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Resumo

Realidade virtual e aumentada têm sido tópicos de elevado interesse nos últimos anos. Realidade
mista é outra variação que permite que jogos evuluam usando tecnologias para adicionar objetos
virtuais e interagíveis a cenários reais. Isto pode ser feito utilizando uma câmara e um proje-
tor onde objetos reais e projeções podem interagir virtualmente num cenário, sem requerir que
utilizadores necessitem de aparelhos visuais.

O PiGaming é um sistema interativo demonstrador de robótica baseado em realidade mista
implementado no Robotic Operating System (ROS) e contém vários jogos, onde dois, três ou
quatro robôs são reais e qualquer outro elemento de jogo é virtual. O PiGaming contém três jogos:
PiTanks, um jogo de tiros do estilo "deathmatch"; Robot factory, um jogo de entregas inspirado
em ambientes industriais; e Robot race, um jogo de corridas baseado em número de voltas.

O sistema funciona projetando objetos como paredes ou balas numa tela 2D pousada numa
superfície, onde são também colocados os robôs. O cenário de jogo é obtido a partir de uma
câmara e as posições dos robôs são dadas por marcadores ArUco posicionados em cima deles. O
controlo dos robôs é baseado em input humano e na lógica de jogo.

Na fase inicial desta dissertação, existia um simulador incipiente baseado em Gazebo e uma
inteligência artificial naive baseada em máquinas de estado finitas, componentes estas implemen-
tadas para o jogo PiTanks.

Durante este trabalho, um simulador eficiente foi desenvolvido. Isto permitiu simulações ráp-
idas, o que por sua vez permitiu o desenvolvimento de técnicas de Inteligência Artificial no tempo
restante do trabalho.

O foco principal esteve em melhorar a experiência dos jogos do sistema e facilitar o seu de-
senvolvimento futuro: com o expandível simulador de elevada performance mencionado anteri-
ormente que funciona para todos os jogos existentes e possíveis jogos futuros. As melhorias à
Inteligência Artificial do PiTanks para tornar o jogo mais interessante foram conseguidas através
de aprendizagem por reforço. O sistema proposto é baseado em Q-Learning e codifica o estado de
jogo discretizado bem como as ações possíveis. A função de recompensa proposta penaliza maus
posicionamentos e disparos disalinhados ao oponente, e recompensa disparos alinhados quando o
adversário está em linha de visão. A fase de treino ocorreu durante 200 jogos de 2 minutos cada
e o jogador automático do distema final conseguiu demonstrar estratégias de jogo comparáveis a
um jogador humano iniciante.
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Abstract

Augmented and virtual reality have been hot topics as of the past recent years. Mixed reality is
another variation that allows gaming to thrive by adding virtual and interactable objects to a real
scene. This can be done by use of a camera and a projector where real objects and projections
interact virtually on the scene, without needing additional visual apparatus on user’s side.

PiGaming is a mixed reality-based interactive robotics demonstrator system implemented in
Robotic Operating System (ROS) with several games, where two, three or four robots are real
and all other game elements are virtual. PiGaming includes three games: PiTanks, a deathmatch
shooter-style game; Robot factory, an industrial-inspired delivery game; and Robot race, a lap-
based racing game.

The system works by projecting virtual objects such as walls or bullets onto a 2D mat on a
surface, where the real robots stand and move. The game scene is acquired through a camera and
the position of the robots is given by ArUco markers on top of them. The control of the robots is
based on human inputs and the logic of the games.

At the starting point of this dissertation, there was an incipient simulator based on Gazebo and
a naive artificial intelligence system based on finite state machines available for the PiTanks game.

Throughout this work, an efficient simulator was designed. This allowed for fast simulations
and this, in turn, enabled the development of Artificial Intelligence techniques in the remainder of
this work.

The main focus was on improving the gaming experience of the system and facilitate its future
development: with the aforementioned high performance and easily expandable simulator that
works for all of the existing games and possible future games. Improving PiTanks’ Artificial In-
telligence to make it more engaging was achieved by using reinforcement learning. The proposed
system is based on Q-Learning that encodes the discretized game state and possible actions. The
proposed reward function penalizes bad positionings and shooting a misaligned opponent whilst
searching for aligned shots with direct line-of-sight to the opponent. Training took 200 games of
2 minutes each and the final system’s automated player was able to perform as well as a human
player at a beginner level.
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Chapter 1

Introduction

This chapter shows an overview of the work done. First, a brief contextualization about the system

is given. Secondly, the motivations for this dissertation are described. Thirdly, the intended goals

to be achieved are detailed as well as their overall results and contributions to the project. Fourthly,

what contributions were made to the project. Lastly, the document’s structure is summarized.

1.1 Context

The work done in this masters dissertation was made with the goal of furthering the development

of PiTanks [5], a project previously developed by several students from both MIEEC and MIEIC.

PiGaming is an interactive robotics demonstrator system implemented on ROS [21] which

features several mixed reality games, where two, three or four robots are real and all other game

elements are virtual. This demonstrator currently includes three games:

• PiTanks: a timer-based deathmatch shooter-style game;

• Robot factory: an industrial-inspired delivery game;

• Robot race: a lap based racing game.

The system works by projecting virtual objects such as walls or bullets onto a 2D mat on a

surface, where the robots stand and move. Therefore, all games have a top-down view and their

scenes are always a 2D plane. The game scene is acquired through a camera and the position of

the robots is read through the detection of ArUco markers [19][7] placed on top of them. The

control of the robots is based on human inputs on joystick controllers and the logic of each of the

games.

The game PiTanks specifically has two extra components to allow play without requiring real

robots: Simulation and AI [6]; these components, however, are fairly restricted and unsuited for

future development. As such, for this dissertation, it was proposed to generalize the simulation

aspect to all of the games as well as upgrading the overall gaming experience of the system.
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2 Introduction

1.2 Motivation

The first driving motive for this dissertation is the improvements to the simulation. Considering

the starting point of this dissertation, in order to develop new games or make improvements to

both Robot factory or Robot race, testing can only be done with the system’s physical setup. This

setup can be seen in Figure 1.1.

Given the setup’s bulkiness and limited availability, game testing cannot be done every time it

is required, which hinders the development process of the games. As such, the leading force behind

the generalization of the simulation component of the system is to smoothen the development

stage of future projects, better preparing the system for new games, different game modes, or

improvements for the existing games.

Figure 1.1: PiGaming’s physical setup
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The second motive is the addition of a more competitive and interactive AI for PiTanks. De-

spite already having a state machine-based AI, introducing the concept of reinforcement learning

with a new self-taught AI could not only expand PiGaming’s system’s gaming value by bringing

a bigger challenge to more experienced players, but also allow it to slowly develop undiscovered

strategies that could enhance the game’s depth.

1.3 Objectives

Given the aforementioned motivations for this dissertation, there are two main objectives to be

achieved:

• Implementing a high performance simulator;

• Developing a self-taught AI for PiTanks.

By providing a high performance simulator, all games, including possible future ones, should

be able to smoothly run on the simulated environment, which in turn should allow for reinforce-

ment learning algorithms to be applied more efficiently, as well as improve playability and fidelity

with the physical system when testing the games.

The newly developed self-taught AI should both be able to consistently beat its previous state

machine based implementation, as well as have decent chances of beating human players.

1.4 Contributions

Regarding the simulation aspect, the simulator was developed with the purpose of having a higher

performance while being as lightweight as possible and staying loyal to the physical system.

The fidelity to the physical system was planned to be tested by running the games both with and

without the physical setup while performing a given set of actions for both cases, thus gathering

data about the position of the robots on each and comparing them, allowing to tweak the simulator

accordingly to be loyal to the physical setup. This was however deemed unfeasible due to the

physical system’s inaccessibility during the development phase of this dissertation as a result of

the pandemic outbreak and confinement order.

An additional detail of the new simulator is that it stores information not only about the robots,

which was the only required aspect for the games to run without the physical setup, but also the

virtual objects. The reason for this inclusion was for the simulator to also serve as the environment

that contained all required information for the machine learning algorithms to gather and train the

new AI.

