu of selecting Active Listener

58 Implementation

The application GUI gives the possibility to the user to add, change, and delete test card

data. To open the configuration window, the user can go to Card Management → Open Card

Management Window (Figure 5.9). In the opened window, the user can add a new card by entering

the card number (PAN), expiration date (month and year) and PIN.

Then to configure the card read capability, the user can add events (Figure 5.10). For instance,

to mark the card as magnetic stripe, the user need to add the event EVENT_CARD_SWIPED and

to mark as ICC – EVENT_EMV_POWERED_UP, EVENT_EMV_INITIALIZED, EVENT_CARD

_REMOVED. The full list of events, that can be used to configure cards, can be found in Ap-

pendix A.3.

The events support a different number of parameters, that can be used during processing the

event. For instance, Track 2 data, ICC data, Public key certificate data and so on.

And finally, the 3C Emulator application can be configured to not only emulate the real ter-

minal (Active Listener→ Terminal Simulator) (Figure 5.11). In addition, the application can also

be used as non-connected to the UAT server application (Active Listener→ App) in a way to run

transaction without making workload on the server. Moreover, the 3C Emulator active features

can be reduced to only send action requests (Active Listener→ Socket→ to receive Operations)

or only receive the action requests (Active Listener→ Socket→ to send Events).

Despite the GUI being already developed by 3C TechLab company, a number of improvements

were also included for the dissertation work. The reason is that the existing interface did not satisfy

the requirements of the business logic development.

However, the interface is planed to be improved, since it does not have some useful features,

e.g. selecting other terminal types appearance, selecting the payment server to process the trans-

actions without application restart, masking sensitive authentication data such as PAN, PIN, ICC

data and so on, making simulation of receipt print more clear, and other GUI features. There is

still a room to improve the interface.

5.3 Business Logic Implementation

The application implements the following steps of the EMV payment flow: Data Authentication,

Cardholder Verification, Terminal Risk Management, Terminal Action Analysis, Offline Authen-

tication. Most of the steps is impossible emulate without having physical terminal, for instance,

Terminal Risk Management. In such cases the facilitated solution was selected.

In the case of ICC payment, the data needed for Risk Management, Terminal Action Analysis

and others are passed using parameters. The values for the parameters were taken from the real

card, so that the application just check its presence and verify if the format is correct. All the steps

of the EMV flow were created, but the behavior of 3C Emulator hardly resembles the processing

inside a real PoS terminal. The application still has room for improvement and is included in the

future work plan.

5.3 Business Logic Implementation 59

1 // Start of heading
2 public static final char SOH = ’\u0001’;
3 // Start of text
4 public static final char STX = ’\u0002’;
5 // End of text
6 public static final char ETX = ’\u0003’;
7 // End of transmission
8 public static final char EOT = ’\u0004’;
9 // Synchronous idle

10 public static final char SYN = ’\u0016’;
11 // End of transmission block
12 public static final char ETB = ’\u0017’;
13 // Field separator
14 public static final char FS = ’\u001C’;
15 // Data link escape
16 public static final char DLE = ’\u0010’;

Listing 5.1: The code example that implements the part of IntegraFE connection

5.3.1 “T = 1” Protocol

The transmission of the messages is done using the “T = 1” protocol, meaning that the message

is passed with the blocks. The block frames are marked with special characters, whose values

are stored in a Const class presented in Listing 5.1. When the transaction message is ready to be

sent, the method send from DatalinkPayAtTable is called. The method wrap the message in the

expected format and send it (Listing 5.2).

5.3.2 CDA Algorithm

The application supports only the CDA algorithm of authentication, realised in a simplified way.

The data that is needed lies in tag “95” in the bit 55 of the message. This data is passed as

the parameter in the test card data and can be entered in the Card Management Window. The

authentication data can not be produced without a real card, so the best way to implement the

flow was to use a real card value in the test card data. However, Listing 5.3 illustrates the code

from the BrickEmvTransactionProcess, which is the beginning of processing EMV transaction,

and one of the steps is checking the terminal capability data. If the terminal supports the same

authentication algorithm, the transaction is continued.

5.3.3 Cardholder Verification

In order to verify the cardholder a number of verification methods can be applied. For example,

using a signature, or processing PIN verification offline or online. At the current stage, the appli-

cation supports only offline PIN and signature verification. Since in the development and certifica-

tion process there is no need to verify the signature, from the user point of view the transaction is

60 Implementation

1 private int send(String szData, int nChannelId, int nMessageSequenceNumber, boolean
bRetransmission, int nMessageId) {

2 String szApplicationSequence = null;
3 String szApplicationData = null;
4 String szCheckSum = null;
5 String szMessage = null;
6 try {
7 szApplicationSequence = String.valueOf(nMessageSequenceNumber);
8 while (szApplicationSequence.length() < 2) {
9 szApplicationSequence = "0" + szApplicationSequence;

10 }
11 if (bRetransmission == false) {
12 // add the retransmission flag
13 szApplicationSequence = szApplicationSequence + " ";
14 } else {
15 szApplicationSequence = szApplicationSequence + "R";
16 }
17

18 // calculation of the Application Data
19 szApplicationData = szData;
20

21 szMessage = this.getHeader() +
22 String.valueOf(Const.STX) +
23 String.valueOf(Const.FS) +
24 szApplicationSequence +
25 szApplicationData +
26 String.valueOf(Const.ETX);
27

28 // calculation of the CheckSum
29 szCheckSum = "";
30 // build the entire message
31 szMessage = String.valueOf(Const.SOH) +
32 szMessage +
33 szCheckSum +
34 String.valueOf(Const.EOT);
35

36 if (log.isDebugEnabled() == true) {
37 log.debug("Sending data to ChannelId " + nChannelId);
38 }
39 if (log.isTraceEnabled() == true) {
40 log.trace("Data being sent: \"" + HexConverter.stringToHexForDebug(

szMessage) + "\"");
41 }
42 synchronized (mySemaphorDatalinkController) {
43 if (this.myDatalinkController != null && this.myDatalinkController.

getChannel() != null) {
44 return this.myDatalinkController.getChannel().send(szMessage,

nChannelId, nMessageId);
45 } else {
46 return Const.ERROR;
47 }
48 }
49 } catch (Exception exc) {
50 return Const.ERROR;
51 }
52 }

Listing 5.2: The code example that implements the part of IntegraFE connection

5.3 Business Logic Implementation 61

1 this.setState(STATE_EMV_TRANSACTION_PROCESS_WAIT, log);
2

3 this.displayScreenPleaseWait();
4

5 myTerminalControllerOperation = new TerminalControllerOperation(
TerminalControllerOperation.OPERATION_EMV_PROCESS);

6 myTerminalControllerOperation.getData().insertTag(this.myData, Data.
TAG_EMV_CERTIFICATION_AUTHORITY_PUBLIC_KEY_INDEX);

7 myTerminalControllerOperation.getData().setTagValueBoolean(Data.
TAG_CUS_PROPRIETARY_MERCHANT_FORCES_ONLINE, false);

8 myTerminalControllerOperation.setTaggedObject(TerminalControllerOperation.
TAGGED_OBJECT_EMV_APPLICATION_LIST, this.myTerminalHandlerStatus.
getCardApplicationList());

9

10 if ((HelperOffline.getInstance() != null) &&
11 (HelperOffline.getInstance().isOfflineActive() == false) &&
12 (HelperOffline.getInstance().isForceOnlineFirstActive() == true)) {
13 myTerminalControllerOperation.getData().setTagValueBoolean(Data.

