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Highlights  

 We investigated how habitat enrichment may promote welfare of captive rainbow trout  

 Environmental enrichment promotes recovery following stressful treatments  

 Habitat enrichment may not affect the magnitude of inter-individual variation  

 Painful stimulus appeared to override benefits provided by enrichment  

 Enrichment should be implemented in experimental studies using rainbow trout  

   



  

2  

  

Abstract  

  

The EC Directive on animal experimentation suggests that all protected animals should have 

enrichment to improve welfare yet relatively little research has been conducted on the impact of 

enrichment in fish. Studies employing enrichment in zebrafish have been contradictory and all fish 

species should be provided with species-specific enrichments relevant to their ecology. Salmonids are 

important experimental models in studies within aquaculture, toxicology and natural ecosystems. This 

study therefore sought to establish whether an enriched environment in an experimental aquarium 

may promote improved welfare in rainbow trout (Oncorhynchus mykiss) by enhancing their recovery 

from invasive procedures. Trout were held individually in either barren (no tank ornamentation) or 

enriched (gravel, plants and an area of cover) conditions. Recovery rates after a noxious stimulus and 

a standard stressor were investigated by monitoring behaviour, opercular beat rate and plasma cortisol 

concentrations. Fish were randomly assigned to one of four treatment groups: Control (undisturbed), 

Sham (handled but not manipulated), Stress (air emersion) and Pain (subcutaneous injection of acetic 

acid). The results suggest that for rainbow trout environmental enrichment appears to promote 

recovery and ameliorate adverse effects following a stressor. However, recovery rate did not differ 

between environments in the pain treatment groups. Thus environmental enrichment may not be an 

important factor when the fish is responding to a painful stimulus. These results have important 

implications for the husbandry and welfare of captive rainbow trout and possibly other salmonids and 

suggest that enriched environments may be preferable to barren environments in experimental studies.  

  

Keywords: Oncorhynchus mykiss, environmental enrichment, fish welfare, recovery, stress, 

intraspecific variation  
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1. Introduction  

  

There is a plethora of evidence supporting the benefits of enrichment for animals held in captivity, 

particularly mammals (Simpson and Kelly, 2011; Singhal et al., 2014). However, evidence for the 

benefits or otherwise of enriched environments for fish is lacking. Fish are a widely exploited 

research model, second only to mice in numbers used (UK Home Office 2013), but more importantly 

they also constitute a major source of protein with an estimated two million tonnes of farmed fish 

being produced across Europe annually (FEAP, 2014). Globally, aquaculture is a growing industry 

and this growth is inevitably accompanied by concerns about the welfare of intensively-farmed fish 

employed in research aimed at resolving production problems.   

  

Natural environments are more heterogeneous than those found in captivity and this disparity may 

result in stress or impaired cognitive function among captive animals with obvious implications for 

welfare (e.g. Kellison et al., 2000; Brown and Day, 2002; Huntingford, 2004; Sundstrom et al., 2004; 

Araki et al., 2008). For animals kept in captivity the EU directive on the protection of animals used 

for scientific purposes (EU Directive 2010)  recommends, although does not enforce, that captive-

held fish should be kept in enriched conditions. However, despite this recommendation, relatively 

little is known about the benefits of enrichment for captive fish and what is required to maintain a 

high standard of welfare. In captivity for example the habitat often remains non-enriched (from this 

point onward referred to as barren) with no heterogeneity, for ease of cleaning, removal and transfer 

of fish, reduction of the spread of disease etc. Whilst there are many different definitions of 

environmental enrichment, the same general concept applies: increasing environmental complexity 

within an animal’s surroundings that is in some way beneficial to not only maintaining but also 

improving general animal welfare. Enrichment can be further categorised into areas that target the 

different aspects of an animal’s life; social, diet, cognitive, sensory, and physical (Näslund and 

Johnsson, 2014).  
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The results of research on environmental enrichment in fish are contradictory and highlight the 

extensive variation between and even within species. As reviewed in Näslund and Johnsson (2014), 

there are several studies demonstrating the positive effects of environmental enrichment on welfare 

across many fish species. Compared with captive-held fish in barren environments, those provided 

with some form of enrichment have been found to have increased brain development (Marchetti and 

Nevitt, 2003; Kihslinger and Nevitt, 2006; von Krogh et al., 2010; Salvanes et al., 2013), reduced 

impact from stressors (Braithwaite and Salvanes, 2005; Naslund et al., 2013; Batzina et al., 2014), 

improved foraging ability (Brown et al., 2003; Strand et al., 2010; Rodewald et al., 2011), improved 

post-release survival (D'Anna et al., 2012) and positive effects on growth (Leon, 1975; Hansen and 

Moller, 1985; Batzina et al., 2014). This general increase in neural plasticity results in the 

development of behaviourally flexible fish that are better at coping with a variety of situations. 

