
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Property Tests as Specifications
Towards Better Code Completion

Afonso Jorge Ramos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Hugo Sereno Ferreira, PhD

Second Supervisor: André Restivo, PhD

July 30, 2020

Property Tests as Specifications Towards Better Code
Completion

Afonso Jorge Ramos

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: João Pascoal Faria
External Examiner: João Miguel Fernandes

Supervisor: Hugo Sereno Ferreira

July 30, 2020

Abstract

Despite significant advancements in modern software development, size, complexity, and intractabil-
ity are also growing rampantly, leading to an increased focus on the software development process
and requiring shorter bug fixing and maintenance cycles, to simplify and solidify the final product.
One of the barriers toward this shift has been the time consuming, painful, and expensive process
of debugging. Recent studies have shown that around 50% of the development process comes from
debugging, from the exhaustive effort to identify failed executions, the process of implementing
the fixes, to the validation of said fixes, which are mainly executed manually, all contribute to this
problem.

Automatic Programming is a research field that has seen a growing interest in latest years. This
field proposes the synthesis of programs from requirement specifications or higher-level abstractions,
automatizing the development process using a set of different techniques. Automatic Program
Repair (APR) focuses on the identification, location, and production of bug-fixes, alleviating the
developer from such efforts and thus phase out the daunting debugging time from the development
cycle. Nevertheless, a myriad of APR software solutions exist, many have been around for a long
time, which can be achieved with a wide range of techniques, algorithms, and heuristics, with fixes
typically arising from the existence of a well-formed test-suite.

Current APR solutions’ integration with an IDE is almost non-existent, and, as such, we propose
a code completion tool capable of providing semantic suggestions, in addition to the standard IDE
syntactic suggestions, as tactically predictive live feedback. Most APR solutions use test suites as
specifications, though, most of these are in the form of example-based testing, requiring numerous
test cases to check for all potential problems, which becomes undesirably burdensome and error-
prone. In this work, we argue that the use of Property-Based Testing (PBT), a testing technique
that generates random input data to verify the expected behaviour, is an improved specification to
form semantic code completion suggestions providing developers with an improved live automatic
program repair tool without risking test overfitting.

Our implemented solution, unifies these concepts, and brings to developers an open-source
tool, that places itself ahead of the developer, requiring a not as sizeable quality of suggestions,
by merely improving developers’ reasoning with the added bug localisation and fix suggestions,
through mutation generation. Herewith, our solution, achieves a shorter development cycle, better
code quality and, facilitates coding by accelerating the repair time, which can be observed in our
results. Furthermore, in our results, we observed a wide acceptance of PBT frameworks, as well
as a treacherous trust in incomplete example-based test suites, proving the need for PBT in Test
Driven Development (TDD). Finally, an overall acceptance and trust of the tool was obtained,
accompanied by a shrinking scepticism of APR through the use of our tool.

Keywords: Live Automatic Programming Repair (LAPR), Automatic Programming Repair (APR),
Property-Based Testing (PBT), Test Driven Development (TDD)

i

ii

ACM Categories: Software and its engineering⇒ Software creation and management⇒ Software
verification and validation⇒ Software defect analysis⇒ Software testing and debugging;
Software and its engineering ⇒ Software creation and management ⇒ Software development
techniques⇒ Automatic programming

Resumo

Apesar dos avanços significativos no desenvolvimento de software moderno, o tamanho, a complex-
idade e a intratabilidade do software cresce de forma igualmente acelerada, focando-se, cada vez
mais, no processo de desenvolvimento de software e reduzindo os ciclos de correção e manutenção
de erros, para simplificar e solidificar o produto final. Uma das barreiras para essa mudança foi o
processo demorado, doloroso e caro de depuração. Estudos recentes demonstraram que cerca de 50
% do processo de desenvolvimento é originado na depuração de código, da procura por falhas de
implementação das correções e das validação dessas mesmas correções, que, nos dias de hoje, são
ainda executadas manualment.

A programação automática, um campo que tem vindo a despoletar um crescente interesse,
propõe a síntese de programas a partir de especificações de requisitos ou abstrações de nível
superior, automatizando o processo de desenvolvimento usando um conjunto de técnicas diferentes,
tem aumentado a níveis nunca antes vistos. O conceito de Automatic Program Repair (APR)
concentra-se na identificação, localização e geração de correções de bugs, aliviando o programador
de tais esforços, e, dessa forma, eliminando o assustador tempo de depuração dos processos de
desenvolvimento. No entanto, existem já inúmeras soluções de APR, muitas destas há muito tempo,
que alcançam os seus objetivos com uma ampla gama de técnicas, algoritmos e heurísticas, com
correções normalmente decorrentes da existência de um conjunto de testes bem formado.

Soluções atuais de APR possuem, no entanto, uma integração em IDEs quase inexistente e,
como tal, aqui propomos uma ferramenta de conclusão de código capaz de fornecer sugestões
semânticas, além das sugestões sintáticas padrão de IDEs, como live feedback taticamente preditivo.
A maioria das soluções APR usa suítes de testes como especificações, no entanto, a maioria destas
é na forma de testes baseados em exemplos, exigindo vários casos de teste para verificar todos os
potenciais problemas, algo que fácilmente se torna indesejável, dispendioso e propenso a erros.
Neste trabalho, argumentamos que o uso de testes baseados em propriedades (PBT), uma técnica
de teste que gera dados de entrada aleatórios para verificar o comportamento esperado, é uma
especificação aprimorada para formar sugestões semântico de code completion, fornecendo aos
desenvolvedores uma solução de live APR.

A solução implementada unifica estes conceitos, fornecendo aos desenvolvedores uma ferra-
menta de código-fonte aberto, que se coloca à frente do mesmo, o que exige uma qualidade não tão
alta de sugestões, simplesmente melhorando o raciocínio dos desenvolvedores com a localização de
bugs e sugestões de correção, através de geração de mutantes. Assim, a nossa solução alcança um
ciclo de desenvolvimento mais curto, melhorando a qualidade do código, facilitando a programação
e acelerando o tempo de reparo, o que pode ser observado nos nossos resultados. Além disso, nos
nossos resultados podemos observar uma crescente aceitação de testes baseados em propriedades,
bem como uma confiança, por parte dos participantes, em conjuntos de testes incompletos baseados
em exemplos, provando a necessidade de PBT no desenvolvimento orientado a testes. Finalmente,
foi obtida uma aceitação e confiança gerais da ferramenta, acompanhadas de um ceticismo cada
vez menor de soluções APR pelo uso de nossa ferramenta.

iii

iv

Acknowledgements

First and foremost, my sincere gratitude goes to my parents, who have always supported me in
all my life choices, provided me with the all the tools to succeed, and guided me through life,
while continuously staying the greatest example of who to be. They, alongside with my sister,
have always been there for me, both in physical presence, which was increased in the past few
months, and in emotional presence, for their continued support, constant worry and help with my
unfortunate difficulties. I cannot forget to mention Zoey, who has been a great companion through
a lot of days during this pandemic where my happiness was hard to grasp, but she always found a
way of helping me let go of my troubles.

To the friendships that feel formed decades ago, the friendships formed in the start of this
feupian journey (a spoonful of HUMUS is always good, especially those taken during all-nighters
in Discord), and the friendships that have only strengthened in the past two years, an enormous
thank you, because with you I have always felt happy, and you have helped me grow in ways I
could never imagine.

At last but not least, an extreme thank you to André and Hugo, who always motivated me to do
better, pushing for improvements, and always expecting the best of me. Their patience, guidance
and support were crucial to the proud conclusion of this dissertation.

Afonso Ramos

v

vi

“Talk is cheap.
Show me the code.”

Linus Torvalds

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation . 3
1.4 Objectives . 4
1.5 Document Structure . 4

2 State of the Art 7
2.1 Software Engineering . 7
2.2 Software Development Process . 8
2.3 Live Programming . 9
2.4 Automatic Programming . 10
2.5 Automatic Program Repair . 11

2.5.1 Generate and Validate Program Repair 14
2.5.2 Semantics-Based Program Repair . 16

2.6 Property-Based Testing . 17

3 Problem Statement 19
3.1 Overview . 19
3.2 Issues . 20
3.3 Hypothesis and Research Questions . 22
3.4 Validation Methodology . 23
3.5 Proposal . 23

4 Proposed Solution 25
4.1 Contextualization . 25
4.2 Objectives . 25
4.3 Implementation . 27

4.3.1 Automated Program Repair . 28
4.3.2 Language Server Protocol . 29
4.3.3 Mutation Generation . 31
4.3.4 pAPRika Extension . 37
4.3.5 Property-Based Testing Framework . 41
4.3.6 TypeScript Support . 42
4.3.7 General Improvements . 42

4.4 Summary . 43

ix

x CONTENTS

5 Empirical Evaluation 45
5.1 Objectives . 45
5.2 Guidelines . 46
5.3 Planning . 47

5.3.1 General Public Questionnaire . 47
5.3.2 Usability Questionnaire . 48

5.4 Tasks . 50
5.4.1 General Public Tasks . 50
5.4.2 Usability Tasks . 52

5.5 Results . 55
5.5.1 Participants’ Profile . 56
5.5.2 Background . 56
5.5.3 Post-Test Survey . 57
5.5.4 Usability Questionnaire . 58
5.5.5 General Public Questionnaire . 63

5.6 Threats to Validity . 69
5.6.1 Construct Validity . 69
5.6.2 Internal Validity . 70
5.6.3 External Validity . 70

5.7 Discussion . 71
5.8 Summary . 75

6 Conclusions 77
6.1 Summary . 77
6.2 Main Contributions . 78
6.3 Future Work . 79

A General Public Questionaire 81

B Usability Questionaire 89

References 101

List of Figures

2.1 Software Development Life Cycle example. 9
2.2 Extended version of the liveness hierarchy . 10
2.3 Timeline of the evolution of the research on test oracles 12
2.4 Generate and Validate repair process . 15
2.5 Semantics-driven repair process . 16

4.1 Flowchart of the automated program repair process 27
4.2 Difference between an implementation without LSP versus one with it. 29
4.3 Example notification exchange between pAPRika client and server. 30
4.4 Tool’s settings within the settings menu of Visual Studio Code. 38
4.5 Display of the tool’s progress on the bottom left corner of Visual Studio Code. . . 38
4.6 Underlined potential fix locations by pAPRika. 39
4.7 Underlined potential fix location in Diogo Campos’ tool 40
4.8 List of problems generated by the tool. 40
4.9 Deployment of fix suggestions. 41

5.1 Sample of example-Based tests for myParseInt. 51
5.2 Sample of example-Based tests for longestCommonSubstring. 51
5.3 Example properties for myParseInt. 52
5.4 Example properties for longestCommonSubstring. 52
5.5 Sample of example-Based tests for myParseInt. 53
5.6 Sample of example-Based tests for longestCommonSubstring. 53
5.7 Bar chart with the participants’ most important features of the tool. 63
5.8 Bar chart with the participants’ features of the tool that should be improved on. . 63
5.9 Pie chart with the highest completed degree of education of participants. 64
5.10 Histogram with the number of participants per years of professional experience. . 64
5.11 Bar chart for task 1’s myParseInt assessment. 65
5.12 Bar chart for task 1’s longestCommonSubstring assessment. 65
5.13 Bar chart for task 2’s myParseInt assessment. 66
5.14 Bar chart for task 2’s longestCommonSubstring assessment. 66
5.15 Bar chart for task 3’s myParseInt assessment. 67
5.16 Bar chart for task 3’s longestCommonSubstring assessment 68
5.17 Bar chart with the participants’ most important features of the tool. 69
5.18 Answers to the post-test section of both questionnaires. 73

xi

xii LIST OF FIGURES

List of Tables

5.1 Statistical measures and p-value for hypothesis tests on background scores. . . . 58
5.2 Statistical measures and Mann–Whitney U (p) of time to solve each problem set. 59
5.3 Scoring of questions per problem, according to the use of the tool. 61
5.4 Comfortability score, per participant, for questions F1 to F6, based on the use of

this tool. 62
5.5 Statistical measures of background scores. 64
5.6 Comfortability score, per participant, for questions F1 to F6, based on the provided

gifs. 68
5.7 Levene test and Student t-test, for questions F1 to F6, between both questionnaires. 72

xiii

xiv LIST OF TABLES

Abbreviations

APR Automatic Program Repair
AST Abstract Syntax Tree
CI Continuous Integration
CD Continuous Deployment
IDE Integrated Development Environment
LHS Left Hand Side
LSP Language Server Protocol
PBT Property-Based Testing
RHS Right Hand Side
TDD Test-Driven Development
VS Visual Studio

xv

Chapter 1

Introduction

1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation . 3
1.4 Objectives . 4
1.5 Document Structure . 4

This chapter establishes the subject, motivation, and scope of this dissertation and, then,

proceeds to define the problem. Firstly, Section 1.1 provides an overview of the context surrounding

this work, followed by Section 1.2 which identifies the problem meant to be solved. Section 1.3

clarifies the importance of these areas of work and why it deserves the attention it has been having,

and Section 1.4 describes the objectives of this dissertation. Finally, the structure of this document

and its content is outlined within Section 1.5.

1.1 Context

In a world full of instant feedback and knowledge at the distance of a click, software develop-

ment has also delved into the immediacy of instructions and/or suggestions. Negative effects of

such minute interaction of social media aside, for most intellectual activities, this instantaneous

feedback has been proven superior to delayed feedback, even increasing the gain of expertise

[KKH13, KA72, EKS93]. Whence modern software development has seen growing advancements

in programming environments that have allowed similar reactive feedback when software features

and implementations change. These aforementioned advancements are, somewhat, a result of the

ever-growing size, complexity, and intractability of software, which reflects the critical resource

that it is within modern society, posing unique and difficult challenges, and stress on software

development organizations and teams [FD14]. And it is well known that great responsibility is the

inseparable consequence of great power [Fra93], therefore we must ensure the trust and reliability

1

2 Introduction

of software and, one way to do so is to increase mastery of software developers and reduce risks of

failure.

Accordingly, providing developers with tools that provide valuable real-time feedback serves to

mitigate manual bug fixing, reduce time and cost spent for debugging, which is estimated to reach

up to 50% of the development process [BJ07], and to automate the software development process.

Furthermore, Software is one of the most crucial and complex components of any sophisticated

product or service, and as Lehman’s laws of software evolution state, when functionality grows,

there is a matching decrease in quality and increase in complexity [Leh80, LR01], as such, for

quality to be guaranteed, additional methodologies must be found. To reach this goal, many

frameworks have been created, however, many have two big elephants in the room, the lack of

liveness, as per S. Tanimoto [Tan13], and the fact that most patches are overly specific to the

specifications by exploiting their specificities and weaknesses [SBLB15]. As per the latter, fixes fail

to generalise to the held-out tests, ending up, borrowing the term from machine learning, overfitted.

Given this problem, D. Campos [Cam19] created such a framework revamped the feedback loop

of the edit-compile-run software development cycle towards a continuum, i.e., accelerating and

facilitating coding for the developer. However, such a solution clears only the smallest of the two

elephants, since it does not fix the overfitting created by the necessity of extensive unit tests as

specifications. Subsequently, we hypothesise that we can rectify this problem by using property-

based testing as a specification, further expanding the tested area, augmenting the probability of

finding bugs.

Reframing, Software must not be seen as a commodity, as it has a cost associated, especially

when, nowadays, most of the development costs of software systems befall post-deployment through

maintenance and evolution [MS06] and, consequently, reducing the total development time of

a software system is highly beneficial for society as a whole. From the myriad of techniques

and approaches, in this work, we will be focusing on automating the steps of the developing and

debugging process, by providing automatic build tools and intelligent semantic code completion

from property-based unit tests.

1.2 Problem Definition

The rising complexity of software systems has created a very high interest in tools that allow

developers to create, design and debug robust and safe software faster while preserving or even

increasing its quality, robustness, and maintainability. Thus, current Automated Program Repair

(APR) solutions are already present and used within the scientific community which approach or

delve into this fundamental obstacle, both with studies and tools. However, such tools are still

awfully underused within software development teams and organizations due to several obstacles

that prevent them from their wide use. Therebetween, the necessity of specification correctness

and completeness to properly repair automatically using current techniques and the sometimes

unreadable, and of questionable maintainability, machine-generated repairs. To achieve specification

completeness, its creator has to think of all the possible cases, though if such test cases can be

1.3 Motivation 3

thought of, they are probably already well regarded during their development, ending up with

success during the testing phase. Therefore, there is a need to reach the test cases that the test

creator cannot reach. Additionally, a problem that almost no APR solution has yet been able to

repair, is the matter of overfitting, as most patches are overly specific to specifications, failing to

customize the fix to the problem instead of to the solution.

Simultaneously, code-completion, an integral part of modern Integrated Development Environ-

ments (IDEs), is highly useful to accelerate code-writing and to assist developers in avoiding typos.

Conventional code completion systems are ad-hoc and neither complete nor sound and propose

exclusively static type suggestions of the programming language, consequently, it is common for

such suggestions to be irrelevant for a specific working circumstance. Nonetheless, the suggestions

presented happen to stay a step ahead of the programmer and provide live feedback, i.e., provide

tactically predictive feedback [Tan13], even if solely static.

This dissertation seeks to research whether we can kill both birds with one stone, by taking

advantage of APR solutions to suggest semantic suggestions to the developer while using properties

to define specifications. As this solution needed not to repair software after its development, but

rather during, it would introduce a human step into the process, taking advantage of both the

machine suggestions and the developer’s reasoning, as the repairs would be merely suggestions,

mitigating the readability and maintainability concerns previously mentioned. Automated program

repair is an emerging and thrilling field of research that enables automated rectification of bugs and

vulnerabilities in software, and by presenting such a panacea, we intend to present a modern twist

to the automated program repair field.

1.3 Motivation

Since software still cannot be seen as a commodity, and most of the development costs of software

systems befall post-deployment through maintenance and evolution [MS06] with some reports

claiming that modifications made after its first delivery can reach up to 90% of the total project

cost [SPL03], reducing such costs are of the utmost importance. The predicament of never-ending

maintenance is mostly caused by none other than bugs, the colloquial term for programming

mistakes, a task which can be time-consuming, difficult and tediously manual. Such plight has

encouraged a wide range of work on their automatic identification and elimination. For this

identification and elimination, i.e., APR solutions, which constitutes a substantial part of software

maintenance, countless uses can be found, from improving programmer productivity to outright

generating hints for following with specification. Nevertheless, we aim to reduce the time and cost

spent during both debugging and development, mitigate the cumbersome task of manual bug fixing

and to automate the software development process.

Be that as it may, tools must integrate well with development environments to achieve wide

adoption, and even if it is something that has been achieved by some research groups, none have

reached the desired adoption. Regardless, the most prominent challenge in today’s research on APR

is weak specifications, which we intend to solve using Property-Based Testing (PBT), where rather

4 Introduction

than writing a myriad of unit tests by hand, which in turn may cause test overfitting, only general

properties must be specified. With such implementation and approach, we manage to create a simple

to use, useful, and efficient framework that can achieve valuable real-time feedback empowering

developers to build software faster by squeezing the edit-compile-run software development cycle

into a pulp.

1.4 Objectives

Software’s increasing size, complexity, and intractability are creating strong barriers to fast and

efficient development. Furthermore, stricter release requirements are pressuring for shorter bug

fixing and maintenance cycles, turning the responsibility to developers for timely developing high-

quality software. For these reasons, the industry has seen an increase in the research of providing

developer feedback as early on the development process as possible, evaluating if such changes

influence developers, reduce their workload, and affect in what they produce positively.

Therefore, the purpose for this dissertation is threefold, that is, to gather the state of the art on

the topics of automatic programming, unit testing, language server protocols, and respective tools;

to create a selection of suitable approaches to automatically generate code completion suggestions

based on existing specifications, in the form of properties; and, finally, to develop a plugin capable

of suggesting smart semantic auto-completion, using live testing, to the developer, enabling both

automated rectification of bugs and vulnerabilities, and accelerated development.

Culminating into our main research questions, which intend to gather evidence on whether it is

possible to enhance the code’s quality and development speed, by creating a framework capable of

revamping the edit-compile-run software development cycle’s feedback loop towards a continuum,

effectively providing coding conveniences for the developer, as well as, harnessing the power of

property-based testing.

1.5 Document Structure

The remainder of this dissertation is organised into the following five chapters:

• Chapter 2 (p. 7), State of the Art, introduces the background information and explanation

about concepts necessary for the full understanding of this dissertation, as well as the state of

the art of automatic program repair.

• Chapter 3 (p. 19), Problem Statement, lists the issues found in some solutions, presents the

problems this dissertation aims to solve, as well as the approaches that are taken to solve it.

• Chapter 4 (p. 25), Solution, proceeds to provide an overview and description of the imple-

mented solution in detail.

• Chapter 5 (p. 45), Empirical Evaluation, thoroughly describes the validation process and

analyse its the answers to the research questions.

1.5 Document Structure 5

• Chapter 6 (p. 77), Conclusions, summarizes the work developed, concludes the dissertation,

and includes a reflection on future contributions.

6 Introduction

Chapter 2

State of the Art

2.1 Software Engineering . 7
2.2 Software Development Process . 8
2.3 Live Programming . 9
2.4 Automatic Programming . 10
2.5 Automatic Program Repair . 11
2.6 Property-Based Testing . 17

Throughout this chapter, we will briefly introduce, describe and contextualize most concepts

surrounding the topic of this dissertation. Firstly, we introduce the very notion of Software Engineer-

ing (cf. Section 2.1), to then proceed to explain the increasing interest in the Software Development

Process (cf. Section 2.2, p. 8), followed by the concept of live programming (cf. Section 2.3, p. 9).

After these introductions, we delve into the distinct matters of automatic programming (cf. Sec-

tion 2.4, p. 10), automatic program repair (cf. Section 2.5, p. 11), and property-based testing

(cf. Section 2.6, p. 17).