TAG_CUS_PROPRIETARY_APPLICATION_FORCES_ONLINE, true);
14 } else {
15 myTerminalControllerOperation.getData().setTagValueBoolean(Data.

TAG_CUS_PROPRIETARY_APPLICATION_FORCES_ONLINE, false);
16 }
17

18 if ((this.myTerminalHandlerStatus != null) &&
19 (this.myTerminalHandlerStatus.getCardApplicationList() != null) &&
20 (this.myTerminalHandlerStatus.getCardApplicationList().getCardApplication(0) !=

null) &&
21 (this.myTerminalHandlerStatus.getCardApplicationList().getCardApplication(0).

getTerminalCapabilities() != null)) {
22

23 String szTerminalCapabilitiesByte3 = this.myTerminalHandlerStatus.
getCardApplicationList().getCardApplication(0).getTerminalCapabilities().
substring(4, 6);

24 int nTerminalCapabilitiesByte3Bit4 = Integer.parseInt(
szTerminalCapabilitiesByte3, 16) >> 3;

25

26 if (nTerminalCapabilitiesByte3Bit4 % 2 != 0) {
27 myTerminalControllerOperation.getData().setTagValueBoolean(Data.

TAG_CUS_PROPRIETARY_REQUEST_CDA, true);
28 }
29 }
30 this.myTerminalController.doOperation(myTerminalControllerOperation);

Listing 5.3: The code example that implements the part of IntegraFE connection

62 Implementation

1 public void setCardholderVerificationMethod(String
szCardholderVerificationMethod) {

2

3 if (StringUtils.equalsIgnoreCase(CVM_UNKNOWN,
szCardholderVerificationMethod) == true) {

4 this.szCardholderVerificationMethod = szCardholderVerificationMethod;
5 } else {
6

7 if (((StringUtils.equalsIgnoreCase(CVM_OFFLINE_PIN, this.
szCardholderVerificationMethod) == true) &&

8 (StringUtils.equalsIgnoreCase(CVM_SIGNATURE_BASED,
szCardholderVerificationMethod) == true)) ||

9 ((StringUtils.equalsIgnoreCase(CVM_SIGNATURE_BASED, this.
szCardholderVerificationMethod) == true) &&

10 (StringUtils.equalsIgnoreCase(CVM_OFFLINE_PIN,
szCardholderVerificationMethod) == true))

11) {
12 this.szCardholderVerificationMethod =

CVM_SIGNATURE_BASED_OFFLINE_PIN;
13 } else if (((StringUtils.equalsIgnoreCase(CVM_ONLINE_PIN, this.

szCardholderVerificationMethod) == true) &&
14 (StringUtils.equalsIgnoreCase(CVM_SIGNATURE_BASED,

szCardholderVerificationMethod) == true)) ||
15 ((StringUtils.equalsIgnoreCase(CVM_SIGNATURE_BASED, this.

szCardholderVerificationMethod) == true) &&
16 (StringUtils.equalsIgnoreCase(CVM_ONLINE_PIN, this.

szCardholderVerificationMethod) == true))) {
17 this.szCardholderVerificationMethod =

CVM_SIGNATURE_BASED_OFFLINE_PIN;
18 } else {
19 this.szCardholderVerificationMethod =

szCardholderVerificationMethod;
20 }
21 }
22 }

Listing 5.4: The code example that implements the part of IntegraFE connection

processed without any verification and we provide the space for the signature in the receipt. This

was illustrated in Section 5.2 while presenting the interface of the application.

The restriction of cardholder verification is implemented in class RequestStatusInformation
and the piece of code is presented in Listing 5.4.

5.3.4 External Service Evidence

As was described in Chapter 4, the application communicates with several external services. Here

we briefly explain the mechanism of communication with the IntegraFE server.

Before sending, the message is built following the 3Cxml structure. The message is then con-

verted into a String value and passed to the DatalinkController class, together with the channelId

5.3 Business Logic Implementation 63

1 public int send(String szData, int nMessageId) {
2 try {
3

4 if (log.isDebugEnabled() == true) {
5 log.debug("Send data called, data: \"...\"");
6 }
7 if (log.isTraceEnabled() == true) {
8 log.trace("Send data called, data: " + szData);
9 }

10

11 // Generate response
12 HTTPResponse myResponse = new HTTPResponse(myHeaderLines);
13

14 if (nHTTPError == HTTPConst.kSuccess) {
15 myResponse.setHost((String) myHeaderLines.get("Host"));
16 myResponse.setURL(HTTPConst.decodeURL(szURL));
17 myResponse.setQuery(szQuery);
18 }
19

20 myResponse.setStatusCode(nHTTPError);
21 int nRet = myResponse.sendStringResponse(myCWriter, szData);
22 if (nRet == Const.NO_ERROR) {
23 this.myParent.propagateChannelEventDataSent(nMessageId);
24 }
25

26 // stop the waiting loop - next step will have to be disconnect
27 this.bDataSent = true;
28

29 return nRet;
30

31 } catch (Exception exc) {
32 if (log.isWarnEnabled() == true) {
33 log.warn("Exception occured while sending data: " + exc, exc);
34 }
35 return Const.ERROR;
36 }
37 }

Listing 5.5: The code example that implements the part of IntegraFE connection

64 Implementation

value (the value is incremented in order to provide multithreaded processing on the same con-

nection) and the messageId (also an auto-incremented value, that is used to identify the received

response for the sent message). The code example can be found in Listing 5.5.

After, the protocol is selected based on the configuration file of the application. We consider

the case of a simple HTTP request, that is implemented in the class HTTPRequest.java. In that

class the HTTP request is prepared.

As the result, the request reaches IntegraFE server, which in turn prepares the message in

the ISO8583 format to the NAS server. Figure 5.12 illustrates the log of the transaction request

and Figure 5.13 – the corresponding transaction response, that has reached the NAS server. The

transaction was processed in the BNKSM processor, so that there is no need to mask much data,

however, due to security reasons, we hide sensitive data (PAN and other data) in the log screenshot.

5.3.5 Certification Authority

The implementation of the connection to the Certification Authority, obtaining its public keys,

retrieving original data from signed certificate is implemented in the IntegraTE_bouncycastle
project. As an example we can consider just a small part, building the request to Certification

Authority location. This is implemented in CertificateRequest class, and part of the code is

presented in Listing 5.6. The method encode the request using distinguished encoding rules.

5.3.6 Receipt Printing

The application can prepare a receipt after the transaction processing. Since the application does

not have the printer connected, it prepares the receipt in text format and then save it in file. An

example of approved sale transaction is presented in Figure 5.14.

The transaction was run on the acquirer network, and due to this, the data in the receipt is

considered sensitive. However, the common image of the built receipt is given. Since the main

part of the receipt is prepared on the acquirer side, on the application side we need to parse it and

save the text message in the file. The piece of code of parsing the acquirer receipt data is presented

in Listing 5.7

5.3.7 Multi-language Support

The application supports different languages in its GUI. To achieve this, set of resource files was

added (Figure 5.15). Since 3C TechLab already has merchants all over the world, the translation

of static text values was already done. Currently, the application supports 23 languages, and

English is selected as the default one. The translation of the application context following the

selected language is done using standard Java library ResourceBundle. The method getBundle

gets a resource bundle using the specified base name, locale, and class loader. If in the resource

file any key is missing, the application will use the key and its value from the default language

resource file, which is resources.properties.