Although it must be noted that there are also studies demonstrating negative and neutral associations 

of environmental enrichment (See Näslund and Johnsson, 2014).  

  

As a consequence of the diversity in natural histories exhibited in fish, as well as the wide range of 

both physiological and behavioural traits, it is likely that the ideal enrichment will have to be judged 

on a species by species and possibly even on a life stage basis. Here we examine the rainbow trout  

(Oncorhynchus mykiss), a commercially important salmonid with more than 380,000 tonnes (FEAP, 

2014) being produced annually through aquaculture in Europe and as such this species is also widely 

used in scientific research (Thorgaard et al., 2002) but there remains a paucity of information on 

enrichment in captivity in this species.  

  

If a lack of environmental enrichment affects fish behaviour, physiology or welfare then this would 

undoubtedly be a confounding factor when interpreting experimental results and might lead to 

erroneous conclusions from experiments (Williams et al., 2009; Killen et al., 2013). In laboratory 

rodent studies, enrichment can improve the health and welfare of the test subjects but may also reduce 

individual variation such that the data sets are more robust and scientifically valid (Singhal et al.,  
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2014). The present study was conducted to investigate the effects of simple environmental enrichment 

on (i) the recovery of rainbow trout from stressors and invasive procedures, and (ii) the degree of inter-

individual variability among the data collected.  

    

2. Methods  

  

2.1 Fish husbandry   

Experiments were conducted with approval from the Home Office, U.K. (licence no.PPL 40/3435) 

and the University of Liverpool’s Ethics Committee. Juvenile rainbow trout, Oncorhynchus mykiss 

(average weight 92.48 ± 2.72 g; n = 64), were obtained from a commercial supplier and maintained in 

stock tanks (2 x 2 x 0.5 m) in a semi-recirculating system at 11 ± 1 °C, with constant aeration and a 

14:10 h light:dark cycle. The trout were allowed at least two weeks in the stock tanks to recover from 

the stress of transport. Fish were fed commercial trout diet (Skretting, Northwich, U.K.) at 1 % body 

weight per day. For experiments, fish were caught at random and transferred individually to separate 

glass aquaria (90 x 50 x 45 cm) with either barren (air stone only) or enriched (air stone, gravel, 

plastic plant and an overhead area of cover) conditions that were screened from visual disturbance. 

Tanks were provided with filtered water and aeration by a semi-closed recirculation system; light, 

temperature and feeding regimes were identical to those of the stock tank. Rainbow trout are a 

naturally territorial species and form dominance hierarchies where subdominants and subordinates are 

chronically stressed due to low social status (Gilmour et al., 2005; Sneddon et al., 2011). Therefore, 

this species is less stressed when held individually where they are allowed to form a “territory” within 

their holding tank without the stress of social subordination or territorial disputes (e.g. Frost et al., 

2007; Thomson et al., 2011; 2012; Frost et al., 2013) thus we tested fish individually to ensure social 

stress was not a confounding factor and behaviour and physiological responses were consistent over 

the experimental period and any responses were due to the treatments imposed.  
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2.2 Experimental procedure  

Fish (enriched n = 32; barren n = 32) remained in individual tanks for at least two weeks until 

acclimatised and were allowed at least seven days after resumption of feeding. To avoid any biasing, 

fish were randomly assigned to one of four treatment groups: Control where the fish were left 

undisturbed; Sham where fish were anaesthetised in benzocaine (Sigma-Aldrich Co., UK) dosed 

water (0.033 g L-1; Mettam et al., 2012) but no invasive procedure undertaken; Pain where a 

subcutaneous injection of 1 % acetic acid was administered into the frontal lips (0.5 ml in each) 

during anaesthesia; and Stress where fish were subject to one minute of air emersion by holding the 

fish in a net (Pickering and Pottinger, 1989). All fish were tested at the same time each day to account 

for diel variations, and treatments were conducted out of view of other subjects. Trout and other fish 

are commonly exposed to stressors and invasive treatments causing tissue damage that may give rise 

to pain in laboratory studies (e.g. invasive tagging (Weigel et al., 2014), vaccination (Bjorge et al., 