2.1 Software Engineering

Software engineering is one of the many engineering curriculums, concerning software production

phases from start to finish, from the forging of system specifications to system maintenance after

deployment [Som10]. Software engineers, analogous to all engineers, have the task of making

things work, applying methods, theories, and tools wherever necessary or possible, considering the

whole development process, technical or not. Likewise, accepting that there are constraints to work

within is also an important quality of any engineer, as it is intrinsic to achieve results of a certain

quality standard without compromising on budget and schedule.

Since the first computer, the world has been growing exponentially on its dependence on soft-

ware, with whole national infrastructures and utilities managed by code, thus, software engineering

has become fundamental in the functioning of society. One of the problems per se of software

7

8 State of the Art

is that it is intangible and abstract, not constrained by physical laws, meaning that software can

more easily get out of hand, getting harder to understand, complex and easily inflexible to changes.

Ubiquity of software is also a problem, as the easiness with which one can develop software is

increasing year by year without following any methods or techniques, which at first may seem a

good thing, but it lowers reliability, expectations, and ends up increasing costs, as it can be seen in

the development of Iowa’s caucus app [War20] where the lack of adequate technical experience

and high demands spurred chaos on an election night. In the end, software fails mostly due to the

increasing demands of more complex systems without software engineering techniques on par with

such needs, and low expectations from the increasing number of unqualified people working in the

area.

All these concerns exacerbate the importance of software engineering, as society relies on it

more and more with the need for achieving trustworthy and reliable systems while keeping costs

and development speed low, however, costs are mostly post-deployment through maintenance and

evolution [MS06]. In light of such obstacles, and as engineering is based on finding the best method

for specific sets of situations, a systematic approach in software engineering is used, i.e., software

development process.

2.2 Software Development Process

With the ever-increasing relevance of software engineering, due to many modern products, processes,

and services core elements’ shifting towards software playing a central role, pressure accompanied

by new and tough challenges are rising. Hence, software processes are created and specified to

facilitate human comprehension, communication, and coordination; to describe, evaluate, automate,

and improve procedures, techniques, and policies used for software development proficiency; and

to assist with project management [BS14]. Like all intellectual and creative processes, software

processes are complex and heavily rely on good judgment and decision-making. For these reasons,

there has been a move towards standardization of said processes, to introduce new engineering

methods and techniques, and good software engineering practices, but also to reduce diversity

across and within organizations, therefore, reducing training required [Som10].

However, there are no perfect processes that work across all industries, therefore these change

and adapt to improve the efficiency of the process itself and people following such process, the

quality of the work products, and the development schedule [BS14]. The appearance and wide

adoption of open source software, agile, and numerous cross-platform development frameworks

have, though, shaken the software development and distribution practices, and now development

teams are increasingly integrated within the product teams to minimize time to market. Nevertheless,

these changes have brought some consequences to the software development life cycle, such as

non-functional requirements related to performance and fault tolerance analysis shifting from the

implementation to the development phase; systems moving towards becoming a combination of

several development products and having a dynamic and on-the-fly reconfiguration of run-time

components and infrastructure; tieing the design of software with the traits and properties of the

2.3 Live Programming 9

Figure 2.1: Software Development Life Cycle example [Hus16].

infrastructure to be employed [FD14].

In the end, the traditional distinctions between implementation, operation, and design are prone

to disappear or be radically redefined. Such change is to be exacerbated with the rise of automatic

program repair solutions, due to its insertion in the software development process and the expected

reduction of development and debugging time.

2.3 Live Programming

In this world of instant feedback and knowledge at our fingertips, software development has

also delved into the immediacy of instructions and/or suggestions. Social media, however, a

great example of such feedback, has effects that are of questionable consequences, but, for most

intellectual activities, this instantaneous feedback has been proven to be superior to delayed

feedback or its absence, even increasing the gain of expertise [KKH13, KA72, EKS93].

At the same time, IDEs used in modern software development have something that many

can’t live without anymore, code-completion, accelerating code-writing and assisting developers

in avoiding typos and easy to overlook mistakes. However, most of these systems are ad-hoc,

incomplete, and propose mainly static suggestions of the programming language, and, therefore, its

suggestions are mainly irrelevant to the specific working circumstance.

In this regard, at the beginning of the 90s, Steven L. Tanimoto proposed a scale to classify the

programmer’s ’live’ feedback with four levels, named the liveness scale [Tan90]. Liveness is the

characteristic associated with the live execution of a program while modifying it and providing feed-

back to the developer about their development [Tan13]. Culminating in level 4, a program is "fully

live", permitting edits while running, and updating to the most recent version immediately without

interruptions, a very common level to be achieved by currents programming environments. Nonethe-

less, as predicted in Steven L. Tanimoto’s paper, additional levels of liveness were defined, by none

other than himself, adding two extra levels, totaling the six levels, which can be seen in Figure 2.2,

10 State of the Art

that defines the degree of ’live’ feedback given to the programmer. The new level five, named

tactically predictive, is not solely constantly running, but also predicts future programmers’ actions

with multiple alternatives. On the final level, named strategically predictive, predictions are strate-

gically analysed to take into consideration every possible desired behavior of a larger software unit.

Figure 2.2: Extended version of the
liveness hierarchy [Tan13].

However, live programming is not all well and good,

as it has its handfull of criticisms such as its higher com-

putational burden on the system, or the lack of need for ex-

ecutions for every little change. Many of such criticisms

were, though, already addressed by S. Tanimoto, with the

aforementioned being from the time-frame between ex-

ecutions ability to be manipulated according to the needs

of each project, and the resources required, which are

no longer as unwieldy as they once were, though, cases

where such is not true, can also be found [Tan13]. Look-

ing at the bigger picture, more recent studies consider

that Live Software Development achieves three key char-

acteristics, as per Aguiar et al, namely, its abstraction,

agnosticism, and holism [ARC+19].

The purpose of live programming is, then, to break

away from the traditional development cycle moving the

feedback loop towards a continuum, effectively providing

coding conveniences for the developer. The multi-phase

development process becomes one, and, from the con-

stantly running program, edits while executing, and debugging within the initial development itself,

we arrive at a very different development setting. Such a unique phase minimizes the time between

a code change and its respective effect, improves programmers’ efficiency and performance, and

supports learning with the instantaneous feedback. Ultimately, we can expect to obtain immediacy,

from the quick overview of the outcomes instead of the cognitive load of mind executions, explo-
ration, per the trial and error process aided by its immediacy, and stability, by creating a bigger

awareness of the system’s outputs [ARC+19].

2.4 Automatic Programming

Conceived as an issue of the field of genetic programming [OVGB10], automatic programming has

become a goal of computer science, and artificial intelligence, since the birth of the developer. This

concept, in better words, is nothing more than the application of what Samuel has famously said,

“tell the machine what to do, not how to do it” [Sam59], to the field of programming. However, even

with the current progress of the genetic programming field, including its widespread employment

across multiple challenges, automatic programming has stayed mostly unachievable [RW88].

2.5 Automatic Program Repair 11

As a whole, the general solution to a computational problem is writing a computer program

that solves such a problem. Whereas for researches of genetic programming, the target solution

refers to the capability of automatically generate code that solves such problems, in a scalable

and independent manner. For this reason, automatic programming is considered to be another AI-

complete problem [OS19], entailing that these problems are of so high computational difficulty that

only a strong AI would be able to solve. Though, what was once considered a mere construct from

an idyllic view of reality has seen small, but significant, advancements [Koz10]. However, recent

advancements have shifted focus towards the increasingly higher-level programming languages,

which has been helping to drive progress in the field. In other words, the majority of success and

focus in the field has not been a true result of automatic programming [OS19], but rather the result

of a wider perspective on the problem, that encompasses other fields, such as software engineering,

machine learning, compiler optimisations, among others.

In other words, “the dream of automatic programming has eluded computer scientists for at

least 50 years” [FNWL09], shifting the focus towards automatic program repair. And even though

the automatic program repair field does not create programs from the ground up, they do generate,

from existing buggy programs, fixes capable of repairing existing faults.

2.5 Automatic Program Repair

Most of the development costs of software systems have been proven to befall post-deployment

through maintenance and evolution [MS06] with some reports claiming that program repair (PR) and

evolution have dauntingly risen to the highest place in the cost leaderboard of software development

[SPL03], therefore, optimizing these are of the utmost importance. This predicament of the never-

ending maintenance is caused by none other than bugs, the colloquial term for programming

mistakes or faults, a task which is highly time-consuming, difficult and tediously manual. Ordinary

debugging activities are comprised of confirmation, triage, and localization and, only then,

developers attempt to fix and validate said fix. Debugging is the process of identifying faults in

programs or to narrow down to a small number of lines where the fault is located. Although tools

exist for triage (e.g., [AHM06]), localization (e.g., [JH05, SND+11]), validation (e.g., [YYZ+11])

and even confirmation (e.g., [LNZ+05]), repair generation has remained a mostly manual procedure.

Like in any manmade creation, software faces multiple faults, which, in turn, lead to invalid values,

deadlocks, or even crashes of entire systems. As soon as such issues occur in critical applications, it

can lead to great money losses or even human lives [ZC09, BB19]. A wide range of work on their

automatic identification and elimination, which has had great advancements over the past decade,

has been encouraged by such plight.

Finding and fixing as many bugs as possible has been a battle since the dawn of software and a

longstanding goal in software engineering, from which the automatic program failures detection

field was born. It is important, however, to clarify the difference between two very closely related,

but distinct, fields, i.e., software healing and software repair, both reactive techniques to failures in

program execution [GMM19].

12 State of the Art

• Software healing is defined by the detection of software failures at runtime and deployment

of modifications to reestablish normal operation of a given system.

• Software repairing is defined by the detection of software failures during development,

testing or design, and is applied at the source code level, localizing the bug and applying the

fix to hasten failures from the same fault.

In its essence, Automatic Program Repair (APR) aims to reduce the time and cost spent during

both debugging and development, mitigate the cumbersome task of manual bug fixing and to

automate the software development process, with bug fixing suggestions or outright direct fixes. In

a more holistic view, as Monperrus as put it [Mon18], "automatic repair is the transformation of

unacceptable behavior of a program execution into an acceptable one according to a specification".

Consequently, there has been an rampant interest increase on this research topic, as it can be seen

by the number of tools developed, but even with the growing number of tools developed (e.g.,

[WNLF09, LB12, LDVFW12, LNFW12, KNSK13, LR15, LLG16, LR16b, MYR16, XMD+17,

JXZ+18, LKK+18, MM18, TPW+18, XLZ+18, DLTL19, LKKB19, MBC+19, SSP19, VAH18,

HAM+20]), practical deployment remains an elusive goal. One reason for this lack of industry-wide

adoption is likely to be the rather limited types of bugs that current state-of-the-art APR approaches

can properly fix [LFW13, ZS15]. Furthermore, some approaches (e.g. [LDVFW12, KNSK13])

seem to only be able to fix elementary bugs, due to various limitations, and most of them produce

machine-generated repairs which are unreadable, and of questionable maintainability, i.e., unnatural.

Figure 2.3: Timeline of the evolution of the research on test oracles [PZ14].

However, from some substantial recent work, the utopic world of automatic program repair

has never been closer to materialization. For these APR solutions, countless uses can be found,

from automated continuous integration bug fixing, outright hint generation for the programmer, or

2.5 Automatic Program Repair 13

even at fixing specific categories of security vulnerabilities, specifically, buffer and integer overflow

[GPR19], e.g., at repairing the well-known Heart-bleed vulnerability [MYR16]. In short, existing

repair techniques usually fall within the following categories, which will be further detailed ahead:

• Generate and validate repair methodology, also named, failure-driven [Gin19], test-based

[XLZ+18] or heuristic repair [GPR19] (e.g., [LNFW12, LKK+18, JXZ+18, LKKB19]),

generate, within a search space, a large pool of possible repair candidates and then look for

the correct repair using optimization functions within said search space.

• Semantics-based repair methodology, also named, constraint-based repair [GPR19] (e.g.,

[MYR16, XMD+17, LB12]), take advantage of program synthesis and constraint solving to

generate repairs using semantic information, i.e., by satisfying said constraints derived from

the provided test-suites and symbolic execution.

Both techniques may be improved by the use of machine learning, commonly referred to as learning-

aided repair [GPR19]. In the end, studies and software repair techniques are various and very

recent, innovation and optimizations are being introduced every once in a while and, accordingly,

their results are very scattered and complicated to consolidate into a clear and better understanding

of the problem as a whole.

Throughout our work we will be mentioning a lot of APR specific vocabulary, which we will

further explain below:

• Bug - Even though literature is very sparse and confusing, using terms such as errors, failures

or faults for the same concept [Mon18], what we will mostly refer to will be bugs, i.e., the

root cause of errors, and, therefore, faults and programming mistakes will also be used to

refer to these. A bug is, therefore, a deviation from the expected behaviour.

• Specification - Set of expected behaviours. These may show up as tests, formal specifications,

natural language, formulas, etc, and evaluate acceptability, expectation, correctness, and,

sometimes, naturalness. A specification is then comprised of several oracles.

– Test-Suite - Input-output-based specification, built from a collection of test cases to

specify sets of behaviors from detailed instructions or goals for each.

– Pre and Post-Conditions - Pre-conditions validate parameters at the start of functions

before any other code is executed, while post-conditions validate the return value and

output parameters. This is a common specification within programs in Java.

– Abstract Behavioral Models - Model with a clear and simple concurrency that allows

"synchronous, as well as actor-style asynchronous communication" [Häh13]. These

models abstract away from I/O implementations and specific datatypes, while also

featuring code generators. Abstract behavioral models feature formal semantics and

were designed to reach high formal analysability.

• Oracle - Small gate that decides if the execution fulfills the pre-defined assertion. Ocassion-

ally, oracles are associated to their state in the evaluation of said program, i.e., bug oracles,

14 State of the Art

if refering to the failing test cases, or regression oracle, if refering to passing test cases

[SWH11].

• Repair Space - Collection of generated candidate patches, i.e., candidate modifications to

the program.

• Repair Location - Statement or group of statements to be modified to repair the program,

which may or may not be the buggy location [SSP19].

2.5.1 Generate and Validate Program Repair

A typical generate and validate repair is comprised of three steps, where the first step is fault
localization, whereby providing a test-suite with both passing and failing test cases, can select a

subset of a program’s sections with probable bug locations, commonly using spectrum-based fault

localization (SBFL) such as Tarantula [JH05], Zoltar [JAV09], and Ochiai [AZvG08]. With this

narrowed down search space, we can more efficiently pass to the second step, candidate patch
generation, which with predefined patch ingredients, a group of possible alterations that form a

candidate patch, produces potential candidate patches, i.e., mutations. Since the perfect repair

schema is yet to be found, these can be generated through random choice, genetic algorithms,

heuristically, or with deep learning models. Finally, patch selection and validation, since plausible

repairs can be incorrect, is responsible for evaluating each of the candidates, outputting one or

more possible patches. Validation is then performed by, usually, software-testing, the most used

validation technique, that puts candidate patches against the subset of tests in which the fault

resides in, and then, in theory, the complete suite, to ensure that repairs do not unintentionally

break other of the program’s functionalities. Despite plausible repairs often passing tests, they may

sometimes be unable to find a correct repair to most bugs, as it can be seen by most generate and

validate APR solutions. Moreover, since testing is computationally expensive, especially, with

a large number of tests and patches to be validated, mutation analysis can become troublesome,

limiting performant feedback. The candidate patch generation can be, commonly, performed in

three different change operators. It should, however, be noted that as Gazzola et al. [GMM19]

have established, generate and validate activities may be carried out following two major strategies,

search-based and brute-force, and, although the whole repair has been identified as search-based,

herein will use such term uniquely to classify only the subclass that uses search algorithms. In

a nutshell, search-based change operators via a heuristic search algorithm or randomly, while

brute-force strategies systematically generate every feasible alteration that can be produced within

the search-space while following a limited set of change operators and manipulations.

2.5.1.1 Atomic Change Operators

The atomic change operator applies changes in solely one location of a program’s Abstract Syntax

Tree (AST), e.g, inserting, modifying or deleting a certain statement or operator of an expression.

Since the atomic change operator requires an analysis of a specific location within the program,

2.5 Automatic Program Repair 15

Figure 2.4: Generate and Validate repair process [GMM19].

instead of full program analysis, it is considered to be the simplest of the change operators. Due

to its simplicity, these operators are applied more actively and efficiently, generating numerous

variants of the to be repaired program, increasing the odds of finding a fix. Throughout existing APR

tools that use atomic change operators, many differ in their algorithm and heuristic implementations

with varying levels of success.

2.5.1.2 Pre-Defined Templates

Change operators that derive from a set of pre-defined templates can alter one or more statements,

by, for example, defining complex change patters, instead of obtaining such by combining a random

amount of atomic operators. Such changes include templates that "expand synchronization blocks,

perform non-trivial manipulations on program conditions, and add code implementing predefined

access control policies" [GMM19]. Pre-defined templates are mostly explored with brute-force,

due to the high cost of applying templates, compared to atomic changes, with more search-based

algorithms.

2.5.1.3 Example-Based Templates

Example-based templates, also named history-driven program repair [Le16], try to address the

inaptitude of APR techniques purely based on common test-suites by generalizing many of the

features already implemented [LR16a]. Such a feat is achieved by using bug fixing history to

compose and employ repair templates as main guidelines for assessing repair candidates and

16 State of the Art

their quality, unlike the previous techniques, which girded to test suites as the only inputs. This

employment may be achieved by a heuristic evolution of said programs (search-based), or by

constantly performing changes to them (brute-force). The concept behind this technique is based

on the fact that current bug fixing is often similar, in nature, to past fixes, serving as a guide to the

new fault fixing.

2.5.2 Semantics-Based Program Repair

On the other hand, semantics-based repair focuses on fixing smaller and less generic bugs, such

as if-conditions and assignments, by devising a constraint that a patched section should satisfy,

which is treated as a function to be synthesized. These repairs are, therefore, easier to find, since

the technique does not try to produce a complete formalization of the repair problem, i.e. rendering

the search space more amenable, but rather, solely fix a very specific (set of) characteristic(s).

Figure 2.5: Semantics-driven repair process [GMM19].

Like in Generate and Validate PR, the semantics-based PR encompasses three main sequential

activities [GMM19] and is initiated by the behavioral analysis, which draws out semantic informa-

tion of proper and improper behaviors of the program. Such activity might explore a subset of all

specifications, test cases, source code, etc., to further devise what is deemed correct or faulty and to

reach conclusions on what to eliminate or modify. Secondly, the problem generation phase begins

which is responsible for exploiting the collected information to produce the actual constraints for

the problem. With such constraints defined, the next activity will be the fix generation which is in

charge of solving the actual constraints and generating a proposed code change, if possible.

Thus, in semantics-based repair, the actual formulation of the constraints is key, instead of the

solving mechanism, and its efficiency is higher when compared to search-based repair, however, its

effectiveness is lowered by its reduced capabilities and hard to solve constraints [Le16].

2.6 Property-Based Testing 17

2.6 Property-Based Testing

Complexity in large software systems has always been somewhat of guaranteed, and with the

ubiquity of software development, larger systems are turning into the norm. Such is a sage

assumption, as Software is one of the most crucial and complex components of any sophisticated

product or service, and following Lehman’s laws of software evolution, when functionality grows,

there is a matching decrease in quality and increase in complexity [Leh80, LR01]. Therefore, to

match the increasing complexity, methodologies to ensure and preserve software quality, robustness

and maintainability have been a prevalent topic of research of the latest years. Testing has been,

considerably, the most commonly used approach to ensure these requirements, however, it can be

highly time-consuming, and, consequently, costly. There have been, however, software development

guidelines that have been moving towards functional programming and type-checking to augment

trustworthiness in software, though, in practice it is not enough.

As test-based specifications towards automatic program repair tipically rely on common TDD,

i.e. it uses example-based testing, requiring long test generation sessions, where each input scenario

has to be considered by the developer itself. Such endeavour is, in on itself, already troublesome,

since, as one can imagine, no developer can think of all test cases possible of obtaining different

results. There will always be that one case that fails the tests, but the developer didn’t think of it. On

the other hand, Property-Based Testing (PBT) [FL94, FB97] is generative testing, i.e., unit tests

containing specific example inputs with expected outputs need not be provided, instead, properties

are defined and a generative-testing engine creates randomized inputs to verify such properties.

However, in early development, it is sometimes hard to envision properties and example-based

testing does provide for better feature compliance, therefore, there is still a place in the software

development cycle for the run of the mill unit tests. These later help serve as anchor points for

the development of property-based tests, which will cover a much wide input scope. Taking this

into account, we believe that the use of property-based testing as specifications towards automatic

program repair is capable of augmenting the number of bugs found, and, in turn, augment the

reliability of patches.

Furthermore, property-based testing frameworks require only a very small number of lines of

code, and test a different set of inputs each time, covering a larger domain space with a sizeable

difference from unit tests with the same amount of code. Even though the learning curve may

seem steep at first, thinking of properties instead of example-based test demand more cautious

thinking, and, thus, results in a better result [CH00], i.e. the initial investment may seem high, but

the reward is greater. Usually, these frameworks run hundreds of different inputs, and try to fail the

testing using a myriad of values from empty lists, negative values, and other possible edges cases.

Furthermore, it also passes high numbers, long lists, and strings with special characters. For cases

when users have custom data structures, most PBT frameworks also provide custom generators, to

allow for the random generation within a given data structure. Moreover, shrinking, i.e., shrinkage

of large inputs that failed for better understanding and reproducibility, and race conditions detection

are common features in PBT suites. In sort, properties provide more a concise and simpler approach

18 State of the Art

to the maintenance of test suites, and helps build a better test coverage [LTA11].