Regarding the AI aspect, Q-Learning was used as the first step into self-taught AIs for this

project.

At the end of this dissertation, it is possible to play all three games in the simulated environ-

ment, as well as PiTanks in a 1 versus 1 scenario against the self-taught AI.
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1.5 Document Structure

Besides this brief introduction, this dissertation contains five more chapters.

In chapter 2, PiGaming’s state regarding the beginning of this dissertation’s development phase

is discussed while emphasizing the focused features’ shortcomings, as well as the current state of

the art, specifically in robotics simulation and usage of reinforcement learning in real-time games.

In chapter 3, possible solutions and improvements for the shortcomings analyzed in the previ-

ous chapter are considered and the chosen approaches for the improvements are justified by taking

into account the project’s state and requirements. Besides this, the initial architecture of the project

is detailed along with the necessary changes made.

In chapter 4, the new simulator’s development is detailed in addition to the changes made to

the core game engine of the project. This includes the simulator’s position within the architecture

of the whole system. Lastly, the simulator is compared to the previously implemented one, and

the results of the implementation of the earlier are presented.

In chapter 5, the developed AI’s implementation is described. The interactions between it and

the simulator detailed in the prior chapter are detailed. Lastly, the AI’s performance against the

previously implemented one and a small number of human players is evaluated.

Lastly, in chapter 6, the conclusions for the work done in this dissertation are discussed as well

as possible future additions and improvements to the PiGaming system as a whole.



Chapter 2

Starting point and state of the art

This chapter describes the project’s state at the start of this dissertation as well as the focused short-

comings that justify the work done in this dissertation. The state of the art related to simulation in

robotics and the usage of reinforcement learning in real-time games is also discussed.

2.1 System overview

PiGaming [5] is an interactive robotics demonstrator system implemented in ROS which features

several mixed reality games, where two, three, or four robots are real and all other game elements

are virtual. PiGaming currently includes three games: PiTanks, a timed deathmatch shooter-style

game; Robot factory, an industrial-inspired delivery game; and Robot race, a lap-based racing

game.

The games are categorized as mixed reality games due to the interactions between real robots

and virtual objects. As such, actions performed by the robots are able to cause changes in the

virtual objects and vice-versa. With this, all game rules and game modes present in the system are

based on the interactions between both the real and the virtual domains.

The system works by projecting virtual objects such as walls or bullets onto a 2D mat on a

surface, where the robots stand and move. The game scene is acquired through a camera and the

position of the robots is given by ArUco markers on top of them. To control the robots, up to four

joystick controllers are used depending on the number of players and the chosen game. To send the

controllers’ input to the robots, an additional wireless XBee module is connected to the computer

running the system. The robots used are Polulu 3pi [1] modified with a small cover which holds

the ArUco markers. Both the regular and modified robots can be seen in Figure 2.1.

2.1.1 PiTanks

PiTanks is a timed deathmatch shooter style game and has two play modes: free-for-all and teams,

requiring a minimum of two and a maximum of four players to be played. The game’s map can be

seen in Figure 2.2.

5
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Figure 2.1: Original Polulu 3pi (left) and modified Polulu 3pi (right).

Figure 2.2: PiTanks’ game map. [6]
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Each robot represents a tank, which is able to move and shoot virtual bullets. These robots

navigate through a virtual map with indestructible outer walls that keep them inside and destruc-

tible inner walls that can be used as cover. The biggest difference from most shooter games is that

there is no concept of health or hit points, meaning that the scores are calculated by how many

shots a player or team have hit opponents with and how many shots they have taken from oppo-

nents, this game mechanic means that all players keep playing until the game time is over, instead

of instantly losing once their hit points reach zero and having to wait for the other players to finish

the game. There is no standard game time, it is always agreed upon and selected before the start

of a game.

2.1.2 Robot factory

Robot factory is a competitive game which simulates an industrial environment, the game’s map

can be seen in Figure 2.3. Two teams of two robots each compete and try to move pallets from their

entry warehouse to the appropriate industrial machines and then to their exit warehouse. Different

colours are used to distinguish which warehouses belong to which team.

Figure 2.3: Robot factory’s game map.

The first team to move all of their processed pallets to their exit warehouse is declared vic-

torious. Both teams share the industrial machines, meaning that proper management of their use

and teamwork between robots of the same team are fundamental to being more efficient than the
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opposing team. If a pallet is placed in the wrong machine, it will get damaged and become unable

to be processed. Besides the robots, their warehouses, the machines, and the pallets, there are also

NPCs that represent human factory workers, these NPCs move to machines that have appropriate

pallets in them in order to process them. If a robot moves over an NPC, the robot gets immobilized

for three seconds as a penalty. Every pallet needs to be processed twice in order to be considered

complete, only then it is accounted for when it is dropped in the exit warehouse.

2.1.3 Robot race

Robot race is a racing game where robots compete to see which can complete three laps the fastest,

the game’s map can be seen in Figure 2.4. A particular feature that distinguishes this game from

most racing games is the fact that each robot has its own start and finish line.

Figure 2.4: Robot race’s game map.

Compared to the other two previous games, the robots’ velocity is slightly increased in this

game to make the races more interesting and fast-paced. To prevent players from going out of

the race track’s bounds, the robots’ speed is reduced by a ratio of 2
3 , significantly slowing them

down. The game is also prepared to not count laps that are made through the middle of the track,

by making use of the other robots’ start and finish lines as checkpoints which must be cleared for

the lap to be counted.
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2.1.4 Gazebo simulator

PiTanks also features a custom simulator and an artificial intelligence module [6], which makes it

possible to play with simulated robots as one would with real robots, as well as play against an AI

in a one versus one scenario.

This simulator for PiTanks is based on Gazebo [13] and despite its usefulness of allowing the

use of custom modelled robots that are a decently accurate simulated representation of the robots,

which allow the game to be played without the real robots, it has a few shortcomings.

As can be seen in Figure 2.5, the real-time factor of this simulator fluctuates around 0.5 in a

64-bit Windows 10 machine, this means that the game runs at roughly half the speed it otherwise

would if it was played with real robots instead of the simulated ones. This issue is mostly due to the

usage of Gazebo, which could be considered as too complex for what is needed to be simulated for

the PiGaming system specifically, therefore adding unnecessary complexity given that the in-game

representation of the robots are simple circles.

Figure 2.5: PiTanks’ simulated Gazebo environment.

Additionally, the dimensions of the game objects in the game engine and in the simulator are

completely different, this means that whenever the system needs to communicate with the simu-

lator or vice-versa, the units always need to be converted. This detail makes it not only difficult

to understand why these calculations are needed for future developers, but also take unnecessary

processing time since this communication happens twice, converting to the simulator and decon-

verting to the game engine, for every frame that the game runs.
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2.1.5 Artificial Intelligence

The AI is based on finite state machines and features both offensive and defensive behaviours

depending on if the AI is winning or losing. These behaviours are displayed in Figure 2.6.

Figure 2.6: Simplified view of PiTanks’ finite state machine AI.

However, this approach can be both easily exploitable once known how the AI behaves, and

malfunction at critical times, resulting in strange situations where it seems to be stuck in a specific

behaviour and allowing other players to easily win against it by staying in the same spot while

continuously shooting.

2.2 Simulators in ROS

Since the first focus of the work in this dissertation is employing a more lightweight and generic

simulator in the system, it is of importance to analyze several relevant simulators that fit this

criteria.

When it comes to choosing which simulator is best suited for the system, there are several

important factors to take into account:

• Integration and compatibility with ROS [21], a flexible framework with several useful li-

braries and tools for writing robot software: since ROS is the base of the PiGaming system;

• Performance under stress conditions: this is due to PiGaming sometimes requiring the use

of four different robots at the same time which when simulated may cause the system to lag

and thus slow down the gameplay;

• Future usage: PiGaming has been in development for several years now and it is intended

to keep being upgraded in the future, thus requiring a simulator that stays relevant.
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Considering the aforementioned factors, the two most commonly used simulators in the robotics

industry were analyzed: Gazebo and CoppeliaSim.