5.3 Business Logic Implementation 65

1 public void encode(OutputStream output) throws IOException {
2 if (certificateTypes == null || certificateTypes.length == 0) {
3 TlsUtils.writeUint8(0, output);
4 } else {
5 TlsUtils.writeUint8ArrayWithUint8Length(certificateTypes, output);
6 }
7

8 if (supportedSignatureAlgorithms != null) {
9 TlsUtils.encodeSupportedSignatureAlgorithms(

supportedSignatureAlgorithms, false, output);
10 }
11

12 if (certificateAuthorities == null || certificateAuthorities.isEmpty()) {
13 TlsUtils.writeUint16(0, output);
14 } else {
15 Vector derEncodings = new Vector(certificateAuthorities.size());
16

17 int totalLength = 0;
18 for (int i = 0; i < certificateAuthorities.size(); ++i) {
19 X500Name certificateAuthority = (X500Name)certificateAuthorities.

elementAt(i);
20 byte[] derEncoding = certificateAuthority.getEncoded(ASN1Encoding.

DER);
21 derEncodings.addElement(derEncoding);
22 totalLength += derEncoding.length + 2;
23 }
24

25 TlsUtils.checkUint16(totalLength);
26 TlsUtils.writeUint16(totalLength, output);
27

28 for (int i = 0; i < derEncodings.size(); ++i) {
29 byte[] derEncoding = (byte[])derEncodings.elementAt(i);
30 TlsUtils.writeOpaque16(derEncoding, output);
31 }
32 }
33 }

Listing 5.6: The code of encoding the certificate request

66 Implementation

1 public String createReceipt(String szPrintoutDefinition) {
2

3 String szResult = null;
4 StringBuffer myStringBufferReceipt = null;
5

6 XMLElement xml = null;
7 StringReader myXMLReader = null;
8

9 try {
10

11 myStringBufferReceipt = new StringBuffer();
12

13 if (StringUtils.isNullOrEmpty(szPrintoutDefinition, true) == true) {
14 szResult = null;
15 return szResult;
16 }
17

18 if (log.isDebugEnabled() == true) {
19 log.debug("createForm from PrintoutDefinition: \n" +

szPrintoutDefinition);
20 }
21

22 myXMLReader = new StringReader(szPrintoutDefinition);
23

24 xml = new XMLElement();
25 xml.parseFromReader(myXMLReader);
26

27 if (myXMLReader != null) {
28 myXMLReader.close();
29 myXMLReader = null;
30 }
31

32 if ((xml.getName() == null) ||
33 (StringUtils.equalsIgnoreCase(xml.getName(), DISPLAY_TAG_SCREEN) ==

false)) {
34 szResult = null;
35 return szResult;
36 }
37

38 this.walkElement(xml, 0, myStringBufferReceipt, new StringBuffer(),
false);

39

40 } catch (Exception exc) {
41 if (log.isErrorEnabled() == true) {
42 log.error("Exception in createForm(Printout myPrintout, int

nDisplay)", exc);
43 }
44 szResult = null;
45 return szResult;
46 }
47

48 return myStringBufferReceipt.toString();
49 }

Listing 5.7: The code that implements the part of preparing the receipt

5.3 Business Logic Implementation 67

Figure 5.12: The screenshot of transaction request message in ISO8583 format

Figure 5.13: The screenshot of transaction response message in ISO8583 format

68 Implementation

Figure 5.14: The example of the receipt after Sale transaction (with sensitive data masked)

5.4 Database 69

Figure 5.15: The screenshot of language resources files in the IDE

5.4 Database

The standalone application 3C Emulator uses its own database, however, the data is extremely

simple. Since the application does not actually process the payment transactions and the only task

is to prepare the message in ISO format to transfer to the payment server, there is no need to use

a complicate structure of tables and all the fields that can be defined in an actual terminal, in the

database.

The application uses a SQLite database [47], namely to store only one file in .db format.

When the data changes and the application is restarted, the database (the file in the application

code directory) is changed, so that after restart the user sees the last changes he made.

For now, we found out that 3C Emulator needs only four tables (Figure 5.16):

1. Card, containing all test card information, that can be edited in the windows Card Manage-

ment (Figure 5.8);

2. DataElement, used to store all parameters of the test card events, that can be edited in the

Event Management window (Figure 5.9);

70 Implementation

Figure 5.16: Class Diagram of database structure

3. TerminalControllerEvent, used to return to the last processed events;

4. TransactionStage, containing flags of passing the stage during transaction processing and

serving as an additional log file.

5.5 Design Solutions

The application software is growing with any new change added. In the beginning of the project

existing code repository already had frightening scale. One of the requirements of the project was

to maintain readability of the application source code using best design practice and improve the

project structure.

The application project is organised in a set of Java projects. Two of the most loaded projects

are IntegraTE_Core and IntegraTE_Emulator. In order to improve code structure, design pat-

terns were used. Here we provide five examples of design patterns applied in the project: Abstract

Factory, Observer, Façade, Builder and Singleton

A design pattern is a general repeatable solution to a commonly occurring problem in software

design. Patterns allow developers to communicate using well-known, well understood names for

software interactions. A design pattern isn’t a finished design that can be transformed directly into

5.5 Design Solutions 71

Figure 5.17: Class Diagram of the example of the Abstract Factory pattern

code. It is a description or template for how to solve a problem that can be used in many different

situations [24].

Abstract Factory

Abstract Factory is a creational design pattern that lets you produce families of related objects

without specifying their concrete classes. The pattern was applied to separate the logic of SSL and

non-SSL connection channel like shown on Figure 5.17.

Three classes and one interface were created. The interface IntChannelFactory has two meth-

ods declared: getChannel(String szChannelType) and addSubFactory(IntChannelFactory mySub-

Factory). Then the abstract class ChannelFactoryBase implements the interface, defines the

method addSubFactory(IntChannelFactory mySubFactory) and stores the ArrayList myListSub-

Factories. Finally, two classes extend ChannelFactoryBase. In classes ChannelFactory and Chan-

nelSSLFactory the method getChannel(String szChannelType) has the logic implemented.

Observer

The Observer pattern is a one-to-many dependency between objects so that when one object

Figure 5.18: Class Diagram of the example of the Observer pattern

72 Implementation

Figure 5.19: Class Diagram of the example of the Façade pattern

changes state, all its dependents are notified. This is typically done by calling one of their meth-

ods. The application supports many standalone operations and events (full list can be found in

Appendix A). In order to reduce the number of direct dependencies between classes, the Observer

pattern was used [35].

When one object needs to run one process step, it calls doOperation() to add the step into the

TerminalControllerPlugin queue of the actions to be performed. The queue is processed and if it

has at least one Operation, it calls eventOnTerminalControllerPlugin(). Figure 5.18 illustrates the

implementation of the Observer pattern in the application.

Façade

Façade is a structural design pattern that provides a simplified interface to a library, a frame-

work, or any other complex set of classes. When the code should work with a broad set of objects

that belong to a sophisticated library or framework, all these objects can be initialized, dependen-

cies are kept tracked, methods are executed in the correct order, etc. [35].

The application uses its own database. Despite the usual database operations, like select,

delete, update, having their method implementation, there is no need to confuse the developer

with a huge number of other possible methods. Using the Façade pattern we hide non-frequently

used methods. Moreover, we added some data oriented logic into DataFacade class, as presented

in Figure 5.19.

Builder

Figure 5.20: Class Diagram of the example of the Singleton pattern

5.5 Design Solutions 73

Figure 5.21: Screenshot of the Test Report after running Unit Tests

74 Implementation

As the name implies, the builder pattern is used to build objects. Sometimes, the objects

we create can be complex, made up of several sub-objects or require an elaborate construction

process. The exercise of creating complex types can be simplified by using the builder pattern. A

composite or an aggregate object is what a builder generally builds [35].