Chapter 3

Problem Statement

3.1 Overview . 19
3.2 Issues . 20
3.3 Hypothesis and Research Questions . 22
3.4 Validation Methodology . 23
3.5 Proposal . 23

We start this chapter by describing the problem that exists within the current automatic program

repair solutions (cf. Section 3.2, p. 20). We then proceed to give a brief overview of the listed

issues (cf. Section 3.1), leading up to our research questions (cf. Section 3.3, p. 22). Finally,

based on the state of the art (cf. Chapter 2) and the listed issues we present an initial proposal

(cf. Section 3.5, p. 23).

3.1 Overview

With the rising complexity of software systems, automated program repair solutions have seen a

growing interest by the industry to account for higher demands in quality, performance, robustness,

and maintainability. With that in mind, the scientific community has developed a myriad of studies

and tools to address this demand, however, their use is still crippled by some very pressing issues.

Individually, these issues are solved by many tools and solutions as mentioned in Chapter 2 (p. 7), but

as a whole, the research field is still far from creating a true panacea capable of solving all of them.

Furthermore, these tools have predominantly been restricted to academically oriented applications

(as only around half of the techniques have a tool available on the Web [GMM19]), therefore IDE

integration with patches as live feedback has been a rare sight only fulfilled by AutoFix [PFNM15]

and ccheck [LB12], with the most recent implementation by Campos [Cam19]. These integrations

allow for a speedup in development and an increase in productivity [BMM09], wherefore the latter

has implemented an efficient, practical, error preemptive and tactically predictive [Tan13] automatic

program repair tool. Though, several issues were put aside by Campos’ thesis, in particular, its

19

20 Problem Statement

completeness, overfitting and adaptability to other IDEs. Furthermore, this implementation lacked

the support for multiple errors, always presenting the user with a single suggested fix at a time, i.e.

the most recent suggested fix found, instead of all of them, limiting the amount of information the

user could get. In this work, to achieve specification completeness, the tests’ creator has to think of

all the possible cases, though if such test cases can be thought of, they are probably already well

regarded during their development, ending up with success during the testing phase. Therefore, there

is a need to find the test cases that the test creator cannot reach, as it has been proven that automated

test case generation can be helpful in the domain of program repair [MYR16, SBLB15, LLL16].

Additionally, APR solutions have not yet solved the matter of overfitting, as most patches, when

complete, are overly tailored to specifications, failing to identify the problem instead of to the

solution.

3.2 Issues

Even with all the automatic program repair (APR) solutions developed in the past decade, we can

still find several issues currently affecting most APR solutions [LR16a, QLAR15]. For now, APR

has been behaving as a hydra, where whenever we cut one obstacle off, two more would grow

back, which, in a sense blocks us from ever achieving perfect APR. For this reason, it is widely

considered that automatic programming is another AI-complete problem [OS19], entailing that

these problems are of so high computational difficulty that only a strong AI would be able to solve.

To put it in other words, we first must crawl to learn how to walk.

Future automatic program repair solutions should then focus on the following sections problems:

Automatic Program Repair Issues

1. Error preemption - Using APR solutions to fix bugs introduced in the past has been the

sole focus of APR solutions for a long time, however, providing developers with the tools to

build programs without errors in the first place is still a rather untouched research field.

2. Generality - Since the amount of programs and bugs that tools are able to fix is rather

small [LFW13], a broader application of these solutions has been seen to not counterbalance

the risk.

3. Credibility - Since programmers have yet to develop trust in these tools, mostly due to a

lack of understanding of their inner workings, credibility is one of the problems currently

affecting most APR tools’ real-world practicality.

4. Scalability - Scalability is one of the most impactful issues in this purpose since only a very

limited number of tools can find repairs within a short timeframe [GPR19, HO18, MYR16,

GGM19].

5. Maintainability - As many of the existing approaches follow a stochastic approach, and even

those that do not, fixes produced often are not as robust as a manmade fix would be, often

3.2 Issues 21

generating machine-generated repairs which are unreadable, unsound, and of questionable

maintainability [MYR15, CSC+19].

6. Efficiency - Many of the current techniques either try to find either minimal patches or try

to broaden the possible patches, minimizing the odds of finding and fixing as many patches

[QML+14, LCL+17, SL18, TPW+18, YB18].

7. Completeness - The strength of the oracles and their completeness are heavily dependent on

test suites, however, there is still no well-defined method for creating test suites capable of

enhancing APR solutions’ capabilities [ZZH+19].

8. Overfitting - Patches produced by many of the APR tools available face one of the biggest

challenges in this research field, patch overfitting, that is, patches produced are tailored

to the specific test data provided, sometimes even deleting functionality, greatly reducing

trust in integrating APR solutions in automated processes. Simply put, produced patches

may be incorrect since they are not automatically verified for correctness, instead they still

heavily rely on developers’ expertise to assess correctness, which, as humans, may fail.

Therefore, it is of the utmost importance that suggested patches to not crumble to overfitting

[SBLB15, MM18, KLB+19].

Investigation Issues

• Formalizing patch quality - Patch quality is one of the biggest hurdles in the practical adop-

tion of APR solutions [LFW13], and its reliability. Often characterised as patch soundness
or naturalness, patch quality is a metric that has yet to be defined and specified, therefore, it

forbids most APR techniques of becoming fully automated, demanding surveillance from

human developers. Thus, the ability to quantitatively measure, predict, and ensure functional

patch quality to then present humans with only the repairs that provide the highest quality

standards is an important step towards improving the current state of APR techniques. How-

ever, such is still farfetched as it would likely require studies to comprehend and measure the

factors that affect programmer understanding of a patch.

Technical Applicability Issues

1. IDE integration - The integration of APR solutions within IDEs is certain to help developers

avoid programming faults altogether, by presenting the developer with live feedback. This

accelerates the time to fix, since the need for the developer to analyse previously pushed code

that one might not recollect the exact functioning disappears, and, instead, suggested fixes are

presented throughout the development. Such has been proven by simple code completion tools

that display a level 5 in the liveness hierarchy, effectively providing "tactically predictive”

feedback [Tan13] which has been proven to speed up development and increase productivity

[BMM09].

2. Fix Cross-Validation - Due to many of the issues listed above, fixes produced by auto-

matic program repair techniques generally need to be validated by developers before being

22 Problem Statement

integrated by into the codebase. While some fixes might be checked trivially, many are non-

obvious and demand a particular degree of adjustment to be accomplished. For this reason,

although fixing faults automatically may seem extremely cheap, it is a naive assumption

ignoring the true cost of most automatic repair processes, as it does not take into account the

developers’ effort in inspecting outputs produced by software repair techniques.

3.3 Hypothesis and Research Questions

The product of this dissertation is founded in a hypothesis that sets the objectives for both its

development and implementation, which is:

“Using Property Tests as Specifications in an Automated Program Repair tool helps to

eliminate overfitting.”

Such a statement can be subdivided into different specific elements, serving as the building

block of our hypothesis, i.e. the research questions:

• Research Question 1 - “Are developers capable of understanding and formulating property-

based tests?”

• Research Question 2 - “Do developers believe in the completeness of example-based tests?”

• Research Question 3 - “Can property-based testing truly solve overfitting?”

• Research Question 4 - “Do developers believe a live Automatic Program Repair technique

is easy to use?”

• Research Question 5 - “Can developers see a positive impact on their workflow through

the use of a live Automatic Program Repair technique?”

• Research Question 6 - “Do developers trust the capabilities of a live Automatic Program

Repair technique?”

Furthermore, as validation of both Campos’ work [Cam19] and our own, we have decided to

take a deeper look at the research questions of the author:

• Research Question 7 - “Are users faster in reaching the solution when using a live Automatic

Program Repair tool?”

• Research Question 8 - “Are solutions generated by an Automatic Program Repair tool

different from the ones developed by human programmers?”

• Research Question 9 - “Are users aware of the rationale of solutions generated by the

Automatic Program Repair tool before accepting them?”

3.4 Validation Methodology 23

3.4 Validation Methodology

In this dissertation, to validate the main hypothesis, declared in the section above, a case study will

be defined, to be experienced by different participants in different scenarios. Science, as a field

based on experimental validation and repetition, allows us to corroborate hypotheses, assumptions,

and conjectures with studies such as this one since it has been proven again and again that such is

also the case of Software Engineering [FPG94]. Taking this into account, a controlled experiment

was envisioned to validate the hypothesis and research questions presented in Section 3.3. This

study will consist of evaluating the performance of developers when using the implemented Visual

Studio Code extension with properties as specifications and comparing it to the performance

when not using properties as specifications, by measuring if the overfitting caused by incomplete

example-based techniques can be eliminated with property-based testing.

With this objective in mind, we will define objetives of the validation (cf. Section 5.1, p. 45),

guidelines over which the study will conduct itself over (cf. Section 5.2, p. 46), further planning

of the empirical evaluation (cf. Section 5.3, p. 47), tasks to be performed (cf. Section 5.4, p. 50)

and, with such, the respective results obtained and their extensive analysis (cf. Section 5.5, p. 55).

From the results, we intend to extract important and highly pertinent data which may help us reach

conclusions about the proposed solution and our hypothesis (cf. Section 3.3, p. 22).

3.5 Proposal

As it has been noted, most APR solutions have demonstrated to have a very important limiting

factor, test suites, which may drop functionalities due to weak test suites, or, on the other end,

make fix generation too complex due to the strong test suites. Our focus for this work will

mainly revolve around eliminating overfitting, while introducing completeness, soundness, and

error preemption with a true real-world practicality, by integrating it as an extension to the

most popular IDE whilst using a modular architecture capable of easy adaption by other IDEs.

Notwithstanding, in our work we intend to implement and integrate the world of property-based

testing within the automated program repair research space, effectively killing two birds with one

stone, by taking advantage of APR solutions to suggest semantic suggestions to the developer

while using properties to define specifications. This solution, like its predecessor, implemented by

Diogo Campos [Cam19], would introduce the repair process during development instead of after,

combining the advantages of both the developer’s reasoning and the machine-generated repairs, as

repairs would be merely suggestions to improve the developer’s thought process.

As A. Marginean et al. have put it, developers are overall trusted in their abilities, therefore

developers are a highly useful final oracle [MBC+19], which, for now, seems to be a good ultimate

defence against faults after passing the required test suites. Nevertheless, the current state of the

automatic program repair research space requires such, as even the most efficient solutions do not

provide all solutions with naturalness, maintainability and soundness of a human developer. Though,

the necessary effort to cross-check and comprehend the suggested fixes might be so significant,

24 Problem Statement

that it may potentially mitigate the usefulness and help of automatic techniques. Thus, by bridging

the automatic repair world with the liveness areas of research, we create a light-weight solution

capable of helping developers fixing their bugs, instead of doing it for them facilitating and assisting

the developer during the development of the code, ensuring better code quality, maintainability,

soundness and faster time to fix. Finally, we will try to empirically validate if we can overcome

the overfitting issues presented in current APR solutions by applying property-based testing to the

world of APR, and with the data gathered, answer our research questions.

Chapter 4

Proposed Solution

4.1 Contextualization . 25
4.2 Objectives . 25
4.3 Implementation . 27
4.4 Summary . 43

This chapter will detail and elaborate on the proposed solution to solve the problem stated in

Chapter 3, firstly contextualizing the previous developments on Live automatic program repair

(cf. Section 4.1). Subsequently, we will enumerate and analyse the objectives of this research project

(cf. Section 4.2) and also detail the implementation of the proposed solution (cf. Section 4.3, p. 27).

4.1 Contextualization

This dissertation is the evolution of a tool previously implemented by Diogo Campos [Cam19]

and is part of the research in live software development that is being carried out by the Software

Engineering group of the Faculty of Engineering of the University of Porto. Even though liveness

is an important aspect of this dissertation it also incorporates several other subjects apart from the

liveness topic, as noted in Chapter 2 (p. 7). Therefore, this Chapter will briefly cover parts of the

previous implementation, but mainly focusing on the changes and improvements made over the

previous implementation.

4.2 Objectives

Regarding the development and implementation of the solution proposed with this dissertation, our

objectives are well defined and fivefold, which we will proceed to enumerate:

1. Language Server Protocol (LSP) Implementation - As it has been discussed, the integra-

tion of APR solutions within IDEs is certain to help developers avoid programming faults

altogether, by presenting the developer with live feedback, helping with cross-validation that

25

26 Proposed Solution

all current APR solutions require. The previous implementation already had Visual Studio

Code implementation due to its popularity, however, it was limited to this IDE. The language

server protocol defines a protocol used across IDEs and a language server, which provides

features like auto-complete, go to definition, find all references etc. This protocol is highly

useful to our case as it allows the servers to be written only once, allowing integration with

other IDEs by simply creating a simple client. Even though LSP implementation is a single

objective, it encompasses a lot of implementation limitations, architecture changes and a lot

of groundwork that requires rethinking and a lot of research.

2. Greater Mutation Spectrum - Mutations in previous versions of the tool were very limited,

therefore, we wanted to expand the number of supported mutations, in order to augment the

odds of finding a solution to a bug found.

3. Improve Function Types Support - Due to the language’s massive flexibility, in both

JavaScript and TypeScript, functions can be defined in a number of ways. Previous versions

of this tool only supported the "basic" function declaration, however, arrow functions, method

declarations, function expressions, and property definitions were not supported, even though

they are heavily used within these languages.

4. PBT Framework Integration - An important step in the implementation of this revamp of

the initial implementation was to ensure property-based testing integration within the tool.

When test cases can be thought of during their development, they are likely already defined

within the test suite, and, therefore, well regarded within the codebase. However, there is

a need to find test cases that the test creator cannot reach, which makes this into a crucial

component which will allow us to further validate whether or not PBT will allow us to find

the test cases that the test creator cannot reach and, in turn, find more bugs and potentially

more bug fixes.

5. TypeScript Support - According Stack Overflow’s Developer Survey1 JavaScript still holds

the crown of the most popular programming language, being used by 67.5% of respondents,

however, TypeScript, an open-source programming language developed and maintained by

Microsoft, has seen its utilization rising year over year as also observed by the survey. As

a strict syntactical superset of JavaScript that adds optional static typing to the language,

it becomes a highly-productive development tool for large applications that transpiles to

JavaScript, strengthening its position in the industry. Previous implementations of this

extension already took advantage of TypeScript’s Compiler API2, however, they did not

support TypeScript execution.
1Stack Overflow Developer Survey 2020 (Retrieved by: 28 June 2020)
2TypeScript’s Compiler API (Retrieved by: 23 April 2020)

https://insights.stackoverflow.com/survey/2020/#technology-programming-scripting-and-markup-languages
https://github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API

4.3 Implementation 27

4.3 Implementation

As referred in Section 4.1, we started from a solution that was already implemented, however, this

solution required a full refactoring due to several issues as listed in Chapter 3. Considering that the

lack of semantic suggestions in code completion tools is a restricting factor in the improvement of

developer productivity as mentioned in Section 3.2, we decided to further continue on the path of

developing an integrated development environment (IDE) extension.

Figure 4.1: Flowchart of the automated program repair process based on the implementation by
Diogo Campos [Cam19].

Still appertaining to the assumption that if a program passes all provided test cases then it

is correctly patched, we continue on this path of leveraging unit tests as specifications towards

generating automatic program repair suggestions. As discussed, the previous implementation had

small issues that limited usability, suggestion power and true real-world deployment, but these

paled in comparison to the lack of the adoption of the language server protocol, which limited

IDE support to solely VS Code. As such, we will further develop on the previous reasonings of

leveraging unit tests to provide semantic suggestions as an extension to existing IDEs.

28 Proposed Solution

Furthermore, since we were to build on the mutation-based solution, similar to the one imple-

mented by Debroy and Wong [DW10], we mostly maintained the solution’s flow of actions, as

demonstrated in Figure 4.1 (p. 27). In this figure, we can observe that the whole process starts either

initiated by the developer saving the file or by running a command, which runs the existing test

suite. If all tests of the said test suite succeed, the process ends, however, if they fail, they start the

automatic program repair. As mentioned, our solution is mutation-based, therefore, variations of

the files start being generated with said mutations. These variations are then tested and if they pass

the test suite, they are considered as possible fixes and to meet the requirements and, subsequently,

suggested to the developer as such. The developer considers all the patches, and, if said developer

considers one of them acceptable, it updates the source code accordingly. However, suggestions are

mere suggestions and the developer might just use them as guidelines to a more tailored approach

to the fix.

With this reasoning, we decided to name our tool pAPRika, since its function is not to replace

the developer, but to help the developer with small hints and suggestions, which we call spices. As

one can deduce, the capitalized APR is an allusion to the automatic program repair research field.

4.3.1 Automated Program Repair

Regarding the automated program repair technique, this one mostly remained unchanged. Thus, to

generate valid suggestions pertaining the code under review the following components were taken

into consideration.

• Unit tests as specifications - Test suites are to be used as specifications, with the purpose

of fulfilling the requirements of generating fixes merely based on unit tests, and not in any

formal or another kind of informal specification.

• Generic approach to behavioural repair - Several classes of bugs must be supported, how-

ever, this component was heavily expanded to match with well-know mutation frameworks

like Stryker Mutator 3.

• Immediate solution - Solutions must be found rapidly to ensure the immediate feedback

referred in Section 3.1. This valuable real-time feedback to the developer serves to attempt

to mitigate manual bug fixing, reduce time and cost spent for debugging.

• Complete solution - Solutions presented to the developer, even if, apparently, unnatural,

should always be syntactically correct and pass all tests. Partial solutions shall not be

presented by the tool and syntactically incorrect fixes rejected.

Given that we opted for continuing the development of a mutation-based solution, such allowed

for the use of unit tests as specifications, as the specifications output is the only requirement.

Additionally, by employing a heuristic technique for mutant generation, we are able to explicitly

3Stryker (Retrieved by: 28 June 2020)

https://stryker-mutator.io/

4.3 Implementation 29

specify the supported classes of bugs. This amount of control over the number of supported

classes allows us to better manage the search-space too better meet the live programming criteria.

Our objective for this work will mainly revolve around offering the developer true real-world
practicality, by integrating it as an IDE extension, therefore while other techniques, such as

GenProg [WNLF09, LNFW12, DLTL19], SapFix [MBC+19] or Astor [MM18], have a higher

probability of finding bugs and higher success rate in repairing them, their performance is highly

lacklustre and, thus, impossible to implement on a tool that intends to produce immediate feedback.

Ultimately, through the potential solution’s requirement of passing all test cases, we can ensure

that all suggestions are complete solutions. It is also worth observing that each unit test should

correspond solely to a single unit, in our case, a single function. Accordingly, every mutation will

originate from the unit being tested, drastically reducing the amount of statements to mutate, and

the required search-space. Throughout this section, we will further discuss implementation details,

required changes to the original source code, LSP implementation details, mutation generation,

among others.

4.3.2 Language Server Protocol

Before the time of the language server protocol, there was only chaos, and if one wanted to build a

plugin for everyone to enjoy, one had to build said plugin for Sublime Text, Vim, VS Code, Atom,

etc. Furthermore, language servers, usually implemented in their native programming languages,

present a challenge in and of itself, since Visual Studio Code runs on a Node.js runtime, and other

IDEs might even have different runtimes, further increasing the chaos.

Figure 4.2: Difference between an implementation without LSP versus one with it.

But then, the language server protocol arrived, developed by Microsoft; it aims to establish a

standard communication interface for programming language analyzers such as our tool, a protocol

between a client, the extension, and a server, where all the processing occurs. With this protocol,

we can eliminate the necessity of recreating entire extensions throughout all of the IDEs that are

30 Proposed Solution

currently available on the market, and the ones that will emerge later on, as each IDE has their APIs

to implement the same feature. Efforts can now be focussed into a single high performant language

server, providing code completion, hover tooltips, jump-to-definition, among others, which can

now be re-used in multiple development environments with only slight modifications required to

work, i.e. reducing the implementation cost of these language server extensions for M languages in

N code editors from M * N to M.

Notification: textDocument/didOpen

Request: initialise

pAPRika Client pAPRika Server

Request: workspace/executeCommand

Response: initialise

Notification: workspace/didChangeConfiguration

Request: client/registerCapability

Response: client/registerCapability

Notification: textDocument/publishDiagnostics

runPAPRika()

Request: textDocument/codeAction

Response: textDocument/codeAction

Apply suggested changes
Notification: textDocument/didChange

Notification: textDocument/publishDiagnostics

Figure 4.3: Example notification exchange between pAPRika client and server.

The language server protocol essentially works by running a language server as a separate

process to the IDE, while using the language protocol JSON-RPC as a means of communication.

Although, the pool of available extension features while using the LSP stayed mostly the same

when compared to developing an extension solely for one IDE, it enabled a more streamlined

implementation of many of them, as well as a more well structure architecture. However, language

servers need not to implement support for all supported features by the protocol. Thus, language

4.3 Implementation 31

servers should announce their capabilities, to clearly define what should and what should not be sent

to the language server by the code editor. Figure 4.3 (p. 30) shows an example of the notifications

exchange during the execution of our tool, moreover, throughout the Section 4.3.4 (p. 37), we will

better clarify some of the supported notifications.

However, this implementation required that some previously supported features were initially

discarded due to the lack of access to the VS Code API through the server, such as the support for

test case failing identification. Nevertheless, its re-implementation is already planned and thought

of, as features can now be implemented faster and with less difficulties thanks to an improved

project structure. This feature, however, will have to be developed on the client, as it is a capability

that is IDE dependent.

Furthermore, our extension took advantage of the document manager provided by the vscode-

languageserver module4 to incrementally synchronize documents between VS Code and the

language server, to avoid the constant large data transfer of the whole content of text documents.

For this dissertation, only the Visual Studio Code client was implemented, however, as men-

tioned before, the adaptation to another IDE should not require much effort. Furthermore, unlike

the previous implementation, the tool is now fully buildable from scratch without any complex

processes, facilitating open source development. Such process is facilitated by Visual Studio Code

Extension Manager - vsce - a command-line tool for packaging, publishing and managing VS Code

extensions, that was built into the Continuous Integration/Continuous Deployment (CI/CD) process.