2.2.1 Gazebo

Despite being the implementation base for the previously developed simulator for PiTanks and

one of the reasons as to why this dissertation exists, it is still worth going into detail about its

capabilities for possible performance-enhancing options.

Gazebo [13] is an open-source 3D dynamic simulator and is the default used simulator for

ROS projects. Despite being different projects, Gazebo is developed with the philosophy of being

specifically used with ROS, which makes its integration and compatibility some of its biggest

strengths. Since it is the most commonly used simulator in the robotics community, it possesses

an extensive amount of documentation as well as open discussions and forums, which in turn allow

its workflow to be fairly straightforward.

When it comes to robot modelling, it is not only possible to use several, although not many,

predefined ones, but also import custom-made designs created outside of Gazebo. This feature

allows users to define their own robots in a way that most closely fits the features of the real robots

that are intended to be simulated.

Regarding physics, ODE is Gazebo’s default engine. However, it is possible to integrate other

physics engines manually if deemed necessary. The issue with these engines when it comes to

usage in the PiGaming system is that since they handle 3D environments, their level of complexity

is fairly greater than what is required within PiGaming which only features two dimensions.

Lastly, in terms of performance in multi-robot simulation, Gazebo shows fairly decent re-

sults [17] in regards to CPU usage as well as keeping up the real-time factor.

2.2.2 CoppeliaSim

CoppeliaSim [18], formerly known as V-REP, is a 3D simulator and is one of the simulators in

robotics projects with the largest number of functionalities and tools. It is most distinguishable

from other simulators because it allows for high fidelity when it comes to physics, by featuring

several physics engines such as Bullet, ODE, and Vortex.

Unlike Gazebo, it is not developed with the intention of being specifically used alongside ROS.

However, there are several different interfaces and plugins which allow the development of ROS

projects without complications.

It possesses a large number of native robot models while also allowing users to import and edit

their own models inside the simulator itself. Alongside a being well documented, this is one of the

features that make CoppeliaSim’s UI to be considered one of the most intuitive and accessible.

When it comes to performance, due to its high focus on realism, it falls behind significantly in

multi-robot simulations [17]. A small scene with 5 robots holds a real-time factor of 0.38 and a

200 p.p. increase in CPU usage.
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2.3 Reinforcement Learning

Since the current state machine-based AI for PiTanks is at times faulty and naive, reinforcement

learning could prove to be an important step into developing a more challenging AI that appeals

to more experienced players.

Reinforcement learning [9] is an area of machine learning which focuses on the process of

making an agent learn a certain behaviour through trial-and-error interactions with an environment

that possesses a finite amount of possible states, and a finite set of actions per state.

There are two primary approaches when it comes to reinforcement-learning problems. The

first is to explore the state space of the environment with the goal of finding a behaviour with a

good performance. The second is using statistics and dynamic programming methods to estimate

the value of taking actions in states of the environment.

In a standard reinforcement learning model, an agent interacts with its environment by per-

forming actions, making it transition from one state to the next. When an action is executed, an

immediate reward is provided to inform the agent of how beneficial the action taken for that given

state was. The long-term value for the action is the sum of its immediate reward and the achievable

value from the new state. This approach results in influencing the selection of an action by the

potential reward of future actions in future states, thus leading to more promising decisions the

more agent trains. Ultimately, the objective of a reinforcement learning agent is to maximize its

total obtained reward.

Figure 2.7: Standard reinforcement learning model.

There are several approaches and algorithms when it comes to reinforcement learning. As

such, in this subsection, the usage of reinforcement learning in robotics is explored and several

state of the art reinforcement learning algorithms and developed AIs are discussed.

2.3.1 In robotics

Reinforcement learning in robotics [12] varies significantly from other reinforcement learning

problems, mostly due to most problems in robotics being represented by continuous and high-

dimensional states and actions. In addition, it is frequently unreasonable to assume that the ac-

quired state is complete and noise-free, which leads to the agent responsible for the robot’s actions
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oftentimes not being able to specifically determine in which state it is or misjudge one state for

another.

Besides this inaccuracy, issues with training when it comes to real physical systems are re-

production, cost and time: since replicating initial state conditions is almost close to impossible;

every trial setup is costly, can lead to malfunctions and result in damaged hardware; and given the

real-time limitation, the time frame for a robot to learn the behaviour it is expected to can at times

be unreasonable.

Despite this, advances in simulation have bypassed these physical issues and lead to a much

more efficient application of reinforcement learning in the robotics domain. More specifically,

RoboCup [11] is a worldwide robotics initiative that has withstood these issues and made great

advancements with reinforcement learning in robotics.

RoboCup

RoboCup [11] is an initiative that attempts to foster AI and intelligent robotics research by offering

a standard problem. This problem is using a soccer game as a platform for a wide range of AI

and robotics research, where several different kinds of robot teams face each other. A game of

RoboCup’s Standard Platform League can be seen in Figure 2.8.

Figure 2.8: RoboCup’s Standard Platform League game.

This competition has promoted the development of many kinds of intelligent behaviours through

reinforcement learning over the years.

Keepaway Soccer [22] is a subtask of regular RoboCup soccer developed through reinforce-

ment learning and its goal was to develop a maintain ball possession strategy for the robots to use

in RoboCup. While there were already hand-coded strategies which made use of several macro-

actions, such as holding the ball, passing the ball and moving to an open space to receive a pass,

their effectiveness was not close to optimal and it seemed possible for the robots to maintain pos-

session of the ball for longer periods of time, thus leading to the development of this behaviour

with reinforcement learning.

The results of the new keepaway behaviour with reinforcement learning showed better episode

durations, meaning more time with ball possession, after very few hours of training, and after
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several more hours, the robots were able to maintain possession of the ball for double the amount of

time they could with hand-coded strategies, thus proving that an approach through reinforcement

learning for the development of AI strategies could provide significant improvements.

Half Field Offense [10] is an expansion of the aforementioned keepaway behaviour, and its

task was to develop a strategy that would allow offensive robots from one team to outsmart the

defensive team’s robots, including its goalkeeper, to score a goal, while mostly assuming that the

defending team would have more players. Just like its predecessor this task was episodic, unlike it

however was that it was not relevant how long the offensive team could keep possession, instead,

what was important was how consistently it was able to score goals without losing possession of

the ball or letting it get out of bounds.

The resulting behaviour was able to achieve a success rate of 32% with inter-agent communi-

cation and 23% when each agent learned independently. When compared to hand-coded strategies

for the same behaviour, it was able to surpass their average success rate of 12.5% within less than

5000 episodes of training.

2.3.2 Deep Learning

Deep Learning [14] is an area of machine learning which uses multiple processing layers to pro-

gressively extract higher-level features from raw input data. Over the years, deep learning methods

have significantly improved the state of the art not only in game AIs but also speech recogni-

tion, object recognition and detection, and other domains such as drug discovery and genomics.

Through backpropagation, deep learning determines how much a machine should change its inter-

nal parameters which are used to compute the representation in each layer from the representation

in the previous layer.

Although most frameworks for deep learning have their core libraries implemented in C++,

such as Tensorflow [3] or PyTorch [16], to have increased efficiency, their API’s have better sup-

port and documentation for the Python language, which besides not being the most efficient, can

at times not be suited for specific projects, which makes the usage of these frameworks intricate.

As breakthrough as it may be, deep learning tends to take a much larger degree of time to train

when compared to other training methods, despite having demonstrated its capacity to produce

highly effective results.

AlphaZero

AlphaZero [20] is a deep reinforcement learning program that was able to master several board

games such as chess, shogi, and Go by only taking in as input the current state of the board and

outputting a vector of move probabilities and their scalar move value. These probabilities and

values were learned exclusively through self-play and without any domain knowledge except for

each game’s rules.
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This program demonstrated superhuman performances and was able to defeat Stockfish, the

world champion chess program, winning 155 times and losing 6 out of 1000 matches in chess; in

shogi, AlphaZero defeated Elmo 98.2% of games when playing black and 91.2% overall.