2011) and exposure to necrotic diseases (Fredriksen et al., 2013) and low pH chemicals (Mettam et 

al., 2012)) thus it is vital that we understand if enrichment can enhance the resilience and recovery 

from experimentally induced stress and pain to refine experimental protocols. We, therefore used a 

standard pain test that has been validated and does not cause lasting harm. Previous research has 

shown subcutaneous injection of acetic acid activates nociceptors in fish (Sneddon et al., 2003a; 

Ashley et al., 2009) and fish do indeed recover at approximately 3 hours with behaviour and 

physiology returning to normal (Sneddon, 2003; Sneddon et al., 2003b; a; Reilly et al., 2008a). This 

allows us to measure recovery from a painful stimulus over a relatively short period of time and 

prevents longer-term pain or lasting harm to the fish. In this study benzocaine was used over other 

anaesthetics because it has analgesic properties, has been used in several other studies investigating 

behaviour and OBR (Sneddon, 2003; Reilly et al., 2008a; Ashley et al., 2009; Mettam et al., 2011), 

and recovery is reported to be around 10 mins post exposure (Gilderhus and Marking, 1987; 

Gilderhus, 1989) thus making it appropriate to use for investigating short term responses from 

stressors. However, benzocaine, a commonly used anaesthestic has been reported to be aversive to 

zebrafish (Readman et al., 2013) thus the anaesthetic procedure (handling, confinement in the 

anaesthetic vessel and exposure to a potentially aversive chemical for approximately 10 min) and is 
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known to be stressful in rainbow trout (Review in Sneddon, 2012). We kept sample sizes to a 

minimum for statistical analysis and used trout reared for commercial production rather than using a 

wild species. We believe the benefits of understanding whether enrichment improves recovery in a 

popular experimental model outweighs the cost of short term pain and stress to a relatively small 

number of fish used in this study.  

  

Video recordings, each lasting 15 minutes, were made immediately prior to treatment (within 1 

minute of treatment) and then at 30 minute intervals post-treatment for three hours using cameras 

positioned in front of the tanks. During each 15 minute recording period, the opercular beat rate 

(OBR), a measure of acute stress in fish (Sneddon, 2003; Brown et al., 2005; Reilly et al., 2008a), 

was recorded. Behavioural video footage was scored blind for total time fish spent immobile 

(seconds). Immobile behaviour was defined as the fish remaining stationary and showing no visible 

signs of movement except as a result of maintaining a stationary position within the flow of the water 

in the tank and also included freezing where the fish appeared to make no movement. Inter-observer 

reliability tests were conducted between the two observers for behavioural scoring of videos and OBR 

to ensure repeatability/validity of results.  

  

2.3 Plasma Sampling  

At the end of the three hour testing period, all fish were humanely killed by concussion followed by 

pithing at approximately the same time each day (13:30 h ± 1 h) to ensure interpretation of plasma 

cortisol concentrations were not compromised by diel variations in cortisol secretion (Pickering and 

Pottinger, 1983). Fish were weighed, and blood was collected via sterile heparinised needles (25 g) 

into 2 ml syringes. After centrifugation at 3500 g, 4°C for 5 min, the supernatant plasma was frozen 

and stored at -20°C until further analysis. Cortisol concentrations were determined blind using a 

validated radioimmunoassay procedure (Pottinger and Carrick, 2001).  
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2.4 Data Analysis  

Change in OBR was compared across time and between treatment and environment using a linear 

mixed effects model approach (nlme package; Pinheiro et al., 2007), with environment, treatment and 

time as fixed effects. To account for between-individual variation in initial (pre-treatment) OBR, 

OBR was analysed as percentage change relative to pre-treatment OBR. To account for repeated 

measures for each individual fish an additional random effect term of time nested within individual 

was included. Additionally all interaction terms for all main effects were included in the full model. A 

model simplification approach was subsequently utilised to determine the minimum adequate model 

(utilising a Maximum Likelihood approach). An identical process was utilised for the analysis of 

passive behaviour, which was square root-transformed to meet assumptions of normality and 

homoscedasticity of the residuals. For OBR the minimum adequate model included all main effects 

and an interaction of treatment:time, but no further interaction terms; for passive behaviour the 

minimum adequate model included just the main effects, with no interaction terms. These models 

were finally analysed using a Restricted Maximum Likelihood approach.  