4.3.3 Mutation Generation

As previously mentioned (cf. Section 4.3, p. 27), due to the good results obtained by Diogo Campos

in his previous implementation, and similar to the one implemented by Debroy and Wong [DW10],

we decided to further pursue the mutation-based suggestion formation. Mutation-based approaches

require some reflection on which mutations to pursue, as well as the order in which they appear, thus

in the previous implementation, when creating the first mutations, the Defects4J dataset [JJE14]

was taken into consideration, as it is considered one of the leading databases of existing faults.

However, for such task, 3 paramount requirements to ensure the live feedback of the tool had to be

defined and taken into account before establishing which mutations should be added to the mutant

generation algorithm:

1. No mutation should increase complexity - Mutations shall not increase branching, nor

should it increase cyclomatic complexity.

2. No additional statements - There exist an infinite number of statements that can be added

[DW10], therefore mutations shall not affix supplementary statements. Furthermore, to

preserve program consistency, statement removal is also disregarded, limiting mutations to

adjustments of extant statements.

4vscode-languageserver-node (Retrieved by: 20 May 2020)

https://github.com/microsoft/vscode-languageserver-node

32 Proposed Solution

3. One mutation per mutant - Defining the search-space is the crucial first step to Generate

and Validate APR tools as noted in Chapter 2.5.1. Consequently, allowing more than one

mutation per mutant, i.e. each file generated by the tool may possess more one mutation, is

likely to swiftly augment the search-space, which may result in more discovered solutions at

the cost of an exponential rise in performance requirements. Thus, restricting the solution to

exactly one mutation per mutant generated file will substantially reduce the search-space,

and, in turn, the time required for it.

In view of the fact that our solution is mutation-based, possible repair groups need to be analysed

and researched upon. The initial analysis of these possible repair action groups relied heavily on

the Defects4J dataset [JJE14] and the following Defects4J dissection [SDM+18], alongside with its

online appendix5. In this dissection, Sobreira et al. [SDM+18] have found and defined nine repair

action groups, with each containing three types of operations, i.e. mutations: addition, removal and

modification. From the nine repair action groups, four were ruled out from consideration for the

developed tool, for the following reasons:

• Method definition - Every mutation will originate from the unit being tested, i.e. mutations

are solely applied within the function definition, which drastically reduce the search-space,

therefore no method definition mutations are considered.

• Exception - We have removed this repair action group due to the no additional statements

constraint, as all patches within this group are tasked with adding or removing statements.

• Type - In the previous iteration of this tool, this repair action group was removed since

JavaScript is a dynamically typed language and not a statically typed one, however, in the

current version, since TypeScript is supported, such was not a valid argument. However,

replacing variable types represent a potentially large number of variations, therefore it stayed

excluded from this development work. Though, we are open to change this in a future release

of our tool.

• Variable - The only mutations that only require modifications in this action group are, firstly,

type and modifier changes, which only have a presence in TypeScript, however, since our

mutations rely solely on the AST inside a single function, such would have no effect in the

global scope. And, secondly, replacing variables by other variables or method calls, which by

itself presents a potentially infinite number of possible variations and is therefore discarded,

as it goes against our immediate solution requirement.

We then analysed the remaining five groups, though, only modification operations were consid-

ered, where the respective mutations to implement were the following:

• Assignment - Modifications on the Right Hand Side (RHS) of assignment statements.

5Defects4J Dissection (Retrieved by: 30 June 2020)

http://program-repair.org/defects4j-dissection/#!/

4.3 Implementation 33

• Conditional - Modifications on the RHS of conditional expression statements.

• Loop - Modifications on RHS of initialization variables and modifications on the RHS of

conditional tests.

• Method call - Method call moving and modifications on parameter values.

• Return - Modifications in return expressions.

These modifications were initially achieved by Switch Mutations, Parentheses Mutations, Off-

By-One Mutations, Operator Mutations and Statement Moving Mutations, however, some of these

mutations were incomplete, required refactoring, namely the Operator Mutations. New mutations

were also implemented, such as Boolean Mutations and Remove Prefix Mutations, based on the

list of Stryker Mutator’s supported mutations 6. This list was also the inspiration for some of the

required improvements to the already implemented mutations.

The following sections will describe in more detail the several supported mutations, which

will be demonstrated with pseudocode adaptations and replacement tables. These mutations are

performed in two steps by our algorithm, initially examining the Abstract Syntax Tree (AST),

generating mutations when feasible, using the supported mutations for each case. Thereafter, the

heuristic performs the statement switching, iterating through each line of code, between the current

and following line, resulting in all the possible Statement Moving Mutations. As mentioned in the

previous section (cf. Section 4.2, p. 25), all mutations were performed using TypeScript’s Compiler

API7, which provides access to multiple tools to interact with both JavaScript and TypeScript files,

since the latter is a superset of the former.

Though, mutations are not applied randomly, as they are only applied in specific nodes in the

AST. The target abstract syntax tree, i.e. of the function being tested, must firstly be found. This

function, in the previous implementation, had to be a "basic" function declaration, however, in

our implementation, has expanded its support to arrow functions, method declarations, function

expressions, and property definitions, which required an upgrade to the AST seeking algorithm,

and has a more in-depth look can be found in Section 4.3.4.1 (p. 38).

For each mutation, we will identify the node types it applies to, which we will proceed to list:

• Binary expression - These nodes represent a specific type of binary tree that represents

expressions, which are mostly algebraic. Binary tree nodes, and hence binary expression tree

nodes, have zero, one, or two children, representing: Left Hand Side (LHS), Operator and

RHS, which in pseudocode algorithms we will be represented by the properties lhs, op and

rhs, respectively.

• Identifier - Indentifiers are symbols, i.e. tokens, which name language entities such as

variables, namespaces, types, classes, methods, interfaces, constants, macros or parameters.

6Stryker Handbook - Supported Mutators (Retrieved by: 29 June 2020)
7TypeScript’s Compiler API (Retrieved by: 23 April 2020)

https://github.com/stryker-mutator/stryker-handbook/blob/master/mutator-types.md#supported-mutators
https://github.com/Microsoft/TypeScript/wiki/Using-the-Compiler-API

34 Proposed Solution

Identifiers are used to uniquely identify program elements in code, however, in our mutations,

the important factor is to know their location, and not what they define.

• Variable declaration - This node represents nothing more than the declaration of variables,

containers for storing data values. Such declaration attributes a name and data type to a

variable, which can happen in the form of var, let, and const.

• Element access expression - This node represent the element access of an array or indexer.

• Prefix unary expression - As its name implies, this is an operation with a single operand,

in contrast to binary expressions, which use two. For our tool we only implemented prefix

mutation, as postfix and functional expressions do not usually represent common bugs in

code.

• Boolean - This node is nothing more than a boolean data type, which has one of two possible

values (usually denoted true and false). Mutations to this node are useful for generating

boolean variants as we will discuss below.

Every mutation, when created by the mutation algorithm and before being tested, was added

to a list of mutations, the ReplacementList. This internal representation of the list of possible

changes was comprised of several Replacements. A Replacement is an internal re-implementation

of TypeScript API’s TextChange, which on previous versions only stored both the old and the

newly generated node. However, that information was lost as soon as the testing phase finished,

which meant that when the developer hovered the faulty code, and the code editor asked for a

Quick Fix (cf. Section 4.3.4.3, p. 40) the extension did not know what the replacement was. The

extension, then, had to process the suggestion message, and attempt to parse out the new text from

said message, which led to several cases of wrong fixes and absurd formatting caused by the tool.

In lieu of this, we implemented a key-value pair for each document, where its value was another

key-value pair for each complete suggestion generated and sent to the developer (identifiable via

a replacement code), with the respective Replacement, i.e. a Map of Maps with all the complete

suggestions. Such has allowed for deprecation of the suggestion message parsing, and, instead,

faster and more reliable suggestions.

4.3 Implementation 35

4.3.3.1 Switch Mutations

The Switch Mutation consists of switching the left-hand side and right-hand side of binary expres-

sions, maintaining the operator, as presented in Algorithm 1.

Switch Mutations are applied to every binary expression.

Algorithm 1: Generate Switch Mutants

1: procedure GenerateSwitchVariants(node; replacementList)
2: newNode← new BinaryExp(node.rhs; node.op; node.lhs)
3: replacement← new Replacement(node; newNode)
4: replacementList.push(replacement)

4.3.3.2 Parentheses Mutations

The Parentheses Mutation consists of two variants where both the left-hand side and right-hand side

of binary expressions get parentheses added, maintaining the operator, as presented in Algorithm 2.

Parentheses Mutations are applied to every binary expression.

Algorithm 2: Generate Parentheses Mutants

1: procedure GenerateParenthesesVariants(node, replacementList)
2: newLhs← AddParentheses(node.lhs)
3: newRhs← AddParentheses(node.rhs)
4:

5: lhsVariantNode← new BinaryExp(newLhs, node.op, node.rhs)
6: rhsVariantNode← new BinaryExp(node.lhs, node.op, newRhs)
7:

8: lhsReplacement← new Replacement(node, lhsVariant)
9: rhsReplacement← new Replacement(node, rhsVariant)

10:

11: replacementList.push(lhsReplacement)
12: replacementList.push(rhsReplacement)

4.3.3.3 Off-By-One Mutations

The Off-By-One Mutation consists of generating two variants where the right-hand side of a

binary expression is modified, one by adding 1 and another by subtracting 1, as demonstrated in

Algorithm 3 (p. 36). This mutation maintains both the operator and the left-hand-side. Another

variation of this mutation happens in identifiers, where we also generate two variations for the

whole node.

Off-By-One Mutations are applied to every binary expression, identifier, variable declara-
tion and element access.

36 Proposed Solution

Algorithm 3: Generate Off-By-One Mutants

1: procedure GenerateOffByOneVariants(node, replacementList)
2: minusOneRhs← node.rhs−1
3: minusOneNode← new BinaryExp(node.lhs, node.op, minusOneRhs)
4: minusOneReplacement← new Replacement(node, minusOneNode)
5:

6: plusOneRhs← node.rhs+1
7: plusOneNode← new BinaryExp(node.lhs, node.op, plusOneRhs)
8: plusOneReplacement← new Replacement(node, plusOneNode)
9:

10: replacementList.push(minusOneReplacement)
11: replacementList.push(plusOneReplacement)

4.3.3.4 Operator Mutations

The Operator Mutation consists of generating one mutant for each other operator of the same class

as the original one, as demonstrated in Algorithm 4. Operator mutation is a mutation that generates

a lot of mutations, and in future versions, limiting the possible mutations might be considered.

Types of operators included in our tool revolve around:

• Arithmetic Operators - /,%,∗,−,+;

• Comparison Operators - <,<=,==,===, ! ==, ! =,>=,>;

• Logical Operators - &&, ||;

• Update Operator - ++,−−.

Operator Mutations are applied to every binary expression.

Algorithm 4: Generate Operator Mutants

1: procedure GenerateOperatorVariants(node, replacementList)
2: operator← node.op
3: for operatorTypeinoperatorsTypeList do
4: if operator.includes(operatorType) then
5: for newOperatorinoperatorType do
6: newNode← new BinaryExp(node.lhs, newOperator, node.rhs)
7: replacement← new Replacement(node, newNode)
8: replacementList.push(replacement)
9: end

10: end
11: end

4.3 Implementation 37

4.3.3.5 Boolean Mutations

The Boolean Mutation consists of generating one mutant for each boolean found, inverting its

value, as demonstrated in Algorithm 4 (p. 36).

Algorithm 5: Generate Boolean Mutants

1: procedure GenerateBooleanVariant(node,replacementList)
2: newNode← !(node === true)
3: replacement← new Replacement(node,newNode)
4: replacementList.push(replacement)

4.3.3.6 Remove Prefix Mutations

Similar to boolean mutations, Remove Prefix Mutations intend to invert the value of a given

expression, in this case, by removing a ! prefix, as demonstrated by Algorithm 6.

Remove Prefix Mutations are applied to every prefix unary expressions.

Algorithm 6: Generate Remove Prefix Mutants

1: procedure GenerateRemovePrefixVariant(node,replacementList)
2: newNode← ’ ’
3: replacement← new Replacement(node,newNode)
4: replacementList.push(replacement)

4.3.3.7 Statement Moving Mutations

The Statement Moving Mutation, as demonstrated in Algorithm 7, is fundamentally different from

the previous mutations. Instead of manipulating the AST, it act upon the source code, by switching

each pair of adjacent lines between themselves.

Algorithm 7: Generate Statement Moving Mutants

1: procedure GenerateStatementMovingVariants(code, replacementList)
2: linesList← code.getLines()
3: for i← 0 to linesList.length −1 do
4: newCode← SWITCHLINES(code, i, i+1)
5: replacement← new Replacement(code, newCode)
6: replacementList.push(replacement)
7: end

4.3.4 pAPRika Extension

As the mutant generation process is rather resource-intensive, running our tool on every code

change would be both ineffective, inefficient and unnecessary. Therefore, our tool runs on

38 Proposed Solution

specific events, which can be deactivated/activated in the extension’s settings - through the

workspace/didChangeConfiguration notification - enabling higher control of the extension

by the user (cf. Figure 4.4).

Figure 4.4: Tool’s settings within the settings menu of Visual Studio Code.

Our extension can only be activated in supported languages, i.e. JavaScript and TypeScript, and

runs on:

• Open - Whenever a new document is opened - through the textDocument/didOpen

notification.

• Save - Whenever a new document is saved - through the textDocument/didOpen notifi-

cation.

• Command - Whenever the user uses one of two IDE commands, pAPRika: Spice this file or

pAPRika: Spice all open files - through the workspace/executeCommand notification.

Additionally, while the tool is running, the language server sends a progress notification,

through window/workDoneProgress/create, which allows developers to know the state of

the extension (cf. Figure 4.5).

Regarding the process itself, after the extension is run, the tool is composed of the next elements,

which are essential in the interaction with the developer and to provide the intended live feedback.

Figure 4.5: Display of the tool’s progress on the bottom left corner of Visual Studio Code.

4.3.4.1 Test Suite Requirements

Since mutations are not applied randomly, and need an AST as a basis for applying said mutations,

the function being tested needs to be identifiable in the tests that compose a test suite. On Diogo

Campos’ implementation, tests had to identify the tested function with #fix functionName,

where functionName was, as the name implies, the name of the function being tested. Such

4.3 Implementation 39

implementation mostly worked, however, as soon as the function was not declared in the "basic"

function declaration it would not be caught by the function AST seeking algorithm.

Our extension now has support for all function declarations as per Mozilla’s JavaScript

Functions Reference 8, which included arrow functions, method declarations, function expres-

sions, and property definitions, however, method declarations and property definitions require

an additional identification component. In short, pAPRika requires a less wordy identifier,

className.functionName, to be inserted in each of the tests to be able to identify the AST

under test, where className. is only required for method declarations and property definitions.

One of the most important components in our extension is the mocha feature-rich JavaScript and

TypeScript test framework9. Mocha is one of the most used test-driven development frameworks

within Node.js 10, though, our use of this framework will not be in its most common form. Our

solution takes advantage of Mocha’s programmatic API11, which enables us to run tests for both

the base source code, as well as the mutant files generated by the tool.

4.3.4.2 Display Suggestion

As we wanted to reduce the validation period of general automatic program repair techniques, we

needed to delve into the immediacy of suggestions, presenting suggestions while the developer

is still with the thought process aligned with the function being tested, instead of after, reducing

the required effort in inspecting software repair techniques’ output. Therefore, the tool’s ease

of use and access was of the utmost importance, which meant that bug locations had to be well

highlighted. For this reason, we opted for demonstrating potential fix locations as if they were

semantic suggestions. These suggestions were sent to Visual Studio Code as a Diagnostic 12 -

through the textDocument/publishDiagnostics notification - as per their API.

Figure 4.6: Underlined potential fix locations by pAPRika.

8Mozilla’s JavaScript Reference - Functions (Retrieved by: 2 July 2020)
9Mocha (Retrieved by: 20 June 2020)

10Node.js (Retrieved by: 20 June 2020)
11Mocha - Programmatic API (Retrieved by: 20 June 2020)
12Visual Studio Code’s API - Diagnostic (Retrieved by: 1 July 2020)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://mochajs.org/
https://nodejs.org/en/
https://github.com/mochajs/mocha/wiki/Using-mocha-programmatically
https://code.visualstudio.com/api/references/vscode-api#Diagnostic

40 Proposed Solution

We believe this is the best possible implementation of the suggestion display, as after the Quick

Fix (cf. Section 4.3.4.3) is applied, we are confident that it passes all tests defined in the test suite,

and, therefore, should at least be analysed by the developer.

As one can observe, our implementation (cf. Figure 4.6, p. 39) already represents a big im-

provement over Diogo Campos’ implementation (cf. Figure 4.7), as more than one diagnostic can

be displayed per file. For the used example, such might not have a big impact, as all potential

fixes result from the same loop, and offer very similar suggestions. However, it was chosen for

practicality as we can better represent and compare, in a small example, the resulting difference.

Figure 4.7: Underlined potential fix location in Diogo Campos’ tool [Cam19].

All fix suggestions produced by our tool appear in the problems tab of the IDE for easy

visualisation of all problems at once (cf. Figure 4.8), which we hope helps the developer assess

which fix might be the best, as they are the best final gatekeeper for current APR tools [MBC+19],

including our own, and more information leads to better and conscious decisions.

Figure 4.8: List of problems generated by the tool.

4.3.4.3 Quick Fix

After displaying to the user the potential fix locations, if the developer opts for applying the

fix, as suggested by the tool, two ways were implemented of accepting the suggested fix, either

4.3 Implementation 41

by using a Quick Fix by hovering over the underlined suggested fix location (cf. Figure 4.9a)

or by hovering one of the suggestions in the problems list (cf. Figure 4.9b), as both send a

textDocument/codeAction notification to the language server, as per Visual Studio Code’s

API CodeAction13.

(a) Fix suggestion presented on hover of a sug-
gested fix location.

(b) Fix suggestion presented on hover of a spe-
cific problem within the IDE’s list of problems.

(c) Replacement message after quick fix selec-
tion.

Figure 4.9: Deployment of fix suggestions.

After the developer clicks the Quick Fix button (also represented as the light bulb), in either of

locations, a small window shows up where the developer has to click again to confirm the change

as shown in Figure 4.9c.

After the change is confirmed, the code is replaced and the diagnostics are cleared.

4.3.5 Property-Based Testing Framework

One of the most important objectives of our proposed solution was to implement property-based

testing support within our tool. Properties are mere statements that can be defined on paper, but

without a property-based testing framework, testing such properties would be an impossible task.

PBT is a technique widely used in the Haskell community thanks to QuickCheck [CH00] The idea

consists in automatically generating inputs for testing a function. Frameworks such as QuickCheck

merely provide an environment where we can verify the truthfulness of said properties. With this

objective in mind, we set out to research the most optimal JavaScript/TypeScript frameworks for

our purpose.

Our research concluded that, to this day, there are 5 libraries that are capable of offering

primitives to perform property-based testing:

• fast-check14, developed by Nicolas Dubien since 2017

• jsverify15, developed by Oleg Grenrus since 2014

• testcheck16, developed by Lee Byron since 2014
13Visual Studio Code’s API - CodeAction (Retrieved by: 2 July 2020)
14fast-check (Retrieved by: 20 May 2020)
15jsverify (Retrieved by: 20 May 2020)
16testcheck (Retrieved by: 20 May 2020)

https://code.visualstudio.com/API/references/vscode-api#CodeAction
https://github.com/dubzzz/fast-check
https://github.com/jsverify/jsverify
https://github.com/leebyron/testcheck-js

42 Proposed Solution

• jscheck17, developed by Douglas Crockford since 2013

• quick_check.js18, developed by Jakub Hampl since 2014

• proptest19, developed by Dan Rosén in 2018

All of these frameworks served their purpose of providing a way of providing access to the

generative testing that PBT provides. However, some of these frameworks have completely lost

all developer support, and are somewhat deprecated, as noted by quick_check.js’s creator who

suggests new users to use fast-check, and as we can observe from npmtrends20 library popularity.

Thus, for further testing only fast-check, jsverify and testcheck were considered. However,

we quickly noticed that all of these three frameworks support mocha integration, and therefore,

are supported by our tool. Though, It is important to note that jsverify’s maintainer has openly

abandoned further work21, and testcheck has their development stalled, and fast-check is the only

framework that is still being updated, with numerous articles indicating that better results can be

obtained with it22.

4.3.6 TypeScript Support

TypeScript’s utilization among the developer community has been growing steadily for the past

years, thus, TypeScript support was defined as one of the main objectives for this tool. Although

previous implementations of this extension already took advantage of TypeScript’s Compiler API,

it lacked true TypeScript support. As such, in order to transpile our *.ts files to pure JavaScript

for Node.js, and its engine, to understand them, we used ts-node. Such implementation, however,

like any TypeScript project, requires a tsconfig.json file to indicate any necessary details to the

transpiler.

4.3.7 General Improvements

Throughout the development of this tool a subconscious goal was also defined, to open-source

pAPRika, and to that extent a lot was done to improve the overall quality of the project besides the

features listed above.

First and foremost, there was a major code refactoring, accompanying the adaptation to the

language server protocol, with resulted in improved code readability, elimination of hard-coded

variables, improved error handling, and the creation of understandable documentation.

Secondly, the extension, which was only locally buildable, became fully publishable with the

Visual Studio Code Extension Manager, and integrated within a continuous integration/continuous

delivery process, opening the doors towards a truly maintainable open-source project.
17jscheck (Retrieved by: 20 May 2020)
18quick_check.js (Retrieved by: 20 May 2020)
19proptest (Retrieved by: 20 May 2020)
20npmtrends - fast-check vs jsverify vs testcheck vs jscheck.js vs proptest vs quick_check (Retrieved by: 20 May

2020)
21jsverify’s Issues - Looking for a new maintainer (Retrieved by: 21 May 2020)
22Property-Based Testing in JavaScript (Retrieved by: 20 May 2020)

https://github.com/douglascrockford/JSCheck
https://github.com/gampleman/quick_check.js/
https://github.com/danr/proptest
https://www.npmtrends.com/fast-check-vs-jsverify-vs-testcheck-vs-jscheck.js-vs-proptest-vs-quick_check
https://github.com/jsverify/jsverify/issues/299
https://marmelab.com/blog/2019/04/18/property-based-testing-js.html

4.4 Summary 43

Finally, the whole repository suffered an overhaul, with the creation of a complete README

file23 and of a website to advertise the tool and serve as an entry point towards new users24.