The Builder pattern was used in the coupling Operations and Events objects. As illustrated

on Figure 5.18, in the class TerminalControllerEmulatorPlugin there are a set of objects that were

implemented with the interface IntTerminalControllerPlugin. Each of the classes has the method

addTerminalControllerPluginListener, in which, based on the input object type, the listener added

to the corresponding controller list. This mechanism helps to achieve loose coupling between the

classes.

Singleton
The singleton pattern is used to limit the creation of a class to only one object. This is beneficial

when one (and only one) object is needed to coordinate actions across the system. There are several

examples of where only a single instance of a class should exist, including caches, thread pools,

and registries [35].

The pattern is used in several places in the application. The best example of Singleton usage

is the configuration file instance. Many components uses the SettingsApplication class simul-

taneously, and there is no need to create an object everytime the component needs to read one

specific field. To achieve that, we create a private static SettingsApplication mySettingsApplica-

tion field, and hide the constructor of the class, making it private. Than we create the static method

getInstance, that returns the unique instance of the class SettingsApplication.

5.6 Test Report

One of the requirements was to write unit tests to check basic features of the application. The unit

tests were written using the JUnit library [26]. The obtained test report is provided in Figure 5.21.

5.7 Summary

In this chapter we focused on the implementation part of the project. Based on the given require-

ments and agreed architecture of the application, the application logic was done and the GUI was

improved. The main objective of the application, namely the application should process payment

using the 3C TechLab UAT system, was achieved. Despite some components were implemented

in simplified way, the EMV transaction flow was covered.

During the development, we strove to use a software project management plan. In particu-

lar, the project was started with establishing requirements, and then a detailed architecture was

proposed. During the implementation, the work was divided into independent tasks. The refactor-

ing was done by studying design pattern examples and implementing some of them. Finally, the

testing phase was performed in order to ensure the product quality.

Chapter 6

Results

The main objectives of this dissertation work were studying the EMV specification for ICC termi-

nal payments and the development of a software application, capable of emulating the behaviour

of a real terminal payment process.

The studying of specification, together with its known vulnerabilities, and research on existing

analogs of the developed application, were made. The knowledge gained is presented in brief form

in Chapter 2.

As it is shown in Chapter 5 the final application provides the requested solution. However,

in this chapter we provide the details on how each of the initial requirements from Chapter 3 is

satisfied. So that one can be convinced that 3C Emulator meets all requirements that were set in

the beginning of the development by the 3C TechLab company.

6.1 Results

In this section we repeat the list of the requirements from Chapter 3 and provide the application

verification result. Here we have listed only the mandatory requirements (“should” requirements).

R.1.1. Provide a terminal-like software solution

The application 3C Emulator was developed. It is a standalone application and it has an

appearance like a real terminal (Figure 5.1).

R.1.2. Integrate the application with existing 3C TechLab system interfaces, such as Inte-
graFE, NAS, DCC service and others

The application communicates with 3C TechLab servers, including IntegraFE, NAS and DCC

service servers. The detailed architecture is described in Chapter 4.

R.1.3. Design good software architecture, e.g. use established design patterns to improve
the code structure and application performance

75

76 Results

This was achieved by using the list of design patterns. The code were written in a way to

facilitate code reading and improve the application performance. The details can be found in

section 5.5.

R.1.4. Process unit testing and provide final test report

The project includes a number of unit tests, written using the required library (JUnit [26]). The

test results are presented in section 5.6.

R.2.1. The application should have an appearance similar to the terminals of Worldline
YOMANI (Figure 3.1) type

As described in Chapter 5, the GUI template we used was the Worldline YOMANI terminal

type. The similarity can be verified by comparing Figure 3.1 with Figure 5.1.

R.2.2. The application should have display, digits keyboard, buttons OK, Stop, Correct, and
Menu

Figure 5.1 illustrates that the application has all these listed buttons.

R.2.3. The application should show what types of readers are activated

As can be seen in Figure 5.4, the application has the panel with the available readers icons.

Once the card interaction is requested, the application show the icons as active.

R.2.4. The application should allow the user selection of the cards from the list

Figure 5.4 illustrates that the user can select one of the test cards from the list.

R.2.5. The application should allow the user to add, edit and delete test cards manually

As was described in section 5.2, 3C Emulator has the area where the user can configure its test

cards. To open the configuration window the user should open Card Management→ Open Card

Management Window.

R.2.6. The application should support showing the messages from the standard EMV ter-
minal messages list (Table 2.1) in different languages

The language bundle structure was used in order to support multi language display messages.

The details can be found in section 5.3

R.2.7. The application should not use any third party’s libraries, but use the libraries that
were developed inside the 3C Payment company, as well as trusted libraries from Apache, Java
and Google projects

The project technology stack was defined in the beginning of the project and the list of tech-

nologies can be found in section 3.6. The listed tools were enough to develop the full project, so

there was no need to use third party’s libraries.

R.3.1. The application should communicate with the 3C TechLab UAT payment server. The
addresses of the external services should be located in the application configuration file, so that
the user can change the services the application communicates with

As was described in Chapter 4, the application communicates with several 3C TechLab ser-

vices. As was requested, the address of the services are stored in the configuration file of the

application.

6.1 Results 77

R.3.2. The application by default should be configured to process transactions in the fake
acquirer network (BNKSM). However, the application should be able to be configured to reach
real acquirer test networks to process a transaction

The same as for R.3.1., the network can be configured at the same configuration file of the

application (Chapter 4).

R.3.3. The application should emulate the processing card data reading only by two card
readers: magnetic stripe and ICC readers

R.3.4. The application should support the following card types: Visa, Mastercard, Maestro
The application by default has test cards which are Visa, Mastercard and Maestro (Figure 5.4).

However, Diners, JCB and American Express cards can be added in the Card Configuration win-

dow.

R.3.5. The application should process the payment transaction following the EMV specifi-
cation. The processing should include Data Authentication, Cardholder Verification, Terminal
Risk Management, Terminal Action Analysis, Offline Authentication. The application can op-
tionally support Card Action Analysis, Online Issue Authentication, Script Processing

As described in section 5.3, the application process the transaction following the EMV speci-

fication, namely process required steps – Data Authentication, Cardholder Verification, Terminal

Risk Management, Terminal Action Analysis, Offline Authentication.

R.3.6. The application should build transaction messages in ISO8583 format [25] and send
it to the 3C TechLab server. The payment result from the server, which is also in ISO8583
format, should be parsed and the result should be shown in the application display

The log from NAS server was provided in section 5.3, and the messages to and from the server

have the ISO8583 format.

R.3.7. The application in the case of successful transaction processing, should show the
authorisation code from the acquirer as well

As shown in Figure 5.6, the display of 3C Emulator shows the Authorisation code, that was

sent back by the acquirer.

R.3.8. The application should connect to the Certification Authority storage and process the
key signing algorithm

In section 5.3 the mechanism of processing public key signature is described.

R.3.9. The application should support “T = 1” protocol only
All 3C Emulator transactions are processed supporting “T = 1”. More details can be found in

section 5.3. However, the application does not support the “T = 0” protocol.

R.3.10. The application should process PIN verification offline. The PIN processing can
be omitted if the transaction does not require PIN verification, e.g. small amount transactions
with trusted card

Despite the payment example presented in section 5.2 does not include PIN entering, the

emulator processes the PIN during transaction if the card is configured in a proper way. This

means that before configuring the test card, the user should not only enter plain text PIN value, but

also the data should be included in ICC parameters in the Event Manager window. If the test card

78 Results

with PIN verification is configured and used in the payment, the application processes offline PIN

verification (section 5.3).