To compare rates of recovery between environments, pre-treatment mean OBR rates for each 

environment and treatment were tested individually against the post-treatment time points using 

paired t-tests. It was assumed fish had recovered when pre- and post-treatment time points were no 

longer significantly different. The recovery OBR rate was estimated by subtracting the mean OBR at 

the time of recovery from the mean OBR rate at the time point directly following treatment, and 

divided by the time between time points. This accounted for the variability in recovery rates between 

individuals. Recovery rates were square root transformed for statistical analysis and a general linear 

model (GLM) applied using factors of Environment and Treatment.  

Plasma cortisol concentrations were square root transformed for statistical analysis, and a GLM used 

to compare mean plasma cortisol concentration between the factors of Environment and Treatment.  

  

To measure if the relative variability differed between barren and enriched environments, coefficients 

of variation (COV) were calculated for all measures between environments within treatments. 

Coefficients of variation are the ratios of the standard deviation to the mean, and are useful for 
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comparing the degree of variation between datasets with significantly different means. Finally, a 

Spearman’s rank correlation coefficient was calculated to evaluate the inter observer reliability within 

the behavioural data. There was a strong significant association between observers within the 

behavioural scoring data (rs = 0.968, p < 0.001).  

With the exception of linear mixed effects models, performed in R (R Version 3.1.1; R Core Team, R 

Core Team., 2014), all analyses were performed in Minitab v16 (Minitab, 2009).  

  

3. Results  

  

3.1 Opercular beat rate  

OBR remained level for all fish under control conditions, but those fish under either experimental 

condition or sham treated was initially elevated immediately post treatment (Fig. 1). In all cases there 

was a significant decrease in percentage change in OBR, compared to the controls, indicating a return 

to the pre-treatment condition (Table 1A, Fig. 1). This was slightly more rapid (I.e. a greater 

coefficient) in the air emersion treatment than the acetic acid and sham treatments. There was a 

significant main effect of treatment (Table 1A) but, since the interaction of treatment x time was 

significant, the main effect itself was ignored.  

  

The interaction between environment and treatment had a significant effect on opercular beat recovery 

rates (F2, 46 = 7.88, p = 0.001). Recovery rates were faster in an enriched compared with barren 

environment for both Stress and Sham treatments (p < 0.01) but not for the Pain groups (p = 0.752; Fig. 

2).  

  

3.2 Behaviour  

The main effect of time was significant with a small positive coefficient (Table 1B), indicating that 

the duration of passive behaviour increased slightly (i.e. the duration of activity decreased) over the 

course of the experiment following the peak in passive behaviour directly after onset of treatments 

(Fig. 3). Of the treatments neither acetic acid injection nor air emersion caused any change in passive 
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behaviour relative to controls; however, passive behaviour was reduced in the sham treatment relative 

to controls (Table 1B; Fig. 3). There was no effect of environment on passive behaviour (Table 1B).  

  

  

3.3 Cortisol  

Plasma cortisol concentrations three hours after imposition of the stressors were significantly different 

between treatments (F3, 64 = 13.53, p < 0.001) but no effect of environment was evident for any 

treatment group (Fig. 4). Fish from the Sham and Pain treatment groups had the highest average 

cortisol values irrespective of enrichment (15 - 40 ng ml-1), whereas levels in the Stress and barren 

Control treatment groups were moderate (5 - 14 ng ml-1) and the enriched Control treatment exhibited 

the lowest average cortisol levels (< 5 ng ml-1).  

  

3.4 Coefficients of variation  

The coefficients of variation for each variable were compared between environments (Supplementary 

Table 1). Inter-individual variation in plasma cortisol concentrations were consistently lower among 

fish in enriched environments compared to fish held in barren environments.  

  

4. Discussion  

   

This study investigated the effects of simple environmental enrichment on the recovery of rainbow 

trout from stressors and invasive procedures, and the degree of inter-individual variability among the 

data collected. When exposed to the stress of anaesthesia and handling, and to a standard stressor, fish 

held in environmentally enriched tanks recovered more quickly than fish held in tanks with no 

additional ornamentation. In addition, cortisol values were less variable between individuals within 

the enriched groups. This suggests environmental enrichment does promote recovery following 

stressful treatments. However, for fish within the groups that received painful stimuli, enrichment had 

little impact on recovery times and behaviour. This suggests pain is a more aversive stimulus eliciting 

a stronger response in the fish. Painful stimuli have been shown to be inherently stressful in fish in 
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terms of increased plasma cortisol concentrations (Ashley et al., 2009). The differences in responses 

between painful stimuli and non-painful stressors may be explained by the fact that in teleosts the 

physiological responses to stress and pain are processed in completely different ways; a stress 

response activates the hypothalamic-pituitary-interrenal (HPI) axis, whilst painful stimuli have been 

shown to stimulate the fore- and midbrain areas (Dunlop and Laming, 2005; Nordgreen et al., 2007; 