4.4 Summary

This chapter described the proposed solution and implementation in great detail, by initially

providing a brief contextualization of the implemented solution and clearly defining its objectives.

Subsequently, we described every aspect of our implementation, in regards to the APR technique,

the use of the language server protocol, mutation generation, the extension itself, PBT framework

integration and TypeScript support.

Tufano et al. state that the two major problems of automated repair approaches are the ability

to produce fixes that are acceptable to the programmer and overfitting to test cases [TPW+18].

It was also found by Qi et al. that most generate and validate techniques are not correct, and

achieve their repairs through the deletion of important functionality. Taking this into account, our

solution does not attempt to apply fixes without a developer, as it is a mere tool that intends to help

the developer’s reasoning. Additionally, our tool supports PBT, which we believe eliminates the

overfitting problem, and does not attempt to be to greedy with its mutations, instead, it opts to find

and repair the small bugs that developers, a lot of the times, fail to discover.

23Make a README (Retrieved by: 15 April 2020)
24pAPRika Website (Retrieved by: 30 June 2020)

https://www.makeareadme.com/
https://paprika-2020.web.app/

44 Proposed Solution

Chapter 5

Empirical Evaluation

5.1 Objectives . 45
5.2 Guidelines . 46
5.3 Planning . 47
5.4 Tasks . 50
5.5 Results . 55
5.6 Threats to Validity . 69
5.7 Discussion . 71
5.8 Summary . 75

The purpose of this dissertation was to validate whether or not we could diminish the debugging

time of developers, by introducing a program repair process as an IDE extension, i.e. within the

development phase instead of after. Such would combine the advantages of both the developer’s

reasoning and the machine-generated repairs, as repairs would be merely suggestions to improve

the developer’s thought process, resulting in a more streamlined cross-validation process. In order

to validate the performance of the tool relative to the hypothesis and research questions (cf. Sec-

tion 3.3, p. 22), we expanded a previously developed controlled experiment [Cam19] and envisioned

variations for it, incorporating the new features and capabilities of the tool. Thus, in this chapter,

we detail the empirical evaluation conducted, throughout its objectives, (cf. Section 5.1), guidelines

(cf. Section 5.2, p. 46) and planning (cf. Section 5.3, p. 47), tasks performed, (cf. Section 5.4, p. 50)

and, consequently, the respective results obtained and their extensive analysis in Section 5.5 (p. 55),

and also the main validation’s threats (cf. Section 5.6, p. 69). Finally, we present a brief discussion

of all obtained results (cf. Section 5.7, p. 71).

5.1 Objectives

This study consisted in evaluating the performance of developers when using the implemented

Visual Studio Code extension and comparing it to the performance when not using it, by measuring

the time taken to solve each problem, and assessing the form of the final code developed.

45

46 Empirical Evaluation

Science is based on experimental validation and repetition, allowing us to corroborate hypothe-

ses, assumptions, and conjectures, and it has been proven again and again that such is the case of

Software Engineering [FPG94]. Taking this into account, a controlled experiment was envisioned

to validate the hypothesis and research questions presented in Section 3.3 (p. 22). Throughout this

controlled experiment, our objective was always to extend the experimental validation that was

previously carried out by Campos [Cam19] with our updated tool, that is more feature-complete,

solid and capable, as shown in Section 4.3 (p. 27). With this in mind, we set to recreate the already

developed tasks, while also expanding and integrating new tasks with properties, as defined in

Section 5.4.1 (p. 50). Section 5.4.2 (p. 52) goal is to evaluate how well our solution worked when

tested by developers, namely, whether it reduced debugging time, by helping with their solution

converge towards an optimal solution, therefore, reducing development time, and improved code

quality. To collect such metrics, we set out to evaluate developer performance when using the

implemented extension, which even though it can be easily extensible to other IDEs, we chose to

only use one IDE, Visual Studio Code, both to reduce the number of variables in our study and

reduce implementation time. Thereafter, we compare their performance to users who did not use

such APR tool, by measuring the time to solution for each problem, while also assessing the quality,

form, and naturalness of the final code developed.

In light of such objectives, we set out to split all participants into two questionnaires. Firstly,

we will talk about, what we will refer to as, the general public questionnaire (cf. Appendix A, p. 81),

whose objective was to evaluate the participants’ view and understanding of properties, and wether

they consider them useful. We also analyse the participants’ response to PBT frameworks and their

view on the ease of adoption of property-based testing in their testing workflow. Secondly, the

usability questionnaire (cf. Appendix B, p. 89) will, in addition to the general public questionnaire’s

content, evaluate the use of the developed tool. While using our benchmark, it was expected that

the experiment participants who used the tool had higher performance, however, we wanted to

measure the degree of improvement and whether or not their solutions were understood by them.

Furthermore, as a means of verification, we tried to evaluate if the participants who used the tool

could understand its purpose, its uses, its functionalities, and its limitations.

Thus, the two main purposes of this study are to obtain results that allow a more direct

comparison between pAPRika users versus users that solely use normal test-driven development

with example-based test suites; and to obtain reactions from the participants to property-based

testing as a component in their development workflow. These will allow us to validate the hypothesis

presented in Section 3.3 (p. 22) as a potential solution to the problems previously described in

Section 3.2 (p. 20), and to also answer the enumerated research questions.

5.2 Guidelines

To properly validate the use of the developed tool contemplated in Chapter 4 (p. 25), one must

define action lines to narrow the scope of the validation and properly achieve the objectives of

this empirical study and its main hypothesis. We will start by enumerating our guidelines for our

5.3 Planning 47

experiment:

Participants - Since this tool is built for developers, it is of the outmost importance that all

participants have the knowledge to comprehend and analyse software. Thus, all participants should

have at least some experience in the language being tested, JavaScript, and be in the computer

engineering field, in particular the area of software development.

Expertise - Since testing frameworks, especially in JavaScript, are not that common in Com-

puter Engineering degrees, while its presence in the real world is well-established, we hope to

nourish some knowledge of their use and the benefits of Test-Driven Development.

Participant motivation - Participants should consent that their participation is a fruit of their

own will, and that all their opinions will be honest and critical before partaking in this experiment,

where they will experience a different approach to debugging.

Duration - Overall, the experiment’s duration is not limited, however, in tasks from the usability

questionnaire, there is a maximum duration for each task, as better clarified in Section 5.3.2 (p. 48).

Reliability - For the results of this experiment to be reliable and trustworthy, participants shall

not have had any previous experience with the tool being tested. Additionally, due to limitations

imposed by the global pandemic, all questionnaires were filled where the participants deemed

desirable, though participants of the usability questionnaire were closely monitored, as it required

monitoring from the overseer. The specific data integrity details of both questionnaires are further

described in Section 5.3.

5.3 Planning

Pushing developers towards a faster and more interactive debugging experience while programming

has been one of the major objectives of the development of this tool, therefore, the performance

of a tool like this has to be well measured. Thus, one must evaluate whether it truly improves the

developer’s debugging experience and allows for a faster convergence to a solution. Additionally,

as our objective for this dissertation was also to analyse the possibility of using property-based

tests as specifications, we also examine the participant’s ability to come up with example-based

tests, understanding of properties and PBT frameworks, and the general opinion of a tool such as

pAPRika after a brief video demonstration.

Hence, our controlled experience requires careful prior planning to identify and establish

its rules, steps and measurements, which we will proceed to enumerate below. However, since

evaluating the usability is a time-consuming undertaking in and of itself, we decided to create two

questionnaires, the General Public Questionnaire (cf. Section 5.3.1) and the Usability Questionnaire

(cf. Section 5.3.2, p. 48), where the only difference between them is that the latter has the additional

usability section.

5.3.1 General Public Questionnaire

Participants - All participants should participate in this experience voluntarily and spontaneously,

and should be genuinely interested in the use of a tool such as the one developed. As mentioned in

48 Empirical Evaluation

the chapter above, direct contact with computer engineering and programming is a requirement,

and software development experience and a minimum of basic familiarity with JavaScript is

also required, as the tests will consist of repairing faulty JavaScript code. Participants for this

questionnaire will all be from various curricular years of the Integrated Master in Informatics and

Computing Engineering.

Tool exposure - Participants have all shown interest in participating in this experiment, as they,

in a broad sense, considered that such a novelty tool that they had never had experience with, with

the described features, could be very useful to them in their coding processes, assisting in their

software development.

Questionnaire - We developed this base questionnaire to help answer some different goals of

the experiment. Namely, the users’ background, assessing their technical knowledge and familiarity

with the language and testing framework used, ability to come up with example-based tests,

understanding of properties and PBT frameworks, and a post-test survey evaluating the usability,

performance, and other factors of the tool. Statements about the users’ background were registered

using a Likert scale [Lik32] with five possible responses: Strongly Disagree, Somewhat Disagree,

Neutral, Somewhat Agree and Strongly Agree. The remaining questions presented to participants

were multiple-choice questions pertaining to their ability to come up with example-based tests and

understanding of properties and PBT frameworks.

Duration - After the creation of this questionnaire, we estimated that participants should take

around 5 minutes to complete the questionnaire. Participants were previously informed of this

duration estimation.

Data integrity - As previously stated (cf. Section 5.2, p. 46), participants were required to give

their consent that their opinions were honest and critical, and that their participation was of their

own will.

5.3.2 Usability Questionnaire

As mentioned at the beginning of this Section 5.3, the only difference of the General Public

Questionnaire to the Usability Questionnaire is the additional usability section of the questionnaire.

As such, in this section, we will only detail additional factors resultant from the usability portion of

the Usability Questionnaire, and potential differences to Section 5.3.1 (p. 47). The usability section

of this questionnaire is replicated from Campos work [Cam19], as such, the result are expected to

be similar, to better assert our hypothesis.

Participants - Participants for this questionnaire, unlike the general public questionnaire, were

solely from the last year of the Integrated Master in Informatics and Computing Engineering.

Tool exposure - All participants were briefly introduced to the tool with an example exercise

before their set of tasks with the tool.

Questionnaire - Additionally to the questions present in the general public questionnaire

(cf. Section 5.3.1, p. 47), this questionnaire presented participants with statements about their

experience and performance after each of the parts in the study. All statements in this additional

5.3 Planning 49

section were also registered using a Likert scale [Lik32], as it was used when surveying participant’s

background.

Duration - As the set of tasks introduced by this questionnaire, in comparison to the general

public questionnaire, is expected to last longer, we, firstly, estimated the duration of these tasks, to

ensure participants could allocate the required time without interruptions. It was then estimated

that the tasks should take around 25 minutes, which, when aggregated with the duration of the

questions in the general public questionnaire, should equate to around 30 minutes. However, to

strike an equilibrium between a reasonable time to finish all of the tasks and a sensible time as to not

overburden the volunteers, we set a timeout for each task of 7 minutes and 30 seconds, motivating

volunteers to optimise their time management.

Environment - To ensure that everyone was accustomed to their operating system, keyboard,

mouse, etc. everyone participated in this controlled environment through their computer. This

also ensured that pandemic confinement rules were met during the study, without endangering

participants. Everyone used Visual Studio Code since the current version of the tool only supports

it, even though it is expandable to other IDEs, and participants were also authorised to access the

Internet for research purposes while solving the tasks. Since the environment was not the same for

everyone, a small script was created to guide participants in the installation of the extension and

download of the benchmarks.

1. Fill the questionnaire until you are asked for a group.

2. Download the benchmark from the provided link, extract it and open the folder in Visual

Studio Code.

3. Download and install the tool. The extension is provided as a VSCode extension executable,

therefore the installation has to be through the Visual Studio Code’s Extensions menu,

selecting "More actions..." represented by "..." in the UI, choosing "Install from VSIX...",

and, finally, selecting the provided VSCode extension executable.

Afterwards, after a brief explanation of the tool’s inner workings and functionalities, the

overseer provided the participant with the group identification, and granted the green light to

proceed with the questionnaire.

Difficulty - The tasks’ difficulty is considered to be easy as the bugs to be found on the several

tasks is always solvable by one or two changes, however, the experiment’s overseer has, throughout

the experience, tried to understand the difficulties of each of the participants, while additionally

providing a question in the survey to ensure that the overseer’s perception was correct.

Data integrity - In addition to the consent users gave, as per Section 5.3.2 (p. 48), during the

experiment, both the time to reach a solution and the quality of the code solutions were measured

and evaluated, in addition to whether participants used the tool when the task allowed them to or

not.

Procedure - To compare developer performance while using the pAPRika Visual Studio Code

extension and without using it, the 16 participants were split into two groups of eight participants

50 Empirical Evaluation

each, group A and group B. As there were no set guarantees of a priori technical knowledge parity,

a need for both groups to be subjected to the extension has led to the creation of two different, but

equivalent, problem sets. The usability portion of the questionnaire was therefore comprised of two

different parts, in accordance with the following procedure:

The first part of the usability portion required:

• Group A to attempt to repair problem set X with the live APR tool resulting from this work.

• Group B to attempt to repair problem set X without the live APR tool resulting from this

work.

The second part of the usability portion required:

• Group B to attempt to repair problem set Y with the live APR tool resulting from this work.

• Group A to attempt to repair problem set Y without the live APR tool resulting from this

work.

The tasks used in each of the problem sets is available in Section 5.4.2 (p. 52).

5.4 Tasks

As described in Section 5.3 (p. 47), we have decided to create two questionnaires, the General Public

Questionnaire (cf. Section 5.3.1, p. 47) and the Usability Questionnaire (cf. Section 5.3.2, p. 48),

therefore, the Section 5.4.1 will pertain to both questionnaires, and Section 5.4.2 (p. 52) will only

refer to the usability portion of the questionnaire.

5.4.1 General Public Tasks

With property-based testing frameworks rising in popularity due to their automation of what would

otherwise be tedious manual labour, in this questionnaire, we set out to validate our hypothesis,

which states that with the use of properties as specifications we can eliminate overfitting in APR

fixes, and to answer our research questions (cf. Section 3.3, p. 22).

With that in mind, we have created three different problems, with two cases each, to assess the

participants’ ability to create complete example-based tests, to formulate properties, and to create

property-based tests using existing frameworks, respectively. The two distinct cases in which the

three problems were evaluated were: myParseInt, a re-implementation of JavaScript’s parseInt,

and an implementation of the longest common substring algorithm.

Task 1
In the first task, we present participants with example-based tests of both myParseInt

(cf. Figure 5.1, p. 51) and longestCommonSubstring (cf. Figure 5.2, p. 51).

Based on the given examples, participants were asked, for both examples, if the tests

provided were enough to test the function in question. This question is multiple-answer

with the following possible answers:

5.4 Tasks 51

• “Yes, they seem to cover most of the spectrum of possibilities.”

• “No, but I CAN’T think of more different test cases.”

• “No, and I CAN think of more tests to incorporate.”

Figure 5.1: Sample of example-Based tests for myParseInt.

Figure 5.2: Sample of example-Based tests for longestCommonSubstring.

Task 2
In the second task, we present participants with a brief description of what a property is, and

with properties of both myParseInt (cf. Figure 5.3, p. 52) and longestCommonSubstring

(cf. Figure 5.4, p. 52).

Based on the given examples, participants were asked, for both examples, if they consider

that they could have come up with the given properties. This question is multiple-answer

with the following possible answers:

• “Yes, and I CAN think of a few more.”

• “Yes, but I CAN’T think of more.”

• “No, they seem hard to come up with.”

Task 3

52 Empirical Evaluation

for all (x: integer)
where y is the stringified version of x
myParseInt(y) should be equal to parseInt(y)

for all (x: double)
where y is the stringified version of x
myParseInt(y) should be equal to parseInt(y)

Figure 5.3: Example properties for myParseInt.

for all (x, y)
longestCommonSubstring(x, y) should be equal to

longestCommonSubstring(y, x)

for all (x, y)
the result of longestCommonSubstring(x, y) should be present

in both x and y

for all (x, y, z)
the result of longestCommonSubstring(y + x + z, x) should be x

Figure 5.4: Example properties for longestCommonSubstring.

In the third task, we present participants with an implementation of the properties given in

task 2 in a property-based testing framework of both myParseInt (cf. Figure 5.5, p. 53)

and longestCommonSubstring (cf. Figure 5.6, p. 53).

Based on the given examples, participants were asked, assuming that the example-based

tests were incomplete and that property-based testing would widen the spectrum of test

possibilities, for both examples, if they would consider writing property-based tests. This

question is multiple-answer with the following possible answers:

• “Yes, and they seem simpler than having to think of all the test cases by myself.”

• “Yes, even if the framework seems a bit complicated at first.”

• “No, I would prefer to think of the test cases myself.”

5.4.2 Usability Tasks

Benchmarks are crucial to high-quality empirical science, so, choosing which one to use is a key

step in towards validation. There are plenty of automated program repair benchmarks 1, however,

these tend to assess repair quality of the implemented tools, instead of developer usage. In light of

such absence, Diogo Campos [Cam19] tailored a dataset specifically for this study while taking

into account its objectives and scope, which we believe was well built and objective.

1Program-Repair.org (Retrieved by: 28 June 2020)

http://program-repair.org/benchmarks.html

5.4 Tasks 53

Figure 5.5: Sample of example-Based tests for myParseInt.

Figure 5.6: Sample of example-Based tests for longestCommonSubstring.

Regarding this work, as described in Section 4.3.1, one unit is defined as one function, as a

result, each problem will correspond to a function. To evaluate the usability of our extension we

have set three unique types of problem, according to whether or not, and when the extension would

find a solution:

1. Immediate: Functions whereat a single bug is present and visible, and the extension is

immediately capable of finding a solution for it.

2. Nonimmediate: Functions whereat a single bug is present and visible, but the extension is

only capable of finding a solution for it after the addition of a piece of code, analogous to

missing functionality.

3. Nonpresent: Functions whereat a single bug is not present nor visible since participants still

54 Empirical Evaluation

need to write a piece of code, analogous to missing functionality, which may or may not

contain a bug that the extension is able to fix.

Immediate problems sole purpose is to be used as proofs of concept, demonstrating the effective-

ness of the tool for simple challenges, while also serving as sanity checks. Whereas nonimmediate

and nonpresent functions serve as an evaluation point of the tool in solving more complex problems,

being used to perceive the effectiveness of the tool with bugs not introduced by the developer and

with bugs introduced by the developer, respectively.

Since we are creating a controlled experiment, we must clarify our process for identifying the

generated mutants as potential fixes. Therefore, mutants must only be classified as fixes if they

fulfil all the predefined criteria (cf. Section 4.3.1, p. 28) for a valid suggestion. As we believe that

overfitting can be an issue of example-based tests in APR techniques, the following problems as

defined by Campos [Cam19], which were also used in this study, were carefully selected to only

present users with valid suggestions. Since our objective was never to evaluate the tool’s suggestion

quality, as we believe such derives from the quality of the test suite, we considered tasks as solved

as soon as they passed the predefined unit tests. As such, and according to the procedure defined in

Section 5.3.2, the following problems were used:

Task 1
Starting with the first task, we present participants with an immediate problem. This task

only requires an operator change for example, allowing us to validate the extension in

terms of its basic usability.

In Problem Set X, a fault was introduced in one implementation of Bubble Sort, by

inverting a comparison operator.

In Problem Set Y, a problem from the /r/dailyprogrammer subreddit 2 was used, for which

we present an adapted function, of the JavaScript solutions proposed in the comments

section, where its goal is to find if every letter appearing in the input string does so the

same number of times.

Task 2
We then present participants, in the second task, with another immediate problem. This

task only requires an off-by-one operator change for example, allowing us to continue

validating the extension in terms of its basic usability, and serving as a sanity check.

In Problem Set X, a popular question used in various programming challenges that, given

a matrix, requires the absolute difference between the two diagonals, was adapted.

In Problem Set Y, a problem from the /r/dailyprogrammer subreddit 3 was used, for which

we present an adapted function, of the JavaScript solutions proposed in the comments

section, where its goal is to calculate the score of a game based on an input string.

Task 3
Thirdly, we present participants with a nonimmediate problem, where we intend to assess

the behaviour of the extension in circumstances in which the bug is present but is not found
2[2019-01-14] Challenge #372 [Easy] Perfectly balanced (Retrieved by: 28 June 2019)
3[2018-05-14] Challenge #361 [Easy] Tally Program (Retrieved by: 28 June 2019)

https://www.reddit.com/r/dailyprogrammer/comments/afxxca/20190114_challenge_372_easy_perfectly_balanced/
https://www.reddit.com/r/dailyprogrammer/comments/8jcffg/20180514_challenge_361_easy_tally_program/

5.5 Results 55

immediately. As such, both versions of this task have a missing part of the code — a line

— and a bug that is already present but in a different line.

In Problem Set X, a problem from the /r/dailyprogrammer subreddit 4 was used, for which

we present an adapted function, of the JavaScript solutions proposed in the comments

section (with a removed line of core and an inverted operator), where its goal is to calculate

the reverse factorial of the input number. The notion of reverse factorial is based on that of

factorial: If n! = m, then n is the reverse factorial of m.

In Problem Set Y, a problem from the /r/dailyprogrammer subreddit 5 was used, for which

we present an adapted function, of the JavaScript solutions proposed in the comments

section (with a removed line of core and an inverted operator), where its goal is to, given

the amount to give and a list of coins, calculates the minimum number of coins required to

reach that amount.

Task 4
The fourth and final task, a nonpresent problem, had the goal of evaluating the extension

when the bug is introduced by the developer. Neither problems had a bug previously

introduced, however, the functionalities that must be implemented are highly prone to

bugs.