AlphaStar

AlphaStar [4] was the first deep learning AI system to beat a professional player at the game

of Starcraft 2, a real-time strategy game, in january 2019, which represented a milestone in the

progress of AI.

Initially, AlphaStar’s agents were trained by supervised learning from anonymized human

games released by Blizzard, Starcraft’s developer, which allowed it to learn by imitation the ba-

sic micro and macro strategies commonly used by players; this lead these initial agents to defeat

the built-in Elite level AI in 95% of games. These agents were then used to seed a multi-agent

reinforcement learning process, simulating a continuous league where agents played against each

other; new competitors were dynamically added to this league by branching from existing com-

petitors. With the progression of this league and the creation of new competitors, new strategies

emerged and others were refined.

OpenAI Five

OpenAI Five [15] is a Deep Reinforcement Learning agent that was able to learn the game Dota

2, a multiplayer online battle arena, through self-play and was able to defeat the reigning Dota 2

world champions in april 2019, this was the first time ever an AI was able to defeat an esports

world champion team.

Besides the world champions, OpenAI Five became available for the Dota 2 community to

freely play against, in these community matches OpenAI Five won 99.4% of over 7000 games.

This proved the viability, if not superiority, of reinforcement learning in complex environments

such as Dota 2.

2.3.3 Q-Learning

Q-Learning [23] is an off-policy reinforcement learning algorithm that attempts to find the best

possible action to take given the current state in order to advance to a more promising state. It is

considered off-policy since it learns through exploration, meaning that it seeks to learn a policy

that maximizes the total reward through the exploration of random actions.

The Q stands for quality, which is represented by how advantageous it is to take a certain

action in a given state.

In order to represent these values in every possible action in every possible state, a Q-Table is

used. A Q-Table is a matrix with the shape [S,A], where S is the number of possible states and

A is the number of possible actions an agent can take at any given moment, and it functions as a

reference table for the agent to choose the best possible action based on their Q-value. Every Q-

value starts at 0 when training begins, meaning that at the beginning of training, the agent does not
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know which action leads to a more promising future state, however, through exploration, the agent

updates the Q-values of the chosen actions through the delayed reward it receives. The longer the

agent trains, the more these Q-values converge, making the agent more confident in the actions

they choose in future episodes.

To update a Q-value, Q-Learning follows a Bellman equation as a simple value iteration up-

date, by using the weighted average of the old value and the new information:

Qnew(st,at)← Q(st,at)+α ∗ (rt + γ ∗maxQ(st+1,a)−Q(st,at))

Where:

• t: is the current time step;

• st: is the current state;

• at: is the current action taken;

• Qnew(st,at): is the new Q-value for performing action at in state st;

• Q(st,at): is the old Q-value for performing action at in state st;

• maxQ(st+1,a): is the maximum Q-value of all of the actions for state st+1;

• α: is the learning rate, which determines the extent of how much the new information

overrides the old value;

• rt: is the reward received for transitioning from state st to st+1;

• γ: is the discount factor and has the effect of valuing earlier rewards received higher than

those received later thus leading to the convergence of the Q-values obtained throughout the

agent’s training;

CLASSQ-L

CLASSQ-L [8] is a Q-Learning based algorithm that was developed to complete Wargus games, a

real-time strategy game similar to Warcraft 2 where players control armies of units from several

classes.

The strategy used to implement Q-Learning in this environment was to have multiple Q-Tables

each representing one of the classes of units, this was due to different classes having different sets

of actions. This way, by having a single table for all units of the same class, the learning process

was significantly sped up compared to updating Q-values for every single unit’s action.

To reduce the number of possible states, several state features that had too many possible

values were generalized. These included features such as gold, resources like wood and food, and

number of units; for instance, gold was discretized to have 18 possible representations, from 1

meaning 0 gold and 18 meaning more than 4000 gold.
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Wargus had a built-in scoring system to determine which player was the winner at the end of

the game. However, this value was not very indicative of determining by how much one team won

since at times quick victories would have a smaller score differential than much longer games.

Instead, each match was repeated ten times to obtain a more statistical value of which player

performed better.

This algorithm was tested in a small map of Wargus, in which it was able to consistently

beat all of its opponents after very few iterations of training, proving to be a quick learner. The

opponents used to train and evaluate CLASSQ-L were AIs that come with the Warcraft distribution.
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Chapter 3

Proposed improvements

This chapter explains the approaches that were chosen from what was analyzed in the previous

chapter, as well as explain why the other ones were discarded. An overview of the changes in the

system’s architecture is also provided to highlight what was changed during the development of

this project.

3.1 Simulation

Given the importance of requiring an appropriate simulation module, not only for the second part

of this dissertation, the self-taught AI, but also for future improvements of the PiGaming system

as a whole, there are three main factors that must be guaranteed:

• A real-time factor of at least 1 when simulating up to four robots;

• Straightforward integration in ROS;

• Expandability for future development;

The real-time factor is the quotient between the elapsed simulation time and real-time, if this

value can be assured to stay at values of 1 or greater, the game will never run slower than it is

intended when simulated. Since all games in PiGaming are real-time games, guaranteeing this

factor ensures that the simulated games will stay faithful to their physical counterparts.

Considering the fact that PiGaming has been developed in ROS from its very beginning and

is currently not planned to change, having a simulation module that fits the ROS framework is

a necessity especially when dealing with communication with other modules of the PiGaming

system.

Since it is expected that PiGaming will continue to receive improvements over the years to

come, making certain that its simulation module is easily expandable and generic is of great im-

portance to allow future games and upgrades to be easily incorporated.

Taking into account [17], Gazebo seems to show the best values in regards to the real-time

factor when used to simulate small scenes, such as the ones in PiGaming, with up to five robots.

19
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However, as shown in the previous chapter, when used in PiTanks, Gazebo struggles to keep up a

real-time factor value greater than 0.55 which is much less than the requirement of 1. And since

the custom modelled robots [6] that can be seen in Figure 3.1 were already purposefully modelled

to be simple thus avoiding complicated physics calculations, improving the real-time factor was

deemed unfeasible.

Figure 3.1: Custom modelled robots for the previous simulator in three points of view [6].

CoppeliaSim, although having a higher level of realism, lacks even more than Gazebo when it

comes to keeping up high values of the real-time factor in small scenes with five robots.

With both most common simulators in the robotics industry not being suited for PiGaming,

both due to their high levels of complexity, and PiGaming’s games being simple 2D minigames

with basic game rules, it was decided to implement a completely new 2D simulator from scratch

as a new ROS package module for PiGaming. This new simulator would feature simple objects

with basic information, such as position and orientation, since the whole purpose of implementing

a simulation module in the system was to replace the camera component of the physical setup by

informing the game engine where each robot was located. This approach would allow: minimal

resource usage since only object positions and geometrical collisions would be calculated; one-to-

one object dimensions by focusing on pixels as the main unit; all game objects’ information to be

stored in one centralized module for the new AI component to access.

3.2 PiTanks’ Artificial Intelligence

With the goal of exploring reinforcement learning to develop a more challenging AI for PiTanks,

there were two major concerns when it came to choosing which approach was more effective and

efficient:

• Simple integration within the ROS C++ framework;

• The amount of time it would take to train the AI;

Since PiGaming was developed in C++ and within the ROS framework, several setbacks were

present at the very beginning, due to most reinforcement learning frameworks only having proper



3.3 System architecture 21

implementations and documentation in the Python language. Although, even with little to no

documentation, there were some of these frameworks which also included C++ libraries of their

implementation, such as PyTorch’s LibTorch [16], including these libraries within ROS proved to

be a difficult task and had very little online support. This does not mean that usage of this library

in the future is inconceivable, and if an approach is found that allows its usage, it should certainly

prove beneficial for the project’s future.