Reilly et al., 2008b). Previous studies supporting our findings have also shown that fish exposed to 

painful stimuli do not respond to novel objects in a normal manner (Sneddon et al., 2003b) and do not 

exhibit appropriate anti-predator behaviour (Ashley et al., 2009). Thus in this study the severity or 

intensity of the painful stimulus may override any ameliorating effect provided by enrichment 

whereas recovery is faster from acute stressors.  

  

Fish held in either environmental conditions did not show any evidence of an increase in activity 

(suggested non-invasive measure of stress; Huntingford et al., 2006) across the experimental period in 

any of the treatment groups. If the level of activity can be used as a proxy for stress then earlier 

studies on zebrafish, Danio rerio (von Krogh et al., 2010) and rainbow trout (Kihslinger and Nevitt, 

2006) have both demonstrated a reduction in activity in enriched compared to barren conditions.  

However, future investigation of other treatments such as exposure to predator cues (Ashley et al., 

2009) or other types of painful stimuli may be needed to gauge the importance of environmental 

enrichment in rainbow trout.  

  

OBR is often used as a non-invasive indicator of stress, and our data illustrate that the fish in all 

stressor treatment groups exhibited a significant increase in OBR post-treatment compared to control 

and pre-treatment fish. Similar increases in OBR have been reported in previous studies, in fish 

exposed to stressors and invasive procedures (Sneddon et al., 2003a; Reilly et al., 2008a; Ashley et 

al., 2009; Mettam et al., 2011). A difference in OBR between environments was not seen for any 

treatment group. However, our results did demonstrate the positive impact that environmental 

enrichment has in speeding up the rate of recovery of fish held in barren conditions compared to those 

held in enrichment, in response to stressors, but not a painful stimulus. In this case it is not clear as to 
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which is the more important indicator of effect; the absolute level of OBR (as shown in Fig. 1) or the 

rate at which recovery occurs (as shown in Fig. 2), and more work is needed to resolve this issue.  

  

There was no effect of enrichment on cortisol concentrations and this is reflected by other recently 

published data. For example there was no difference in post-stress plasma cortisol levels in Atlantic 

salmon held in enriched and barren environments (Naslund et al., 2013). Similarly Wilkes et al.  

(2012) found no effect of environmental enrichment on zebrafish whole body cortisol concentrations. 

In contrast however, post-stress whole body cortisol levels were higher in zebrafish held under 

enriched conditions than those held in barren tanks (von Krogh et al., 2010). We may not have found 

a difference in our study because of the three hour delay in sampling post-treatment to allow the 

behaviour and OBR measurements. Post-stress plasma cortisol levels in rainbow trout tend to be 

greatest approximately 1 hr following an acute stressor and then decline (Pickering and Pottinger, 

1989). However, the coefficients of variation for cortisol levels among all treatments was greater for 

fish held in barren environments than enriched environments, suggesting that enrichment did have 

some influence on the activity of the HPI axis. Plasma cortisol was elevated in the Sham and Pain 

group compared with the other groups and may indicate the stress associated with the procedure used 

in this study (Pounder et al. In prep) including a stress response due to the process of anaesthesia and 

the actions of the anaesthetic, benzocaine (Review in Sneddon, 2012). However, benzocaine does 

have analgesic properties whereas many other less aversive drugs would not provide pain-relief 

during invasive procedures and surgery (e.g. etomidate; Readman et al., 2013).  

  

Evidence presented here implies that the presence or absence of habitat enrichment does not affect the 

magnitude of inter-individual variation but it does influence recovery rates. The coefficient of 

variation for cortisol was consistently lower in trout held in enriched environments suggesting that the 

inter-individual range of HPI responsiveness may be reduced when fish are held under enriched 

conditions. Cortisol release is particularly affected by stress coping style in rainbow trout so 

enrichment may go some way to alleviating the confounds of intraspecific variation in stress 

responsiveness (Thomson et al., 2011; 2012). Therefore the presence of enrichment does appear to 
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improve the recovery from stress and reduce physiological variation suggesting that enrichment 

should be adopted in studies to potentially improve not only the welfare of the fish, but also to 

enhance the quality of the data. However, caution does need to be applied and any benefits associated 

with enrichment should be considered on a species by species basis.  