In Problem Set X, the goal was for participants to implement a function that returned a

substring between two indexes. However, such indexes are inclusive, unlike JavaScript’s

string.substring implementation.

In Problem Set Y, the goal was equivalent to, where participants had to implement a

function that returned a slice of an array between two elements. Again such indexes are

inclusive, unlike JavaScript’s string.slice implementation.

5.5 Results

This section will now present and analyse the results from both of the controlled experiments, i.e.

the usability questionnaire and the general public questionnaire, along with a brief analysis for each

task and section of the questionnaires.

Regarding the statistical methods utilised, for the sake of consistency, Likert-type [Lik32,

Alb97] scales were used for both the background, and the tool usability evaluation, since, throughout

this controlled experiment, our objective was always to extend the experimental validation that

was previously carried out by Campos [Cam19]. Conversely, there were some multiple-choice and

multiple-response questions that were analyzed through charts.

First and foremost, we will describe some of the common sections of both questionnaires,

i.e. participants’ profile (cf. Section 5.5.1, p. 56) and background (cf. Section 5.5.2, p. 56), and,

afterwards, analyse its results in Sections 5.5.4 and 5.5.5.

4[2016-10-03] Challenge #286 [Easy] Reverse Factorial (Retrieved by: 28 June 2019)
5[2018-01-29] Challenge #349 [Easy] Change Calculator (Retrieved by: 28 June 2019)

https://www.reddit.com/r/dailyprogrammer/comments/55nior/20161003_challenge_286_easy_reverse_factorial/
https://www.reddit.com/r/dailyprogrammer/comments/7ttiq5/20180129_challenge_349_easy_change_calculator/

56 Empirical Evaluation

5.5.1 Participants’ Profile

For this controlled experiment, gender or age were considered characteristics that have no signifi-

cance. On the other hand, academic qualifications and years of professional experience might have

a higher impact as they are important factors to analyze, since many of the participants are still

enrolled in an academic degree, and, therefore, technological knowledge might vary, among the

several stages of a degree. Furthermore, the number of years of professional experience is important

as TDD is widely more popular in the professional environment, when compared to the academic

environment.

5.5.2 Background

The background section of the questionnaires, consists of multiple Likert-type items, forming a

Likert-Type scale, that will assess the participants’ comfort level with the languages, frameworks

and technologies used in this experiment. This scale is comprised of the eight questions, identified

here as B1 through B8:

B1 - I have considerable experience with JavaScript.

B2 - I have considerable experience with the Mocha testing framework.

B3 - I have considerable experience with Visual Studio Code.

B4 - I have considerable experience with Test Driven Development.

B5 - I regularly use tools to help me code (linters, code completion, etc.).

B6 - I am always capable of understanding code I haven’t seen before.

B7 - I feel comfortable in identifying bugs in code I haven’t seen before.

B8 - I feel comfortable in fixing bugs in code I haven’t seen before.

Participants were then given a score based on their answers, where, on a scale of -2 (Strongly

Disagree) to 2 (Strongly Agree), answers were summed, resulting in the final score. Intrinsically,

this equates to a minimum possible score of -16, a maximum score of 16, and an average of 0.

However, we expect our average to be overall higher due to the participants’ academic qualifications.

To better understand whether or not there are significant statistical differences between both

groups, we will test the null hypothesis that both groups have identical means. For this test, like

Campos in his work [Cam19], we have used the Student’s t-test, a test that relies on the assumption

of a normal distribution of the population and equal variances. Though, multiple studies have

shown it is fairly robust to violations of at least one assumption [KHL11], and capable of handling

minor sample sizes [dW13].

However, before calculating the Student’s t-test, we will calculate Levene’s test for “equality

of variances, which tests the null hypothesis that both groups are from populations with equal

variances” [BF74].

Secondly, the Shapiro-Wilk test will be used, which tests both groups against the null hypothesis

that “the sample comes from a population with a normal distribution” [SW65].

If, with both of these tests, we may not reject the null hypothesis, we will then can assume that

5.5 Results 57

both samples come from normally distributed populations, and that their variances are equal. From

here, we can proceed to use the Student’s t-test to test for the following hypotheses:

H0 (Null Hypothesis): The means of the populations from which each group was sampled are

equal.

H1 (Alternate Hypothesis): The means of the populations from which each group was sampled

are different.

5.5.3 Post-Test Survey

As a final section of both questionnaires, participants will be asked to provide with small feedback

of the tool developed in this dissertation.

Firstly, this section consists of multiple Likert-type items, forming a Likert-Type scale, that

will assess the participants’ comfort level with the tool and its features:

• F1 - The tool’s features were simple to use and easy to understand.

• F2 - This tool can positively impact my development workflow.

• F3 - I would consider using this tool.

• F4 - A tool like this is likely to distract me from my development.

• F5 - I preferred the use of the tool On Commands versus On Save

• F6 - I would trust the tool

For this scale, we will use the same scoring system, based on their answers from F1 to F6 in

both the usability questionnaire and the general public questionnaire. On a scale of -2 (Strongly

Disagree) to 2 (Strongly Agree), answers were added, and divided by the number of participants,

due to the difference in the number of participants, resulting in the final score. Intrinsically, this

will equate to a minimum possible score of -2, a maximum score of 2, and an average of 0.

Secondly, participants will be presented with a list of features that were either already developed,

or defined as future work. From this list of features, participants who experienced the tool first

hand had to provided a selection of the most important features, and, subsequently, a selection of

features they consider that could be improved.

• Support for JavaScript/TypeScript

• Number of code mutations attempts.

• Performance.

• Number of possible fixes.

• Complexity of suggested fixes.

58 Empirical Evaluation

• Adaptability to other IDEs.

• Support for all function types (exported, arrow functions, methods, etc.).

Though, participants who partook in the general public questionnaire did not test or personally

experience our solution, as such, they were presented with small gifs 6, and, from their analysis of

the videos, were asked to, assess their comfort level with a tool like the one presented, and to list

which features they considered to be the most important. In the selection of the most important

features, participants had to answer at least one feature for each of the questions.

5.5.4 Usability Questionnaire

We will firstly start by analysing the questionnaire that was carried out by 16 students, all finalists

of the Integrated Master in Informatics and Computing Engineering.

In Section 5.3.2 (p. 48) we defined the procedure to compare developer performance while

using the pAPRika Visual Studio Code extension and without using it. In Section 5.4.2 (p. 52) we

further detailed the tasks of each of the problem sets. And, to evaluate developer performance 3

metrics were taken into consideration.

• Time to reach a solution.

• Final code of the solution.

• Whether or not the extension was used.

5.5.4.1 Participant’s Characterisation and Background

As all participants of this study were finalists of the Integrated Master in Informatics and Comput-

ing Engineering, 100% of the participants answered “Bachelor’s degree” when asked about the

highest completed degree of education. Regarding years of professional experience, out of the 16

participants, 14 answered 0, while 2 answered 3.

While analysing the mean background scores from Table 5.1, we can observe that both groups

appear to be above average regarding the languages, frameworks and technologies used in this

experiment.

Table 5.1: Statistical measures and p-value for hypothesis tests on background scores.

Group Size Mean Std. Deviation σ2 Shapiro-Wilk (p) Levene (p) t-test (p)
A 8 3.25 3.20 10.21 0.85

0.90 0.5470
B 8 4.25 3.28 10.79 0.15

As the obtained p-values for both the Shapiro-Wilk test and the Levene test are above the

previously defined significance level of 0.05, we cannot reject neither of the null hypotheses. As

such, we proceeded to calculate the Student’s t-test, which, by conventional criteria, is considered

6pAPRika Website (Retrieved by: 30 June 2020)

https://paprika-2020.web.app/

5.5 Results 59

to be not statistically significant, therefore, failing to reject the null hypothesis H0, accepting that

no statistical difference can be observed.

5.5.4.2 Time to Solution

To evaluate the time to reach a solution of both groups, when participants use the tool or not, we set

out to calculate the mean, standard deviation, and two-sided Mann–Whitney U test. As Campos

has put it, the two-sided Mann–Whitney U test will allow us to understand the significance of the

difference between both groups, by testing the following hypotheses [Cam19]:

H0 (Null Hypothesis): The distributions of the populations from which each group was sampled

are identical.

H1 (Alternate Hypothesis): The distributions of the populations from which each group was

sampled are not identical.

Table 5.2: Statistical measures and Mann–Whitney U (p) of time to solve each problem set.

Task Set Tool Mean Std. Deviation Mann-Whitney U (p)

1
X

Yes 00:34 00:24
0.00094

No 03:17 01:48

Y
Yes 00:48 00:41

0.02382
No 02:59 02:31

2
X

Yes 00:32 00:24
0.00138

No 03:08 02:02

Y
Yes 00:33 00:17

0.00094
No 02:50 01:10

3
X

Yes 04:07 01:46
0.02382

No 06:30 01:38

Y
Yes 04:14 01:28

0.06576
No 06:12 01:47

4
X

Yes 01:19 00:32
0.34212

No 01:59 01:15

Y
Yes 00:35 00:15

0.00736
No 01:25 00:34

From a quick analysis to Table 5.2, we can observe that developers who use the tool are prone

to be faster at finding and solving bugs. This difference is exacerbated in the immediate types

of problem, i.e. tasks 1 and 2, and less meaningful in nonimmediate and nonpresent types of

problems, i.e. tasks 3 and 4, respectively (cf. Section 5.4.2, p. 52).

Such remarks go in line with our expectations, as immediate tasks, when running the tool,

require nothing more than opening the file, to immediately have a suggested fix, while other tasks

required participants to continue, or start a new, implementation before providing the developer

with a bug fix suggestion.

Furthermore, we can reject the null hypothesis H0 that the distributions of the populations of

tasks 1, 2, 3 (problem X), and 4 (problem Y) were sampled identically, while for the remaining two

60 Empirical Evaluation

tasks we cannot reject H0, and are incapable of establishing statistical differences between the two

groups.

5.5.4.3 Code and Extension Use

By virtue of the problems themselves, since there is only a need for slight modifications to

successfully tackle them. As such, ordinary code quality metrics do not serve a significant purpose,

nor were easy to measure for remote tests, and, thus, participants were only required to pass the tests,

with a bond of trust between the overseer and the participant. Participants in the end also reported

their own times, shared some of the difficulties while solving the problems, and the overseer asked

a number of questions to ensure the validity of the test. All participants reported having used the

tool in all problems, except for one participant, who did not use the tool in task 3, in the problem

set which its use was allowed.

During this experiment, there was one participant who failed to correctly understand that the

extension had to be disabled where the part of the test required to do so, therefore, his participation

had to be discarded.

5.5.4.4 Partipants’ Task Evaluation

In both group A and B, after solving the tasks, participants were required to fill a brief group of

Likert-type items concerning their experience both with and without the tool. Items from P1 to P4

were asked in parts that the use of the tool was not allowed, and items P1 to P8 were used in parts

that the use of the tool was allowed.

P1 - The bugs were easy to identify.

P2 - The solutions were straightforward.

P3 - I solved every problem correctly.

P4 - I spent more time in identifying the bug than in solving it.

P5 - The extension was faster in identifying fixes than me.

P6 - The extension was able to correctly fix problems.

P7 - I used the fixes suggested by the extension.

P8 - I tried to understand the fixes suggested by the extension before accepting them.

By applying the same scoring algorithm used in the participants’ background, where, on a

scale of -2 (Strongly Disagree) to 2 (Strongly Agree), however, instead of totalizing the scores per

participant, adding together the scores of all participants who apply (eight per group), i.e. obtaining

a comparable final score. Intrinsically, this equates to a minimum possible score of 8 participants

* - 2 = -16, a maximum score of 8 participants * 2 = 16, and an average of 0. However, due to

the straightforwardness of the problems presented, we expect all scores to be positive by a good

margin.

From Table 5.3 (p. 61), we can extract that, overall, the use of the tool greatly aided participants

in finding bugs, but also to find solutions in a faster and more streamlined way.

5.5 Results 61

Table 5.3: Scoring of questions per problem, according to the use of the tool.

Set Tool/Group Question Score

X

Yes/A

P1 9
P2 6
P3 15
P4 4
P5 13
P6 13
P7 14
P8 7

No/B

P1 2
P2 4
P3 7
P4 16

Y

Yes/B

P1 12
P2 11
P3 13
P4 4
P5 16
P6 15
P7 15
P8 8

No/A

P1 1
P2 4
P3 11
P4 8

5.5.4.5 Partipants’ Final Remarks

Problem Set X
In this problem set, we can observe that when not using the tool, participants felt that the

time spent identifying the bug, instead of fixing it, was too great.

We can also observe that participants that used the tool, although its suggestions were

correct, did not blindly trust the tool and took their time analysing its output, as per one of

our objectives with the tool.

Overall, participants when using the tool felt that their solutions are more correct when

compared to when they did not use the tool.

Moreover, participants declare that their confidence in the produced solutions, without the

tool, is largely inferior when compared to participants that used the tool.

Feedback from the tool (P5-P7) was greatly positive.

Problem Set Y
In Problem Set Y, although users without the tool felt that bugs were not that easy to identify

and that solutions were not straightforward, their confidence in the produced solutions was

higher compared to problem set X. However, while using the tool, participants felt great

62 Empirical Evaluation

ease in finding bugs, and a better understanding of the solutions, which also had a positive

impact in their confidence of the produced solutions.

Feedback from the tool (P5-P7), similarly to problem set X, was greatly positive.

Post-Test Feedback
To assess the participants’ comfort level with the tool and its features, we proceeded to

calculate the comfortability score with questions F1 to F6 (cf. Section 5.5.3, p. 57).

Given that the comfortability score scale of Table 5.4 goes from -2 (Strongly Disagree) to

2 (Strongly Agree) we can infer the following:

• F1 - Participants agree that the tool’s features were simple to use and easy to under-

stand.

• F2 - Participants agree that the tool can positively impact their development work-

flows.

• F3 - Participants would consider using the tool.

• F4 - Participants disagree that a tool like this is likely to distract from their develop-

ment.

• F5 - Participants have no preference on how to run the tool.

• F6 - Participants somewhat agree that they would trust the tool.

Table 5.4: Comfortability score, per participant, for questions F1 to F6, based on the use of this
tool.

F1 F2 F3 F4 F5 F6
Average Score 1.56 1.38 1.44 -0.94 -0.25 0.88

σ 0.63 0.50 0.51 0.57 1.06 0.81
σ2 0.40 0.25 0.26 0.33 1.13 0.65

As also declared in Section 5.5.3 (p. 57), participants who experienced the tool first hand

provided a selection of the most important features, and, subsequently, a selection of

features they consider that could be improved.

From Figure 5.7 (p. 63) we can infer that, overall, developers that partook in this study

enjoyed the tool’s support for JavaScript/TypeScript, number of code mutations attempts

and possible fixes, performance, complexity of suggested fixes, and function types support.

As the adaptability for other IDEs is still under development, and participants could only

experience the tool in Visual Studio Code, they did not consider it as a current important

feature.

In contrast, in Figure 5.8 (p. 63), participants perceived the complexity of suggested fixes,

the number of possible fixes and, as expected, the adaptability to other IDEs, as the features

that required further work.

5.5 Results 63

Support for
JavaScript/TypeScript

Number of code
mutations attempts.

Performance.

Number of possible
fixes.

Complexity of
suggested fixes.

Adaptability to other
IDEs.

Support for all
function types

(exported, arrow

0 2 4 6 8 10 12

Figure 5.7: Bar chart with the participants’ most important features of the tool.

Support for
JavaScript/TypeScript

Number of code
mutations attempts.

Performance.

Number of possible
fixes.

Complexity of
suggested fixes.

Adaptability to other
IDEs.

Support for all
function types

(exported, arrow

0 2 4 6 8

Figure 5.8: Bar chart with the participants’ features of the tool that should be improved on.

5.5.5 General Public Questionnaire

Participants for this questionnaire will all be from various curricular years of the Integrated Master

in Informatics and Computing Engineering. We will start by taking a brief look at these participants’

characterisation and background, and, then, proceed to evaluate each of the tasks as described in

Section 5.4.1 (p. 50).

5.5.5.1 Participant’s Characterisation and Background

As we can observe from Figure 5.9 (p. 64), most participants highest completed degree of education

is “Bachelor’s degree”. This may be due to a number of factors, e.g. greater confidence of more

experienced students to answer to questionnaires.

64 Empirical Evaluation

30 (69.8%)

8 (18.6%)

5 (11.6%)

Bachelor's degree

High school

Master's degree

Figure 5.9: Pie chart with the highest completed degree of education of participants.

Table 5.5: Statistical measures of background scores.

Size Mean Std. Deviation
43 4.16 4.50

Analysing the mean background scores from Table 5.5, we can observe that both groups appear

to be above average regarding the languages, frameworks and technologies used in this experiment.

Years of Professional Experience

0

10

20

30

40

0 1 2 3 4

Figure 5.10: Histogram with the number of participants per years of professional experience.

Regarding the years of professional experience, we can observe that most participants have

zero years of professional experience, a common characteristic in university students in Portu-

gal [REN19].

5.5.5.2 Task 1

In this first task, we presented participants with two sets of example-based tests, one for myParseInt

(cf. Figure 5.1, p. 51) and longestCommonSubstring (cf. Figure 5.2, p. 51).

5.5 Results 65

Our objective for this task was to evaluate the participants’ ability to think of more example-

based tests in addition to the ones already defined.

9

21

13

No, but I CAN'T
think of more

different test cases.

No, and I CAN think
of more tests to

incorporate.

Yes, they seem to
cover most of the

spectrum of
possibilities.

0 5 10 15 20 25

Figure 5.11: Bar chart for task 1’s myParseInt assessment with participants per selected answer.

19

17

7

Yes, they seem to
cover most of the

spectrum of
possibilities.

No, and I CAN think
of more tests to

incorporate.

No, but I CAN'T
think of more

different test cases.

0 5 10 15 20

Figure 5.12: Bar chart for task 1’s longestCommonSubstring assessment with participants
per selected answer.

From the results obtained in both Figure 5.11 and Figure 5.12, we can then proceed to assume

that the participants’ ability to think of example-based tests, namely edge cases, should improve

greatly, in order to consider example-based tests as specifications for test-driven development. In

short, for our population, example-based tests may not as reliable as once thought.

66 Empirical Evaluation

5.5.5.3 Task 2

In the second task, we present participants with a brief description of what a property is, and

with properties of both myParseInt (cf. Figure 5.3, p. 52) and longestCommonSubstring

(cf. Figure 5.4, p. 52).

The given examples were both incomplete, however, the longest common substring algorithm is

more complex, and, thus, more complicated for participants to think properties of. With the given

examples, participants were then asked, for both examples, wether or not they considered that they

could have come up with the given properties.

Yes, and I CAN think
of a few more.

Yes, but I CAN'T
think of more.

No, they seem hard
to come up with.

0 10 20 30

Figure 5.13: Bar chart for task 2’s myParseInt assessment with participants per selected answer.

Yes, but I CAN'T
think of more.

No, they seem hard
to come up with.

Yes, and I CAN think
of a few more.

0 5 10 15 20 25

Figure 5.14: Bar chart for task 2’s longestCommonSubstring assessment with participants
per selected answer.

From the results obtained in both Figure 5.13 and Figure 5.14, we can then confirm our

5.5 Results 67

conjecture that participants would face an increased difficulty in producing additional properties

for longestCommonSubstring, unlike myParseInt, where most participants could generate

more properties for the given function.

5.5.5.4 Task 3

Finally, in the first task, we present participants with an implementation of the properties given

in task 2 in a property-based testing framework - in this case, fast-check - of both myParseInt

(cf. Figure 5.5, p. 53) and longestCommonSubstring (cf. Figure 5.6, p. 53).

Based on the given examples, participants were asked, assuming that the example-based tests

were incomplete and that property-based testing would widen the spectrum of test possibilities, to

consider if, for both examples, they would write property-based tests.

Yes, and they seem
simpler than having

to think of all the test
cases by myself.

Yes, even if the
framework seems a

bit complicated at
first.

No, I would prefer to
think of the test

cases myself.

0 10 20 30

Figure 5.15: Bar chart for task 3’s myParseInt assessment with participants per selected answer.

From the results obtained in both Figure 5.15 and Figure 5.16 (p. 68), we can observe a

great enthusiasm towards learning property-based testing, even if some consider that the example

framework seemed complicated at first.

5.5.5.5 Partipants’ Final Remarks

Post-Test Feedback
To assess the participants’ comfort level with the tool and its features, as presented in the

gif, we proceeded to calculate the comfortability score. An analysis of Table 5.6 (p. 68),

will be detailed in Section 5.7 (p. 71). Though, these participants, who partook in the

general public questionnaire, did not test or personally experience our solution, as such,

their evaluation was based on the aforementioned gifs (cf. Section 5.5.3, p. 57).

Given that the comfortability score scale of Table 5.4 (p. 62) goes from -2 (Strongly

Disagree) to 2 (Strongly Agree) we can infer the following:

68 Empirical Evaluation

Yes, and they seem
simpler than having

to think of all the test
cases by myself.

Yes, even if the
framework seems a

bit complicated at
first.

0 5 10 15 20 25

Figure 5.16: Bar chart for task 3’s longestCommonSubstring assessment with participants
per selected answer.

• F1 - Participants agree that the tool’s features were simple to use and easy to under-

stand.

• F2 - Participants somewhat agree that the tool can positively impact their development

workflows.

• F3 - Participants would consider using the tool.

• F4 - Participants somewhat disagree that a tool like this is likely to distract from their

development.

• F5 - Participants have no preference on how to run the tool.

• F6 - Participants somewhat agree that they would trust the tool.

Table 5.6: Comfortability score, per participant, for questions F1 to F6, based on the provided gifs.