R.3.11. The application by default should process authentication following the CDA algo-
rithm

All 3C Emulator transactions are processed using the CDA algorithm. More details can be

found in section 5.3. The DDA and SDA are not supported.

R.3.12. The application should emulate printing a receipt, e.g. provide receipt within a text
file

Since the application does not have appropriate hardware connected to print the receipt of the

payment, the application saves the transaction result in a text file.

6.2 Summary

The acceptance testing phase of the project was performed using the list of the requirements, that

was established in the beginning of the work. Despite some requirements not satisfied in a full

form, the project is considered meeting all requirements. In addition, not only the application

achieved its objectives, the executed work covered all planned activities, such as test report, im-

proving the source code, etc.

Chapter 7

Conclusions and Future Work

7.1 Conclusion

The result of the dissertation work can be presented in two parts: studying of the official specifi-

cation and development of the software project.

First, a comprehensive analysis of EMV specification and business process of the payment

with PoS terminal was performed. We considered the different algorithms of providing a secure

payment solution, and on top of that, known vulnerabilities were studied. Despite not using in

the development part of all presented information in the research result, we found it important

to include the analysis result in detail. Thereby, this dissertation work can be used as an EMV

specification and payment process summary, as it was already used in the Portuguese FinTech

company, 3C TechLab, to explain general payment mechanisms to the employees, who do not

work close with the PoS terminal software.

Second part of the work took place the design and development of the software application.

Before implementations, we started looking through existing solutions in the area and the most

relevant ones were presented in this document. In particular, this is motivated by the current

work of the author in collaboration with 3C TechLab. The company proposed the project for this

dissertation work and during almost one year the development was performed in their environment.

Not many features of real EMV terminal were included in the emulator application, however, the

mandatory requirements of the project were met.

The developed application was named 3C Emulator, and it has an appearance similar to a real

terminal. The application can process payment transactions, and can reach the payment network,

as was requested. Currently, the application supports the emulation of two card readers features:

ICC and magnetic swipe readers.

The 3C Emulator application was tested in 3C TechLab by developers, but, unfortunately, the

application was not integrated into development and certification process yet, mainly due to delays

79

80 Conclusions and Future Work

caused by the current pandemic situation. We expect to continue improving the 3C Emulator

application, so that it can facilitate the time-consuming testing process.

7.2 Further Work

In view of both EMV specification review and application development, there are many areas for

improvement.

As was noticed during the time of writing this dissertation, every week new articles about EMV

specifications, PoS terminal security algorithms, ICC card vulnerabilities, and other relevant topics

are published, and many of the articles deserve consideration. The knowledge base of the FinTech

market technology is wide and ever changing.

Despite the 3C Emulator application development met initial requirements set in the beginning

of the dissertation work, the application still has much room to continue growing. The developed

task is very flexible as it allows adding different features and scaling up, but it still involves work

and some knowledge of its code. Extending compatibility to existing systems in the market would

be the most practical route in terms of future work.

Future work also includes extension of the application features list, namely uploading ICC

data using an external card reader device, covering other terminal readers’ (NFC and Bluetooth)

interfaces, implementation of the “T = 0” protocol. Moreover, only the CDA algorithm was im-

plemented, but support of authentication with the DDA and SDA algorithms can be considered.

The graphical user interface, in spite of having all needed elements, can be improved to be more

similar to the real terminal appearance.

Finally, due to COVID-19, in 2020 3C TechLab has to adapt the usual company routine and

project plans to the prevailing situation. The integration of the final solution was put on hold

without a scheduled time frame. Therefore, for future work, it is planned to integrate 3C Emulator

into development and certification process to improve the verification process.

References

[1] Abe-Tech. EMV L1 PCD Test Solutions. Available at http://www.abe-tech.com/En/
abe/products/erminal_testing/EMV_L1_PCD_Test_Bench.html, June 2020.

[2] B. Adida, M. Bond, J. Clulow, A. Lin, S. J. Murdoch, R. Anderson, and R. Rivest. Phish and
chips: Traditional and new recipes for attacking EMV. In Security Protocols, volume 5087
of LNCS. Springer, 2009.

[3] Java AWT. Tutorial. Available at https://www.javatpoint.com/java-awt, June
2020.

[4] A. Barisani, D. Bianco, A. Laurie, , and Z. Franken. Chip and pin is definitely broken.
Presentation at CanSecWest Applied Security Conference, 2011.

[5] Java BlueCove. About BlueCove JSR-82 Project. Available at http://www.bluecove.
org/, June 2020.

[6] J. Breekel, D. Ortiz-Yepes, E. Poll, and J. Ruiter. EMV in a nutshell. IBM, 2016.

[7] Z. Chen. Java Card Technology for Smart Cards. Addison Wesley, 2000.

[8] Google Developers. About Protocol Buffers. Available at https://developers.
google.com/protocol-buffers, June 2020.

[9] Eclipse. The Eclipse Foundation. Available at https://www.eclipse.org/ide/, June
2020.

[10] EFTLab. BP-SIM. Available at https://www.eftlab.co.uk/bp-sim/, June 2020.

[11] M. Emms and A. van Moorsel. Practical attack on contactless payment cards. Wealth and
Identity Theft, 2011.

[12] M. J. Emms. Contactless payments: usability at the cost of security? PhD thesis, Newcastle
University, Newcastle, 2016.

[13] EMVCo. Book 1: Application Independent ICC to Terminal Interface Requirements. EMV R©
Integrated Circuit Card Specifications for Payment Systems, 4.3 edition, 2011.

[14] EMVCo. Book 2: Security and Key Management. EMV R© Integrated Circuit Card Specifi-
cations for Payment Systems, 4.3 edition, 2011.

[15] EMVCo. Book 3: Application Specification. EMV R© Integrated Circuit Card Specifications
for Payment Systems, 4.3 edition, 2011.

81

http://www.abe-tech.com/En/abe/products/erminal_testing/EMV_L1_PCD_Test_Bench.html
http://www.abe-tech.com/En/abe/products/erminal_testing/EMV_L1_PCD_Test_Bench.html
https://www.javatpoint.com/java-awt
http://www.bluecove.org/
http://www.bluecove.org/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.eclipse.org/ide/
https://www.eftlab.co.uk/bp-sim/

82 REFERENCES

[16] EMVCo. Book 4: Cardholder, Attendant, and Acquirer Interface Requirements. EMV R©
Integrated Circuit Card Specifications for Payment Systems, 4.3 edition, 2011.

[17] EMVCo. Technical Framework. EMV R© Payment Tokenisation Specification, 2.1 edition,
2019.

[18] EMVCo. Document Search. Available at https://www.emvco.com/
document-search, June 2020.

[19] EMVCo. Emvco home. Available at https://www.emvco.com/, June 2020.

[20] EMVCo. Overview of EMVCo. Available at https://www.emvco.com/about/
overview/, June 2020.

[21] FIME. EMVeriPOS. Available at https://www.fime.com/products/
analog-protocol/emveripos.html, June 2020.

[22] FIS. EMV Test Tools. Available at https://www.fisglobal.
com/solutions/payments/-/media/fisglobal/files/brochure/
emv-terminal-integration-test-solutions.pdf, January 2020.

[23] OOREKA Agent France. Ticket de carte bancaire. Available at
https://carte-bancaire.ooreka.fr/astuce/voir/515831/
ticket-de-carte-bancaire, June 2020.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., USA, 1995.