Secondly, given the limited amount of time to develop and demonstrate decent results, select-

ing a time-consuming approach in both these aspects would severely hinder the progress towards

reaching the second goal of this dissertation.

With these limitations, even acknowledging that the obtained results would not be faultless, Q-

Learning was the chosen approach to support the integration of the new self-taught AI for PiTanks.

3.3 System architecture

Having determined that new modules would need to be included within PiGaming, it was neces-

sary to closely observe and adjust, if necessary, the architecture of the system.

At the beginning of the development of this dissertation, the architecture of the system when

executed to run with the simulation module was composed of six modules which can be seen in

Figure 3.2. The observed diagram was acquired through rqt_graph which creates a dynamic graph

of what modules are currently running as well as the messages that are being exchanged by them

through topics. The arrows show the direction in which messages are being sent in the respective

topics.

Figure 3.2: PiGaming’s initial ROS architecture with the simulation module.

The /game_engine module is the core of the whole system and where most of the game infor-

mation is processed and distributed to the other modules. This module is where all game rules are

implemented and it is also responsible for the system’s UI.

The /joystick module is in charge of receiving and handling, as the name suggests, the inputs

received from the joystick controllers connected to the machine that is running the system. It

handles information such as the robot’s velocities, linear and angular, as well as if they are shooting

bullets or using turbo, which grants a slight increase to their speed.

The /key_input module is a replacement to the /joystick and its only purpose is to be used in

debug mode, as a means to control the robots through the computer’s keyboard thus not requiring
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the use joystick controllers. This is its only purpose since it is only able to read one input at a time,

making it unfeasible to have multiple players using it at the same time.

The /ai module is responsible for handling the decision making of the old state machine-based

AI and sending its output control messages of one robot to the game_engine.

Lastly, the /gazebo and /gazebo_gui are, respectively, responsible for simulating the robots

and sending their positions to the /game_engine, and showing their positions to the user.

Considering that the new simulator module is replacing Gazebo, its introduction means the

removal of both modules related to Gazebo. Similarly, by introducing a reinforcement learning

AI, it would take the place of the previously implemented AI module. These changes result in

the proposed architecture shown in Figure 3.3. Despite being replaced, the previously mentioned

modules are still implemented within the system, and if proven to be useful in the future, they

could and should resurface.

Figure 3.3: PiGaming’s new proposed ROS architecture with the new simulation module.

Instead of sending information about the robots’ movements to Gazebo, the /game_engine

module now sends it to the new simulator module /simple_sim as well as all other game-related

objects’ information. This way, the new simulator will contain all game state information, and to

correctly replace Gazebo, its only requirement is to calculate the robots’ positions given the inputs

sent by the /game_engine and send them back.

The /key_input module was slightly modified to allow all robots to be able to shoot bullets.

Prior to this change, only the first two robots were able to shoot in debug mode.

The new /machine_learning module was implemented to continuously receive the game state

information from the /simple_sim module in order to train itself. And the previous AI’s topics

were also repurposed for this new one in order to fit the /game_engine module’s requirements.
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High performance simulator

In this chapter, the implementation process of the new simulator is described. Besides this, the

overall changes to the system to harmonize its communication with the simulator are documented.

Lastly, the simulator’s performance is compared to Gazebo’s.

4.1 Developing a simpler simulator

4.1.1 Objects

Since the goal of this simulator was to have a higher performance in order to stay relevant and

expandable within PiGaming, the focus of its implementation was on representing the game state

with efficient objects. Considering that all games within the system are 2D with a top-down view,

the only logical approach to represent the objects were their horizontal and vertical positions,

orientation and their sizes.

Considering that the in-game representation of the robots are circles, it was decided that they

would be represented in the same way within the simulator, thus only containing their position,

orientation and radius when it came to their physical aspects. However, those three alone are not

sufficient to indicate the robots’ information that players can see in PiTanks. Thus, by adding their

score represented by how many shots they’ve hit subtracted by how many shots they’ve taken,

the team to which they belong, and finally their id, internally represented within the simulator, all

aspects that define one robot are represented.

Additionally, as wasn’t required by the game engine when running the games with the physical

setup, only robot collisions had to be implemented within the simulator. Since all other kinds of

collisions were already implemented within the game engine and the real robots would collide

regardless, implementing robot with robot collisions in the game engine was unnecessary but

absolutely required in the simulator.

Lastly, given that Gazebo was only able to simulate the PiTanks game, for this dissertation,

the only objects besides the robots that were implemented in the simulator were bullets and walls,

which are the only other kinds of objects that exist in PiTanks. Figure 4.1 shows PiTanks running

23
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in the simulated environment and the following code blocks show their implementation within the

simulator.

Figure 4.1: PiTanks in the new simulator.

c l a s s Robot {
p r i v a t e :

double x ;
double y ;
double r a d i u s ;
double a n g l e ;
i n t s c o r e ;
i n t t eamId ;

p u b l i c :
Robot ( double x , double y , double r a d i u s , double ang le , i n t t eamId ) ;
double getX ( ) ;
void se tX ( double x ) ;
double getY ( ) ;
void se tY ( double y ) ;
double g e t R a d i u s ( ) ;
void s e t R a d i u s ( double r a d i u s ) ;
double g e t A n g l e ( ) ;
void s e t A n g l e ( double a n g l e ) ;



4.1 Developing a simpler simulator 25

i n t g e t S c o r e ( ) ;
void s e t S c o r e ( i n t s c o r e ) ;
i n t getTeamId ( ) ;
void se tTeamId ( i n t t eamId ) ;

} ;

c l a s s Wall {
p r i v a t e :

p a i r <double , double > p o i n t 1 ;
p a i r <double , double > p o i n t 2 ;
double wid th ;
i n t h e a l t h ;
bool i n d e s t r u c t a b l e ;

p u b l i c :
Wall ( double x1 , double y1 , double x2 , double y2 , double width , i n t

h e a l t h ) ;
p a i r <double , double > g e t P o i n t 1 ( ) ;
void s e t P o i n t 1 ( double x , double y ) ;
p a i r <double , double > g e t P o i n t 2 ( ) ;
void s e t P o i n t 2 ( double x , double y ) ;
double ge tWid th ( ) ;
void s e t W i d t h ( double wid th ) ;
i n t g e t H e a l t h ( ) ;
void s e t H e a l t h ( i n t h e a l t h ) ;
bool i s I n d e s t r u c t a b l e ( ) ;
void s e t I n d e s t r u c t a b l e ( bool i n d ) ;

} ;

c l a s s B u l l e t {
p r i v a t e :

double x ;
double y ;
double a n g l e ;
i n t r o b o t I d ;

p u b l i c :
B u l l e t ( double x , double y , double ang le , i n t r o b o t I d ) ;
double getX ( ) ;
void se tX ( double x ) ;
double getY ( ) ;
void se tY ( double y ) ;
double g e t A n g l e ( ) ;
void s e t A n g l e ( double a n g l e ) ;
i n t g e t R o b o t I d ( ) ;
void s e t R o b o t I d ( i n t r o b o t I d ) ;

} ;

Not including objects from Robot factory or Robot race, however, does not prevent either of

them to be played with this simulator since its only requirement is to inform the game engine where
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the robots are, it simply means that not all game information for those games are present in the

simulator’s current state. Figure 4.2 shows Robot Factory running in the simulated environment.

Figure 4.2: Robot factory in the new simulator.

4.1.2 Distance unit

Given the fact that Gazebo’s distance unit was the meter, yet the game engine’s was the pixel, it

would constantly keep converting and deconverting the robot’s position and velocity values. The

conversion ratios of these values were reasonable considering Gazebo’s level of realism, although,

their existence not only took a toll on the system which delayed the gameplay but also made it

unnatural to compare the robots’ positions within the game screen and the simulated screen.