F1 F2 F3 F4 F5 F6
Average Score 1.07 0.88 1 -0.81 -0.07 0.59

σ 1.07 0.89 0.96 1.08 0.87 0.97
σ2 1.15 0.79 0.92 1.16 0.76 0.94

From their analysis of the gifs, these participants also provided a selection of what

they considered to be the most important features of such a tool.

From Figure 5.17 (p. 69) we can infer that, overall, developers that partook in this study

seemed excited about our tool, namely its support for JavaScript/TypeScript, number of

possible fixes, performance, complexity of the suggested fixes.

5.6 Threats to Validity 69

Support for
JavaScript/TypeScript

Number of code
mutations attempts.

Performance.

Number of possible
fixes.

Complexity of
suggested fixes.

Adaptability to other
IDEs.

Support for all
function types

(exported, arrow

0 5 10 15 20

Figure 5.17: Bar chart with the participants’ most important features of the tool.

5.6 Threats to Validity

As an empirical study, a number of threats to validity were considered, as such we set out to, in

this section, describe the threats to Construct Validity, Internal Validity and External Validity, and

briefly discuss them.

5.6.1 Construct Validity

The first group of validity threats we present is the construct validity, which pertains to how the

selection of formulations of the dependent and independent variables, i.e. tasks, environment, data

collected and other variables, which may impact the quality and validity of our findings [AC05].

Confounding Constructs and Levels of Constructs
The validity of the tasks executed in our questionnaires is one of the most important and

pressing threats. These must accurately represent, to a certain degree, buggy programs

that a developer is likely to face daily. Furthermore, many developers prefer to own

the proposed fixes, rather than simply applying them, which may raise questions about

the sociology of APR [MBC+19]. As such, we set out to define three different types of

problems (cf. Section 5.4.2, p. 52), which required different types of approaches, and a tool

that did not simply apply the suggested fixes, but simply present them to the developer.

Hypothesis Guessing
Participants, knowingly participating in a study, might consciously or subconsciously try

to guess the hypothesis and attempt to perform accordingly [WRH+12]. Not everyone

participates in research project passively, som try to reverse-engineer the study, and adjust

their behaviours accordingly. Even though it is not possible to assure that a participant is

not acting honestly, we opted to not reveal the hypothesis and objectives of the study, and

70 Empirical Evaluation

assured that participants consented that their participation was honest and critical, in an

effort to minimize the effect of this threat.

Evaluation Apprehension
As some people act anxiously when being evaluated, their behaviour might lead to poor

performance, or, lead to an attempt of wanting to appear “smart”, we made sure that

participants were taking part in this study willingly, avoiding any kind of coercion, social

pressure, or mere pressure during the tasks.

5.6.2 Internal Validity

The second validity group of validity threats, is none other than the Internal Validity, which analyses

whether or not cause-effect relationships may be determined, among independent variables and

observed effects in dependant variables [WRH+12].

Development Environment
Nitpicking developers might have a certain development environment configured that aims

to augment their productivity. However, even the least nitpicky developer is accustomed to

their development environment, and, as such, we decided not to introduce a remote testing

environment, as health-related circumstances would impose, forcing participants to use a

certain configuration, as we believe would have no impact on the results, even if developer

performance increased. Such can be verified by the similarity of values between Campos

work, and our own.

Physical Environment
Once again, due to certain limitations imposed by a worldwide pandemic, we could not

create a closed and controlled physical environment where participants could partake in

the test. However, as participants were all at the comfort of their own home, and could

participate in the experiment with a very open schedule, noise or other distracting factors

were always excluded by the participants.

Task’s difficulty
The benchmark created by Campos [Cam19] was created to test the usability of the tool,

instead of setting itself as a difficult set of tasks for the participants. However, even if the

created tasks were of low complexity and objectively required little changes for a complete

fix of the bug, some participants had difficulty solving some tasks, which we believe do

not affect the results obtained with the said benchmark.

5.6.3 External Validity

Finally, we will introduce the External Validity section, concerning the degree to which the

conclusions of a study can be extended to different populations or settings [WRH+12].

Sample Size
In our empirical experiments, the general public questionnaire and the usability question-

naire, we reached 27 participants and 16 participants, respectively. Certain sections of the

5.7 Discussion 71

usability questionnaire could also be exported to the general public questionnaire, totalling

43 participants in the new tasks defined by our study (cf. Section 5.4.1, p. 50). The sample

size was always taken into account when interpreting the findings of this study.

Sample Characteristics
Because of the restrictions imposed by the nature of the usability questionnaire itself, find-

ing participants who are willing to forfeit some of their precious time was a difficult task,

which led to a population comprised of solely students of the final year of the Integrated

Masters of Informatics and Computing Engineering at the Faculty of Engineering of the

University of Porto. The population of the general public questionnaire, on the other hand,

is much more diverse, while still having software engineering knowledge. Regardless, as

certain findings state, students do not perform better nor worse than software engineering

professionals when using new technologies during experimentation [SMJ15].

5.7 Discussion

The development, implementation and experimentation were all performed to validate the following

hypothesis:

“Using Property Tests as Specifications in an Automated Program Repair tool helps to

eliminate overfitting.”

Such a statement can be subdivided into different specific elements, serving as the building

block of our hypothesis, i.e. the research questions:

• Research Question 1 - “Are developers capable of understanding and formulating property-

based tests?”

In order to understand the viability of using property-based tests as specifications, we set out

to evaluate whether or not participants can easily understand and formulate property-based

tests.

With this in mind, we created Task 2 and Task 3 (cf. Section 5.4.1, p. 50), which evaluated

the comprehension of a set of given properties, and their ease of implementation within a

PBT framework.

The results obtained in Task 2 (cf. Section 5.5.5.3, p. 66) show an overall understanding of

properties. However, in more complicated examples, such as the longestCommonSubstring,

users have a harder time thinking of more properties, which reinforces the barrier that PBT

defines, as it establishes itself as the robust byproduct, and reward, of a more considered

upon testing suite. While results obtained in Task 3 (cf. Section 5.5.5.4, p. 67) demonstrate a

high approval of the use of PBT frameworks with a portion of participants declaring they

would need more training with the framework.

72 Empirical Evaluation

• Research Question 2 - “Do developers believe in the completeness of example-based tests?”

To evaluate participants’ belief in example-based test suites, we presented participants

with two incomplete test suites, for JavaScript’s parseInt and the known algorithm

longestCommonSubstring (cf. Section 5.5.5.2, p. 64).

Subsequently, we asked participants whether they considered these test suites, knowingly

incomplete, complete or not, and, although we were expecting a portion of participants

to find the test suites complete, we were not expecting such percentages of 30% (cf. Fig-

ure 5.11, p. 65) and 44% (cf. Figure 5.12, p. 65), for parseInt and longestCommonSubstring,

respectively. Furthermore, 21% and 16%, respectively, did find the tests incomplete, while,

however, admitting not being able to think of more test cases.

In short, the percentage of our participants capable of fully thinking of more test cases for

our examples is too small, proving the need for property-based testing.

• Research Question 3 - “Can property-based testing truly solve overfitting?”

Due to the own nature of property-based testing, where properties are defined and a generative-

testing engine creates randomized inputs to verify such properties, and since our tool’s

suggestions are based on completely passing the test suites, and property-based test suites

do find more bugs 78; we believe that the use of property-based testing as specifications

towards automatic program repair is capable of augmenting the number of bugs found, and,

in turn, augment the reliability of patches, as even our incomplete properties were able to be

more complete than the example-based test suites (where a big portion of users considered

complete). Therefore, we believe overfitting truly can be solved by PBT.

Table 5.7: Levene test and Student t-test, for questions F1 to F6, between both questionnaires.

F1 F2 F3 F4 F5 F6
Levene (p) 0.29 0.39 0.59 0.039 0.11 0.26

Student t-test (p) 0.050 0.026 0.050 0.33 0.27 0.16

• Research Question 4 - “Do developers believe a live Automatic Program Repair technique

is easy to use?”

To evaluate ease of use of the tool and its features, we extracted the comfortability score from

question F1 (cf. Section 5.5.3, p. 57), for both the usability questionnaire and the general

public questionnaire.

In both Table 5.4 (p. 62) and Table 5.6 (p. 68), we can observe that developers, overall, feel

that the tool is easy to use. Developers that truly experienced the tool, however, demonstrated

a more consistent understanding of its features and ease of use, when compared to developers

who only had access to the gifs demonstrating the use of the tool.

7Issues discovered using fast-check (Retrieved by: 2 July 2020)
8Spotify: Generating test cases so you don’t have to (Retrieved by: 2 July 2020)

https://github.com/dubzzz/fast-check/blob/master/documentation/1-Guides/IssuesDiscovered.md
https://engineering.atspotify.com/2015/06/25/rapid-check/

5.7 Discussion 73

(a) Answers to F1. (b) Answers to F2. (c) Answers to F3.

(d) Answers to F4. (e) Answers to F5. (f) Answers to F6.

Figure 5.18: Answers to the post-test section of both questionnaires. Overall we can see stronger
agreement on the results of the usability questionnaire through questions F1-F3 and F6. For question
F4 we can see an overall agreement that the tool is not as distracting as it seemed to the General
Public. Finally, for question F5 we can see a higher disagreement after using the tool due to it being
a matter of preference, which is reinforced through its use.

When observing the statistical difference tests performed for question F1 in Table 5.7 (p. 72),

we can conclude that the homogeneity requirement is met through the Levene’s test, and,

when looking at Student’s t-test, we can observe that the result is significant (considering

that p =< 0.05 is significant). As such, we can assume that there is a slight scepticism

towards the ease of use of the tool without experiencing it, which after experiencing it, mostly

disappears. Such differences can also be observed through Figure 5.18.

74 Empirical Evaluation

• Research Question 5 - “Can developers see a positive impact on their workflow through

the use of a live Automatic Program Repair technique?”

To evaluate whether or not developers could see an improvement to their workflow from the

use of this tool, we extracted the comfortability score from questions F2 and F3 (cf. Sec-

tion 5.5.3, p. 57), for both the usability questionnaire and the general public questionnaire.

In both Table 5.4 (p. 62) and Table 5.6 (p. 68), we can observe that developers, overall,

can see a positive impact caused by our tool in their development workflow, and a similar

interest in using the tool. Developers that truly experienced the tool, however, demonstrated

a more consistent view of these aspects, when compared to developers who only had access

to the gifs demonstrating the use of the tool.

When observing the statistical difference tests performed for questions F2 and F3 in Ta-

ble 5.7 (p. 72), we can conclude that the homogeneity requirement is met through the Levene’s

test, and, when looking at Student’s t-test, we can observe that the result is significant for

both F2 and F3 (considering that p =< 0.05 is significant). As such, we can assume that

there is a slight scepticism from users who did not use the tool, however, after experiencing

the tool, developers have an overall stronger agreement on its positive impact, which can also

be observed through Figure 5.18 (p. 73).

• Research Question 6 - “Do developers trust the capabilities of a live Automatic Program

Repair technique?”

To evaluate the developers’ trust in the tool and its features, we extracted the comfortability

score from question F6 (cf. Section 5.5.3, p. 57), for both the usability questionnaire and the

general public questionnaire.

In both Table 5.4 (p. 62) and Table 5.6 (p. 68), we can observe that developers, overall, trust

the capabilities of the tool. Developers that truly experienced the tool, however, demonstrated

a stronger trust in the tool, when compared to developers who only had access to the gifs

demonstrating the use of the tool.

When observing the statistical difference tests performed for question F6 in Table 5.7 (p. 72),

even though the homogeneity requirement is met through the Levene’s test, when looking

at Student’s t-test, we can observe that the result is not significant. However, there is still a

difference that can be observed between Table 5.4 (p. 62) and Table 5.6 (p. 68), which can be

better observed through Figure 5.18 (p. 73).

Furthermore, as validation of both Campos’ work [Cam19] and our own, we have decided to

take a deeper look at the research questions of the author, while putting our obtained results to the

test:

• Research Question 7 - “Are users faster in reaching the solution when using a live Automatic

Program Repair tool?”

5.8 Summary 75

Similarly to Campos’s results, in Section 5.5.4.2 (p. 59), we end up rejecting the null

hypothesis for most, i.e. there are no statistical differences between using and not using the

tool.

However, relevant statistical differences can still be observed in Table 5.2 (p. 59) in most

tasks, and the mean time to reach a final solution is consistently lower when using the

extension. As such, we corroborate Campos’ conviction that there exists substantial evidence

that users are faster to reach a solution when using a live Automatic Program Repair tool, a

clear improvement when comparing to the results obtained by other tools [CSC+19].

• Research Question 8 - “Are solutions generated by an Automatic Program Repair tool

different from the ones developed by human programmers?”

In our study, due to the limitations imposed by a global pandemic, proper verification and

analysis of the code produced by each of the participants was impracticable. As such, we

were not able to neither properly compare solutions between the ones purely generated by

humans versus the ones generated by the tool, nor appoint the best and worse code.

However, since our solution produces various suggestions per problem, some are considered

unnatural and were largely ignored by the developer.

We believe that an improved benchmark might be able to better measure such metric, while

also reckoning that improvements to the tool may also be implemented to opt for more

natural suggestions and discarding unnatural ones.

• Research Question 9 - “Are users aware of the rationale of solutions generated by the

Automatic Program Repair tool before accepting them?”

As in Campos’ work, we were not able to establish a clear understanding of the participants’

tendency to understand the solutions before accepting them.

In fact, by analysing participants’ answers to question P8 (cf. Section 5.5.4.4, p. 60) we are

able to infer that participants agreed that achieving a level of comprehension of the suggestion

was attempted. However, we believe results for this question may be slightly biased, due to

the presence of immediate problems in tasks 1 and 2, since it allowed participants to obtain

a solution in a time that we believe is too short to read through the problem and the faulty

code, and understand the suggested repair. Evidence of such bias may be the extremely low

average times to find a solution, which can be corroborated by Campos’ results.

As with RQ5, we believe an improved benchmark, with more detailed per task questions,

might obtain better results in this aspect.

5.8 Summary

Throughout the Empirical Evaluation chapter, we have presented the objectives and guidelines

for our experiments (cf. Section 5.1, p. 45), immediately followed by the planning for each one

76 Empirical Evaluation

of the experiments (cf. Section 5.3, p. 47). In Section 5.4 (p. 50) we closely describe the tasks at

hand for both questionnaires developed to validate our hypothesis. It is then immediately followed

by Section 5.5 (p. 55), where we present the obtained results, explain some of the methods used,

accompanied by an analysis and interpretation of said results. We then analyse the threats to validity

(cf. Section 5.6, p. 69) of the study, while referring to some of the steps taken against them. Finally,

in Section 5.7 (p. 71), we present a critical discussion of the results, in regards to the hypothesis

and research questions posed.

Chapter 6

Conclusions

6.1 Summary . 77
6.2 Main Contributions . 78
6.3 Future Work . 79

6.1 Summary

As software is increasing in size, complexity, and intractability, faster and more efficient devel-

opment processes must be defined to account for the higher demand in quality, performance,

robustness, and maintainability. We have also established that even though the scientific community

has developed a myriad of studies and tools to address this demand in the form of automated

program repair solutions. However, as presented in Section 3.2 (p. 20), several issues can still be

found, even in the solutions developed in the past years. Even though, every attempt at automatic

program repair has been moving the state of the art forward, it is considered that APR is another

AI-complete problem [OS19], requiring high computational difficulty that only a strong AI would

be able to truly solve. Furthermore, most APR tools have been predominantly been restricted to the

academic environment, limiting its dissemination and use by the general public, and the number

of tools available online is even smaller, with an almost non-existent presence in the open-source

scene.

As such, the purpose for this dissertation was threefold, that is, to gather the state of the art on

the topics of automatic programming, unit testing, language server protocols, and respective tools;

to create a selection of suitable approaches to automatically generate code completion suggestions

based on existing specifications, in the form of properties; and, finally, to develop a plugin capable

of suggesting smart semantic auto-completion, using live testing, to the developer, enabling both

automated rectification of bugs and vulnerabilities, and accelerated development.

Furthermore, we set out to produce fixes that are acceptable to the programmer and avoid

overfitting to test cases by the use of PBT as its specifications. Since, to achieve specification

77

78 Conclusions

completeness, in example-based testing, the tests’ creator has to think of all the possible cases,

though we argue that if such test cases can be thought of, they are probably already well regarded

during their development, ending up with success during the testing phase. Taking this into account,

our solution does not attempt to apply fixes without a developer, as it is a mere tool that intends to

help the developer’s reasoning, i.e. we do not attempt to create a true panacea. Additionally, our

tool supports PBT, which we believe eliminates the overfitting problem, and does not attempt to be

too greedy with its mutations, instead, it opts to find and repair the small bugs that developers, a lot

of the times, fail to discover.

In order to validate our hypothesis (cf. Section 3.3, p. 22), we decided to perform an empirical

study (cf. Chapter 5, p. 45) in which had two main purposes, to obtain results that allow a more direct

comparison between pAPRika users versus users that solely use normal test-driven development

with example-based test suites; and to obtain reactions from the participants to property-based

testing as a component in their development workflow.

“Using Property Tests as Specifications in an Automated Program Repair tool helps to

eliminate overfitting.”

Finally, to validate the hypothesis above, we attempted to answer the enumerated research

questions in Section 5.7 (p. 71), which arrived at the following conclusions. Participants are

somewhat incapable of writing complete example-based tests, however, they demonstrate an

understanding and capability of formulating property-based tests. Furthermore, there is wide

acceptance of PBT frameworks, with a small portion of participants declaring a need for more

training with the framework. And, finally, even though the overall acceptance of the tool was

positive, we were able to observe lower trust and higher scepticism from participants who did not

experience the tool, whilst the other participants have a higher trust in its functionalities, due to

their experience with it. Such results have given us confidence over the product developed, as

previous studies with other APR tools have obtained results in which developers did not trust the

tool [RAW+19, AWG+20].

6.2 Main Contributions

In Section 3.2 (p. 20) we listed some of the problems that affect current APR tools. In this work, we

do not attempt to fix them all, however, we believe that we still have made a valuable contribution

to the automatic program repair scientific community. This contribution can be summarised in the

following points:

• A ready-to-be open-sourced IDE Extension employing a live Automated Program Repair

tool, which leverages the power unit tests (example-based or property-based), while using a

mutation generation APR technique to generate fix suggestions to codebases where faults

were found. In addition, our tool is capable of presenting multiple suggestions, which we

believe enables the suggestion of more natural fixes, and, paired with the greatly increased

6.3 Future Work 79

feature set described in Section 4.3 (p. 27), turns our solution into one that truly finds its

purpose and meets its need in the test-driven development process.

Although we have increased the suggestion power of our tool, which is able to better help

with the developers’ reasoning, it does not sacrifice its real-time intervention, maintaining a

level of 5 in the liveness scale[Tan13], providing tactically predictive feedback.

• Expanded the results obtained with Campos’ empirical Study with an additional 16 par-

ticipants, and expanded its scope to include an evaluation of participants’ reactions to

property-based testing as a component in their development workflow. In this evaluation

participants were tested for their ability to think of example-based tests, to come up with

properties, and to integrate them in PBT frameworks.

• Small contribution, as a 4th author, to a paper that was submitted to the 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2020).

6.3 Future Work

As a result of this research project, pAPRika, the tool developed in this dissertation, has many

improvements that can be explored and turned into future work. One of the final goals of this tool

is to become open-source, and, as such, many steps during this work were taken to ensure that this

project could become a good open-source project, transforming pAPRika into a popular tool for

any IDE. Thus, to better ensure that this tool achieves its purpose, some features were thought of as

to improve our solution:

• Support for other IDEs - Development of more clients for our tool, in order to support

more IDEs and expand the tool’s presence in the developer community.

• Bug description - Implementation of potential descriptions for bugs found, so that developers

have more insightful feedback of fix suggestions. Such can be achieved by either the

assumption of what the fix is, or by a deeper analysis of the problem at hand.

• Fix ranking - Our tool already successfully finds buggy functions, generates patches, and

validates such patches suggesting them as fixes. However, the fixes presented to the developer

are an assortment of fixes that may or may not be considered correct to the human-eyes. As

such, the development of a heuristic to rank the suggested fixes, to, then, only present the

most correct is a feature that would greatly improve the tool’s usability. Such a feature would

likely have to be based in a heuristic, as we can find in similar approaches [BYP19, CPF17,

KLB+19], effectively presenting developers with the few top-ranked fixes, to more efficiently

assess their correctness and applicability to the codebase. The experimental evaluation in

Sec. IV comments on the effectiveness of JAID’s ranking heuristics

• Tests’ status visual cues - In Campos’ implementation, certain visual cues were passed to

developers, informing which tests passed and which didn’t for the current codebase. This

80 Conclusions

functionality was initially discarded due to the adaptation of the tool within the LSP standard,

however, it can be quickly re-implemented using a simple message between the client and

server, as the responsibility of said action would lie on the client, if the support is present.

• Tool testing - This tool was developed with tests in mind, so it is only logical that our tool is

also well tested to ensure its functionality. As such, some tests were developed, though, the

coverage of these tests is still rather small, which motivates the creation of more tests, and

possibly using PBT.

• Further explore both PBT and APR state of the art - For this dissertation various papers

were analysed, however, due to the increasing number of APR solutions developed for the

past years 1, the result of these could not be compiled in time for a more complete state of

the art chapter.

1Program Repair Bibliography (Retrieved by: 2 July 2020)

http://program-repair.org/bibliography.html

Appendix A

General Public Questionaire

81

82 General Public Questionaire

General Public Questionaire 83

84 General Public Questionaire

General Public Questionaire 85

86 General Public Questionaire

General Public Questionaire 87

88 General Public Questionaire

Appendix B

Usability Questionaire

89

90 Usability Questionaire

Usability Questionaire 91

92 Usability Questionaire

Usability Questionaire 93

94 Usability Questionaire

Usability Questionaire 95

96 Usability Questionaire

Usability Questionaire 97

98 Usability Questionaire

Usability Questionaire 99

100 Usability Questionaire

References

[AC05] Christine M Anderson-Cook. Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Journal of the American Statistical Association,
100(470):708–708, 2005. Cited on p. 69.