[25] ISO. ISO 8583-1:2003 Financial transaction card originated messages — Interchange mes-
sage specifications. technical documentation, 2003.

[26] JUnit. About JUnit4. Available at https://junit.org/junit4/, June 2020.

[27] KaSYS. KaNest R©-ICC Card Simulator. Available at https://www.kasys.ca/
en-index.html, June 2020.

[28] R. Kumar and S. O’Brien. 2019 Findings from the Diary of Consumer Payment Choice. CPO
Federal Reserve System, 2019.

[29] The Apache Log4j. About Log4j v.2. Available at https://logging.apache.org/
log4j/2.x/, June 2020.

[30] N. Madhoun, E. Bertin, and G. Pujolle. An Overview of the EMV Protocol and Its Security
Vulnerabilities. The 4th IEEE International Conference MobiSecServ, 2018.

[31] N. El Madhoun and E. Bertin. Magic always comes with a price: Utility versus security for
bank cards. The 1st IEEE Cyber Security in Networking Conference, 2017.

[32] N. El Madhoun and G. Pujolle. Security enhancements in EMV protocol for NFC mobile
payment. The 15th IEEE International Conference on Trust, 2016.

[33] R. Mann. Credit cards and debit cards in the united states and japan. SSRN Electronic
Journal, 2002.

https://www.emvco.com/document-search
https://www.emvco.com/document-search
https://www.emvco.com/
https://www.emvco.com/about/overview/
https://www.emvco.com/about/overview/
https://www.fime.com/products/analog-protocol/emveripos.html
https://www.fime.com/products/analog-protocol/emveripos.html
https://www.fisglobal.com/solutions/payments/-/media/fisglobal/files/brochure/emv-terminal-integration-test-solutions.pdf
https://www.fisglobal.com/solutions/payments/-/media/fisglobal/files/brochure/emv-terminal-integration-test-solutions.pdf
https://www.fisglobal.com/solutions/payments/-/media/fisglobal/files/brochure/emv-terminal-integration-test-solutions.pdf
https://carte-bancaire.ooreka.fr/astuce/voir/515831/ticket-de-carte-bancaire
https://carte-bancaire.ooreka.fr/astuce/voir/515831/ticket-de-carte-bancaire
https://junit.org/junit4/
https://www.kasys.ca/en-index.html
https://www.kasys.ca/en-index.html
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

REFERENCES 83

[34] K. Mayes and K. Markantonakis. Smart Cards, Tokens, Security and Applications. Springer,
Second edition, 2017.

[35] Medium.com. The 7 Most Important Software Design Pat-
terns. Available at https://medium.com/educative/
the-7-most-important-software-design-patterns-d60e546afb0e, June
2020.

[36] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip and PIN is Broken. In Symposium
on Security and Privacy. IEEE, 2010.

[37] O. Ogundele, P. Zavarsky, D. Lindskog, and R Ruhl. The implementation of a full emv
smartcard for a point-of-sale transaction. World Congress on Internet Security, 2012.

[38] Oracle. Java 8 Central. Available at https://www.oracle.com/technetwork/
java/javase/overview/java8-2100321.html, June 2020.

[39] 3C Payment. Home page. Available at https://www.3cpayment.com/, June 2020.

[40] PCI. PCI HSM Security Requirements v1.0. PCI R© Security Standards Council LLC, 1.0
edition, 2009.

[41] GitHub repository. Git Extensions. Available at http://gitextensions.github.io/,
June 2020.

[42] Research and Markets. Global EMV POS Terminals Market 2017-2021. Avail-
able at https://www.researchandmarkets.com/research/dc45l3/global_
emv_pos, June 2020.

[43] Gerrit Code Review. Home page of Gerrit Code Review. Available at https://www.
gerritcodereview.com/index.html, June 2020.

[44] J. Ruiter and Poll E. Formal analysis of the EMV protocol suite, volume 6993 of LNCS.
Springer, 2012.

[45] SecureList. The Great Bank Robbery: the Carbanak APT. Available at https:
//securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/,
June 2020.

[46] SmartOI. SmartOI Terminal Simulator. Available at https://sites.google.com/a/
smartoi.com/smartoi/s-w/smartoi-terminal-simulator, June 2020.

[47] SQLite. About SQLite. Available at https://www.sqlite.org/about.html, June
2020.

[48] R. Srinivasan. Integrated debit and credit card with dynamic card selection and card locking.
Journal of Theoretical and Applied Information Technology, page 31, 2013.

[49] 3C TechLab. Home page. Available at http://3ctechlab.com/, June 2020.

[50] Trello. Home Page. Available at https://trello.com, June 2020.

[51] IMS UL. UL Brand Test Tool. Available at https://ims.ul.com/
ul-brand-test-tool, June 2020.

https://medium.com/educative/the-7-most-important-software-design-patterns-d60e546afb0e
https://medium.com/educative/the-7-most-important-software-design-patterns-d60e546afb0e
https://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://www.3cpayment.com/
http://gitextensions.github.io/
https://www.researchandmarkets.com/research/dc45l3/global_emv_pos
https://www.researchandmarkets.com/research/dc45l3/global_emv_pos
https://www.gerritcodereview.com/index.html
https://www.gerritcodereview.com/index.html
https://securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/
https://securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/
https://sites.google.com/a/smartoi.com/smartoi/s-w/smartoi-terminal-simulator
https://sites.google.com/a/smartoi.com/smartoi/s-w/smartoi-terminal-simulator
https://www.sqlite.org/about.html
http://3ctechlab.com/
https://trello.com
https://ims.ul.com/ul-brand-test-tool
https://ims.ul.com/ul-brand-test-tool

84 REFERENCES

[52] WeChip. WeChip Simulator. Available at https://www.wechiptech.com/
product-brochures/EMV-Simulator.pdf, June 2020.

[53] Worldline. Terminal YOMANI. Available at https://terminals.worldline.com/
en/home/products/payment-terminals/countertop-terminals/yomani.
html, June 2020.

[54] The Apache Xerces. About Xerces2 Project. Available at https://xerces.apache.
org/, June 2020.

https://www.wechiptech.com/product-brochures/EMV-Simulator.pdf
https://www.wechiptech.com/product-brochures/EMV-Simulator.pdf
https://terminals.worldline.com/en/home/products/payment-terminals/countertop-terminals/yomani.html
https://terminals.worldline.com/en/home/products/payment-terminals/countertop-terminals/yomani.html
https://terminals.worldline.com/en/home/products/payment-terminals/countertop-terminals/yomani.html
https://xerces.apache.org/
https://xerces.apache.org/