To make up for this issue and remove these conversions, the new simulator’s units would mimic

the ones existing in the game engine, meaning that a robot’s position, orientation and radius would

be the exact same both in the game engine and in the high performance simulator. This change

would also allow information such as velocity to be kept in pixels/s instead of the SI m/s.
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4.2 Communication

Previously, the game engine’s only requirement when it came to communicating with the simu-

lation module, was sending information about when to spawn a robot, move a robot, and delete

a robot. With the decided change to make the simulator hold all game state information, it was

now also required to send information about both the walls and the bullets. Since the game engine

already implemented the creation, updates, and deletion of both these objects, the only required

addition was to inform the simulator whenever these cases happened. Figure 4.3 shows how this

information is processed when the game starts while Figure 4.4 shows how it is processed at every

game update.

Figure 4.3: Start of game communication.

Figure 4.4: Game update communication.
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To avoid overflooding the communication topics and to keep the game’s frame rate consistent,

the messages to the game engine regarding those were sent with a frequency of 50 Hz. This value

was specifically chosen to match the frequency at which the /joystick module sends the controllers’

input information to the game engine which is the same value. This consistency results in the

objects, both in the game engine to be drawn on the screen and in the simulator, to be updated only

in times that there could be a change.

The following code block shows the simulator’s implementation and how it handles the mes-

sages received from the game engine.

void S i m u l a t o r : : i n s e r t W a l l ( i n t id , double x1 , double y1 , double x2 , double y2 ,
double width , i n t h e a l t h ) {
Wall w( x1 , y1 , x2 , y2 , width , h e a l t h ) ;
w a l l s . i n s e r t ( make_pa i r ( id , w) ) ;

}

void S i m u l a t o r : : removeWall ( i n t i d ) {
unordered_map < i n t , Wall > : : i t e r a t o r i t = w a l l s . f i n d ( i d ) ;
/ / Wall was a l r e a d y d e l e t e d
i f ( i t == w a l l s . end ( ) )

re turn ;
w a l l s . e r a s e ( i d ) ;

}

void S i m u l a t o r : : u p d a t e W a l l ( i n t i d ) {
unordered_map < i n t , Wall > : : i t e r a t o r i t = w a l l s . f i n d ( i d ) ;
/ / The w a l l was a l r e a d y removed
i f ( i t == w a l l s . end ( ) )

re turn ;
i n t h e a l t h = i t −>second . g e t H e a l t h ( ) − 1 ;
i f ( i t −>second . i s I n d e s t r u c t a b l e ( ) )

re turn ;
i f ( h e a l t h > 0)

i t −>second . s e t H e a l t h ( h e a l t h ) ;
e l s e

removeWall ( i d ) ;
}

void S i m u l a t o r : : i n s e r t R o b o t ( double x , double y , double r a d i u s , double ang le ,
i n t t eamId ) {
Robot r ( x , y , r a d i u s , ang le , t eamId ) ;
r o b o t s . push_back ( r ) ;

}

void S i m u l a t o r : : removeRobots ( ) {
r o b o t s . c l e a r ( ) ;

}

bool S i m u l a t o r : : r o b o t C o l l i s i o n ( i n t id , i n t x , i n t y ) {
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f o r ( i n t i = 0 ; i < r o b o t s . s i z e ( ) ; i ++) {
/ / Same r o b o t
i f ( i == i d )

c o n t in u e ;
/ / D i s t a n c e be tween r o b o t s i s s m a l l e r or e q u a l t o t h e i r summed r a d i i
i f ( pow ( x − r o b o t s [ i ] . getX ( ) , 2 )

+ pow ( y − r o b o t s [ i ] . getY ( ) , 2 )
<= pow ( r o b o t s [ i d ] . g e t R a d i u s ( ) + r o b o t s [ i ] . g e t R a d i u s ( ) , 2 ) ) {

re turn true ;
}

}
re turn f a l s e ;

}

void S i m u l a t o r : : upda t eRobo t ( i n t id , double x , double y , double ang le , i n t s c o r e
) {
/ / Robot does n o t e x i s t
i f ( i d >= r o b o t s . s i z e ( ) )

re turn ;
/ / Robot c o l l i d e s w i t h o b j e c t , won ’ t move
i f ( r o b o t C o l l i s i o n ( id , x , y ) )

re turn ;
r o b o t s [ i d ] . se tX ( x ) ;
r o b o t s [ i d ] . se tY ( y ) ;
/ / Norma l i z e a n g l e be tween 0 and 2 PI
double ang = fmod ( ang le , 2∗PI ) ;
i f ( ang < 0)

ang += 2 ∗ PI ;
r o b o t s [ i d ] . s e t A n g l e ( ang ) ;
r o b o t s [ i d ] . s e t S c o r e ( s c o r e ) ;

}

void S i m u l a t o r : : i n s e r t B u l l e t ( i n t id , double x , double y , double ang le , i n t
r o b o t I d ) {
B u l l e t b ( x , y , ang le , r o b o t I d ) ;
b u l l e t s . i n s e r t ( make_pa i r ( id , b ) ) ;

}

void S i m u l a t o r : : r e m o v e B u l l e t ( i n t i d ) {
unordered_map < i n t , B u l l e t > : : i t e r a t o r i t = b u l l e t s . f i n d ( i d ) ;
/ / B u l l e t does n o t e x i s t
i f ( i t == b u l l e t s . end ( ) )

re turn ;
b u l l e t s . e r a s e ( i d ) ;

}

void S i m u l a t o r : : u p d a t e B u l l e t ( i n t id , double x , double y ) {
unordered_map < i n t , B u l l e t > : : i t e r a t o r i t = b u l l e t s . f i n d ( i d ) ;
/ / B u l l e t does n o t e x i s t
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i f ( i t == b u l l e t s . end ( ) )
re turn ;

i t −>second . se tX ( x ) ;
i t −>second . se tY ( y ) ;

}

4.3 Validation and conclusions

Due to the unavailability of PiGaming’s physical setup during the development of this dissertation,

the results of the developed simulator could not be compared to those of the real system. Thus,

the only way to check the simulator’s validity was to allow a very limited amount of playtesters to

play a few games with both the Gazebo simulator and the new high performance simulator.

These playtesters expressed that the gameplay felt much slower when playing with the Gazebo

simulator, which isn’t an unforeseen conclusion when considering its low real-time factor, as well

as emphasizing that the controlled robot kept performing the players’ last inputted action even

when they were no longer pressing any buttons, at times to a point where they stopped playing

altogether to ask if something was wrong. While with the newer simulator, the playtesters stated

that they felt much more in control of their robot and that gameplay was much smoother and fluid.

To further validate the simulator, access to the physical setup is necessary in order to compare

how input actions differ when applied to the real robots instead of the simulated ones.



Chapter 5

Artificial intelligence with Q-Learning

In this chapter, the development of the new self-taught AI is detailed.

5.1 Implementing Q-Learning

As the previously implemented AI was only purposed for one versus one matches in PiTanks,

the new self-taught one would also be focused in the same scenario as a way to provide a simple

method of comparison in relation to the old AI. If the new AI was capable of consistently winning

matches against the old AI, then its implementation and addition to PiGaming would be considered

as an improvement.

Since this project was developed from its beginning within the ROS framework, it became

apparent how complex it was to include certain libraries within the project due to conflicts with

the framework itself. To work around this complication, and considering that Q-Learning was the

chosen approach to implement the self-taught AI, it was decided that the best solution would be to

use an implementation of Q-Learning that did not require any external libraries.

Dr. Humphrys [2] provides an explained pseudocode implementation of Q-Learning that was

used as a base to solve the HouseRobot problem. This implementation for the new machine

learning node is especially useful due to being created specifically to avoid usage of external

libraries and by providing a simple integration within the ROS framework. Besides this, it also

allows the usage of multiple agents per robot, and although this feature was not explored in this

dissertation, it could prove to be advantageous in future development to create AIs with multiple

behaviours.