  

Future investigations could explore preference testing, as this would provide an insight into ‘what 

does a fish want?’ (Sneddon, 2011), and could enable us to adopt the most appropriate enrichment to 

assist in improving laboratory fish welfare. For example, preference testing has successfully been 

demonstrated to determine social (Engeszer et al., 2004), and enrichment preferences in zebrafish 

(Kistler et al., 2011; Pavlidis et al., 2013; Schroeder et al., 2014). The plasticity of salmonid brains 

and the impacts of early life experiences have previously been reported (Benowitz and Routtenberg, 

1997; Kihslinger and Nevitt, 2006; Ebbesson and Braithwaite, 2012) and so future work could 

involve rearing fish from hatching under barren versus enriched conditions to see what benefits if any 

that enrichment provides later in life. In addition, as a common aquaculture species, understanding 

how simple enrichments such as providing overhead cover improves welfare in laboratory trout (e.g.  

Pickering et al., 1987) might also be relevant for improving welfare in aquaculture.  

    

The findings of the present study suggest habitat enrichment for rainbow trout may be an important 

refinement in promoting recovery and ameliorating the adverse effects of stressors. Enrichment did 

not confound the quality of data but enriched rainbow trout had less variable cortisol values reducing 

intraspecific differences and possibly improving the quality of the data set. Taken together these 

results suggest enrichment should be applied to experimental studies using rainbow trout when 

appropriate and further enrichment should be intelligently considered for other fish species.  
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Figure 1. Mean (+SE) change in opercular beat rate (OBR; %) in rainbow trout held under either 

enriched (open symbols) or barren (closed symbols) environments, over the experimental period of 3 

520  hrs. Measurements were taken at 30 minute intervals (n = 8 per group).  
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Figure 2. Mean (+SE) opercular beat recovery rate (beats min-1) post treatment, in rainbow trout held 

under either enriched (white bars) or barren (black bars) environments. Recovery OBR rate was 

estimated for each individual fish by subtracting OBR at time of recovery from OBR rate at first time 

point post treatment, and divided by the time between time points: 150 minutes for Stress (enriched 

and barren) and Sham (barren), 120 mins for Sham (enriched), and 180 mins for Pain (enriched and 

barren) (n = 8 per group; general linear model). Displayed p value denotes significant difference 

between environments.  
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Figure 3. Mean (± SE) change in total time spent passive (%) in rainbow trout held under either enriched 

(open symbols) or barren (closed symbols) environments, over the experimental period of 3 hrs. 

Measurements were taken at 30 minute intervals (n = 8 per group).   
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Figure 4. Mean (+SE) plasma cortisol concentrations (ng ml-1) three hours post treatment, in rainbow 

trout held under either enriched (white bars) or barren (black bars) environments (F1, 64 = 1.49, p =  

0.227; n = 8 per group; general linear model).  
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Table 1. Coefficient estimates (±SE) with associated t and p values for all terms retained in the 

minimum adequate model for (A) opercular beat rate and (B) square-root transformed duration of 

passive behaviour. Significant terms are in bold.  

 

A: Opercular Beat Rate 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

B: Passive Behaviour  

 

Predictor  Coefficient S.E. t p 

Intercept  

 

9.85 0.90 10.98 <0.0005 

Environment  Enriched  0.36  0.79  0.45  0.653  

Treatment  Acetic Acid  -0.98  1.12  -0.87  0.386  

  Air Emersion  -0.29  1.12  -0.26  0.798  

  Sham  -2.65  1.12  -2.37  0.021  

Time    0.004  0.002  1.98  0.049  

Predictor  Coefficient S.E. t p 

Intercept    97.44  2.60  37.52  <0.0005  

            

Environment  Enriched  2.10  2.16  0.97  0.335  

Treatment  Acetic Acid  28.06  3.34  8.41  <0.0005  

 Air Emersion  24.45  3.34  7.33  <0.0005  

  Sham   20.07  3.34  6.02  <0.0005  

Time    -0.007  0.01  -0.56  0.576  

            

Interactions  Time x Acetic Acid  -0.09  0.02  -4.89  <0.0005  

  Time x Air Emersion  -0.13  0.02  -7.47  <0.0005  

  Time x Sham  -0.09  0.02  -5.00  <0.0005  
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