Appendix A

Static values of the 3C Emulator
application

A.1 3C Emulator Currency codes

Table A.1: Currency codes used in 3C Emulator

ID ISO Code ISO Text Code Description Minors

13 012 DZD Algerian Dinar 2

14 032 ARS Argentine Peso 2

15 036 AUD Australian Dollar 2

16 044 BSD Bahamian Dollar 2

17 048 BHD Bahraini Dinar 3

18 050 BDT Bangladeshi Taka 2

19 051 AMD Armenia Dram 3

20 052 BBD Barbados Dollar 2

21 060 BMD Bermudan Dollar 2

22 072 BWP Botswana Pula 2

23 084 BZD Belize Dollar 2

24 096 BND Brunei Dollar 2

25 112 BYB Belarus Ruble 2

26 124 CAD Canadian Dollar 2

27 136 KYD Cayman Islands Dollar 2

28 144 LKR Sri Lankan Rupee 2

29 152 CLP Chile Peso 2

30 156 CNY Yuan China 2

85

86 Static values of the 3C Emulator application

31 170 COP Columbian Peso 2

32 188 CRC Costa Rica Colon 2

33 191 HRK Croatian Kuna 2

34 196 CYP Cyprus Pound 2

35 203 CZK Czech Republic Korun 2

36 208 DKK Danish Krone 2

37 233 EEK Estonia Kroon 2

38 328 GYD Guyana Dollar 2

39 332 HTG Haiti Gourde 2

40 344 HKD Hong Kong Dollar 2

41 348 HUF Hungarian Forint 0

42 352 ISK Iceland Krone 2

43 356 INR India Roupie 2

44 360 IDR Indonesia Rupiah 0

45 368 IQD Iraqi Dinar 3

46 376 ILS Israel New Shekels 2

47 388 JMD Jamaican Dollar 2

48 392 JPY Japanese Yen 0

49 398 KZT Kazakhstani Tenge 2

50 400 JOD Jordanian Dinar 3

51 404 KES Kenyan Shilling 2

52 410 KRW South Korean Won 0

53 414 KWD Kuwaiti Dinar 3

54 422 LBP Lebanese Pound 2

55 428 LVL Latvian Lats 2

56 434 LYD Libya Dinar 3

57 440 LTL Lithuanian Litas 2

58 458 MYR Malaysian Ringgit 2

59 470 MTL Malta Livre 2

60 480 MUR Mauritian Rupee 2

61 484 MXN Mexican Peso 2

62 504 MAD Morocco Dirhams 2

63 512 OMR Omani Rial 3

64 532 ANG Netherlands Antillian Guilder 2

65 533 AWG Aruba Florin 2

66 554 NZD New Zealand Dollar 2

67 566 NGN Nigerian Naira 2

68 578 NOK Norwegian Krone 2

A.1 3C Emulator Currency codes 87

69 586 PKR Pakistan Rupee 2

70 590 PAB Panamanian Balboa 2

71 608 PHP Philippine Peso 2

72 634 QAR Qatari Rial 2

73 643 RUB Russian Ruble 2

74 682 SAR Saudi Riyal 2

75 690 SCR Seychelles Rupee 2

76 702 SGD Singapore Dollar 2

77 704 VND Vietnamese dong 0

78 705 SIT Slovenian Tolar 2

79 710 ZAR South African Rand 2

80 752 SEK Swedish Krona 2

81 756 CHF Swiss Franc 2

82 760 SYP Syrian Pound 2

83 764 THB Thailand Baht 2

84 780 TTD Trinidad and Tobago Dollar 2

85 784 AED United Arab Dirham 2

86 788 TND Tunisian Dinar 3

87 818 EGP Egyptian Pound 2

88 826 GBP Pounds Sterling 2

89 834 TZS Tanzanian Shilling 2

90 840 USD US Dollar 2

91 886 YER Yemen Rial 2

92 894 ZMK Zambian Kwacha 2

93 901 TWD Taiwanese Dollar 2

94 933 BYN Belarusian Ruble 2

95 936 GHS Ghana Cedi 2

96 937 VEF Venezuela Bolivar Fuerte 2

97 941 RSD Serbian Dinar 2

98 944 AZN Azerbaijani Manat 2

99 946 RON Romanian New Leu 2

100 949 TRY Turkish Lira 2

101 950 XAF CFA Franc BEAC 0

102 951 XCD East Caribbean Dollar 2

103 952 XOF CFA Franc BEACO 0

104 967 ZMW Zambia Kwacha 2

105 968 SRD Surinam Dollar 2

106 971 AFN Afghanistan Afghani 2

88 Static values of the 3C Emulator application

107 973 AOA Angolan kwanza 2

108 975 BGN Bulgarian Lev 2

109 978 EUR Euro 2

110 980 UAH Ukranian Hryunia 2

111 981 GEL Georgia Lari 2

112 985 PLN Polish Zloty 2

113 986 BRL Brazilian Real 2

A.2 3C Emulator Operations

Table A.2: Operations supported by 3C Emulator

OPERATION_UNKNOWN

OPERATION_BEEP

OPERATION_READER_MAGNETIC_ACTIVATE

OPERATION_READER_MAGNETIC_DEACTIVATE

OPERATION_READER_CHIP_ACTIVATE

OPERATION_READER_CHIP_DEACTIVATE

OPERATION_READER_NFC_ACTIVATE

OPERATION_READER_NFC_DEACTIVATE

OPERATION_BACKLIGHT_ON

OPERATION_BACKLIGHT_OFF

OPERATION_DISPLAY_TEXT

OPERATION_DISPLAY_LIST_ITEMS

OPERATION_DISPLAY_TEXT_INPUT

OPERATION_DISPLAY_PIN_ENTRY

OPERATION_PRINT_TEXT

OPERATION_EMV_RECOGNIZE

OPERATION_EMV_INITIALIZE

OPERATION_EMV_PROCESS

OPERATION_EMV_COMPLETE

OPERATION_EMV_TERMINATE

OPERATION_BEEP_ALARM

OPERATION_EMV_PIN_BYPASS

OPERATION_EMV_PIN_CONFIRM

OPERATION_EMV_PIN_CANCEL

OPERATION_EMV_DATA_PROVIDE_0

OPERATION_EMV_DATA_PROVIDE_1

OPERATION_EMV_DATA_PROVIDE_2

A.2 3C Emulator Operations 89

OPERATION_HIBERNATE

OPERATION_REACTIVATION_GET_REACTIVATION_DATA

OPERATION_REACTIVATION_SET_REACTIVATION_CODE

OPERATION_EMV_PRECONFIGURE

OPERATION_CONTROLLER_INITIALIZE

OPERATION_SRED_STATUS_GET

OPERATION_RKI_KEYS_INIT

OPERATION_RKI_KEYS_INJECT

OPERATION_SYSTEM_TIME_SET

OPERATION_SYSTEM_RESET

OPERATION_FILES_WRITE

OPERATION_FILES_READ

OPERATION_POWER_STATUS_GET

OPERATION_INFO_GET

OPERATION_CONFIG_GET

OPERATION_FILES_STREAM_WRITE

OPERATION_SECURITY_SESSION_OPEN

OPERATION_SECURITY_SESSION_CLOSE

OPERATION_SECURITY_PIN_ENCRYPT

OPERATION_SECURITY_MAC_GENERATE

OPERATION_SECURITY_MAC_VERIFY

OPERATION_SECURITY_CARD_DATA_ENCRYPT

OPERATION_SECURITY_RESET_PCI_CONTEXT

OPERATION_SECURITY_LOAD_MP1_CARD_TABLE

OPERATION_SECURITY_LOAD_MP1_FORM_PACKAGE

OPERATION_SECURITY_LUHN_DIGIT_CHECK

OPERATION_BLUETOOTH_STATUS_LOAD

OPERATION_BLUETOOTH_ENABLE

OPERATION_BLUETOOTH_DISABLE

OPERATION_BLUETOOTH_GET_PAIRED_DEVICES

OPERATION_BLUETOOTH_SCAN_DEVICES

OPERATION_BLUETOOTH_PAIR

OPERATION_BLUETOOTH_UNPAIR

OPERATION_BLUETOOTH_DEVICE_VISIBLE_ENABLE

OPERATION_BLUETOOTH_DEVICE_VISIBLE_DISABLE

OPERATION_BLUETOOTH_TETHERING_ENABLE

OPERATION_BLUETOOTH_TETHERING_DISABLE

OPERATION_TERMINAL_DUMP_LOG

90 Static values of the 3C Emulator application

A.3 3C Emulator Events

The list of all events supported in the 3C Emulator application is presented in Table A.3. The

events marked as Presents in GUI can be used in the Card Management windows of the application.