Following the aforementioned implementation, to represent the state and action vectors, an

enumerable vector class was implemented:

c l a s s EnumVector {
p u b l i c :

/ / C u r r e n t v e c t o r | vec and c a lways have t h e same s i z e
v e c t o r < i n t > vec ;
/ / E lement l i m i t v e c t o r : 0 <= vec [ i ] < c [ i ]
v e c t o r < i n t > c ;
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/ / No . o f p o s s i b l e v e c t o r s
unsigned long long i n t no ;

EnumVector ( v e c t o r < i n t > cvec ) ;
i n t g e t V e c t o r I d ( ) ;
void s e t V e c t o r F r o m I d ( i n t i d ) ;
void t e s t I d s ( ) ;
i n t& operator [ ] ( i n t i ) ;

} ;

Since this vector is enumerable, meaning that all of its elements are 0 at minimum and c[i]

at maximum, every vector is represented by a unique id, which will be useful when defining the

Q-Table’s dimensions.

To make use of this enumerable vector class, a StateActionSpace class which defines the Q-

Table, was implemented:

c l a s s S t a t e A c t i o n S p a c e {
p r o t e c t e d :

/ / A l l Q v a l u e s , a c c e s s e d w i t h x and a Q( x , a )
v e c t o r < v e c t o r < f l o a t >> vec ;
/ / The s t a t e v e c t o r
EnumVector∗ xf ;
/ / The a c t i o n v e c t o r
EnumVector∗ a f ;
s t r i n g f i l e n a m e ;

p u b l i c :
S t a t e A c t i o n S p a c e ( v e c t o r < i n t > cvec , v e c t o r < i n t > dvec , s t r i n g pa th ,

s t r i n g f i l e n a m e ) ;
f l o a t a t ( EnumVector x , EnumVector a ) ;
void i n c r e m e n t ( EnumVector x , EnumVector a ) ;
void s e t ( EnumVector x , EnumVector a , f l o a t v a l u e ) ;
f l o a t max ( EnumVector s t a t e ) ;
long i n t t o t a l N o O f E x p e r i e n c e s ( ) ;
void saveSpace ( s t r i n g p a t h ) ;
void p r i n t S p a c e ( ) ;

} ;

Having implemented a Q-Table, it was finally necessary to implement the Agent class that

would access and update its values:

c l a s s Agent {
p r o t e c t e d :

/ / These v a l u e s r e t a i n a " somewhat " s t o c h a s t i c p o l i c y
c o n s t f l o a t gamma = 0 . 6 ;
c o n s t f l o a t maxQTemperature = 1 . 0 / 2 ;
c o n s t f l o a t minQTemperature = 1 . 0 / 5 0 ;
c o n s t long i n t c e i l i n g = 100000;
f l o a t s igma ;
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/ / Each ( x , a ) has i t s own v a r y i n g alphaQ
f l o a t alphaQ ( long i n t i ) ;

p u b l i c :
/ / Keep t r a c k o f Q−v a l u e s f o r my a c t i o n s
S t a t e A c t i o n S p a c e ∗ Q;
/ / noQ ( x , a ) c o u n t s t h e no . o f t i m e s we have " v i s i t e d " ( x , a )
/ / ( T r i e d a c t i o n a i n s t a t e x )
/ / so we can have d e c l i n i n g alphaQ
S t a t e A c t i o n S p a c e ∗ noQ ;
/ / The a c t i o n I s u g g e s t t o e x e c u t e
EnumVector∗ a i ;
/ / Temporary a c t i o n v a r i a b l e
EnumVector∗ a f ;

Agent ( v e c t o r < i n t > cvec , v e c t o r < i n t > dvec , s t r i n g pa th , s t r i n g f i l e n a m e )
;

/ / The reward f u n c t i o n i s what d e f i n e s me
/ / ( d e f i n e d i n s u b c l a s s e s )
v i r t u a l f l o a t r eward ( EnumVector s t a t e , EnumVector a c t i o n , EnumVector

n e w S t a t e ) ;
i n t randomAct ion ( ) ;
void updateQ ( EnumVector s t a t e , EnumVector a c t i o n , EnumVector n e w S t a t e ) ;
/ / The sum o f t h e exp (Q/ T ) t e r m s
void c a l c u l a t e S i g m a ( EnumVector s t a t e , f l o a t qTempera tu re ) ;
/ / Shows how p r o b a b l e each a c t i o n i s f o r t h e g i v e n s t a t e
void p r i n t P r o b ( EnumVector s t a t e , f l o a t qTempera tu re ) ;
/ / S u g g e s t s an a c t i o n a i
void s u g g e s t B o l t z ( EnumVector s t a t e , f l o a t qTempera tu re ) ;
/ / S u g g e s t s a c t i o n w i t h r e a s o n a b l e ( d e c l i n i n g ) t e m p e r a t u r e
void s u g g e s t R e a s o n a b l e ( EnumVector s t a t e ) ;
f l o a t r e a s o n a b l e T e m p e r a t u r e ( ) ;
/ / No e x p l o r a t i o n , demo mode
void e x p l o i t ( EnumVector s t a t e ) ;
void saveQTable ( s t r i n g p a t h ) ;

} ;

The temperature parameter is used to determine if the agent will explore or not and it is deter-

mined by how much the agent has explored before. As such, if the agent has yet to considerably

explore the state space, it will most likely explore actions it hasn’t yet since their probability is

increased due to the high temperature. Consequentially, if the agent has explored most of the state

space, the temperature will be low, and thus, the agent is most likely to select the most beneficial

action, exploiting what it has already discovered.

5.1.1 Communication

As this implementation itself does not contain the environment from which it is meant to learn

from, it was required for it to gather information from the new simulator, which was developed
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with the consideration that it would contain all game state information. Thus, all that was needed

was for the communications to be made so that:

• The Q-Learning module could access the game state information at any given moment;

• The game engine module received the actions that the Q-Learning module decided to exe-

cute.

With this in mind, the communications created between these modules are shown in Figure 5.1.

Figure 5.1: System communications regarding machine learning.

5.2 State and action spaces

Having gathered the game state, it was still necessary to define which features were most relevant

for the Q-Learning algorithm to learn from. This lead to an issue where if too many features were

taken into account, the resulting Q-Table would have gigantic proportions due to including too

many different possible states and would always result in the module crashing.

With this, three features were determined to be most relevant and were the ones that were

taken into account when building the Q-Table. These features were: The direction to the opposing

robot; the direction to the closest inner wall; and the direction to the closest incoming bullet. All

of these directions were discretized between the values of 0 and 15 inclusive, this was both to

reduce the number of possible states while keeping a decent enough representation. They were
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also determined by which direction the robot was currently facing, meaning that if the opposing

robot is directly across from the main robot, the value for the direction to the opposing robot is

0 regardless of the position or orientation of each. Additionally, the direction to the closest inner

wall and the direction to the closest incoming bullet had an additional value of 16. This value was

used when there were no more inner walls left and no incoming bullets. Figure 5.2 shows how

the numerical representations of these directions function, these directions are not restricted by

distances, meaning that they merely represent from which direction an object is in comparison to

the robot regardless of how distant it is to said object.

Figure 5.2: Numerical representations of the robot’s directions.

With the state space defined, it was needed to define which actions the robots could execute.

This was a much simpler process since the actions that any robot can perform in PiTanks were

already well defined. In total, there are eighteen possible executable actions at any given moment.

These are the result of combinations of three individual actions:

• Linear movement: Moving forward, backward, or not moving;

• Angular movement: Rotating left, right, or not rotating;

• Shooting bullets: Shooting or not shooting;

With both state and action spaces defined, the Q-Table was ready for the module to update its

Q-values. There was only one last step to define these updates.

5.3 Reward function

Given the limited amount of features used to define the state, defining a good reward function was

a critical part to ensure proper learning. With this, two different agents were trained each with its

own reward function.
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In the first agent, to tell if the chosen action was beneficial or not, considering that there is

only access to the three aforementioned directions, the reward for each action consists of the three

factors shown in Table 5.1.

Table 5.1: Rewards determined by the first AI’s reward function.