[AHM06] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this bug? In
Proceedings - International Conference on Software Engineering, volume 2006,
pages 361–370, 2006. Cited on p. 11.

[Alb97] Gerald Albaum. The Likert Scale Revisited. Market Research Society. Journal.,
39(2):1–21, mar 1997. Cited on p. 55.

[ARC+19] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira,
and João Pedro Dias. Live software development: Tightening the feedback loops. In
ACM International Conference Proceeding Series, pages 1–6, New York, New York,
USA, apr 2019. ACM Press. Cited on p. 10.

[AWG+20] Gene M. Alarcon, Charles Walter, Anthony M. Gibson, Rose F. Gamble, August
Capiola, Sarah A. Jessup, and Tyler J. Ryan. Would You Fix This Code for Me?
Effects of Repair Source and Commenting on Trust in Code Repair. Systems, 8(1):8,
mar 2020. Cited on p. 78.

[AZvG08] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. On the Accuracy of
Spectrum-based Fault Localization. pages 89–98. Institute of Electrical and Elec-
tronics Engineers (IEEE), apr 2008. Cited on p. 14.

[BB19] J. A. Bergstra and M. Burgess. A Promise Theoretic Account of the Boeing 737 Max
MCAS Algorithm Affair. dec 2019. Cited on p. 11.

[BF74] Morton B. Brown and Alan B. Forsythe. Robust tests for the equality of variances.
Journal of the American Statistical Association, 69(346):364–367, 1974. Cited on
p. 56.

[BJ07] Paul Brook and Daniel Jacobowitz. Reversible debugging. Proceedings of the GCC
Developers’ Summit, pages 69–76, 2007. Cited on p. 2.

[BMM09] Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to
improve code completion systems. In ESEC-FSE’09 - Proceedings of the Joint 12th
European Software Engineering Conference and 17th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 213–222, 2009. Cited on pp. 19
and 21.

101

102 REFERENCES

[BS14] Richard E. Bourque, Pierre and Fairley and IEEE Computer Society. Guide to
the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE
Computer Society Press, 3rd edition, 2014. Cited on p. 8.

[BYP19] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. Phoenix: automated data-
driven synthesis of repairs for static analysis violations. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - ESEC/FSE 2019, pages
613–624, New York, New York, USA, aug 2019. ACM Press. Cited on p. 79.

[Cam19] Diogo Campos. Tests as Specifications towards better Code Completion. PhD thesis,
Faculty of Engineering of the University of Porto, 2019. Cited on pp. 2, 19, 22, 23,
25, 27, 40, 45, 46, 48, 52, 54, 55, 56, 59, 70, and 74.

[CH00] Koen Claessen and John Hughes. QuickCheck. In Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming - ICFP ’00, pages
268–279, New York, New York, USA, 2000. ACM Press. Cited on pp. 17 and 41.

[CPF17] Liushan Chen, Yu Pei, and Carlo A Furia. Contract-based program repair without
the contracts. In ASE 2017 - Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 637–647, 2017. Cited on
p. 79.

[CSC+19] Jose Pablo Cambronero, Jiasi Shen, Jurgen Cito, Elena Glassman, and Martin Rinard.
Characterizing Developer Use of Automatically Generated Patches. In 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), volume
2019-Octob, pages 181–185. IEEE, oct 2019. Cited on pp. 21 and 75.

[DLTL19] Zhen Yu Ding, Yiwei Lyu, Christopher Timperley, and Claire Le Goues. Leveraging
Program Invariants to Promote Population Diversity in Search-Based Automatic Pro-
gram Repair. In 2019 IEEE/ACM International Workshop on Genetic Improvement
(GI), pages 2–9. IEEE, may 2019. Cited on pp. 12 and 29.

[DW10] Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes for
faulty programs. In ICST 2010 - 3rd International Conference on Software Testing,
Verification and Validation, pages 65–74. IEEE, 2010. Cited on pp. 28 and 31.

[dW13] J. C.F. de Winter. Using the student’s t-test with extremely small sample sizes.
Practical Assessment, Research and Evaluation, 18(10):1–12, 2013. Cited on p. 56.

[EKS93] Shari Ellis, David Klahr, and Robert S. Siegler. Effects of feedback and collaboration
on changes in children’s use of mathematical rules. Meetings of the Society for
Research in Child Development, 1993. Cited on pp. 1 and 9.

[FB97] George Fink and Matt Bishop. Property-Based Testing ; A New Approach to Testing
for Assurance. Software Engineering Notes, 22(4):74, 1997. Cited on p. 17.

[FD14] Alfonso Fuggetta and Elisabetta Di Nitto. Software process. In Proceedings of the
on Future of Software Engineering - FOSE 2014, pages 1–12, New York, New York,
USA, may 2014. ACM Press. Cited on pp. 1 and 9.

[FL94] George Fink and Karl Levitt. Property-based testing of privileged programs. In
Annual Computer Security Applications Conference, pages 154–163, 1994. Cited on
p. 17.

REFERENCES 103

[FNWL09] Stephanie Forrest, Thanhvu Nguyen, Westley Weimer, and Claire Le Goues. A
genetic programming approach to automated software repair. In Proceedings of
the 11th Annual Genetic and Evolutionary Computation Conference, GECCO-2009,
pages 947–954, 2009. Cited on p. 11.

[FPG94] Norman Fenton, S.L. Pfleeger, and R.L. Glass. Science and substance: a challenge to
software engineers. IEEE Software, 11(4):86–95, jul 1994. Cited on pp. 23 and 46.

[Fra93] Frankreich Convention Nationale. Collection générale des décrets rendus par la
Convention Nationale. Chez Baudouin, Imprimeur de la Convention Nationale. A,
Paris., 1793. Cited on p. 1.

[GGM19] Negar Ghorbani, Joshua Garcia, and Sam Malek. Detection and Repair of Architec-
tural Inconsistencies in Java. In Proceedings - International Conference on Software
Engineering, volume 2019-May, pages 560–571. IEEE Computer Society, may 2019.
Cited on p. 20.

[Gin19] Davide Ginelli. Failure-driven program repair. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering - ESEC/FSE 2019, pages 1156–1159, New
York, New York, USA, 2019. ACM Press. Cited on p. 13.

[GMM19] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic Software Repair:
A Survey. IEEE Transactions on Software Engineering, 45(1):34–67, jan 2019. Cited
on pp. 12, 14, 15, 16, and 19.

[GPR19] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program
repair. Communications of the ACM, 62(12):56–65, nov 2019. Cited on pp. 13
and 20.

[Häh13] Reiner Hähnle. The abstract behavioral specification language: A tutorial introduc-
tion. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7866 LNCS,
pages 1–37. Springer, Berlin, Heidelberg, 2013. Cited on p. 13.

[HAM+20] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoudhury.
Re-Factoring Based Program Repair Applied to Programming Assignments. pages
388–398. Institute of Electrical and Electronics Engineers (IEEE), jan 2020. Cited
on p. 12.

[HO18] Mark Harman and Peter O’Hearn. From Start-ups to Scale-ups: Opportunities
and Open Problems for Static and Dynamic Program Analysis. In 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 1–23. IEEE, sep 2018. Cited on p. 20.

[Hus16] Husson University- Online. What is the Software Development Cycle?, 2016. Cited
on p. 9.

[JAV09] Tom Janssem, Rui Abreu, and Arjan J.C. Van Gemund. Zoltar: A toolset for
automatic fault localization. In ASE2009 - 24th IEEE/ACM International Conference
on Automated Software Engineering, pages 662–664, 2009. Cited on p. 14.

104 REFERENCES

[JH05] James A Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2005, pages 273–282, 2005. Cited on pp. 11
and 14.

[JJE14] René Just, Darioush Jalali, and Michael D Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. In 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014 - Proceedings, pages
437–440, 2014. Cited on pp. 31 and 32.

[JXZ+18] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping
program repair space with existing patches and similar code. In ISSTA 2018 -
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, volume 18, pages 298–309. ACM, 2018. Cited on pp. 12 and 13.

[KA72] Raymond W. Kulhavy and Richard C. Anderson. Delay-retention effect with multiple-
choice tests. Journal of Educational Psychology, 63(5):505–512, 1972. Cited on
pp. 1 and 9.

[KHL11] Damir Kalpić, Nikica Hlupić, and Miodrag Lovrić. Student’s t-Tests. In International
Encyclopedia of Statistical Science, pages 1559–1563. Springer Berlin Heidelberg,
2011. Cited on p. 56.

[KKH13] Paul Kehrer, Kim Kelly, and Neil Heffernan. Does immediate feedback while
doing homework improve learning? In FLAIRS 2013 - Proceedings of the 26th
International Florida Artificial Intelligence Research Society Conference, pages
542–545, 2013. Cited on pp. 1 and 9.

[KLB+19] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monperrus,
Jacques Klein, and Yves Le Traon. IFixR: Bug report driven program repair. In
ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 314–325. Association for Computing Machinery, Inc, aug 2019.
Cited on pp. 21 and 79.

[KNSK13] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In Proceedings - International
Conference on Software Engineering, pages 802–811, 2013. Cited on p. 12.

[Koz10] John R. Koza. Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines, 11(3-4):251–284, sep 2010. Cited on p. 11.

[LB12] Francesco Logozzo and Thomas Ball. Modular and verified automatic program
repair. In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications - OOPSLA ’12, page 133, New
York, New York, USA, 2012. ACM Press. Cited on pp. 12, 13, and 19.

[LCL+17] Xuan Bach D. Le, Duc Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
S3: Syntax- and semantic-guided repair synthesis via programming by examples.
In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume Part F1301, pages 593–604, 2017. Cited on p. 21.

REFERENCES 105

[LDVFW12] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings - International Conference on Software Engineering, pages 3–13,
2012. Cited on p. 12.

[Le16] Xuan-Bach D Le. Towards efficient and effective automatic program repair. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering - ASE 2016, pages 876–879, New York, New York, USA, 2016. ACM
Press. Cited on pp. 16 and 17.

[Leh80] Meir M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, 1980. Cited on pp. 2 and 17.

[LFW13] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current challenges in
automatic software repair. Software Quality Journal, 21(3):421–443, sep 2013. Cited
on pp. 12, 20, and 21.

[Lik32] R Likert. A technique for the measurement of attitudes. Archives of Psychology, 22
140:55, 1932. Cited on pp. 48, 49, and 55.

[LKK+18] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawende F. Bissyande.
LSRepair: Live Search of Fix Ingredients for Automated Program Repair. In
Proceedings - Asia-Pacific Software Engineering Conference, APSEC, volume 2018-
Decem, pages 658–662. IEEE Computer Society, jul 2018. Cited on pp. 12 and 13.

[LKKB19] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. TBAR: Re-
visiting template-based automated program repair. In ISSTA 2019 - Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
pages 43–54. ACM, 2019. Cited on pp. 12 and 13.

[LLG16] Xuan Bach D. Le, David Lo, and Claire Le Goues. History Driven Program Repair.
In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 213–224. IEEE, mar 2016. Cited on p. 12.

[LLL16] Xuan-Bach D. Le, David Lo, and Claire Le Goues. Empirical Study on Synthesis
Engines for Semantics-Based Program Repair. In 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages 423–427. IEEE, oct
2016. Cited on p. 20.

[LNFW12] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
Prog: A Generic Method for Automatic Software Repair. IEEE Transactions on
Software Engineering, 38(1):54–72, jan 2012. Cited on pp. 12, 13, and 29.

[LNZ+05] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. Scalable
statistical bug isolation. ACM SIGPLAN Notices, 40(6):15, jun 2005. Cited on p. 11.

[LR01] Meir M. Lehman and Juan F. Ramil. Rules and Tools for Software Evolution Planning
and Management. Annals of Software Engineering, 11(1):15–44, 2001. Cited on
pp. 2 and 17.

[LR15] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
2015 10th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE
2015 - Proceedings, pages 166–178, 2015. Cited on p. 12.

106 REFERENCES

[LR16a] Fan Long and Martin Rinard. An analysis of the search spaces for generate and
validate patch generation systems. In Proceedings - International Conference on
Software Engineering, volume 14-22-May-, pages 702–713, 2016. Cited on pp. 16
and 20.

[LR16b] Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages - POPL 2016, pages 298–312, New York, New York,
USA, 2016. ACM Press. Cited on p. 12.

[LTA11] Huiqing Li, Simon Thompson, and Thomas Arts. Extracting properties from test
cases by refactoring. In Proceedings - 4th IEEE International Conference on Software
Testing, Verification, and Validation Workshops, ICSTW 2011, pages 472–473, 2011.
Cited on p. 18.

[MBC+19] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. SapFix: Automated End-to-End Repair
at Scale. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pages 269–278. IEEE, may 2019.
Cited on pp. 12, 23, 29, 40, and 69.

[MM18] Matias Martinez and Martin Monperrus. Astor: Exploring the Design Space of
Generate-and-Validate Program Repair beyond GenProg. Journal of Systems and
Software, 151:65–80, feb 2018. Cited on pp. 12, 21, and 29.

[Mon18] Martin Monperrus. Automatic Software Repair: a Bibliography. ACM Computing
Surveys, 51(1):1–24, jul 2018. Cited on pp. 12 and 13.

[MS06] Erica Mealy and Paul Strooper. Evaluating software refactoring tool support. In
Australian Software Engineering Conference (ASWEC’06), volume 2006, pages 10
pp.–340. IEEE, 2006. Cited on pp. 2, 3, 8, and 11.

[MYR15] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. DirectFix: Looking for
Simple Program Repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 448–458. IEEE, may 2015. Cited on
p. 21.

[MYR16] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings - International
Conference on Software Engineering, volume 14-22-May-, pages 691–701, 2016.
Cited on pp. 12, 13, and 20.

[OS19] Michael O’Neill and Lee Spector. Automatic programming: The open issue? Genetic
Programming and Evolvable Machines, sep 2019. Cited on pp. 11, 20, and 77.

[OVGB10] Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, and Wolfgang Banzhaf.
Open issues in Genetic Programming. Genetic Programming and Evolvable Ma-
chines, 11(3-4):339–363, sep 2010. Cited on p. 10.

[PFNM15] Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Automated Program
Repair in an Integrated Development Environment. In Proceedings - International
Conference on Software Engineering, volume 2, pages 681–684. IEEE Computer
Society, aug 2015. Cited on p. 19.

REFERENCES 107

[PZ14] Mauro Pezzè and Cheng Zhang. Automated test oracles: A survey. In Advances in
Computers, volume 95, pages 1–48. Academic Press Inc., 2014. Cited on p. 12.

[QLAR15] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems. In
2015 International Symposium on Software Testing and Analysis, ISSTA 2015 -
Proceedings, pages 24–36, 2015. Cited on p. 20.

[QML+14] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength
of random search on automated program repair. In Proceedings - International
Conference on Software Engineering, number 1, pages 254–265, 2014. Cited on
p. 21.

[RAW+19] Tyler J. Ryan, Gene M. Alarcon, Charles Walter, Rose Gamble, Sarah A. Jessup,
August Capiola, and Marc D. Pfahler. Trust in Automated Software Repair: The
Effects of Repair Source, Transparency, and Programmer Experience on Perceived
Trustworthiness and Trust. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
11594 LNCS, pages 452–470. Springer Verlag, jul 2019. Cited on p. 78.

[REN19] Portugueses são dos que menos conseguem conciliar trabalho e universidade - Re-
nascença, 2019. Cited on p. 64.

[RW88] Charles Rich and R.C. Waters. Automatic programming: myths and prospects.
Computer, 21(8):40–51, aug 1988. Cited on p. 11.

[Sam59] A L Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3(3):210–229, jul 1959. Cited on p. 10.

[SBLB15] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the cure worse
than the disease? overfitting in automated program repair. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015,
pages 532–543, New York, New York, USA, 2015. ACM Press. Cited on pp. 2, 20,
and 21.

[SDM+18] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo de Almeida Maia. Dissection of a bug dataset: Anatomy of 395 patches
from Defects4J. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), volume 2018-March, pages 130–140. IEEE,
mar 2018. Cited on p. 32.

[SL18] Mauricio Soto and Claire Le Goues. Using a probabilistic model to predict bug
fixes. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), volume 2018-March, pages 221–231. IEEE, mar 2018.
Cited on p. 21.

[SMJ15] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students representatives
of professionals in software engineering experiments? In Proceedings - International
Conference on Software Engineering, volume 1, pages 666–676. IEEE Computer
Society, aug 2015. Cited on p. 71.

108 REFERENCES

[SND+11] Diptikalyan Saha, Mangala Gowri Nanda, Pankaj Dhoolia, V. Krishna Nandivada,
Vibha Sinha, and Satish Chandra. Fault localization for data-centric programs.
In SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 157–167, New York, New York, USA,
2011. ACM Press. Cited on p. 11.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, 9th edition, 2010. Cited
on pp. 7 and 8.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business Practices.
Addison-Wesley Professional, 2003. Cited on pp. 3 and 11.

[SSP19] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. Harnessing Evolution for
Multi-Hunk Program Repair. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), volume 2019-May, pages 13–24. IEEE, may 2019.
Cited on pp. 12 and 14.

[SW65] S. S. Shapiro and M. B. Wilk. An Analysis of Variance Test for Normality (Complete
Samples). Biometrika, 52(3/4):591, dec 1965. Cited on p. 56.

[SWH11] Matt Staats, Michael W Whalen, and Mats P.E. Heimdahl. Programs, tests, and ora-
cles: The foundations of testing revisited. In Proceedings - International Conference
on Software Engineering, number 11, pages 391–400, 2011. Cited on p. 14.

[Tan90] Steven L. Tanimoto. VIVA: A visual language for image processing. Journal of
Visual Languages & Computing, 1(2):127–139, jun 1990. Cited on p. 9.

[Tan13] Steven L. Tanimoto. A perspective on the evolution of live programming. In 2013
1st International Workshop on Live Programming (LIVE), pages 31–34. IEEE, may
2013. Cited on pp. 2, 3, 9, 10, 19, 21, and 79.

[TPW+18] Michele Tufano, Massimiliano Di Penta, Cody Watson, Martin White, Gabriele
Bavota, and Denys Poshyvanyk. An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation. In ASE 2018 - Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 832–837, 2018. Cited on pp. 12, 21, and 43.

[VAH18] Hoang Van Thuy, Phan Viet Anh, and Nguyen Xuan Hoai. Automated Large Program
Repair based on Big Code. In Proceedings of the Ninth International Symposium
on Information and Communication Technology - SoICT 2018, pages 375–381, New
York, New York, USA, 2018. ACM Press. Cited on p. 12.

[War20] Charlie Warzel. Opinion | The App That Broke the Iowa Caucus - The New York
Times, feb 2020. Cited on p. 8.

[WNLF09] Westley Weimer, Thanh Vu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In Proceedings - International
Conference on Software Engineering, pages 364–374, 2009. Cited on pp. 12 and 29.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, Anders
Wesslén, Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Empirical Strategies. In Experimentation in Software
Engineering, pages 9–36. Springer Berlin Heidelberg, 2012. Cited on pp. 69 and 70.

REFERENCES 109

[XLZ+18] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Identifying
patch correctness in test-based program repair. In Proceedings of the 40th Interna-
tional Conference on Software Engineering - ICSE ’18, volume 11, pages 789–799,
New York, New York, USA, 2018. ACM Press. Cited on pp. 12 and 13.

[XMD+17] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clement, Sebastian Lamelas
Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. Nopol: Auto-
matic Repair of Conditional Statement Bugs in Java Programs. IEEE Transactions
on Software Engineering, 43(1):34–55, jan 2017. Cited on pp. 12 and 13.

[YB18] Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated Repair of Java Programs via
Multi-Objective Genetic Programming. IEEE Transactions on Software Engineering,
dec 2018. Cited on p. 21.

[YYZ+11] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairava-
sundaram. How do fixes become bugs? A comprehensive characteristic study on
incorrect fixes in commercial and open source operating systems. In SIGSOFT-
/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 26–36, 2011. Cited on p. 11.

[ZC09] Michael Zhivich and Robert K. Cunningham. The real cost of software errors. IEEE
Security and Privacy, 7(2):87–90, mar 2009. Cited on p. 11.

[ZS15] Hao Zhong and Zhendong Su. An empirical study on real bug fixes. In Proceedings -
International Conference on Software Engineering, volume 1, pages 913–923, 2015.
Cited on p. 12.

[ZZH+19] Jie M. Zhang, Lingming Zhang, Dan Hao, Lu Zhang, and Mark Harman. An
empirical comparison of mutant selection assessment metrics. In Proceedings - 2019
IEEE 12th International Conference on Software Testing, Verification and Validation
Workshops, ICSTW 2019, pages 90–101. Institute of Electrical and Electronics
Engineers Inc., apr 2019. Cited on p. 21.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Problem Definition
	Motivation
	Objectives
	Document Structure

	State of the Art
	Software Engineering
	Software Development Process
	Live Programming
	Automatic Programming
	Automatic Program Repair
	Generate and Validate Program Repair
	Semantics-Based Program Repair

	Property-Based Testing

	Problem Statement
	Overview
	Issues
	Hypothesis and Research Questions
	Validation Methodology
	Proposal

	Proposed Solution
	Contextualization
	Objectives
	Implementation
	Automated Program Repair
	Language Server Protocol
	Mutation Generation
	pAPRika Extension
	Property-Based Testing Framework
	TypeScript Support
	General Improvements

	Summary

	Empirical Evaluation
	Objectives
	Guidelines
	Planning
	General Public Questionnaire
	Usability Questionnaire

	Tasks
	General Public Tasks
	Usability Tasks

	Results
	Participants' Profile
	Background
	Post-Test Survey
	Usability Questionnaire
	General Public Questionnaire

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Summary

	Conclusions
	Summary
	Main Contributions
	Future Work

	General Public Questionaire
	Usability Questionaire
	References