Table A.3: Events supported by 3C Emulator

NAME Presents in GUI

EVENT_UNKNOWN

EVENT_CONTROLLER_READY

EVENT_ERROR_API

EVENT_ERROR_DISPLAY

EVENT_ERROR_BACKLIGHT

EVENT_ERROR_PRINTER

EVENT_ERROR_READER_MAGNETIC

EVENT_ERROR_READER_CHIP

EVENT_ERROR_READER_CONTACTLESS

EVENT_ERROR_EMV_ENGINE

EVENT_ERROR_STATE_ENGINE

EVENT_BEEPED

EVENT_READER_MAGNETIC_ACTIVATED

EVENT_READER_MAGNETIC_DEACTIVATED

EVENT_READER_CHIP_ACTIVATED

EVENT_READER_CHIP_DEACTIVATED

EVENT_READER_NFC_ACTIVATED

EVENT_READER_NFC_DEACTIVATED

EVENT_BACKLIGHT_ON

EVENT_BACKLIGHT_OFF

EVENT_TEXT_DISPLAYED

EVENT_EMV_RECOGNIZE_STARTED

EVENT_EMV_INITIALIZE_STARTED

EVENT_EMV_PROCESS_STARTED

EVENT_EMV_COMPLETE_STARTED

EVENT_EMV_TERMINATE_STARTED

EVENT_KEY_PRESSED

EVENT_EMV_POWERED_UP ?

EVENT_CARD_REMOVED ?

EVENT_CARD_CONTACTLESS_SHOWNUP

EVENT_CARD_CONTACTLESS_DISAPPEARED

EVENT_CARD_SWIPED ?

A.3 3C Emulator Events 91

EVENT_EMV_RECOGNIZED ?

EVENT_EMV_PIN_ENTRY_REQUIRED

EVENT_EMV_INITIALIZED ?

EVENT_EMV_PROCESSED ?

EVENT_EMV_COMPLETED ?

EVENT_EMV_TERMINATED ?

EVENT_PIN_ENTERED

EVENT_EMV_PIN_BYPASSED

EVENT_EMV_PIN_CONFIRMED

EVENT_EMV_PIN_CANCELED

EVENT_PIN_NOT_ENTERED

EVENT_ERROR_BEEP

EVENT_LIST_DISPLAYED

EVENT_TEXT_INPUT_DISPLAYED

EVENT_PIN_ENTRY_DISPLAYED

EVENT_SECURITY_SESSION_OPENED

EVENT_SECURITY_SESSION_CLOSED

EVENT_SECURITY_PIN_ENCRYPTED

EVENT_SECURITY_MAC_GENERATED

EVENT_SECURITY_MAC_VERIFIED

EVENT_SECURITY_CARD_DATA_ENCRYPTED ?

EVENT_SECURITY_PCI_CONTEXT_RESETTED

EVENT_SECURITY_MP1_CARD_TABLE_LOADED

EVENT_SECURITY_MP1_FORM_PACKAGE_LOADED

EVENT_ERROR_SECURE_SERVICE

EVENT_ERROR_POWER_MANAGEMENT

EVENT_NFC_STATUS_CHANGED ?

EVENT_NFC_PROCESSED ?

EVENT_EMV_DATA_MISSING_0

EVENT_EMV_DATA_MISSING_1

EVENT_EMV_DATA_MISSING_2

EVENT_EMV_DATA_PROVIDED_0

EVENT_EMV_DATA_PROVIDED_1

EVENT_EMV_DATA_PROVIDED_2

EVENT_TERMINAL_WOKEN_UP

EVENT_ERROR_REACTIVATION_SERVICE

EVENT_REACTIVATION_CHALLENGE_GENERATED

EVENT_REACTIVATION_PROCESSED

92 Static values of the 3C Emulator application

EVENT_NFC_OUTCOME_CHANGED

EVENT_EMV_PRECONFIGURED ?

EVENT_PINPAD_CONNECTED

EVENT_PINPAD_DISCONNECTED

EVENT_SRED_STATUS

EVENT_RKI_FILES_CREATED

EVENT_RKI_FILES_INJECTED

EVENT_SYSTEM_TIME_SET

EVENT_PINPAD_POWER_STATUS

EVENT_PINPAD_INFO

EVENT_FILES_WRITTEN

EVENT_FILES_READ

EVENT_SECURITY_LUHN_DIGIT_CHECKED

EVENT_SECURITY_KEY_VERSION_LOADED

EVENT_SECURITY_KEY_CHECK_VALUE_LOADED

EVENT_SECURITY_KEY_INJECTED

EVENT_BLUETOOTH_STATUS_LOADED

EVENT_BLUETOOTH_DISABLED

EVENT_BLUETOOTH_ENABLED

EVENT_BLUETOOTH_SCAN_FINISHED

EVENT_BLUETOOTH_DEVICE_PAIRED

EVENT_BLUETOOTH_DEVICE_UNPAIRED

EVENT_BLUETOOTH_PAIRED_DEVICES

EVENT_BLUETOOTH_DEVICE_VISIBLE_ENABLED

EVENT_BLUETOOTH_DEVICE_VISIBLE_DISABLED

EVENT_BLUETOOTH_PIN_DEFINITION

EVENT_BLUETOOTH_TETHERING_ENABLED

EVENT_BLUETOOTH_TETHERING_DISABLED

EVENT_ERROR_BLUETOOTH

EVENT_CARD_PRESENT

EVENT_CARD_NOT_PRESENT

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Motivation and Objectives
	1.4 Work Structure

	2 Payment Terminal
	2.1 Introduction
	2.2 Payment Process
	2.2.1 From Merchant to Bank
	2.2.2 Smart Cards and ICC
	2.2.3 PoS Terminals

	2.3 EMV Protocol
	2.3.1 EMV Data Elements, Files and Commands
	2.3.2 EMV Transaction Flow
	2.3.3 EMV Security Mechanisms
	2.3.4 EMV Security Vulnerabilities

	2.4 Payment Terminal Emulator Niche
	2.5 Emulator Software Application
	2.6 Summary

	3 Requirements
	3.1 Introduction
	3.2 Expected system behavior
	3.3 Requirements
	3.4 Use Cases
	3.5 System Model
	3.6 Project Technology Stack
	3.7 Summary

	4 Architecture
	4.1 Introduction
	4.2 System Architecture
	4.3 Application Architecture
	4.4 Summary

	5 Implementation
	5.1 Introduction
	5.2 Graphical User Interface
	5.2.1 Payment Transaction
	5.2.2 Application Menu
	5.2.3 Execute Operations
	5.2.4 Test Card Configuration

	5.3 Business Logic Implementation
	5.3.1 ``T = 1'' Protocol
	5.3.2 CDA Algorithm
	5.3.3 Cardholder Verification
	5.3.4 External Service Evidence
	5.3.5 Certification Authority
	5.3.6 Receipt Printing
	5.3.7 Multi-language Support

	5.4 Database
	5.5 Design Solutions
	5.6 Test Report
	5.7 Summary

	6 Results
	6.1 Results
	6.2 Summary

	7 Conclusions and Future Work
	7.1 Conclusion
	7.2 Further Work

	References
	A Static values of the 3C Emulator application
	A.1 3C Emulator Currency codes
	A.2 3C Emulator Operations
	A.3 3C Emulator Events