Scenario Reward
Shooting when the opposing robot is in line of sight and
not in the same direction as the closest wall

10

The opposing robot is not behind but gets behind with clos-
est wall not in between

-1

Shooting when not looking at opposing robot -1

Despite being a considerably higher value when compared to the others, the reward 10 for

shooting in the direction of the opposing robot while the closest wall is not in the same direction

was chosen to ensure that the agent would highly consider states where shooting the opponent were

more likely to happen. If the opposing robot and the closest wall are not in the same direction and

the agent’s direction to the opposing robot is not in between 4 and 12, but is in between 4 and 12

in the next state, then the robot is penalized for facing away and possibly conceding shots.

This reward function, although lacking in rewarding defensive behaviours, was found to be

decently suited for an aggressive offensive behaviour, while making sure that the robot isn’t con-

stantly shooting randomly, which although there is no inherent penalty for doing so, would lead to

an unfun and boring game experience.

For the second agent, Table 5.2 shows how the second reward function determines the value

for each of the agent’s actions.

Table 5.2: Rewards determined by the second AI’s reward function.

Scenario Reward
Shooting when the opposing robot is in line of sight and
not in the same direction as the closest wall

10

The opposing robot is behind with the closest wall not in
between

-1

Shooting when not looking at opposing robot -1
Staying still -10

In contrast to the previous reward function, instead of punishing the agent once for letting

the opposing robot get behind it, this reward function keeps punishing the robot as long as the

opposing robot is behind it, thus making it select actions that prevent the opposing robot both

from getting behind the agent and from staying behind it. Besides this, and a significantly more

important factor, stillness was added into consideration to be an extremely negative behaviour

both for leading to detrimental states where opposing robots would be given the advantage and to

stalling gameplay.
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5.4 Performance and conclusions

5.4.1 Evaluation against previous AI

Having the machine learning module fully developed, it was time to begin the training phase of the

two aforementioned agents. To do so, each agent trained against itself in 200 two minute matches

in order to sufficiently explore the several possible states of the game and update their Q-Tables

accordingly to the given rewards they received.

After this stage, the now trained agents were tested by facing the previously implemented state

machine-based AI in 100 two minute matches. The results of both agents’ performances in these

matches are shown in Table 5.3:

Table 5.3: Agent results with each reward function against previous AI.

Not punishing stillness Number of games Punishing stillness Number of games
Wins 32 Wins 94
Ties 68 Ties 6
Losses 0 Losses 0

Although never losing to the previously developed AI, the first agent’s reward function did

not take into consideration that staying still would lead to a non-negative long-term reward while

most other actions would. As such, in 68 of its games against the previous AI, both players stayed

hidden for the full duration of the matches with neither ever taking a shot at the other. This scenario

can be seen in Figure 5.3 which is a screenshot of one of the 68 matches where no player ever shot

and stood still in their respective positions.

Figure 5.3: First agent (blue): Match where both players kept standing still.
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As opposed to the first agent, the second one with the updated reward function that punished

stillness was much more aggressive and prone to approaching its opponent, which due to the

previous AI being more prone to waiting for the opponent’s approach, would lead to the agent

consistently getting the first shot and keep bombarding its opponent until the end of the game, this

lead to it winning most of its matches. Figure 5.4 shows one of the 94 matches where the agent

managed to get a few shots before the previous AI could retaliate.

Figure 5.4: Second agent (blue): Match where the agent bombarded the previous AI early on.

It is worth noting that both agents and the previous AI would at times get stuck in the walls

due to bugs in the collision detection of the game engine. This issue was a slight setback in both

training and evaluation of both agents due to its unpredictability and is one of the causes for some

matches resulting in ties.

With the obtained results, the second agent was determined to be superior since it was more

proactive and engaging, instead of stalling.

5.4.2 Evaluation against human players

To further evaluate the second agent’s performance, it was decided to let two playtesters play both

against it and the previous AI to determine if the new agent was decent enough when facing actual

human players.

The first playtester, who had a decent amount of knowledge and experience regarding video

games, was able to beat both the previous AI and the agent in every single match that they played.

When matched against the previous AI, this playtester noted that it had a "terrible" habit of hiding

behind the same wall, which lead to them easily defeating it.

When questioned about what they thought of the agent’s actions, they expressed that it was

significantly more challenging and that they were taken a bit by surprise by how aggressive it was
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in comparison. Although the agent was able to hit this playtester a few times, they commented

that the agent, despite being less predictable than the previous AI, would leave itself open to shots

by being overly aggressive.

The second playtester, in contrast, had little to no experience in video games, and in most

matches would sometimes stop looking at the game screen to look at which controls they were

pressing. Still, when facing the previous AI, this playtester quickly realized how naive the AI’s

actions were and it took them little effort and time to figure out how to easily defeat it on their

very first match and thus also never losing against it. Against the agent, however, this playtester

struggled to keep up with its barrage of shots and never managed to defeat it.

When inquired about their thoughts on both AIs, this playtester stated that the previous AI’s

behaviour was "a little boring" but a good way to introduce new players to PiTanks. In comparison,

they voiced that the agent was too overwhelming for them.

With these results, it was concluded that the new self-taught AI had the capacity of defeating

players that were still adapting and learning the game while still being beatable by players with

more general experience with video games.
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Chapter 6

Conclusions and Future work

By the end of this dissertation, the simulation and artificial intelligence ROS modules in the

PiGaming system had received a significant overhaul. From the introduction of a higher perfor-

mance simulator which replaced the previously implemented Gazebo one, to a machine learning

component that could make use of this higher performance to efficiently train machine learning

agents that were able to play PiTanks.

The new high performance simulator was able to smoothly run not only PiTanks but also Robot

factory and Robot race with a consistent refresh rate of 50 Hz thus preserving the playability of

the system’s games in a simulated environment and allowing for more convenient debugging by

not requiring the use of the system’s physical setup and real robots to test the implementation of

new features and games in the system.

The new machine learning component focused on Q-Learning was able to take advantage

of the simulator’s performance as the environment to train two different kinds of agents within

an acceptable time frame and properly communicate these agent’s actions to the system’s game

engine, thus allowing the trained AIs to play against real players in the simulated environment.

There were however at times issues with the collision detection between the robots and the walls

within the game engine, which would occasionally lead to the robots getting stuck in the walls.

The results of the new additions to the system were validated by two playtesters that experi-

enced the system’s gameplay with both its previous simulation and AI components and the newly

developed ones. These results were limited to the opinions of these playtesters due to the re-

stricted access to the system’s physical setup and inability to allow more users to try the upgrades

as a consequence of the confinement order from the pandemic outbreak of COVID-19.

It is thus concluded that PiGaming as a system benefits substantially from having an efficient

simulator not only to its players, but also to its developers. In regards to the artificial intelligence,

however, although there was a step forward in its improvement, there is still room for further

upgrades and unexplored machine learning strategies that could lead to more engaging AIs.
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6.1 Future work

When it comes to the further development of PiGaming’s system as a whole, there are several

explored and unexplored areas that could use improvements. As such, the following bullet points

provide insight on how the system could be upgraded in the future:

• Simulation fidelity with the physical setup: Despite being faster than the previous simulator,

the new high performance simulator is not guaranteed to enact the games exactly the same as

the physical system would. As such, data should be gathered both from running the physical

setup and the simulated one to ensure the simulator’s fidelity;

• Deep Learning AI: Due to time restrictions from the development of the high performance

simulator, this area of machine learning was left unexplored for the system. However, it

has shown multiple successes in the areas of robotics and gaming and could lead to a more

accurate representation of the game’s state when compared to Q-Learning and should result

in the creation of more challenging agents. LibTorch is suggested as a possible machine

learning library to use within PiGaming for including multiple deep learning algorithms;

• Wall collisions: Since these are handled within the system’s game engine itself it was not

explored in this dissertation. However, it did slightly limit the development of the AIs and

is thus suggested to be looked into as a way to provide future improvements to the AI and

to less buggy gameplay;

• Gaming depth: Introducing more depth to the games, via power-ups, for instance, could

lead to creating more engaging experiences and increase the games’ replayability.
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